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1.1 Background

A satellite is an object in space that orbits around a bigger object. There are two kinds of
satellites: natural (such as the moon orbiting the Earth) or artificial (such as the International
Space Station orbiting the Earth). In the following, by the term “satellite” we will implicitly
mean an artificial satellite. An artificial satellite is an object that has been built and launched
into orbit using rockets. There are currently thousands of active satellites orbiting the Earth.

The first artificial satellite, the Sputnik 1, was launched on 4th October 1957 by the Soviet
Union and till now more than 8000 satellites have been launched by different countries. Around
5000 of them are still in orbit, out of which only 7 are revolving around planets other than
Earth. Among them, only 2218 were operational at December 2019, according to the UCS
(Union of Concerned Scientists) Satellite database (the typical lifetime of a satellite is around
15 years) [Angelo, 2003]. Figure 1.1 shows the trend of satellite launches from the first launch
till now.

The world of satellites can be divided into two broad areas: scientific satellites and application
satellites.

Scientific satellites help to acquire new information about our world, our solar system, our
galaxy, and the universe.

Application satellites provide practical and business services. These are for example the
communication satellites, the remote sensing satellites, the space navigation and positioning
satellites, and the meteorological satellites. Thousands of application satellites have now been
launched over the past half century. These satellites now represent a huge global industry.

Every satellite has some of the following basic parts [Fortescue et al., 2011]:
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Figure 1.1: Number of satellite launches per year (source: The Economist).

• The bus: it is the frame and structure of the satellite to which all the other parts are
attached.

• A power supply system: this is composed by solar panels to generate electricity and a set
of batteries to store some of this energy for times when the satellite is in the shadow of the
Earth.

• Heat control system: this system has the function to protect the satellite from the extremely
high temperatures due to exposure to the Sun. Also the electrical components of the
satellite produce heat that must be dissipated. Heat is dissipated by reradiating it towards
the deep space.

• Computer system: this system has several functions. It controls the satellite operation,
it monitors and controls the orbit, the attitude and the temperature, but many other
functions exist, depending on the purpose of the satellite.

• Communication system: this system allows the satellite to send and receive data to ground
stations or to other satellites.

• Attitude control system: this is the system that keeps a satellite pointed in the right direc-
tion. Gyroscopes and reaction wheel actuators are commonly used to change orientation.
Star sensors are commonly used to determine the direction a satellite is pointing.

• A propulsion system: it is composed by a rocket engine which is used to place the satellite
into the correct orbit. Once in orbit, satellites may use small rockets called thrusters to
slightly correct the orbit.

• A payload: the payload depends on the purposes of satellites. It may be a camera, a
telescope, or some scientific sensors for research purposes.

Satellites may vary widely in size. Some cube satellites are as small as 10 cm×10 cm×10 cm.
Some communication satellites are about 7m long and have solar panels that extend up to 50m.
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The largest artificial satellite is the International Space Station (ISS). Including solar panels, it
is 109m wide.

A mass based satellite classification is the following [Fortescue et al., 2011]:

• Large satellites: with a mass greater than 1000 kg

• Medium satellites: from 500 to 1000 kg

• Small satellites: less than 500 kg

– Minisatellite: from 100 to 500 kg

– Microsatellite: from 10 to 100 kg

– Nanosatellite: from 1 to 10 kg

– Picosatellite: from 0.1 to 1 kg

Among microsatellites, an important class is represented by the Myriade program of CNES1

(Figure 1.2). This platform has been designed in order to offer to scientists the basis of a versatile
tool for testing small payload instruments, up to a mass of 60 kg, for short-duration missions, with
short development time and reduced costs. Most of the simulations in this work make reference
to satellites of the Myriade platform. For example, in Section 5.7, the proposed algorithm is
applied to real telemetry data from the Picard satellite, a spacecraft launched in 2010 with the
objective to accurately measure the solar activity. Other simulations use the parameters of the
MicroCarb satellite, which will be launched in 2021 with the goal to monitor the fluxes of carbon
dioxide at the surface between the atmosphere and the oceans, as well as the vegetation.

Figure 1.2: MicroCarb Satellite from the Myriade program (source: CNES).

The altitude of a satellite above the Earth’s surface also varies and depends on the mission
the satellite is designed for.

• Low Earth orbit (LEO): from 200 to about 1000 km. A LEO is above the outer limits of
the atmosphere (about 80 km), and well below the hazardous Van Allen radiation belts,
the innermost of which begins at about 2400 km. For example, the ISS orbits at 390 km.
The rotation period of satellites in this orbit is in a range between 90 and 110 minutes. The

1French Space Agency
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choice of an orbit for a LEO remote sensing spacecraft is governed by the mission objectives
and payload operational requirements. Very often, to achieve a near-global coverage, the
plane of the orbit must be inclined at about 97◦ with respect to the Earth’s equator. This
is for example the orbit of the Sun synchronous satellites, which are characterized by the
fact of passing over the same point of Earth at the same local time. Their orbit has a
precession with a period of one year in order to always maintain the same orientation
with respect to the sun with the advantage to see the Earth surface with almost the same
lighting conditions.

• Geostationary orbit (GEO): its altitude is 35786 km and the time for one orbit is exactly
24hours. This is to match the rotation of the Earth so that the satellite appears to
stay above the same point on the Earth’s equator. Communication satellites and global
weather satellites are placed in geostationary orbit because of the large portion of the
Earth’s surface visible from that altitude and the fact that ground stations do not have
to track the satellite, which appears fixed in the sky. Since Earth rotates at a constant
angular rate, a geostationary satellite must move at a constant speed in its orbit, therefore
a geostationary orbit must be circular [Wertz, 2012].

