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Abstract

The study of structural reliability mainly concerns the evaluation and prediction

of the risk of limit state violation for an engineering structure at any stage of its life.

Reliability evaluation helps improve structure design and product quality, which is

of great significance for companies and consumers. It is also the basis of reliability

modeling and prediction. Vibration control is a technique to reduce the energy of

a vibrating structure when it is excited by external forces. This technique is widely

used in various systems, such as buildings, bridges, machine tools and vehicles.

Reliability prediction helps companies make production planning and implement

preventive maintenance.

To do the reliability assessment, a theoretical analysis model is firstly devel-

oped. Due to complex interior and exterior factors, the uncertainties in structural

properties as well as those in the stochastic excitation have made reliability

analysis more difficult to apply. Traditional reliability analysis is generally based on

professional knowledge or explicit performance functions, which has been unrealistic

for today’s systems that are more complex and nonlinear due to advanced design

methodologies. In fact, reliability analysis involves estimations of the so-called

conditional failure probability (CFP) that can be seen as a regression problem

taking the structural uncertainties as input and the CFPs as output. In this

situation, growing attention has been paid to non-parametric statistical learning

theories. The prediction of CFP can be realized by machine learning models, such

as decision trees, Support vector machines, ensemble learning methods, etc. These

models are attracting more and more attention in recent published researches.

This research aims to build a theoretic framework that integrates machine learning

theories in structural reliability analysis and explore their performances on different

structures. This framework is of high efficiency and accuracy for structural systems

that have uncertainties in both structural properties and excitation.

Keywords: Structural reliability, Uncertainties, Statistical learning



Résumé

L’étude de la fiabilité structurelle concerne principalement l’évaluation et la prédic-

tion du risque de violation de l’état limite d’une structure d’ingénierie à n’importe

quelle étape de sa vie. L’évaluation de la fiabilité permet d’améliorer la conception

de la structure et la qualité des produits, ce qui est d’une grande importance pour

les entreprises et les consommateurs. Le contrôle des vibrations est une technique

pour réduire l’énergie d’une structure vibrante lorsqu’elle est excitée par des forces

externes. Cette technique est largement utilisée dans divers systèmes, tels que les

bâtiments, les ponts et les véhicules. La prévision de fiabilité aide les entreprises à

planifier la production et à mettre en une maintenance préventive.

Pour faire l’évaluation de la fiabilité, un modèle d’analyse théorique est d’abord

développé. En raison de facteurs intérieurs et extérieurs complexes, les incertitudes

des propriétés structurelles ainsi que celles de l’excitation stochastique ont rendu

l’analyse de la fiabilité plus difficile à appliquer. L’analyse de fiabilité traditionnelle

est généralement basée sur des connaissances professionnelles ou des fonctions de

performance explicites, ce qui était irréaliste pour les systèmes d’aujourd’hui qui

sont plus complexes et non linéaires. En fait, l’analyse de fiabilité implique des esti-

mations de la soi-disant probabilité de défaillance conditionnelle (CFP) qui peut être

considérée comme un problème de régression prenant les incertitudes structurelles

en entrée et les CFP en sortie. Dans cette situation, une attention croissante a

été accordée aux théories de l’apprentissage statistique non paramétrique. La pré-

diction de la CFP peut être réalisée par des modèles d’apprentissage automatique,

tels que les arbres de décision, les machines à vecteurs de support, les méthodes

d’apprentissage d’ensemble, etc. Cette recherche vise à construire un cadre théorique

qui intègre les théories du machine learning dans l’analyse de la fiabilité structurale

et à explorer leurs performances sur différentes structures. Ce cadre est d’une ef-

ficacité et d’une précision élevées pour les systèmes structuraux qui présentent des

incertitudes à la fois en termes de propriétés structurelles et d’excitation.

Mots-clés: La fiabilité structurelle, Incertitudes, Apprentissage statistique
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General Introduction

Reliability evaluation helps improve structure design and product quality, which is

of great significance for companies and consumers. It is also the basis of reliability

modeling and prediction. Vibration control is a technique to reduce the energy of

a vibrating structure when it is excited by external forces. This technique is widely

used in various systems, such as buildings, bridges, machine tools and vehicles.

Reliability prediction helps companies make production planning and implement

preventive maintenance. To do the predictions, a reliability model is firstly deter-

mined. Due to complex interior and exterior factors, the structure properties always

deviate their design values. The structural uncertainties play an important role in

reliability modeling. Traditional reliability models are commonly based on a pri-

ori information and professional knowledge, which has been unrealistic for today’s

systems that are more complex and nonlinear due to advanced design methodolo-

gies. In this situation, growing attention has been paid to non-parametric statistical

learning approaches. Seen as a classification/ regression procedure, the prediction

task can be realized by machine learning models, such as decision trees, Support

vector machines, ensemble learning methods, etc. These models are attracting more

and more attention in recent published researches. In this research, we aim to in-

vestigate the machine learning theories and explore the application of these models

in structural reliability analysis. Besides, we try to develop a new system reliability

assessment method that is of high efficiency and high accuracy for structural sys-

tems that have uncertainties in the structural properties and that is subjected to

stochastic excitations.





Chapter 1

Introduction

Contents

1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Vibration control of structural systems . . . . . . . . . . . . . 2

1.2.2 Uncertainties in structures . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Failure mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.4 Structural reliability . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Basic contents of structural reliability analysis . . . . . . . . 7

1.4 Methods for reliability analysis . . . . . . . . . . . . . . . . . 9

1.5 Structural reliability analysis process . . . . . . . . . . . . . 14

1.6 Research scope and objectives . . . . . . . . . . . . . . . . . . 14

1.7 Dissertation organization . . . . . . . . . . . . . . . . . . . . . 15

1.1 General

Reliability describes the ability of a system or component to function under stated

conditions for a specified period of time [1]. Benefiting from more than half a cen-

tury’s development, ’reliability’ has become one of the key roles that determine the

product performance. Nowadays, increasingly competitive markets drive companies

to produce more advanced systems to meet various requirements of the customers.

Meanwhile, the complexity of the products increase drastically and the failure mech-

anisms become more difficult to analyze. We notice that various ’smart’ products

are becoming even closer to human life, making larger influence on their comfort
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and safety. These conditions make reliability evaluations more and more important

to apply. Structural reliability aims at quantifying the risk of failure of systems due

to uncertainties in their design, manufacturing and environmental conditions. Vi-

bration control is a technique to reduce the energy of a vibrating structure when it

is excited by external forces. This technology is widely used in various systems, such

as buildings, bridges, machine tools and vehicles. Reliability research in structural

systems remains an open problem due to uncertainties and different failure mech-

anisms. This dissertation presents contributions to structural reliability analysis,

modeling and prediction in passive control mode.

1.2 Background

1.2.1 Vibration control of structural systems

Depending on the locations, certain civil structured facilities can be subjected to

dynamic loads due to gusty wind fronts or strong ground motion associated with

earthquake events of different intensity/severity during their life service. At high

levels of intensity these naturally occurring dynamic loads may induce permanent

structural damage and, in extreme cases, total structural failure/collapse. During

the last three decades the incorporation of various devices such as energy dissipation

equipment (e.g. viscous dampers, friction dampers, etc.), and tuned-mass dampers

have been considered by various researchers and has been applied in practice to pas-

sively control the vibratory motion of structures maintaining its amplitude below

certain acceptable thresholds ([2], [3], [4], [5]). Typically, such "non-conventional"

means of mitigating the hazard posed to structures due to the action of winds

and earthquakes are applied to protect critical civil infrastructure such as high-rise

buildings, hospitals, and long-span bridges. Furthermore, the employment of such

passive devices is commonly considered to reinforce existing structures to meet the

contemporary safety criteria and to retrofit damaged structures in the aftermath of

severe seismic events. These practical applications have sustained the important and

active research field of passive vibration control for various structures. Admittedly,

it is noted that the improved structural performance can also be achieved by using
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active/semi-active control solutions relying on the integration of sensors, controllers

and real-time data processing ([3], [6], [7]). However, due to reliability issues and

the installation cost of such solutions, the use of active control systems is not as wide

spread as the passive control solutions. In the context of passive vibration control,

the concept of the dynamic vibration absorber is historically one of the first and

most widely used strategies for passive vibration mitigation of dynamically excited

mechanical and civil engineering structures and structural components ([8], [9]). It

relies on attaching an additional free-to-vibrate mass to the structural system (pri-

mary or host structure) whose motion is to be suppressed via certain mechanical

devices. These devices are appropriately designed (or "tuned") such that a reso-

nant out-of-phase motion of the attached mass is achieved compared to the primary

structure. Arguably, the most commonly used dynamic vibration absorber is the

so-called "tuned mass-damper" (TMD). In its simplest form, the TMD considers

a linear spring and a viscous damper to link the additional mass to the primary

structure. The effectiveness of this classical TMD relies on tuning its stiffness and

damping properties such that significant kinetic energy is transferred from the vi-

brating primary structure to the TMD mass and is absorbed through the viscous

damper. Especially during the recent one decade, most of the researchers have been

focusing on passive control using tuned mass dampers (TMD) in randomly driven

linear structures ([10], [11], [12], [13], [14], [15], [16]). The use of the TMDs in

passive linear structural control is increasingly demanded in the field of engineering

because of its efficiency and low cost. Indeed, the TMDs, belonging to the general

class of vibration dampers, are very economical and efficient devices to mitigate the

structural vibrations caused by external dynamic loadings.

1.2.2 Uncertainties in structures

The incorporation of uncertainty into systems analysis is an on-going topic of signifi-

cance. For realistic systems, uncertainties can be involved in the design stage, in the

manufacturing progress and during the service. In the design stage, uncertainties

are derived from mathematical modeling process or incomplete knowledge about the

system. Uncertainties in the manufacturing progress are reflected by the manufac-
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turing tolerance, material scatter on account of the limited precision in tools and

processes or the lack of advanced technologies. During the service, uncertainties in

the excitations (such as seismic loads, waves, temperature changes and any other

kind of environmental loads) and boundary conditions as well as human factors

are the major concerns. As any structure has a limited age, uncertainty is usually

induced from the deterioration of material properties. In this aspect, uncertainties

may be imposed upon geometry tolerances, material properties or excitations. These

uncertainties can influence the performances of the system during its lifetime. Un-

certainty analysis, or in other words, how to mathematically quantify uncertainties,

has become an indispensable task that should be carefully accomplished in different

stages of the structural system. During the last two decades, engineers and scientists

have paid much attention to uncertainties of various types in the system. Various

representations and theories for uncertainties exist, each of which is characterized

by a distinct mathematical model based on the information on hand. Primarily,

uncertainties can be classified as three variants: aleatory uncertainty, epistemic un-

certainty and error. The variants as well as their explanations are illustrated in

Figure 1.1.

Uncertainty

Aleatory uncertainty

(Variability, irreducible,

random, inherent, or

stochastic)

Inherent variation of the

system or environment;

Induced by

Irreducible variation of

property ranging over time

or population;

It can be modeled using

various probability 

theories.

Epistemic uncertainty

(Reducible, subjective,

state-of-knowledge, 

model form or simply 

uncertainty)

Incomplete information

Induced by

Some level of ignorance

It can be modeled using 

fuzzy set theory, evidence 

theory, possibility theory, 

or convex model, imprecise 

probability etc.

Error

(Numerical uncertainty)

A recognizable deficiency 

in modeling and simulation

It is not caused by lack of 

knowledge

It should be identifiable 

through examination

It could be avoided by an 

alternative approach with 

limited validity of the 

applied numerical 

methodology

Figure 1.1: Classification of uncertainties [[17], [18]]
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As is shown in Figure 1.1, aleatory uncertainty can also be understood as variabil-

ity, irreducible uncertainty, inherent uncertainty or stochastic uncertainty. The term

’aleatory’ is used to specialize the inherent characteristics of the variations related

to the physical system or the environment of interest. Aleatory uncertainty is a kind

of uncertainty that generally has priori-known statistical properties. Accordingly,

the probability theories can be applied. In contrast, epistemic uncertainty is also

termed as reducible uncertainty, subjective uncertainty or model form uncertainty.

Epistemic uncertainty is generally induced by incomplete information, some level

of ignorance of the system or the environment. The associated uncertainty analy-

sis (UA) method depends mainly on non-probabilistic theories that are commonly

known as generalized information theory. It mainly includes possibility theory, fuzzy

set theory and evidence theory. As to the last term error, it could be reduced or

even avoided by careful examinations or advanced methods.

1.2.3 Failure mechanisms

Failure mechanism is a physical process in which stresses cause damage to the ele-

ments comprising the system, ultimately leading to system failure [19]. According

to [19] and [20], the failure mechanisms can be classified into two subgroups: over-

stress failures (such as large elastic deformation, yield and fracture) and wear-out

failures (such as wear, corrosion and fatigue). In the first case, a failure event occurs

when the stress to which the structure is subjected exceeds the allowable maximum

strength. If the stress is below the threshold value, the stress has no permanent

effect on the structure. In the second case, the stress causes damage that gener-

ally accumulates irreversibly. The accumulated damage does not reduce when the

stress is removed, although sometimes annealing is possible. The cumulative dam-

age does not cause any performance degradation when it is below the endurance

limit. Once this limit is reached, the structure fails. As to random vibration, simi-

lar failure mechanisms can also be found in [21]: (1) Failure may occur at the first

time that the random response exceeds a certain level; (2) Failure occurs when the

accumulated damages reaches a fixed amount. The estimation of first-passage (or

first excursion) probability is usually in conjunction with the former case; while the
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aging engineering belongs to the latter one. In this work, we concentrate on the

over-stress or the first-passage failure mechanism. Simply, when the structure is

subject to static loads, the over-stress mechanism is considered; when the structure

is under dynamic loads, the first passage problem is regarded.

1.2.4 Structural reliability

Structural reliability is concerned with the rational treatment of uncertainties in

structural engineering and with the methods for assessing the safety and service-

ability of civil engineering and other structures [22]. It is a subject that has grown

rapidly during the last decade and has evolved from being a topic for academic

research to a set of well-developed or developing methodologies with a wide range

of practical applications. Reliability is commonly defined as [22] "the probability of

a device performing its purpose adequately for the period of time intended under

the operating conditions encountered". There are four elements to the definition

that must be considered. First, probability refers to the likelihood that a device or

structural component will work properly. These terms imply acceptance of some

degree of uncertainty. The second element refers to adequate performance. In order

to determine whether a component has performed adequately, a standard is needed

to define what is meant by adequate performance. The third element is the in-

tended period of time. This is the mission endurance or lifetime of the structure

under consideration. The final element of the definition is the operating conditions.

Environmental conditions play a significant role in determining structural reliability.

Simply stated, structural reliability is a yardstick of the capability of a structure to

operate without failure when put into service. As implied in the definition, struc-

tural failure and, hence, reliability, is influenced by many factors. In its simplest

form, the measure of reliability is made by comparing a component’s stress to its

strength. Failure occurs when the stress exceeds the strength. The larger this gap,

the higher the reliability and the heavier the structure. Conversely, the smaller the

gap, the lower the reliability, but the lighter the structure. The gap between stress

and strength, enforced by the factor-of-safety, generally produces adequate although

unmeasured reliability. Generally, the structural reliability changes in different peri-



1.3. Basic contents of structural reliability analysis 7

ods of its life, based on various interior and exterior factors. There are mainly three

factors listed as below.

• Static strength A structure’s capability to sustain operational loads is com-

monly assessed by comparing material performance parameters to limit or

ultimate loads. Limit loads are generally defined as the maximum load ex-

pected during the life of the structure.

• Environmental effects Environmental factors of major importance include a

combination of humidity and temperature. Many studies have been conducted

to investigate moisture absorption as well as the reduction of mechanical prop-

erties due to temperature and moisture exposure. Some of the approaches used

to account for environmental factors is to define exposures that are extremes

and selectively evaluate by test the effects on material properties. These ex-

tremes are then considered to be invariant during the lifetime of the structure.

Strength values are reduced to coincide with the environmental extremes.

• Fatigue is the gradual deterioration or progressive structural damage of a

material that occurs when the material is exposed to repeated loads.

1.3 Basic contents of structural reliability analysis

One of the problems in stochastic mechanics is the estimation of the probability

density of one or several structural responses. This kind of problem can be termed

full probabilistic analysis. A derived, more practical problem is to find a specific

probability of exceeding a response threshold that can be considered critical for the

serviceability or the safety of the system. This is the basic task of reliability anal-

ysis. Notice that, in principle the second problem could be solved after the first,

as the probability of failure can eventually be obtained by integration of the proba-

bility density function of the observed response. However, most reliability methods

developed in the last decades attempt to estimate directly the failure probability

or related reliability indices. Actually, the failure probability is calculated from an
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integration within the failure region that is defined by a particular performance

function.

Performance function In the reliability problem, the input random variables

are collected in a vector X, whose deterministic counterpart is the vector x. This

defines the input space. The performancefunction G(x) (also named limit-state

function, LSF) is defined in such a way that G(x) > 0 means that the sample x is in

the safe domain S = x : G(x) > 0; G(x) < 0 implies that x is in the failure domain

F = x : G(x) < 0. Specially, G(x) = 0 is the boundary between the two domains.

For example, the performance function of a structural component can be defined as

G = R− S (1.1)

where S is a load effect on the component; R is the strength capacity to withstand it.

The safety limit state will be violated whenever G(x) < 0. The probability that this

occurs for any single load application is the probability of limit state violation, or

simply the probability of failure Pf . Generally, Pf is represented by the overlap area

of the probability distributions of the two variables (see Figure 1.2). Theoretically,

Pf = P (G(x)) =

∫∫
G(x)<0

fRS(r, s)drds (1.2)

Since this overlap may vary with the time, so Pf may be a function of time. More

generally, assume that x = [x1, x2, ..., xn] is the vector of n-dimension variables. x

consists of the fundamental variables that define and characterize the behavior and

safety of a structure. Accordingly, the probability of failure is denoted as [23]

Pf =

∫
· · ·
∫
G(X)≤0

fX(x1, x1, ..., xn)dx1 ...dxn (1.3)

where fX(.) denotes the joint probability density function (pdf) of input vector . If

the basic variables are all independent, fX(.) is simplified as:

fX(x) =

n∏
i=1

fX(xi) = fX(x1) ∗ fX(x2)... ∗ fX(x3) (1.4)

Here fX(xi) is the marginal probability density function for the basic variable xi.

The region of integrand G(X) ≤ 0 in (1.3) denotes the hyper-space where the limit
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Figure 1.2: Space of two random variable (r, s) and their joint density function fRS(r, s);

their marginal density functions fR and fS ; the failure domain D. [24]

state violation occurs. It is directly analogous to the failure domain D. The integral

of (1.3) over the failure domain G(X) ≤ 0 cannot be performed analytically. There-

fore, section 1.4 is devoted to various reliability analysis methods to approximate

this integral.

1.4 Methods for reliability analysis

The methods based on the limit-state function can be grouped into two families

named as analytic and synthetic, according to whether the random variable set

and its effects are treated with the tools of probability theory or with those of

statistics (see Figure 1.3). In the first case we have two kinds of methods based on

Taylor-series expansion of the limit state function, which are known as FORM (First-

Order Reliability method) and SORM (Second-Order Reliability Method). As is well

known, the FORM method requires information on the value of the performance

function and its gradient in the vicinity of the so-called design point and the SORM

method needs in addition the knowledge of the second-order derivatives.
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Methods of analysis

Analytic 

(Taylor-based)

Synthetic 

(Monte-Carlo)

First-order 

Reliability method

(FORM)

Second-order 

Reliability method

(SORM)

Direct Substitution

Figure 1.3: Reliability methods based on limit state functions [25]

In the second case, sample sets of the basic variables are generated and processed by

a numerical solver (generally a finite element code) of the structural model in order

to obtain a population of structural responses over which statistical analyses can be

conducted. This is called Monte Carlo simulation (MCS). For the reliability assess-

ment, MCS approximates the reliability by the frequency that the generated samples

drop into the safe region ([26], [27], [28]).The Monte Carlo method is distinguished

by its entire generality.

Nonetheless, it is a well-known fact that it requires a large computational labor.

With respect to FORM and SORM it requires random samples instead of deter-

ministic ones and its scaling with dimensionality is rather weak. Indeed, together

with its generality, this later characteristic is a positive advantage. However, its

computational cost remains a problem. This is not only due to the fact that it

requires the many calls of the numerical solver for the assessment of any statistical

quantity but also that in using it this quantity becomes a random variable. In order

to diminish the computing labor of Monte Carlo methods, research efforts oriented

to a reduction of the number of samples and the spread of the estimates obtained

at each simulation epoch have been exerted in the last years. Sometimes, however,

these developments are accompanied by a sacrifice of one or more of the attractive

properties of the basic Monte Carlo method. For instance, some of these variance-
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reduction methods (for example, importance sampling) require an exploration for

locating the design point or the estimation of an optimal density function, which is a

task greatly affected by the curse of dimensionality. Anyhow, these research efforts

evidence the need of reducing the very high cost of MCS especially for the case of

large structures. As the complexity increases drastically and the failure mechanisms

became more difficult to recognize, new theories were derived by the researchers.

Physical system

(difficult to conduct 

experiments on)

Computer 

code/model

(physical model of the 

real system)

Surrogate 

model
(approximate the code 

output. Cheap.)

input
samples

System 

output

Code

output

Surrogate 

output

Code output mimics system output Surrogate output mimics code output

Figure 1.4: Evolution from physical model to surrogate model

As an alternative, the non-parametric models have been the focus of structural reli-

ability research. An important step in this direction was made in the eighties with

the application of the Response Surface Method (RSM) developed in the field of

Design of Experiments. RSM is a collection of mathematical and statistical tech-

niques for exploring the relationships between independent variables and response

variables [29]. Its basic idea is to find a surrogate polynomial function of the basic

variables that approximates the implicit performance function. The surrogate is

then employed for most of the samples needed in the entire MCS. For this purpose,

an experimental design is generated for calculating the undetermined coefficients of

the surface so as to minimize the error of approximation, particularly in the region

around the design point. The surrogate so obtained can also be connected to FORM

and SORM methods. The development of RSM ([30], [31]) opened a new area of

structural reliability research that can be labeled as the investigation on solver sur-

rogate methods. The evolution from the physical models to surrogate models are
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ix
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...
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Figure 1.5: Basic procedures to build a surrogate model

depicted in Figure 1.4, and the basic procedures to build the surrogate models are

shown in Figure 1.5. Other analogous models include polynomial chaos expansions

([32], [33]) and Kriging model [34]. Note that taking into account the refinement

and sophistication of finite element models, the practical application of MCS could

be greatly favored by the availability of such a substitute to the actual deterministic

solution, since only some finite element solver calls would be needed for building

the surrogate. In recent years, however, several important findings in this direction

have been achieved. For example, some serious deficiencies of the RSM that make

it unreliable for practical use have been highlighted. Fortunately, the development

of Statistical Learning Theory and algorithms, such as Random Forests (RF) [6],

Artificial Neural Networks (ANN) ([35], [36]) and Support Vector Machines (SVM)

([37], [38], [39]), afforded new ways of obtaining the surrogate of the performance

function. Attention has been paid by researchers to the fact that structural relia-

bility problems can be treated as a statistical classification task determined by the

LSF. For this purpose, the modern pattern recognition methods become useful.

RF is an ensemble learning method that use multiple learning algorithms to obtain

better predictive performance than could be obtained from any of the constituent

learning algorithms alone. RF is comprised of many individual trees called classi-

fication and regression tree (CART). Each tree is built from a random sample set

(i.e. bootstrap sample) generated from the training set. A tree learning process is
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actually a recursive data partitioning process based on the principle of minimal sum

of squared errors (SSE). Other representative tree-based methods include Gradient

Boosting (GB) [6] and Extremely Randomized trees (ETs) [40]. Stacked General-

ization (Stacking) involves training a meta-learner from the predictions of several

base learners. First, all of the base learners are trained using the available data,

then a meta-learner is trained from the predictions of the base learners. Stacking

typically yields performance better than any single trained models [41]. It has been

successfully applied on both regression [42] and classification. An ANN consists of

some artificial neurons and connections between them. An artificial neuron is a

mathematical function that receives one or more inputs and sums them to produce

an output. Usually each input is separately weighted, and the sum is passed through

a non-linear function known as an activation function. Training of ANN involves ad-

justing the parameters, or the weights and biases, of the model in order to minimize

error. Back propagation is used to make those weigh and bias adjustments relative

to the error, and the error itself can be measured in a variety of ways, including by

root mean squared error (RMSE).

