Thèse soutenue

Outil pédagogique de la ponction des grosses articulations sous échographie

FR  |  
EN
Auteur / Autrice : Charles Barnouin
Direction : Fabrice JailletFlorence Zara
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 07/05/2020
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale InfoMaths (Lyon ; 2009-....)
Partenaire(s) de recherche : Laboratoire : LIRIS - Laboratoire d'Informatique en Image et Systèmes d'information (Rhône ; 2003-....)
Jury : Président / Présidente : Jean-Michel Dischler
Examinateurs / Examinatrices : Fabrice Jaillet, Florence Zara, Stéphane Cotin, Maud Marchal, Fabienne Coury-Lucas, Philippe Delachartre, Jocelyne Troccaz
Rapporteur / Rapporteuse : Stéphane Cotin, Maud Marchal

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les travaux présentés dans ce manuscrit répondent à un besoin de moderniser et améliorer l'apprentissage du geste médical de l'insertion d'aiguille sous échographie. Ce simulateur comporte une partie rendu et une partie haptique. Après avoir introduit les objectifs de ces travaux, un état de l'art des méthodes informatiques de rendu d'image échographique est effectué, suivi par un état de l'art des modèles et des simulateurs d'insertion d'aiguille. Nous introduisons ensuite une méthode de rendu échographique temps réel d'une scène 3D, basée sur GPU. Cette méthode permet de découper les objets 3D pour créer à la volée des surfaces 2D qui dépendent de la position de la sonde échographique, puis de travailler sur ces surfaces pour produire les différents effets qui apparaissent sur une image échographique : ombres et réflexions, absorption, granularité et orientations des fibres des tissus biologiques. À notre connaissance, ce dernier effet n'a jamais été présenté dans un simulateur de génération d'images échographiques temps réel. Puis, les différentes interactions entre les outils médicaux (sonde et aiguille, maniées grâce à deux interfaces haptiques) et les tissus biologiques sont présentées, pour comprendre comment modifier les pixels de l'image générée. Cette manipulation d'image 2D correspond aux interactions grâce à des modèles de déformation 3D prises dans le plan de coupe échographique. Enfin, les résultats et les premières validations sont présentés. La validation à grande échelle d'un tel simulateur est traitée à travers l'exemple d'un simulateur identique avec retour visuel et haptique, le simulateur de laparoscopie