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Introduction

1 General context

If there is one thing in the world that is too big to ignore, it is the creation of enormous
amounts of data across years. Every single day, over 2.5 quintillion bytes of data are being
created. Data has become important and indispensable in our everyday life, where 90% of the
world’s data has been created in the last two years 1, and it is estimated that 1.7 mega bytes of
data will be created every second for each human being on the planet by the year 2020 2. This
explosive growth of produced data volume is a result of the computerization of our society and
the fast development of powerful data collection and storage tools [23], and this is what makes
our age the data and information age and thus, generally, the digital age. Digital data exists
in all research and business domains ; examples of these domains are e-commerce, healthcare,
banking, education, etc.

In addition, these data can be easily collected where they can be of great volumes, and the
variety of these collected data is as important as their volumes. Indeed, data can be collected
from multiple data sources where each data source can provide one or more various kinds of
data. Therefore, these various multi-source data form heterogeneous multi-source datasets. For
example, in the domain of e-commerce, the data about customers can include their descriptive
data, their past purchases, their feedbacks about their purchases, etc.

When these data are collected, they become available for analytics. Data analytics is the
science of examining raw data with the aim to draw conclusions from the information they
contain 3. Data analytics technologies and techniques have become more and more important
across time and are now widely used. Researchers and scientists are aware of the importance of
data analytics in order to obtain valuable information that helps in proving or disproving their
scientific hypothesis. Data analytics is also important in commercial industries as it helps organi-
zations in taking informed and business decisions ; for example, it can help business increase their
revenues or improve their efficiency and performance. In this frame, understanding customers’
data is an indispensable first step in order to take decisions such as predicting future purchases
of customers or recommending them purchases upon their needs and preferences. There exist
different approaches to analyze and understand the data and draw conclusions from the infor-
mation they contain. Choosing a suitable approach depends on the nature of data as well as on
the purposes of these analyses and the desired information to be obtained.

One of these approaches is Knowledge Discovery in Databases (KDD) that has been first de-
fined by Fayyad et al., [13] as the non-trivial process of identifying valid, novel, potentially useful
and ultimately understandable patterns in data. KDD can be generally divided into three main

1. www.sciencedaily.com retrieved on December 10th , 2019
2. https ://www.domo.com retrieved on December 10th , 2019
3. https ://www.lebigdata.fr/definition-quest-data-analytics, retrieved on December 10th, 2019
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steps : pre-processing, data mining and post-processing [23]. The pre-processing step filters and
prepares data by removing irrelevant, unreliable, redundant or noisy data. The post-processing
ensures making the results understandable and then evaluates these results according to the
requirements and the purposes. The data mining step aims at extracting knowledge from large
datasets. These large datasets can be found in various kinds of databases such as relational data-
bases, transactional databases, data warehouses and other data repositories. Data mining is the
most challenging step of KDD process and is essential for many analytics tasks. It is the main
focus of our research study. Data mining is defined as the process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in data [13].

There are three main techniques in data mining : classification [11], clustering [30] and pattern
mining [2, 23]. Classification is defined as the process of finding a model (or function) that
describes and distinguishes data classes or concepts. The model is derived from the analysis of
a set of class labeled data. The model is used to predict the class label of objects for which the
class label is unknown [23].

Unlike classification, which analyzes class-labeled objects, clustering analyzes objects without
consulting class labels. Clustering is defined as the creation of groups or clusters of similar
objects that are dissimilar to those of other clusters. Clustering methods are particularly useful
for exploring the interrelationships among the data objects from the dataset and are one way of
assigning class labels to the data objects when no such information is available or known [20].

Frequent pattern mining aims at finding patterns that are relevant and frequent in the data.
Frequent pattern mining, with its different techniques, has grown to become an important topic
across time where various works were proposed in these domains. The pattern mining process as
well as the frequent patterns generated from this process are interpretable which would help in
taking interpretable decisions such as recommendations. For example, pattern mining can be used
in the healthcare domain where data scientists or researchers aim to analyze and understand the
data about patients’ symptoms, the diagnoses made by doctors based on these symptoms and the
treatments prescribed by doctors to patients according to these diagnoses. Based on these data,
they can extract frequent patterns where a frequent pattern contains certain symptoms, their
diagnosis and their treatment. These patterns thus allow them to recommend relevant treatments
for patients according to their symptoms.

Sequential pattern mining is one of the various types of frequent pattern mining. It is concer-
ned in finding frequent patterns in datasets whose items are organized in the form of sequences
where a sequence is an ordered list of items or itemsets. Sequential pattern mining is a topic
of high interest as sequential data exists in many application domains such as e-learning where
sequential data can represent the sequences of pedagogical resources (exams, quizzes, exercises,
etc.) that the students consult on their virtual learning environments (VLE) ; an example of such
kind of student sequence is as follows : Student-143 : < R3R8R13R27R29 > where Student-143
represents the id of a student and Rn represents the id of a pedagogical resource. The sequence
means that the student has consulted the resources R3, then R8, then R13, then R27 and finally
R29. A frequent pattern extracted from this sequence can be : P : < R13R27R29 >. By extracting
frequent patterns of pedagogical resources of students, we can form rules to recommend resources
to the students based on their past activity. For example, based on the frequent pattern p, if a
student has already consulted the resources R13 and R27, then we can recommend him/her the
resource R29.

As previously mentioned, a dataset can contain several types of data which can come from
multiple data sources. Data can be sequential and can for example represent data sequences of
transactions performed by the users on their system ; an example of this data is the product
purchases performed by customers from an e-commerce website. Data can also represent des-
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criptive data about users ; an example of this data is the demographic data of users such as
their age, gender and address. Data can also represent descriptive data about items. Considering
the example of customer purchases from an e-commerce website, the descriptive data about the
products purchases by customers could be product name, brand and expiry date. These various
data sources, put together, form a complex and a heterogeneous data set. Despite its complexity
and heterogeneity, such a dataset is rich, and we assume that, if accurately mined, it allows
providing rich information which makes the mining of such a dataset a challenge.

2 Problem statement

The general objective of this PhD thesis is the mining of frequent patterns from multi-source
datasets. The data to be mined can be complex, heterogeneous and can contain various kinds of
data. Data can be sequential (or temporal) or descriptive and can occur in different forms such
as numerical, categorical, textual or graphical forms. Our applicative objective is analyzing and
understanding the behavior of users. The data used to perform this analysis can represent several
points of view of this behaviour, can come from multiple data sources and can be of various kinds.
By understanding this data, we aim to predict the behaviour of users and provide them with
recommendations in a personalized manner. For this sake, we focus on mining sequential
patterns from the multi-source data in order to extract frequent sequential patterns out of
users’ behavioural data.

When the data is multi-source, if we limit the mining process to the mining of only one
source, naturally the behavioral one, we consider that the results can be restricting for two main
reasons. First, the patterns represent the data that are mined ; therefore, when only one data
source among the multiple data sources is mined, the patterns will only contain information from
this single source thus representing a unique point of view. Obviously, when additional sources
are available, the mined patterns may contain information from these sources and will probably
be richer. For example, when we uniquely manage the sequential data source, we would only
understand the digital behaviour of users, and thus we would provide recommendations to the
users based only on this information. However, this information may not be sufficient to provide
reliable and well personalized recommendations. Therefore, adding descriptive information about
the users and/or the items of the data sequences may result in a better understanding of the
digital behaviour of users and thus in richer and more specific recommendations.

The second reason is that even when the amount of data is big, in certain cases we may
face a problem of lack of data either caused by the data sparsity, by the variability of human
behavior or by the similarities among the data which will be further explained in the following
chapters. These similarities can be on the level of items of the sequences where we can find
certain items that are similar to others, and they can be on the level of patterns where certain
patterns are similar to others. Therefore, there could be patterns which could not be detected
as being frequent due to the similarities among them. This problem leads to a decrease in the
number of the generated sequential patterns and thus a lower data coverage. In this case, the
extracted information would be limited. Therefore, when several data sources are available, it
is important to manage these sources in order to limit the problem of similarity and generate
frequent patterns containing information from these different sources.

Various techniques have been proposed to mine multi-source data [45, 60, 67, 12, 43, 69].
These techniques can be divided into two main approaches. The first approach mines different
data sources in a separate manner. A separate mining process is performed for each data source,
and the information extracted from all the mining processes is then combined to obtain global
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information which contains various kinds of information coming from different data sources. This
approach allows obtaining valuable information. However, the major limitation of this approach
lies in the fact that some data sources may provide useful information only if they are mined
with other data sources ; thus, mining this source separately will result in useless or insufficient
information. In addition, this approach leads to a loss of information when there is a problem of
similarity in a data source.

This allows us to understand that different data sources are interrelated, that is having
different kinds of relations among each other where certain data sources provide data to other
sources. This approach would lead to the loss of important information due to the loss of the
relations existing between different data sources. The second approach manages multi-source
data by integrating all data sources in the dataset together and mining them in a single mining
process. This approach maintains the relations between the data sources, which avoids data loss
and allows generating rich information. However this approach results in a complex form of data
that represent the input of the mining process which also has a high complexity, especially when
there is a large number of data sources where each one provides different kinds of data.

Based on the limitations of both approaches, the main challenge in our work lies in how
to mine a complex dataset formed of multiple heterogeneous and interrelated data
sources by managing the relations existing among different sources and taking into
consideration the algorithm complexity in order to extract rich and useful informa-
tion in the form of sequential patterns containing various kinds of information and
to compensate the loss of information caused by the problem of data similarity.

3 Approach and contributions

We propose an approach that manages multi-source data in a single process. In this frame, we
propose to limit the complexity by using a strategy of selective mining where additional sources
are mined only when needed during the process. This approach is designed to be generic as it is
not restricted to data of a specific domain or structure.

As mentioned in section 2, we notice that there may be different relations among data sources.
In this context, we distinguish between two kinds of relations among the sources. The first kind
of relations exists between the sequential data source and the descriptive data source of users
where the latter provides specific information to each user thus allowing to obtain more precise
frequent sequential patterns than the ones generated from a traditional mining of sequential
data.

On the other hand, the second kind of relations exists between the sequential data source
and the descriptive data source of items where the latter provides additional data about each
item in the data sequences. A data sequence, representing a sequence of item ids, is thus pro-
vided by additional descriptive attributes to each item. These attributes represent more general
information than item ids, and thus they provide more generality to the sequential data source.

In our proposed approach, we manage the two kinds of relations while mainly focusing on
the second kind by taking advantage of the descriptive data source of items in order to generate
general sequential patterns. In order to overcome the problem of data similarity and thus generate
more frequent patterns, we define two similarity measures in order to compare different patterns
and the items that they contain : pattern similarity and item similarity. Then, we form general
patterns from the similar patterns containing similar items where a general pattern is a pattern
that contains more general information than traditional frequent patterns. Finally, we propose
a novel method of support calculation of this new kind of patterns in order to detect frequent
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general patterns.
Hence, our approach solves the problem of data similarity and low data coverage by generating

more frequent patterns ; in addition, the frequent general patterns formed are rich as they contain
various kinds of information.

4 A link with the educational domain

The use of technology to better understand how learning occurs has received considerable
attention in recent years [19]. Digital educational data, whether concerning learning or teaching
processes, is collected from VLE’s and information systems of educational institutions, and they
are now available for analytics for different purposes.

"Learning analytics" (LA) is best defined as "the measurement, collection, analysis and re-
porting of data about learners and their contexts, for purposes of understanding and optimizing
learning and the environments in which it occurs” [36]. It aims at improving the learning process
by giving learners the ability to evaluate their academic progress and enhance their achievements
and motivation.

Our work is funded by PIA2 e-FRAN METAL project 4. The aim of the project is to design,
develop and evaluate a set of individualized monitoring tools for school students or teachers
(Learning Analytics and e-learning), and innovative technologies for personalized learning of
written languages (French grammar) and orally (pronunciation of modern languages). It thus
contributes to the improvement of the quality of learning and the development of language
proficiency by students. Our work is specifically dedicated to school students where the objective
is to contribute to the improvement of their learning process.

In the domain of education, digital data are collected from multiple data sources which could
provide various kinds of data forming a multi-source and heterogeneous dataset. Hence, our
proposed approach can be applied on this dataset in the purpose of providing students with
personalized recommendations of pedagogical resources in order to help them improve their
academic performance through learning analytics.

The proposed model has been designed for educational purposes, while being generic. Due to
a problem of data availability in the project, we have not yet been able to evaluate our model
on educational data. For this reason, we evaluate the model using a music dataset which has an
adequate structure to our proposed model. Once we are able to obtain the educational dataset
of the project, we will evaluate our model using this educational dataset as well.

5 Plan of the thesis

The rest of the thesis is organized as follows. Chapter 1 presents the state of the art in our
research domain. We start by presenting the state of the art in the domain of sequential pattern
mining. Then, we discuss the multi-* data that represents multi-source, multi-dimensional and
relational data. After discussing the multi-* data, we present the state of the art in the domain
of multi-* pattern mining and contextual pattern mining.

Chapter 2 presents our scientific contributions and the proposed algorithm. In this chapter,
we first present a description of the various data sources in a multi-* dataset. We then discuss our
proposition for a structure of relations among data sources. After that, we present G_SPM algo-
rithm for mining frequent general patterns in multi-* data. Chapter 3 presents the experimental

4. http ://metal.loria.fr/
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results and evaluations of our proposed algorithm. We start by a description of the application
dataset, then we discuss the evaluation measures that we determined for evaluating G_SPM.
We then discuss the experimental evaluations of G_SPM compared to naive approaches, and we
conclude the chapter with discussions and conclusions of the conducted experiments. Finally, we
conclude the thesis manuscript and discuss the future perspectives in chapter 4.
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Data has been generated and collected enormously in all domains across decades. Nowadays,
data is generated not only by enterprises in the industry sector, but also by individuals on a
daily basis. There is an increasing number of techniques that facilitate the collection and storage
of the digital data. In this context, many frequent pattern mining approaches were proposed in
the literature to analyze and understand the data and then extract useful knowledge that serves
business or research purposes. In this chapter, we present the literature review in the domain
of sequential pattern mining, that is the approach that we have identified as the most adequate
to the kinds of data that we have as well as to the scientific problems that we address. Then,
we present the various kinds of data. After that, we present a literature review of the most
interesting research works proposed for mining these various kinds of data. Finally, we present a
global conclusion of the related work.

1.1 Sequential pattern mining (SPM)

Agrawal and Srikant [3] were the first to address the problem of sequential pattern mining,
and they defined sequential pattern mining as follows :

"Given a database of sequences, where each sequence consists of a list of transactions ordered
by transaction time and each transaction is a set of items, sequential pattern mining is to discover
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Chapitre 1. Related Work

all sequential patterns with a user-specified minimum support, where the support of a pattern is
the number of data-sequences that contain the pattern."

In this work, they stress on the importance of adopting property 1.1.1 for mining frequent
sequences in an efficient manner, which states that the support decreases with the sequence exten-
sion. Therefore, if a sequence is infrequent, then this directly implies that all its supersequences
are infrequent too and thus there is no need to generate these candidates.

Sequential pattern mining has grown to be a topic of high interest and has become essential to
many application domains like customer purchases, medical treatments, bioinformatics, etc. For
example, in the domain of customer purchase analysis, customer shopping sequences represent
the purchase behaviour of the customers as follows : a customer first buys a Sony smartphone,
then a Sharp television then a Sony digital camera.

All sequential pattern mining algorithms have a sequential database and a user-defined mini-
mum support threshold (minsup), and generate all frequent sequential patterns as the algorithm
output.

In what follows, we present the definitions that allow the understanding of the sequential
pattern mining.

Definition 1.1.1. (Sequence)
Let us consider that {I = I1, I2..., In} is a set of n items, si is an itemset that contains an

unordered set of items from I. si is also called an element or an event. A sequence s is an ordered
list of itemsets and is denoted by s =< s1, s2..., sm >.

Definition 1.1.2. (Length of a sequence)
The length of a sequence s, denoted by l(s) is determined as the total number of instances of

items in this sequence. A sequence with length l is called an l-sequence.

Definition 1.1.3. (Subsequence and supersequence of a sequence)
A sequence s =< s1, ..., sk > is a subsequence of the sequence t =< t1, ..., th >, denoted as

s ⊆ t, if there exist integers 1 ≤ i1 < i2 < i3... < ij such that s1 ⊆ ti1, s2 ⊆ ti2 ..., sk ⊆ tij . In
this case and for the same conditions, t is a supersequence of s, denoted as t ⊇ s.

Definition 1.1.4. (Sequential database)
A sequential database SD is a set of tuples, < sid, sid > where sid is a sequence and sid is

the identifier of this sequence.

Definition 1.1.5. (Support of a sequence)
The support of a sequence s is defined as the number of sequences in the database containing

s. Let us consider the sequential database SD and the sequence s =< s1...sk >, the support of s,
denoted as support(SD)(s) is calculated as follows :

support(SD)(s) = |{(< sid, sid >) ∈ SD; s ⊆ sid}| (1.1)

Definition 1.1.6. (Frequent sequence)
Let us consider a minimum support threshold, denoted as minsup. A sequence s is frequent

in a sequence database SD if support(SD)(s) > minsup. In other words, s is frequent only if it
occurs at least minsup times in SD. A frequent sequence is called a sequential pattern.

Property 1.1.1. (Anti-monotonicity property)
Given a sequential database SD over I and two sequences s and s′.

s ⊆ s′ =⇒ support(SD)(s) ≥ support(SD)(s
′) (1.2)
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Example 1.1.1. (Sequential pattern mining)
Let us consider in Table 1.1 an example presented in [21] of a sequential database SD that

represents customer purchases . The set of items in SD is {a,b,c,d,e,f,g}, and the minsup is set
to 3. The sequence s4 : < {e}{g}{af}{c}{b}{c} > contains 6 itemsets : {e}, {g}, {af}, {c}, {b},
and {c}. This sequence means that this customer purchased e then g ; then, he/she purchased
a and f at the same time ; after that, he/she purchased c then b then c. There are 7 instances
of items in this sequence ; therefore, it is a 7-sequence. The item c occurs in 2 itemsets of this
sequence : the fourth and the sixth itemsets ; however, the sequence contributes only one to the
support of the item c. The sequence s′4 : < {b}{c} > is considered as a subsequence of s4 as the
itemsets of the former are subsets of the itemsets in s4 respecting the order of the itemsets. The
support of the sequence s′4 in SD is 3 as it appears in 3 sequences of the database (sequence 1, 3
and 4). Sequence s′4 is considered as a frequent sequential pattern as support(SD)(s) > minsup.
Table 1.2 displays all sequential patterns in SD with their support values.

sid Sequence
1 <{a}{abc}{ac}{d}{cf}>
2 <{ad}{c}{bc}{ae}>
3 <{ef}{ab}{df}{c}{b}>
4 <{e}{g}{af}{c}{b}{c}>

Table 1.1 – Sequence database SD

Sequence Support
<{a}> 4
<{b}> 4
<{c}> 4
<{e}> 3
<{f}> 3

<{a}{b}> 4
<{a}{c}> 4

Sequence Support
<{b}{c}> 3
<{c}{b}> 3
<{c}{c}> 3
<{d}{c}> 3

<{a}{c}{b}> 3
<{a}{c}{c}> 3

Table 1.2 – Frequent sequential patterns with minsup = 3

Definition 1.1.7. (Sequence prefix)
Let us consider the sequences s =< s1, s2..., sk > and t =< t1, t2..., tl > where si and ti are

frequent itemsets in s and t respectively and l 6 k. t is a prefix sequence of s if ti = si for
(i 6 l − 1) and tl ⊆ sl as long as the remaining items of sl that is (sl − tl) are considered after
the items of tl according to the alphabetical order.

Definition 1.1.8. (Sequence suffix)
Let us consider the sequences s and t previously defined in definition 1.1.7 where t is a prefix

of s. Sequence u =< u1, u2..., um > is called the suffix of s with respect to prefix t if and only if
∃ i 6 k, u = (si − tl) and ∀ 1 < j 6 m, (uj = si+j−1).

Example 1.1.2. (Sequence prefix and suffix)
Let us consider a sequence s =< {ef}{ab}{df}{c}{b} > which is the third sequence in the

sequential database of our running example that is represented in Table 1.1. The sequences : <
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{e} >, < {ef} >, < {ef}{a} >, < {ef}{ab} > are prefixes of the sequence s. < {ab}{df}{c}{b} >
is a suffix of the sequence s with respect to prefix < {ef} >, and < {_b}{df}{c}{b} > is a suffix
of s with respect to the prefix < {ef}{a} >.

Various approaches have been proposed across years to manage the problem of sequential
pattern mining of sequential databases. The differences among all the proposed algorithms are
in the choice of search space navigation, the database representation as well as the different data
structures used for representing the input database which affects the mining process.

Sequential pattern mining algorithms traverse the search space to generate their candidate
sequential patterns using either breadth-first or depth-first search enumeration. The breadth-
first search enumeration, also named level-wise enumeration, explores all items that are found
at one level and then moves down to explore the items of the next level. First, it explores all
the singletons (1-sequential patterns) and generates frequent ones ; then, it extends the frequent
singletons to generate all frequent 2-sequential patterns, then it extends frequent 2-sequential
patterns to generate all frequent 3-sequential patterns, and so on until the last level where
all frequent sequences are generated. The representative algorithms of the breadth-first search
enumeration are the Apriori-based ones such as GSP algorithm [56].

The depth-first enumeration extends a sequential pattern until the minimum support thre-
shold is not satisfied instead of exploring all l-pattern candidates before going forward to l + 1-
pattern candidates. It starts from the singleton sequences and extends it to generate frequent
2-sequential patterns, 3-sequential patterns, 4-sequential patterns and so on until there are no
more possible extensions. Then the algorithm goes backward to find more patterns from other
sequences. Examples of algorithms which adopt the depth-first enumeration are PrefixSpan [41]
and SPADE [64] algorithms.

Sequential pattern mining algorithms are classified into two categories, apriori-based algo-
rithms and pattern growth-based algorithms. Apriori-based sequential pattern mining algorithms
are based on AprioriAll algorithm [3], the first sequential pattern mining algorithm which is ins-
pired by Apriori algorithm [4] for frequent itemset mining. Apriori-based algorithms explore
the database search space using breadth-first search enumeration in order to generate frequent
candidate patterns, and it scans the database repeatedly to calculate their support.

Pattern growth-based algorithms are based on FP-growth algorithm [26] that has been pro-
posed as an improvement to Apriori algorithm [4] and thus generally to Apriori-based algorithms.
These algorithms explore the database using depth-first enumeration. Pattern growth-based al-
gorithms do not require generation where they scan the database to explore (k + 1)-candidate
patterns from (k)-candidate patterns.

There are two kinds of representations of the sequential databases, the horizontal and the
vertical database representations.

A horizontal database representation consists of a set of sequences where each sequence has
an identifier followed by an ordered set of itemsets that occur in this sequence.

A vertical database representation consists of a set of items where each item is associated
with each sequence identifier (sid) and itemset/event identifiers (eid) where this item occurs,
also indicating a timestamp of the item in sid. This information is referred to as the id-list of
the item.

A horizontal database can be transformed into a vertical database in one database scan, and
we can also retrieve a horizontal database from a vertical one. Table 1.1 is an example of a
horizontal database representation showing the sequence of items and itemsets represented by
their sequence identifiers. Table 1.3 and 1.4 displays the vertical representation of Table 1.1 for
the items showing each item along with the sequences and the itemsets/events in each sequence

10



1.1. Sequential pattern mining (SPM)

where this item occurs.