Similar to ANN, support vector machine (SVM) is an intelligent learning method

for pattern recognition. However, the theoretical bases of SVM and ANN are dif-

ferent. ANN is based on empirical risk minimization (ERM) principle, while SVM’s

foundation is structural risk minimization (SRM) principle. ANN can obtain the

minimization risk for the training samples due to the application of the ERM prin-

ciple, but for the un-trained samples ANN may give unreliable estimation. SRM

principle can improve generalization ability of learning machine by minimizing the

total of empirical risk and confidence bound. Theoretically, other machine learning

tools such as k-nearest neighbors (kNN) are also an alternative. According to the

current research state, we believe that the explorations are far from enough, but

more and more researchers are trying to introduce these methods into structural

reliability domain. This dissertation devotes itself totally to this topic.
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1.5 Structural reliability analysis process

Generally, the reliability analysis of an engineering structure includes three parts.

Determine the basic variables that construct the structural model; express the prob-

ability distributions of these variables; define the performance function for the object

structure. Based on these three tasks, the basic procedure of engineering structural

reliability analysis is shown in Figure 1.6.

Structural mechanics 

analysis 

(Finite element code)

Structural 

performance function 

evaluation

Structural reliability 

analysis

Experimental design 

(data collection)

Engineering structure 

(sample space)

Figure 1.6: Basic procedure of engineering structural reliability analysis

1.6 Research scope and objectives

Uncertainties are inherent in structural systems, such as stochastic excitation,

stochastic loading and epistemic model uncertainties. In this study, we intend

to contribute in reliability analysis and prediction of structures in passive control

mode.Derive a high-accurate, computationally efficient reliability evaluation method

for passive control structures;Explore machine learning methods for structural reli-

ability prediction, and compare their performances from different aspects;
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1.7 Dissertation organization

In chapter 1, we present the background of reliability research on vibration control

structures, investigate failure modes of structural systems and give a literature re-

view on methods of reliability assessment. The objectives and scope of our research

are pointed out as well.

In chapter 2, the fundamental knowledge of reliability analysis and reliability mod-

eling techniques for structural systems are introduced. In this chapter, we begin

with the classical reliability analysis theories that provide the basic knowledge of

reliability analysis. Uncertainty analysis is subsequently followed, in which the basic

probability theories are introduced and the associated methods are reviewed. They

constitute the foundation of this dissertation.

In Chapter 3, the theory of uncertainty quantification is introduced and analyzed in

detail.The concept of conditional failure probability is developed. Machine learning

models are introduced as surrogates to model conditional failure probabilities.

In Chapter 4, to deal with passive controlled structures subject to earthquake in-

duced vibrations, we propose a novel reliability modeling method based Random

Forest and Monte-Carlo Simulation . Random Forest is distinguished due to its

robustness and high accuracy in modeling and prediction work. Therefore, this part

devotes to exploring the feasibility of RF and examining its performance in mod-

eling and prediction of structural reliability. In this part, different complexity of

structures are studied. We also test other representative machine learning methods,

and compare them with RF in different aspects.

In Chapter 5, Tree-based ensemble methods, such as RF, always behave well, but

further studies are needed to improve the prediction performance. Stacking method

tries to build the prediction model in a hierarchical way, resulting in a meta-learner

induced from the predictions of various base learners. Recent research shows that,

with a relatively small price of CPU time, the Stacking model can largely improve

reliability predictions compared with individual base learners. The prediction model

is learned on a training set that is provided by Monte-Carlo simulations. In numer-

ical simulations, different Stacking models are explored and their performances are
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compared and analyzed from different perspectives. Bias-variance analysis of the

prediction error is performed to evaluate the model in a more general way. Time

complexity of the prediction model is also introduced and analyzed in detail.

In Chapter 6, some conclusions are drawn on this dissertation research and provide

perspectives for future work.
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2.1 General

In the chapter of introduction, we have emphasized the necessary and the importance

of reliability engineering in the structural system. In this chapter, we begin with
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fundamental knowledge of reliability analysis, including classic analysis methods as

well as modern statistical learning models. Among the structural reliability analysis

methods, we introduce the mostly-used ones, such as first/second order reliabil-

ity method (FORM/SORM), Moment-based methods, Response surface methods,

Simulation-based methods, Classification-based methods and Time-variant reliabil-

ity methods.

The methods based on statistical learning theories are presented, including Ensemble

learning methods (Random Forest, Adaptive Boosting), k-nearest neighbor method,

Support Vector machines and Artificial Neural Networks.

2.2 General principle of structural reliability analysis

A structural system is defined as a structure that is required to provide specific func-

tionality under well-defined safety constraints. Such constraints need to be taken

into account during the system design phase in view of the expected environmental/

operating loads it will be subject to. In the presence of uncertainties in the phys-

ical properties of the system (e.g. due to tolerances in the manufacturing), in the

environmental loads (e.g. due to exceptional weather conditions), or in the operat-

ing conditions (e.g. traffic), it can occur that the structure operates outside of its

nominal range. In such cases, the system encounters a failure. Structural reliability

analysis deals with the quantitative assessment of the probability of occurrence of

such failures (probability of failure), given a model of the uncertainty in the struc-

tural, environmental and load parameters. Following the formalism introduced in

[43], this part is intended as a theoretical introduction and of the available tools in

structural reliability analysis. All the algorithms presented follow a black-box phi-

losophy, e.g. they rely on the point-by-point evaluation of a computational model,

without knowledge about its inner structure. Let us denote by X the vector of basic

random variables. When considering models of mechanical systems, these variables

usually describe the randomness in the geometry, material properties and loading

[43]. They can also represent model uncertainties. This set also includes the vari-

ables used in the discretization of random fields, if any. The model of the system
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yields a vector of response quantities Y = M(X). In a mechanical context, these

response quantities are e.g. displacements, strain or stress components, or quantities

computed from the latter.

2.2.1 Limit-state function

A limit state can be defined as a state beyond which a system no longer satisfies

some performance measure. Regardless on the choice of the specific criterion, a state

beyond the limit state is classified as a failure of the system. Consider a system

whose state is represented by a random vector of variables X ∈ DX ⊂ RM . One

can define two domains Ds; Df ⊂ DX that correspond to the safe and failure

regions of the state space DX , respectively. In other words, the system is failing if

the current state x ∈ Df and it is operating safely if x ∈ Ds. This classification

makes it possible to construct a limit− statefunction g(X) that assumes positive

values in the safe domain and negative values in the failure domain:

x ∈ Ds ⇔ g(x) > 0

x ∈ Df ⇔ g(x) < 0
(2.1)

The hyper-surface in M dimensions defined by g(x) = 0 is known as the limit-

state surface, and it represents the boundary between safe and failure domains. A

graphical representation of Ds, Df and the corresponding limit-state surface g(x) =

0 is given in Figure 2.1.

2.2.2 Failure Probability

If the random vector of state variables X is described by a joint probability density

function (PDF) fX(x), then one can define the failure probability Pf as:

Pf = P (G(X) < 0) (2.2)

This is the probability that the system is in a failed state given the uncertainties of

the state parameters. The failure probability is then calculated as follows:
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Figure 2.1: Safe and failure regions

Pf =

∫
Df

fX(x)dx =

∫
x:g(x)<0

dx (2.3)

Note that the integration domain in Eq. (2.3) is only implicitly defined by Eq. (2.2),

hence making its direct estimation practically impossible in the general case. This

limitation can be circumvented by introducing the indicator function of the failure

domain, a simple classifier given by:

1Df (x) =


1, g(x) < 0

0, g(x) > 0

(2.4)

In other words, 1Df (x) = 1 when the input parameters x cause the system to fail

and 1Df (x) = 0 otherwise. This function allows one to cast Eq. (2.3) as follows:

Pf =

∫
D

1Df (x)fX(x)dx = E[1Df (x)] (2.5)

where E[·] is the expectation operator with respect to the PDF fX(x). This reduces

the calculation of Pf to the estimation of the expectation value of 1Df (x).

In this section, we investigate various methods to cope with the calculation of Eq.

(2.5). The methods are classified into three main categories: analytical approxima-

tion techniques and simulation-based methods. Besides these two categories we can
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also find some other not commonly-used methods out of our scope, such as stochas-

tic finite element method (SFEM) for structural reliability which is time-consuming.

Furthermore, the time-variant or time-dependent reliability attracts more and more

attention. We therefore also review time-variant modeling methods. On the other

hand, when no performance function but test data exists, reliability analysis has to

rely on statistical methods, such as Bayesian reliability.

2.3 Strategies for the estimation of Pf

From the definition of 1Df (x) in Section 2.2 it is clear that determining whether

a certain state vector x ∈ DX belongs to Ds or Df requires the evaluation of the

limit-state function g(x). In the general case this operation can be computation-

ally expensive, e.g. when it entails the evaluation of a computational model on the

vector x. For a detailed overview of standard structural reliability methods and

applications, see e.g. Ditlevsen and Madsen [44]; Melchers [24]; Lemaire [45]. In the

following, three strategies are discussed for the evaluation of Pf , namely approxima-

tion, simulation and adaptive surrogate-model based methods, see the classification

in Figure 2.2.

2.3.1 Analytical approximation methods

Approximation methods are based on approximating the limit-state function locally

at a reference point (e.g. with a linear or quadratic Taylor expansion). This class

of methods can be very efficient (in that only a relatively small number of model

evaluations is needed to calculate ), but it tends to become unreliable in the pres-

ence of complex, non-linear limit state functions. Two approximation methods are

introduced in this dissertation, i.e. FORM and SORM.

2.3.1.1 First Order Reliability Method (FORM)

The first order reliability method aims at the approximation of the integral in

eq.(1.3) with a three-step approach: 1) An iso-probabilistic transform of the in-

put random vector x ∼ fX(x) into a standard normal vector u ∼ N(0, In); 2) A
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Figure 2.2: Classification of strategies to estimate probability of failure ([46], [47], [48])

search for the most likely failure point in the standard normal space (SNS), known

as the design point u∗; 3) A linearization of the limit-state surface at the design

point u∗ and the analytical computation of the resulting approximation of Pf .

Iso-probabilistic transform

The first step of the FORM method is to transform the input random vector x ∼

fX(x) into a standard normal vector T (x) ∼ N(0, In). This transform can be used

to map the integral in eq.(1.3) from the physical space of X to the standard normal

space of U:

Pf =

∫
Df

fX(x)dx =

∫
u∈Rn:G(u)<0

φn(u)du (2.6)

where G(u) = g(T−1(u)) is the limit-state function evaluated in the standard normal

space and φn(u) is the standard multivariate normal PDF given by:

φn(u) = (2π)M/2exp(−1

2
(u2

1 + u2
2 + ...+ u2

n)) (2.7)
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Figure 2.3: Graphical representation of the linearization of the limit-state function around

the design point at the basis of the FORM estimation of Pf . ([43])

This PDF is maximal at the origin and decreases exponentially with ||u||2. Thus

the points that contribute at most to the integral in eq.(2.6) are those of the failure

domain that are closest to the origin of the space. Thus the second step in FORM

consists in determining the so-called design point , i.e. the point of the failure

domain closest to the origin in the standard normal space. This point is obtained

by solving an optimization problem:

u∗ = argmin(||u||2), s.t.G(u) < 0, u ∈ Rn. (2.8)

Due to the probability measure in Eq.(2.6), u∗ can be interpreted as the most likely

failure point in the standard normal space. The norm of the design point i.e.||u||, is

an important quantity in structural reliability known as the Hasofer-Lind reliability

index: βHL = ||u∗||. An important property of the index is that it is directly related

to the exact failure probability Pf in the case of linear LSF in the standard normal

space: Pf = Φ(−βHL), where Φ is the standard normal cumulative density function.

The estimation of Pf in the FORM algorithm is based on approximating the limit-

state function as the hyperplane tangent to the limit-state function at the design

point. Figure 2.3 illustrates this approximation graphically for the two-dimensional

case.
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To search for the design point in the general non-linear case, eq.(2.8) may be cast

as a constrained optimization problem with Lagrangian:

L(u, λ) =
1

2
||u||2 + λG(u) (2.9)

where λ is the Lagrange multiplier. The related optimality conditions read:

5uL(u∗, λ∗) = 0

∂L

∂λ
(u∗, λ∗) = 0

(2.10)

The standard iterative approach to solve this nonlinear constrained optimization

problem is given by the Rackwitz-Fiessler algorithm [49].

2.3.1.2 Second Order Reliability Method (SORM)

The SORM is an improved version of the FORM for Pf estimate. After the design

point U∗ is identified by FORM, the failure probability is approximated by a tangent

hyper-paraboloid defined by the second order Taylor expansion of G(U∗) given by:

G(U) ≈ 5T
|u∗ · (u− u

∗) +
1

2
(u− u∗)TH(u− u∗) (2.11)

where H is the Hessian matrix of the second derivatives of G(U) evaluated at U∗.

The failure probability in the SORM approximation can be written as a correc-

tion factor of the FORM estimate that depends on the curvatures of the hyper-

hyperboloid in eq.(2.11). To estimate the curvatures, the hyper-paraboloid is firstly

cast into canonical form by rotating the coordinates system such that one of its axes

is the vector. Usually the last coordinate is chosen arbitrarily for this purpose. A

rotation matrix Q can be built by setting α as its last row and by using the Gram-

Schmidt procedure to orthogonalize the remaining components of the basis. Q is a

square matrix such that QTQ = I. The resulting vector V satisfies:

U = QV (2.12)

In the new coordinates system and after some basic algebra (see e.g. [50]), one can

rewrite eq.(2.11) as:
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G(V ) ≈ || 5G(u∗)|| · (β − Vn) +
1

2
(V − V ∗)TQHQT (V − V ∗) (2.13)

where β is the Hasofer-Lind reliability index calculated by FORM, Vn = αT (QTV )

and V ∗ = 0, ..., βT is the design point in the new coordinates system. By di-

viding eq.(2.13) by the gradient norm || 5 G(U∗)|| and introducing the matrix

A = QHQT /|| 5G(U∗)||. One obtains:

G̃(V ) ≈ β − Vn +
1

2
(V − V ∗)TA(V − V ∗) (2.14)

where G̃(V ) = G(V )/|| 5 G(U∗)||. After neglecting second-order terms in Vn and

diagonalizating the A matrix via eigenvalue decomposition one can rewrite eq.(2.14)

explicitly in terms of the curvatures κi of an hyper-paraboloid with axis α:

G̃(V ) ≈ β − Vn +
1

2

M−1∑
i=1

κiVi (2.15)

For small curvatures κi < 1, the failure probability Pf can be approximated by the

Breitung formula [50]:

Pf,SORM ≈ Φ(βHL)

M−1∏
i=1

(1 + βHLκi)
−1/2, κi < 1 (2.16)

Note that for small curvatures the Breitung formula approaches the FORM linear

limit. The accuracy of eq.(2.16) decreases for larger values of κi, sometimes even if

κi < 1. A more accurate formula is given by the Hohenbichler formula [51].

2.3.2 Moment-based methods

Obviously, the FORM and SORM need to search for the design point by iteration

which is time consuming. The moment-based methods [44] do not need the design

point not to mention the iteration to find the design point. Using moments is the

simplest way to describe a distribution. After transformed from the variable space

to the standardized normal space, the simplified representation of the distribution

facilitates the determination of failure probability, i.e. no design point needs to be

found any more.
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Second moment is a very popular one due to its simplicity. It considers only the

first two moments (mean and variance) but not higher order moments, such as

skewness and flatness. However only the normal distribution can be represented

exactly by second moment. Hence the second moment methods work under the as-

sumption that the random variable obeys a normal distribution. When the second

moment density approximation and the ‘first-order’ approximation are brought to-

gether, we have the so-called first-order second moment (FOSM) reliability method

[52]. When considering the non-linear performance, the advanced first-order second

moment (AFOSM) [53] may be an appropriate method. The basic random vari-

able is transformed into a reduced coordinate system and the Taylor’s expansion is

performed at design point rather than the mean value in FOSM.

As stated, the FOSM is based on the assumption of normal distribution. The higher

order moments are suggested for other cases of more-complicated distribution. For

example, the first-order third moment method (FOTM) was developed by Tichy [54]

and the higher-order moment methods are reviewed by Zhao [55]. Those methods

involves the skewness, flatness or higher order moment that has been ignored by

the standard FOSM. However, it is obviously a drawback for the moment based

methods that the process of obtaining statistical moments is very inefficient because

that involves also numerical integrations.

2.3.3 Simulation based methods

Simulation methods are based on sampling the joint distribution of the state vari-

ables X and using sample-based estimates of the integral in eq.(2.5). At the cost

of being computationally very expensive, they generally have a well-characterized

convergence behavior that can be exploited to calculate confidence bounds on the

resulting Pf estimates. Three sampling-based algorithms are introduced here, i.e.

Monte Carlo simulation, Importance Sampling and Subset Simulation.



2.3. Strategies for the estimation of Pf 27

2.3.3.1 Monte Carlo Simulation

Monte Carlo (MC) simulation is used to directly compute the integral in eq. (1.3)

by sampling the probabilistic input model. Given a sample of size N of the input

random vector X, X = x(1), ..., x(N), the unbiased MCS estimator of the expectation

value in Eq. (1.4) is given:

Pf,MC ≈ P̂f =
1

N

N∑
k=1

1Df (x(k)) =
Nf

N
(2.17)

where Nf is the number of independent samples such that g(x) < 0. In other words,

the Monte Carlo estimate of the failure probability is the fraction of samples that

belong to the failure domain over the total number of samples. An advantage of

Monte Carlo simulation is that it provides an error estimate. Indeed the indicator

function 1Df (x) follows by construction a Bernoulli distribution with mean µ1Df
=

Pf and variance σ2
1Df

= Pf (1− Pf ). Hence, P̂f has the variance σ̂2
Pf

given by

var(P̂f ) =
1

N2
var(

N∑
k=1

1Df (x(k))) =
1

N2

N∑
k=1

var(1Df (x(k)) =
N · σ2

1Df

N2
=
σ2

1Df

N

(2.18)

Typically such plots will show that these measures are reduced as the number of

samples increases and that a degree of stability is reached at a sufficiently high

number of samples. The confidence intervals on P̂f can be given as follows [56]:

P̂f ∈ [P̂f + σ̂PfΦ−1(α/2), P̂f + σ̂PfΦ−1(1− α/2)] (2.19)

where Φ(x) is the standard normal cumulative distribution function (CDF) and

α ∈ [0, 1] (significance level) is a scalar such that the calculated bounds correspond

to a confidence level of 1− α. An important measure for assessing the convergence

of a MCS estimator is given by the coefficient of variation (COV ) defined as:

COV =
σPf

P̂f
=

√
(1− P̂f )

N · P̂f
(2.20)

The coefficient of variation of the MCS estimate of a failure probability therefore

decreases with
√
N and increases with decreasing Pf . To give an example, to es-



28 Chapter 2. Reliability assessment of structural system: the fundamentals

0 50 100 150 200

(a) Loop of MCS (each loop tries 5000 samples)

300

320

340

360

380

400

420

N
u

m
. 

o
f 

fa
ilu

re
s
 i
n

 a
 l
o

o
p

300 320 340 360 380 400

(b) Distribution: num. of failures in a MCS loop

0

0.05

0.1

0.15

0.2

0.25

F
re

q
u

e
n

c
y

0 50 100 150 200

(c) Num. of samples in MCS (*5000)

0

2

4

6

8

N
u

m
. 

o
f 

fa
ilu

re
s

10
4

0 50 100 150 200

(d) Num. of samples in MCS (*5000)

0

200

400

600

800

C
P

U
 t

im
e

 (
s
)

Figure 2.4: Some descriptions of failure probability convergence by MCS

timate a Pf = 10−3 with 90% accuracy, N = 105 samples are needed. The COV

is often used as a convergence criterion to adaptively increase the MC sample size

until some desired COV is reached. In Figure 2.4 and Figure 2.5, some aspects

of the Pf in its convergence process are illustrated. 200 times of simulations are

implemented, each of which analyzes 5000 samples. In Figure 2.4, the subplots (a)

and (b) shows how the number of failures in each loop fluctuates, but it follows a

normal distribution; the subplot (c) shows the number of failures with respect to

different size of sample set in the MCS, and the subplot (d) shows the corresponding

CPU time. Figure 2.5 shows the convergence (with 95% confidence interval, or CI

in short) of P̂f with respect to different size of sample set in the MCS, and Figure

2.6 shows the corresponding coefficient of variation of P̂f .

The MCS method is powerful, when applicable, due to its statistically sound for-

mulation and global convergence. However, its main drawback is the relatively slow
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Figure 2.5: Estimated Pf with 95% CI

converge rate that depends strongly on the probability of failure. The variance re-

duction techniques, such as importance sampling [57] and subset simulations [58],

have been proposed.

2.3.3.2 Importance Sampling

Importance sampling (IS) is an extension of the FORM and MCS methods that

combines the fast convergence of FORM with the robustness of MCS. The basic

idea is to recast eq. (1.3) as:

Pf =

∫
Dx

1Df (x)
fX(x)

φ(x)
φ(x)dx = Eφ[1Df (x)

fX(x)

φ(x)
] (2.21)

where φ(x) is an M-dimensional importance distribution (also called instrumental

/proposal distribution) and Eφ denotes the expectation value with respect to the

same distribution. The estimate of Pf given a sample set X = x(1), ...,x(n) drawn

from φ is therefore given by:

P̂f = Êφ[1Df (X)
fX(X

φ(X)
] =

1

N

N∑
i=1

[1Df (x(k))w(x(k))] (2.22)

where the weight w(x(k)) = fX(x(k))/φ(x(k)). Briefly speaking, the following pro-

cedures are executed to estimate P̂f : 1) Take N samples i.e. X = x(1), ...,x(n) from
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Figure 2.6: Coefficient of variation of the estimated Pf

the proposal distribution φ(x); 2) Calculate the target density fX(x(k)) and pro-

posal density φ(x(k)); fX(x(k)) is the joint PDF value of the uncertain parameters;

3) Calculate the weight w(x(k)) and the indicator value 1Df (x(k)) for each sample

x(k); 4) Estimate the value P̂f according to eq.(2.22). The most important task is

to find a proposal distribution φ(X). The proposal distribution can be constructed

from the design point u∗. In standard normal space, eq.(2.22) can be rewritten as:

P̂f = Êφ[1Df (T−1(u))
φM (u)

Φ(u)
] (2.23)

When the results from a previous FORM analysis are available, a particularly effi-

cient sampling distribution in the standard normal space is given by [57]:

Φ(u) = φM (u− u∗) (2.24)

where u∗ is the estimated design point. Given a sample set U = u(1), ...,u(N) of

φ(u), the estimate of Pf becomes:

P̂f =
1

N
exp(−β2

HL/2)

N∑
i=1

1Df (T−1ui)exp(−u(k) · U∗) (2.25)
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with corresponding variance:

σ̂2
Pf

=
1

N

1

N − 1

N∑
i=1

1Df (T−1(u(k)))
φ(u(k))

Φ(u(k))
(2.26)

The coefficient of variation and the confidence bounds can be calculated analogously

to eqs (2.19) and (2.20), respectively, and can be used as a convergence criterion to

adaptively improve the estimation of P̂f .

2.3.3.3 Subset Simulation

Monte Carlo simulation requires a large number of limit-state function evaluations to

converge with an acceptable level of accuracy when Pf is small. Subset simulation is

a technique introduced by Au and Beck [58] that aims at offsetting this limitation by

solving a series of simpler reliability problems with intermediate failure thresholds.