• Medium Earth orbit (MEO): Although over 90% of the satellites are positioned in LEO
or in GEO, the space between these two most popular orbit can be the ideal environment
for a smaller subset of satellites. Satellites in this middle region, denominated MEO, have
a larger footprint than LEO satellites (meaning that they can see a wider part of the
Earth surface at a time) and a lower transmission lag than GEO satellites. One important
example of MEO satellites is the Global Positioning System (GPS).

1.2 Attitude Control and Satellite Subsystems

Once in orbit, satellites could need an adjustment of their orbit and a stabilization/correction of
their attitude.

Orbit adjustment could be necessary for different reasons. It may be necessary for deorbiting
a satellite at the end of his life or to compensate the effect of perturbing forces (e.g. atmospheric
drag). Sometimes a maneuver called orbital phasing is necessary, moving a spacecraft to a
different location within the same orbit, as in a rendezvous to a space station in a docking
maneuver.

Attitude is the three-dimensional orientation of a spacecraft with respect to a specified
reference frame. The ability to point and do so accurately is essential in a satellite built for
applications that involve looking at or measuring something on the ground or in space. In gen-
eral, the pointing accuracy required of the spacecraft structure is determined by its mission.
Pointing errors affects the quality of the image in an observation satellite, for example (image
blur is related with the pointing control stability). The most demanding application regarding
the pointing accuracy are the astronomy missions. For example, the James Webb Telescope is
expected to achieve a pointing accuracy of 10−6 deg or 0.0036 arcsec [Wertz, 2012].

The pointing accuracy, agility, pointing stability, as well as the budget of the mission, condi-
tion the choice of attitude control system and the choice of sensors and actuators. Different types
of sensors are available. The attitude can be measured by Sun and Earth sensors, with a limited
accuracy, or by star tracker with very high accuracy. Several types of gyroscopes are available,
with different levels of accuracy, that provide angular velocity measurements. Also the different
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types of actuators affect the pointing accuracy: magnetorquers (also known as magnetic torque
rods), thrusters, cold gas, electric propulsion, reaction wheels and control moment gyros.

Some satellite subsystems must be pointed towards specific directions, as solar arrays must be
pointed to the Sun, thermal radiators must be pointed to deep space, antennas pointed to ground
stations and, prior to firing, thrusters must be pointed to the correct direction. The required
orientation will frequently be related to an Earth-based frame of reference, for example one face
of the spacecraft must point down the local vertical. In general, separate pointing mechanisms
are to be avoided. However, they are often needed in order to enable a part of the satellite to
remain pointed in one direction whilst the main structure changes its orientation. For example,
a solar array needs to remain pointed to the Sun whilst the main structure turns to align with
the local vertical.

The attitude determination and control system (ADCS) plays an indispensable role in the
satellite on-orbit operation which could greatly affect the satellite performance. The ADCS in-
cludes sensors, actuators, computer, software, and ground support equipment. Its general struc-
ture is represented in Figure 1.3. The links between components identify the major interactions,
while arrows indicate the flow of information.

Figure 1.3: Block diagram for an attitude-control system.

The torques arising from moments of forces about the center of mass, or pure torques, can
be distinguished as external or internal to the spacecraft. The former affect the satellite total
angular momentum, whereas the latter affect only the distribution of momentum between its
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moving parts (as in the case of reaction wheels or control moment gyros). Since the internal
sources are subject to saturation (saturations that are mainly due to disturbance torques that
increase the total angular momentum), it is necessary to include controllable external torquers,
at least for desaturation purposes.

1.3 System Identification Overview

The accurate knowledge of the satellite model is fundamental for an optimal tuning of the
ADCS. This knowledge can be obtained by means of system identification techniques. The basic
objective of system identification is to develop a mathematical model of a physical system by
observing its input-output relationship. A mathematical model of a system is required for many
purposes, such as diagnosis, simulation, prediction, and control. Often in practice, one concerns
with linear models since many physical systems can be described by linear or approximately
linear equations. Moreover, linear systems are easier to handle.

The construction of a model from input-output data involves the following basic steps [Ljung,
1999]:

• The selection of the input-output data through a specific design of experiment. The ob-
jective of the experiment design is to make the data maximally informative, subject to
possible physical constraints. This step is covered in Chapter 7.

• The selection of a set of candidate models. This is the one of the most important and
difficult choices of the system identification procedure. Models can be classified according to
their physical meaning (we consider here only parametric models) [Isermann and Münchhof,
2010]:

white box: If the physical laws that govern the behavior of a system (or any other theo-
retical considerations about the system) are completely known, they can be used to
construct a so called white-box model, also called first principles model.

black box: At the other end of the modeling scale there are the so called black-box models.
A black-box model does not directly use the actual mechanisms which are supposed
to underly the studied system, but it merely intends to make good predictions of
the system behavior: the internal description merely serves to relate input signals to
output signals.

grey box: An intermediate level between white and black box modeling is also possible.
This approach is often denoted by the term grey-box modeling. In this case the model
is constructed from basic physical principles and the parameters represent unknown
values of the system coefficients that, at least in principle, have a direct physical
interpretation.

In this work the satellite is represented as a grey-box model. The physical laws that govern
the satellite dynamics are well known and they have been used to construct the model as
described in Chapter 2. Some physical parameters of this model, as the inertia matrix,
are not exactly known and must be estimated. Moreover, the disturbances that affect the
satellite are the overall effect of several complex physical effects, which are quite difficult to
model with sufficient reliability. In this case a black-box approach has been chosen, where
a reasonable and simplified model is used, based on some insights instead of an accurate
knowledge of the reality.
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• Selection of the estimator: a suitable cost function is chosen, which reflects how well
the model fits the experimental data. Among the selection criteria, these are the most
commonly used (we consider here only the time domain estimators):

– Prediction error minimization: the model is selected based on the smallest prediction
errors when applied to the observed data.

– Least squares criterion for the linear regression: The least-squares method is a special
case of the prediction-error minimization method. The important feature of this
criterion is that it produces a quadratic function in the parameter and therefore it
can be minimized analytically.