Example 1.1.3. (id-list in a vertical database representation)
Let us consider the item d in Table 1.3. The id-list of the item d can be represented as follows :

< d : (1, 4), (2, 1), (3, 3) >. Item d has appeared in the fourth itemset of the first sequence, in the
first itemset of the second sequence and in the third itemset of the third sequence of the sequential
database.

a b c d
sid eid sid eid sid eid sid eid
1 1, 2, 3 1 2 1 2, 3, 5 1 4
2 1, 4 2 3 2 2, 3 2 1
3 2 3 2, 5 3 4 3 3
4 3 4 5 4 4, 6 4 -

Table 1.3 – Vertical representation of the database displayed in Table 1.1 (1)

e f g
sid eid sid eid sid eid
1 - 1 5 1 -
2 4 2 - 2 -
3 1 3 1, 3 3 -
4 1 4 3 4 2

Table 1.4 – Vertical representation of the database displayed in Table 1.1 (2)

In the following subsections, we present one sequential pattern mining algorithm from each
of the two kinds of database representation.

1.1.1 SPM algorithms using horizontal representation

Sequential pattern mining algorithms using a horizontal database representation are classi-
fied into apriori-based and pattern growth-based algorithms. In this subsection, we present a
sequential pattern mining algorithm from each category.

Apriori-based algorithms

Some apriori based sequential pattern mining algorithms using horizontal database represen-
tation are GSP [56], PSP [37] and MFS [68]. From this category, we present GSP , a well-known
algorithm as it is one of the first sequential pattern mining algorithms.

GSP algorithm In 1996, Srikant and Agrawal proposed GSP algorithm (Generalized Se-
quential Pattern mining algorithm) [56] to mine sequential patterns. It is an improved version
of the first sequential pattern mining algorithm, AprioriAll [3], that is proposed by the same
authors.

As in Apriori algorithm [4], GSP algorithm adopts a multiple-pass, candidate-generation-
and-test approach according to property 1.1.1. The algorithm works as follows.
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It makes multiple scans over the database. The first scan determines the support of each
item. Hence, after the first database scan, the algorithm knows which items are frequent. Each
frequent item found is considered as a 1-sequential pattern.

Each subsequent pass starts with a "seed set" that consists of the frequent patterns found in
the previous pass. This seed set is used to generate new potentially frequent patterns that are
named candidate patterns where each one contains one more item than a seed sequence. The
support for these candidate patterns is found during a database scan. At the end of the pass,
the algorithm determines which of the candidate patterns are actually frequent. These frequent
candidate patterns become the seed for the next step. The algorithm stops when no more frequent
patterns are generated.

At the (l+1)-level pass, the candidate frequent pattern generation is done by a joining process
of two l-patterns as follows. A sequence s1 joins with s2 if by dropping the first item of s1 and
the last item of s2, the same subsequences are obtained. Therefore, s1 is extended with the last
item or itemset of s2 to obtain the new k + 1-candidate pattern

GSP is an important and well-known algorithm in the domain of sequential pattern mining ;
however, it has some limitations. GSP performs multiple scans of the sequential database in order
to calculate the supports of candidate frequent patterns to evaluate if they are frequent. The
repetitive scans of the database lead to a high cost especially for huge databases. In addition,
due the to the joining process to obtain (l+1)-candidate frequent pattern, two sequences can
satisfy the conditions of join and thus would be extended to generate an (l+1)-candidate frequent
pattern ; however, this may be a non-existing or infrequent sequence in the database. This process
thus leads to a useless increase of the time complexity of the algorithm.

Pattern growth-based algorithms

A main advantage of pattern growth-based algorithms is the generation of frequent sequential
patterns without candidate generation : only patterns that actually exist in the database are
explored. However, the repetitive scans of the database is a process of high cost ; therefore, a new
concept of database projection [40, 41, 27] has been proposed From this category, we present
PrefixSpan algorithm. Among pattern growth-based approaches, PrefixSpan has been widely
used in the literature in various research works in the domain of sequential pattern mining
[45, 63, 52, 16, 42, 33, 9, 28]. This algorithm is proved to be an efficient and fast algorithm
compared to classical sequential pattern mining algorithms like Apriori and GSP.

PrefixSpan algorithm In 2001, Pei et al., [41] proposed PrefixSpan algorithm (Prefix-
projected sequential pattern mining). This algorithm is built upon the concept of sequential
database projection proposed in FreeSpan algorithm [24]. PrefixSpan extends FreeSpan by taking
into account the testing of prefix subsequences and the projection of their corresponding postfix
subsequences into separate projected databases.

Definition 1.1.9. (s-projected database)
Let us consider a frequent sequence s in a sequential database SD. The s-projected database,

denoted by SD|s, is the collection of all suffixes of the sequences in SD with respect to the prefix
s.

Example 1.1.4. (s-projected database)

Table 1.5 displays some projected databases of the sequential database in Table 1.1 with respect
to 1-prefixes.
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Prefix Projected Database Prefix Projected Database

<{a}>

<{abc}{ac}{d}{cf}>,
<{_d}{c}{bc}{ae}>,
<{_b}{df}{c}{b}>,
<{_f}{c}{b}{c}>

<{d}>
<{cf}>,
<{c}{bc}{ae}>,
<{_f}{c}{b}>

<{b}>

<{_c}{ac}{d}{cf}>,
<{_c}{ae}>,
<{df}{c}{b}>,
<{c}>

<{e}> <{_f}{ab}{df}{c}{b}>,
<{af}{c}{b}{c}>

<{c}>

<{ac}{d}{cf}>,
<{bc}{ae}>,
<{b}>,
<{bc}>

<{f}> <{ab}{df}{c}{b}>,
<{c}{b}{c}>

Table 1.5 – Projected database of Table 1.1

PrefixSpan uses depth-first enumeration to explore the search space of sequential patterns.
The first step, that is common to most of sequential pattern mining algorithms, is to scan the
sequential database in order to calculate the support of the single items and thus to obtain the
frequent singletons (1-sequential patterns). Next, it performs a depth-first enumeration starting
from the frequent singletons. For a given sequential pattern s of length k, PrefixSpan first builds
the projected database with respect to the prefix pattern s. It then scans the projected database
of s, counts the support values of items and detect frequent items to be appended to s, and thus
(k+1)-frequent patterns are formed. After that, the algorithm repeats this step recursively to
find all frequent sequential patterns.

The advantage of the projected database concept is that the projected databases keep shrin-
king where a projected database is smaller than the original one because the subsequences that
are projected into a projected database are only the postfix subsequences of a frequent prefix. Ho-
wever, its disadvantage is that it scans the database repeatedly and builds projected databases,
and these repeated scans could be of a high cost. Certain techniques were proposed for reducing
the number of projected databases [25]. One of these techniques is the pseudo-projection where
the sequence databases can be held in main memory in order to avoid redundancy in the postfixes
of the projected databases. Instead of constructing a physical projection all the postfixes, they
use pointers referring to the sequences in the database as a pseudo-projection.

Despite this disadvantage that could be limited when the size of the sequential database
as well as the length of patterns are reasonable, prefixspan is a well known and widely used
algorithm in various domains like multi-dimensional sequential pattern mining and sequential
pattern mining with time constraints.

1.1.2 SPM algorithms using vertical representation

Sequential pattern mining algorithms using a vertical database representation adopt the
pattern growth-based approach. Some of these algorithms are SPADE [64], SPAM [6], Hirate and
Yamana [28], and CMAP [14]. Among these algorithms, SPADE is the first algorithm proposed
in this context.
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SPADE algorithm

In 2001, Zaki et al., [64] proposed the first algorithm that uses a vertical database format for
mining sequential patterns, SPADE algorithm (Sequential Pattern Discovery using Equivalence
classes). This algorithm is inspired by ECLAT [66] and CHARM [65] algorithms for mining
frequent itemsets. SPADE uses lattice-based search techniques and simple joins. The lattice-
based approach is used to decompose the original search space, the lattice, into smaller pieces,
the sub-lattices, that can be processed in the main memory in an independent manner. It usually
requires three scans of the sequential database in order to obtain the frequent sequential patterns.
The algorithm works as follows. First, it scans the database and transforms it from horizontal to
vertical database format where each item is associated with its corresponding id-list. An example
of horizontal-to-vertical database transformation is the horizontal database displayed in Table
1.1 that is transformed into the vertical database displayed in Tables 1.3 and 1.4. Then, it scans
the vertical database, reads the id-list of each item and calculates the support value of the item
which represents the total number of sid’s found in the id-list. The items that have a support
value above the predefined minsup are considered as frequent singletons. After generating these
singletons, the algorithm performs a vertical-to-horizontal transformation in order to recover
the original horizontal database by grouping the items with the same sid and in an increasing
order of eid. Table 1.6 shows the horizontal database recovered from the vertical id-lists of items.
Then, it forms a list of all 2-sequences for each sid in order to generate frequent 2-sequential
patterns. The support of a frequent 2-sequential patterns is calculated by joining the id-lists of
the two items forming this sequence by making a join on the same sid where the eid of the
first sequence occurs before the eid of the second sequence. The generated frequent 2-sequential
patterns are used to construct the lattice. The number of frequent 2-sequential patterns could be
large which makes the lattice formed out of it quite large to fit in the main memory. Therefore,
the lattice is decomposed into different equivalence classes such that the sequences having the
same prefix items belong to the same equivalence class. Then, frequent (k+1)-sequential patterns
are explored from frequent (k)-sequential patterns via temporal joins using either breadth-first
or depth-first enumerations. Then id-lists of the frequent (k)-sequential patterns are joined to
calculate the support values and therefore generate frequent (k + 1)-sequential patterns. Longer
frequent sequences are generated similarly until no more frequent sequences could be generated.

In the breadth-first enumeration of the equivalence classes of the lattice, the equivalence
classes are generated in a recursive bottom-up manner where all the child classes at each level
are explored before moving to the next level. For example, in order to generate frequent (k+ 1)-
sequences, all the (k)-sequences have to be already explored. While in depth-first enumeration of
the equivalence classes of the lattice, all equivalence classes for each path in the search space are
explored before moving to the next path of the search space. For example, all the (2)-sequences
as well as the (k)-sequences have to be already explored in order to generate frequent (k + 1)-
sequences.

sid (Item, eid) pairs
1 (a, 1), (a, 2), (b, 2), (c, 2), (a, 3), (c, 3), (d, 4), (c, 5), (f, 5)
2 (a, 1), (d, 1), (c, 2), (b, 3), (c, 3), (a, 4), (e, 4)
3 (e, 1), (f, 1), (a, 2), (b, 2), (d, 3), (f, 3), (c, 4), (b, 5)
4 (e, 1), (g, 2), (a, 3), (f, 3), (c, 4), (b, 5), (c, 6)

Table 1.6 – Recovered horizontal database from the vertical database in Tables 1.3 and 1.4
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The advantage of SPADE algorithm is that it requires only three scans of the database in
order to generate all the frequent sequences which makes it faster than GSP algorithm which
requires multiple database scans to generate all the frequent sequences. In addition, SPADE uses
simple temporal join operation on id-lists.

After the proposition of SPADE algorithm, other sequential pattern mining algorithms using
vertical database representation were proposed across years [6, 5, 62, 14, 62].

SPADE as well as other sequential pattern mining algorithms using vertical representation
have several advantages. The main advantage is introducing the concept of id-lists. The id-
list structure is simpler than other structures used in horizontal databases such as complicated
hash-tree structures. In addition, as the length of a frequent sequence increases, the size of its
id-list decreases, resulting in faster joins. The vertical database representation also facilitates the
process of support calculation. The support of a pattern is the total number of sid’s in the id-list
and the support of a (k+ 1)-sequence is calculated through the intersection of the id-lists of the
two frequent (k)-sequences that form this sequence ; therefore, it avoids the repetitive database
scans required for calculating the support of the sequences. It also saves the information not
only about the sequences where the items occur but also about the events that show when these
items occur. However, a disadvantage is that when the cardinality of the set of transactions is
very large, the intersection time of the id-lists becomes costly.

SPAM [6] and Bitspade [5] algorithms propose a bitmap representation of the database with
efficient support counting which optimizes the id-list structure and thus makes these algorithm
faster than SPADE. However, the limitations of these two algorithms are that they generate a
large number of candidate patterns and that the join operation made in order to generate the
id-list of each of these candidate patterns could be a process of high cost. Therefore, CM-SPADE
and CM-SPAM algorithms [14] were proposed to improve these two algorithms by introducing
the co-occurrence pruning in order to reduce the number of joins. These algorithms initially scan
the database to create the co-occurrence map (CMAP) that stores frequent 2-sequences. Then
for each pattern explored in the search space, if its last two items are not frequent 2-sequences,
then this pattern is discarded without making the join operation to generate its id-list. This
process of verifying if the pattern is frequent before generating its id-list saves time and reduces
the cost of the mining process and thus makes these algorithms faster than the previous ones.

In this section, we have presented the related work in the domain of sequential pattern mining
by presenting important algorithms from different categories.

1.2 Multi-* data

Voluminous amounts of digital data are created and collected on daily basis. This data may
not always come from the same data source and may not always be homogeneous ; however, it
could be heterogeneous representing different kinds of data and thus forming complex datasets.
The heterogeneity of this data lies in the fact that it could be provided by various data sources,
could be represented as different data dimensions and could have different relations among the
sources or dimensions. This heterogeneity results in what we call multi−∗ data which briefs the
multiple kinds of data contained in this complex dataset. In this section, we describe the various
kinds of multi-* data, and in the following section, we focus on the mining of such data.

1.2.1 Multi-source data

A data source is simply any source that provides data. It could be a file, web data, a database
or a data warehouse. Multi-source data represents data collected from multiple data sources.
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These different data sources can be classified into sources of homogeneous structures, named
homogeneous data sources, and others of heterogeneous structures, named heterogeneous data
sources. The data in a data source is known as local data with respect to this data source and
the data of all data sources is known as global data.

Homogeneous data sources

Homogeneous data sources are the sources that have the same data structure which is the
way of organizing the elements of data as well as the way they are related to each other. In other
words, the data sources contain the same data elements with the same names, data types and
data structures, and they are usually distributed among different locations. Table 1.7 displays
two data sources providing academic data of students from two different schools. These different
data sources are homogeneous as they have the same structure and provide the same kind of
data elements which are the averages and the ranking of students among the class.

Another example of homogeneous data sources is provided in [12] where the data represents
information about patients’ trajectories provided by different hospitals.

Student-id Average(/20) Rank(/25)
123 12 15
126 15.8 3
124 11.5 18
122 7 22

(a) School 1
Student-id Average(/20) Rank(/25)
132 8.5 24
135 16.1 2
138 13.5 11
131 10 19

(b) School 2

Table 1.7 – Students’ academic data from two schools

Heterogeneous data sources

Heterogeneous data sources are the sources that have heterogeneous structures. Heteroge-
neous data sources can be classified into two types. The first type is when the sources have
heterogeneous data models at the local level. Data model heterogeneity, which is also considered
as schematic and data heterogeneity, occurs when the same data is stored and represented in
different ways causing data inconsistency and leading to obtain heterogeneous data sources al-
though these sources have the same data nature with the same semantics. Example of these data
inconsistencies are as follows. There could be conflicts of synonyms and homonyms among dif-
ferent data sources. A synonym conflict is when the same data element is represented in different
names among different data sources. A homonym conflict is when different data elements have
the same name among different data sources. There could also be differences in the data types,
precision or scale ; for example, a data element could be defined as integer in one data source
and as float in another one. In addition, there could be structural differences among different
data sources on the level of their objects ; for example, it could have a single value in one data
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source and multiple values in another one. There could also be a problem of missing or conflicting
data in the data values recorded such as having two different values for the same object in two
different data sources due to errors or differences in the underlying semantics [8].

The second type of heterogeneous data sources is when the sources are related but different.
In other words, the various data sources have heterogeneous data models and provide different
data. The data sources are related as they provide semantically relevant data ; however, each
data source has its own role in providing one or more kinds of data. They may share some
data types or names of data elements ; however, they do not represent the same elements and
they have different semantics. Combining these various data sources together allows forming a
heterogeneous dataset whose data heterogeneity and the relations existing among its different
data sources make it rich, informative, understandable and thus interpretable.

An example of heterogeneous data sources in the domain of e-commerce is as follows : one data
source could provide descriptive data about the customers, another data source could provide
data about their past purchases, and a third data source could provide descriptive data about
the products that are purchased by the customers. Each data source gives different kinds of
data about the customers and their purchasing process which allows extracting various and rich
information.

The main challenge in extracting information from multi-source data lies in how to manage
such kind of heterogeneous data coming from different sources efficiently and with limited com-
plexity. Multi-source frequent pattern mining has been a topic of interest, and many research
works across years have proposed various techniques to mine multi-source data in order to obtain
useful and rich information that serves the scientific objectives and desired outcomes. The related
work in the domain of multi-source pattern mining is detailed in section 1.3.1.

1.2.2 Relational data

When the data are heterogeneous and of different natures, they represent relational data,
and they can thus be represented as multiple relational database tables (relations). These data
are called relational data, and they are also referred to as multi-relational data in the literature.
Figure 1.1 displays an example of a relational database about customer’s purchases of products
from companies. This example shows that there are different kinds of relations existing among
different tables.

Relational data allows extracting various and rich information that comes from various da-
tabase tables, and the process of mining frequent patterns from this kind of data is known as
relational pattern mining, also called in the literature multi-relational pattern mining. A lite-
rature review of the various approaches proposed in the domain of relational pattern mining is
detailed later in section 1.3.2.

1.2.3 Multi-dimensional data

Data can consist of different data fields, where each field corresponds to a set of measured
properties that are referred to as features, attributes, or dimensions [1]. This kind of data is called
multi-dimensional data. An example of multi-dimensional data is as follows. Let us consider a data
source providing descriptive data about the food products purchased by customers in a market ;
this source provides different data dimensions to describe each product such as : product name,
category, fabrication date, expiry date, etc. Each data dimension could be represented as several
attributes describing different products.
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Figure 1.1 – Relational database

Frequent patterns could be generated from multiple data dimensions which allows obtaining
patterns that contain various kinds of information. Such kind of frequent patterns are called
frequent multi-dimensional patterns [45, 12].

In many applications, one data dimension of the multi-dimensional data represent data se-
quences forming a multi-dimensional sequential space. For example in the domain of customer
purchase, the customer purchase history is associated with customer group, address, time, age
group and others. This specific kind of multi-dimensional data is called multi-dimensional se-
quential data containing multi-dimensional sequences [45, 63, 12, 50, 47, 46, 29, 56, 22]. Pinto
et al., [45] were the first to introduce the notion of a multi-dimensional sequence, and Table 1.8
displays an example of their database that contains multi-dimensional sequential data where cid
represents the customers ids.

cid Customer Group City Age Group Product Sequence
10 business Boston middle < {bd}cba >
20 professional Chicago young < {bf}{ce}{fg} >
30 business Chicago middle < {ah}abf >
40 education New York retired < {be}{ce} >

Table 1.8 – A multi-dimensional sequential database [45]

In certain cases, there could be background knowledge about the data dimensions which allows
translating this knowledge into a data hierarchical structure. When there are several attributes
representing each data dimension, the hierarchical structure of data is called a data taxonomy.
We name this kind of data as multi-dimensional data with hierarchical structure. Figure 1.2
displays an example of a hierarchy of food products.
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Figure 1.2 – A hierarchy of food products [18]

In other cases, data dimensions could represent descriptive data about one or more other data
dimensions. This descriptive data provide certain contexts to the other dimensions which allows
giving broader understanding of the data within which it is associated. This kind of data is called
contextual data. The contextual data could be associated to data sequences giving contexts to
each sequence forming contextual sequential data [48]. An example of a contextual sequence
is : cs : {young, female} < {ab}c >. The contextual data represent a young female, and the
sequential data represent {ab} then c.

Many research works in the literature have been proposed to mine different kinds of multi-
dimensional data. In section 1.3.3, we discuss the literature review of multi-dimensional sequential
pattern mining, multi-dimensional pattern mining using hierarchical structures and contextual
pattern mining.

From the previous description of the various kinds of data, we can understand that the
term multi-* data refers to the following kinds of data : multi-source, multi-dimensional and
relational data. Although they are different kinds, they are related to each other and the data
in a dataset could sometimes be classified as one or more of these kinds of data. For example,
we could have two data sources where each source provides more than one data dimension, and
these sources could have relations among them ; in this case, the data is multi-source, relational
and multi-dimensional at the same time. Such a dataset has more complex and heterogeneous
structure than other datasets containing data of one kind ; consequently, it can be viewed and
thus managed from different perspectives. Various approaches have been proposed across years
for mining these different kinds of data. In the following section, we present the related work in
mining these different kinds of data.

1.3 Mining multi-* data

Mining multi-* data has always been a topic of interest as the challenge lies not only in
generating interesting frequent patterns from these data but also in the efficiency and the low
complexity of the mining process. In the following subsections, we present the related work in
the domains of multi-source, multi-dimensional and relational pattern mining respectively.

1.3.1 Multi-source pattern mining

Multi-source pattern mining is a topic of pattern mining concerned in mining data coming
from different data sources. This topic has gained a great interest as it represents data in real
applications. Various approaches have been proposed to mine this kind of data. These approaches
are divided into two main categories. The first category is integrating data from all data sources
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and mining them together in order to generate frequent global patterns. The second category
is mining frequent patterns from each local data source, named frequent local patterns and
then integrating all the local frequent patterns of all data sources together. In the following
subsections, we present some interesting research works from the two categories of multi-source
pattern mining.

Mining multi-source data in an integrated manner

Multi-source data integration involves aggregating data from different data sources to a cen-
tralized data source and perform a single mining process on this centralized source in order to
extract patterns that are globally frequent among all the local data sources.

Some works proposed approaches to mine data that is integrated in a centralized source in
order to extract frequent patterns that include information from all the sources.

Data fusion is the process of integrating data from homogeneous data sources into a single
source, and a single mining process is performed on this data to generate frequent patterns.
An example of this approach is the multi-sensor data fusion proposed in [32]. Multi-source data
fusion is an intelligent synthesis process of remote sensing image data from multiple sources and
generating accurate, complete and reliable estimation and judgement. Their proposed approach
first collects the data from different sensors and then eliminates the data redundancy and conflicts
that could exist among this multi-source data in order to generate useful information from this
integrated data. This approach is proved to be efficient in this domain as it can improve the
reliability of remote sensing information and can help in decision making and planning.

This approach of combining multiple data sources together and mining them in a single
mining process has several drawbacks that proves its inefficiency. Integrating multi-source data
in a single source could cause a considerable cost due to the data integration. In addition, the
number of items in each itemset or sequence increases which augments the length of these itemsets
or sequences resulting in higher complexity of the mining process. Integrating multi-source data
into a single database may destroy some important local information from local data sources that
reflects the distributions of patterns. For example, such kind of specific information would be lost :
"85% of the branches within a company agree that a customer usually purchases sugar if he/she
purchases coffee" [67]. Another possible limitation of this approach is the data protection and
privacy rules that could allow transferring the resulting patterns without allowing to transfer the
data. Besides, this approach considers that each data source has the same weight (importance)
and doesn’t take into consideration that different data sources could have different weights where
a data source could have a bigger contribution to the mining process and its results than another
one.

Mining Multi-source data in a distributed manner

In order to overcome the limitations of the previously described approach, other works propo-
sed to mine different data sources in separate mining processes to obtain frequent local patterns
and then integrate all the frequent local patterns generated from each mining process in order
to obtain frequent global patterns.