Consider a sequence of failure domains D1 ⊃ D2 ⊃ ... ⊃ Dm = Df such that Df =

∩k = 1kDk. With the conventional definition of LSF in Section 1.3, such sequence

can be built with a series of decreasing failure thresholds t1 ⊃ t2 ⊃ ... ⊃ tm = 0

and the corresponding intermediate failure domains Dk = x : g(x) ≤ tk. One can

then combine the probability mass of each intermediate failure region by means of

conditional probability. By introducing the notation P (Dx) = P (x ∈ DX) one can

write [58]:

P̂f = P (Dm) = P (∩k = 1m)P (Dk) = P (D1)
m−1∏
i=1

P (Di+1|Di) (2.27)

With an appropriate choice of the intermediate thresholds t1, t2, ..., tm, eq.(2.27)

can be evaluated as a series of structural reliability problems with relatively high

probabilities of failure that are then solved with MC simulation. In practice the

intermediate probability thresholds ti are chosen on-the-fly such that they corre-

spond to intermediate values P (Di) ≈ 0.1. The convergence of each intermediate

estimation is therefore much faster than the direct search for Pf .
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2.3.4 Surrogate model based methods

Surrogate model based methods are designed for large complex structures that gen-

erally do not have explicit LSF. For such structures, the probability of failure cannot

be obtained by analytical methods; besides, MCS demand large numbers of sam-

ples and consume a lot of time. The basic principle of surrogate models is to find

an alternative function that is equivalent to the real implicit LSF. The surrogate

model is then treated as an explicit LSF such that the failure probability is eval-

uated. Obviously, the reliability calculation result depends largely on how closely

the surrogate function approximates to the real limit state surface. Some represen-

tative models are Response surface method, Polynomial chaos expansion, Kriging

and Support vector machine. Besides, the author find that, the machine learning

models such as ensemble learning models and ANNs are attracting more and more

attention recently. Therefore, these methods have large potentials. In the following,

a detailed description of each of the methods is given.

2.3.4.1 Response surface methods

For complicated components, it is hard to find the close-form limit state functions.

The moment based methods mentioned above cannot be applied directly. Some

researchers ([59], [31]) proposed to use response surface to determine a substitute of

the implicit performance functions. The basic idea is to suppose a simple parametric

expression with respect to random variables then interpolate within some running

results to estimate those parameters such that the interpolation error is minimized.

The approximated performance function ĝ(x) is called response surface function

which is usually in polynomial form. For example, a second-order polynomial takes

the form

ĝ(x) = a0 +

n∑
i=1

aixi +

n∑
i=1

n∑
j=1

aijxixj (2.28)

or
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ĝ(x) = a0 +

n∑
i=1

aixi +

n∑
i=1

n∑
j=1

aiix
2
i (2.29)

where ai, aii and aij are the coefficients that need to be determined; n is the number

of random variables. For a complete second-order polynomial (see eq.(2.28)), the

number of coefficients to be estimated is K = 2n + 1 + n(n − 1)/2. Therefore, the

size of the training data should be larger than K. Based on this approximation the

FORM/SORM and all of the moment-based methods can be used after then.

2.3.4.2 Polynomial chaos expansion

The original PCE, also termed as the homogenous chaos expansion and Hermite

polynomial chaos expansion (HPCE), was developed by Wiener [32]. With this ex-

pansion, any second-order random variable or stochastic process, i.e. the quantities

with finite variance, may be expanded as follows:

u = û0H0+

∞∑
i1=1

ûi1H1(ξi1)+

∞∑
i1=1

i1∑
i2=1

ûi1i2H2(ξi1 , ξi2)+

∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ûi1i2i3H3(ξi1 , ξi2 , ξi3)+...

(2.30)

where Hp(ξi1 , ..., ξip) denotes the multivariate Hermite polynomial chaos of order

p in terms of standard normal vector ξ = [ξi1 , ..., ξip ] and ûi1...ip is the associated

coefficient. For notational convenience, eq.(2.30) can be rewritten as

u =
∞∑
i=1

uiΦi(ξ) (2.31)

In this expression, there is a one-to-one correspondence between the polynomial

basis functions Φi(ξ) and Hp(ξi1 , ..., ξip), also the deterministic coefficients ui and

ûi1,...,ip . Two categories of methods are distinguished to determine the coefficients

the intrusive method [58] and non-intrusive method [60]. When the random in-

puts are standard normal, a possible Hilbertian basis is the multivariate Hermite

polynomial chaos basis.
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2.3.5 Time-variant reliability

Most mechanical components experience changing the material properties and the

running environments over time. In this case the performance is also a function of

time or a stochastic process, denoted by gt(x, t). So does the reliability. Similarly

the failure probability function of time is defined as

Pf (t) = Pr[gt(x, t) ≤ 0] =

∫
gt(x,t)≤0

f(x, t)dx (2.32)

where f(x, t) is the density function of random variable and time. It is almost

impossible to exploit the whole failure function of time. However the time variant

failure probability is reduced to a time-invariant problem for a fixed time. All

methods mentioned for time-invariant reliability can be applied. Sometimes and in

some applications, the failure probability in a time interval is of more interest than

the general time-variant failure probability. Suppose the time interval is denoted by

Tin = [t1, t2], then the time-interval failure probability is defined as

Pf (Tin) = Pr[gt(x, t) ≤ 0], t ∈ Tm (2.33)

It is still difficult to compute the probability due to the continuity of time. This can

be solved by various techniques, such as the work of Breitung [50], Li [61], Kuschel

[49] and of Andrieu-Renaud [62]. The basic idea is to use the outcrossing rate over

the limit state of the structure. The outcrossing event at time t is defined as the

event that at time t the performance gt(x, t) > 0 and at time t+dt, gt(x, t+dt) ≤ 0

, where dt) is a small time increment. Thus the mean value of the outcrossing rate

at time t is estimated as follows

vc(t) = lim
δt→0

Pr[gt(x, t) > 0 ∩ gt(x, t) ≤ 0]

δt
(2.34)

Usually it is a small probability that the random process gt(x, t) out-crosses the

bound 0. In this case we can assume that two arbitrary outcrossing events are

independent of each other. In other words, we assume that the total number of the

outcrossing events in Tin obeys a Poisson distribution [63]. Finally we can get an

approximation of the failure probability by using Poisson process model,
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Pf (Tin) ≈ exp{−
∫ t2

t1

vc(t)dt} (2.35)

For a component composed of multiple response processes, its failure probability is

a joint probability of the individual events, i.e.

Pf (Tin) = Pr[
⋃

i∈Ilim

min
t∈Tin

g
(i)
t (x, t) ≤ 0] (2.36)

where g(i)
t (x, t) is ith limit state function under consideration and Ilim is the index

set of the limit state functions. If the response processes are independent, the joint

probability can be evaluated straightforwardly. Further, Song [64] investigated how

to consider the reliability of a component who consists of multiple interdependent

response processes or a vector random process.

2.3.6 Statistical learning models

When the performance functions are implicit as often encountered in real world,

the analytical approximation techniques cannot do anything to find them and the

Monte Carlo simulations require a million times of calculation on LSF. This is im-

practical in the complex cases because of the large consumption of time. One of

the strategy to facilitate this difficulty is the use of polynomial function which ap-

proximates the implicit performance and is also known as response surface method.

However it may be time-consuming to use the polynomial function when the com-

ponents are complex and the number of random variables is large [65]. Moreover

the approximate performance function is lack of adaptivity and flexibility and we

cannot guarantee that it is sufficiently accurate to the true one. To address this is-

sue, researchers proposed to use the statistical classifiers as an additional treatment

or an approximation of performance. These methods are called classification-based

methods. The mostly-used ones for reliability analysis are the methods using neu-

ral networks ([66], [67]) and those using support vector machine [68]. The readers

are also referred to [25] in which Hurtado has investigated detailedly the structural

reliability in statistical perspective and [69] the detailed aspects of the classifiers.
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2.3.6.1 Support Vector Machine

Support vector machines [70] are supervised learning models with associated learning

algorithms that analyze data used for classification and regression analysis. Given a

set of training examples, each marked as a binary target value corresponding to one

of the two categories, a SVM model is built that will mark a new example as one

target value or the other. In this algorithm, each example is plotted as a point in

the n-dimension space (n is the number of features in each example). Then a hyper-

plane is found that differentiate the two classes optimally, meanwhile a margin is

determined (see Figure 2.7). New examples are then mapped into that same space

and predicted to belong to a class based on which side of the margin they fall. This

hyper-plane generally takes the form f(x) = w · x + b. It is constructed by solving

the optimization problem below,

min
w,b

1

2
||w||2, s.t.yi(w · xi + b) ≥ 1,∀i (2.37)

In regression case, SVM is called Support Vector Regression, or SVR. As the output

is a continuous value, it becomes difficult to predict as there are infinite possibilities.

To handle this, a margin of tolerance ε is preset such that the optimization problem

is formulated as (see Figure 2.8),

min
w,b

1

2
||w||2, s.t.|yi − (w · xi + b)| > ε,∀i (2.38)

2.3.6.2 Artificial Neural Networks

Artificial neural networks (ANN) [71] are one of the main tools used in machine

learning. An ANN is an interconnected group of nodes, inspired by a simplification

of neurons in a brain. It generally consist of input and output layers, as well as a

hidden layer consisting of units that transform the input into something that the

output layer can use, see Figure 2.9. The central idea of ANNs is to extract linear

combinations of the inputs as derived features, and then model the target as a non-

linear function of these features. A basic unit of an ANN (i.e. a neuron) is shown
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in Figure 2.10. It consists of an artificial neuron and a number of input values

I1, I − 2, ..., In.

Usually each input is separately weighted, and the sum is passed through a non-

linear function (see Figure 2.10) known as an activation function or transfer function.

The transfer functions usually have a sigmoid shape (see Figure 2.11), but they may

also take the form of other non-linear functions. To train an ANN, one of the

most popular algorithms is back propagation technique. After initially choosing

the weights of the network randomly, the back propagation algorithm is applied to

compute the necessary corrections. The algorithm is decomposed into the following
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Figure 2.11: Sigmoid function

four steps [72]: a) Feed-forward computation; b) Back propagation to the output

layer; c) Back propagation to the hidden layer; d) Weight updates. The algorithm

is stopped when the value of the error function has become sufficiently small.

2.3.6.3 k-Nearest Neighbor (k-NN) method

The idea behind the k-NN algorithm is to build a classification method using no

assumptions about the form of the function y = f(x1, x2, ..., xp) that relates the

dependent variable, y to the independent variables x1, x2, ..., xp. The only assump-

tion we make is that it is a ’smooth’ function. This is a non-parametric method

because it does not involve estimation of parameters in an assumed function form.

This algorithm is used for classification and regression. There are two important

problems to solve in the process of learning. The value k is generally a positive,

small integer which can directly affect the prediction results. Cross-validations can

be applied to determine the optimal k. For two points x(1) = (x(1)(1), ...,x(1)(n))

and x(2) = (x(2)(1), ...,x(2)(n)), the distance is calculated using one of the following

measures:

• Euclidean Distance: d(x, y) =
√∑n

k=1(x(1)(k)− x(2)(k))2 ;

• Minkowski Distance: d(x, y) = (
∑n

k=1 |x(1)(k)− x(2)(k)|p)1/p ;

• Mahalanobis Distance: d(x, y) =
√∑n

k=1 |x(1)(k)− x(2)(k)| .
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Figure 2.12: k-NN for predictions

In classification, an object is classified by a majority vote of its neighbors, with the

object being assigned to the class the most common among its k nearest neighbors.

Figure 2.12 illustrates how k-NN is employed to make predictions in classification

case. Similarly, in regression case, the output is the average of the values of its k

nearest neighbors. Both for classification and regression, a useful technique can be

to assign weight to the contributions of the neighbors, so that the nearer neighbors

contribute more to the average than the more distant ones.

2.3.6.4 Bayesian inference method

Bayesian inference is based on Bayes’ Theorem given by [75] p(θ|D) =

c−1L(θ;D)p(θ), where θ is the vector of unknown parameters; D is a set of avail-

able data; L(θ;D) is the likelihood of θ when we consider D, it is calculated by

L(θ;D) = p(D|θ), p(θ)is the prior probability density function (PDF) of θ which

can be learned from the historical data or from experts’ experience. The product

of these two terms determines the shape of the posterior PDF p(θ|D) which reflects

the updated shape of the model after incorporating the information contained in

D. The normalizing constant c is given by c = p(D) =
∫
p(D|θ)p(θ)dθ. Here, c is

called the evidence. The evidence is used for performing model class comparison and
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Figure 2.13: Process of bootstrap aggregating

selection. In this way, the uncertainty in selecting the best approximating model,

among a set of possibilities, can be treated quantitatively.

2.3.6.5 Tree methods: Random Forest

Random Forest is an ensemble learning method that uses multiple learning algo-

rithms to obtain better predictive performance than could be obtained from any of

the constituent learning algorithms alone. RF is comprised of many individual trees

called classification and regression tree (CART), each of which is induced from a

bootstrap sample. Then the CARTs are aggregated to make predictions for a future

input. Refer to Figure 2.13. An underlying assumption is that the base learners are

independent. As the trees become more correlated (less independent), the model

error tends to increase. Randomization helps to reduce the correlation among deci-

sion trees so that the model accuracy is improved. Two kinds of randomness exist

in tree learning process: Bootstrap sampling and node splitting.

A CART has a binary recursive structure. The first node is called root node. The

terminal nodes are called leaves. The connection between two nodes is called a
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branch. The nodes that have branches are called non-leaf nodes. Each non-leaf

node specifies an attribute and each branch emanating from a node specifies the

possible values of that attribute. The tree learning process is actually a recursive

data partitioning process. The root node corresponds to the whole learning set.

When a node is split into two child nodes, the data set is simultaneously divided

into two subsets according to the splitting point. In continuous decision case, the

CART is called regression tree; in categorical decision case, the CART is called

classification tree. See examples in Figure 2.14 and Figure 2.15. Figure 2.14 shows a

regression tree induced from a house data. The average house price is determined by

the longitude and latitude of the place, for example, the average price is 12.1k$/m2

when the condition Longitude ≤ 121, Latitude > 38 is satisfied.

Figure 2.15 shows a classification tree induced from a gender data. The gender is

judged by the height and weight of the person, for example, the gender is male when
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Figure 2.16: Inducing process of AdaBoost

the condition height > 180, weight > 80 is satisfied. For a new sample x’, we make

the prediction by majority voting (classification case) or averaging all predicted

values of all trees (regression case). More details will be provided in Chapter 3.

2.3.6.6 Tree methods: Gradient Boosting

Gradient Boosting is a machine learning meta-algorithm. It can be used in conjunc-

tion with many other types of learning algorithms to improve their performance.

The output of the other learning algorithms (’weak learners’) is combined into a

weighted sum that represents the final output of the boosted classifier. AdaBoost

is adaptive in the sense that subsequent weak learners are tweaked in favor of those

instances misclassified by previous classifiers. The individual learners can be weak,

but as long as the performance of each one is slightly better than random guessing,

the final model can be proven to converge to a strong learner. Weak classifiers can

be Decision tree/Decision stump, Neural Network, Logistic regression or even SVM.

To determine the coefficient for each classifier, we initialize the weight distribution

of the samples in the dataset by a uniform distribution, and update this distribution

by considering the misclassified samples in each loop. Meanwhile we calculate the

coefficient for the current classifier.
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Finally, we have a certain number of weak classifiers as well as their weights, then

the strong classifier is obtained as the weighted sum of these classifiers,

f(x) =
M∑
i=1

αtht(x) (2.39)

where αt is the coefficient for the ’weak’ classifier ht(x). For GB, we use all training

data, instead of bootstrapping, to build each tree.

The first tree is built from an initialized constant model (i.e. a constant value or a

one-node tree) [71]. From the second tree, to build each tree, we need to calculate

the errors of the former trees (as a weighted sum) on all training points until the

stopping criteria (number of trees, error threshold, · · · ) are satisfied. See Figure

2.16.

2.3.6.7 REPTree and Random Tree

REPTree (Reduced Error Pruning Tree) is a fast decision tree learner that builds a

classification/regression tree by information gain/variance as the splitting criterion,

and prunes it using reduced error pruning method [73]. We assume there is a training

set and a test set. REPTree generates a single decision tree from the training set.

The tree is grown in the standard top-down manner, by finding a split for the current

node (if entropy/square error can be reduced by splitting the data further), dividing

the data based on the split, recursively generating corresponding successor nodes

for each node. Once the tree has been grown, it is pruned using Quinlan’s reduced-

error pruning method with back-fitting [73], making pruning decisions by measuring

classification error/mean squared error on the hold-out set.

Random tree is a method for constructing a tree that performs no pruning [23].

For classification problem, Random Tree grows a tree by selecting splits based on

information gain, the attribute with the maximum information gain is chosen to split

the current node. For regression problem, it selects the split that minimizes squared

error (locally, for the data at the node being split, consider the mean as the predictor

for each candidate subset to calculate squared error). Different from REPTree that

chooses an attribute among all to split the node, a Random Tree considers a subset
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of randomly chosen attributes for splitting at each node. It performs multi-way

splits on nominal attributes, with one branch for each value.

Table 2.1: characteristics of different types of single trees (regression case)

Item CART RandomTree REPTree

Bootstrap yes no no

Split type binary binary binary

Split

principle

square error square error square error

Pruned no no yes

Split

attribute

the best one from

a random subset

the best one from

a random subset

the best one

among all

attributes

A comparison of the different types of trees CART, RandomTree and REPTree is

shown in Table 2.1. We assume the problem that we are facing is a regression

problem.

2.3.6.8 Extra-Trees

Extremely randomized trees, Extra-Trees or ETs, is so named because the ETs have

further randomness in node splitting compared with RF. In principle, RF and ETs

are similar. Both of them consist of multiple decision trees. In the tree inferring

process, both of them use a random subset of the features as the candidate splitting

features. The mainly different operations are listed below. (a). the way to prepare

the training set for each tree. RF uses a bootstrap replica to train each tree. In

contrast, ETs employ the whole training set to train each tree;

(b). the way to find the splitting point. In RF, a decision tree firstly finds the best

splitting point for each candidate feature, then chooses the best one; however, in an

ET, a random splitting point is chosen for each candidate feature, then the best one
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Figure 2.17: Comparison of RF and ETs in node splitting

is chosen. See Figure 2.17.

2.4 Chapter summary

In this chapter, we have presented the fundamental knowledge of reliability. Tra-

ditional methods such as FORM, SORM and response surface methods are intro-

duced in detail. Simulation-based methods including MCS and advanced MCS are

described. Besides, the statistical machine learning methods are extensively intro-

duced that include SVM, ANN, k-NN and trees-based methods. The tree-based

machine learning methods are the research focus in this dissertation, and they are

going to be explored and applied in structural reliability analysis in the later chap-

ters.
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3.1 Introduction

The design and optimization of industrial products (e.g. automobiles, bridges,

airplanes· · · ) have made the computing tools inevitable. Despite the increasingly

accurate models and the fast calculation of computers, the complexity of the real

world problems is difficult to handle comprehensively. Generally, the calculations

rely upon some simplified assumptions about the system such that the computa-

tional models are possible to build and analyzed. Moreover, model responses are

induced by feeding the values of the input parameters into the model. However, due

to complex environmental factors as well as the design defects, the input values are

always difficult determine. In other words, they are characterized with uncertainties.

The input uncertainties finally result in the response uncertainties of the system.

This part mainly introduces the general framework to deal with the uncertainty

propagations within the system.

3.2 General framework

Probabilistic engineering aims at describing the uncertainties existing in the physical

systems and studying the influence of these uncertainties on the system response. In

this thesis, methods for applying uncertainty analysis in physical systems are taken

into account. The main steps for such analysis are summarized in Figure 3.1.

Step B
Probabilistic Input model

Quantification of sources of 
uncertainty 

Step A
Physical Model
Model of the 

system/Assessment criteria 

Step C

Uncertainty propagation

Probability of failure
Respnse PDF

Computational modelRandom variables

Figure 3.1: Illustration of the general framework for uncertainty quantification [43]
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3.2.1 Models of physical system

Step A consists of building the mathematical model from the physical process anal-

ysis of the system and setting the assessment criteria (e.g. failure criteria) that

will be used to evaluate the physical system of interest. This step gathers all the

ingredients used for a classical deterministic analysis of the physical system to be

analyzed. Let X denote the vector containing all basic random input variables.

When considering models of mechanical systems, these variables usually describe

the randomness in the structural, environmental and load parameters. The physical

model can be seen as a black-box function, i.e. as an unknown map from the space

of input parameters to that of output quantities [74]:

Y = F (X) (3.1)

whereX is a random vector that parametrizes the variability of the input parameters

(typically through a joint probability density function, PDF) and Y is the vector

of model responses quantities. In a mechanical context, these response quantities

can be displacements, stress components, etal. The computational model can be

deterministic in the sense that evaluating it repeatedly for a given input realization

x0 will always give the same result y0 = F (x0). However, the uncertainty in the

input variables causes Y to be a random variable/vector as well. In this case, for

each realization of X, the response vector can be determined through pointwise

evaluations y(i) = F (x(i)), where the input vector x(i) is a realization of X. Indeed,

one of the main applications of uncertainty quantification is that of propagating the

randomness in the input X to the output Y . Commonly used models in advanced

application often comprise both random and deterministic parameters. When this

is the case, the following notation is introduced to clarify such distinction:

Y = F (X,P ) (3.2)

where P is a set of deterministic parameters that are used to properly configure

a model (e.g. configuration options, fixed values for parametric functions, etc.).

Analytic functions can be considered as a computational model that is normally
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known in their closed-forms. However, the vast majority of physical phenomena

cannot be approximated by closed-form equations. In the domain of stochastic

dynamics with random vibrations, numerical models, such as finite element schemes,

are always adopted to calculate the model response.

3.2.2 Quantification of sources of uncertainty

A designed system generally provides a theoretical framework where the input pa-

rameters are selected in order that design criteria related to the purpose of the

system are satisfied. In contrast, a practical system is a physical object that is built

according to a given design. In fact, a real system cannot fully match the initial

design. On one hand, the material properties of the real system may differ slightly

from the designed properties; on the other hand, the loadings of the designed system

are always idealized such that they can only roughly describe the characteristics of

those of the real system.

For all the reasons above, a probabilistic model of the input parameters becomes

necessary. The uncertainties that are related to the input parameters may be of

different kinds, but they are mainly classified into two classes, i.e. aleatoric un-

certainty and epistemic uncertainty. The details of the two classes are introduced

in Figure 1.2 of Section 1.2.2. In many cases, it is difficult to distinguish clearly

between aleatoric and epistemic uncertainty, since both types may be present in the

same system. In this thesis, no distinction is made between the two kinds of uncer-

tainties in their modelling, and the probabilistic model of the latter will be built to

characterize uncertainties in the input parameters. It is direct to estimate a proba-

bilistic model that represents the scattering of the available data since it is merely a

problem of statistics. Note that in some cases (e.g. in the design stage of the object

system) where no data is available, a prior probabilistic model can be pre-assumed

by expert experience. Then Bayesian statistics can be applied to combine the priori

model and the scarce data. In general, step B results in a specification of a random

vector of input parameters X in terms of its joint PDF. When spatial variability

is modelled by random fields, the discretization of the random fields will result in

some basic random variables as an addition to the input random vector.
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Figure 3.2: Classification of uncertainty propagation methods [43]

3.2.3 Uncertainty propagation

Let us consider a random response Y = F (X), where the input X is random vector.

The most important content in the field of probabilistic engineering mechanics is to

study the probabilistic content of Y , namely its joint PDF fY (y). Practically, this

function is not directly computable except in special cases. Therefore, techniques

for uncertainty propagation have to be developed. Based on the specific information

on the random response that is studied, these techniques can be classified into three

categories, see Figure 3.2.

Response variability methods are mainly about computing the mean and variance

values of the model response. These indices only give some information on the

central part of the response PDF, so higher order moment methods can be inves-

tigated. Structural reliability methods [24] essentially investigate the tails of the

response PDF and compute the probability of exceeding a prescribed threshold (i.e.

probability of failure). Spectral methods characterize the complete randomness of

the response in an intrinsic way by using suitable tools of functional analysis. Also

known as stochastic finite element methods in the context of computational mechan-

ics [60], spectral methods have been a popular research subject during recent years.

These methods aim at constructing an expansion from a suitable basis of functions
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so that researchers are allowed to solve problems of second moment or structural

reliability by a straightforward post-processing of the expansion coefficients. In this

thesis, structural reliability methods are the main concern.

3.3 Conditional failure probability

3.3.1 Basic concepts and definition

The object structure studied in this research is a linear dynamic system with uncer-

tainties existing in the structural properties, such as mass, damping and stiffness.