– Maximum likelihood optimization: The model that maximizes the probability of the
observed data is defined maximum likelihood estimator.

– Instrumental variables: It is based on a cost function very similar to the least squares
estimator. Like the least squares method, it has an analytical solution.

• The selection of the best model in the set, based on the data. This is an optimization
problem, which is solved to obtain the numerical values of the model parameters.

• Model validation: this is the assessment of model quality, which indicates how the model
performs when it attempts to reproduce the measured data.

Some additional operations are often necessary before performing an identification experiment
and after collecting the data, in order to polish the data to make them suitable for system iden-
tification. This step is referred to as data pre-processing. Below, some preprocessing procedures
are described:

• Decimation: When the sampling frequency is too high with respect to the actual bandwidth
of interest of the system under investigation, one may resample the data by selecting one
every i-th sample from the original data sequences.

• Detrending the data: This process consists in removing long term drifts or biases.

• Pre-filtering the data: Distortions in the data, as trends and noise, that reside in a frequency
band that can be separated from the frequency band of interest of the system can be
removed by filtering the data with a suitable filter. Applying such filtering to the input
and output sequences has some implications for the identification procedure.

• Removing the outliers. Outliers are data points that differ significantly from other ob-
servations. The removal of the outliers helps to improve the accuracy of the estimated
results.

1.4 Scope of the Thesis

The correct tuning of the attitude determination and control system is of primary importance
for the satellite operation. An accurate and fast pointing is only possible with a precise and
accurate knowledge of satellite inertia and of the actuator directions. The importance of these
parameters becomes even more critical when a feedforward control is used in addition to the
closed-loop control, as shown in Figure 1.42. This control scheme has the advantage to minimize

2The second inputs in the sensor boxes, qn and ω̃, represent the sensor measurement noise, whereas Md

represents the overall disturbance torques.
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Figure 1.4: Closed-loop satellite system with feedforward control.

the negative effects of a known disturbance and to improve the reaction time and the control
accuracy. In fact, even if the robustness of closed-loop controllers is usually guaranteed even
for uncertainties of 15% on the inertia matrix, inertia errors below 1% would allow for a faster
pointing with lower tranquilization time after the maneuver.

Unfortunately, the inertia matrix and the actuator alignments cannot be reliably estimated
on ground. The gravity on earth prevents the possibility to accurately measure the inertia.
Moreover, these parameters change after launch, due to fuel consumption, deployment of the
solar panels and to a possible deformation of the satellite structure. Also the actuator alignment
may be affected by the structural deformation. The estimation of these parameters must therefore
be done in orbit, using the telemetry data obtained during a suitable maneuver.

The attempt to provide methods and algorithms for obtaining the best possible estimation of
these parameters is the main topic of this thesis.

The work can be divided into two main parts, as shown in Figure 1.5: the search for a method
that produces reliable and consistent estimators and the attempt to improve the quality (reduce
the variance) of the estimates by means of filtering and a proper selection of the excitation
maneuver (also known as experiment design).

In order to develop an estimation algorithm, several non-idealities of the satellite system and
its telemetry data must be considered:

• a measurement noise is present on all the sensors (attitude sensors and actuator sensors),
which cannot always be approximated by a simple white noise source;

• several external disturbances are present, which can hardly be estimated;

• some internal disturbances could be present (i.e. oscillation of the solar panels or of some
internal moving part);

• some constraints limit the amplitude and the speed of the satellite maneuvers: physical
constraints, due to actuators sizing with respect to satellite inertia, limit the angular mo-
mentum and angular acceleration; operational constraints (such as sensors blinding, or
thermal constraints) limit the reachable attitude;
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Figure 1.5: Objectives of the work.

• some output states like angular acceleration and angular velocity (for gyroless satellites)
are not directly measured;

• due to the double integration behavior of the spacecraft (which makes the open-loop system
unstable), the satellite is always operating in closed loop;

• a small, but not negligible, timing difference could be present among different sensor mea-
sures.
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1.5 Outline of the Thesis

The sequence of the chapters in this thesis does not follow the logic flow described in Section 1.3.
It is instead more related to the chronology of the activities in this doctoral work. First a
reliable and consistent method has been searched considering a relatively simple estimation
problem. Then several difficulties and further objectives have been gradually added. Finally,
after satisfying estimation methods have been obtained, the experiment design has been taken
into consideration, with the objective to further improve the accuracy of the estimates.

The organization of the chapters of the thesis is presented below.

• Chapter 2 begins with a brief description of the equations which govern the satellite attitude
kinematics and dynamics. Then the satellite system is described with a focus on the
components of the attitude determination and control system: sensors and actuators.

• Chapter 3 illustrates the estimation problem. After a description of the satellite model for
parameter estimation, an overview of the possible estimation methods is presented, with a
focus on the main method chosen for this work, the instrumental variable (IV) method.

• In Chapter 4, the inertia estimation problem for a gyro-equipped satellite is considered.
This is the most common scenario considered in the literature. The main objective consists
in showing how the instrumental variable can also be adapted and applied to this estimation
problem. Moreover, the effect of the gyroscope drift on the estimates has been analyzed
and a solution has been proposed to estimate and remove the drift effect. Part of this work
was published in [Nainer et al., 2018].

• In Chapter 5, the instrumental variable method is extended to gyroless satellites, there-
fore the algorithm relies solely on attitude measurements. Additionally, a detailed noise
analysis is performed that allows for an effective choice of the prefilter. For the numerical
simulation, all the data for this chapter have been generated by a high-fidelity simulator
from CNES, where all possible sources of disturbance are present. The simulation con-
ditions are therefore as close as possible to the real environment. Finally, the method is
tested with real data recorded during an experiment on the Picard satellite. This work,
with the exception of the Picard results, was published in [Nainer et al., 2019].