In 2009, Peng et al., [43] proposed three algorithms in order to mine sequential data contai-
ning sequences of events that are represented in different domains where a domain contains events
occurring within a predefined time window. The first algorithm proposed a naive approach which
mines multiple data sources where each one is represented in a database. In this algorithm, the
multiple sequence databases are integrated as one sequence database, and it is mined using tra-
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ditional sequential pattern mining algorithms such as PrefixSpan algorithm [25]. This algorithm
is then proved to be costly and inefficient due to the data integration. Therefore, two other
algorithms were proposed to overcome the drawbacks of the first one. The second algorithm,
IndividualMine algorithm, consists of two phases : the mining phase and the checking phase. In
the mining phase, sequential patterns in each sequence database are mined using a traditional
sequential pattern mining algorithm. Then in the checking phase, sequential patterns from all
domains are integrated in order to generate multi-domain sequential patterns which has the same
concept as multi-source sequential patterns. In this algorithm, each domain should individually
perform sequential pattern mining algorithms, which incurs a considerable amount of mining
cost. Therefore, in order to further reduce this cost, they propose a third algorithm, the Propa-
gatedMine algorithm, in which those sequences that are likely to form multi-domain sequential
patterns are extracted from their sequence databases. The PropagatedMine algorithm consists
of two phases : the mining phase and the deriving phase. In the mining phase, the algorithm
performs a sequential pattern mining using traditional sequential pattern mining algorithms in
a starting domain and then propagates time-instance sets of the mined sequential patterns to
the next domain until all domains are mined. In the deriving phase, the algorithm extracts those
sequences with occurrence time equal to those of the time-instance sets propagated.

The third algorithm is proved to be the most efficient one among the three algorithms as
it reduces the complexity and thus the cost of the mining process. Therefore, it is a good and
efficient approach for mining this kind of data that is homogeneous among different data sources ;
however, the concept of pattern propagation is infeasible when the data among different data
sources are heterogeneous. In addition, this approach considers that different data sources have
equal contributions to the resulting patterns and it thus doesn’t take into consideration that a
data source could contain data that is of bigger weight and thus is more important than the
other.

Zhang et al [67] proposed an approach for generating global exceptional patterns in multi-
database mining applications where each data source is represented in a separate database. An
exceptional pattern is a pattern that is highly supported by only few data sources ; in other words,
such a pattern has a very high support value in some data sources and zero support value in others
which allows to have a high global support value. This kind of patterns reflect the individuality
of different data sources. The proposed approach, named Kernel Estimation for Mining Global
Patterns (KEMGP), considers that different data sources have different contributions to the
resulting global patterns and thus they have different minimal supports. It mines each data
source and generates its frequent local patterns, and then it identifies the local exceptional
patterns of interest from these local patterns. In their work, they also describe another kind of
patterns, called suggesting patterns [67, 43] that is based on the votes done by the databases in
order to decide for the global patterns among all local ones. They define the suggesting patterns
as the patterns that have fewer votes than a minimal vote ; however, they are very close to the
minimal vote where the minimal vote is determined by users or by experts. If a local pattern has
votes that are equal to or greater than the minimal vote, then the local pattern is said to be a
global pattern, named a high-voting pattern. While if a local pattern has votes that are less than
the minimal vote but are very close to the minimal vote, then it is called a suggesting pattern
that could sometimes be useful for decision making [43]. The concept of "suggesting patterns"
that is introduced and defined in this work is an interesting concept as it represents patterns
that are on the margin of global ones and that weren’t far from being global.

The approach proposed in this work is efficient as it allows identifying the importance of
a pattern not only locally in a specific data source but also globally on the level of all data
sources. However, the approach works strictly on homogeneous data sources where a global
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pattern contains the same kind of information as the global pattern, while the only difference
lies in their supports and importance but not in the kind of information it contains.

Mining frequent local patterns from multiple data sources and then performing the integration
on a pattern base allows reducing the data movement. Hence, data mining applications based
on local pattern analysis strategy can be able to learn models from distributed data without
exchanging the raw data [51]. This respects the privacy and restrictions that are imposed on the
data in certain cases. In addition, this approach allows knowing where the patterns are frequent
and distinguishing between patterns that are frequent only locally in certain data sources and
others that are globally frequent in all data sources. This allows having more precise information
about the frequent patterns which helps in a better understanding of the output as well as in
decision making. On the other hand, the approach of mining multiple data sources separately has
its limitations. When mining multi-source data in an integrated manner, there is a single mining
process for all the data which limits the cost ; however, in mining multi-source data separately,
the number of mining processes is the same as the number of existing data sources which makes
the overall process costly when the number of data sources is large. Furthermore, data among
different data sources could have relations among them, and maintaining these relations when
mining this data allows detecting frequent patterns which contain rich information from different
data sources that provide certain kinds of semantics. Hence, mining these data sources separately
could lead to losing the relations among them and thus losing their patterns or their semantics.

1.3.2 Relational pattern mining

Relational pattern mining is a topic of pattern mining that is concerned in mining data that
come from relational database environments having multiple relations. Various approaches have
been proposed in this domain. These approaches could generally be classified into two main
categories, the first category is the propositionalization, and the second category is mining the
data with maintaining the relational structure.

Propositionalization is the process that leads from relational data and background knowledge
to a single table representation [34]. The data from multiple tables are combined together to
form a global table that contains all the multi-relational data. This process can be achieved
by performing join operations on all the related tables to obtain a global table, or it can be
obtained by an aggregation technique that resumes the raw data of multiple tables into one
compact table [59]. In this case, the mining process is performed on this global table in order to
generate frequent patterns that contain information from all the previous multiple tables. The
disadvantages of having a global table is that it is usually large as it contains the data from all
the tables, and this could lead to data sparsity as well as redundant values coming from different
tables.

Due to the drawbacks of the propositionalization method in mining relational data, other
works propose to maintain the relational structure and mine directly the relational tables. In this
context, many approaches were proposed across years. Geothals et al [17] proposed SMuRFIG
algorithm (Simple multi-relational frequent Itemsets Generator) for the generalization of frequent
itemset mining to the multi-relational case. The SMuRFIG algorithm uses the concept of id-list
propagation across relational tables. First, the id-lists of all items are fetched from the data in
their respective entities (tables), and then these id-lists are propagated to all other entities. The
propagation function translates an id-list from one entity to its adjacent entities through the
relations existing between these two entities, and it is recursively repeated until all the entities
are reached. The frequent singleton itemsets are therefore generated where the support of each
1-sequential pattern is the total number of ids found in its id-list. Next, the frequent singleton
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itemsets are combined into larger itemsets by the Keyclat function. The search space is traversed
depth-first. In each recursion, two itemsets with a common prefix are combined to form a new
candidate set where a prefix, initially empty, consists of one ore more common itemsets included
in the two itemsets under measure. In order to compute the support of this new candidate
itemset in the specified entities of the two itemsets, they intersect the id-lists of the two itemsets
in these entities, and the support is the total number of ids in the newly generated list after the
intersection. Then, these id-lists are propagated to all other entities. This process is repeated
until all frequent relational patterns are found.

The id-list propagation mechanism is advantageous in avoiding the join operations between all
database tables and keeps the search space in a manageable size ; however, this mechanism could
be costly when the number of database tables is large as the number of KeyID list propagation
mechanism will be high. In addition, this algorithm provides a meaning to the support value
where the support of each itemset has a unique meaning that is determined depending on the
specific entities under measure. However, a limitation of this algorithm is that it is designed
to mine itemsets and not sequences, and it mines these itemsets from different tables in one
mining process. Let us consider that one of the database tables contains data sequences and not
itemsets ; in this case, the strategy of SMuRFIG algorithm could not be directly applied without
managing the sequential data in a separate sequential pattern mining process.

The previously described approaches of relational pattern mining are efficient in the case
when the different data sources have equal importance. In addition, the use of the different data
sources is always restricted to extending the frequent patterns by adding information to these
patterns.

However, data sources could be heterogeneous where each data source has a unique role
in providing certain kinds of information. In addition, the role of a data source may not be
restricted to the concept of adding the information directly to the frequent patterns ; however,
it could be providing additional or background information to these frequent patterns. Due to
these reasons, we understand the importance of taking into consideration the semantics of the
data provided by each sources as well as the semantics of the relations between different data
sources. Understanding these semantics would allow determining a richer and more useful view
and structuring of the sources in order to generate richer and more informative patterns.

1.3.3 Multi-dimensional pattern mining

Multi-dimensional pattern mining is a topic of pattern mining that is concerned in mining data
represented in different data dimensions. The data dimensions could represent homogeneous or
heterogeneous data where this data could come from a single or multiple data sources. In section
1.2, we classified multi-dimensional data mining into three main categories : multi-dimensional
sequential pattern mining, multi-dimensional pattern mining using hierarchical structures, multi-
dimensional pattern mining using star schema and contextual pattern mining. In this section,
we present the related work in each of these categories of multi-dimensional pattern mining.

Multi-dimensional sequential pattern mining

Multi-dimensional sequential pattern mining was defined by Pinto et al., [45] as the process of
mining one or more dimensions of information in which the order of the dimension values is not
important, alongside a single dimension of information in which order is important [44]. Table 1.8
shows their multi-dimensional sequential database. In their work, they proposed three algorithms
to mine multi-dimensional sequential patterns, Uniseq, Dim-Seq and Seq-Dim algorithms.
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Table 1.8 represents their dataset that consists of descriptive attributes and the purchase
history of customers that are identified by customer-id (cid). This heterogeneous data consists of
three dimensions : Customer group, City and Age group as well as a sequential data dimension
"product sequence" that contains sequences of items from a, b, ..., h representing the items bought
by customers. The descriptive data dimensions and the purchase history are obviously provided
by different data sources.

UniSeq algorithm works as follows. The input of the algorithm is the multi-dimensional se-
quential database and a predefined minimum support threshold (minsup), and the algorithm
outputs the set of frequent multi-dimensional sequential patterns. The algorithm embeds the
multi-dimensional data to the sequences by extending an element at the beginning of each se-
quence and adding the multi-dimensional data related to this sequence in order to obtain an
extended multi-dimensional-extended sequence ; in other words, we obtain a single data dimen-
sion containing the sequential data along with the multi-dimensional within which it is associated.
For example, for a tuple t = (10, business,Boston,middle,< {b, d}{d}{b}{a} >) in Table 1.8,
the sequence s =< {b, d}{d}{b}{a} > is extended by the multi-dimensional data to obtain a
multi-dimensional sequence smd =< (Business Boston middle) < {b, d}{d}{b}{a} >>. Table
1.9 shows the multi-dimensional extension database from the multi-dimensional sequential data-
base shown in Table 1.8. After this step, the multi-dimensional sequences are mined traditionally
through the PrefixSpan sequential pattern mining algorithm [25]. UniSeq algorithm, which in-
tegrates heterogeneous data and mines them in a sequential mining process is efficient when
the number of dimensions and the total number of sequential items are small ; however, when
there is a large number of dimensions or sequential items, the algorithm becomes inefficient as
the multi-dimensional sequences become large which increases the time and cost of the mining
process.

cid MD-extension of a sequence
10 <{business Boston middle} {b d} c b a >
20 <{professional Chicago young} {b f} {c e} {f g} >
30 <{business Chicago middle} {a h} a b f >
40 <{education New York retired} {b e} {c e} >

Table 1.9 – Multi-dimensional extension database from the multi-dimensional sequential
database in Table 1.8

Dim-Seq and Seq-Dim algorithms decompose the problem into two sub-problems : mining
multi-dimensional data and mining sequential data while maintaining the relation between these
two kinds of data.

In Dim-Seq algorithm, they start by mining the multi-dimensional data using BUC-like algo-
rithm [7]. By scanning the database, frequent one-dimensional items are generated, then frequent
two-dimensional items are generated and so on until all frequent dimensional patterns are genera-
ted. After this step, for each multi-dimensional pattern, they mine the sequential data associated
to it using PrefixSpan algorithm [25] in order to obtain a multi-dimensional sequential pattern.

In Seq-Dim algorithm, they first mine the sequential data using PrefixSpan algorithm [25] to
generate frequent sequential patterns ; after this step, for each frequent sequential pattern, they
mine the multi-dimensional data associated to it using BUC-like algorithm [7] in order to obtain
a multi-dimensional sequential pattern.

The experiments conducted to evaluate the three algorithms revealed important results as
follows. When the dimensionality is low, Uni-Seq algorithm outperforms the two other algorithms
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as the major cost is in mining the sequential data which can be easily handled by a sequential
pattern mining algorithm such as PrefixSpan algorithm [25].

When the database is large, Seq-dim is the most scalable algorithm as it strictly mines
frequent multi-dimensional data that are associated to the frequent sequential patterns. A large
database is complex to be handled with UniSeq where long sequences containing multi-dimensional
and sequential data are formed. Dim-Seq algorithm also has poor scalability when handling a
large dataset as there could be many generated frequent multi-dimensional patterns which lead
to no multi-dimensional sequential patterns.

The main limitation of Dim-Seq algorithm is that it generates all possible frequent multi-
dimensional combinations before detecting frequent sequential patterns which may result in
frequent multi-dimensional patterns that do not generate any frequent multi-dimensional sequen-
tial patterns ; however, Seq-Dim algorithm avoids such a cost. The main limitation of Uni-Seq
algorithm is either having a large database or having large number of data dimensions. Seq-Dim
is an efficient and scalable algorithm, and it is the fastest algorithm among the three in most
cases. These three algorithms were then largely discussed, used and enhanced in other works in
the literature [47, 16, 43, 12]

Yu and Chen [63] also discussed the multi-dimensional sequential pattern mining problem
where they propose to mine sequential data from d-dimensions sequence data (d>2). They use
online stock-trading site as an example where each customer may visit a web site in a series of
days ; each day takes a series of sessions and each session visits a series of web pages. The data
for each customer is therefore 3-dimensional sequence : days, sessions and pages. An example of
a sequence in their database is as follows : <<< ab >1< dcf >1>2<< df >1< bc >1>2>3. This
sequence means that a certain customer visits the website in two successive days. On the first
day, he/she goes through the website twice : in the first session, he/she sequentially visits pages
a and b, and in the second session, he/she sequentially visits pages d, c and f . On the second
day, he/she goes through the website twice : In the first session, he/she sequentially visits pages
d and f , and in the second session, he/she sequentially visits pages b and c. The subscripts in
the sequence denote the dimension numbers, and dimensions 1, 2 and 3 correspond to visited
pages, sessions, and days, respectively. This sequence is a 3-dimensional sequence whose elements
<< ab >1< dcf >1>2 and << df >1< bc >1>2 are 2-dimensional sequences. While the sequence
<< ab >1< dcf >1>2 is a 2-dimensional sequence whose elements < ab >1 and < dcf >1 are
1-dimensional sequences. In this context, they proposed two algorithms to mine such kind of
data, AprioriMD and PrefixMDSpan algorithms.

AprioriMD algorithm extends the traditional Apriori [4] or GSP [56] algorithm. There are two
major differences between AprioriMD and these two traditional algorithms, the first difference
is in the method of generating candidate sequences, and the second difference is in the method
of computing the support values of the generated candidate sequences. First, for generating
candidate sequences, they take into account the dimensional scopes of frequent (k−1)-sequential
patterns in order to generate all possible k-candidate sequential patterns with different possible
dimension scopes. Then, in order to compute the support values of the candidate sequential
patterns, they use a tree structure, called candidate tree, where they attach each tree branch with
an element including two components : item name and dimensional scope value, and then they
traverse the tree and compute the support values traditionally as in Apriori or GSP algorithms.

In PrefixMDSpan, they extend the traditional PrefixSpan algorithm [41] taking into account
the dimensional values. The main difference is that there is a dimensional scope between the
frequent items of a prefix-projected database and its prefix. Therefore, in order to manage this
difference, they updated the definitions of prefix and postfix in the database projection of Pre-
fixSpan algorithm [25] in order to take into account the dimensional scopes. This is done by
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constructing a table, called IDM that stores for each item in the prefix-projected database :
the number of transactions containing this item along with its corresponding dimensional value.
Then, they generate frequent items and their dimensional values within this prefix-projected
database, and they append this information to the prefix in order to generate the frequent
(k + 1)-sequential patterns.

Their evaluation results show that PrefixMDSpan algorithm outperforms the AprioriMD
algorithm. These results are expected as the original PrefixSpan algorithm generally outperforms
original Apriori and GSP algorithms.

The notion of multi-dimensional data in this work is very specific to certain kinds of dimen-
sions. The items are no longer single values ; however, they are attached to their dimension values
to form a composite element ; this means that for the same item, there could be different ele-
ments. In addition, their work is restricted to data dimensions having sub-relations among each
others and thus it could not be applied on data dimensions that are heterogeneous, unrelated or
that contain different kinds of relations.

In their work, Huang et el., [29] discussed the work of Pinto et al., [45] and their proposed
algorithms. They claimed that although Seq-dim algorithm is efficient and scalable to mine multi-
dimensional patterns in high-dimension space, this method requires multiple scanning of projec-
ted databases to mine multi-dimensional patterns because the cost will increase as the amount
of data increases and as the dimensionality becomes higher. In this frame, they propose a new
algorithm ExtSeq-MIDim that employs the method of PrefixMDSpan algorithm proposed in [63]
to mine sequential patterns from multi-dimensional sequence data, then form projected multi-
dimensional database for each sequential pattern and use MIDim algorithm (Memory Indexing
for mining multi-dimensional pattern) to mine multi-dimensional patterns within the projected
multi-dimensional databases. The advantage of this proposed algorithm over PrefixMDSpan [63]
is that it reduces the times of scanning projected databases when mining multi-dimensional pat-
terns. MIDim algorithm first scans the projected multi-dimensional database only once to load it
into memory. After this step, it finds all frequent multi-dimensional values and outputs matched
multi-dimensional patterns. Then, it builds an index set of each prefix multi-dimensional pat-
tern, finds local frequent multi-dimensional values from index set and grows discovered patterns.
Finally, the algorithm recursively constructs an index set of the detected pattern and discovers
all multi-dimensional patterns.

This algorithm takes advantage of the concept of memory indexing without multiple scanning
of projected databases which makes it efficient and scalable. The only restriction in this algorithm
is that it mines web sequential data that are partitioned through three sub-related dimensions
as in the work of [63].

In 2005, Plantevit et al., [46] proposed a new algorithm,M2SP , for mining multi-dimensional
sequential patterns. They consider multi-dimensionality in the sense that the patterns do not
only contain several dimensions, but they are also combined over time. An example of a pattern
that they mine is as follows : "A customer who bought a surfboard together with a bag in NY later
bought a wet suit in SF". This pattern combines two dimensions (City and Product) over time
where some attributes appear before the others (NY appears before SF and surfboard appears
before wet suit). Table 1.10 displays an example of the dataset that they mine in their work.
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(D)
Date

(CG)
Customer-Group

(C)
City

(A)
Age

(P)
Product

(Q)
Quantity

1 Educ NY Y c 50
1 Educ NY M p 2
1 Educ LA Y c 30
1 Ret SF O c 20
1 Ret SF O m 2
2 Educ NY M p 3
2 Educ NY M r 10
2 Educ LA Y c 20
3 Educ LA M r 15

Table 1.10 – Transactions of customers’ purchases [46]

The dataset is comprised of six dimensions : The date of the transactions (D), customer’s
category (CG), customer’s age (A), the city of issuance of transactions (C), the product of
transactions (P ) and the quantity of purchased products (Q). For example, the fifth tuple means
that on date one, old retired customers bought two products m in San Francisco. In their work,
they generate frequent multi-dimensional sequences that deal with specified dimensions and
that are frequent with respect to other dimensions. In this concern, they consider three sets of
dimensions : (1) Dimension D called temporaldimension, (2) Dimensions A, P and Q called
analysisdimensions, (3) Dimensions CG and C are called referencedimensions. Tuples over
analysis dimensions are those that appear in the items that constitute the sequential patterns to
be mined. The table is partitioned into blocks according to tuple values over reference dimensions ;
the tuples in each block are ordered over temporal dimension and the support of a given multi-
dimensional sequence is the ratio of the number of blocks supporting the sequence over the total
number of blocks. For example, in order to generate frequent multi-dimensional sequences that
deal with the age of customers and the products that they purchased with respect to the groups
of customers and the cities where the transactions were issued, they partition the dimensions
as follows : (1) Dimensions customer’s age category (A) and the product of transactions (P )
are considered as the analysis dimensions (2) Dimensions customer’s category (CG) and city
of transaction issuance (C) are considered as the reference dimensions. The algorithm works as
follows. First, it splits the dataset into different blocks according to distinct tuple values over
reference dimensions. Figure 1.3 displays the blocks that are partitioned from the dataset in
Table 1.10. After that, it computes the support of a sequence by counting the number of blocks
that support this sequence where a block supports a sequence if all the multi-dimensional items
in the sequence satisfy a set of tuples in the block and have the same order in both the sequence
and the block.

In this work, they also introduce a new interesting form of sequences called “Jokerized Multi-
dimensional Sequence”. An item can only be extracted if there exists a frequent tuple of values
from analysis dimensions containing it. For example, it could happen that (Y, r), (M, r) and
(O, r) are all infrequent whereas the value r alone is frequent. In this case, they consider (∗, r)
which is said to be jokerized where the symbol ∗ represents any value in the corresponding
dimension. A jokerized item is a multi-dimensional item that contains at least one specified
analysis dimension, and it contains a ∗ only if no specific value from the analysis dimensions
can be set. In other words, by replacing any occurrence of ∗ with any value of its corresponding
analysis dimensions can not result in a frequent sequence. Therefore, a jokerized sequence is a
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Figure 1.3 – Blocks defined on Table 1.10 over dimensions CG and C [46]

sequence containing at least one jokerized item. In order to mine frequent jokerized patterns,
a levelwise algorithm is used in order to mine the frequent multi-dimensional items having the
least number of joker values possible. In this concern, they consider a lattice whose lower bound
is the multi-dimensional item (∗, ..., ∗) that is the most general level. This lattice is partially built
from (∗, ..., ∗) up to the frequent items containing as few ∗ as possible.

This algorithm is efficient as it considers mining a more generalized form of patterns in the
case where no possible specific frequent patterns could be generated. However, the algorithm
considers mining only two levels of granularity in the lattice instead of mining all possible items
from all levels of granularity in the lattice.

Multi-dimensional sequential pattern mining using hierarchical structures

When there is background knowledge or semantics about the data dimensions, they can
be formed in hierarchical structures representing the different dimensions or their attributes in
multiple levels of granularity. As discussed in section 1.2, this kind of data representation with
the knowledge that it provides is advantageous to the mining process as it would allow generating
rich frequent patterns which contain useful information.

In 1996, Srikant and Agrawal were the first to introduce the concept of hierarchy management
in the extraction of sequential patterns [56] ; however, their approach considers sequences of a
single dimension defined on several hierarchical levels. Several works were proposed later in order
to mine multi-dimensional data using hierarchical structures.

Han et al. [22] proposed mining association rules from multiple levels of a taxonomy, named
multiple-level association rules, by extending the Apriori algorithm [4] that considers mining
single-level association rules. Their approach concerns mining multiple-level association rules ;
however, it could be adapted in order to mine multiple-level frequent sequential patterns. Figure
1.4 displays their taxonomy concerning food categories. The algorithm uses different minimum
support thresholds (minsup) at different levels of the taxonomy, and it works as follows. It first
finds frequent patterns at the top-most level of the taxonomy. The support is then lowered as
going down through the taxonomy levels in order to find the frequent patterns at each level
assuming that only the descendants of frequent itemsets are the ones who should be generated.

The algorithm of mining multiple-level frequent patterns or association rules from hierarchical
structures is advantageous as it is a progressive mining process of refined knowledge from data
that would allow generating relevant resulting patterns that are interpretable. Nevertheless, the
multiple levels of abstraction in this algorithm concern only the mining process and not the gene-
rated frequent patterns. This algorithm allows generating frequent sequential patterns composed
of items that are strictly from the same level of granularity, named intra-level multi-dimensional
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sequential patterns.