Besides, the structure is subject to stochastic loading modelled as a Gaussian pro-

cess. Hence, the assessment of failure probability involves the uncertainties in both

structural parameters and excitations. As introduced in section 1.2.3, for the first

excursion probability problem, the performance function is equal to or smaller than

zero whenever the response exceeds the prescribed threshold. Taking into account

the definition of performance function in Section 2.2.1, the first excursion probability

is defined by means of a multi-dimensional integral:

Pf =

∫
g(x,z)≤0

pX(x)pZ(z)dxdz =

∫
x∈ΩX ,z∈ΩZ

If (x, z)pX(x)pZ(z)dxdz (3.3)

where If (x, z) is the indicator function which equals to 1 when the performance

function g(x, z) ≤ 0 and 0 otherwise. It is noted that the calculation in Eq. (3.3)

considers uncertainty in both structural parameters and excitations. In fact, it is

possible to define the first excursion probability conditioned on a particular real-

ization of the uncertain structural parameters. The latter probability is denoted as

PCf (x(i)) and is defined as

PCf (x(i)) =

∫
g(x,z)≤0

pZ(z)dz =

∫
z∈ΩZ

If (x(i), z)pZ(z)dz (3.4)

where the superscript C in PCf (x(i)) denotes a conditional failure probability (CFP)

with respect to a realization of the uncertain structural parameters. It is noted that

the characterization of the integrals in Eqs. (3.3) and (3.4) may involve hundreds
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of random variables in the context of dynamical systems under stochastic loading.

Therefore, the current reliability problem forms actually a high dimensional problem.

Considering the relative independence between the uncertainties of the structural

properties and those of the excitations, the integral in Eq.(3.3) can be reformed as

follows,

Pf =

∫
x∈ΩX

[

∫
z∈ΩZ

If (x, z)pZ(z)dz]pX(x)dx =

∫
x∈ΩX

PCf (x)pX(x)dx = E[PCf (x)]

(3.5)

where E[·] denotes the mathematical expectation.

3.3.2 Estimation of Conditional failure probability

Practically, Eq.(3.5) can be approximated by analyzing a certain number of real-

izations of the random vector X, say x(1),x(2), ...,x(Nx). For each realization, a

conditional failure probability is estimated. The Monte-Carlo estimator of Pf is

given by the empirical mean,

P̂f,MCS =
1

Nx

Nx∑
i=1

PCf (x(i)) (3.6)

Besides, the conditional failure probability in Eq.(3.4) is denoted as

PCf (x(i)) = E[If (x(i), z)] (3.7)

Eq.(3.7) can be approximated by analyzing a certain number of realizations of the

random vector Z, say z(1), z(2), ..., z(Nz). The Monte-Carlo estimator of PCf (x(i)) is

given by

PCf,MCS(x(i)) =
1

Nz

Nz∑
j=1

If (x(i), z(j)) (3.8)

While in principle both approximations of probabilities Pf and PCf (x) can be carried

out through MCS, the demanded computational burden would become quite heavy

for the practical engineering problems. This is because the aforementioned probabil-

ities are generally quite small and to ensure the accuracy, a large number of samples
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Figure 3.3: Theoretical framework to approximate PC
f (X) by statistical learning model

are needed (refer to Section 2.3.3.1). It is noted from Eq.(3.8) that each realization

of the random vector X results in a specific conditional failure probability.

3.3.3 Machine learning methods as surrogates

From Section 2.3.2.1, it is clear that there is a mapping from the space of random

vector X to the space of conditional failure probability PCf (X). If there is a model

that explicitly provide us this mapping relationship, most of the MCS procedures can

be avoided so that the efficiency of the estimation could be largely improved. Based

on this idea, surrogate models have been explored this thesis, and the statistical

learning models have been extensively studied and employed to accomplish such a

task. Figure 3.3 illustrates the theoretical framework to approximate the conditional

failure probability PCf (X) by the statistical learning models.

In Figure 3.3, a sample set consists of a certain number of cases each of which is a

realization of the random vector X. Then by MCS a conditional failure probability

PCf (x(i)) is estimated. From Eq.(3.8) it is known that in each loop of the MCS, a

random realization of the stochastic excitation process is obtained as the input of the

structural system and the response is then analyzed, see Figure 3.4 for the details.

As is shown in Eq.(3.8), in practical simulations, the excitations are denoted by a

discretized form, i.e. a random vector Z. Thus, the structural responses are obtained

also in a discretized form, refer to Figure 3.5. ei and yi is the ith realization of the
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Figure 3.5: Numerical representations of the process in Figure 3.4

random vector Z and its corresponding response; NT is the dimension of discretized

excitation process.

From the framework illustrated in Figure 3.3, just a limited number of samples

are needed from the uncertainty space so that a statistical learning model is built.

With the induced model the conditional failure probabilities for other samples will

be directly estimated. Therefore, a large amount of computation time can be saved.

Chapter 4 and Chapter 5 are devoted to building statistical learning models to

approximate the conditional failure probabilities. The performance of these models

are also analyzed in various aspects.
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3.4 Evaluation of very small conditional failure proba-

bilities

As is mentioned in chapter 2, the general MCS can be treated as a standard refer-

ence. However, it is not computationally efficient for estimating very small failure

probabilities (for example, < 1%) since the number of samples required to achieve a

given accuracy is inversely proportional to the scale of Pf. In other words, estimat-

ing small probabilities requires information from rare samples that induce system

failures. On average it requires many samples before one such failure sample occurs.

In view of this, the importance sampling method should be implemented to compute

Pf . In principle, an IS method tries to adjust the sampling density so that more

samples from the failure region F can be obtained. The efficiency of the method

relies on the construction of the importance sampling density (ISD), for which the

knowledge about the failure region is inevitably required.

In the framework of MCS, each sample taken as input of the system is analyzed and

the system response is obtained. The classic finite element codes is experimentally

proved low efficient. Besides, the input excitations are generally discretized accord-

ing to the time sampling step. Therefore, the response process can be calculated

by a convolution integral based on the structural impulse response and the excita-

tions. In this article, we assume the stochastic excitation process for the structure

is modelled as a Gaussian process. In this aspect, some representation methods in

the random field domain can be applied to describe discretized Gaussian process.

This subsection is devoted to the theories about discrete representation of random

processes, the convolution integral based structural response calculation and an IS

method to improve the estimation efficiency of conditional failure probabilities.

3.4.1 K-L decomposition of Gaussian excitation process

Let f(t) be a scalar function that represents the excitations acting over the object

structure during a time period t ∈ [0, T ]. It is assumed this excitation process can

be approximated by a Gaussian process, i.e. for each finite set of time realizations

t1, t2, ..., tnT ∈ [0, T ], the nT random variables f(t1), f(t2), ..., f(tnT ) follow a
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joint Gaussian distribution. Several discrete representation methods are available

to describe such randomness in terms of a finite set of standard normal random

variables. For a second-order Gaussian process f(t) with mean function µ(t), the

existing discrete representation methods all result in the following form,

f(t) = µ(t) +

n∑
i=1

uisi(t) = µ(t) + s(t)Tu (3.9)

where u = [u1, u2, ..., un]T is a vector of standard normal variables, s(t) =

[s1(t), ..., sn(t)]T is a vector of deterministic basis functions dependent on the co-

variance structure of the excitation process, and n is a measure of resolution of the

representation. To carry out this task, several discretization methods have been de-

veloped since the 1980s, a comprehensive review and comparison of these methods

is presented in [75]. Series expansion methods are mostly considered. In this article,

K-L expansion is employed for Gaussian process representation.

3.4.1.1 K-L expansion method

In the K-L expansion method, the random process can be decomposed as,

f(x) = µ(x) +

∞∑
i=1

√
λiuiφi(x) (3.10)

where µ(x) is the mean function and ui, i ∈ N+, are zero-mean orthogonal variables.

The eigen-pair {λi, φi} are the solutions of the eigenvalue problem:

∫
B
CHH(x, x′)φi(x

′)dx′ = λiφi (3.11)

which is a Fredholm integral equation of second kind. The kernel CHH(x, x′) being

an autocovariance function, is symmetric and positive definite. The set of eigenval-

ues is moreover real, positive and numerable. It is possible to order the eigenvalues λi

in a descending series converging to zero. Truncating the ordered series in eq.(3.10)

after the M -th term gives the K-L approximation:

f(x) ≈ µ(x) +

M∑
i=1

√
λiuiφi(x) (3.12)
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when the random field under consideration is Gaussian, the set of ui are indepen-

dent standard normal variables. Eq.(3.11) can be solved analytically only for few

auto-covariance functions and geometries of B. Detailed closed form solutions for

triangular and exponential covariance functions for one-dimensional homogeneous

fields can be found in [60]. Consider a discrete representation of time t such that

∆t = T/(nT − 1) where nT is the number of time points such that the time instants

of analysis are Tk = (k − 1)∆t, k = 1, ..., nT . Thus, the discrete representation of

f(t) at time tk is:

f(tk) ≈ f0(tk) +

nKL∑
i=1

√
λiuiφi(tk) = f0(tk) +

nKL∑
i=1

fKLi (tk)ui (3.13)

where ui, i = 1, ..., nKL are independent, identically distributed standard Gaus-

sian random variables with joint PDF pu(u), f0(tk) and fKLi (tk) denote the mean

function and the sth component of the K-L vector at time t, and nKL, is the or-

der of truncation of the series expansion. Note that according to Eq.(3.13) the

force at the kth time instant is actually a function of the vector of uncertain vari-

ables u = (u1, u2, ..., unKL)T . The K-L vector fKL1 (tk), ..., f
KL
nKL

(tk) is determined

by solving an eigen-problem of the corresponding covariance matrix of the discrete

stochastic process. In this dissertation, it is assume, without loss of generality, that

the excitation is a zero-mean Gaussian process, i.e. f0(tk) = 0, k = 1, ..., nT .

3.4.1.2 An exemplary implementation of K-L expansion

This part introduces a simple implementation of K-L expansion. Assume that the

output of a system, according to time t, is denoted as

f(t) = 1.4118 + [b ∗ c/(
√
π(t− s)] ∗ exp [−c2 ∗ (log|t− s| − d)2] (3.14)

where the coefficients s, b, c and d are characterized with uncertainties below,
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s ∼ unif(−30.53,−24.98), E(s) = −27.76;

b ∼ unif(1193.22, 1207.64), E(b) = 1200;

c ∼ unif(2.02, 2.15), E(c) = 2.09;

d ∼ unif(4.50, 4.56), E(d) = 4.53.

(3.15)

According to the uncertainties of the coefficients, ten samples of the output process

f(t) are generated, see Figure 3.7. To make comparisons, Figure 3.6 shows the nomi-

nal output when the coefficients take their nominal values. The ten sampled process

in are then used to calculate the eigenvalues and eigenfunctions of the Fredholm

integral equation of the second kind.

In this simulation, the five largest eigenvalues and their corresponding eigenvectors

are calculated. In Figure 3.8, it is found that the eigenvalues are largely different,

the largest is about 35.0 while the smallest one is close to 0. Therefore, the choice

of nKL = 5 ensures the accuracy of K-L expansion. Figure 3.9 displays the five

eigenfunctions related to the five largest eigenvalues. Figure 3.10 shows the five

scaled eigenfunctions, refer to eq.(3.13). Notice that the value of the ith scaled

eigenfunction at time tk is calculated as
√
λiφi(tk) = fKLi (tk). Figure 3.10 also
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Figure 3.7: Ten sampled outputs according to the uncertainties of the coefficients

shows the mean function, i.e. f0(tk) in eq.(3.13), that is calculated by averaging the

ten sampled functions shown in Figure 3.7.
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Figure 3.8: The first five eigenvalues of the Fredholm integral equation of the second kind

In Figure 3.11, 20 sampled functions are generated according to the already cal-

culated five scaled eigenfunctions and the mean function, refer to eq.(3.13). Notice

that at each sampled time point, nKL = 5 standard normal variables (i.e. ui in
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Figure 3.9: The first five eigenfunctions of the Fredholm integral equation of the 2nd kind
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Figure 3.10: The five scaled functions corresponding to Figure 3.23

eq.(3.13)) are generated as the ’weights’ of the five scaled eigenfunctions. It is found

that the 20 sampled functions in figure 3.11 vary around the mean function and

they are very similar to the ten functions in Figure 3.7. These results tell that the
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K-L expansion works well in representing the random process.

0 20 40 60 80 100 120 140 160 180 200

time (s)

0

5

10

15

20

f(
t)

Mean

Figure 3.11: Twenty sampled realizations with nKL = 5

3.4.2 Convolution integral to calculate structural responses

Consider a classically-damped linear elastic structural system represented by an

appropriate model (e.g. a finite element model) comprising a total of n DOFs. In

addition, consider a vector of random variables of dimension grouping the uncertain

structural parameters. The system is subjected to a Gaussian process excitation

with zero mean, f(t), which is represented in the discrete form in Eq. (3.13). Then

the response of the system can be evaluated by the convolution integral below [76],

yi(t,x) =

∫ t

0
hi(t− τ,x)f(τ)dτ (3.16)

where hi(t − τ,x) is the unit impulse response function for the ith DOF of the

structure at time t due to a unit impulse applied at time τ . x is a vector that consists

of the structural properties. Without loss of generality, the zero initial conditions

at t = 0 is assumed. As a result of linearity, the response of interest is actually a

linear combination of the contributions from each input f(τ). Substituting for f(τ)
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in eq.(3.13) and then changing the orders of summation and integration, we obtain

yi(t,x) =

∫ t

0
hi(t− τ,x)

nKL∑
l=1

ulf
KL
l (τ)dτ

=

nKL∑
l=1

ulal(t,x)

= a(t,x)Tu

(3.17)

where a(t,x) = [a1(t,x), ..., anKL(t,x)]T and

al(t,x) =

∫ t

0
hi(t− τ,x)fKLl (τ)dτ, l = 1, ..., nKL (3.18)

The response process is found to be the scalar product of two vectors: the random

vector u and the deterministic basis function vector a(t,x), whose elements are

convolutions of the basis functions fKLl (t) of the excitation and the unit impulse

response function hi(t − τ, θ) of the system. The geometric interpretations made

earlier for the Gaussian process f(t) apply to the response process yi(t, θ) as well.

For the simulation purpose, the convolution integral in eq.(3.18) is re-written in its

discrete form, i.e.

al(t,x) = ∆t
k∑
j=1

hi(tk − tj ,x)fKLl (tj) (3.19)

3.4.3 Failure probability at any time t

Consider the set of realizations of f(t) that lead to the event y(t0) ≥ y0 at time

t = t0, where y0 is a selected threshold. These correspond to realizations of u that

satisfy the condition,

y0 − a(t0)Tu ≤ 0 (3.20)

In the space of u, these lie in a half space bounded by the hyper-plane y0−a(t0)Tu =

0 having the unit normal α̂(t0) = a(t0)/||a(t0)|| and distance β(y0, t0) = y0/||a(t0)||

from the origin. This is illustrated in Figure 3.12 in the plane formed by the co-

ordinate u1 and the vector α̂(t0). According to the theory of structural reliability
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Figure 3.12: Illustration of response at time t0 in a geometric way [76]

[44], g0(u) = y0 − a(t0)Tu is the limit-state function, g0(u) = y0 − a(t0)Tu = 0 is

the limit-state surface, α̂(t0) is the unit outbound normal vector which towards the

failure region, and β(y0, t0) is the reliability index for the event g0(u) ≤ 0. From a

well known result for the probability content of a half space in the standard normal

space, the probability of failure is denoted as

P (g0(u) ≤ 0) = Φ(−β(y0, t0)), (3.21)

where Φ(.) denotes the standard normal cumulative probability function.

Among all realizations of u that give rise to the event y(t0) ≥ y0, the one that has

the highest likelihood is the one nearest to the origin. This point, known as the

’design point’ in the theory of structural reliability, is given by

u∗(y0, t0) = β(y0, t0)α(t0) = y0
a(t0)

||a(t0)||
(3.22)

The corresponding ’design point’ excitation and response, according to eq.(3.9),

eq.(3.17) and eq.(3.22), are
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f∗(t) = s(t)Tu∗(y0, t0) = y0
s(t)Ta(t0)

||a(t0)||2
= y0

fKL(t)a(t0)

||a(t0)||2
(3.23)

y∗(t) = a(t)Tu∗(y0, t0) = y0
a(t)Ta(t0)

||a(t0)||2
(3.24)

It is noticed that y∗(t0) = y0 corresponds to the critical state at time t0. For a linear

system subject to Gaussian excitations, the design point realization is proportional

to the threshold y0. That means, if the threshold y0 changes, then the design

point realization will be changed with the same proportion. Of most interest is the

design point excitation f∗(t), which is the specific realization of f(t) that has the

highest likelihood to give rise to the event y(t0) ≤ y0. This realization is of particular

interest from the viewpoint of design, as one can assure safety by providing adequate

capacity against this particular deterministic excitation [76].

3.4.4 Formulation of conditional failure probability

In the perspective of first-passage probability, it is general to compare the responses

of interest yi(t), i = 1, ..., nr against acceptable threshold levels y∗i within the time

duration T of the stochastic excitation. A failure takes place whenever the response

yi exceeds its corresponding threshold. From this point of view, failure implies

not meeting the predefined conditions (this does not necessarily imply collapse).

According to subsection 3.3, the failure event F can be defined in terms of x and u:

F = {x ∈ Rnx ,u ∈ RnKL : g(x,u) ≤ 0} (3.25)

where g(x,u) is the so-called performance function. The value of g(.) is equal or

smaller than zero whenever a response exceeds its prescribed threshold. Consid-

ering the different DOFs of the structure as well as the sampled time points, the

performance function g(x,u) is formulated as

g(x,u) = 1− max
i=1,...,nr

( max
k=1,...,nT

(
|yi(tk,x,u)|

y∗i
)) (3.26)
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where | · | denotes absolute value. Taking into account the definition of performance

function introduced in Eq.(3.26), the first excursion probability is defined by means

of a multidimensional integral:

Pf =

∫
g(x,u)≤0

px(x)pu(u)dxdu =

∫
x∈Ωθ,u∈Ωu)≤0

IF (x, u)pθ(θ)pu(u)dxdu (3.27)

where IF (·) denotes the indicator function which is equal to 1 in case the perfor-

mance function g(·) ≤ 0 and 0 otherwise. Note the definition in eq.(3.27) allows

calculating the failure probability considering uncertainty in both structural param-

eters and excitation. Actually, for a particular realization of the uncertain structural

parameters x, the conditional failure probability is denoted as

PCf (x) =

∫
g(x,u)≤0

pu(u)dxdu =

∫
u∈Ωu

IF (u)pu(u)du (3.28)

It is noticed that the integrals in eq.(3.28) may involve hundreds or thousands

random variables related to the stochastic loading. Therefore, the corresponding

reliability problem constitute a high dimensional problem. While in principle PCf
could be estimated using MCS, the associated computational burden would be quite

considerable for problems of engineering involving very small failure probabilities.

This is because, for small failure probabilities, a very large number of samples are

required to ensure a reliable estimation result. In order to improve the computa-

tional efficiency, a very efficient importance sampling strategy [77] for estimating

the conditional failure probability is introduced in the next subsection.

Elementary failure events

According to the definition of first excursion problem, failure occurs whenever any

of the responses of interest yi exceeds its designed threshold y∗i within the time

duration of the excitation process. The occurrence of failure at the kth time step

due to the ith system response is termed elementary failure event [77] and is denoted

as Fi,k(x), i = 1, ..., nr, k = 1, ..., nT . Therefore, the failure event F (θ) is the union

of these elementary failure event, i.e.

F (x) =

nr⋃
i=1

nT⋃
k=1

Fi,k(x) (3.29)
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where

Fi,k(x) = {u ∈ RnKL : |yi(tk,x, u)| ≥ y∗i } (3.30)

The elementary failure event Fi,k(x) can be decomposed as the union of two disjoint

events [77]: up-crossing event where the response up-crosses its threshold , i.e.

F+
i,k(x) = {u ∈ RnKL : ai,k(x)Tu ≥ y∗i } (3.31)

and down-crossing event where the response down-crosses its threshold , i.e.

F−i,k(x) = {u ∈ RnKL : −ai,k(x)Tu ≥ y∗i } (3.32)

For the out-crossing event Fi,k(x) = F+
i,k(x) ∪ F−i,k(x), since F+

i,k(x) and F−i,k(x) are

disjoint, Fi,k(x) has two design points corresponding to F+
i,k(x) and F−i,k(x). The

failure probability for Fi,k(x) is the sum of those of the two out-crossing cases.

According to eq.(3.18), their hyper-planes have the unit normals with inverse direc-

tions. Moreover, they have the same distance from the origin, i.e., β+
i,k(x) = β−i,k(x)

Therefore, the two regions are symmetric, the probability related to Fi,k(x) is simply

2Φ−1(−βi,k(x)). Figure 3.13 provides an illustration of an elementary failure region

Fi,k(x) with nr = 1, nT = 1, nKL = 2.

3.4.5 IS technique to evaluate PC
f

To apply IS technique to evaluate the PCf , the integral in eq.(3.28) is re-written as

P̂Cf (x) =

∫
u∈Ωu

IF (u)
pu(u)

pIS,u(u)
pIS,u(u)du

=
1

N

N∑
v=1

If (x, zv)
pu(u(v)

pIS,u(u(v))

(3.33)

where pIS,u(u) is the Importance Sampling density (ISD) function and u(v), v =

1, ..., N are samples of uncertain vector U obtained via the ISD pIS,u(u). The most

important part for implementing the IS procedures described in eq.(3.33) is the

design of the ISD function that is able to obtain more samples in the failure region,

meanwhile ensuring a low variability of the estimated probability, i.e. failure samples

are drawn frequently while the variability of the ratio involving pu(u) and pIS,u(u)
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Figure 3.13: Illustration of an symmetric elementary failure region

is low [78]. For the particular case of linear structures subject to Gaussian loading,

[77] proposes a very efficient ISD which is defined as a weighted sum of probability

density functions conditioned on the elementary failure events described previously:

pIS,u(u) =

nr∑
i=1

nT∑
k=1

wi,k(x)pu(u|Fi,k(x)) (3.34)

where pu(u|Fi,k(x)) is the probability distribution of U conditioned on the elemen-

tary failure event Fi,k. wi,k is the weight associated with the elementary failure

domain Fi,k(x) and is defined such that [34]:

wi,k(x) =
Φ(−βi,k(x))∑nr

i=1

∑nT
k=1 Φ(−βi,k(x))

(3.35)

Inserting eq.(3.34) and eq.(3.35) into eq.(3.33) and representing pu(u|Fi,k(θ)) by the

Bayes’ theorem yields the following estimator for the failure probability [77]:



3.4. Evaluation of very small conditional failure probabilities 69

P̂Cf (x) =
1

N

N∑
v=1

P̂f,s(x)∑nr
i=1

∑nT
k=1 IFi,k(x, z(v))

(3.36)

where IFi,k(x, z) is an indicator function equal to one in case the (i, k)th failure

event takes place and zero, otherwise; and P̂f,s(x) is the sum of the probabilities of

occurrence of the elementary failure events and is defined as:

P̂f,s(x) = 2(

nr∑
i=1

nT∑
k=1

Φ(−βi,k(x))) (3.37)

As a summary, the estimation of the failure probability using the estimator in

eq.(3.33) requires the characterization of the elementary failure domains through

the design points and reliability indices. Samples of the vector U distributed ac-

cording to the ISD in eq.(3.34) are required as well. For details on how to generate

these samples, see Table 3.1. We called this K-L expansion based IS method KL-IS

method.

3.4.6 Comparisons between standard MCS and KL-IS

To compare the efficiency of standard MCS and KL-IS method, the CPU time is

firstly employed as the index. The object structure is a ten-story shear building

shown in Figure 3.14, excited by stochastic ground excitations. This system has

been studied by Hadi and Arfiadi in [79] and by Lee et al.in [80] and, for the sake

of comparison, the structural parameters used in the present work are the same as

those used by the afore-mentioned authors.

The nominal values of structural parameters are assumed to be mi = 360× 103kg,

ki = 650× 106N/m, and ci = 6.2× 106Ns/m [81], where i = 1, ..., 10. The natural

frequency and damping ratio of the TMD are 2πrad/s and 3% respectively. The

observation time period is [0, 20s], with time step Ts = 0.05s. The threshold values

for each DOF are set the same, i.e. ylim = 0.025m. Noticed that the threshold here

denotes the relative response between two consecutive DOFs.

The Gaussian white noise process with the standard deviation σ =
√

2πS0/Ts is

assumed as the excitation process for the structure, where the power spectral density

S0 = 0.031m2/s3. In standard MCS, we record the average CPU time consumed
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Figure 3.14: Ten storey shear building under earthquake excitations [81]
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Table 3.1: Sampling scheme according to ISD proposed in eq.(3.34) [77]

Input: Deterministic basis function vectors ai,k(x), the set of weights {wi,k(x)}nr,nT1,1 .

Output: N samples, i.e. {z(v)}Nv=1.