• In Chapter 6, a more general case is studied: estimating both the inertia and actuator
alignment parameters while still considering a gyroless satellite. Moreover, in the simu-
lated data, the star tracker measurements are not perfectly synchronized with the actuator
speed readings. This particular problem is not dealt by the satellite parameter estima-
tion literature, although it affects the accuracy of the estimates. The IV method is further
extended, for the simultaneous estimation of both parameters, as well as to take into consid-
eration aforementioned delay. Finally, a more elegant solution is proposed for the prefilter
design. The proposed algorithm is tested again using data from the CNES high-fidelity
simulator. This work has been submitted in [Nainer et al., 2020b]

• Chapter 7 shifts the focus to the experiment design for satellite inertia estimation. The
purpose of the experiment design is to maximize the information content of the data by
means of optimized maneuvers. After the parameterization of the signal, maneuvers are
designed by the minimization of a Fisher information-based cost function. The effectiveness
of the optimized maneuvers has been tested through simulations. Moreover, also real
experiments have been carried out on a small platform, that well emulates the satellite
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behavior, which has been tested on a zero-G flight. This work has been submitted and
accepted in [Nainer et al., 2020a].

• Finally, in Chapter 8 an overview of the contributions related to the satellite parameter
estimation problem is given, as well as some guides to correctly use the proposed meth-
ods. Moreover, possible future works, especially regarding the extension of the proposed
methods, are suggested.
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The initial step of the parameter estimation process consists in the satellite modeling. In this
research we are interested in the estimation of the parameters which affect the attitude control,
therefore only the rotational dynamics is considered, while the translational dynamics is not
part of the thesis identification work. In the first section, the satellite rotational kinematics is
introduced, giving the bases for the second section where the satellite system and its rotational
dynamics are described. In the last two sections the main sensors and actuators are illustrated,
with a focus on their mathematical model for the measurements that is later used in this thesis.

2.1 Attitude Representation and Satellite Rotational Kinematics

This section introduces the equations and concepts of rotational attitude kinematics. These
equations form the basis for spacecraft dynamical systems. A brief review of the main concepts
is presented in this chapter, with a particular emphasis on the quaterion representation.
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2.1.1 Reference Systems

The orientation of a spacecraft is usually referred to as “attitude”. It is described by the orienta-
tion of a body fixed frame with respect to an inertially fixed reference frame. The attitude is de-
scribed by the attitude coordinates, and consists of at least three parameters. Before introducing
the attitude representation it is necessary to define reference frames and sign conventions [TTVS
2019]. All reference frames are right handed and with mutually orthogonal axes. At least two
reference frames need to be defined: a body-fixed reference frame, that is rigidly attached to the
satellite body, and a world reference frame that is fixed in the inertial space.

Body frame: A satellite-fixed coordinate system depends on the mechanical architecture of
the satellite. Its origin may be a characteristic point of the satellite (usually the launcher inter-
face) and its axes are oriented according to the principal sides of the bus. Secondary coordinate
systems tied to the satellite can be defined, in particular at anchor points of moving parts on
the main body of the satellite (e.g. anchor points of the solar panels) or at attitude sensors (e.g.
star tracker). Finally, instrument coordinate systems can be defined, that are aligned according
to the characteristic directions of the instrument (e.g. optical axes of an imaging instrument,
boresight of an antenna, measurement axes of a gyroscope, ...).

Reference frames: The most commonly used reference frames are:

• Local orbital coordinate system: Orbital coordinate systems are tied to the orbit of the
satellite and its position on that orbit. Two types of orbital coordinate systems can be
defined: a coordinate system that refers to the geocentric axis, where the Z axis points to
the Earth center, and one that refers to the satellite velocity, where the X axis is parallel to
the velocity (these two reference systems coincide in case of circular orbit). In both cases,
the Y axis is parallel to the angular momentum (Figure 2.1).

Figure 2.1: Geocentric local orbital coordinate system.

• Inertial coordinate systems: The inertial coordinate system coincides with the International
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Celestial Reference System recommended by the IAU Working Group on Nomenclature for
Fundamental Astronomy. It is aligned close to the mean equator and dynamical equinox
of the J2000 epoch, in which the new star catalogues are expressed.

• Solar coordinate system: In certain fields, such as thermal and energy, the direction of
the Sun plays a predominant role. This is why the Earth-Sun direction is used in some
coordinate systems.

2.1.2 Attitude Representation

The attitude of a rigid body is defined as the transformation between a body frame and an
inertial frame. There are several different ways to represent this transformation. The advantages
and disadvantages of some important and commonly used representations are summarized below:

• Rotation matrices: This is the most general form for representing the attitude of a body.
Since the 3× 3 rotation matrix uses nine parameters to represent three angular degrees of
freedom, there are six independent constraints on the matrix elements. Each column (and
row) is a unit vector, which gives 3 constraints and the columns (and rows) are orthogonal
to each other, yielding another 3 constraints. This parametrization is very redundant
compared to all other parameterizations. Rotation matrices are therefore computationally
more expensive than other representations. However, they have the advantage that there
are no singularities or ambiguities.

• Euler angles: The Euler angles representation is based on the fact that three coordinate
rotations in sequence can describe any rotation. Not all combination of three axes produce
valid rotations sequences (two consecutive rotations about the same axis is not a valid
sequence). Therefore only 12 combinations of coordinate rotation can be used to define
an attitude and the Euler angles representation must specify the sequence of rotation axes
(the sequences of rotation about three different axes are also called Cardan angles). This
representation is very intuitive and easy to interpret physically. However, it suffers from
a singularity also known as gimbal lock: some particular orientations can be obtained
with different combinations of angles. The exact orientation at which gimbal lock occurs
depends on the order of rotations used. This causes another problem: for some particular
orientation one of the Euler angles may change suddenly in response to small change in
rotation.