Figure 1.4 – A taxonomy of food categories [22]

Plantevit et al., [47] proposed an new algorithm called M3SP that is an extension of their
previous work proposed in [46] for mining frequent multi-dimensional patterns. This new al-
gorithm takes both multi-dimensional and multi-level aspects into account where they mine
multi-dimensional sequential data at multiple levels of granularity among taxonomies of dimen-
sions. The difference betweenM3SP andM2SP algorithms is that theM2SP goes directly from
the most specific level in the taxonomy to the most general level, while in M3SP algorithm, it
goes to the most general level by passing the taxonomy level by level. The most general level in
the taxonomy is denoted by ALL in M3SP (which is denoted as ∗ in M2SP ). Table 1.11 shows
the dataset that they mine in their work.

(D)
Date

(CG)
Customer-Group

(A)
Age

(Loc)
Location

(Prod)
Product

(Qty)
Quantity

1 Educ Y Berlin beer 50
1 Educ Y Berlin pretzel 20
2 Educ Y London M2 30
3 Educ Y London wine 20
4 Educ Y NY M1 40
1 Educ O LA soda 20
2 Educ O Paris wine 30
2 Educ O Berlin pretzel 10
3 Educ O Paris M2 20
1 Ret Y London whisky 20
1 Ret Y London pretzel 20
2 Ret Y Berlin M2 30
1 Ret O LA chocolate 50
2 Ret O Berlin M1 20
3 Ret O NY whisky 20
4 Ret O Paris soda 30

Table 1.11 – Customers’ purchases [47]
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In this approach, they mine rules like :When the sales of soft drinks are high in Europe, exports
of Perrier in Paris and exports of soda in the US become high later on. This rule combines two
dimensions (Location and Product) over time and at different levels of granularity among the
dimensions of the taxonomies (Perrier and Soda are kinds of soft drinks). Figures 1.5 and 1.6
display the hierarchies of the dimensions "product" and "location".

Figure 1.5 – Hierarchy of dimension "Product"

Figure 1.6 – Hierarchy of dimension "location"

M3SP algorithm uses all the concepts of M2SP including dividing the multi-dimensional
sequential database into different blocks. They mine frequent sequences based on the maximal
atomic frequent sequences, referred to as maf -sequences. The atomic sequence < a > is said to
be a maf -sequence, if < a > is frequent and if for every multi-dimensional item a′ such that a′

is more specific than a , the sequence < a′ > is not frequent.
The algorithm is composed of two steps. First, maf -sequences are mined following a stra-

tegy inspired from BUC algorithm [7]. Then, all frequent sequences that can be built up ba-
sed on maf -sequences found in the previous step are mined using SPADE algorithm [64]. A
maf sequence is generated by first computing all frequent minimal atomic sequences which are
all sequences of the form : < {ALL1, ..., ALLi−1, di, ALLi+1, ..., ALLm} > where ALLi is the
most general item in the ith analysis dimension’s taxonomy, m is the number of analysis di-
mension and di is the direct successor of the ALL in the ith analysis dimension. Then, M3SP
prunes from the taxonomy of each analysis dimension all values di and their successors such that
< {ALL1, ..., ALLi−1, di, ALLi+1, ..., ALLm} > is not frequent. Then, based on the frequent se-
quences generated in this previous step, the algorithm generated recursively all the frequent maf
sequences. After this step, frequent sequences are mined using SPADE algorithm [64]. Examples
of frequent multi-dimensional sequences obtained by their algorithm are : <{(EU, pretzel), (EU,
a drink)}, {(EU, M 2)}>, <{(U S A, ALL Prod )}> and <{(Berl in, ALL Prod )}>.

M3SP algorithm is an efficient algorithm that allows extracting various patterns that are
at multiple levels of granularity. It is well-adapted for mining sequential datasets of sequences
containing items ; however, this algorithm is not suitable for mining sequences containing a
combination of items and itemsets.

Egho et al. [12] proposed an algorithm called MMISP for mining multi-dimensional itemset
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sequential patterns. Their data is in the form of complex sequences including both items and
itemsets. It incorporates background knowledge in the form of hierarchies over attributes.

Table 1.12 displays their database that contains multi-dimensional itemsets data sequences
where P represents patients and T represents patients’ trajectories, and figure 1.7 displays
examples of their data dimensions that are represented in the form of taxonomies over their
attributes. This algorithm generates a novel kind of patterns that contain events which are ge-
nerated by combining items and itemsets. An example of an event is :
e = (UHParis, C1, {p1, p2}, {drug1, drug2}) is an event, where UHParis and C1 are two multi-
dimensional items representing the two dimensions (hospital and diagnosis), {p1, p2}, {drug1, drug2}
are two itemsets representing the medical procedures and the medical drugs. They define a
multi-dimensional itemset data sequence as a sequence composed of events. An example of a
multi-dimensional itemset data sequence is : s =< e1, e2, ..., el >.

P T
P1 〈(UHParis, C1, {p1, p2}, {drug1, drug2}), (UHParis, C1, {p1}, {drug2}), (GHLyon, R1, {p2}, {drug2})〉
P2 〈(UHParis, C1, {p1}, {drug2}), (UHParis, C1, {p1, p2}, {drug1, drug2}), (GHLyon, R1, {p2}, {drug2})〉
P3 〈(UHParis, C1, {p1, p2}, {drug1, drug2, drug3}), (GHLyon, R1, {p2}, {drug2, drug4})〉
P4 〈(UHParis, C1, {p2}, {drug1, drug2}), (UHParis, R2, {p3}, {drug2}), (GHLyon, R2, {p2}, {drug3})〉

Table 1.12 – A database of patient trajectories [12]

Figure 1.7 – Taxonomies for hospitals and diagnoses

Their algorithm mines the most specific multi-dimensional itemset sequential patterns with
different levels of granularity at each dimension. It follows a bottom-up approach and works
as follows. The first step of the algorithm is mining frequent multi-dimensional items from the
events of the sequences where these items could exist at different levels of granularity. To this end,
they adopt the database partitioning method that was introduced in [47] where they consider
temporal, analysis and reference dimensions, and they partition the database into different blocks
and compute the supports of multi-dimensional items accordingly. In their example, they consider
the dimensions as follows : D (Date) is the temporal dimension, H (hospital) and D (disease)
are the analysis dimensions and P (patient) is the reference dimension. Figure 1.8 displays the
block partitioning of the database with respect to the reference dimension.
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Figure 1.8 – Block partitioning of the database according to the reference dimension (Patient)

They define a multi-dimensional component as a tuple of dimensional items ; then, they ge-
nerate frequent multi-dimensional components by the product of all partially ordered sets of
dimensions, and they build an iceberg semi-lattice whose nodes are multi-dimensional compo-
nents and mine frequent multi-dimensional components from the lattice. An example of a frequent
multi-dimensional component is : (UHParis, C1).

The second step of the algorithm is mining frequent itemsets where they aim at extracting
the set of all items that are frequent in a 1-sequence. They use a traditional sequential pattern
mining algorithm to mine the itemsets by adapting it in order to generate only 1-sequential
patterns. The third step is generating frequent events, and it is achieved by combining frequent
multi-dimensional components with frequent itemsets. To this end, they construct a prefix-tree
such that each branch of the tree represents an event as follows. The first level in this tree is
composed of the frequent multi-dimensional components and from the second level of the tree
until reaching the leaves, each level consists of frequent itemset candidates for each itemset
part in the vector of itemsets. The final step of the algorithm is generating frequent multi-
dimensional itemsets patterns. To achieve this goal each branch (event) in the prefix tree is
assigned a unique identifier ; an example is as follows : e1 : (UHParis, C1, p1, drug1) where e1 is
the identifier of this event. In addition, each block, having a unique identifier, is transformed
into a sequence according to the date and content of the block ; thus, a database containing
sequences of events is obtained. An example of a sequence in this database is as follows : P1 :<
{e1, e2, e3, e4, e5, e6, e7, e8, e9}{e2}{e10} >. Then, a standard sequential pattern mining is applied
on the transformed database to generate frequent sequences of events consisting of items and
itemsets.

This approach provides a novel kind of multi-dimensional patterns that contain multi-dimensional
events where an event is a complex structure consisting of items and itemsets. The data in their
dataset come from multiple data sources ; however, the different data sources are homogeneous
where they provide the same kinds of data having the same structure. Therefore, this approach
works strictly for a specific structure of data and the different data sources need to be homoge-
neous.

1.3.4 Multi-dimensional pattern mining using star schema

Some works distinguish multiple levels of importance (different roles) of the data dimensions
by representing the data in different structures ; one of these structures that is widely used is the
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star schema [53]. A star schema is an architectural model that consists of one or more central
fact tables surrounded by a set of dimension tables and the joins that relate the dimension tables
to the fact tables. A fact table usually contains numeric measurements as well as the foreign keys
of all the dimension tables surrounding it, and it is the only type of table which has multiple
joins with the other tables. A dimension table contains a key column (or columns) that acts
as a unique identifier as well as other descriptive columns. Figure 1.9 displays an example of a
movie star schema that contains six dimension tables (Movie, Date, Director, Studio, Award and
Epoch) and a fact table linking all the different dimensions.

Figure 1.9 – Star schema structure of movies database [55]

Different approaches using the star schema structure were proposed across time where the
main advantages of this structure is that they avoid the high cost of the entire join operations
by eliminating this process and taking advantage of the properties offered by the star schema
[54, 31, 10, 38, 61].

Silva et al, [54] proposed to mine frequent patterns in a star schema based on FP-Growth
algorithm [26]. Their proposed algorithm does not materialize the entire join between the tables ;
instead, it constructs an FP-Tree for each dimension and then combines them to form a super
FP-Tree, that is then used as input to the FP-Growth algorithm. First, the fact table is scanned
to count the support of each foreign key. After this step, an FP-tree is constructed for each
dimension table, named DimFP-Tree. After this step, a global FP-Tree structure, named Super
FP-Tree is built where it combines the branches in all the DimFP-Trees, accordingly to the
facts. Finally, it calls the original FP-Growth algorithm having this tree as input in order to find
multi-relational patterns.

This approach is advantageous in its number of database scans as it scans the database
only twice. However, a limitation of this approach is that it is not scalable ; when the number
of dimension tables is very large, the number of DimFP-Tree to be built becomes large which
increases the cost of this process as well as the complexity of combining these DimFP-Trees in
order to build the Super FP-Tree.
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1.3.5 Contextual sequential pattern mining

Using background knowledge in the domain of frequent pattern mining can help discovering
patterns, as well as finding completely new patterns that originate from combining the original
data with additional background data [39]. In this frame, some works consider that having a
better knowledge about the features of objects would help in better understanding these objects
and thus would help in interpretability and decision making. This knowledge that is represented as
a set of descriptive dimensions about the objects is known as contextual information. An example
of contextual information in the domain of customer purchase is the age category : young, middle
and retired. Therefore, the understanding of the resulting patterns and the decision making
process in this case could depend on the age category of customers. Contextual information
is usually provided with data sequences. Stefanowski et al., [57] define contextual information
as additional information specifying elements or sequences. They discuss that context attributes
could be introduced both for describing the complete sequence (e.g. characterizing user profiles)as
well as each element in the sequence (describing circumstances for succeeding transactions).

Some works focused on mining sequential patterns where the contextual information is added
to the whole sequence [48]. The process of mining traditional sequential pattern mining when
data sequences are associated with contextual information has limitations. The first limitation is
that a sequence needs to be frequent in the whole database in order to be detected as a frequent
sequence, based on the concept of the support value that depends on the frequency of this
sequence in the database. However, this pattern may be frequent only for a certain context and
not frequent for others. For example, in the customer purchase, buying video games is frequent ;
however, when analyzing the database, we notice that it is only frequent for young customers
while not frequent for old customers, but it has been generally detected as frequent as there is a
small number of old customers in the database. The second limitation is that a pattern could be
frequent in a certain context but not frequent in the whole database ; in this case, this pattern
is not detected as frequent and this information that could have probably been important would
be lost. For example, buying newspapers is not frequent in the whole database ; however, it is
frequent for old customers (4 out of 5 old customers buy it), but as the number of old customers
is small in the database (only 5 out of 16 customers are old), and it is not detected as frequent.
Due to these limitations, adding contextual information to the sequential data is important to
obtain more precise and interpretable patterns.

We describe below the definitions of a contextual database, a context, a sequence database
of a certain context and contextual sequential pattern as discussed in [48], [49].

Definition 1.3.1. (Contextual Database)

A contextual sequence database CD is defined as a relation R(ID, S,D1, ...Dn), where dom(S)
is a set of sequences and dom(Di) for 1 ≤ i ≤ n is the set of all possible values for Di.
D1, D2, ...Dn are called the contextual dimensions in CD.

A tuple u ∈ CD is denoted by < id, s, d1, ..., dn >.
Values on contextual dimensions can be organized as hierarchies where each dimension is

represented in a hierarchy with its values from the most general to the most specific.

Table 1.8 could be viewed as a contextual database as it contains data sequences as well as
different dimensions that could be viewed as contextual dimensions. Hierarchies over dimensions
"City" and "Age Group" that are found in Table 1.8 are displayed in figures 1.10 and 1.11.
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Figure 1.10 – Hierarchy of dimension "City"

Figure 1.11 – Hierarchy of dimension "Age Category"

Definition 1.3.2. (Context)

A context c in CD is denoted by [d1, ...dn] where di ∈ dom′(Di). If, for 1 ≤ i ≤ n,di ∈ dom(Di),
then c is called a minimal context. The set of all contexts associated with the partial order > is
called the context hierarchy. Let u =< id, s, d1, ...dn > be a tuple in CB. The context c such that
c = [d1, ...dn] is called the context of u.

A context hierarchy over the context dimensions represented in figures 1.10 and 1.11 is dis-
played in figure 1.12.

Figure 1.12 – Context hierarchy of context dimensions "City" and "Age Group" of Table 1.8

Definition 1.3.3. (Sequence database of a context)

Let c = [d1, ...dn] be a context in CB and U be the set of tuples contained by c. The sequence
database of c, named B(c), is defined as the set of tuples < id, s >, such that ∃u ∈ U with
u =< id, s, d1, ...dn >. The size of a context c, named |c|, is defined as the size of its sequence
database (|c| = |B(c)|).

Definition 1.3.4. (Contextual Sequential Pattern)
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Let c be a context and s a sequence.. s is frequent in c only if it is frequent in B(c) (if
supB(c) > minsup.
A contextual sequential pattern is a couple (c, s), such that s is c-specific. A sequence s is c-
specific to c only if : (1) s is frequent in c, (2) s is general in c which means that s is frequent in
all the descendants of c in the context hierarchy and (3) there does not exist a context c′, such
that c′ > c and s is general in c′

Rabatel et al [48] proposed an approach in order to mine contextual sequential patterns.
They add context awareness to the extraction of frequent sequential patterns in order to mine
patterns that are more precise than traditional sequential pattern mining and multi-dimensional
sequential patterns.

Their approach mines the whole sequence database in a single process in order to extract
contextual sequential patterns. In a similar concept of representing the multi-dimensional data in
hierarchical structures over their attributes , in this approach they represent the dimensions in the
form of hierarchies over their attributes, and from these hierarchies of dimensions, they construct
a context hierarchy by associating the set of all contexts with the partial order >. They defined
more or less general contexts. For example, the context corresponding to professional middle-aged
customers is less general than that corresponding to professional customers.

Their proposed algorithm works as follows. The first part of the algorithm is to extract
frequent sequences in minimal contexts as all contextual sequential patterns can be generated
from this set of sequences ; then for each frequent sequence, they extract the corresponding set of
minimal contexts where it is frequent. This part is based on PrefixSpan algorithm [41] with the
differences are in the process of support calculation of the items where it is calculated in each
minimal context of the s-projected database as well as the process of constructing s-projected
databases where they only consider sequences found in minimal contexts. The second part of
their algorithm is generating the set of contextual sequential patterns from the set of sequences
obtained in the first part of the algorithm. A sequential pattern is extracted with the set of
minimal contexts where it is frequent. From this set, they generate the contextual sequential
sequential patterns which are obtained by this sequential pattern.

This approach has similar data characteristics as certain multi-dimensional sequential pattern
mining approaches, for example the work in [45]. The advantage of this approach over that of
Pinto is that it treats the data dimensions as contextual dimensions and establishes relations
between different dimensions through the context hierarchy that combines all dimensions at
their different levels if attributes. This enriches the value of the dimensions and their attributes
and thus results in generating more precise and interpretable resulting patterns. However, this
approach could have a high complexity when the number of context dimensions and/or attributes
is large due to concept of context hierarchy that integrated all context dimensions and their
attributes. In addition, this approach provides contextual information to the whole sequence.
Other works has focused not only on contextual information added to the sequences as a whole
but also on the elements of the sequences.

In this frame, Ziembinski et al., [70] proposed a new algorithm, called ContextMapping al-
gorithm, in the domain of sequential pattern mining named Context Based Sequential Pattern
Mining (CBSPM). It considers contextual information on two levels : the sequences and the ele-
ments of the sequences. In addition to the sequence context previously described, they introduce
a new type of context, named the element context. The element context is assigned to each
element in the sequence and it describes circumstances of an event/transaction referring to the
itemset in this element. They consider that an element of a sequence is frequent if the number
of other sequences containing similar elements is greater than the minimal support threshold
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required by the user (minsup).
The first step is to detect frequent contexts in the database. The algorithm constructs a list

of contexts similar to other contexts in the database. Then, it calculates the similarity between
contexts with respect to appropriate similarity functions and threshold values. If the number of
similar contexts in the list (corresponding to different sequences) is greater thanminsup, then this
context is considered as frequent. After this step, it performs a mapping procedure that maps each
frequent context to two interconnected artificial items, calledA andB, respectively. In the original
sequence, it replaces the frequent context by item A and adds item B to itemsets of all elements
from other sequences on the list. It also maps the sequence context to an additional artificial
element added at the beginning of every sequence and similarly to contexts of elements by
artificial items. This mapping transforms similar context sequences into traditional-like sequential
database having only nominal items. The next stage of the algorithm is to mine context patterns
using an adapted version of PrefixSpan algorithm [25]. The algorithm ensures that all patterns
must contain an additional element representing the sequence context and further sequence of
elements being a pattern body. Each pattern element must contain an artificial item representing
the frequent context and frequent itemset [58]. In a final step, the algorithm performs a reverse
mapping of the mined patterns where it replaces the artificial items with their corresponding
context values and thus the frequent contextual patterns are generated.

The introduction of contexts not only on the level of a sequence but also at the level of ele-
ments of a sequence is advantageous as it allows obtaining richer and more informative patterns.
However, the number of mined patterns is definitely multiplied and the mining process becomes
more complex and time consuming as the patterns contain contextual on two levels (sequences
and elements), and this information is added to the sequences which results in longer patterns
containing information of a more complex structure.

In these previously described approaches in the domain of contextual sequential pattern
mining, the structure of context attributes is homogeneous for all objects of the same type (se-
quences or elements) ; therefore, these approaches do not take into consideration heterogeneous
structures of context dimensions and their attributes, while in real life datasets, different dimen-
sions could have heterogeneous structures.

1.4 Conclusion

In this chapter, we have presented and analyzed related works in the domain of sequential pat-
tern mining. Then, we have discussed the various kinds of data : multi-source, multi-dimensional
and relational data that constitute a multi-* dataset. We then detailed the literature review of
the most interesting works proposed for mining these kinds of data.

From this review, we consider that in most of the cases, the multi-dimensional data could be
viewed as multi-source and vice versa, and that the data dimensions can be provided by multiple
data sources. These data sources can thus be either homogeneous or heterogeneous. For example,
the multi-dimensional data in [45] can be be viewed as multi-source data where data dimensions
can be provided by different data sources. We also consider that the multi-dimensional data can
be viewed as contextual data if they represent descriptive data about the users. For example,
the multi-dimensional data in [45] can also be viewed as contextual data to the users and thus
to their data sequences. Thus, the resulting multi-dimensional sequential patterns can also be
considered as contextual sequential patterns. Similarly, contextual data can be represented as
multiple data dimensions where each dimension provides one context.

Hence, this allows us to conclude that multi-source, multi-dimensional and relational mining
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techniques can be used for mining multi-* data depending on the view of the data as well as on
the desired information constituting the patterns.

From the related work of the mining of multi-* data, we notice that there are several works
that can be interesting in our research study ; however, each one of them has its specific limitations
concerning our work.

Seq-Dim algorithm, proposed in [45], has been proved to be an efficient algorithm, and we
consider that it is interesting for mining multi-* data as it mines the sequential patterns and
then attaches to it the corresponding frequent multi-dimensional patterns. It avoids the single
mining process as in UniSeq due to its high complexity, and it also avoids mining useless multi-
dimensional patterns whose sequential patterns are not frequent as in Dim-Seq. However, this
algorithm does not support additional sources providing information to the elements in the
sequences, and thus it only supports attaching the frequent multi-dimensional information to
the sequences as a whole.

We find the star schema structure that is proposed in [53] an interesting structure as it sup-
ports multiple level of importance of different tables and avoids the cost of entire join operations.
However, to the best of our knowledge, its use is limited to the extension of patterns where no
information could be provided to the elements of the patterns.

We consider that the approach proposed in [70] in the domain of contextual sequential pat-
tern mining is a very interesting approach as it considers the contextual information on two
levels : the sequence and the elements of the sequence. As to our knowledge, it is the only work
that proposes contextual information to the elements of the sequences. This allows providing
additional information to the item ids in the sequences. However, we consider that the limitation
of this work relative to our research problem is in the way of handling the contextual data of
the elements of the sequences. The contextual data of the sequence elements are added to the
sequences, and we consider that this increases the complexity of the mining process especially
when the length of the sequences is large. Furthermore, although they provide additional infor-
mation to the elements of the sequences in this approach, this information is added as contexts
to the elements. Certain different items could have a similar context ; however, as the item ids
are different, they will not be detected as frequent.

In all these approaches, the common limitation relative to our research study is that they
are not capable of handling the problem of data similarity on the level of one data source in
the multi-* data. Therefore, in our work, we propose to benefit from the advantages of these
approaches while handling the limitation represented in the similarity of the items among the
sequential data in a multi-* dataset with limited complexity.
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In this chapter, we discuss our proposed approach for mining frequent patterns from multi-*
data. Such kind of data constitutes a complex and heterogeneous dataset. Despite its complexity,
such dataset is rich as it contains various kinds of data. Therefore, the challenge is to manage such
kind of data in an efficient manner with low complexity in order to generate rich and valuable
information. In this concern, we determine different kinds of relations among data sources and
we propose a novel algorithm, G_SPM, that mines multi-* data by relying on these relations
in order to handle the problem of item similarity among patterns through obtaining frequent
general patterns with low algorithm complexity.

In section 2.1, we describe the different kinds of data sources constituting a multi-* dataset.
In section 2.2, we discuss the different kinds of relations that can be determined among data
sources. In section 2.3, we discuss the existing approaches that could be used for mining these
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different kinds of relations. In section 2.4, we present preliminary definitions used in our proposed
algorithm. Finally, in section 2.5, we present G_SPM algorithm for mining general sequential
patterns.

2.1 Data sources description in multi-* dataset

A multi-* dataset consists of multiple data sources. These data sources provide data of
heterogeneous kinds where each data source provides one or more kinds of data. In this concern,
we propose to classify the data sources into two main categories based on the kinds of data that
they provide as follows : (1) sequential data sources and (2) descriptive data sources.

2.1.1 Sequential data source

A sequential data source provides data sequences which contain items/itemsets of a specific
order where each item/itemset has its own timestamp and an item can not occur more than
once in an itemset. A data sequence, represented by user id, could consist of digital activities
performed by the users on their system over a specific period of time where an item represents
a user’s digital activity that is performed at a specific timestamp.