Step1: Set v = 1. Draw a pair of indices (I,K) from the set {(i, k)}, i ∈ {1, ..., nr},

k ∈ {1, ..., nT }. The pair (i, k) is sampled according to its weight wi,k(x).

Step2: Generate a sample u from the distribution pu(u).

Step3: Draw randomly two numbers c1, c2 from [0, 1] uniform distribution.

Step4: Calculate α = −Φ−1((1− u1)Φ(−βI,K(x))), where Φ−1(·) is the inverse

CDF of the standard normal distribution.

Step5: Compute the vector γI,K = u∗I,K(x)/||u∗I,K(x)||.

Step6: Set the sample z(v) as z(v) = sign(0.5− c2) ∗ [u+ (α− uTγI,K)γI,K ],

where sign(0.5− c2) equals 1 if c2 ≤ 0.5 and −1 otherwise.

Step7: Judge the value v. If v < N , v = v + 1, return to step1 ; otherwise, stop

and output the IS samples z(v), v = 1, ..., N .

to analyze one sample of the excitation process, then, by eq.(2.22) in chapter 2, we

can calculate the number of samples needed to calculate a particular value of Pf . It

is assumed the COV is 10%, which means that the range scope of the estimated Pf

around the mean is 10%. To apply the KL-IS method, the number of terms in the K-

L expansion is set as nKL = 300, and the number of importance samples generated

is set as N = 2000. Figure 3.15 and Figure 3.16 show the evolution of CPU time of

the two methods, according to different values of Pf . In this simulation, due to the

reason that the Pf values range extensively from 10−5 to 5 × 10−1, the logarithm

(10 as the base) of Pf is used to denote the x-coordinate.

From Figure 3.15 it is known that, for larger values of Pf the number of excitation

samples is small. Actually we can calculate the CPU time by the expression T =
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Figure 3.15: Evolution of CPU time according to different values of Pf (by standard MCS)

t̄ ∗ 100
Pf

after some simple algebra from eq.(2.22). Here t̄ is the average CPU time

spent to analyze one sample of the excitation process. According to the simulation

results, t̄ is calculated as 7.55 × 10−4s. As an example, if the actual Pf value is

10−4, then at least 100
10−4 = 106 samples are needed to analyze, resulting in T =

7.55× 10−4 ∗ 100
10−4 = 755s spent according to the accuracy demand. However, if the

actual Pf value is 10−1, then only 100
10−1 = 103 samples are needed, which consumes

T = 7.55 × 10−4 ∗ 100
10−1 = 0.755s. Therefore, the standard MCS is only practically

suitable to calculate relatively larger Pf (for example larger than 1%).

In contrast, Figure 3.16 shows a short but almost constant value of CPU time. The

reasons are as follows. Firstly, the KL-IS method employs discrete representation

method, i.e. K-L expansions, to represent the excitations for the structure. The

K-L expansion decomposes the Gaussian random process into deterministic part

and uncertain part. The deterministic part, together with the structural impulse

responses (see Figure 3.17). Because the failure probabilities are calculated from the

relative response of different DOFs, these responses are also calculated, see Figure

3.18, is used to calculate the convolution integrals so that a coefficient matrix is
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Figure 3.16: Evolution of CPU time according to different values of Pf (by KL-IS)

obtained that comprises the vectors ai,k(x), where i = nr, k = 1, ..., nT (see eq.

(3.17)). It is noticed that once this coefficient matrix is determined, the failure

probability of any DOF at any sampled time point can be directly calculated via

eq.(3.19) (see results in Figure 3.19).

Afterwards, we just need to generate the standard Gaussian variables (with di-

mension nKL) and feed them into the coefficient matrix to calculate the structural

responses. According to the simulation records, these procedures is not time con-

suming (about 4s). Secondly, in the generating process of importance samples, with

the aide of the already calculated coefficients (see eq. (3.17)) the importance samples

are very efficient to obtain. This part consumes less than 0.5s.

Even though the number of importance samples are increased, the time consumed

does not change so much. The special mechanism of KL-IS method makes it very

powerful to calculate very small values of Pf without large sacrifice of time. There-

fore, the KL-IS method is very suitable to calculate small Pf (for example less than

1%). Moreover, the instant failure probabilities of different DOFs within the ob-

served time interval are calculated from their coefficient matrices, see Figure 3.19.

It is found that, from the 1st DOF to the top DOF the failure probabilities decrease
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Figure 3.17: Impulse (absolute) response of different DOFs
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Figure 3.18: Impulse (relative) response of different DOFs
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Figure 3.19: Evolution of failure probabilities of different DOFs
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evidently. This result tells that the relative responses of these DOFs decrease. This

phenomenon can be reflected in the relative responses due to unit impulse excitation,

see Figure 3.18.

3.5 Chapter summary

In this chapter, we have presented the fundamental knowledge of uncertainty quan-

tification. The concept of conditional failure probability is also introduced. This

chapter describes the basic procedures to handle the structural uncertainties via

machine learning models. Besides, the KL-IS method has been presented in detail

due to its clear advantage over the standard MCS method in evaluating very small

failure probabilities. In chapter 4, the machine learning theories will be extensively

explored and studied in conditional failure probability modeling and prediction.





Chapter 4

Structural Reliability assessment:

the Random Forest approach

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Structural response analysis . . . . . . . . . . . . . . . . . . . 81

4.3 Basic thought of the proposed methodology . . . . . . . . . 85

4.3.1 Expression of uncertainties . . . . . . . . . . . . . . . . . . . 86

4.3.2 Reliability evaluation . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.3 Different ML methods for reliability modeling . . . . . . . . . 88

4.3.4 RF for Reliability modeling . . . . . . . . . . . . . . . . . . . 89

4.4 Simulation and performance analysis . . . . . . . . . . . . . . 94

4.4.1 Three numerical examples . . . . . . . . . . . . . . . . . . . . 95

4.4.2 Parameter influence analysis . . . . . . . . . . . . . . . . . . 99

4.4.3 Feature importance analysis . . . . . . . . . . . . . . . . . . . 102

4.4.4 Comparisons with other machine learning methods . . . . . . 106

4.4.5 An illustrative example of the prediction results . . . . . . . . 107

4.4.6 Two case studies on multi-DOF structural system . . . . . . 108

4.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.1 Introduction

Theoretically, evaluation of the probability of failure can be accomplished by solving

a multivariate integral analytically or numerically within the failure domain [82].
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But this is only computationally practical for low-dimension (generally less than five)

problems. Thus, much of the efforts have been devoted to developing alternative

approaches, such as surrogate models and simulation methods.

Surrogate models were developed to deal with highly non-linear or implicit LSFs.

They are introduced to reduce computational burden in reliability analysis. Re-

sponse surface method (RSM) is among the most popular surrogate models. Gener-

ally, researchers combine RSM with other approaches to refine the model parameters

[83]. Support vector machine (SVM) has also gained much attention recently. Pan

and Dias [84] combined an adaptive SVM and Monte-Carlo simulation to solve non-

linear and high-dimensional problems in reliability analysis. According to Dai et.

al [85], a new multi-wavelet linear programming SVM for the reliability analysis.

Other surrogate models have been proposed by the other researchers [86], [87].

In terms of simulation methods, Monte-Carlo simulation (MCS) technique is rep-

resentative to solve high-dimensional and non-linear complex problems. It is

dimension-independent, and often regarded as a benchmark to evaluate the other

probabilistic methods due to its versatility and robustness. Zio [88] described in

detail the basic theories about MCS techniques used for reliability analysis in his

recent book. Jose et al. [89] proposed a MCS methodology to estimate the reli-

ability of a multi-state network, and was able to obtain accurate approximations

of the reliability. Daoud and Mahmoud [90] proposed to use MCS to obtain the

task route reliability of the mobile agent based systems (MABS), and the simu-

lation results showed its robustness. Padmanabhan et. al [26] used Monte Carlo

Simulation techniques for Reliability-Based Optimization (RBO), they combined

limit state approximations with MCS to improve the efficiency of reliability analy-

sis. Some researchers tried to improve the efficiency of the analysis by combining

MCS with other methods, especially surrogate models such as SVM [68], artificial

neural networks (ANN) [91] and [92]Kriging.

Seen as a classification/ regression procedure, the prediction task can be realized by

machine learning models among which SVM [37] and [35]ANN were widely consid-

ered in recent articles. However, they cannot avoid shortcomings in all situations.

The disadvantages in ANNs mainly include the complex architecture optimization,
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low robustness and enormous training time [93]. SVM is time consuming for large-

scale applications and sometimes shows large error in sensitivity calculation of reli-

ability index. Naive Bayes model learns the a priori distribution from the observed

data and build the posterior distribution for new observations. But it is based on

the conditional independence assumption, and for the continuous variables it needs

to discretize them [94]. Bayesian networks (BNs) employ conditional probability

tables (CPT) to deal with inter-dependent variables, but the results highly rely on

assumptions about the target system behavior [95]. Besides, the rules encoded by

BNs are difficult to interpret efficiently [96].

Random Forest is a tree method distinguished for its robustness and high accuracy

in modeling and predictions [97]. However, its application to reliability prediction is

still limited in current literatures. This part therefore aims to explore the feasibility

of RF as well as examine its performance in reliability modeling and prediction of

passive controlled structures. The remainder of the paper is organized as follows.

Section 4.2 provides the response analysis of multi-TMD structures subject to seis-

mic excitations. Section 4.3 introduces in detail the framework of the proposed

method. Section 4.4 provides the numerical simulations and performance analysis.

Section 4.5 concludes this article with comments.

4.2 Structural response analysis

An ideal mechanical TMD system (see Figure 4.1) is composed of a main structure

represented by a N degree-of-freedom (N -DOF) system, and a TMD structure with

n degree-of-freedoms (n-DOF). All the DOFs of the TMDs are arranged in parallel

to absorb the vibration energy of the main structure.

In case of the TMD system excited by a base acceleration ÿb, the first (n−1) degrees

of freedom (DOFs) of the structural response is determined by the following motion

equation,
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Figure 4.1: Multi-DOF TMD system

mSi
· ÿSi + cSi · (ẏSi − ẏSi−1

) + kSi · (ySi − ySi−1
)

+ cSi+1
· (ẏSi − ẏSi+1

) + kSi+1
· (ySi − ySi+1

)

= −mSi
· ÿb

(4.1)

where i = 1, 2, ..., n− 1, yS0 = 0. After some algebra, it is equivalent to

mSi · ÿSi + (cSi + cSi+1) · ẏSi − cSi · ẏSi−1 − cSi+1 · ẏSi+1

− (kSi + kSi+1) · ySi − kSi · ySi−1

− kSi+1 · ySi+1

= −mSi · ÿb

(4.2)

For the nth degree of freedom, the motion equation is

mSn · ÿSn + cSn · (ẏSn − ẏSn−1) + kSn · (ySn − ySn−1)

+ cT1 · (ySn − yT1) + kT1 · (ySn − yT1)

+ ...+ cTm · (ẏSn − ẏTm) + kTm · (ySn − yTm)

= −mSn · ÿb

(4.3)

Eq.(4.3) is equivalent to
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mSn · ÿSn + cSn · ẏSn + kSn · ySn − cSn · ẏSn−1 − kSn · ySn−1

+
m∑
i=1

cTi · (ẏSn − ẏTi)

+
m∑
i=1

kTi · (ySn − yTi)

= −mSn · ÿb

(4.4)

Therefore, we obtain the motion equations for all DOFs. For all the TMDs, the

motion equations are

mT1 · ÿT1 + cT1 · (ẏT1 − ẏSn) + kT1 · (yT1 − ySn) = −mT1 · ÿb

mT2 · ÿT2 + cT2 · (ẏT2 − ẏSn) + kT2 · (yT2 − ySn) = −mT2 · ÿb

...

mTm · ÿTm + cTm · (ẏTm − ẏSn) + kTm · (yTm − ySn) = −mTm · ÿb

(4.5)

By assuming the state space y = [yS1 , ..., ySn , yT1 , ..., yTn ], we express the motion of

the system as

Mÿ(t) + Cẏ(t) + Ky(t) = −Mrÿb (4.6)

where r = [1, 1, ..., 1]T consists of (n + m) elements. The mass matrix is M =

diag[mS1 , ...,mSn ,mT1 , ...,mTm ] = diag[MS ,MT ]. Here, MS = diag[mS1 , ...,mSn ],

MT = diag[mT1 , ...,mTn ]. The damping matrix C is a square matrix whose non-zero

elements are

Cii =


cSi + cSi+1 , i = 1, ..., n− 1

cSi +
∑m

i=1 cTi , i = n

cTi−n , i = n+ 1, ..., n+m

(4.7)

Similar to M, C = diag[CS ,CT ]. Here, CS consists of the first n rows and the first

n columns of C; CT consists of the last m rows and the last m columns of C. The

stiffness matrix K is a square matrix whose non-zero elements are
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Kii =


kSi + kSi+1 , i = 1, ..., n− 1

kSi +
∑m

i=1 kTi , i = n

kTi−n , i = n+ 1, ..., n+m

(4.8)

In a similar way, K = diag[KS ,KT ]. Here, KS consists of the first n rows and the

first n columns of K; KT consists of the last m rows and the last m columns of K.

Assume z0 = [yS1 , . . . , ySn , yT1 , . . . , yTm , ẏs1 , . . . , ẏsn , ẏT1 , . . . , ẏTn ]T , we obtain

ż0 = A0z0 + r0ÿb, (4.9)

where A0 = [On+m,Λn+m;KU ,KD]. On+m and Λn+m are zero matrix and iden-

tity matrix respectively, the sizes of which are all (n + m) × (n + m). r0 =

[0, ..., 0,−1, ...,−1]T1×(2n+2m). KU = [K0,A1,C0,A2], where

K0 = −M−1
S ×KS (4.10)

C0 = −M−1
S ×CS (4.11)

A1 = [[0](n−1)×m; [kT1 , ..., kTm ]/mSn ] (4.12)

A2 = [[0](n−1)×m; [cT1 , ..., cTm ]/mSn ] (4.13)

KD = [B1,K1,B2,C1], where

K1 = −M−1
T ×KT (4.14)

C1 = −M−1
T ×CT (4.15)

B1 = [[0]m×(n−1), [
kT1
mT1

, ...,
kTm
mTm

]T ] (4.16)
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B2 = [[0]m×(n−1), [
cT1
mT1

, ...,
cTm
mTm

]T ] (4.17)

Applying Kanai-Tajimi (KT) model [98] to simulate the base acceleration ÿb,


ÿf + 2εfωf ẏf + ω2

fyf = −w(t)

ÿb = ÿf + w(t) = −(2εfωf ẏf + ω2
fyf )

(4.18)

Here w(t) is zero mean Gaussian white noise, i.e. the excitation to the system.

ωf and εf are the natural frequency and damping ratio of the filter, yf is the

relative response. We build the global state space vector of the system by, Z =

[ys1 , . . . , ysn , yT1 , . . . , yTm , yf , ẏs1 , . . . , ẏsn , ẏT1 , . . . , ẏTm , ẏf ]T .

Then the motion of the system becomes

Ż = AZ + f, (4.19)

where f is a column vector that contains zeros except the last element −w(t). The

matrix A is extended from A0 by considering the state yf . By now, the standard

state space is built as

ẋ = Ax + Bu,

y = Cx + Du
(4.20)

where the input vector x corresponds to Z in eq.(4.19); the output y corresponds to

the response of certain DOFs. Obviously, Bu = f, Du = 0, C is a diagonal matrix

to decide the output response of interest.

4.3 Basic thought of the proposed methodology

The basic thought of the proposed methodology is schematically described in Figure

4.2. In deterministic case where the structural properties are known, the risk of

failure can be quantified as the failure probability.

However, the situation changes when uncertainties are associated with the material

properties. In the framework of uncertainty, a number of samples are taken from
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Figure 4.2: The schematic of the proposed method

the uncertainty space, and the reliability analysis is implemented via First-passage

probability theory and Monte-Carlo simulations. Subsequently, based on the reli-

ability data obtained in the first step, a machine learning (ML) model is induced.

This model can be used to do reliability predictions whenever new observations of

the structural properties are available.

4.3.1 Expression of uncertainties

We assume the uncertainties only exist in the mass (m), the damping factor (c)

and the stiffness (k) of the primary system. In the present paper, the uncertainties

of the parameters adopt the forms of normal distributions [99], m ∼ N
(
m0, σ

2
m

)
,

c ∼ N
(
c0, σ

2
c

)
, k ∼ N

(
k0, σ

2
k

)
. Here m0 , c0 and k0 are the nominal mass, damping

factor and the stiffness, and σ2
m ,σ2

c , σ2
k are the corresponding variances.

4.3.2 Reliability evaluation

First-passage probability In vibration analysis of structural systems subjected to un-

certain excitation modeled as stochastic process, it is generally required to estimate

the probability that the system’s response will stay within safe, prescribed limits,

within a specified time span. The determination of such a probability is usually

called ’first-passage problem’ [100].

Mathematically, the first-passage problem can be expressed as: to find the proba-

bility, P (t), that any one of the response states of interest, Yi(t), i = 1, · · · ,m of a

system exceeds in magnitude a critical barrier at least once in a defined time interval

[0, T ] (see Figure 4.3),
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Figure 4.3: A response process containing exceedance events

Pf = Prob(F ) = P (|Yi(t)| > c, t ∈ [0, T ]) (4.21)

Where F denotes a failure event of the structure. We note that the definition of the

failure criterion is of importance to perform reliability estimation. In the framework

of first-passage theory, the structure failure probability can be understood as the risk

that the structure responses exceed a predefined limit within a certain interval of

time. For the proposed seismic model, the Gaussian white noise process is selected

as the source of excitation.

MCS for reliability evaluation In simulation methods, the stochastic excitation is

specified as a certain number of input random variables [77], x = (x1, x2, . . . , xn)

which can be simulated as a generation of the excitation. Thus, the output response

will be a function of these variables. To apply MCS for reliability evaluation, N sam-

ples of the multi-dimensional random vector x will be obtained from a multi-variable

Gaussian distribution. Each sample is seen as a white noise process. Obviously, the

n variables correspond to n sample of time points in [0, T ]. In terms of joint probabil-

ity density function (PDF) fx (x) for input random variables, the failure probability

can be analytically expressed as the integral,

Pf =

∫
F
fX(x)dx =

∫ ∫
...

G(X)≤0

∫
fX(x1, x2, ..., xn)dx1dx2...dxn (4.22)
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where F : G (x) ≤ 0 is the failure region in n-dimensional space ofX. It is practically

impossible to carry out direct calculation of this integration. Thus, Monte-Carlo

estimation is used as a numeric integration approach,

P̂f = E [IF (x)] =
1

N

N∑
i=1

I
[
G
(
x(i)
)
≤ 0
]

(4.23)

where IF (·) is the indicator function: IF (x) = 1 if x ∈ F and IF (x) = 0 otherwise;

x(i) is the ith sample of the joint probability distribution.

The failure criterion is defined as the following: ymax > ylimit , ’failure’; ymax ≤ ylimit

, ’function’. Here, ymax = max (| ys |) is the maximum displacement of the response

among all the degrees of the base structure. More intuitively, the Monte Carlo

estimator of the structure failure probability is written as [16],

P̂f =
1

Nmc

Nmc∑
i=1

If

(
x(i)
)

(4.24)

where x(i) is the ith sample of the excitation process; Nmc is the number of samples

used in MCS, and If (·) is the indicator function that satisfies

If (·) =


1, ymax > ylimit

0, ymax ≤ ylimit
(4.25)

4.3.3 Different ML methods for reliability modeling

Several machine learning models have been explored in our research. Some of them

demand prior knowledges about the data while others just focus on the data itself.

During the research, we tested some representative methods on the data, including

Bayesian inference [101], k-nearest neighbor (k-NN) [102], Gradient Boosting (GB)

[103] and Random Forest. Some brief introductions of them are listed below.

• Bayesian Inference method is based on Bayes’ theorem. It operates by firstly

assigning a prior distribution π(θ) for the parameters. Then, considering the

experimental data D, π(θ) is updated by the likelihood π(D|θ). The posterior

distribution π(θ|D) is obtained by re-normalizing the updated π(θ), i.e.
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π(θ|D) =
π(D|θ)π(θ)∫
θ π(D|θ)π(θ)

∝ π(D|θ)π(θ) (4.26)

• k-NN is a type of instance-based learning where the function is only approx-

imated locally. In regression case, the input consists of the k closest training

examples in the feature space, and the output is the average of target val-

ues of the k neighbors. The value k can be determined by cross-validation,

and the ’closeness’ can be measured by Euclidean distance. We can also use

weighted k-NN where the neighbors are weighted, according to their distances,

to determine the output.

• Gradient Boosting (GB) is a generalization of Adaptive-Boosting (AdaBoost).

It is a kind of ensemble learning method that combines multiple ’weak learners’

as a weighted sum so that the final output is determined. The weak learners

can be decision trees, decision stumps et.al.

• Random Forest. Even though RF and GB belong to the same category where

the decisions are made by combining the outputs of all individual trees, they

are largely different in two aspects. Firstly, the way a tree is built. In GB,

the trees are built one by one with each tree being built in the background of

the previous one; In RF, trees are induced independently, and the randomness

in the tree building process helps reduce the correlation among trees. Sec-

ondly, the way to make predictions. GB makes predictions by calculating the

weighted sum of the decisions of all trees, while RF just averages the decisions.

The exploration of machine learning techniques in structural reliability research is

far from enough, and we are the first to introduce RF in reliability analysis. Besides,

our research shows that the RF model outperforms the other three models on our

data. The following part will introduce RF model in detail.

4.3.4 RF for Reliability modeling

Basic principles of the model Random Forest is an ensemble learning method that

use multiple learning algorithms to obtain better predictive performance than could
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be obtained from any of the constituent learning algorithms alone. RF is comprised

of many individual trees called classification and regression tree (CART). Each tree

is built from a random sample set (i.e. bootstrap sample) generated from the training

set. As we use bootstrap sampling to obtain the samples, we therefore just obtain a

subset of the training data which we call ’Inbag’; the remaining samples are called

’OOB (out-of-bag)’ which is the complementary set of the ’Inbag’.

Training Data

...

InBag1 OOB 1 InBag 2 OOB 2 InBag k OOB k

Prediction

(Majority votes/Average)

Bootstrap 

sampling 1

Random Forest
Error estimation 

of RF

A new 

observation

Tree 1 Tree 2 Tree k

Bootstrap 

sampling 2

Bootstrap 

sampling k

1[ , ]N n N X Y

...

...

Figure 4.4: Random Forest: from modeling to prediction. DN is the training data, XN×n

is the input matrix that contains N observations of the input variables, n is the number of

input variables, YN×1 is a column vector that contains the output values

Figure 4.4 illustrates how a Random Forest is learned and then employed to do

predictions. The ’OOB’ data can be used to estimate the model error. When

the model is built, we are able to do predictions for future observations, either by

majority voting or averaging the predicted values of all trees.

An underlying assumption of the ensemble process is that the base learners are in-

dependent. As the trees become more correlated (less independent), the model error

tends to increase. Randomization helps to reduce the correlation among decision

trees in order that the model accuracy is improved. Two kinds of randomness exist
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in the tree learning process.

• Bootstrap sampling Bootstrap sampling is applied to generate a sample set

for each tree, which results in about one-third of the samples left out for each

bootstrap training set.

• Node splitting For each node splitting, a subset of variables is generated by

randomly choosing a certain number of variables from the variable set. Then

one of these variables is selected, according to an evaluation criterion, to split

the node. Generally, a subset contains sqrt(n) of the attributes.

Tree growing process A tree has a binary recursive structure containing several nodes

and branches. Each node specifies a variable and a branch specifies the possible

values it takes. A tree learning process is actually the node splitting process (see

Figure 4.5), beginning with the root node that corresponds to the whole learning

set. Each split results in two subsets of the data that falls into this node so that the

resulting child nodes are the ’purest’. As to a regression tree, it is grown starting

from the root node by repeating the following steps on each node.

Step1 Find each variable’s best split. Randomly choose
√

(n) variables as the

candidate variable set. For each candidate variable, sort its values in an ascending

order. For the sorted variable, examine all candidate split points to find the one

that maximize the goodness of split when the node is split according to it.

Step2 Find the node’s best split. Among the best splits found in step1, choose the

one that maximizes the splitting criterion.

Step3 Node splitting. Split the node using its best split found in step2 if the

stopping rules are not satisfied, otherwise, the node is taken as a leaf whose value

is determined by averaging the decisions falling into this node.