• Unit quaternions: Due to the parametrization by 4 variables instead of the 3 of the Euler
angles, quaternions do not have singularity problems. Also, any rotation sequence can be
represented by a continuous quaternion trajectory and do not suffer any discontinuity like
Euler angles. They are also computationally more efficient than Euler angles. However,
they possess the ambiguity of dual covering, i.e., the quaternions q and −q represent the
same transformation. It is also easier to interpolate between rotations and to chain rigid
transformations.

Other representations exist, even if less common. In this work quaternions are used for almost
all the computation, while the Euler’s angles are sporadically used for plots. Some concepts and
definitions used in quaternion algebra are described below.
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Quaternions

Quaternions can be considered as a 4-components extended complex number of the form:

q = q0 + q1i+ q2j + q3k , (2.1)

where the complex units i, j and k respect the following rules:

i2 = j2 = k2 = −1 , ij = k , jk = i , ki = j . (2.2)

A quaternion is usually represented by a a vector q which contains its components:

q = [q0 q1 q2 q3]T =

[
q0

q1:3

]
, (2.3)

where q0 and q1:3 are the real and imaginary parts, respectively. In some texts a different
convention is used, where the real part is put in the fourth element of the vector.

The conjugate of a quaternion q is defined as:

q̄ =

[
q0

−q1:3

]
, (2.4)

and the norm is defined as:
||q|| =

√
q2

0 + q2
1 + q2

2 + q2
3 . (2.5)

The product of two quaternions q and p is denoted by q ⊗ p and can be calculated using the
rules (2.2) as:

q ⊗ p =


q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0



p0

p1

p2

p3

 = Q(q)p . (2.6)

It must be noted that, in general, q ⊗ p 6= p⊗ q.
A unit quaternion (|q| = 1) can be used to represent a rotation in space. This can be easily

understood considering the Euler’s rotation theorem:
Any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point

is equivalent to a single rotation by a given angle about a fixed axis (called Euler axis) that runs
through the fixed point.

Any attitude of a rigid body can be defined by an axis with unit vector v, and a rotation
about that axis, α. The corresponding rotation quaternion can be represented in terms of these
two parameters as:

q =

[
cos(α/2)

v1:3sin(α/2)

]
. (2.7)

Quaternion derivatives are often used to compute the angular velocity or to integrate the
system dynamics. The body’s angular velocity, ω ∈ R3×1, and angular acceleration, ω̇ ∈ R3×1,
(expressed in the body reference frame) can be directly computed from the attitude quaternion
as

ω = 2W (q)q̇ , ω̇ = 2W (q)q̈ , (2.8)

with the function W (·) defined as follows

W (q) =

−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0

 . (2.9)
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2.2 Satellite System and Dynamics

The first step of the parameter estimation process consists in the satellite modeling. In this
research we are interested in the estimation of the parameters which affect the attitude control,
therefore just the rotational dynamics is considered.

2.2.1 Closed-loop System

Due to the double integration behavior of the rotational dynamics, the satellites are always
controlled in closed loop (Figure 2.2), while a feedforward action is sometimes added to improve
the attitude tracking and spacecraft overall agility. Filters, like extended Kalman filter (EKF),
are present in the feedback path, to improve the measurement signal-to-noise ratio, to ensure
good function in case of missing measurements and to estimate states, which are not measured,
necessary for the control law (e.g. angular velocity in case of gyroless satellites) [Crassidis et al.,
2007; Wertz, 2012].

Figure 2.2: Example of closed-loop satellite system.

2.2.2 Satellite Attitude Dynamics

For the rotational dynamics, the satellite is considered as a rigid body. The flexible modes of
the satellite are not significant enough to justify a more complex model (the control law already
avoids the spacecraft excitation around critical frequencies), and the small mismatch can be
easily included into a disturbance torque term.

The rotational dynamics of a rigid body, expressed in the body reference frame, is described
by the Euler’s equations [Sidi, 1997]

M(t) = J ω̇(t) + ω(t) ∧ J ω(t) , (2.10)

where M(t) ∈ R3×1 is the sum of the applied torques, J ∈ R3×3 is the inertia matrix,
ω(t) = [ωx(t) , ωy(t) , ωz(t)]

T ∈ R3×1 is the body angular velocity and ∧ is the cross product
operator. The inertia J is a symmetric positive definite matrix with the following form

J =

J11 J12 J13

J12 J22 J23

J13 J23 J33

 , (2.11)

therefore there are only 6 independent inertia parameters.
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In the following, we will use the matrix form of the cross product multiplication and (2.10)
can be rewritten as

M(t) = J ω̇(t) + ω(t)×J ω(t) , (2.12)

where ω(t)× is defined as follows

ω(t)× =

 0 −ωz(t) ωy(t)
ωz(t) 0 −ωx(t)
−ωy(t) ωx(t) 0

 . (2.13)

Depending on the type of satellite, the commanded torqueM(t) can be generated by different
types of actuators. In some rare cases, thrusters can be used to generate the required torque.
However, even if high torques can be achieved, this method is usually avoided since the amount
of fuel in the satellite is limited and it should be preserved to increase the duration of the mission.
The most common way to control the attitude of a satellite is by means of reaction wheels (RWs)
or control moment gyros (CMGs) [Larson and Wertz, 1992]. These types of actuators exchange
their angular momentum with the spacecraft body to generate an equivalent torque. In this case,
the rotational dynamics equation becomes

− ḣrw(t)− ω(t)×hrw(t) +Md(t) = J ω̇(t) + ω(t)×J ω(t) , (2.14)

or

− ḣC(t)− ω(t)×hC(t) +Md(t) = J ω̇(t) + ω(t)×J ω(t) , (2.15)

where hrw(t) and hC(t) are the reaction wheels total angular momentum and CMGs total
angular momentum, respectively. The sum of all the disturbance torques affecting the satellite
during the maneuver are collected into the term Md(t). Since the dynamics is very similar for
the two cases, we will consider a satellite equipped with reaction wheels, unless differently stated.
For the reaction wheel case, the total angular momentum is given by

hrw(t) =
n∑
i=1

Jrw,iΩi(t)ai , (2.16)

where n is the number of reaction wheels (typically n = 4), Ωi is the i-th wheel rotation
speed, Jrw,i is the i-th reaction wheel scalar inertia around its spinning axis, and ai ∈ R3×1 is
the reaction wheel axis orientation expressed as a unit vector.