Some examples of sequential data in different domains are as follows. In healthcare domain,
sequential data could represent sequences of diseases diagnosed and medications prescribed to
patients across time. In e-learning, sequential data could represent the sequences of pedagogical
resources (exams, quizzes, exercises, etc) performed by the students on their virtual learning
environment (VLE) during an academic semester. In the domain of customer purchase, sequential
data represents the sequences of products purchased by each customer across a period of time ;
an example of this data is displayed in Table 2.1. Each row in the table represents a customer’s
id and a data sequence representing the purchased products by this customer. For the sake of
clarity of our examples, we use item names instead of item ids in the data sequences in Table
2.1. A sequential pattern that can be obtained from the sequential database represented in the
table with minsup = 4 is p :< Sugar, Croissants > which appears 6 times in the sequential
database.

Customer-id Sequence
1 <cappuccino, sugar, cigarettes, croissants, brownies>
2 <white-vinegar, cigarettes, milk, cola, cookies>
3 <espresso, sugar, croissants, cookies, soda>
4 <cigarettes, cappuccino, sugar, croissants, brownies>
5 <sugar, espresso, milk, cola, soda>
6 <cappuccino, cola, sugar, croissants, brownies>
7 <espresso, sugar, cola, croissants, cookies>
8 <espresso, sugar, white-vinegar, croissants, cookies>

Table 2.1 – Sequential purchases of customers

2.1.2 Descriptive data sources

This category of data sources contains all kinds of descriptive data. It can take the form
of different descriptive data attributes. Data attributes can be numerical such as integers or
decimals ; other attributes can be textual such as attributes representing date or time, etc. This
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category of data sources is divided into two subcategories : descriptive data sources of objects
and descriptive data sources of items.

Descriptive data sources of objects

This category of data sources includes all kinds of data describing the objects. It can take
the form of data dimensions representing users’ demographic information as well as other various
descriptive data about users.

For example, in the domain of customer purchases, there could be data sources providing des-
criptive data about the users in the form of different data dimensions as follows. The dimensions
could represent users’ demographic information like age, gender, address, employment status,
etc. They could also represent descriptive data about the interests of users. The various des-
criptive data describing the users could be provided by a single data source or by multiple data
sources where each data source provides one or more data dimensions representing various kinds
of descriptive data, and each dimension has several descriptive attributes. Table 2.2 represents
the descriptive data of the users in Table 2.1. The data dimensions in this table are : Customer
id, Age category, Gender and Employment. For each customer-id, there is an attribute represen-
ting each dimension. For example, row 3 of the table represents customer-2 with the attributes :
young for the dimension "Age category", male for the dimension "Gender" and unemployed for
the dimension "Employment".

Customer id Age category Gender Employment
1 young female employed
2 young male unemployed
3 old female employed
4 young female employed
5 young male unemployed
6 old male unemployed
7 old female employed
8 young male employed

Table 2.2 – Descriptive data of customers

Descriptive data sources of items

This category of data sources provides data describing the items that constitute data se-
quences which represent the sequential activities performed by users. It can take the form of
different data dimensions coming from single or multiple data sources. Table 2.3 displays the
descriptive data of items in the sequences provided in Table 2.1. The data dimensions in this
table are : Product id, Product name, Category, Expiry date, Price and Weight. Each product id
has an attribute describing each dimension. For example, row 3 of the table has the attributes :
espresso, coffee, Casino, Jan-2021, 5 and 250 for the dimensions respectively.

2.2 Proposition for a structure of relations between data sources

A dataset formed of multiple data sources from these two categories would be a heterogeneous
dataset. Although the heterogeneity of the dataset makes it complex, it allows extracting rich
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Product name Category Brand Expiry date Price ($) Weight (g)
cappuccino coffee Casino Dec-2020 5 280
espresso coffee Casino Jan-2021 5 250
sugar powdered sugar Daddy Nov-2021 2.5 930
croissants pastry Pasquier May-2020 4.35 640
cigarettes tobacco Marlboro Dec-2021 7 18.52
cookies sweets Nestle Aug-2020 3.39 356
white vinegar vinegar Melfor Feb-2021 2.30 0.98
milk dairy product Regilait Jan-2021 5.40 750
soda soft drink Soda Mar-2021 1.95 390
cola soft drink Coca-cola Mar-2021 1.8 384
brownies sweets Nestle Oct-2020 3.70 360

Table 2.3 – Descriptive data of sequence items of Table 2.1

and valuable information that contains various kinds of data. The main challenge lies in how to
extract valuable information from this complex dataset with a limited complexity.

Data sources could have relations among each other where there could be different kinds of
relations among different data sources depending on the involved sources and the data that they
provide.

As previously discussed in chapter 1 in the domain of contextual sequential pattern mining„
Ziembinski et al., [70] proposed to consider contextual information on two levels : the sequences
and the elements of the sequences. We consider that these two types of context can be exploited
for determining two kinds of relations between different data sources in a multi-* dataset.In
this frame, we determine two types of relations between data sources : contextual relation and
complementary relation.

Figure 2.1 presents a 3-source dataset. The sequential data source contains contains sequential
data of customers representing customer’s sequential activities. The descriptive data source of
customers contains descriptive data about the customers : their age, gender and employment.
The descriptive data source of items contains descriptive data about the sequence items : name,
category, brand, etc. Each data source thus provides data related to a specific perspective :
purchase activity, customers or items.

2.2.1 Contextual relation

As previously mentioned, the sequential data source represents the activities of the users
by providing sequences of digital activities of the users represented by user ids. The descriptive
data source of users provides descriptive attributes about each user, associated with the user id.
Although these two data sources provide data of different kinds, the data are provided to the
same object, that is the user. Therefore, we can consider that there is a relation between the
sequential data source and the descriptive data source of users as they are connected through
user id. We view the descriptive data source of users as a contextual data source providing
contextual data to the sequential data source ; thus, the descriptive data of a user are considered
as contextual data to this user and thus to its data sequence as a whole. We call the relation
between these two kinds of data a contextual relation. The contextual relation is highlighted in
figure 2.1 where it is between the data source of sequential purchase activity and the descriptive
data source of customers.

42



2.2. Proposition for a structure of relations between data sources

Figure 2.1 – A 3-source dataset with contextual and complementary relations

Let us take a concrete example that illustrates this kind of relations. The sequential data
source provides the sequential data displayed in Table 2.1 which represent data sequences of pro-
ducts purchased by customers. Table 2.2 provides descriptive data dimensions to each customer.
Therefore, we consider the descriptive data of each customer, represented as several descrip-
tive attributes, as contextual data to the data sequence of this customer. For example, the
data sequence of customer-1 provided by the sequential data source is as follows : customer-
1 : < cappuccino, sugar, cigarettes, croissants, brownies >, and the descriptive attributes of
customer-1 provided by the descriptive data source of users are : {young, female, employed}.
These attributes are thus considered as contextual data provided to the data sequence. From
this data, we can obtain a contextual data sequence, that is a data sequence having one or more
contexts, of customer-1 as follows :

s = {young, female, employed} < cappuccino, sugar, cigarettes, croissants, brownies >.
This contextual data sequence means that an employed young female purchased cappuccino,
then she purchased cigarettes, after that she purchased croissants, and she finally purchased
brownies.

When we only consider the sequential data source in the mining process with minsup =
4, the following sequential pattern would be generated : p =< sugar, croissants > (support =
6). This sequential pattern means that purchasing sugar then croissants is a frequent sequential
activity.

When considering the sequential data source as well as the descriptive data sources of
items in the mining process, the following contextual sequential pattern would be generated :
{female, employed} < sugar, croissants >. This contextual sequential pattern means that em-
ployed females frequently purchase sugar then croissants.

The contextual information provides more precise information that would allow determining
the category of customers for whom this pattern is frequent. For example, from such a frequent
pattern, we can understand that this sequential pattern is frequent specifically for female custo-
mers who are employed, while for instance, it might not be frequent for unemployed females. This
shows the importance of the contextual relation in generating more precise frequent patterns and
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thus more precise and reliable personalized recommendations.

2.2.2 Complementary relation

Unlike the contextual data source, which provides contextual information to the data se-
quences of users where the information is provided to the sequence as a whole, the descriptive
data source of items provide additional descriptive data to each item in the data sequences where
each item, represented by the item id, has several attributes describing it. This contrast allows
us to determine a second kind of relations between the descriptive data source of items and the
sequential data source providing sequences of items ; these two kinds of data sources are thus
connected through the item id.

In the sequential data source, only item ids are provided in the data sequences. An item id
represents a unique identifier of the item, and it can not be shared among different items ; there-
fore, it is the most specific kind of information about the items. However, descriptive attributes
are not unique, and they can be shared among different items. for example, the two items cap-
puccino and espresso share the same attributes : coffee, Casino and 5 for the data dimensions :
Category, Brand and Price respectively. Therefore, we view the descriptive data source acts as an
additional data source to the sequential source which provides more general information about
each item in the sequence. For this reason, we call the relation between the sequential data source
and the descriptive data source of items the complementary relation, and we consider that it has
an important role in providing general information to the items of the sequences when needed.
The additional information about the items makes the resulting patterns more understandable
and thus more reliable.

The contextual relation exists as frequently as the number of users in the database ; however,
the complementary relation exists as frequently as the number of items in each data sequence
of the users. Therefore, the complementary relation exists more frequently than the contextual
relation in such a multi-* dataset.

2.3 Proposition for managing relations

We have defined two distinct kinds of relations in such a multi-* data. The contextual relation
provides descriptive data to the users ; this relation allows adding contextual information to the
data sequences in order to obtain a more precise frequent patterns as discussed in [48]. While
the complementary relation provides descriptive data to the items of the sequences ; this relation
allows adding more general data to the items and thus to the sequences in order to obtain a more
general form of frequent patterns. Therefore, each kind of these two relations has a different role
in the mining process. From our point of view, the first relation adds preciseness, while the second
one adds generality to the resulting frequent patterns. Managing the data sources of a multi-*
dataset together allows maintaining these relations among the data sources. Therefore, taking
advantage of both relations among different data sources in the mining process of a multi-*
dataset would allow obtaining a rich and unique form of frequent patterns containing specific
and general information at the same time.

In order to perform the mining process and extract the needed information from a multi-*
dataset, we consider the data source that contains the most important and indispensable kind
of data needed in order to extract the needed information as the main data source, and we start
by mining this data source.

In our dataset, we consider that the sequential data source as the main data source for two
main reasons. Our main objective is to analyze and understand users’ behaviour where the beha-
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vior is sequential. This kind of data is provided by the sequential data source ; therefore, if there is
only one data source to be considered in the mining process, then it should be the sequential data
source as it provides the indispensable sequential data which, when mined, generates frequent
sequential patterns that would help in understanding the behavior. In addition, the common
point between the two different kinds of relations among data sources is that different kinds of
descriptive information is provided to the sequential data source, whether to the data sequences
or their items. The contextual relation allows providing contextual data to the data sequences of
the users. On the other hand, the complementary relation allows providing additional descriptive
data to the items in the data sequences. Therefore, for these reasons, we consider the sequential
data source as the main data source in the multi-* dataset. The other data sources are thus
considered as additional sources that provide data to the main data source allowing to generate
more sequential patterns containing various kinds of information.

From these relations, we understand that the approach of mining data sources in a separate
manner is inadequate to a multi-* dataset as it would lead to the loss of relations existing between
different kinds of data sources. On the other hand, the approach of integrating all data sources
of different kinds together would be inefficient as the complexity of the mining process would be
high due to data heterogeneity. Due to the inefficiency of mining a multi-* data using existing
approaches and obtaining valuable results in a limited complexity, we propose to take advantage
of the multi-* data by managing the relations existing between the data sources in order to
obtain valuable information from all kinds of data sources in the dataset.

2.3.1 Managing contextual relation

Various algorithms in the literature were proposed in order to mine sequential patterns as-
sociated with contextual data in the form of multi-dimensional sequential data [45, 49, 70]. One
algorithm is Seq-Dim algorithm, which is proposed by Pinto et al., [45] and discussed in section
1.3 of chapter 1. This algorithm first mines sequential patterns ; then for each generated sequential
pattern, it associates its frequent multi-dimensional information. This multi-dimensional infor-
mation contains descriptive information to the users which could thus be considered as contextual
information to the sequential pattern. This algorithm, among others, is therefore efficient for ma-
naging the contextual relation and extracting frequent sequential patterns associated with their
contextual information.

Therefore, the contextual relation can be efficiently managed using existing approaches in
the literature which mine sequential data associated with their relative contextual data. We thus
use Seq-Dim algorithm in order to manage the contextual relation in the multi-* dataset.

2.3.2 Naive approaches for managing complementary relation

If we consider taking advantage of the descriptive data sources of items in the sequential
mining process of the data provided by the sequential data source, then we can have additional
descriptive attributes for each item in the sequence which allows to better understand these items
and thus the sequences.

The multi-dimensional data in the work of Pinto et al. [45] can be considered as contextual
data which describe the whole sequence where there are no descriptive attributes for each item
in the sequence. Therefore, SeqDim approach does not support such kind of descriptive data
attributes which describe each item in the sequence and not the sequence as a whole, and it thus
does not support managing the complementary relation.

However, traditional sequential pattern mining algorithms which are designed to mine a single
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data source can be used to manage the complementary relation and thus mine the data coming
from the sequential data source and the descriptive data source of items by adopting two naive
approaches. The first approach is substituting the item ids in the sequences with their set of
descriptive attributes, and the second approach is adding to each item in the sequence its set of
descriptive attributes. We describe these two approaches as follows.

Substituting item id with its descriptive attributes in sequences

In this approach, the ids of the items in the sequences are substituted with their descriptive
attributes to obtain sequences of itemsets containing descriptive attributes for each item. In
contrary to the item id in the sequence, which is the most specific kind of data, the descriptive
attributes of items represent a more general kind of data. Let us consider the example of the data
sequence of customer-1 in Table 2.1 : < cappuccino, sugar, cigarettes, croissants, brownies >.
By replacing the item names of the sequences by their respective descriptive attributes from Table
2.3, the following sequence is obtained : < {coffee,casino,Dec-2020, 5, 280}, {powdered sugar,
Daddy,Nov -2021, 2.5, 930}, {tobacco,Marlboro,Dec-2021, 7, 18.52}, {pastry, Pasquier, May-2020,
4.35, 640}, {sweets,Nestle,Oct-2020, 3.70, 360} >.

Obviously, this obtained sequence is larger than the traditional sequences provided by the
the sequential data source as it contains a set of 5 descriptive attributes in the place of an item
id for each item in the sequence. In addition, this sequence is more complex than traditional
sequences as it contains multiple and heterogeneous descriptive attributes.

The advantage of this approach is in generating a significantly larger number of frequent
patterns especially when the number of attributes is larger. However, as the item ids are replaced
by their attributes in the sequences, this leads to obtaining frequent patterns which only contain
general information while loosing all possible frequent patterns containing specific information
(item ids). Whereas the quality of the frequent patterns containing only descriptive attributes is
lower than those containing item ids The more item ids included in a sequence, the higher is the
preciseness of the sequence and thus the better is its quality.

In addition, although this approach generates a large number of frequent patterns, there
is a high level of redundancy among patterns where all possibilities of the frequent patterns
containing attributes are generated. for example, if we substitute the item names in Table 2.1
by their descriptive attributes in Table 2.3, a sequential pattern generated from this sequential
dataset is : pa : <{powdered-sugar, Daddy, Nov-2021, 2.5, 930}, {pastry, Pasquier, May-2020,
4.35, 640} > with support = 6. Another sequential pattern extracted from this dataset is also
frequent, pb : <{Daddy, Nov-2021, 2.5, 930}, {pastry, Pasquier, 4.35, 640} > with support = 6.
pb is a subset of pa where pa contains one additional attribute in the itemsets at the first and the
second positions in the pattern. Therefore, pb is a redundant pattern as it is already included in
pa.

The length and the complexity of the sequential data as well as generating redundant patterns
makes the mining process of this approach of high complexity, and the complexity becomes higher
with the increase in the length of patterns and thus with the number of descriptive attributes.

For all these reasons, we consider that this naive approach is inefficient to mine such kind of
data and thus to manage the complementary relation.

Adding descriptive attributes to item id in the sequences

In this second naive approach, we propose to add descriptive attributes of items to their
associated ids in the sequences to obtain at each position an itemset containing an item id along
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with the set of its descriptive attributes at each position in the sequence. Therefore, the lengths
of these data sequences are larger than those of the first naive approach where an item idis added
to each position in the data sequence. For example, let us consider the same data sequence of
customer-1 in Table 2.1. Adding the descriptive attributes of items provided in Table 2.3 allows
obtaining the following sequence : < {cappuccino,coffee,casino,December -2019, 5, 250}, {table-
sugar,Daddy,November -2019, 2.5, 930}, {cigarettes,tobacco,Marlboro,November -2019, 7, 18.52},
{croissants, pastry, Pasqiuer, February-2020, 4.35, 640}, {brownies,sweets,Nestle,February-2020,
3.70, 300} >.

In such kind of sequences, the item names as well as the descriptive data are involved in
the mining process, and the resulting patterns could include two kinds of data : item ids and
descriptive attributes.

As the item ids are included in the data sequences, this approach allows generating sequential
patterns containing specific information, and these patterns are of two kinds : sequential patterns
containing only item ids and others containing item ids and descriptive attributes. Such kinds
of patterns, which could not be generated by the first naive approach, increase the preciseness
of the results and thus enhance the quality. However, the increase in lengths of input data
sequences could lead to a higher complexity of the mining process. In addition, when an item id
is frequent, then by definition, all its descriptive attributes are frequent. And as the most specific
data is frequent, a sequential pattern containing the item id generated while there is no need to
generate sequential patterns containing its attributes. However, in this approach, when an item
id is frequent, all possibilities of patterns containing the item id with its descriptive attributes
are considered as frequent. In this case, we consider that the sequential patterns containing
descriptive attributes are redundant as, by definition, they are known to be frequent Therefore,
they would impact the quality of the results with no added value.

For these reasons, we consider that this second naive approach is also not efficient for mining
such kinds of data and thus managing the complementary relation.

Due to the inefficiency of the existing naive approaches to manage the complementary re-
lation, we propose an approach to manage this kind of relations in a limited complexity and
without redundancy among the resulting patterns where it intends to take advantage of the des-
criptive data source of items only when the data in the sequential data source are not sufficient
to generate an adequate number of sequential patterns.

2.4 Preliminary definitions

In this section, we introduce concepts and their associated formal definitions and notations
that will be used in our proposed approach for managing the complementary relation between
the sequential data source and the descriptive data source of items.

2.4.1 Infrequent patterns

As previously discussed in chapter 1, sequential pattern mining involves extracting frequent
sequences from the sequential database. The non-extracted patterns from the mining process are
called infrequent patterns, and they are defined as follows.

Definition 2.4.1. Infrequent pattern
Let us consider a minimum support threshold, denoted as minsup. A pattern s is infrequent

in a sequence database SD if 1 ≤ supportSD
(s) < minsup. In other words, s is infrequent if it

occurs less than minsup times in SD.
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Example 2.4.1. Infrequent pattern
Let us consider an example of the sequential database SD provided in Table 2.1 with minsup

= 4. The pattern s =< milk, cola, cookies > has a support value = 1. s is said to be an infrequent
pattern as supportSD

(s) < minsup.

2.4.2 Promising patterns

In the set of frequent patterns, some patterns have support values that are lower but not
far from the value of minsup ; therefore, these patterns are infrequent but are not far from
being frequent. We call these patterns promising patterns as they are promising to be frequent.
Patterns that are similar to this kind were discussed in [67] in the context of mining local patterns
in multiple databases, and they are called suggesting patterns.

We distinguish between the promising patterns and the infrequent ones having support values
far from minsup as follows. We first determine a second predefined minimum support threshold
called minsupProm whose value is lower than the value of minsup but is close to it. An then,
based on the minimum support thresholds, minsup and minsupProm, we define a promising
pattern as follows.

Definition 2.4.2. Promising pattern
Let us consider a sequential database SD and an infrequent pattern v. v is said to be a

promising pattern iff minsupProm ≤ SupportSD
(v) < minsup

Example 2.4.2. Promising pattern
Let us consider an example of the sequential database SD provided in Table 2.1 with minsup

= 4 and minsupProm = 3. The pattern p1 :< cappuccino, sugar, croissants > has a support
value = 3, and the pattern p2 :< espresso, sugar, croissants > has a support value = 3. p1
and p2 are said to be promising patterns as minsupProm ≤ SupportSD

(p1) < minsup and
minsupProm ≤ SupportSD

(p2) < minsup respectively.

2.4.3 Sequence and item similarity

We define two new measures of similarity, sequence similarity and item similarity. The se-
quence similarity concerns the sequences or subsequences occurring in a sequential database, and
the item similarity concerns the items in the sequences. We discuss these two similarity measures
in details as follows.

Sequence similarity

In certain cases, there could be similarities among sequences. Therefore, we propose a new
similarity measure, called sequence similarity measure, that is concerned in measuring the simi-
larity between two distinct data sequences.

The items of data sequences follow a certain order where they occur at specific positions in
the sequences. The sequence similarity measure that we define relies on the identity of items at
the same positions (index) in sequences. Therefore, we measure the similarity among patterns
by checking if the items at the same positions in the patterns are the same. For this similarity
measure, we choose to consider patterns that strictly have the same length. In certain cases, there
could be identities between a certain number of items in the sequences which allows obtaining
similar sequences. We define similar sequences as follows.
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Definition 2.4.3. Similar sequences
Let us consider the two sequences as follows : s1 =< item11, item12, ...item1l >

and s2 =< item21, item22, ...item2l >. l is the length of s1 and s2 according to definition
1.1.2, minSsimilarity is a minimum predefined percentage similarity between two sequences
and position = {1, ..., n}. nbSim(s1,s2) =

∑n
i=1 number of positions where item1i = item2i.

ssimilarity represents the percentage similarity between two sequences, and it is calculated as :
ssimilarity(s1,s2) = (nbSim(s1,s2)/l) ∗ 100.
s1 and s2 are said to be similar sequences iff ssimilarity ≥ minSsimilarity.

Example 2.4.3. Similar sequences
Let us consider an example of the two sequences in the sequential database of Table 2.1 as

follows : < s1 : cappuccino, sugar, croissants > and < s2 : espresso, sugar, croissants >,
and let us consider that minSsimilarity = 60%. These two sequences have two common items
at positions 1 and 2 of the patterns, and they have one item difference at position 0 of the
patterns. ssimilarity(s1,s2) = 66% which is greater than minSsimilarity ; therefore, s1 and s2
are considered as similar patterns.

Item similarity

The descriptive data source of items contains descriptive data about items represented in the
form of several data attributes. Different items could have common attributes between them ;
therefore, we propose an item similarity measure that relies on the identity between attributes
of the items. There could be identities between items allowing to consider them as similar items.
We define similar items as follows.

Definition 2.4.4. Similar items
Let us consider two items i1 and i2 with number of attributes = na . minIsimilarity is a

minimum predefined percentage similarity between two different items. commAtt(item1, item2)
is the number of common attributes between two different items. isimilarity represents the
percentage similarity between two items, and it is calculated as : isimilarity(item1, item2) =
(commAtt(item1, item2)/na)∗100. i1 and i2 are said to be similar items iff isimilarity(item1, item2) >
minIsimilarity.

Example 2.4.4. Similar items
Let us consider the two items cappuccino and espresso provided in Table 2.3 andminIsimilarity

= 60%. The descriptive attributes of the item cappuccino are : {coffee, Casino,Dec-2020, 5,
280}, and those of the item espresso are : {coffee, Casino, Jan-2021, 5, 250}. The list of common
attributes between the two items is : commAtt(cappuccino, espresso) : {coffee, Casino, 5}. For
these two items, commAtt(cappuccino, espresso) = 3 ; therefore, isimilarity(cappuccino, espresso)
= 60%, and the items cappuccino and espresso are considered as similar items.