In Figure 4.5, x1, x2, · · · , xn are the variables in the n-dimension uncertainty space;

m is the number of samples from the uncertainty space; y is the target variable that

has m target values here.

Splitting criterion At each node, we perform a split: we choose a variable xi and its

value xi,j that minimizes the sum of squared errors (SSE), i.e.
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Figure 4.5: An illustrative node splitting process. The symbol ’?’ means that the variable

used to carry out the next splitting needs to be determined

min
i,j

[
∑
x∈R1

(yi − c1)2 +
∑
x∈R2

(yi − c2)2] (4.27)

where R1 = {x|xi ≤ xi,j} is a the region that satisfies the condition xi ≤ xi,j ,

R2 = {x|xi > xi,j} is a the region that satisfies xi > xi,j . Besides, cm is the average

of the target values falling into the region cm = E(y|xi ∈ Rm),m = 1, 2.

Definition (impurity) Assuming h(t) is the sample set that falls into node t, a is a

sample in h(t), then at node t the impurity is defined as

i(t) =
1

N(t)

∑
a∈h(t)

(ya −
_
y(t))

2
(4.28)

where N(t) is the number of samples falling into node t, ya is the decision value

for sample a ,
_
y(t) is the average of all decision values in h(t). At node t, the best

splitting point s will maximize

∆i(s, t) = i(t)− p1i(t1)− p2i(t2) (4.29)

where t1 and t2 are the two child nodes resulting from the splitting point s. p1

and p2 are the portions of samples that fall into t1 and t2 respectively. We notice

that minimizing the SSE is equivalent to maximizing the decrease of impurity (DI)

∆i(s, t).
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Stopping rules The splitting will be stopped if one or more of the following conditions

is met: a). the impurity decrement is smaller than the threshold value; b). the

current tree depth reaches the preset limit; c). the size of a node is less than the

preset minimum size; d). all cases in a node have identical values for each attribute.

Training data preparation As RF belongs to supervised learning category, the train-

ing data should contain the input values and output values within each case. The

reliability data is obtained as the training data. According to section 4.3.1, a set

of samples of the uncertain variables are generated within their predefined uncer-

tainty frameworks. Then, based on the section 4.3.2, the Monte-Carlo simulations

are applied to estimated the failure probabilities for these samples.

Random Forest

Tree 1 Tree k

∑ 1

k

. . . . . .

Prediction

Tree 2

. . . . . .

Figure 4.6: Prediction by RF

Predictions by RF When the RF model is built, for a test sample xnew, its features

values are analyzed according to the rules of each randomly created decision tree

sch that the outcomes are predicted and stored. The prediction by RF is carried

out by averaging the predictions of all individual trees, i.e.

f̂ =
1

k

∑k

i=1
fi (xnew) (4.30)

where k is the number of trees within RF, fi (xnew) is the prediction by the ith
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tree, refer to Figure 4.6. Specifically, fi (xnew) = TDN,θi(xnew) where TDN,θi is the

random tree learned from the ith bootstrap sample. θi is an independent random

seed that helps generate a bootstrap sample from the training setDN . In the process

of prediction by an individual tree, xnew is pushed through the tree (starting from

the root), according to the splitting rules, until it reaches a certain leaf. Then the

prediction value is obtained as the leaf, see the illustration in Figure 4.7. In Figure

4.7, it is a regression tree learned from the training data. Each observation in the

training data consists of four input values [x1, x2, x3, x4] and an output value y.
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Figure 4.7: Illustrative example: prediction by a single tree

4.4 Simulation and performance analysis

This part devotes itself to exploring the RF ability in different aspects. Some numer-

ical examples are provided to test the RF performance on different structures with

single/multi-DOFs. The influence factors on model performance are proposed and
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studied. Feature importance analysis is also implemented. Finally the comparison

results of different methods are provided.

4.4.1 Three numerical examples

Example 1 The structure consists of 1-DOF base structure and 1-DOF TMD, its

parameter values are introduced in Elyes et.al [104], see Table 4.1. Besides, the

natural frequency and damping ratio of the seismic model are 25.224rad/s and 0.4

correspondingly. The power spectral density (PSD) of the white noise process is set

0.031m2/s3. The failure criterion is 4.3×10−2m. In this example, the uncertainties

exist in the base structure properties and take the form of normal distributions with

standard deviations σms = 0.1, σcs = 0.001, σks = 5.0. The sample data of the

uncertain properties are obtained according to their uncertainty characteristics.

Table 4.1: Nominal values of the structure

Parameters m(kg) c(N · s/m) k(N/m)

Base structure 1.0 0.03 696.4

TMD 0.02 0.0695 12.725

The estimates of the failure probabilities for these samples are applied by Monte-

Carlo simulations. To evaluate the model performance in fitting the data, we apply

10-fold cross-validation on the training data. Meanwhile we range the size of the

data to see its influence on cross-validation evaluation indices. The sizes of data

range from 1000 cases to 19000 cases. Another 1000 cases are sampled as a test set

to study the model performance in prediction ability. See results in Figure 4.8.

In Figure 4.8, the indices Co-coef, RMSE and RAE are correlation coefficient, root

mean square error and relative absolute error respectively, i.e.

Co− coef =

∑N
i=1(yi − y)(ŷi − ỹ)√∑N

i=1(yi − y)2
∑N

i=1(ŷi − ỹ)2

(4.31)

RMSE =

√
1

N

∑N

i=1
(ŷi − yi)2 (4.32)
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RAE =

∑N
i=1 |ŷi − yi|∑N
i=1 |y − yi|

(4.33)

where yi, ŷi are respectively the target values and predicted values, and y, ỹ are the

corresponding mean values. N is the number of sample cases.

As can be seen, the correlation coefficient between the estimated values and observed

values increase drastically when more training data are available. Meanwhile, the

two error indices RMSE and RAE decrease clearly before they converge at about

10000 of the data size. The cross-validation results tell that the proposed RF model

behaves very well in fitting the data. The test results show that the model gives

accurate predictions, so it didn’t over-fit the data. This is the evidence that the

randomness in the RF model inducing process can effectively avoid over-fittings

[105]. Besides, the size of the training data plays an important role in determining

the accuracy of RF model.

0 5 10 15 20

(a)

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

C
o-

co
ef

Cross-valid
Test

0 5 10 15 20

(b)

4

5

6

7

8

9

10

11

12

R
M

S
E

10-3

Cross-valid
Test

0 5 10 15 20

(c)

0.015

0.02

0.025

0.03

0.035

0.04

R
A

E

Cross-valid
Test

Figure 4.8: Model evaluation on different data(×1000) for 1-DOF structure

Example 2 The structure consists of 2-DOF base structure attached to a 1-DOF

TMD. The natural frequency, damping ratio of the seismic model and PSD of the

white noise process are the same as those in Example 1, but the nominal configura-
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tions of the structure are different, see Table 4.2.

Table 4.2: Nominal values of the structure

Parameters m(kg) c(N · s/m) k(N/m)

1st DOF 4.6 62.0 6500

2nd DOF 4.6 62.0 6500

TMD 1.38 38.997 1.8327

The uncertainties of structure properties are normally distributed with standard

deviations σms1 = σms2 = 1 , σcs1 = σcs2 = 10 , σks1 = σks2 = 300 . The failure

criterion is defined as, any degree of the main structure exceeds the assumed thresh-

old value of displacement. Here the threshold is set 1.9 × 10−2m. Considering the

increase of the number of uncertain properties, the sizes of data sampled from the

assumed distributions range from 1000 cases to 29000 cases as the training data.

Another 1000 cases are sampled to test the model performance in prediction ability.

See the simulation results in Figure 4.9.
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Figure 4.9: Model evaluation on different data(×1000) for 2-DOF structure
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In Figure 4.9, the three evaluation indices change in a similar way to those in

Example 1, even though the convergence values of the error indices are higher. This

is mainly because when the number of variables increases, the space dimension of

the variable becomes higher, thus the uncertainties become more difficult to handle.

Undoubtedly, more observations will improve the model performance.

Example 3 The main structure is 3-DOF and the TMD structure is 2-DOF. Each

degree of the structure, including the main structure and the TMD structure, has

the same parameter configurations as those in the example 2. The threshold of the

failure criterion is 2.5× 10−2m. The simulation results are shown in Figure 4.10.

Figure 4.10 shows that the correlation coefficients of both cross-validation and pre-

diction are still staying in a high level. The co-efficient and the error indices change

in a similar trends to those in Example 2 except that the convergence values (es-

pecially RAE) are larger than those in the last example. This is an evidence that

when the dimension of uncertain space is high, the data will be more difficult to

model. Intuitively, we need more samples to train the model, but there are some

other factors that may possibly affect the model performance. Therefore, Section

4.2 will explore the possible influence factors on the model.
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Figure 4.10: Model evaluation on different data(×1000) for 3-DOF structure
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4.4.2 Parameter influence analysis

Besides the size of the sample that influences the model performance, the hyper-

parameters in the proposed method may also make contributions to the evaluation

results. In this part, the authors consider three factors: the variances of the random

variables, the number of trees in the RF model and the number of candidate features

for each splitting in tree inducing process.

4.4.2.1 Variance of the variables

The 1-DOF structure in Example 1 is employed in this section. Considering the

intuitivity of standard deviation and its direct relationship with variance, we use

standard deviation instead of variance as the measure of dispersion of the samples.

Knowing that there are three parameters of the main structure, i.e. ms, cs, ks, we

focus on one parameter and change its standard deviation in the samples. Meanwhile

we fix the other two parameters, i.e. keep their standard deviations unchange. Based

on the nominal values of the properties of the structure, we range the standard

deviation of ms from 1× 10−2 to 1× 10−1, with step 1× 10−2. In a similar way, we

range the standard deviation of cs from 3 × 10−4 to 3 × 10−3, with step 3 × 10−4;

for ks, the standard deviation ranges from 5 × 10−1 to 5, with step 5 × 10−1. See

table 4.3. In Table 4.3, SD means ’standard deviation’; SD1 is the first value of SD

of the variable. For example, SD1 for ms is 0.01.

Table 4.3: Standard deviations of the uncertain properties

Items SD1 SD2 SD3 SD4 SD5 SD6 SD7 SD8 SD9 SD10

ms 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

cs 0.0003 0.0006 0.0009 0.0012 0.0015 0.0018 0.0021 0.0024 0.0027 0.003

ks 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

In each simulation for a variable that takes a specific SD in Table 3, we use a training

set with 7000 samples to build the RF model, and another 1000 sample as the test
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set. As before, we implement 10-fold cross-validation to evaluate the model. Two

indices are employed to evaluate the model performance, i.e. RMSE and MRE. Here

MRE means ’mean relative error’ which is calculated as

MRE =
1

N

∑N

i=1

|ŷi − yi|
yi

(4.34)

where yi, ŷi are respectively the target values and predicted values. N is the number

of samples to test the model. In contrast with RMSE that describes the absolute

differences between predicted values and target values, MRE is designed to measure

the percentage error of the predictions with respect to the target values. Figure 4.11

and 4.12 show how the model performance is affected by the changing variances of

the uncertain properties.
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Figure 4.11: Simulation result based on different standard deviations

Figure 4.11 and Figure 4.12 show that, the variance of the uncertain property ms

makes clear influence on the RF model performance, while the variances of cs and

ks do not. In Figure 4.11(12), ’CV-m’, ’Test-m’ respectively mean cross-validation

results and test results when we study the variance of ms; ’CV-c’, ’Test-c’, ’CV-k’
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and ’Test-k’ can be understood in a similar way. With the increase of the standard

deviations of the variable ms, the RMSE increases no matter for cross-validation

or predictions. Meanwhile, the MRE shows the same trend. This is the evidence

that, when the variance of ms in the samples is high, the proposed model will be less

accurate. By comparisons, we know that the variances of cs or ks can’t clearly affect

the model performance. Therefore, it is concluded that the RF model performance

is more sensitive to the sample variance of the mass of the structure.
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Figure 4.12: Simulation result based on different standard deviations

4.4.2.2 Hyper-parameter configuration of the RF model

The simulations are based on the 3-DOF structure in Example3 which has the

standard deviations σms = 0.3 , σcs = 3 , σks = 90 . To study the influence of

number of trees within RF on the model performance, 11000 cases of this dataset

are randomly selected to train the model and the other 1000 cases are left to test the

model in prediction. The number of trees ranges from 20 to 200, with step 20. The

correlation coefficients and error indices are shown in Figure 4.13. From Figure 13,

we know that with the increase of trees, the RF model tends to be more accurate.
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Moreover, the RMSE begins to converge when the number of trees exceeds 120.

As the computational cost increases linearly with k, k = 120 is a good choice to

make a trade-off between computational complexity and accuracy [51]. This is a

direction to determine the value of k. Therefore, based on the available data, the

best k should be the minimum number achieving the accuracy level with a reasonable

computational cost. It is also found that increasing the number of trees effectively

reduces RAE, meanwhile increasing the correlation coefficient.

In the same simulation, we consider the influence of the number of candidate features

and change it in each splitting procedure. Considering that there are 9 uncertain

attributes to process, we range the number of candidate features from 2 to 5, and

see the influences on different evaluation indices. See results in Figure 4.13. The

simulation results show that the model accuracy reaches its highest when the number

of features is taken as 4. This result is close to the conclusion in Leo Breiman [105].

This simulation shows the evidence that the number of candidate features is another

key point to consider in RF model selections.
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Figure 4.13: Influence of the number of features and number of trees

4.4.3 Feature importance analysis

Feature importance is a way to quantize the contributions of the features(variables)

to the overall model’s predictive performance. For high-dimension problems, it helps



4.4. Simulation and performance analysis 103

filter the variables that have little influence on the response so that the computa-

tional efficiency is improved. The feature importance is reflected by the change in

OOB error for each feature when that feature is randomly permuted in the OOB

observations. The higher the difference, the more important a feature is, vice versa.

This is called out-of-bag feature importance. We firstly introduce the concept of

OOB error. To build a RF, bootstrap sampling is carried out to generate a certain

number of bootstrap datasets, each of which has a corresponding OOB dataset. For

each observation Xi(i = 1, 2, ..., N) in the training set, we estimate its out-of-bag

prediction by averaging over the predictions of the trees (in the ensemble) that take

Xi as out-of-bag data. That is,

F (Xi) =
1

Ni

∑
Xi 6∈Si

f(Xi;Ti,j), (4.35)

where Si = {Si,j}Nij=1 denotes all the Bootstrap datasets that take Xi as out-of-bag

data. Si,j is the jth(j = 1, 2, ..., Ni) dataset within Si. Ti,j is the tree grown from

Si,j . f(Xi;Ti,j) is the predicted target value for Xi by the tree Ti,j . The out-of-bag

error for Xi can be determined by comparing the predicted target value with the

true target value in a square error sense, i.e.

OOBE(Xi) = (F (Xi)− yi)2 (4.36)

Then the OOBE for the RF model is calculated by taking the root average of OOBEs

of all the observations in the training set. In order to calculate feature importances,

the procedures are carried out on each tree in the RF. We denote {Ti}ki=1 as the RF

that consists of k random trees and SDN ,θi as the OOB dataset corresponding to Ti.

Firstly, we calculate the root average value of OOBEs of the observations within

SDN ,θi , that is εTi = mean[OOBE(X)] given that X ∈ SDN ,θi . Then the values of

the jth variable xj(j = 1, ..., n) in the OOB data are randomly permuted, meanwhile

keeping other variable values unchanged. In a similar way, we use the altered OOB

observations to calculate the new OOB error εj,Ti , see the procedures in Figure 4.14.

Generally, εj,Ti should be larger than εTi . We calculate the difference between the

two OOB errors, i.e. dj,Ti = εj,Ti − εTi , which can be seen as the importance index
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Figure 4.14: FI evaluation of jth feature via Tree i in RF

of xj via the tree Ti. We repeat the procedures in Figure 4.14 by each tree in the

forest, finally we obtain a matrix that consists of the feature importance indices

induced by all trees in the RF, denoted below,

FI =



d1,T1 d2,T1 ... dn,T1

d1,T2 d2,T2 ... dn,T2

... ... ... ...

d1,Tk d2,Tk ... dn,Tk


(4.37)

where k is the number of trees in the RF, and n is the number of features in the

training set. Accordingly, the importance measure of xi is obtained as the average

FI value over all trees, i.e.,

FI_i = ave{di,T1 , di,T2 , ..., di,Tk} (4.38)

the standard deviation (SD) of the estimation of FI of variable xi (i = 1, ..., n) is

computed as
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SD(FI_i) =
√
var{di,T1 , di,T2 , ..., di,Tk} (4.39)

To make comparison more intuitive, all variable importances are scaled in order

that they sum up to 1. We consider the same dataset analyzed in section 4.2.2 with

the same standard deviations, and implement the feature importance analysis. The

RF contains 150 trees. The number of candidate features to split a node is 3. See

results in table 4.4 and Figure 4.15.
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Figure 4.15: FIs of the structural properties (with SDs)

The feature importances in Figure 4.15 illustrate that the mass of each degree of

the main structure are the principle elements to determine the model outputs. In

contrast, the stiffness and damping coefficients are much less influential especially

for the second and third degrees.

Table 4.4: List of feature importances

Feature ms1 ms2 cs1 ms3 ks1 cs2 ks2 ks3 cs3

FI value 0.3340 0.2934 0.1301 0.0934 0.0900 0.0298 0.0163 0.0067 0.0064

SD of FI 0.0055 0.0038 0.0029 0.0051 0.0019 0.0012 0.0029 0.0006 0.0006
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4.4.4 Comparisons with other machine learning methods

To compare the RF model with other models, three representative machine learn-

ing methods are selected, i.e. Bayesian inference method, k-NN method and GB

method. We take the three different structures in section 4.1 as the object struc-

tures, and the same datasets are considered as the training data. The main struc-

tures have the number of DOFs ranging from 1 to 3. For the first system with single

DOF main structure, 8000 samples are chosen to train the model, while for the

second and third structure, 15000 and 60000 samples are respectively chosen as the

training data. Within each training data, 1000 samples are randomly chosen as the

test set to test the model. To reduce the influence of the randomness of the data on

the models, we repeat the test procedures for 50 times and average the evaluation

results. RMSE is chosen as the index to evaluate the model performance. See the

simulation results in Table 4.5.

Table 4.5: RMSEs of different methods

Structural DOF 1-DOF 2-DOF 3-DOF

Bayes method 0.0208 0.0709 0.0952

k-NN method 0.0180 0.0517 0.0486

GB method 0.0051 0.0631 0.0462

RF method 0.0056 0.0433 0.0451

The evaluation indices in Table 4.5 tell that the RF model behaves very well in

reliability prediction compared with the other three models. For the single DOF

structure, even though GB model behaves the best, the RF model achieved almost

the same accuracy (only 5× 10−4 in difference). For the 2-DOF and 3-DOF struc-

tures, the RF model gives the most accurate predictions compared with the other

three. Bayes method give the lowest accuracy in reliability prediction of all the

three structures. Generally, Bayesian inference method requires prior knowledge or

assumptions on the data distributions while k-NN does not. This makes k-NN tend
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to be more accurate than Bayes method when no prior information is available.

The GB method provides close, though less accurate, predictions to those by RF.

As an ensemble learning method, GB is different from RF in the aspect that it

combines multiple ’weak learners’ as a weighted sum to make predictions. It builds

one tree at a time, and each new tree is built to reduce the errors of the previously

built tree. The way each tree is built makes this model prone to overfit the data.

This is one of the reasons that GB is less accurate than RF in some situations.

4.4.5 An illustrative example of the prediction results

This section provides the training and prediction results of the RF model based on

the data employed in section 4.2.2. Some parameter configurations are listed in Table

4.6. Besides, the PSD takes 0.031, the displacement threshold takes 2.5 × 10−2m,

and the first-passage time span is 20s. In order to present the simulation results

more visibly, 100 samples are randomly selected from the training result and another

50 samples are obtained in the same way from the test result. The RF contains 160

trees, and the number of candidate features is set as 4.

Table 4.6: Structure parameters (i = 1, 2, 3; j = 1, 2)

Index msi csi ksi mTj
cTj kTj

nominal 4.6 62 6500 1.38 1.8327 38.997

SD 0.5 5 150 - - -

The results in Figure 4.16 show that the RF model prediction values are in good

accordance with the actual values. The RMSE in the simulation results is small

enough, but the RAE values is a little higher than those for 1-DOF structures.

The increase of the predicting error is due to the weak concept of local neighbor-

hood as the input space dimensionality grows [106], but more samples and suitable

configurations of the RF model can help reduce the error.
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Figure 4.16: Simulation results of the object structure via RF

4.4.6 Two case studies on multi-DOF structural system

In the subsections 4.4.1, the reliability analysis of three different DOF structures

(i.e., 1-DOF, 2-DOF and 3-DOF) have been studied with the aide of Random For-

est. It is noticed that the three structures do not have high-dimension uncertain

structural parameters. Random Forest is known to be powerful in handling high-

dimension uncertainties, thus in this subsection, the multi-DOF structural system is

studied. Two simulations are carried out in this subsection. In the first simulation,

the object structure is multi-DOF one introduced from Elyes et.al [81]. The RF

performance is analyzed and compared with standard MCS results. In the second

simulation, the RF model is tested on a famous benchmark problem introduced by

G.I. Schueller [107]. It is also compared with standard MCS, Subset simulations (3

variants) [108], complex modal analysis (CMA) [109], spherical subset simulation

(S3) [110], auxilary domain method (AMD) [111] and line sampling [112].

4.4.6.1 TMD-based ten-DOF shear building

The system is a 10-storey shear building, excited by earthquakes, see Figure 4.17.

Different from Figure 3.14 where the studied structure has deterministic properties,

the structure in Figure 4.17 has uncertainties in its mass, stiffness and damping

indices (except for the TMD structure). In subsection 3.4.6, this structure has been
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employed to compare the efficiency of KL-IS method with standard MCS method.

However, this part devotes itself to conditional failure probability modeling by Ran-

dom Forest as well as the overall failure probability considering uncertainties both

in structural properties and in ground excitations. The structural parameters have

nominal values that are the same as those in Figure 3.8 [81]. Besides, the parameters

of the TMD (also the KT model) are deterministic and the same to those in Figure

3.14. The nominal values and their uncertainties are listed in Table 4.7. Notice

that, in Table 4.7, the SD values are taken as 10% of the corresponding nominal

values. The structural failure takes place when a certain DOF of the structure at

a certain time point has the response exceeding a prescribed threshold value. Here,

for simplicity, the same threshold value is assumed for all DOFs within the observed

time interval.

Table 4.7: Statistical properties of the structural parameters

Variables Mean SD

ms1 , ...,ms10 360× 103kg 36× 103kg

cs1 , ..., cs10 620× 104Ns/m 62× 104Ns/m

ks1 , ..., ks10 650× 106N/m 65× 106N/m

In this simulation, the threshold is set as ylim = 0.28m; the observed time interval

is [0, 20s] with the time step Ts = 0.05s after discretization. To prepare the training

data for learning the Random Forest model, 1000 samples of the structural proper-

ties are randomly obtained according to their PDF (assuming normal distributions

with the statistical moments displayed in Table 4.7), then the conditional failure

probability is estimated for each sample. In the framework presented in Figure 4.2,

a Random Forest model is induced from the training set containing 1000 cases each

of which has 30 input variables (i.e. structural parameters) and an output value

(i.e. the value of conditional failure probability). Besides, a test set of 1000 cases is

obtained to test the performance of the learned Random Forest model.

The parameters in the Random Forest model are shown in Table 4.8. ’nTrees’ is the
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Figure 4.17: Ten-DOF uncertain structure subjected to stochatic excitations [81]

number of random trees in Random Forest; ’nFeatures’ is the number of features

(variables) in the training set; ’maxFeatures’ is the number of sampled features

at each node. The RMSE is evaluated on the test set, see Table 4.9. Then the

learned RF is employed to make predictions on a new set of 2000 cases. According

to eq.(3.6), the structural failure probability is estimated considering uncertainties

both in structural properties and excitations, See the reults in Table 4.9.

Table 4.8: Parameters of RF

nTrees nFeatures maxFeatures

50 30 5

From Table 4.9, it is found that the estimated failure probability P̂f,RF by RF is close
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Table 4.9: Simulation results by RF

Train set Test set RMSE P̂f,RF P̂f,MCS

1000 1000 0.0265 0.0789 0.0701

to the reference value P̂f,MCS obtained from standard MCS. As the value of ylim has

direct influence on the estimated failure probability, different ylim have been studied

in this simulation. The ylim ranges from 0.28m to 0.37m with a discretization step

0.01m. For each ylim, the KL-IS method is implemented to prepare the training

set. 200 cases are generated in each training set. Then a RF model consisting of 30

regression trees is trained. Each tree in the RF has the parameter maxFeature= 5.