Due to the gyroscopic terms the overall satellite dynamics is nonlinear. However, during a
satellite maneuver, the gyroscopic term is typically a couple of order of magnitude smaller than
the main linear term. As an example to prove this statement, we can consider the Pleiades-
HR (High Resolution) satellite from CNES [Damilano, 2001]. It is a medium size satellite,
given its mass of around 900 kg, however, thanks to its 4 powerful control moment gyros it
can be considered an agile satellite. Considering its maximum achieved angular velocity of
3.4 ◦/s [Gleyzes et al., 2012], and that its diagonal inertia terms are between 500 and 700 kgm2,
the gyroscopic term (ω(t)×J ω(t)) may reach values up to around 0.4Nm. However, even in this
extreme scenario, the gyroscopic term is still significantly smaller than the maximum achievable
torque, 45Nm. Since during the maneuvers relatively high input torques are applied, we consider
the nonlinearity for the typical satellite dynamics to be “mild”.
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2.2.3 Disturbance Torque

The disturbance torque Md depends on several factors (Table 2.1) [Larson and Wertz, 1992]:
gravity gradient torque, aerodynamic torque, solar radiation pressure, magnetic torque, internal
satellite structure oscillation (e.g. solar panel oscillation). The magnitudes of these components
depend on the satellite orbit and altitude. The magnitude of these torques in space is small when
compared to terrestrial standards. However, even very small torques become significant when
there is no friction to oppose them and when the orientation has to be very accurate. Terms,
like the gravity gradient torque, can be easily estimated, while others can only be taken into
consideration by the parameter estimation process in order to avoid poor parameter estimates.

Disturbance Type Influenced primarily
by

Order of magni-
tude

Gravity gradient Constant for Earth ori-
ented satellites, cyclic for
inertially oriented satel-
lites

Spececraft inertia matrix
and orbit altitude

4× 10−5Nm

Solar radiation Cyclic for Earth oriented
satellites, constant for so-
lar oriented satellites

Spacecraft geometry and
surface reflectivity

5× 10−6Nm

Magnetic field Cyclic Orbit altitude, residual
satellite magnetic dipole,
orbit inclination

5× 10−5Nm

Aerodynamic Constant for Earth ori-
ented satellites, cyclic for
inertially oriented satel-
lites

Orbit altitude and space-
craft geometry

3× 10−6Nm

Table 2.1: Main disturbance torques affecting a spacecraft. The order of magnitude is referred
to a microsatellite in LEO.

For a low-orbit satellite, the overall disturbance torque can be well approximated as

Md,x 'M0,x +M1,xsin(ω0t+ φ1,x) +M2,xsin(2ω0t+ φ2,x) ,

Md,y 'M0,y +M1,ysin(ω0t+ φ1,y) +M2,ysin(2ω0t+ φ2,y) ,

Md,z 'M0,z +M1,zsin(ω0t+ φ1,z) +M2,zsin(2ω0t+ φ2,z) ,

(2.17)

where ω0 is the satellite orbital rate. The other scalar constants in these equations can be
determined empirically.

2.3 Sensors

The attitude determination system is one of the most important component for any spacecraft.
It has the function of estimating the orientation of the spacecraft with respect to some reference
system. The satellite attitude estimation, during mission modes, relies almost always on star
tracker measurements and on rate gyroscope measurements. Nonetheless, there are also acquisi-
tion modes where sun sensors and magnetometers are used. Theoretically, only one of these two
sensors (star tracker and gyroscope) could be used for attitude and angular rate determination.
However, the calculation of the angular rate from the star tracker is limited by the low dynamic
of this sensor, while the calculation of the attitude by the integration of the angular rate is
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seriously compromised by the gyroscope drift. The fusion of measurements from star trackers
and gyroscopes is therefore a common approach for spacecraft attitude determination.

2.3.1 Star Tracker

Star trackers are the most common attitude sensors. A star tracker is an optical device that
measures the orientation of the satellite with respect to distant (fixed) stars using photocells or
a camera. Since the positions of many stars have been accurately measured by astronomers, a
star tracker is a very accurate device. In order to do this, the star tracker must obtain an image
of the stars, measure their apparent position in the reference frame of the spacecraft, identify the
stars and compare their position with their known absolute position from a star catalog. A star
tracker includes a processor to identify stars by comparing the observed pattern with the stored
pattern of stars in the sky. Sometimes more than one optical head is used in order to avoid the
possibility to be completely blinded by the sun or the Moon (see Figure 2.3).

Figure 2.3: Star tracker with triple optical head (source: Spacecraft System Engineering [Fortes-
cue et al., 2011]).

Since a star tracker uses a fixed inertial frame as reference, its measurements do not drift
with time. The attitude measurement equation can be expressed as follows3

q(tk) = qn(tk)⊗ qs ⊗ q(tk) , (2.18)

where q(tk) is the measured quaternion representing the satellite attitude, qs is the quaternion
transformation from body to sensor frame, and qn(tk) is the quaternion measurement noise that
can be approximated as

qn(tk) ' [1 , ex/2 , ey/2 , ez/2]T , (2.19)
3From now on, with the symbol q we mean the measured quaternion and not the conjugate of the quaternion

q.
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with

ex ∼ N(0, σ2
x) , ey ∼ N(0, σ2

y) , ez ∼ N(0, σ2
z) , (2.20)

where the notation e ∼ N(0, σ2) means that the error e has a normal distribution with zero
mean and variance σ2. Moreover, the three components ex, ey, ez are assumed to be mutually
uncorrelated. Since the star tracker may be affected by some small bias/misalignment (bx, by,
bz), a more complex noise term can be defined

qn(tk) '

[
1 ,

ex + bx
2

,
ey + by

2
,
ez + bz

2

]
. (2.21)

This is the noise model that is used by the CNES high fidelity simulator (see Chapter 5 and
6).