In certain cases, two items are not found similar ; however, if we consider the descriptive
dimensions having numerical attributes, there could be one or more dimensions having a relatively
small difference between the values of their attributes, but as these two attributes do not exactly
have the same value, they are considered as two different attributes.

In order to overcome this limitation and widen the range of detecting similar items, we
determine intervals of values for each data dimension having numerical attributes. In this case,
instead of comparing the attribute values of two items, we check if the two attribute values of
a data dimension are within the same interval that is determined for this dimension. If they
are within the same interval, we consider that the items have a common attribute for this data
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dimension, and it is thus added to the set of common attributes between the items. This common
attribute is represented as the following interval : [lower attribute value, higher attribute value].

Let us consider an example of the two items brownies and cookies from Table 2.3. The set of
common attributes between the two items is : commAtt(brownies, cookies) :< sweets,Nestle >
and thus simItem(brownies, cookies) = 40%. simItem(brownies, cookies) < minSimItem,
and the items are not considered as similar items. However, let us consider the dimension
"Weight" that has numerical attributes, the attribute value of the item brownies = 360, and
that of the item cookies = 356. The difference between the attribute values of the two items
is relatively small. If we consider an interval of range 30 for the attribute values of this data
dimension, we will find that the attribute values of the two items are within the same interval
and are thus considered as a common attribute that is represented in the form of the following
interval : [356 and 360]. The new list of common attributes between the two items becomes :
commAtt(brownies, cookies) :< sweets,Nestle, [356− 360] >. Therefore,
commAtt(brownies, cookies) = minSimItem, and the items are thus considered as similar
items.

2.4.4 Sequence generalization

In this part, we discuss the generalization of sequences which allows obtaining general se-
quences, and we discuss the calculation of support values of general sequences.

Forming general sequences

Two similar sequences having similar items may be combined to form one or more new
sequences. We consider this new sequence as a general sequence as it represents the two patterns
from which it is formed, and we consider these two patterns as the original patterns of the general
sequence.

Let us consider two similar sequences having items that are different at one or more of their
positions. In certain cases, the two items at the same position in two similar sequences could be
similar items. As presented in definition 2.4.4, two similar items have a set of common attributes
between them. We thus consider that each two similar items are represented by the set of their
common attributes. In this frame, when we have two similar items at the same position in two
similar sequences, we propose to represent these items by their set of common attributes in their
position in the sequences by substituting these two items with this set. This set of attributes
represent more general data than item ids ; therefore, we call these newly formed sequences
general sequences. A general sequence is a sequence formed from two similar sequences having
similar items at one or more positions in the sequences, and it contains either an item id or a set
of descriptive attributes at each position in the sequence.

The process of forming general sequences depends on the number of positions in the sequences
having different items. Therefore, we first discuss this process for the sequences having only one
position containing different items, and then we discuss this process for sequences having more
than one position containing different items.

Similar sequences with one item difference

Two similar sequences, named similar-sequence1 and similar-sequence2 could have an item
difference at only one position in the sequences, which is the simplest case. When these different
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items are similar items, we substitute them with the set of their common attributes at their
position in the two sequences.

In this case, the only difference between the two similar sequences is substituted with common
attributes, and only one general sequence is formed. The general sequence represents similar-
sequence1 and similar-sequence2 which are its original sequences.

Example 2.4.5. Similar sequences with one item difference
Let us consider the example in Table 2.1 of similar sequences with only one position having

similar items as follows :
S1 :< cappuccino, sugar, croissants > and S2 :< espresso, sugar, croissants >. As provided in
example 2.4.4, the similar items cappuccino and espresso in these sequences have the following set
of common attributes : commAtt(s1, s2) = {coffee, Casino, 5, [250, 280]}. Therefore, we substi-
tute these two items at their positions in the sequences with the set of their common attributes, and
we obtain a new sequence s′ as follows : s′ :< {coffee, Casino, 5, , [250, 280]}, sugar, croissants >.
This sequence does not contain specific data at position 1 ; however, it contains a set of common
attributes which represent the two items cappuccino and espresso making it a more general se-
quence than the similar sequences. The original sequences of s′ are s1 and s2.

Similar sequences with two or more item differences

The item differences between two similar sequences can occur at two or more positions in the
sequences. The generalization process of such sequences is more complex than for those having
only one item difference. As in the previous case, we propose to substitute each two similar items
at the same position in the sequences with the set of their common attributes. As there are
more than one difference in the similar sequences, substituting the items with the set of their
common attributes at one position does not form a single general sequence ; however, it forms
two general sequences, named general-sequence1 and general-sequence2 where similar-sequence1
is represented by general-sequence1 and similar-sequence2 is represented by general-sequence2
with differences at the current position of the similar items where they are substituted with their
set of attributes. In this case, each general sequence has its two original sequences. We determine
the original patterns of these two general sequences as follows.

Determining the original sequences for each general sequence is based on : (1) the similar
sequences that they represent and (2) the two similar items at the current position of item
difference.

Therefore, each original sequence of general-sequence1 represents similar-sequence1 with each
of the two similar items at the current position of item difference in the sequence. On the other
hand, each original sequence of general-sequence2 represents similar-sequence2 with each of the
two similar items at the current position of item difference in the sequence. In order to clarify
this process, we provide an example as follows.

Example 2.4.6. Similar sequences with two item differences
Let us consider the following two sequences in Table 2.1 : s3 :< cappuccino, sugar, croissants,

brownies > and s4 :< espresso, sugar, croissants, cookies >. s3 and s4 are similar sequences ac-
cording to definition 2.4.3. The item differences are at positions 0 and 3 in the similar sequences.
At position 0, the two items cappuccino and espresso are similar items, and they have the fol-
lowing set of common attributes : {coffee, Casino, 5, [250, 280]}. Therefore, we substitute these
two items in their position in the sequences with the set of their common attributes to form two
general sequences s′3 and s′4 as follows : s′3 :< {coffee, Casino, 5, [250, 280]}, sugar, croissants,
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brownies > and s′4 < {coffee, Casino, 5, [250, 280]}, sugar, croissants, cookies >. S′
s represents

the similar sequence s3, while s
′
4 represent the similar sequence s4.

The original sequences of s′3 are : s3a :< cappuccino, sugar, croissants, brownies > and
s3b :< espresso, sugar, croissants, brownies >. Similarly, the original sequences of s′4 are :
s4a :< cappuccino, sugar, croissants, cookies > and s4b :< espresso, sugar, croissants,
cookies >. We notice from this example that the original sequences may or may not exist in the
sequential database where s4a exists in the sequential database while s4b does not exist.

In the previous process, we form general sequences from the similar sequences having similar
items. We can now calculate the support values of these formed sequences.

Calculating support values of general sequences

After forming general sequences, we now propose a method to calculate the support values
of these sequences. Let us precise that these sequences do not occur in the sequential database
as they are general sequences. Therefore, the support calculation of such sequences differs from
that of the original sequences that are already found in the database.

The general sequence represents the two original sequences from which it is formed where
the set of common attributes between the two similar items substitutes them in the sequences.
Therefore, the number of occurrences of the new sequence is equal to the sum of the number of
occurrences of the two original sequences in the sequential database. The support value of the
sequence is thus calculated as the sum of the support values of its original sequences.

When there is only one position having an item difference between two similar sequences,
one general sequence is formed. In this case, the original sequences of this general pattern are
the similar patterns, and they are found in the sequential database. Therefore, the support value
of the the general sequence is calculated as the sum of the support values of the two similar
sequences.

On the other hand, when there is more than one position having item differences in the similar
sequences, the original sequences may or may not be found in the sequential database. In case
an original sequence is not found, its support value is thus considered equal to zero. Therefore,
the support value of each general sequence is calculated as the sum of the support values of its
two original sequences.

Example 2.4.7. Similar sequences with one item difference
Referring to example 2.4.5, the two similar sequences are : s1 : < cappuccino, sugar,

croissants > having a support value = 3 and s2 :< espresso, sugar, croissants > having a
support value = 3. The following general sequence is formed : s′ :< {coffee, Casino, 5, [250, 280]}
, sugar, croissants >. The original sequences of s′ are s1 and s2. Thus, the support value of s′

= 6, which is the sum of support values of s1 (3) and s2 (3).

Example 2.4.8. Similar items with two item differences
Referring to example 2.4.6, the similar sequences are : s3 :< cappuccino, sugar, croissants,

brownies > having a support value = 3 and s4 : < espresso, sugar, croissants, cookies > having
support value = 3. The general sequences formed are as follows :
s
′
3 :< {coffee, Casino, 5, [250, 280]}, sugar, croissants, brownies >
and s

′
4 < {coffee, Casino, 5, [250, 280]}, sugar, croissants, cookies >. The original sequences

of s′3 are : S3a :< cappuccino, sugar, croissants, brownies > with a support value = 3 and
s3b :< espresso, sugar, croissants, brownies >, with a support value = 0 as it does not exist in
the sequential database. Therefore, the support value of s′3 = 3. Similarly, the original patterns
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of s′4 are : s4a :< cappuccino, sugar,
croissants, cookies > with a support value = 0 as it does not exist in the sequential database and
s4b :< espresso, sugar, croissants, cookies > with a support value = 3. Therefore, the support
value of s′4 = 3.

2.5 G_SPM algorithm for mining general sequential patterns

In this section, we present G_SPM algorithm for mining frequent general sequential patterns
from a multi-* dataset in order to handle the problem of item similarity and generate frequent
patterns containing rich and valuable information. G_SPM is presented in algorithms 1 and 2.
The multi-* dataset (MSD) is used as an input to G_SPM.

As discussed in section 2.2, we make the choice to consider the sequential data source as the
main data source in the multi-* dataset. This source contains the sequential data representing
the behavior of users which is the indispensable data needed to achieve our main objective of
understanding users’ behavior.

2.5.1 Mining frequent sequential patterns

G_SPM starts by a mining process of the sequential data source in order to generate frequent
sequential patterns. For this mining process, any traditional sequential pattern mining algorithm
can be used.

As known in the domain of frequent pattern mining, if the support of a candidate sequential
pattern is above the minimum predefined support threshold minsup, then it is detected as
frequent ; otherwise, it is considered as infrequent and is thus discarded as provided in definition
1.1.5.

The number of generated frequent patterns increases as theminsup value decreases. However,
when the value of minsup is relatively low, it could result in a huge number of frequent patterns.
This could lead to a lower quality of the resulting patterns as certain patterns would be of low
support values. Therefore, we consider that the value of minsup should be relatively high in
order to avoid the generation of a huge number of frequent patterns thus impacting the quality.

On the other hand, certain characteristics of the data could lead to certain data limitations
which thus limits the number of generated frequent patterns especially when the value of minsup
is relatively high. We discuss these data limitations as follows.

Data limitations

We may face a problem of lack of data in the sequential data source. Several reasons could
lead to this problem. The number of users can be limited ; therefore, the number of data sequences
is limited which leads to a limited number of sequential patterns generated from these sequential
data. In addition, there could be data sparsity among the data sequences which limits the number
of generated sequential patterns. Another important reason for the problem of lack of data could
be the similarity among the behavior of users. This similar behavior is represented in the form
of similar data sequences or subsequences where they contain items which are similar but not
exactly the same. The mining process of these sequences could lead to obtaining similar patterns
where these patterns may also contain similar items. Each of these patterns thus have lower
support values and are not detected as frequent. This results in a limited number of sequential
patterns and thus the loss of possible interesting patterns.
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In our approach, we propose to take advantage of the complementary relation and consider
the descriptive data source of items as an additional data source that provides descriptive data
to the sequential data provided by the main source in order to handle the problem of similarity
and compensate the loss of patterns that could have been frequent by generating more frequent
patterns that contain rich and various information coming from the two data sources, named
general patterns.

The main problem is that we can not consider all infrequent patterns as interesting patterns.
For example, the data coverage of the patterns of a very low support value compared to minsup
is very low as it represents a small number of data sequences. In addition, these patterns could
represent rare or exceptional behavior which is of no interest in our work. For these reasons, we
consider that an interesting infrequent pattern is the one that is not far from being frequent,
that is its support value is lower than minsup but not far from it. These patterns are called
promising patterns according to definition 2.4.2.

Promising patterns could be infrequent for two main reasons. The first reason is that the
users do not perform these sequences of activities frequently enough according to the value of
minsup ; thus, they are not detected as frequent in the sequential database. The second reason
is the problem of item similarity which leads to the loss of certain patterns that could have
contained valuable information and could have been frequent. We are specifically interested in
detecting this latter kind of patterns ; therefore, we choose to determine the promising patterns
and analyze them further to obtain frequent patterns out of them when possible.

Determining frequent and promising patterns

Obviously, a sequential pattern mining process on the sequential data using minsup allows
generating only the frequent patterns while discarding all the infrequent ones. Different strategies
could be imagined in order to obtain the promising patterns, or to obtain the infrequent patterns
and consequently obtain the promising patterns out of them. In this frame, we determine a
specific strategy in order to obtain not only the frequent patterns but also the promising ones as
follows.

We first determineminsupProm, a second predefined minimum support threshold that is pre-
viously described in section 2.4.minsup allows determining frequent patterns whereminsupProm
allows determining promising patterns. These two minimum support thresholds are thus provided
as an input to G_SPM.

In order to determine frequent and promising patterns, we perform a sequential pattern
mining process on the sequential data source (SD), using any traditional sequential pattern
mining algorithm, where the minimum support threshold used in this process is minsupProm
(line 2, algorithm 1).

The set of patterns generated by this mining process (P ) contains frequent as well as promi-
sing patterns. The second step of the algorithm is to distinguish the set of promising patterns
(Fp) from the set of frequent ones (Ff ). This is done through a post-processing step to the
sequential mining process as follows. For each pattern generated by the mining process, if its
support value is greater than or equal to minsup, then it is considered as a frequent pattern ;
while if its support value is less than minsup, then it is considered as a promising pattern (line
13-16, algorithm 1).

We aim at analyzing and understanding these patterns in order to distinguish the patterns
that were frequent but have become infrequent due to the problem of item similarity from the
patterns that are already infrequent despite this problem. For this sake, we undergo a further
analysis of these patterns by analyzing their content.

54



2.5. G_SPM algorithm for mining general sequential patterns

2.5.2 Determining similar patterns among promising patterns

Among the promising patterns, there could be certain patterns representing similar behavior
of users. These patterns are thus considered as similar patterns where they contain the same
items with different items at certain positions in the patterns. Therefore, we aim at detecting
similar patterns among the promising ones.

We have previously defined and discussed similar sequences in section 2.4, definition 2.4.3.
A promising pattern is an infrequent sequential pattern ; and as it is sequential, this measure of
similar sequences can be used in order to measure the similarity between two promising patterns,
which we call the pattern similarity, and detect similar patterns among them.

As in definition 2.4.3, we choose to compare promising patterns of the same length in order to
obtain a pattern percentage similarity between each two promising patterns. Therefore, for each
two promising patterns, we first compare their lengths (line 17, algorithm 1). If these patterns
have the same length, we calculate the pattern similarity between these two patterns as follows.
We first compare items at each position in the patterns to count the number of items which are
the same (nbSim) and save the positions containing different items (pos) (lines 21-25, algorithm
1). From nbSim, we calculate the pattern similarity as a percentage similarity (psimilarity)
(line 26, algorithm 1). If psimilarity is higher than or equal to a minimum predefined pattern
similarity (minPsimilarity), the two patterns are considered similar, and the set of positions
containing different items is saved for further uses (lines 27-31, algorithm 1). If a promising
pattern is not similar with any other pattern in the set of promising patterns, we consider that
this pattern is not useful for handling the problem of similarity, and it is thus discarded.

Similar patterns, which share common information, represent similar sequential behavior of
users. However, these patterns contain different items at certain positions. In order to analyze
further the similarity in sequential behavior, we choose to analyze further the similar patterns
by analyzing the different items at the same positions in similar patterns.

2.5.3 Determining similar items among similar patterns

The sequential data source only provides the data sequences which consist of item ids repre-
senting unique item identifiers. Therefore, the generated patterns consist of item ids as well. For
each two promising patterns, we can only check if the items are the same or different which al-
lows measuring the similarity between these patterns. However, measuring the similarity between
items using only the item identifiers is not precise. Therefore, in order to measure the similarity
between items, which we call the item similarity, we need additional data about these items. For
this sake, we propose to take advantage of the descriptive data sources of items which provides
descriptive attributes for each item.

According to definition 2.4.4 that is previously introduced and discussed in section 2.4, we
compare two different items as follows. We first retrieve the set of descriptive attributes for the
two items from the descriptive data source of items (IAD database) (line 34, algorithm 1). Then,
each two attributes representing the same data dimension are compared between the two items
to obtain a set of common attributes between them (setCommAtt)(lines 35-38, algorithm 1).

As discussed in section 2.4, intervals of attributes for numerical data dimensions are set
in order to widen the range of detecting common attributes between two different items and
overcome the limitations of close values of attributes.

After obtaining this information, the item similarity (isimilarity) between the two items is
then calculated according to their number of common attributes (commAtt) as a percentage
similarity (line 39, algorithm 1). If isimilarity is greater than or equal to a minimum predefined
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item similarity(minIsimilarity), then the items are similar, and their set of common attributes
is saved for further uses (lines 40-44, algorithm 1).

This allows us to understand that due to the similarity among the items in similar patterns,
certain patterns take the form of more than one pattern. These patterns are of lower support
values which would make them infrequent patterns and thus lead to the loss of information.

2.5.4 Generalization of similar patterns having similar items

In order to overcome the problem of similarity among patterns and their items which leads to
the loss of information, we propose a generalization process as follows. The process of sequence
generalization is introduced in 2.4.4. In G_SPM, we apply this generalization process on similar
patterns having similar items at the same positions in the patterns to obtain frequent general
patterns as follows. For each position in two similar patterns having similar items, we substitute
the similar items with their set of common attributes (setcommAtt) while saving the original
patterns of the two similar patterns (lines 1-6, algorithm 2). The obtained pattern/patterns
contain either item ids or attributes at each position in the patterns which make them general
patterns. Then, we calculate the support values of general patterns in order to check if they are
frequent. The support value of each general pattern is the sum of the support values of its two
original patterns (lines 15 and 19, algorithm 2). The support values of the original patterns are
retrieved either from the set of promising patterns or from the set of frequent ones, and if the
support values of the original patterns are not found in any of these two sets, it is considered as
0 (lines 9-14, algorithm 2). If the support value of a general pattern is higher than or equal to
minsup, then it is considered a frequent general pattern ; otherwise, it is considered as infrequent
and is thus discarded (lines 16 and 20, algorithm 2).

The steps of determining similar items and the generalizations are recursively repeated at
each position having similar items in two similar patterns until the number of generalizations
(gen) reach the maximum allowed number of generalizations (maxGen). When this number is
reached, we stop the generalization process even if there are still possibilities for generalizations.

In our proposed approach, we provide a solution to the problem of item similarity among
patterns by generating frequent general patterns from promising patterns that are similar and
that contain similar items at the same positions in the patterns. We can point out some limi-
tations in this approach ; however, these limitations are justified as they are accompanied with
advantages. We discuss them as follows.

The frequent general patterns that are generated from our generalization algorithm contain
more general, thus less specific information at specific positions in the patterns. Although the
general patterns are less specific, they have a higher data coverage because each general pattern
represents two patterns. In addition, our algorithm allows an increase in the number of frequent
patterns which solves the problem of the limited number of generated frequent patterns that is
caused by the problem of similarity.

The general patterns that are generated from our algorithm contain different kinds of infor-
mation, represented as either item ids or descriptive items at each position in the patterns. This
makes these patterns of a heterogeneous and complex nature. However, this heterogeneity makes
them rich patterns as they contain rich and various information. The more various information
the pattern contains, the richer is the pattern and the wider is the knowledge extracted through
this pattern.

The complexity of our proposed algorithm is higher than the complexity of the sequential
pattern mining algorithm. However, the nature of the data to be mined is different in the two
algorithms. While the sequential mining algorithm manages a single data source (the sequential
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Algorithm 1 G_SPM(MSD,minsup,minsupProm,minPsimilarity,minIsimilarity,
maxGen,maxDiff)

1: P, Fp, Ff , Fg ← ∅
2: P ← SPM(SD,minsupProm)
3: for each p ∈ P do
4: prom_freq(p,minsup)
5: for each pi, pj ∈ Fp do
6: sim_pattern(pi, pj)
7: if pos! = ∅ then
8: gen← 0
9: while gen < maxGen do

10: for each position x in pos do
11: setCommAtt← sim_item(pi[x], pj [x])
12: if setCommAtt! = ∅ then
13: generalization(pi, pj , x, setCommAtt)

Function prom_freq(p,minsup)
14: if support(p) ≥ minsup then
15: Ff ← Ff ∪ p
16: else
17: Fp ← Fp ∪ p

Function sim_pattern(pi, pj)
18: pos← ∅
19: if (length(pi) = length(pj)) then
20: k ← 1, nbSim← 0
21: while k ≤ length(pi) do
22: if pi[k] = pj [k] then
23: nbSim← nbSim+ 1
24: else
25: pos← pos ∪ k
26: k ← k + 1
27: psimilarity ← (nbSim/length(pi)) ∗ 100
28: if psimilarity ≥ minPsimilarity then
29: return pos
30: else
31: pos← ∅
32: return pos

Function sim_item(IAD, a, b)
33: commAtt, setCommAtt← ∅
34: get att(a) and att(b) from IAD
35: for each position v in att(a), att(b) do
36: if att(a)[v] = att(b)[v] then
37: commAtt← commAtt+ 1
38: setCommAtt← setCommAtt ∪ att(a)[v]
39: isimilarity ← (commAtt/length(att(a))) ∗ 100
40: if isimilarity ≥ minIsimilarity then
41: return setCommAtt
42: else
43: setCommAtt← ∅
44: return setCommAtt
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Algorithm 2 Generalisation(pi, pj , x, setCommAtt)

1: p′i ← pi
2: p′j ← pj
3: original-pattern1(p′i)← pi
4: original-pattern2(p′i)← pi with pi[x]← pj [x]
5: original-pattern1(p′j)← pj with pj [x]← pi[x]
6: original-pattern2(p′j)← pj
7: for each original-pattern do
8: Scan Fp to find original-pattern
9: if original-pattern found in Fp then

10: get support(original-pattern from Fp)
11: else if original-pattern found in Ff then
12: get support(original-pattern from Ff )
13: else
14: support(original-pattern) ← 0
15: support(p′i) ← support(original-pattern1(p′i)) + support(original-pattern2(p′i))
16: if support(p′i) ≥ minsup then
17: Fg ← Fg ∪ {p′i}
18: Ff ← Ff ∪ {p′i}
19: support(p′j) ← support(original-pattern1(p′j)) + support(original-pattern2(p′j))
20: if support(p′j) ≥ minsup then
21: Fg ← Fg ∪ {p′j}
22: Ff ← Ff ∪ {p′j}
23: return Fg, Ff
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one), G_SPM manages two kinds of data sources where these sources provide different kinds of
data.

The sequential mining process mines a single data source and generates frequent patterns
containing information from this source. On the other hand, G_SPM mines two data sources
in a single mining process where these sources provide different kinds of data. Although the
complexity of G_SPM is higher than that of the sequential mining algorithm, it adopts a strategy
of selective mining that limits the increase in complexity where it mines the sequential sources
and takes advantage of the complementary source only in the case where there is a problem of
similarity in order to compensate the loss of frequent patterns.

