Développement et application d’une méthode à haute résolution angulaire pour la mesure des gradients d’orientation et des déformations élastiques par microscopie électronique à balayage

par Clément Ernould

Thèse de doctorat en Sciences des matériaux

Sous la direction de Emmanuel Bouzy et de Vincent Taupin.

Le président du jury était Muriel Véron.

Le jury était composé de Emmanuel Bouzy, Vincent Taupin, Stéphane Roux, Laurent Capolungo, Benoît Beausir, Claire Maurice, Stefan Zaefferer.

Les rapporteurs étaient Stéphane Roux, Laurent Capolungo.


  • Résumé

    La compréhension des mécanismes de déformation dans les matériaux cristallins passe par la caractérisation fine des microstructures. Dans le cadre de la microscopie électronique à balayage, la mesure précise des gradients d’orientation et des déformations élastiques du cristal est l’objectif des méthodes dites à haute résolution angulaire. Pour cela, elles emploient des techniques de corrélation d’images numériques afin de recaler les clichés de diffraction électronique. Cette thèse propose une méthode de recalage originale. Le champ de déplacement à l’échelle du scintillateur est décrit par une homographie linéaire. Il s’agit d’une transformation géométrique largement utilisée en vision par ordinateur pour modéliser les projections. L’homographie entre deux clichés est mesurée à partir d’une grande et unique région d’intérêt en utilisant un algorithme de Gauss-Newton par composition inverse numériquement efficace. Une correction des distorsions optiques causées par les lentilles de la caméra lui est intégrée et sa convergence est assurée par un pré-recalage des clichés. Ce dernier repose sur des algorithmes de corrélation croisée globale basés sur les transformées de Fourier-Mellin et de Fourier. Il permet de rendre compte des rotations allant jusqu’à une dizaine de degrés avec une précision comprise typiquement entre 0,1 et 0,5°. La détermination de l’homographie est indépendante de la géométrie de projection. Cette dernière n’est considérée qu’à l’issue du recalage pour déduire analytiquement les rotations et les déformations élastiques. La méthode est validée numériquement sur des clichés simulés distordus optiquement, désorientés jusqu’à 14° et présentant des déformations élastiques équivalentes jusqu’à 5×10⁻². Cette étude montre que la mesure précise de déformations élastiques comprises entre 1×10⁻⁴ et 2×10⁻³ nécessite de corriger la distorsion optique radiale, même lorsque la désorientation est faible. Finalement, la méthode est appliquée à des clichés acquis par diffraction des électrons rétrodiffusés (EBSD) et en transmission en utilisant la nouvelle configuration TKD on-axis (transmission Kikuchi diffraction). Des métaux polycristallins déformés plastiquement ainsi que des semi-conducteurs sont caractérisés. La méthode retranscrit des détails fins de la microstructure d’un acier martensitique trempé et revenu et d’un acier sans interstitiels déformé de 15% en traction, malgré la détérioration du contraste de diffraction induit par la déformation plastique. Les structures de déformation sont également analysées dans de l’aluminium nanostructuré obtenu par déformation plastique sévère grâce au couplage de la méthode de recalage et de la configuration TKD on-axis. Ce couplage permet d’atteindre simultanément une haute résolution spatiale (3 à 10 nm) et une haute résolution angulaire (0,01 à 0,05°). Des cartes de déformation élastiques sont obtenues à l’échelle de quelques nanomètres dans une lame mince de SiGe et les densités de dislocations dans un monocristal de GaN sont déterminées avec une résolution voisine de 2,5×10⁻³ µm⁻¹ (soit 8×10¹² m⁻²).

  • Titre traduit

    Development and application of a high angular resolution method for the measurement of lattice rotations and elastic strains in the scanning electron microscope


  • Résumé

    Understanding the deformation mechanisms in crystalline materials requires a fine characterization of microstructures. The precise measurement of lattice rotations and elastic strains in the scanning electron microscope is the aim of the so-called high-angular resolution methods. For this purpose, digital image correlation techniques are used in order to register electron diffraction patterns. In this thesis, an original registration approach is proposed. The displacement field across the whole scintillator is modelled by a linear homography. Such a shape function is often met is the field of computer vision to describe projective transformations. The homography between two patterns is measured from a single and large region of interest using a numerically efficient inverse-compositional Gauss-Newton algorithm. It integrates a correction of optical distortions caused by camera lenses and its convergence is ensured by a pre-alignment step of the patterns. The latter relies on global cross-correlation algorithms based on Fourier-Mellin and Fourier transforms. It fairly accounts for rotations up to approximately ten degrees with an accuracy typically between 0.1 and 0.5°. The homography is measured independently from the projection geometry, which is only considered afterwards to analytically deduce the rotations and elastic strains. The proposed method is validated numerically from simulated and optically distorted patterns showing disorientations up to 14° in the presence of elastic strains up to 5×10⁻². The accurate measurement of elastic strains between 1×10⁻⁴ and 2×10⁻³ requires a correction of radial distortion effects, even when the disorientation angle is small. Finally, the method is applied to patterns acquired by means of electron backscatter diffraction (EBSD) and in transmission using the new on-axis transmission Kikuchi diffraction (TKD) configuration. Plastically deformed polycrystalline metals as well as semiconductors are characterized. The method highlights fine details of the microstructure of a quenched and tempered martensitic steel and of an interstitial free steel deformed by 15% in tension, although plastic deformation deteriorates the diffraction contrast. The deformation structures in a nanostructured aluminium obtained by severe plastic deformation are also analysed by coupling the image registration method to the on-axis TKD configuration. This coupling allows a high spatial resolution (3 to 10 nm) and a high angular resolution (0.01 to 0.05°) to be reached simultaneously. Elastic strain maps are obtained at the nanoscale in a SiGe thin foil. The geometrically necessary dislocation densities in a GaN single crystal are mapped with a resolution of about 2.5×10⁻³ µm⁻¹ (i.e. 8×10¹² m⁻²).


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Lorraine. Direction de la Documentation. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.