2.3.2 Gyroscope

Sensors which measure angular rates with respect to an inertial frame of reference are called
gyroscopes. There are three main types of gyroscope: mechanical gyroscopes, micro-electro-
mechanical system (MEMS) gyroscopes, and optical gyroscopes. Traditional mechanical gyro-
scopes utilize a rotating momentum wheel attached to a gimbal structure. However, rotating
wheel gyroscopes have many disadvantages, primarily concerning bearing friction and wear. An-
other critical point of the mechanical gyroscopes is the so called gimbal lock: in case of alignment
of two gimbals, one degree of freedom is lost and the device becomes locked. Vibrating gyro-
scopes, such as the Hemispherical Resonator Gyroscope (HRG) present an effective solution to
the bearing problems by eliminating rotating parts. Finally, the most accurate (and expensive)
gyroscopes are the optical gyroscopes, as the Fiber-Optic Gyroscope (FOG), which exploit the
Sagnac effect. An example of optical gyroscope is shown in Figure 2.4.

The simplest gyroscope noise model consists in considering the angular velocity affected by
a white noise ω̃

ω = ω + ω̃ . (2.22)

A more realistic model considers also the drift and gain error terms [TTVS 2019]

ω = (1 + fG)ω + ωb + ω̃ , (2.23)

where fG is a constant scalar value, and ωb is modeled as a random walk term:

ω̇b = ωd , ωd ∼ N(0, σ2
d) . (2.24)

2.3.3 Reaction Wheel Sensor

In order to compute the reaction wheel angular momentum, the reaction wheel speed Ωi must
be measured. Usually, these actuators are equipped with Hall-effect sensors or optical encoders
(the latter are used in MicroCarb satellite). The encoder measures a wheel angular position,
from which the angular rate is computed. Even if the encoder quantization error has a uniform
distribution, it is often approximated with an additive white noise Ω̃i

Ωi(tk) = Ωi(tk) + Ω̃i(tk) . (2.25)
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Figure 2.4: Double prism optical gyroscope (source: Spacecraft System Engineering [Fortescue
et al., 2011]).

2.3.4 Sensor Delay

When the input-output data are obtained, it is usually assumed that the data are correctly
synchronized. However, this is not always necessarily true. In fact, we may have a small (less
than a sample step) delay tδ between the input-output data (e.g. reaction wheel speed and star
tracker measurements may be not perfectly synchronized). Even if small, this delay may have
a non-negligible effect on the parameter estimation and it should be taken into account by the
estimation algorithm.

2.4 Attitude Control Actuators

There are two main methods for attitude control: active methods, which control the satellite
by using torque actuators, and passive methods which use the reaction of the satellite to some
physical effect to ensure its stability (e.g. gravity gradient stabilization) or which use properties
of the angular momentum (spin stabilization). Passive methods can only provide coarse attitude
control, suitable for simple satellites, which only require basic alignment. Therefore, in order to
achieve accurate and fast satellite pointing, active control techniques are present in most of the
spacecrafts.

The torques acting on a satellite can be identified as external or internal to the spacecraft. The
former will affect its total angular momentum, whereas the latter will affect only the distribution
of momentum between its moving parts.

One main issue of the internal torquers is their saturation limit. A reaction wheel, for
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example, has a maximum speed that can be achieved and this corresponds to a maximum angular
momentum that can be stored. If a disturbance torque has a non-zero mean, then the wheel
speed will increase until saturation to counteract the disturbance. It then becomes necessary to
apply an external torque to bring down the wheel speed (desaturation); this must be achieved
with an external type actuator (a thruster or a magnetorquer).

The main types of actuators [Larson and Wertz, 1992] are summarized in Table 2.2. Other
actuators exist, such as sailor sails and aerodynamic control surfaces, however their use is very
limited. In this thesis we consider satellite controlled by inertial actuators: reaction wheels
or control moment gyros. Satellites are also equipped with magnetorquers, however, for the
majority of the simulations in this work, they are kept disabled.

Actuator type Typical torque
magnitude

Remarks

Thrusters Up to 10000 Nm
External torque

On-off operation only
Requires fuel

Magnetorquers up to 0.18 Nm
External torque

No torque about field direction
Torque is altitude and latitude sensitive

Reaction wheels 0.01 - 1Nm
Internal torque

Continuous fine pointing capability
Non-linearity at zero speed

Control moment
gyroscopes

25 - 500 Nm
Internal torque

Complex mechanism
Steering complexity due to Singularities

Table 2.2: Main types of actuators for attitude control.

2.4.1 Reaction Wheels

Reaction wheels (RWs) are internal torquers, suitable for attitude control but not for controlling
the total momentum. These devices are precision-engineered wheels that rotate about a fixed
axis, with a built-in motor. The basic design comprises a bearing unit, a flywheel mass and a
DC motor in a vacuum housing. The stator is controlled by the drive electronics and the speed
is usually measured by an encoder. Reaction wheels provide a reaction torque which results from
rotational acceleration or deceleration of the flywheel (also a small gyroscopic effect is present,
which should be considered in the torque calculation). Reaction wheels have a nominal zero
speed, and may be rotated in either direction in response to the control torques required by the
attitude controller. However, it should be noted that at low or zero angular rate, the wheels have
a non-linear behavior due to bearing sticking friction, which could produce an irregular motion on
the spacecraft in this region. This problem is often solved by setting the nominal operating speed
of the wheels above zero rate, at a few rpm (revolution per minute). For three-axis control, three
orthogonal reaction wheels are the minimum requirement. A redundant fourth wheel is normally
added in order to avoid a single-point failure. In this case a pyramidal arrangement configuration
is often used (Figure 2.5). There is a maximum angular momentum that a reaction wheel can
store, which depends on the flywheel inertia and on its maximum speed. Before reaching this
limit, a desaturation becomes necessary, which can be done by means of an external type torquer.
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Figure 2.5: Common pyramidal arrangement configuration for reaction wheels.