Furthermore, the complexity of G_SPM would be lower than that of the naive approaches.
Both approaches mine the sources in a single process ; however, thee strategy of selective mining
works on limiting the complexity of G_SPM by mining the complementary source only when
needed throughout the process.

Finally, the frequent patterns generated by the sequential mining algorithm only contain a
single kind of information, item ids. However, the frequent general patterns generated by G_SPM
contain two kinds of information which makes them richer in information and more diverse.

In this chapter, we presented a description of a multi-dataset with its different possible kinds of
data sources ; then, we determined a structuring of the data sources based on the relations that we
determined among them. We then described our scientific contributions and proposed algorithm,
G_SPM, for mining frequent general patterns in order to solve the problem of similarity caused
by the multi-* nature of the dataset.
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In this chapter, we present the experimental evaluations of G_SPM which extracts frequent
general sequential patterns. In the first section, we describe the dataset that we use in these
experimental evaluations. In the second section, we discuss the evaluation measures that we
determine in order to evaluate the algorithm. In the third section, we analyze and discuss the
experimental evaluations. Finally in the fourth section, we conclude this chapter and discuss
future experiments.

3.1 Description of the application dataset

As detailed in chapters 1 and 2, the dataset has a multi-* nature. This is a particular nature
where there are multiple interrelated data sources providing various kinds of data, and these data
could be represented in different data dimensions. One data source is sequential as it contains
data sequences, other data sources provide descriptive data to the data sequences, while others
provide descriptive data to the elements in the data sequences. Therefore, there exists two kinds
of relations among different data sources : contextual relations and complementary relation.

In 2017, L’Huillier et al. [35] have obtained a music corpus from Deezer company 5. This
corpus contains anonymized data of about 3,000 users who have consulted music tracks between
December 4th, 2016 and January 5th, 2017. For each consultation, the corpus contains users ano-
nymized names, tracks names, artists names and timestamps. They have also obtained metadata
about the tracks and the artists using the services of the EchoNest website which offers an API

5. https ://www.deezer.com/
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allowing to recover metadata on tracks and artists 6. These metadata are represented in the form
of several attributes describing the artists and the tracks.

The consultations of tracks by users across timestamps can be represented as data sequences
where each data sequence, representing a specific user, is comprised of the tracks consulted by
the user in a sequential manner according to their timestamps. Therefore, we consider that the
data about the users are descriptive data provided to the data sequences as a whole, while the
additional data about the tracks and the artists of these tracks are considered as additional
descriptive data to the elements of the sequences, that are the tracks.

3.1.1 The dataset extracted from this corpus

In this collected dataset, there is data sparsity among the descriptive attributes of the tracks
and the artists. In our work, we choose to discard the consultation of any track having data
sparsity among its descriptive attributes of the tracks and/or artists. In addition, in this dataset,
there are tracks that are skipped by the users. A skipped track is a track that is consulted by
the user ; however, it was skipped and thus not listened by this user. We choose to discard the
skipped tracks and thus remove them from the data sequences of the user and strictly keep the
tracks that are listened by the users.

As mentioned, the dataset contains users’ consultations of music tracks with timestamps
between December 4th, 2016 and January 5th, 2017. If we consider all the timestamps in our
work, the length of the data sequences will be huge due to the huge number of consultations by
users per day. Therefore, we choose to use data between a predefined timestamp interval in our
experiments performed in order to validate our algorithm. The statistics of the sample of the
dataset that we use in our experiments is displayed in figure 3.1.

# Sequences 2,220
# Mean of sequence lengths 48.91
# Consultations 108,596
# Artists 8,959
# Soundtracks 34,080
Time interval 5th-8th Dec. 2016

Table 3.1 – Statistics of our sample of Deezer corpus

Among the attributes describing the artists and the tracks in the collected metadata of the
corpus, we chose to use six attributes in our experiments, and we make our choice of attributes
based on the lowest percentage of data sparsity among the attributes. Five attributes out of these
six describe the tracks while one attribute describes the artists of these tracks. The six chosen
attributes are described as follows.

— Acousticness : It is the measure of the acoustic level of the track. It represents a value
between 0 and 1 to indicate the acousticness level which explains if it uses one or more
electronic tones (the higher the measure value, the less electronic tones the music contains).
For example, the track Tell me why of the artist Genesis has an acousticness level of 0.323.

— Duration : It is the duration of the track, in seconds. For example, the track Tell me why
of the artist Genesis has a duration of 299 seconds.

6. http ://the.echonest.com/
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— Energy : It is the measure of the intensity and the activity level of the track. It represents
a value between 0 and 1 ; the higher this value, the more this track is considered energetic
(intense, fast and loud). For example, the track Tell me why of the artist Genesis has an
energy level of 0.758.

— Danceability : It is the measure indicating how much the track is suitable for dancing. It
represents a value between 0 and 1 ; the higher this value, the more is this track suitable
for dancing. For example, the track Tell me why of the artist Genesis has a danceability
level of 0.604.

— Speechiness : It is the measure indicating the importance of the lyrics in a track. It repre-
sents a value between 0 and 1. The higher this value, the higher is the importance of the
track lyrics. For example, poems have a speechiness close to 1 while music without words
have a speechiness close to 0. The track Tell me why of the artist Genesis has a speechiness
level of 0.037.

— Rank-artist : It is the measure of the ranking of the soundtrack’s artist on Deezer. It
represents a value between 0 and 1,000,000. The higher this value, the higher is the ranking
of the artist. For example, the artist Genesis has a ranking value of 595,478.

3.2 Evaluation measures

In this section, we present the evaluation measures that we determine in order to evaluate
the efficiency of G_SPM.

As detailed in chapter 2, the parameters of G_SPM are minsupProm, the minimum pattern
similarity and the minimum item similarity.

minsupProm is the minimum predefined support threshold used in the sequential pattern
mining process. When the value of minsupProm varies, it first impacts the number of promising
patterns generated from the sequential pattern mining process where the number of promising
patterns impact the number of similar patterns as well as the number of those who have similar
items among them. Consequently, this impacts the number of frequent general patterns generated
from G_SPM and the runtime of the algorithm. Therefore, we are interested in evaluating the
runtime and the number of frequent general patterns generated by G_SPM over different values
of minsupProm.

The minimum pattern similarity allows determining the similar patterns among all the pro-
mising ones. For example, if the minimum pattern similarity is set to 80%, then the set of similar
patterns include all promising patterns having a pattern similarity higher than or equal to 80%,
while other promising patterns are discarded. Therefore, the minimum pattern similarity impacts
the number of frequent general patterns and the runtime of G_SPM.

The minimum item similarity allows determining the similar patterns having similar items
at the same positions in the patterns. General patterns are thus formed from these ones, and a
general pattern is then considered as frequent if its support is greater than or equal to minsup.
Therefore, the minimum item similarity impacts the number of frequent general patterns and
the runtime of the algorithm.

Hence, we evaluate G_SPM in terms of the number of frequent general patterns and the
runtime. First, we evaluate the impact of minsupProm on G_SPM ; then, we evaluate the
impact of the minimum pattern similarity and the minimum item similarity on G_SPM.

The experiments were conducted on a 64-bit Intel Core laptop with 2.60GHz CPU, 7.7 GB
RAM and Ubuntu 16.04 LTS operating system.
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3.3 Experimental evaluations of the naive approach

In section 2.3.2 of chapter 2, we have detailed two naive approaches proposed in the literature
which integrate the main data source with the complementary sources and perform a single
mining process of the integrated data sources. The first approach is to substitute the items in the
data sequences with their corresponding descriptive attributes and perform the mining process
on the resulting sequences which uniquely contain descriptive attributes. The second approach is
to add the descriptive attributes to the items of the data sequences. This latter approach allows
generating patterns of three kinds : patterns containing item ids, patterns containing both item
ids and descriptive attributes as well as patterns containing sets of descriptive attributes. The
resulting patterns of G_SPM represent patterns containing item ids and patterns containing
either item id or a set of descriptive attribute at each position in the patterns. The resulting
patterns generated by G_SPM are subset of the resulting patterns generated by the second naive
approach ; therefore, we consider this naive approach as a baseline for evaluating G_SPM.

In this approach, the dataset is made up of sequences of itemsets (as in the SPM literature),
where each itemset contains the item id along with its set of descriptive attributes. This leads to
a noticeable increase in the length of sequences, compared to original sequences provided by the
main data source which leads to an increase in the complexity of the mining process, especially
as the number of descriptive attributes is not small.

The traditional sequential pattern mining process in G_SPM as well as in the naive approach
that is used as a baseline to evaluate G_SPM, are performed by the well-known PrefixSpan
algorithm [41], with its implemented version in SPMF library [15]. PrefixSpan is proved in the
literature to be an efficient algorithm where it is widely used by various works in the literature.
PrefixSpan algorithm is presented in algorithm 3.

Algorithm 3 (PrefixSpan) Prefix-projected sequential pattern mining algorithm
Input : A sequence database SD and a minimum predefined support threshold
Output : The complete set of sequential patterns
Method : Call PrefixSpan(<>,0,SD).
Subroutine PrefixSpan(α,l,SD|α)
Parameters : α : a sequential pattern ; l : the length of α ; SD|α : the α-projected database,
if α 6=<> ; otherwise, the sequence database SD
Method :

1. Scan SD|α once, find the set of frequent items b such that

(a) b can be assembled to the last element of a to form a sequential pattern ; or

(b) < b > can be appended to α to form a sequential pattern.

2. For each frequent item b, append it to α to form a sequential pattern α′, and output α′ ;

3. For each α′, construct α′-projected database SD|α′ , and call PrefixSpan(α′,l + 1,SD|α′).

According to the related work in the domain of sequential pattern mining, the minimum
support threshold used in the sequential pattern mining process is determined according to the
characteristics of the used dataset : the number of sequences, the number of transactions and the
average sequence length. Based on the specifications of our dataset that are described in Table
3.1, we set the value of the minimum support threshold minsup, as 40 which represents 1.8 %
of the total number of sequences in the database.

In order to experimentally evaluate the naive approach, we run PrefixSpan algorithm with
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minsup = 40 on our dataset while integrating the data source containing the sequences of item
ids with the one containing descriptive attributes for each item. The resulting number of frequent
patterns is too huge to be stored (more than 15GB) where the runtime of the mining process
takes 3 days and the number of generated frequent patterns reaches 15 million frequent patterns.
By running PrefixSpan algorithm on a sample of this dataset made up of the item ids and half
the number of attributes, the number of frequent patterns reaches 55 million patterns, with a
runtime of 1.5 hours.

These results show the inefficiency and the high complexity of the naive approach and thus
its inadequacy on such a dataset. The reason behind this huge complexity is that the algorithm
generates all the possibilities of frequent patterns : patterns containing only item ids, patterns
containing only attributes as well as patterns containing item ids and attributes. This leads to
a huge number of patterns. We consider that the frequent patterns containing only descriptive
attributes are not precise as they do not contain any specific information where the attributes
could be shared among different items ; therefore, these patterns increase the complexity of the
algorithm while decreasing the quality of its results. In addition, we consider that a pattern
containing the most specific information (i.e. containing item ids) is the pattern having the best
quality ; therefore, when this kind of pattern is frequent, generating the more general forms of
patterns would impact the quality of results with no added value to the algorithm results. This
naive approach allows extracting patterns of all levels of generality even when the most specific
pattern is frequent which leads to a huge algorithm complexity.

3.4 Experimental evaluation of G_SPM algorithm

In this section, we discuss the experimental evaluations of G_SPM algorithm. We first analyze
the impact of minsupProm, then the impact of the minimum pattern similarity and finally the
impact of the minimum item similarity on the results of the algorithm.

3.4.1 Impact of minsupProm

In our work, we have two minimum support thresholds : minsup which allows detecting
frequent patterns and minsupProm which allows detecting promising patterns.

G_SPM starts by mining frequent and promising patterns from the main data source with a
traditional SPM algorithm using minsupProm and minsup as the minimum support thresholds
where minsupProm allows detecting promising patterns and minsup allows detecting frequent
patterns. After the SPM process comes the process of forming general patterns. We thus evaluate
the impact of minsupProm on the algorithm results for these two processes.

SPM process

We start our evaluation by analyzing the sequential pattern mining process of G_SPM. The
choice of the value of minsupProm impacts the number of generated promising patterns as well
as the runtime of the SPM process. Recall that the promising patterns are those to be considered
for generalization by G_SPM. For this reason, we propose to evaluate the impact of the value
of minsupProm experimentally.

According to definition 2.4.2, the value of minsupProm is lower than minsup but close to
it as the promising patterns are patterns that are not far from being frequent. In this frame,
we evaluate the algorithm with different values of minsupProm in order to evaluate the impact
of this parameter on the runtime and the number of frequent general patterns. minsupProm is
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measured relative to minsup ; therefore, we choose to represent minsupProm as a percentage of
minsup. In the conducted experiments, minsupProm ranges from 90% to 75% of minsup.

As previously mentioned, minsup is set to 40. By running PrefixSpan algorithm on the se-
quential data source with minsup, the corresponding number of generated frequent patterns
is 1, 280 and the runtime of the algorithm is 0.368 seconds. This number of frequent pat-
terns remains unvaried with the variation of minsupProm as it depends on minsup. In a
further step, we run PrefixSpan algorithm with decreasing values of minsupProm relative to
minsup. Table 3.2 displays the number of promising patterns whose support values range bet-
ween [minsupProm,minsup[ as well as the runtime of the sequential pattern mining process of
G_SPM according to minsupProm.

minsupProm 36 34 32 30
(relative to minsup) (90%) (85%) (80%) (75%)
# promising patterns 1,135 2,129 3,745 6,399
(% relative to freq. patt.) (90%) (166%) (293%) (500%)
additional run time (s) 0.115 0.231 0.266 0.322
(% add. run time) (+31%) +(63%) (+72%) (+87%)

Table 3.2 – Number of promising patterns and runtime with decreasing minsupProm

From the results displayed in Table 3.2, we can notice that minsupProm greatly impacts
the number of promising patterns generated by the SPM process of G_SPM. This is in line with
the literature of SPM which states that the number of generated frequent patterns increases
exponentially as the minimum support threshold decreases.

When minsupProm is at its highest value (90% of minsup), the number of generated pro-
mising patterns from the SPM process is close to the number of generated frequent patterns.
Then, with each decrease of 5% of minsupProm, the number of promising patterns increases by
a percentage ranging from 70% to 85%. For example, when minsupProm is 80% of minsup, the
number of promising patterns becomes approximately 3 times larger than the number of frequent
patterns.

Concerning the runtime of the algorithm, it also increases with the decrease ofminsupProm ;
however, it increases with lower percentages. When minsupProm is at its highest value (90%
of minsup), the additional number of promising patterns relative to the number of frequent
patterns (90% of frequent patterns) correspond to an increase in the runtime by only 31%. With
minsupProm equal to 80% of minsup, the runtime increases by 72%, which is considered a
relatively low percentage of increase compared to the percentage of increase of the number of
promising patterns (300%).

Until this stage of the experiments, the optimal value ofminsupProm cannot be determined ;
thus, these decreasing values of minsupProm will still be of interest for the following evaluations
until we are able to determine the optimal value which allows generating the most adequate
number of patterns with a limited runtime.

Forming general patterns

In the following experiment, we are interested in evaluating the number of frequent general
patterns generated by G_SPM algorithm over the decreasing values of minsupProm as well as
the runtime of G_SPM.
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We now focus on the generalization phase where we are interested in evaluating both the
number of frequent general patterns according tominsupProm, and the runtime of the algorithm.

Recall that two promising patterns are considered as similar if they have the same length and
whose pattern similarity is greater than or equal to the minimum pattern similarity. Two items
are considered as similar items if the percentage of their common attributes is greater than or
equal to the value of minimum item similarity. In this experiment, we set the value of minimum
pattern similarity to 80% and the value of the minimum item similarity to 80%. In other words,
two promising patterns are considered as similar patterns if they have a pattern similarity that
is higher than or equal to 80%, and we consider two items as similar if they have a minimum of
80% of common attributes.

Table 3.3 displays the number of frequent general patterns generated by G_SPM algorithm
as well as the runtime of the algorithm with decreasing values of minsupProm.

minsupProm 36 34 32 30
(relative to minsup) (90%) (85%) (80%) (75%)
# promising patterns 1,135 2,129 3,745 6,399
# similar patterns 1,073 2,026 3,596 6,183
(% promising patterns) (94.5%) (95.2%) (96%) (96.6%)
# similar patterns
having similar items
(% promising patterns)

508

(44.8%)

1189

(55.8%)

2,432

(64.9%)

4,433

(61.4%)
# general patterns
(% prom. patt.)

340
(30%)

873
(41%)

1,968
(52%)

3,930
(61%)

# frequent patterns 1,620 2,153 3,248 5,210
Run time (s) of G_SPM 124 281 769 1,508

Table 3.3 – Number of general patterns and runtime of G_SPM algorithm with decreasing
minsupProm

As expected, the number of frequent general patterns generated by G_SPM increases with
the decrease of minsupProm. More precisely, when minsupProm decreases by 5%, the number
of frequent general patterns is more than doubled. For example, when minsupProm is 75% of
minsup, the number of frequent general patterns becomes 3 times greater than the number of
initial frequent patterns that are generated from the mining process of the main data source
(3,930).

By analyzing the percentage of the frequent general patterns that are generated out of the
promising patterns, we notice that as the value of minsupProm increases, this percentage in-
creases by 30% to 61%.

In order to study thoroughly this increase, we first focus on the number of similar patterns,
that are the promising patterns having item differences at the same positions in the patterns
(see row 3, Table 3.3). The minimum pattern similarity is set to 80%. The number of similar
patterns increases with decreasing values of minsupProm where it is multiplied by 6 between
minsupProm = 90% and minsupProm = 75%. By analyzing further the percentage of similar
patterns with respect to the number of promising ones, we notice that this percentage is high
(94.5% for minsupProm = 90%). This high percentage implies that there is a high possibility
of having similar patterns among the promising ones. The reason behind this high possibility is
that considering the patterns similar only requires having different items at the same positions
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in the patterns without comparing the items. Then, by decreasing values of minsupProm, the
percentage of similar patterns out of all promising patterns increases until it reaches 96.6%. The
reason behind this increase in percentage is that as the number of promising patterns increase ;
thus, the possibility of having similar patterns among the promising ones increase.

After this step, we evaluate the number of similar patterns having similar items (see row 3,
Table 3.3). This number increases with decreasing values of minsupProm where it is multiplied
by 9 between minsupProm = 90% and minsupProm = 75%. By analyzing further the percen-
tage of similar patterns having similar items with respect to the number of promising patterns,
we notice that this percentage is relatively low for minsupProm = 90% (44.8%), but it increases
with decreasing values of minsupProm until it reaches 61.4% with minsupProm = 75%.

As minsupProm is greater than 50% of minsup, all the similar patterns having similar items
will be generalized. The reason is that the support of each of the two similar patterns having
similar items is > 50% of minsup ; thus, the general pattern formed from these two similar
patterns have a support > minsup (the sum of the supports of the two similar patterns).

By analyzing the number of frequent general patterns generated by G_SPM, we notice
that it increases with decreasing values of minsupProm. Furthermore, we notice that when
minsupProm ≥ 85% of minsup, the number of frequent general patterns is lower than the num-
ber of initial frequent patterns (1,280), while when minsupProm < 85%, the number of frequent
general patterns is higher than the number of initial frequent patterns. The closest number of
frequent general patterns to the number of initial frequent patterns is 873 when minsupProm
= 85% of minsup representing 41% of the promising patterns and resulting in a total number of
frequent patterns = 1,840.

In the following step, we evaluate the runtime of G_SPM with decreasing values of minsup-
Prom. As expected, the runtime of G_SPM is significantly higher than that of the mining
process of the main source (see Table 3.2). This difference in the runtime is justified by the fact
that the mining process of the main source is a process that mines a single data source and
generates frequent patterns containing a single kind of information, while G_SPM algorithm
mines two data sources providing different kinds of information selectively where it undergoes
several steps of comparing similar patterns and items and generating frequent general patterns,
which are patterns containing hybrid information.

For minsupProm = 90% of minsup, the runtime of G_SPM algorithm takes 124 seconds
(around 2 minutes). Then with each decrease of minsupProm by 5%, the runtime increases
almost by a factor of 2 until it reaches 1,508 seconds (around 25 minutes). An advantage is that
the increase in the runtime of G_SPM is linear with the increase in the number of promising
patterns. Although the generalization step is complex, the strategies established in order to
limit the number of general patterns also contribute to a limited increase in the runtime of the
algorithm.

If we compare the runtime of the lowest value of minsupProm (75% of minsup) with the
runtime of the naive approach, we notice that G_SPM’s runtime is significantly lower which
confirms attaining one of goals of G_SPM concerning reducing the algorithm complexity.

From the previous analyses, we confirm that the promising patterns should be those who
have support values relatively close to minsup ; otherwise, the complexity of G_SPM algorithm
will become higher with the increasing number of promising patterns.

The frequent general patterns may be more frequent than the traditional patterns, i.e. having
higher support values ; however, the quality of these patterns is lower as they are more general
than the original patterns mined from the main data source. An item id represents a unique
item, whereas descriptive attributes could be shared among different items. Consequently, the
larger the number of frequent general patterns in the set of mined patterns, the less is the specific
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information conveyed by the set of patterns mined by G_SPM and thus the lower is the overall
quality of the results.

Hence, we consider that the most adequate value of minsupProm for this dataset is equal
to 85% of minsup as it results in a significant but limited number of frequent general patterns
relative to the frequent patterns generated by SPM process (about 70% of additional patterns),
and the runtime of the algorithm with this value of minsupProm remains limited to 281 seconds
(about 4 minutes).

3.4.2 Impact of the minimum pattern similarity

The minimum pattern similarity determines the minimum percentage similarity between two
promising patterns to be considered as similar patterns. Therefore, it mainly impacts the number
of similar patterns among the promising ones which thus impacts the number of frequent general
patterns.

In this section, we aim at studying the impact of the minimum pattern similarity on the
number of frequent general patterns as well as on the runtime of G_SPM. In this experiment,
we evaluate the algorithm for different values of minimum pattern similarity where the minimum
item similarity is fixed at 80% and minsupProm is fixed at 85% of minsup.

The number of frequent general patterns and the runtime of G_SPM with different values
of minimum pattern similarity are displayed in Table 3.4.

Minimum pattern similarity 80% 60%
# promising patterns 2,129 2,129
# similar patterns

(% out of promising patterns )

2026

(95.2%)

2034

(95.5%)
# similar patterns
having similar items

(% out of promising patterns)

1189

(56%)

1885

(89%)

# frequent general patterns
(% out of promising patterns)

873

(41%)

1,498

(70%)
# total frequent patterns 2,153 2,778
Runtime (s) of G_SPM 281 2,965

Table 3.4 – Number of frequent general patterns and runtime of G_SPM over different values
of minimum pattern similarity

The number of promising patterns remains unvaried (2,129) as it is not impacted by the
minimum pattern similarity. We notice from Table 3.4 that as the value of minimum pattern
similarity decreases, the number of similar patterns increases. According to the definition of the
minimum pattern similarity, when its value decreases, there are more possibilities of similarities
among the promising patters. By analyzing the percentage of the similar patterns with respect to
the promising ones, we notice that the percentage is high even for minimum pattern similarity =
80% (95.2%) which implies that the possibility of having similar patterns among all the promising
patterns is already high for minimum pattern similarity = 80%. This percentage increases to
95.5% when decreasing the minimum pattern similarity to 60% as the possibility of having
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similar patterns among the promising patterns increases ; however, this increase in percentage is
not significant.

In a further step, we analyze the number of similar patterns having similar items, we notice
that this number is multiplied by 1.6 with the decrease of the minimum pattern similarity from
80% to 60%.

