Thèse soutenue

Une méthode de décomposition de domaine pour la résolution numérique d’une équation non-linéaire

FR  |  
EN
Auteur / Autrice : Nahed Naceur
Direction : Jean-Rodolphe RocheMoez Khenissi
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 03/12/2020
Etablissement(s) : Université de Lorraine en cotutelle avec Université de Sousse (Tunisie)
Ecole(s) doctorale(s) : École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....)
Partenaire(s) de recherche : Laboratoire : Institut Élie Cartan de Lorraine (1997-.... ; Vandoeuvre-lès-Nancy, Metz)
Jury : Président / Présidente : Hatem Zaag
Examinateurs / Examinatrices : Jean-Rodolphe Roche, Moez Khenissi, Saloua Aouadi, Michel Mehrenberger, Sana Ben Hadj Amor, Julie Valein
Rapporteur / Rapporteuse : Saloua Aouadi, Michel Mehrenberger

Résumé

FR  |  
EN

Cette thèse porte sur l’analyse théorique et la résolution numérique d’un type d’équations semi-linéaires elliptiques et paraboliques. Ces équations sont souvent utilisées pour modéliser des phénomènes dans la dynamique de la population et les réactions chimiques. On a commencé cette thèse par l’étude théorique d’une équation elliptique semi-linéaire dont on a démontré l’existence d’une solution faible non négative sous des hypothèses plus générale que celles considérées dans des précédents travaux. Puis on a présenté une nouvelle méthode basée sur la méthode de Newton et la méthode de décomposition de domaine sans et avec recouvrement. Ensuite, on a rappelé quelques aspects théoriques concernant l’existence, l’unicité ainsi que la régularité de la solution d’une équation parabolique appelée équation de type Fujita. On a rappelé aussi des résultats sur l’existence de la solution globale et sur le temps maximal d’existence dans le cas d’explosion. Afin de calculer une approximation numérique de la solution de ce type d’équation, on a introduit une discrétisation en éléments finis dans la variable en espace et un schéma de Crank-Nicholson pour la discrétisation en temps. Pour résoudre le problème non linéaire discret on a implémenté une méthode de Newton couplée avec une méthode de décomposition de domaine. On a démontré que la méthode est bien posée. On a également traité un autre type d’équation parabolique dit équation de Chipot-Weissler. En premier, on a rappelé des résultats théoriques concernant cette équation. Puis, en se basant sur les méthodes numériques étudiées précédemment on a calculé une approximation numérique de la solution de cette équation. Dans la dernière section de chaque chapitre de cette thèse on a présenté des simulations numériques illustrant les performances des algorithmes étudiés et la cohérence des résultats avec la théorie.