The estimated failure probabilities (as well as their standard deviations) resulting

from different ylim values are listed in Table 4.10. The reference values calculated

by standard MCS are also provided to make comparisons. In principle, the failure

probability of the object structure decreases when the threshold ylim increases. In

Table 4.10, both the simulation results of MCS and those of RF have shown this

phenomenon. By comparisons of the two simulation results, it is found that the RF

model achieves close estimation results to those achieved by standard MCS.
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Figure 4.18: Pf estimations (with error bars) by RF
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Figure 4.19: Pf estimations (with error bars) by standard MCS

4.4.6.2 Duffing type ten-DOF oscillator with bounded uncertainties

As a benchmark problem introduced in G.I. Schueller [107], the ten-DOF Duffing

type oscillator has been widely used by researchers in structural reliability domain.

In this study, we focus on the linear random structures under stochastic excitations.

The governing equation is given by

Mÿ(t) + Cẏ(t) + Ky(t) = F(t) (4.40)

where M, C, K are the mass matrix, damping matrix and stiffness matrix respec-

tively. y is the structural response; F(t) = u(t)[m1,m2, ...,m10]T is the force on the

structure. For more details about the dynamic process, refer to section 4.2. The

statistical properties of the structural parameters and their constraints are listed in

Table 4.11. Notice that the damping ratio ci = 2ζi
√
miki in this case is the pro-

portional viscous damping. Moreover, the Gaussian random variables for structural

properties are censored to avoid the deviation from the mean being larger than five

times the standard deviation. In Table 4.11, r = SD/µ. The stochastic excitation

p(t) is modeled by a modulated filtered Gaussian white noise:
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Table 4.10: Comparisons between standard MCS and RF results

ylim(m) P̂f,RF SDRF (∗10−3) P̂f,MCS SDMCS(∗10−4)

0.28 0.0789 2.036 0.0701 2.547

0.29 0.0545 1.577 0.0496 2.172

0.30 0.0391 1.334 0.0349 1.834

0.31 0.0278 0.882 0.0241 1.534

0.32 0.0183 0.778 0.0164 1.270

0.33 0.0126 0.602 0.0110 1.042

0.34 0.0084 0.436 0.0073 0.852

0.35 0.0056 0.279 0.0048 0.689

0.36 0.0036 0.188 0.0030 0.546

0.37 0.0023 0.181 0.0019 0.436

p(t) = Ω2
1gvf1(t) + 2ζ1gΩ1gvf2(t)− Ω2

2gvf3(t)− 2ζ2gΩ2gvf4(t) (4.41)

where the state space function with respect to the state vector

vf (t) = [vf1(t), vf2(t), vf3(t), vf4(t)]T of the filter is,

v̇f (t) =



0 1 0 0

−Ω2
1g −2ζ1gΩ1g 0 0

0 0 0 1

Ω2
1g 2ζ1gΩ1g −Ω2

2g −2ζ2gΩ2g


vf (t) + [0, w(t), 0, 0]T (4.42)

Here, w(t) stands for a modulated Gaussian white noise with auto-correlation func-

tion E(w(t)w(t+ τ)) = Iδ(τ)h2(t) and I denotes the intensity function of the white

noise. h(t) has the following form,
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h(t) =



0, t = 0,

t/2, t ∈ [0, 2s]

1, t ∈ [2s, 10s]

exp(−0.1(t− 10)), t ∈ [10s, 20s]

(4.43)

δ(t) is the Dirac delta function that equals to +∞ at t = 0 and 0 at t 6= 0. The values

Ω1g = 15.0rad/s, ζ1g = 0.8, Ω2g = 0.3rad/s, ζ2g = 0.995 and I = 0.08m2/s3 are

used to model the filter. The input excitation of the filter is a shot noise that consists

of a series of independent normally distributed impulses arranged at each time step

[113]. The magnitude of the impulse at time tk = k∆t has mean 0 and standard

deviation h(t)
√
I/∆t. It is noticed that, in G.I. Schueller [107], the expression of

the standard deviation ’h(t)
√
I∆t’ is wrong, however, some other researchers still

use this wrong expression in their published papers.

Table 4.11: Statistical properties of the structural parameters

Variables Mean(µ) SD Ratio(r) Range scope

m1, ...,m10 10× 103kg 1.0× 103kg 0.1 µ± 5µr

k1, k2, k3 40× 106N/m 4.0× 106N/m 0.1 µ± 5µr

k4, k5, k6 36× 106N/m 3.6× 106N/m 0.1 µ± 5µr

k7, k8, k9, k10 32× 106N/m 3.2× 106N/m 0.1 µ± 5µr

ζ1, ..., ζ10 620× 104Ns/m 62× 104Ns/m 0.1 µ± 5µr

The failure criterion is defined by the maximum relative displacements between two

consecutive DOFs over the time interval [0.0s, 20.0s]. The sampling time step is set

as ∆t = 0.05s. The failure probabilities are calculated for different threshold values

listed in Table 4.12. We are interested in the first excursion probability that the rel-

ative maximum displacement of the first DOF is greater than the threshold 0.057m

and 0.073m; besides, the probability that the relative maximum displacement be-

tween the 9th DOF and 10th DOF exceeds the threshold 0.013m and 0.017m is
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considered.

Table 4.12: Thresholds of interest to evaluate failure probability [107]

Failure defined by Res. threshold1 Res. threshold2

First DOF 0.057m 0.073m

Tenth DOF 0.013m 0.017m

In this simulation, the estimated failure probability values are very small (below

10−4), therefore KL-IS method is employed to calculate the conditional failure prob-

abilities. In applying K-L expansions, 3000 samples of the filtered white noise pro-

cesses are generated from the filter, then the eigenvalue problem is solved (refer to

eq.(3.11)). The number of K-L terms kept is nKL = 300. The relative response

of each DOF can be directly calculated when the structure experiences impulse re-

sponse. Figure 4.20 shows the relative responses assuming that the structure is

having its nominal configurations.

In the framework of MCS, 300 samples of the structural properties are analyzed,

resulting in 300 conditional failure probabilities. A RF model with 30 rgression

trees is then trained from the training set that consists of 300 cases and 3× 10 = 30

variables in each case. For each threshold value in Table 4.12, similar Monte-carlo

procedures are carried out. Once a RF model is trained, it is employed to make

predictions on a newly generated data set that contains 2000 random samples of the

structural properties. By eq.(3.5), the overall failure probability is estimated that

is concerned with both structural uncertainties and excitation uncertainties. As

already mentioned before, the proposed method is compared with other methods

(the results are provided by those authors), see the results in Table 4.13.

A general conclusion drawn from Table 4.13 is that, a number of methods and

their variants exist by which high-dimensional reliability problems with respect to

linear or nonlinear stochastic dynamics can be solved very efficiently when compared

to standard Monte Carlo. It is noticed that the estimated probabilities are very

small (e.g. Pf = 10−6), which implies that standard Monte Carlo is practically not
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Figure 4.20: Relative response of different DOFs of the structure

applicable, because it would require a very large number of simulations. By the

comparisons between RF and the other methods in Table 4.13, it is found that the

number of samples analyzed in the proposed method is very small (e.g. 300), but

the finally estimated failure probabilities are highly accurate. This result tells that,

RF model is powerful in handling high-dimension reliability problems.
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Table 4.13: Reliability estimation results from different thresholds

Method 1stDOF

0.057m

1stDOF

0.073m

10thDOF

0.013m

10thDOF

0.017m

Standard MCS 1.06e−4 8.07e−7 4.88e−5 2.52e−7

num of samples 2.98e7 2.98e7 2.98e7 2.98e7

SubsetSim/MCMC 1.20e−4 1.00e−6 6.60e−5 4.70e−7

num of samples 1850 2750 2300 2750

SubsetSim/Hybrid 1.10e−4 1.10e−6 5.90e−5 3.20e−7

num of samples 2128 3163 2645 3680

Complex Modal Ana. 1.00e−4 9.80e−7 6.00e−5 4.60e−7

num of samples 300 300 300 300

Spherical SubsetSim 9.20e−5 8.80e−7 4.60e−5 5.30e−7

num of samples 3070 4200 3250 4900

Line sampling 9.80e−5 9.70e−7 6.00e−5 4.60e−7

num of samples 360 3600 360 360

Random Forest 7.6e−5 1.0e−6 4.2e−5 1.1e−7

num of samples 800 1000 800 900

4.5 Chapter summary

In this chapter, the Random Forest algorithm is investigated in reliability model-

ing and prediction of passive controlled structures. A comparative study of the

predictive performance of the model on different degree-of-freedom structures are

presented. Results from three numerical examples showed that the use of Random

Forest model in failure prediction of passive controlled structures is a meaningful

exploration. The analysis of influence factors on the model performance provides

some possibilities to improve the prediction results when the samples are limited.

Moreover, the feature importance analysis tell that the mass is the most important
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features in reliability modeling. The comparisons between RF and other machine

learning methods shows the evidence that the RF model is an alternative way to

study structural reliability.
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5.1 Introduction

The ensemble learning methods mainly include Bagging, Boosting and Stacking. In

principle, Bagging adopts Bootstrap sampling to learn independent base learners and
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takes the majority/average as the final prediction. Boosting updates weight distribu-

tion in each round, and learns base models accordingly, then combines them accord-

ing to their corresponding accuracy. Different from these two approaches, Stacking

[41] learns a high-level model on top of the base models (classifier/regressor). It can

be regarded as a meta-learning approach in which the base models are called first-

level models and a second-level model is learnt from the outputs of the first-level

models. A short description of all three methods is introduced below.

• Bagging method generally builds several instances of a black-box estimator

from bootstrap replicates of the original training set and then aggregates their

individual predictions to form a final prediction. This method is employed

as a way to reduce the variance of a base estimator (e.g., a decision tree) by

introducing randomization into its construction process.

• Boosting is a widely used ensemble approach, which can effectively boost a

set of weak classifiers to a strong classifier by iteratively adjusting the weight

distribution of samples in the training set and learning base classifiers from

them. At each round, the weight of misclassified samples are increased and

the base classifiers will focus on these more. This is equivalent to inferring

classifiers from training data that are sampled from the original data set based

on the weight distribution.

• Stacking (Stacked Generalization) involves training a learning algorithm to

combine the predictions of several other learning algorithms. See Figure 5.1

for an illustration. First, all of the other algorithms are trained using the

available data, then a combiner algorithm is trained to make a final prediction

using all the predictions of the other algorithms as additional inputs. Stacking

typically yields performance better than any single trained models [41]. It has

been successfully applied on both regression [42] and classification. It was

reported to outperform Bayesian model-averaging [114].

To understand why the generalization ability of an ensemble is usually much stronger

than that of a single learner, Dietterich [115] gave three reasons by viewing the na-
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ture of machine learning as searching a hypothesis space for the most accurate

hypothesis. The first reason is that, the training data might not provide sufficient

information for choosing a single best learner. For example, there may be many

learners perform equally well on the training data set. Thus, combining these learn-

ers may be a better choice. The second reason is that, the search processes of the

learning algorithms might be imperfect. For example, even if there exists a unique

best hypothesis, it might be difficult to achieve since running the algorithms result in

sub-optimal hypotheses. Thus, ensembles can compensate for such imperfect search

processes. The third reason is that, the hypothesis space being searched might not

contain the true target function, while ensembles can give some good approximation.

Training Data

Base learner h1 Base learner h2 Base learner hT…

Meta learner H

Predicting

Future inputs
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O
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Figure 5.1: General framework of Stacking

There are many theoretical studies on ensemble methods, yet it is far from a clear

understanding of their underlying mechanisms [116]. For example, empirical obser-

vations show that Boosting often does not suffer from overfitting even after a large

number of rounds, and sometimes it is even able to reduce the generalization error

after the training error has already reached zero. The bias-variance decomposition

is often used in studying the performance of ensemble methods. It is known that

Bagging can significantly reduce the variance, so it is better to be applied to learn-

ers (such as decision trees) suffered from large variance. Boosting can significantly

reduce the bias in addition to reducing the variance.
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5.2 Principle of Stacking

Stacking is an ensemble learning technique that learns a meta-learner based on the

output of multiple base learners. In a typical implementation of Stacking, a number

of first-level individual learners are generated from the training data set by employ-

ing different learning algorithms. Those individual learners are then combined by a

second-level learner which is called meta-learner. See Figure 5.2.
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Figure 5.2: Diagram of Stacking method (include model evaluation on test data)

5.3 General Stacking procedures

Table 5.1 shows the general procedures of Stacking, which demands three steps.

Firstly, learn first-level (base) learners based on the original training data. There

are several ways to learn base learners. We can apply Bootstrap sampling technique

to learn independent learners or adopt the strategy used in Boosting. Secondly,
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construct a new data set based on the output of base learner. Assume that each

example in D is (xi, yi). We construct a corresponding example (x′i, yi) in the new

data set, where x′i = h′(h1(xi), h2(xi), ..., hT (xi)). Thirdly, learn a second-level

(meta) learner from the newly constructed data. Any learning method could he

applied to learn the meta learner.

Table 5.1: Pseudo-code for Stacking [117]

Input: Training data D = {xi, yi}mi=1, xi ∈ X, yi ∈ y; a Stacking algorithm.

Output: A meta learner H.

Step1: Induce T base learners, i.e. h1, h2, ..., hT , from the training set.

Step2: Construct a new dataset D′, where D′ = {(x′i, yi)}mi=1. Here

x’i = [h1(xi), h2(xi), ..., hT (xi)].

Step3: Build a meta-learner H from D′.

Once the second-level learner is generated, for an test example x, its predictions

are h′(h1(x), h2(x), ..., hT (x)), where (h1, h2, ..., hT ) are first-level learner and h′ is

the second-level learner. We can see that Stacking is a general framework. We can

plug in different learning approaches or even ensemble approaches to generate first

or second level learner. Compared with Bagging and Boosting, Stacking "learns"

how to combine the base learner instead of voting.

5.4 Cross-Validations in Stacking

In Table 5.1, we use the same data set D to train first-level classifiers and prepare

training data for second-level classifiers, which may lead to over-fitting. To solve

this problem, the idea of cross validation is incorporated in stacking. K-fold cross

validation (CV) is the most commonly used technique to evaluate classification

performance. To evaluate the prediction ability of a learning algorithm, we conduct

the following K-fold cross validation procedure: We partition training data into K
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disjoint subsets and run the learning algorithm K times. Each time we learn a

classifier from K − 1 subsets and use the learnt model to predict on the remaining

one subset and obtain the predictions for this subset. After K runs, all the K

subsets obtain their predictions. See Figure 5.3. Each time a classifier is learnt, it is

applied on the test set. Therefore the predictions are repeated K times on the test

data. The final prediction on the test data is obtained by averaging the predictions

of the K runs. The averaged predictions can be seen as a newly-created feature

used to train the 2nd-level classifier.
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Figure 5.3: CVs (K=5) to create 2nd-level data. In practice, K=10 is used

5.5 Numerical simulations

5.5.1 A general study of Stacking model

The Stacking method is tested on an object structure that consists of a 3-DOF main

structure and a 2-DOF TMD. The uncertainties in the main structure only exist in

the mass (m), damping factor (c), stiffness coefficient (k). The structure parameters

are listed in Table 5.2. ’SD’ means standard deviation.

The other parameters are ωf = 8π, ξf = 0.4, S0 = 0.031. S0 is the power spectral

density of the white noise process. The training set has 20000 cases; the test set has

1000 cases. To show the evaluation results in a dynamic way, the size of training

set is changed from 1000 to 20000 with step 1000. For each training set, a Stacking

model is learned. In this model, the base learners are chosen among tree models
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Table 5.2: Structure parameters (i = 1, 2, 3; j = 1, 2)

Index msi csi ksi mTj cTj kTj

Nominal 4.6 62 6500 1.38 1.83 39.0

SD 1 10 300 - - -

such as RF, Extra-trees (ETs) [40] or GB. The meta-model is GB [6]. Root mean

square error (RMSE) is used to evaluate the model.

In Figure 5.4, the accuracy of two Stacking models as well as three single models

i.e. RF, ETs and GB, are compared. It is found that the Stacking models always

outperform the individual base models when enough training data is available. The

Stacking1 model has smaller RMSEs than its base learners RF and ETs. Similarly,

the Stacking2 model is more ac-curate than its base learners RF, ETs and GB all

the time. By comparison of the two Stacking models, it is evident that more base

models will probably result in more accurate predictions.
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Figure 5.4: Model evaluations. Both Stacking1 and Stacking2 take GB as meta-model.

Stacking1 takes RF, ETs as base models; Stacking2 takes RF, ETs, GB as base models
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The models RF, ETs and GB are all tree-based methods, but they have different

principles. The combination of them helps offset their weakness and improve the

prediction accuracy. Interestingly, the model Stacking1 does not achieve better

performance than GB when the size of training data is less than 6000. One reason is

that GB is not a base model of Stacking1. If GB is added into Stacking1, resulting

in Stacking2, the performance will be largely improved. This phenomenon also

indicates that the choice of base models is important. In view of this, section 5.2 is

devoted to the choice of base models.

5.5.2 Choice of base models and meta-model

As is shown in Section 5.1, the Stacking models generally achieve better performance

than the single base learners. We now assume that the Stacking model has two base

learners chosen from the set RF, GB, ETs, and the meta-learner as the remaining

one from this set, for example RF, GB as the base learners and ETs as the meta-

learner. Besides, we take SVR(Support Vector Regression) as a candidate of the

meta-learner. The same datasets (as in Section 4.1) are employed to build the

Stacking models. The results are shown in Figure 5.5.

As can be seen from Figure 5.5, the choice of base learners makes difference. The

Stacking model ’RF&ETs-GB’ achieves the best performance while ’RF&GB-ETs’

ranks the last. Even though the base learners are the same, the Stacking per-

formances differ due to the choice of the meta-learner. For ex-ample, the models

’RF&GB-ETs’ and ’RF&GB-SVR’ share the same base learners RF, GB but differ-

ent meta-learners (i.e. ETs vs SVR). They result in largely different prediction ac-

curacies. Similar cases are ’ETs&GB-RF’ vs ’ETs&GB-SVR’ and ’RF&ETs-GB’ vs

’RF&ETs-SVR’. The parameters of the base models are listed in Table 5.3. ’nTrees’

is the number of random trees in a base model; ’nFeatures’ is the number of features

in the training set; ’maxFeatures’ is the number of sampled features at each node.

For the meta-model(if it is not SVR), maxFeatures=2.

Figure 5.6 shows the performances of the Stacking models that commonly have

three base learners. Compared with the Stacking performances in Figure 5.5, the

Stacking models in Figure 5.6 result in much better performances. It is found that,
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Figure 5.5: Performances of Stacking models that have two base learners and a meta-

learner. The form ’A&B-C’ denotes that A and B are base learners and C the meta-learner

when the SVR model is employed as the third base learner, the Stacking performance

largely improves. As an example, when the SVR is added as a third base learner

to ’GB&ETs-RF’, the RMSE is reduced much at any point. However, this does

not mean that adding more base learners always result in better predictions, see a

special case in Figure 5.7.

From Figure 5.7, it is seen that the blue solid line has much larger error than the red

dashed line. Actually this is not the only case, there are several other cases that have

Table 5.3: Hyper-parameters of the base models

Hyper-parameters RF GB ETs

Number of random trees 50 50 50

Total num. of features 9 9 9

Num. of features to sample 3 3 3
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Figure 5.6: Performances of Stacking models that have three base learners and a meta-

learner. The form ’A&B&C-D’ denotes that A, B and C are base learners and D the

meta-learner
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Figure 5.7: A special case: ’two’ is better than ’three’
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similar performances. In Figure 5.8, five Stacking models are examined that have two

base learners. It is noticed that, comparing with the plots in Figure 5.5, when the

SVR model is employed as one of the two base learners, the Stacking performance is

largely improved. In principle, SVR totally differs from RF, GB and ETs. Besides, it

is found that when GB model is taken as the meta-learner, the model performance

will always be improved. For example, in Figure 5.5, the model ’RF&ETs-GB’

achieves higher accuracy than ’RF&ETs-SVR’; in Figure 5.8, the model ’SVR&RF-

GB’ and ’SVR&ETs-GB’ achieves the highest accuracy among the Stacking models

explored; in Figure 5.6, the model ’RF&ETs&SVR-GB’ is also among the most

accurate models, but it consumes more time than the models ’SVR&RF-GB’ and

’SVR&ETs-GB’. As we know, GB model is good at reducing bias. This is a reason

why the Stacking models having GB as the meta-learner always result in higher

accuracy.
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Figure 5.8: Stacking models that have two base learners
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5.5.3 Hyper-parameters in the Stacking model

In Section 5.2, the base models as well as the meta-models have fixed parameters.

For example, the SVR model takes radial basis function (rbf) as its kernel function;

the models RF, GB and ETs have their parameters listed in Table 5.2. In this

section, the roles of model parameters are explored. The training set consists of

10000 instances, each of which has 9 attributes. Firstly, we focus on the Stacking

model ’SVR&RF-GB’. We change the number of trees in RF meanwhile keeping the

same the settings of SVR and GB. The number of trees in RF range from 10 to 100.

See the simulation results in Figure 5.9.

In Figure 5.9, it is found that the number of random trees in RF has little effect

on the performance of the Stacking model. In contrast, the number of trees in GB

model has great influence on the Stacking performance (see Figure 5.10). Besides,

the RMSE value converges when the number of trees in GB is 50. For SVR model

as one of the base learners, the kernel function is an important parameter. In

this aspect, four kernel types are examined, i.e. ’Linear’, ’Polynomial’, ’Radial basis

function (rbf)’, ’Sigmoid’. In Figure 5.11, it is found that the Stacking model reaches

its best performance when the kernel function of SVR is ’rbf’.

As is known that each random tree in RF (or GB) is trained in a recursive, binary

splitting way. For each splitting, a random subset of features in the training data is

sampled. The number of features is an important index that determines the model

performance. In Figure 5.12, the RMSE is plotted according to different sizes of

this subset. Obviously, the number of sampled features for each splitting has little

effect on the prediction accuracy, because the RMSE value changes very small even

though it has a trend of decrease. In contrast, for the mete-model GB, the number of

sampled features for each splitting plays an important role. As the Stacking model

’SVR&RF-GB’ has two base learners, the training data for the meta-model only has

two features. From Figure 5.13, it is clear that the RMSE of the model reaches its

lowest when the number of features sampled is n = 2.