By analyzing further the similar patterns having similar items with respect to the promising
patterns, we notice that this percentage increases significantly from 56% to 89%.

The reason behind this increase is that the positions in the similar patterns which could
have similar items increase which increases the possibility of having similar patterns with similar
items.

By analyzing the number of frequent general patterns, we notice that this number is multiplied
by 1.7 when the minimum pattern similarity decreases from 80% to 60%. The number of frequent
general patterns generated by G_SPM when the minimum pattern similarity = 60% (1,498) is
close to the number of initial frequent patterns (1,280).

By analyzing further the percentage of the frequent general patterns among the promising
ones, we notice that this percentage increases noticeably from 41% to 70% by decreasing the
value of minimum pattern similarity from 80% to 60%. The total number of frequent patterns
for minimum pattern similarity =60% (2,778) is more than doubled with respect to the number
of initial frequent patterns.

We now evaluate the runtime of the algorithm with different values of minimum pattern
similarity. The runtime increases significantly by a factor of 10 with the decrease of the minimum
pattern similarity from 80% to 60%. This shows the great impact of the minimum pattern
similarity on the complexity of the algorithm, and this is due to several reasons. First, when
the minimum pattern similarity decreases from 80% to 60%, this allows detecting more item
differences in promising patterns which leads to a longer runtime of the algorithm. Note that the
value of minimum similarity determines the number of allowed differences between two similar
patterns based on their length. Second, for each two promising patterns, this allows comparing
more pairs of items in order to detect similar items. Third, it could lead to forming more general
patterns from each two promising patterns depending on the length of the patterns and thus
the number of item differences. For example, if the number of item differences =1, one general
pattern is formed ; however, if the number of differences is more than one, two general patterns
are formed. In addition, the complexity of the process of support calculation of the formed
general patterns when the minimum pattern similarity = 60% is higher than that when the
minimum pattern similarity = 80%. The reason is that each formed general pattern has two
original patterns where the process of searching for these patterns among the promising and the
frequent ones in order to find their support values could be costly especially that these patterns
may or may not exist in the database.

Hence, the advantage of increasing the value of minimum pattern similarity is obtaining more
frequent patterns in order to handle the problem of item similarity among the patterns which
is our main objective ; however, it is at the cost of increasing the complexity of the algorithm.
Recall that our main objective is generating frequent general patterns in order to handle the
problem of item similarity in sequential data with a limited complexity. When the minimum
pattern similarity =60% , the number of frequent general patterns generated by G_SPM (1,498)
is close to the number of initial frequent patterns (1,280), and it represents 70% of the promising
patterns which allows handling the problem of item similarity among patterns by generating
frequent general patterns with a high percentage. However, it is at the cost of the runtime of
G_SPM as it is significantly high (around 49 minutes).

Therefore, we consider that the most adequate value for the minimum pattern similarity is
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80% as it allows generating frequent general patterns representing 41% of the promising patterns
with a limited runtime (around 2 minutes) which allows attaining our two objectives. In addition,
we consider that as the value of the minimum pattern similarity is higher, the resulting patterns
are more precise.

3.4.3 Impact of the minimum item similarity

The minimum item similarity determines the minimum required percentage of common at-
tributes between two items to consider them similar. Therefore, it impacts the number of similar
patterns having similar items and thus the results of G_SPM. In this section, we study the im-
pact of the minimum item similarity on the number of frequent general patterns and the runtime
of G_SPM. In this frame, we evaluate the algorithm for different values of minimum item simi-
larity which vary between 50% and 80%. For this experiment, the minimum pattern similarity
is fixed at 80% and minsupProm is fixed at 85% of minsup. The number of frequent general
patterns and the runtime of G_SPM with different values of item similarity are displayed in
Table 3.5.

Minimum item similarity 50% 60% 80%
# similar patterns
having similar items

(% out of promising patterns)

2,000

(94%)

1,789

(84%)

1,189

(56%)
#frequent general patterns

(% out of promising patterns)

5,984

281%

2,328

109%

873

41%
#total frequent patterns 6,951 3,295 1,840
Runtime (s) of G_SPM 292 278 269

Table 3.5 – Number of frequent general over different values of minimum item similarity

The number of promising patterns is not impacted by the minimum item similarity, and it
remains unvaried (2,129 patterns) as well as the number of similar patterns among the promi-
sing ones (2,026 patterns). In addition, as previously mentioned, the number of initial frequent
patterns remains unvaried (1,280 patterns). From Table 3.5, we notice that as the minimum
item similarity increases from 50% to 80%, the number of similar patterns having similar items
decreases by a factor of 1.7. By analyzing the percentage of the similar patterns having similar
items out of the promising patterns, we notice that it decreases noticeably from 94% to 56%. The
reason for this decrease is that the required percentage of common attributes in order to consider
two items as similar increases which leads to a decrease in the possibility of having similar items
among the similar patterns.

By analyzing the number of frequent general patterns generated by G_SPM algorithm, we
notice that the number of frequent general patterns, decreases approximately by a factor of 2.6
with each increase in the minimum item similarity from 50% until 80%. By analyzing further the
percentage of frequent general patterns with respect to the promising patterns, we notice that it
is significantly high with minimum item similarity = 50% (281%). This high percentage is due
to the large number of similar patterns having having similar items among the promising ones ;
this leads to a large number of candidate general patterns. This percentage decreases by more
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than half of its value with each increase in the minimum item similarity until it reaches 41%
with minimum item similarity = 80%.

The number of frequent general patterns is higher than the number of initial frequent patterns
when minimum item similarity < 80%.

By analyzing the total number of frequent patterns generated by G_SPM algorithm, we
notice that as the minimum item similarity increases, the number of frequent general patterns
decreases as expected due to the decrease in the number of frequent general patterns. This
number is 6,951 for minimum item similarity = 50% which is 5 times larger than the number of
initial frequent patterns, and it decreases almost by a factor of 2 for each increase in the value
of minimum item similarity to reach 1,840 for minimum item similarity = 80%.

In the following step, we evaluate the runtime of G_SPM algorithm for different values of
the minimum item similarity. We notice from Table 3.5 that the runtime is relatively small, and
it decreases from 292 seconds (4.9 minutes) for minimum item similarity = 50% to 269 seconds
(4.5 minutes) for minimum item similarity = 80% where the difference between them is only 23
seconds which is not a significant difference.

Hence, as the minimum item similarity decreases, G_SPM allows generating more frequent
general patterns with a limited increase in the runtime ; however, the number of frequent general
patterns could become huge. Larger numbers of frequent general patterns may handle the problem
of item similarity at a wider scope ; however, it is at the cost of the quality of the resulting patterns
from G_SPM as the general patterns contain less specific information than initial patterns which
make them less precise. For example, the number of frequent general patterns with minimum item
similarity = 50% (5,984) is 5 times larger than the number of initial frequent patterns (1,280)
which is a huge number. Even for minimum item similarity = 60%, the number of frequent
general patterns (2,328) is almost twice larger than the number of initial frequent patterns which
we consider relatively large. While for minimum item similarity = 80%, the number of frequent
general patterns (873) is the less than the number of initial frequent patterns (1,280), and it is
the closest number to it. Therefore, we consider that the minimum item similarity set to 80% is
the most adequate value of minimum item similarity as it could handle the problem of minimum
item similarity among patterns with a limited impact on the quality of the resulting patterns as
well as with a limited runtime.

Concerning the similarity among items in G_SPM, we have made a choice to set the minimum
item similarity as a minimum percentage of common attributes between two items with specific
intervals for each attribute in order to broaden the scope of similarity between items. However,
this choice will be questioned further in a future work where we aim at adopting more advanced
similarity measures concerning the items of the patterns.

3.5 Conclusions

From these experimental evaluations on this dataset, we can draw several conclusions.
minsupProm has a great impact on the number of promising patterns. The set of promising
patterns is one of the inputs of G_SPM ; thus, minsupProm has a significantly high impact on
the runtime as well as number of frequent general patterns generated by G_SPM.

Concerning the runtime of the algorithm, we notice that the difference is significantly greater
with increasing values of the minimum pattern similarity where the difference reaches 25 minutes,
while the difference is only few seconds with increasing values of the minimum item similarity.
Thus, we conclude that the impact of the minimum pattern similarity on the runtime of G_SPM
algorithm is larger than that of the minimum item similarity. This allows us to understand that
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the process of comparing the promising patterns in order to find similar ones takes a longer
runtime compared to the process of comparing the attributes of the items in similar patterns in
order to find similar items.

The number of frequent general patterns generated by G_SPM algorithm is impacted by the
minimum item similarity more significantly than the minimum pattern similarity. Therefore, we
conclude that the number of frequent general patterns is impacted by the similar items more than
the similar patterns. In other words, even if there is a high percentage of similar patterns among
the promising ones, the more important is having a high percentage of similar items among them
in order to attain the objective of generating a significant number of frequent general patterns.

We can notice that the total number of frequent patterns generated by G_SPM is significantly
smaller than the number of frequent patterns mined by the naive approach. This low number is
explained by the fact that the patterns mined by G_SPM are not redundant in the sense that
general patterns containing descriptive attributes of items are only mined in the case of item
similarity among patterns where the most specific pattern is not detected as frequent. Besides,
patterns containing items and attributes at the same position in the patterns are not supported
by G_SPM as we consider that they impact the quality of G_SPM results.

Through the conducted experiments, we confirm that G_SPM is efficient concerning the
runtime and the number of frequent patterns. With minsupProm = 85% of minsup, minimum
pattern similarity = 80% and minimum item similarity = 80% for our specific dataset, G_SPM
is capable of achieving the goals of handling the item similarity by generating a sufficient number
of frequent general patterns taking into consideration the algorithm complexity and the quality
of the resulting patterns.
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4.1 Conclusion

In this PhD thesis, we have proposed a general sequential pattern mining approach to mine
multi-source data with the aim of understanding users’ behavioral data. Data is now hugely
produced and collected, and it can be used for analytics. The collected data can come from a
single data source, or they can come from multiple data sources related to each other where
each data source provides one or more kinds of information. The data provided by multiple
data sources could be sequential data representing the behavior of users or various descriptive
data. This allows forming a heterogeneous but rich dataset that leads to obtaining rich patterns
containing various kinds of information.

Some data characteristics could lead to the loss of possibly interesting patterns and thus
could limit the number of frequent patterns mined. This is particularly the case of the similarity
that could exist between certain data items. This similarity results in the occurrence of several
patterns representing the same behavior of users. The behavior could be frequent ; however, as
its frequency is distributed among several patterns, this could result in the infrequency of these
patterns and thus their loss. We thus aim at taking advantage of the data coming from multiple
sources in order to handle the problem of item similarity existing among the sequential data and
to compensate the loss of patterns.

Various works in the literature were proposed to mine multi-source data, and they can be
mainly divided into two approaches. The first approach mines data sources in a separate manner.
This approach leads to generating frequent patterns containing information from a single data
source without taking advantage of the relations existing between different data sources. In ad-
dition, this approach does not support handling the problem of item similarity in sequential data
sources which leads to the loss of frequent patterns and thus the generation of a limited number
of frequent patterns. The second approach integrates data provided by all data sources together
and mines the data in a single process. This approach allows taking advantage of the multi-
source data and thus handles the problem of item similarity ; however, it has a high complexity,
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it generates a huge number of frequent patterns, and it has redundancy among its patterns.
We propose an approach that avoids the limitations of the previous approaches by mining

multi-* data in a single process with limited complexity. First, we propose a structuring of the
data sources in a multi-* dataset consisting of a sequential data source, a descriptive data source
of users and a descriptive data source of items. We determine two different kinds of relations
between the data sources : contextual and complementary relations. The contextual relation exists
between a sequential data source and a descriptive data source of users where the latter provides
contextual data to the data sequences in the former resulting in more specific sequential patterns.
The complementary relation exists between the sequential data source and the descriptive data
source of items where the latter provides complementary data to items in the data sequences
that are represented as item ids which allows to obtain general sequential patterns, i.e. general
patterns containing more general information at one or more of its positions.

Then, we define two similarity measures : pattern similarity and item similarity. The pattern
similarity measures the similarity between patterns by comparing items at the same positions in
the patterns in order to detect similar patterns, while the item similarity measures the similarity
between different items by comparing their descriptive attributes in order to detect similar items.

We propose G_SPM, a novel general sequential pattern mining algorithm that mines general
sequential patterns from multi-* data. G_SPM maintains the relations existing between the data
sources and allows to handle the problem of item similarity in the sequential data. It starts with
a sequential pattern mining process in a single data source (the sequential one) that detects
frequent as well as promising patterns. Then, it detects similar patterns among the promising
ones using the pattern similarity measure. Among the similar patterns, G_SPM detects similar
items using the item similarity measure. G_SPM generates frequent general patterns where the
similar items in similar patterns are substituted with more general information represented in
the form of common descriptive attributes of the items. The generated frequent general patterns
allow handling the problem of item similarity and compensating the loss of frequent patterns.
These patterns are rich as they contain various kinds of information coming from multiple data
sources.

The experimental evaluations confirm that G_SPM succeeds in achieving the general objec-
tive of understanding behavioral data by mining multi-* data and generating rich and various
information that compensates the loss of patterns caused by the item similarity problem.

The complexity of G_SPM is limited compared to traditional approaches and the redundancy
among the resulting patterns is avoided by adopting a strategy of selective mining where it starts
by mining the sequential source and then mines the complementary source only when an item
similarity is detected. To the best of our knowledge, this is the first work that proposes to mine
data sources selectively to limit the algorithm complexity and manage item similarity.

4.2 Future work

We classify our planned future work into two main categories : future experiments and future
research work.

4.2.1 Future experiments

In our conducted experiments, we evaluated the impact of minsupProm, minimum pattern
similarity and minimum item similarity on G_SPM. In our future experiments, we plan to go
further in several aspects.
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4.2. Future work

In what concerns the number of generalizations in G_SPM, we plan to determine increasing
numbers of allowed generalizations for increasing pattern lengths which would allow detecting
a larger number of frequent general patterns. The pattern similarity in our conducted experi-
ments can only be measured for patterns having the same length. However, in future work, we
will consider more advanced similarity measures which allow measuring the pattern similarity
among patterns of various lengths in order to detect a larger number of similar patterns. In our
conducted experiments, we measure the item similarity by calculating the percentage of common
attributes between two items. We have determined intervals for data dimensions of numerical
attributes in order to widen the range of similarity for these attributes. However, there are cer-
tain data dimensions represented as textual attributes. Our current similarity measure detects
similarity between two textual attributes only if they are identical. In future experiments, we
aim at considering more advanced similarity measures for data dimensions represented as textual
attributes to consider their similarity in semantics. In addition to these future experiments, we
aim at experimentally evaluating G_SPM using other multi-* datasets in the educational do-
main and other various domains in order to validate not only its performance but also its ability
of being generic.

4.2.2 Future research work

In addition to the aforementioned contributions, several future perspectives will be investiga-
ted in order to enhance and extend our work. In what follows, we discuss these future perspectives.

Managing both contextual and complementary relations

In this PhD thesis, we determined two kinds of relations, contextual and complementary rela-
tions. We proposed an approach that manages the complementary relation which allows obtaining
frequent patterns with general information. In a future work, we aim at proposing an approach
that manages both contextual and complementary relations in order to obtain frequent patterns
that are general and specific at the same time. We consider that this can be done by integrating
a contextual mining process in G_SPM algorithm in order to obtain frequent contextual general
sequential patterns. Seq-Dim algorithm was proposed by [44] to mine multi-dimensional sequen-
tial patterns, and it is detailed in chapter 1. It first mines sequential patterns and then attaches
frequent multi-dimensional information to each corresponding sequential pattern. We consider
that the strategy of attaching frequent information to the sequential patterns in this algorithm
is interesting, and we thus aim at integrating this strategy in G_SPM algorithm which allows to
manage the contextual relation by attaching to each frequent general pattern its corresponding
frequent contextual information.

Uncertainty in the relations between data sources

In certain cases, there could be data ethics and privacy restrictions. These restrictions force
the protection of the data which could be represented in the form of anonymized or pseudo-
anonymized data which makes the identifiers of the objects partially or completely anonymous.
Anonymous object identifiers in a multi-source dataset lead to uncertainty in the relations bet-
ween these data sources as we can not identify the same object in different sources. Due to this
problem. Such kind of data can not be used in G_SPM algorithm that works based on the com-
plementary relation. Therefore, in a future work, we aim to propose an approach that handles
the problem of uncertainty in the relations existing between data sources.
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Chapitre 4. Conclusion and Future Work

Recommendations of user behavior

As previously mentioned, one of the main purposes of analyzing and understanding user
behavior is providing users with personalized recommendations according to their information
and behavior. The main reason behind choosing the frequent pattern mining domain is that
the mining process as well as the frequent patterns generated from it are interpretable which
allows generating association rules that help in providing interpretable recommendations. The
antecedent of an association rule is used for matching the past behavior of users, while the rule
consequent is used for providing the recommendations to these users.

G_SPM algorithm helps in increasing the data coverage among the resulting sequential
patterns. This allows an increase in the number of resulting association rules which increases
the recommendation possibilities. In addition, the generalization strategy adopted in G_SPM
gives the priority for obtaining general information in the antecedents of the rules which helps in
providing reliable recommendations. Hence, in the future, we will take advantage of the frequent
patterns generated by G_SPM to form association rules out of them and then use these rules
for providing personalized behavioral recommendations in the form of sequential patterns to the
users in order to help improve the users’ digital experience.

Multi-level frequent general patterns

G_SPM algorithm allows generating frequent general patterns. However, these patterns are
only of one-level generalization. The minimum pattern similarity and the maximum number
of allowed generalizations in G_SPM allow obtaining patterns of one or more generalizations.
However, these patterns are generated as one set composed of all the frequent general patterns
together. This set of frequent general patterns does not allow to obtain a hierarchical structure
of general patterns. For example, it does not allow us to identify a lowest generalization level
which represents the patterns with one generalization, a higher level of the same patterns with
two generalizations and so on to reach the highest level of generalizations with the most general
patterns. Therefore, in a future work, we aim at investigating further possible approaches to form
a hierarchical generalization structure which gives a complete view of the pattern generalization
and allows obtaining a multi-level hierarchical structure of general patterns which can be used
to make a simple analysis of the set of patterns.
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Résumé

La digitalisation de notre monde est souvent associée à une production de très grandes quan-
tités de données. Ainsi, des outils de collecte et de stockage de données ont dû être développés, à
des fins d’exploitation en recherche ou dans l’industrie. Les données collectées peuvent provenir
de plusieurs sources et être hétérogènes, formant ainsi de gros corpus de données hétérogènes.
Ces corpus peuvent être analysés pour extraire de l’information ou de la connaissance. C’est
l’objet de la fouille de données, qui fait l’objet d’un intérêt grandissant depuis de nombreuses
années. Différentes approches de fouille de données ont été proposées, parmi lesquelles la très
populaire fouille de motifs. La fouille de motifs, qui inclut la fouille de motifs séquentiels, vise à
extraire des motifs ordonnés fréquents dans les données. De nombreux défis restent encoreouverts
dans ce domaine, incluant la complexité de la tâche de fouille, la fouille de données hétérogènes
ou encore la diminution du nombre de motifs résultat, généralement dû à la redondance entre
motifs. Dans le cadre de sources de données multiples, les données peuvent représenter des points
de vue différents sur le phénomène représenté et donc sur l’information à extraire. Par ailleurs,
la présence de similarité entre certains éléments de données est une caractéristique classique, qui
mène à la perte d’information lors du processus de fouille, en raison de la diminution du support
des motifs due à cette similarité. L’objectif de cette thèse est de concevoir un algorithme peu
complexe de fouille des motifs dans des données multi-source et hétérogènes, dans le but d’ex-
traire une information pertinente tout en compensant la perte de motifs (et donc d’information)
due à la similarité entre éléments et en limitant la redondance entre motifs. Plusieurs approches
ont été proposées dans la littérature. Certaines fusionnent l’ensemble des sources dans un seul
ensemble de données et exploitent un algorithme classique de fouille de motifs, ce qui mène à un
algorithme complexe qui extrait un très grand nombre de motifs redondants. D’autres fouillent
les sources séparément ce qui peut soit mener à une perte potentielle de motifs ou à des limites
quant à la nature des données qui peuvent être fouillées.

Nous proposons G_SPM, un algorithme de fouille de motifs séquentiels qui tire avantage des
multiples sources de données à disposition dans le but de pallier le problème de la similarité entre
éléments, en formant des motifs généraux. G_SPM adopte une stratégie de fouille sélective de
sources, ce qui lui permet d’avoir une complexité limitée. Par ailleurs, G_SPM fouille dans un
premier temps une unique source de données, celle qui lui permet d’avoir des motifs séquentiels
les plus précis possibles, et ainsi par la suite limiter la redondance entre les motifs formés.
Les expérimentations menées confirment que G_SPM identifie des motifs généraux avec un
temps d’exécution limité, il permet donc de gérer la similarité entre les éléments en compensant
l’éclatement des occurrences sur plusieurs motifs.

Mots-clés: Fouille de motifs, Fouille de motifs séquentiels, Données multi-sources.
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Abstract

Huge amounts of digital data have been created across years due to the increasing digi-
tization in our everyday life. As a consequence, fast data collection and storage tools have been
developed and thus data can be collected in huge volumes for various research and business
purposes. The collected data can come from multiple data sources and can be of heterogeneous
kinds thus forming heterogeneous multi-source datasets. These data could thus be analyzed in
order to extract valuable information that serves research and business purposes. Data min-
ing has been known as an important task in discovering interesting and valuable information
from datasets and has gained a great interest across time. Different approaches in the domain
of data mining have been proposed, among which pattern mining is the most important one.
Pattern mining, including sequential pattern mining, discovers statistically relevant patterns (or
sequential patterns) among data. This domain has grown to be very important where its chal-
lenges include discovering important patterns with a limited complexity of the mining process as
well as avoiding redundancy among the resulting patterns. Multiple data sources could provide
various kinds of data such as descriptive and sequential data which makes the mining process
complex. Although these data are multi-source and heterogeneous, there could be problems of
data similarity on a data source level which leads to the loss of valuable information and thus
limits the number of extracted frequent patterns. The aim of this PhD thesis is to mine data
from a heterogeneous and multi-source dataset in order to obtain rich and valuable information
and compensate the loss of valuable patterns due to the problem of similarity among patterns.
This goal is intended to be reached with a limited complexity of the mining process and with
avoiding the redundancy among the resulting patterns. Many approaches have been proposed
to mine multi-source data. These approaches either integrate data from multiple data sources
and perform a single mining process, which significantly increases the complexity of the mining
process and generates a large and redundant set of sequential patterns, or they mine sources
separately and integrate the results which could lead to a probable loss of patterns that could
have only been extracted when managing different data sources together.

For this sake, we propose G_SPM, a general sequential pattern mining algorithm that takes
advantage of the multi-source nature of data in order to mine patterns of a new form, named
general patterns, that are more general but with higher data coverage than traditional sequential
patterns, and they are rich as they contain various kinds of information. These patterns allow
to compensate the loss of patterns caused by the problem of similarity among them. G_SPM
adopts a strategy of selective mining among data sources where an indispensable source is mined
first, and additional sources are mined only when similarity among patterns is detected which
allows to limit the complexity of the mining process and avoids redundancy among the resulting
patterns.

The experimental results confirm that G_SPM succeeds in mining general patterns from
multi-source data with a limited complexity of the mining process, and it succeeds in handling the
problem of similarity among the patterns and compensating their loss. In addition, it outperforms
traditional approaches in terms of runtime and redundancy of the resulting patterns.

Keywords: Pattern mining, Sequential pattern mining, multi-source data.
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