Stacking models always outperforms the individual models, and their performance

can be further improved by adjusting the hyper-parameters. But the intrinsic causes
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Figure 5.9: Change of RMSE with respect to the number of trees in RF
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Figure 5.10: Change of RMSE with respect to the number of trees in GB

of these improvements are still not studied. Researchers always employ bias-variance

analysis to see how different components of the error are changed by a design of a
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Figure 5.12: RMSE in terms of the number of sampled features in each splitting in RF

new model. Therefore, section 4.4 devotes itself to bias-variance analysis of the

Stacking model.
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Figure 5.13: RMSE in terms of the number of sampled features for each splitting in GB

5.5.4 Bias-variance analysis of Stacking model

Bias-variance decomposition [8] is an important general tool for analyzing the per-

formance of learning algorithms. Given a learning target and the size of training set,

it divides the generalization error of a learner into three components, i.e., intrinsic

noise, squared bias and variance. For a regression problem where f is the unknown

target function to be learned, f maps elements in an input space X into numeric

values. Let D be a probability distribution over X such that a random example,

x ∈ X, is drawn with probability D(x). Let L = {(x, f(x)+ε)|x ∈ X} be a learning

set of m cases. For each case, the input x is drawn from D and the output value

y = f(x) + ε is corrupted by Gaussian noise with zero mean and standard deviation

σ. From L, an algorithm A will output an hypothesis hL. For a given test point x0,

the predicted output is ŷ = hL(x0).
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EL,ε[(y − ŷ)2] = EL,ε[(y − h) + (h− ŷ)]2

= EL,ε[(y − h)2 + (h− ŷ)2 + 2(y − h)(h− ŷ)]

= EL,ε[(y − h)2 + (h− ŷ)2] + 2EL,ε[y(h− ŷ)− h(h− ŷ)]

= EL,ε[(y − h)2] + EL,ε[(h− ŷ)2]

(5.1)

The term EL,ε[y(h− ŷ)− h(h− ŷ)] = 0, because

EL,ε[y(h− ŷ)] = EL,ε[f(x) + ε] · [EL[hL(x)]− hL(x)]

= Eε[f(x) + ε] · ELEL[hL(x)]− hL(x)

= Eε[f(x) + ε] · EL[hL(x)]− EL[hL(x)] = 0

(5.2)

EL,ε[h(h− ŷ)] = EL,εEL[hL(x)] · [EL[hL(x)]− hL(x)]

= EL[hL(x)] · ELEL[hL(x)]− hL(x)

= EL[hL(x)] · EL[hL(x)]− EL[hL(x)] = 0

(5.3)

The term EL,ε[(y − h)2] is further decomposed as follows,

EL,ε[(y − h)2] = EL,ε(y
2 − 2yh+ h2)

= EL,ε(y
2)− 2EL,ε(yh) + EL,ε(h

2)

= Eε(y
2)− 2hEε(y) + h2

= Eε[y − f(x)]2 + f2(x)− 2hf(x) + h2

= Eε(ε
2) + [h− f(x)]2

= σ2 + [h− f(x)]2

(5.4)

Therefore,

EL,ε[(y − ŷ)2] = σ2 + [h− f(x)]2 + EL[(h− ŷ)2]

= noise2 + bias2(ŷ) + var(ŷ)

(5.5)
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The squared noise describes how much y varies from f(x). It is due to the problem

at hand and cannot be avoided. It is the lower bound of the expected error of

any learning algorithm on the target. The squared bias is the difference between

the average estimate and the target. The variance describes the magnitude of the

fluctuation of the estimate (for different training sets of the same size). Since the

noise is intrinsic and difficult to estimate, it is often subsumed into the bias term

[118]. Thus, the generalization error is broken into bias and variance terms, i.e.

EL,ε[(y − ŷ)2] = (h− y)2 + EL[(h− ŷ)2]

= bias2[ŷ] + var[ŷ]

(5.6)

Generally, if the model is ’too global’, then its bias will be high, the model is under-

fitting the data; If the model is ’too local’, then its variances will be high, the model

is over-fitting the data. In practice, we have only one dataset to train the model.

To measure bias and variance, bootstrap sampling is generally applied to simulate

multiple training sets. The pseudo-code is shown in Table 5.4.

Table 5.4: Pseudo-code of bias&variance calculation

Input: Training data D = {xi, yi}mi=1, xi ∈ X, yi ∈ Y ; a Stacking algorithm.

Output: Bias and variance of the model.

Step1: Generate n bootstrap replicates of D, i.e. {Di}ni=1.

Step2: Apply learning algorithm to each Di and obtain an hypothesis hi.

Step3: Let Ti be the OOB points for Di, compute predicted values hi(x) for

xi ∈ Ti, By now, each xi ∈ D has several predictions.

Step4: For xi, estimate the bias and variance according to eq.(5.6).

Step5: Output the averaged results from Step4 over all points in D.

The bias-variance analysis is applied on the model ’SVR&RF-GB’ which has base

models SVR, RF and meta-model GB. The training set is taken from section 5.5.1,
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containing 10000 cases. Based on the procedures in Table 5.4, the bias, variance and

MSE (also RMSE) is computed, see Table 5.5. The base learners SVR takes ’rbf’ as

its kernel function, RF has the same parameters as listed in Table 5.3. 10-fold CVs

is applied in the 1st-level training of Stacking. 100 bootstrap datasets are generated

to represent the variations of the training data. In Table 5.5, the analysis results of

the single models, i.e. SVR, RF and GB, are also provided and compared with those

of the Stacking model. Obviously, the Stacking model achieves much lower squared

bias than any single models; its variance is larger than SVR, but it is smaller than

RF and GB. However the sum of the two terms, i.e. MSE, is much smaller than

any single model. Generally, the bias-variance decomposition results vary when a

single model (RF or GB) changes its value of K, i.e. number of sampled features in

each split. This is because the model complexity changes when K is set differently,

which possibly results in overfitting or underfitting.
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Figure 5.14: Bias-variance of single models in terms of maxFeatures in each split

Figure 5.14 shows how the bias and variance of a single model changes with respect

to different K values in that model. As the plot in Figure 5.14 shows, the three

models have similar trends of change. The plots with ′∗′ denote the MSE of the
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models; the plots with ′o′ denote the bias of the models; the plots with ′.′ denote the

variance of the models. For small values of K, random effects are strong, leading

to high bias and low variance; when K becomes larger, random effects are weaker,

resulting in low bias but high variance. For all three models, too small K leads to

a too large bias, for which the variance cannot compensate. For RF, the optimal

trade-off is at K = 5; for GB, K = 4; for ETs, K = 6.

Table 5.5: Bias-variance decomposition result

Models bias2 variance MSE RMSE

SVR&RF-GB 2.82e-04 1.13e-05 2.93e-04 1.71e-02

SVR 4.00e-03 3.28e-6 4.00e-03 6.32e-02

RF 4.15e-03 5.48e-4 4.69e-03 6.85e-02

GB 6.50e-03 4.01e-4 6.90e-03 8.31e-02

1 2 3 4 5 6 7 8 9

K

0

0.5

1

1.5

2

2.5

3

3.5

4

v
a
lu

e
 o

f 
in

d
e
x

10
-4

MSE

Bias

Variance

Figure 5.15: Bias-variance of Stacking model in terms of K in each split in base learner

RF
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However, in the Stacking model where different base models are combined to learn

a meta-learner, the role of K may change. In the model ’SVR&RF-GB’, the K

values in RF as well as GB are seen as a variable to see its influence on the bias-

variance of this Stacking model. A training set of 5000 cases with 9 features is

employed, 50 random trees are learned in both RF and GB. Figure 5.15 shows how

the bias and variance (also MSE) changes according to different K values in RF.

It is found that the bias and variance of the Stacking model does not change so

much. Therefore, K in RF does not plays an important role in the bias-variance

decomposition results. In contrast, Figure 5.16 tells that the value K in the meta-

model GB greatly affects the bias and variance computation results. At K = 1,

bias = 5.24e−4, variance = 0.72e−4,MSE = 5.96e−4; atK = 2, bias = 3.33e−4,

variance = 0.20e− 4, MSE = 3.53e− 4. Therefore, K is important in determining

the Stacking performance.
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Figure 5.16: Bias-variance values in terms of K in each split in meta-model
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5.5.5 Complexity analysis of Stacking models

In learning a model, the time complexity is the number of operations required for

building the model from the training data. Here, the Stacking2 model is employed

as an example. In this stacking model, RF, ETs and GB are base learners, GB is

meta-learner. Some parameters are defined: N is the size of the training set; K1(K2)

is the number of sampled variables at each node in the 1st(2nd) level models; M1,

M2 and M3 are the number of random trees in the base learners RF, ETs and GB

respectively; M4 is the number of random trees in the meta-learner. 10-fold CVs are

used to train the base learners. For RF, because of 10-fold CVs, 90% of the training

data is used to train a RF. Besides, the bootstrapping takes 63.2% of the training

data to train each tree. Therefore, the time complexity to build a RF is [41],

TRF = O(M1 ∗K1 ∗ (0.632 ∗ 0.9N)log2(0.632 ∗ 0.9N))

= 0.57 ∗O(M1 ∗K1 ∗N log2(0.57N))

= 0.57M1K1 ∗O(N log2N)

(5.7)

Then, 10% of the training data L1 is used to make predictions. The time complexity

to make predictions is

T ′RF = O(0.1N ∗M1 log(0.632 ∗ 0.9N))

= 0.1M1 ∗O(N logN)

(5.8)

For ETs, it is noted that in each loop of CV, all cases in the training data are

used to train the trees in ETs. The time complexities to build the model and make

predictions are

TETs = O(M2 ∗K1) ∗ (0.9N) log(0.9N))

= 0.9M2K1 ∗O(N logN)

(5.9)

T ′ETs = O(0.1N ∗M2 log(0.9N))

= 0.1M2 ∗O(N logN)

(5.10)
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For GB, each tree (from the 2nd) is built from the weighted sum of the prediction

errors of the former trees. So the time complexity of training a GB model is divided

into two parts: time complexity of building the trees and time complexity of making

predictions by the trees. It is noted that the first and last trees are not used to make

predictions in the training process of GB. The first tree is a constant which is seen as

a 1-node tree [71]. It is calculated as the average value of the targets in the training

set. For the first tree, the time complexity is ignored, so we just consider the other

(M3 − 1) trees. In GB, the whole training set is used to train each tree. The time

complexity to build the trees in GB model is

T 1
GB = O((M3 − 1)K1(0.9N)log2(0.9N))

= 0.9(M3 − 1)K1 ∗O(N log2N)

(5.11)

Let’s see how the time complexity of making predictions is calculated during the

inducing process of GB model. In the inducing process of GB model, to build the

3rd tree, we need the predictions of the 2nd tree, the time complexity to make

predictions by the 2nd tree is O(log(0.9N)); to build the 4th tree, the predictions

of the 2nd and 3rd trees are needed, the time complexity is 2O(log(0.9N)); · · · ; to

build theM3th tree, the predictions of the 2nd until (M3−1)th trees are needed, the

time complexity is (M3 − 2) × O(log(0.9N)). Therefore, the total time complexity

to make predictions within GB model learning process is

T 2
GB = O(log(0.9N))

∑M3−2
i=1 i

= 0.5 ∗ (M3 − 2)(M3 − 1) ∗O(logN)

(5.12)

In total, the time complexity needed for building a GB model is

TGB = T 1
GB + T 2

GB

= 0.5 ∗ (M3 − 2)(M3 − 1) ∗O(logN)

+0.9(M3 − 1)K1 ∗O(N log2N)

(5.13)

Then the GB model is used to make predictions on the 10% of the training set. The

time complexity is
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T ′GB = O(0.1N(M3 − 1) log(0.9N))

= 0.1(M3 − 1) ∗O(N logN)

(5.14)

To make it clearer, the time complexities of the models are collected in Table 5.6.

Table 5.6: Time complexities (average) of the base models in Stacking2

Models Model building Predicting

RF 0.57M1K1 ∗O(N log2N) 0.1M1 ∗O(N logN)

ETs 0.9M2K1 ∗O(N logN) 0.1M2 ∗O(N logN)

GB [
0.9(M3 − 1)K1 ∗O(N log2N)

+0.5 ∗ (M3 − 2)(M3 − 1) ∗O(logN)

] 0.1(M3 − 1) ∗O(N logN)

In the 1st-level training process, RF, ETs and GB are trained respectively. 10-fold

CVs are applied where 9 folds are used to train the model and 1 fold is used to make

predictions. The time complexity is denoted as

T1 = 10 · (TRF + T ′RF + TET + T ′ET + TGB + T ′GB) (5.15)

where T , T ′ are the time complexity to build the model and make predictions

respectively.

T1 = 10 · (TRF + T ′RF + TET + T ′ET + TGB + T ′GB)

= 10 · [0.57M1K1 ∗O(N log2N) + 0.1M1 ∗O(N logN)

+0.9M2K1 ∗O(N logN) + 0.1M2 ∗O(N logN)

+0.9(M3 − 1)K1 ∗O(N log2N) + 0.5 ∗ (M3 − 2)

∗(M3 − 1) ∗O(logN) + 0.1(M3 − 1) ∗O(N logN)]

= (5.7M1 + 9M3 − 9)K1 ∗O(N log2N)

(5.16)
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In the 2nd-level training process, a GB model is trained, using the features created

by the base learners and the decisions from the original training set,

T2 = (M4 − 1)K2 ∗O(N log2N) + 0.5 ∗ (M4 − 2)(M4 − 1) ∗O(logN)

= (M4 − 1)K2 ∗O(N log2N)

(5.17)

Therefore, the total time complexity is denoted as (notice that Ñ ≈ 0.632N1)

T = T1 + T2

= (5.7M1 + 9M3 − 9)K1 ∗O(N log2N) + (M4 − 1)K2 ∗O(N log2N)

= (5.7M1K1 + 9M3K1)− 9K1 +M4K2 −K2) ∗O(N log2N)

(5.18)

To conclude, for the Stacking2 model, the total time complexity is denoted as

T = (2.5M1K1 + 4M3K1 − 4K1 +M4K2 −K2)×O(N log2N) (5.19)

where N is the size of the original training set. We see that the time complexity

T calculated above approximates a linear relationship with respect to N . Now we

have calculated the time complexity of Stacking2 model. For Stacking1 model, the

time complexity can be calculated in a similar way. Figure 5.17 shows the CPU

time spent to build the models involved in Figure 5.4. In the process of learning

a Stacking model, several base models need to be built, so it is reasonable that

the Stacking models always take more time to build than single models do. The

comparison of two Stacking models tells that the running time will increase when

more base learners are added in the first-level training process. For each Stacking

model, the CPU time increases in a close-to-linear way with respect to the size of

training data.

The Stacking model ’SVR&RF-GB’ is also analyzed as to the CPU time. As is

shown in Figure 5.18, the CPU time of this Stacking model grows linearly with the

increase of the training data. The single models SVR, RF and GB also have increases
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Figure 5.17: CPU time of the models employed in the simulations

of CPU time but they are much slower. The main reason is that, in the training

process of the Stacking model, 10-fold CVs are applied to train each base learner as

well as make them predict on the training data. Figure 5.19 compares the accura-

cies of the Stacking model with the single models. These plots show an attractive

improvement of the prediction performance. These numerical simulations indicate

that the Stacking model gives significantly better results in terms of reducing the

errors in predictions. Actually, by applying the Stacking model ’SVR&RF-GB’, the

prediction accuracy is improved by about 80% compared with the single models.

5.6 Comparisons between Stacking and RF

5.6.1 The benchmark problem in section 4.4.6

The Stacking method is compared with RF in the benchmark problem of 10-DOF

oscillator introduced in section 4.4.6.2. The base learners of the Stacking model

are SVM and RF (with 30 trees), the meta-learner is ETs (with 30 trees). For each

threshold examined, the two methods use the same size of training set, see Table 5.7.

Notice that the failure probability values are calculated in a mean sense. Form Table
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Figure 5.18: CPU time of Stacking model ’SVR&RF-GB’ and single models
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Figure 5.19: RMSE of Stacking model ’SVR&RF-GB’ and single models

5.7, it is found that the Stacking model outperforms RF model when the threshold

is y1
lim = 0.057m (i.e. the threshold for 1stDOF is 0.057m), y1

lim = 0.073m and

y10
lim = 0.013m. They have equal estimations when the threshold is y10

lim = 0.017m.
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Table 5.7: Compare Stacking and RF in reliability estimations

Method y1lim = 0.057m y1lim = 0.073m y10lim = 0.013m y10lim = 0.017m

Standard MCS 1.06e−4 8.07e−7 4.88e−5 2.52e−7

num of samples 2.98e7 2.98e7 2.98e7 2.98e7

Random Forest 7.6e−5 1.0e−6 4.2e−5 1.1e−7

num of samples 800 1000 800 900

Stacking 1.0e−4 9.2e−7 4.3e−5 1.1e−7

num of samples 800 1000 800 900

It is noticed that only one threshold value is studied in Table 5.7. In contrast,

multi-threshold values are considered here. Firstly, the failure criterion is defined as

y1
lim = 0.057m ∪ y10

lim = 0.013m, which means that the failure takes place when the

1st DOF exceeds 0.057m or the 10th DOF exceeds 0.013m; Secondly, in a similar

way, the failure criterion is defined as y10
lim = 0.073m ∪ y10

lim = 0.017m. Then the

failure estimations by the two methods are calculated, see Table 5.8. It is found

that, in these two settings, the two methods result in similar failure probability

estimations.

Table 5.8: Compare Stacking and RF when multi-thresholds are assumed

Method y1lim = 0.057m ∪ y10lim = 0.013m y1lim = 0.073m ∪ y10lim = 0.017m

Standard MCS 1.12e−4 1.00e−6

num of samples 1.0e6 1.0e6

Random Forest 1.11e−4 1.10e−6

num of samples 800 1100

Stacking 1.20e−4 1.18e−6

num of samples 800 1100
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5.6.2 NonGaussian structural properties

As is known that all the simulations before are based on the assumption of Gaus-

sian random structural parameters. In this part, non-Gaussian variables are studied.

Three situations are discussed here. 1) Lognormal: all random parameters follow

lognormal distributions; 2) Gamma: all random parameters follow Gamma distri-

butions; 3) Mixed: the first 5 DOFs follow Lognormal distributions while the last 5

DOFs follow Gamma distributions. Table 5.9 shows the results of failure probability

estimations in the first situation.

Table 5.9: Compare Stacking and RF when the structural parameters are all lognormal

Method y1lim = 0.057m y10lim = 0.013m

Standard MCS 8.8e−5 4.0e−5

num of samples 1.0e6 1.0e6

Random Forest 7.1e−5 4.0e−5

num of samples 1600 1600

Stacking 8.0e−5 4.1e−5

num of samples 1600 1600

Table 5.10: Compare Stacking and RF when the structural parameters are all Gamma

Method y1lim = 0.057m y10lim = 0.013m

Standard MCS 9.8e−6 3.7e−6

num of samples 2.0e7 2.0e7

Random Forest 9.7e−6 3.6e−6

num of samples 500 800

Stacking 9.6e−6 3.7e−6

num of samples 500 800
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The 1st DOF or 10th DOF are considered to define the failures. It is found in

Table 5.9 that, both methods achieve relatively high accurate estimations of failure

probability. In the first case where y1
lim = 0.057cm, the Stacking method behaves

better than RF; while in the second case where y10
lim = 0.013cm, both methods result

in estimations very close to the reference values estimated by standard MCS. In the

second situation, all parameters follow Gamma distributions. The same thresholds

are studied as those in Table 5.9. We find that the two methods all give very close

results to the refered values. In Table 5.11, the types of parameter distributions are

mixed. The two methods still give high accurate estimation results.

Table 5.11: Compare Stacking and RF when the structural parameters are a mixture of

Lognormal and Gamma

Method y1lim = 0.057m y10lim = 0.013m

Standard MCS 3.1e−5 4.0e−6

num of samples 2.0e7 2.0e7

Random Forest 3.0e−5 4.1e−6

num of samples 1000 900

Stacking 3.2e−5 4.1e−6

num of samples 1000 900

5.7 Chapter summary

In this chapter, Stacking method is explored for structural reliability modeling. The

Stacking method builds the model in a hierarchical way, combining different base

learners to produce a meta-learner that generally outperforms any of the base learn-

ers. Numerical simulations are performed from various perspectives such that the

proposed model is examined in a systematic way. The simulation results show that,

with a price of a limited CPU time increment, the Stacking model obtains a signif-

icant advantage over its base learners in terms of structural reliability predictions.
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Stacking method is compared with RF on the benchmark problem in chapter 4.

Non-Gaussian structural random variables are also studied in structural reliability

estimation.
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The structural reliability assessment always demands appropriate characterization

of input information such as loading, material parameters, etc. However, these

parameters are often not determined uniquely as they are affected by various uncer-

tainties due to interior and exterior factors. Hence, the output of virtual simulation

models cannot be specified by a single value. Uncertainties in inputs are propagated

to output quantities generally by simulation techniques. Uncertainty quantification

is most useful for handling uncertainties and making evaluations on levels of struc-

tural safety, maintenance and repair activities. Developments in the field of data

mining have provided various powerful tools for predicting performance of structural

systems in the framework of virtual simulation models. Therefore, machine learning

technics have been extensively explored in this dissertation for structural reliability

assessment.

6.1 Dissertation contributions

In summary, this research contributes to methodologies of structural reliability anal-

ysis and machine learning theories in structural reliability estimation. The reliability

analysis is performed in a new framework of ensemble learning models that models

structural parameter uncertainties and map them into failure probabilities. The

following list includes the contributions made in the dissertation.
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• Conditional failure probability is well defined and studied. By considering the

uncertainties both in the ground excitations and the structure properties, the

overall failure probability is actually a high-dimension (generally several hun-

dred) integral that is analytically impossible. By exploring the relationship

between deterministic analysis and uncertainty analysis, we found that the

uncertainty analysis can be approximated by a limited number of determin-

istic analysis which belong to a certain probability density distribution. The

conditional failure probability is defined by assuming that the structural is

deterministic, i.e. a sample of the uncertain structural properties is obtained

from their joint probability density distribution, and then a failure probability

is calculated for this ’deterministic’ structure. The conditional failure prob-

ability is denoted as a high-dimension integral according to the distribution

of all possible deterministic analysis based on the sample space of the exci-

tation process. This task can be accomplished in the theoretic framework

Monte-carlo simulations (MCS).

• The KL-IS method is employed to handle very small conditional probabili-

ties. To overcome the shortcomings of standard MCS in approximating very

small failure probabilities (for example, less than 1%), the KL-IS method is

introduced that is much more efficient than the general MCS. In this method,

the Karhunen-Loeve expansion is used to decompose the Gaussian excitation

process into deterministic part (i.e. the K-L vectors) and uncertain part (i.e.

multi-dimension standard normal vector). Under the assumption that the

structure is ’deterministic’, the structural response can be directly calculated

as the convolution integral of its impulse responses and the excitation process

that it is subjected to. Besides, to improve the sampling efficiency, an impor-

tance sampling technic has been detailed and used. The KL-IS scheme has

been compared with the standard MCS and showed its overwhelming advan-

tage in small failure probability estimations.

• Random Forest model has been used to predict conditional failure probabil-

ities. In machine learning perspective, the estimation of conditional failure
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probability is related to the regression problem. Random Forest (RF) is a

powerful machine learning tool to accomplish this task. To learn a RF model,

a training dataset is firstly generated. In the training set, the input is the

samples of the structural properties obtained by random sampling from the

assumed joint probability density function (PDF, assuming the variables are

relatively independent). The output for each sample is induced by MCS or

KL-IS method, depending on the scale of the failure probability to be esti-

mated. Once the RF model is built, it can be used to make predictions on

any other samples outside the training set. Finally the overall failure prob-

ability can be directly estimated. The RF model has shown its accuracy in

conditional failure probability modeling and predictions.

• The Stacking model has been explored and introduced to model the condi-

tional failure probability. In principle, a Stacking model tries to improve the

prediction performance by combining various models (called base models) in a

special way, then constructing a higher-level model (called meta-model). The

base models can be a single learner, such as k-nearest neighbor (k-NN), sup-

port vector machine (SVM); it also can be an ensemble learner, such as RF,

Gradient boosting (GB) or Extra-Tress (ETs). The meta-model is induced

from the predictions of the base models together with the original outputs of

the training set. Here, the predictions, by the base models, are made on the

input samples of the training set. Cross-validations are carried out to make

these predictions in order that the overfittings can be avoided. The simula-

tions have been performed from various perspectives such that the proposed

model is examined in a systematic way. The simulation results show that,

with a price of a limited CPU time increment, the Stacking model obtains a

significant advantage over its base learners in terms of structural reliability

predictions.

• In this research, we have successfully introduced machine learning theories

into structural reliability assessment domain. Various other machine learning

tools that are designed for regression problems can be readily used.
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6.2 Future work

The following issues need further research.

• In this research, a basic assumption is that the object structure is a linear sys-

tem so that the KL-IS method can be applied. However, for non-linear struc-

tures, this method may not be well suited. Although linearization techniques

can be used to convert nonlinear problems into linear problems, sometimes

strong nonlinearity cannot be ignored. Therefore, extension of this method

into non-linear domain is an important direction in the future research.

• Correlated random variables have not been studied. The stochastic excitations

are modeled as filtered Gaussian white noise process, which means that the ex-

citation values at different time points are relatively independent. However, in

reality there may be some correlations between these excitations values. Sim-

ilar situations happen to the uncertain structural properties that are assumed

relatively independent by now. Extension of this assumption into correlated

random variables will be meaningful in future research.

• The parameter tuning of Random Forest still needs more study. From the

simulation results, it is known that, according to different parameter config-

urations the Random Forest model has clearly different performances. The

parameters to be tuned constitute a ’random vector’ that may include the

number of trees, the number of features randomly sampled on each node,

the depth of the trees and the scale of the sum errors within the leaf nodes.

Optimization methods may be considered to accomplish such a task.

• For the Stacking model, except for the parameter tuning problem introduced

in Random Forest, the choice of base models and meta-models is still not of

high efficiency. This makes the Stacking model consume more time as various

base models are involved in the learning process. The organization of these

different level models needs further study.
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