2.4.2 Momentum Wheels

A momentum wheel is structurally very similar to a reaction wheel, but there is an important
difference: the rotation speed of the flywheel is much higher and so, accordingly, its angular
momentum. Since the total angular momentum of a spacecraft equipped with momentum wheels
is kept different from zero, an important stabilization effect is obtained (also known as gyroscopic
stiffness). Momentum wheels are usually smaller and achieve a lower torque with respect to
reaction wheels.

2.4.3 Control Moment Gyroscopes

A control moment Gyroscope (CMG) is essentially a gimbal mounted momentum wheel. Torques
are generated by commanding gimbal rotations by means of torque motors and thereby changing
the spin axis orientation. Depending on the number of gimbals, there are single, 2 or 3 degree
of freedom CMGs. Using three gimbals, all three components of torque may be generated by a
single wheel, however they are less efficient that single-gimbal CMG. The torques achievable by
these actuators may be up to 100 times higher than the ones of a reaction wheel for the same
power consumption. Compared to reaction wheels, CMGs have a higher mechanical complexity
(mainly due to the steering mechanism) and require much more volume and mass. They are
preferably used in satellites that require high agility or in large size spacecrafts.

2.4.4 Magnetorquers

Magnetic torquers (or magnetorquers) are very popular due to their low mass, high reliability
and efficiency. The downside is that they cannot produce the large torques required for fast
maneuvers with the power available. Another limit of magnetic torquers is that they cannot
produce a torque component about the local field direction. The torque strength can be controlled
by means of the current flowing through the electromagnets. Since the torque generated by the
magnetorquers depends of the Earth magnetic field strength and direction, a magnetometer
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is also necessary. Magnetorquers are commonly used in satellites orbiting at LEO since their
effectiveness decreases at the higher altitudes (the strength of the Earth’s field weakens with
height). Since magnetorquers generate an external torque, they are often used to desaturate the
reaction wheels or CMGs.
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This chapter deals with the general description of the satellite parameter estimation problem,
while also providing some overview on the main estimation methods.

In the first section, after an analysis on the identifiable parameters, the most common satellite
estimation models are presented, including the one that is used in the remainder of this work.
Moreover, in the same section, the main difficulties of this estimation problem are highlighted.
The second section gives an overview on the state of the art on the satellite parameter estimation
problem. In the third section, several parameter estimation methods are briefly summarized with
a deeper focus on the instrumental variable (IV) since it is the base for the methods proposed
in Chapter 4-5-6. Finally, after having justified the choice of the IV method, the last section
summarizes the main steps toward the satellite parameter estimation.

3.1 Satellite Parameter Estimation Overview

In order to have a reliable model of the satellite, the main parameters of the rotational dynamics
need to be accurately known. By looking at (2.14) and (2.16) (spacecraft with reaction wheels
as main actuators), the main satellite parameters are: the inertia matrix J , the reaction wheel
inertias Jrw,i and the reaction wheel alignments ai. The first question that needs to be answered
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is whether all these parameters can be estimated together (identifiability problem). Unfortu-
nately, there is a scaling relation between the actuator inertia Jrw,i and the satellite inertia J ,
making it impossible to estimate both simultaneously. In fact, by applying the same scale factor
to the satellite and reaction wheel inertia the dynamic equation would have the same solution.
Therefore, one of these two set of parameters need be considered known and kept fixed. Typi-
cally, the reaction wheel inertias can be accurately estimated on ground and their values are not
expected to change after launch, thus we can simply consider all the inertias Jrw,i known. More-
over, as explained in Section 1.4, reliable estimation of the satellite inertia and of the actuators
alignments is only possible when the satellite is in orbit.

Given these assumptions, the overall estimation problem consists in performing an in-orbit
estimation of the satellite inertia J and actuator alignments ai from telemetry data. The iden-
tification process requires two main steps: first, a sufficiently exciting maneuver needs to be
designed and executed in order to have enough information content in the data, secondly, an
estimation method is applied on the input-output data to estimate the parameter characterizing
the satellite rotational dynamics.

3.1.1 Satellite Modeling for Parameter Estimation

Before designing an estimation method, a suitable model structure of the satellite needs to be
chosen. For simplicity, we first consider the inertia parameter estimation, and only in a second
step extend the problem to the actuator alignments. From (2.10), we can write the output ω̇(t)
as function of the input torque M(t)

ω̇(t) = J−1(M(t)− ω(t)×J ω(t)) . (3.1)

This is called “direct” or “forward” model, since it computes the output state ω as a function
of the inputM(t). This representation is useful to simulate the model or to estimate the satellite
states. However, this form has a major disadvantage when used for the identification since the
parameter J appears nonlinearly in the equation. Nonetheless, estimation methods like the
extended Kalman filter (EKF) can be applied to this nonlinear model, and good results have
been obtained in the literature (see Section 3.2). However, the nonlinearity makes the use of
other methods impractical (e.g. least squares), or it makes some methods unreliable due to
highly nonconvex cost functions (e.g. prediction error method).

By keeping the system in its “inverse” form (2.10 or 2.14), the equation can be rearranged in
order to linearly extract the 6 independent inertia parameters as follow

− ḣrw(t)− ω(t)×hrw(t) +Md(t) =
(

Γ(ω̇(t)) + ω(t)×Γ(ω(t))
)
θJ , (3.2)

where

Γ(ω(t)) =

ωx(t) 0 0 0 ωz(t) ωy(t)
0 ωy(t) 0 ωz(t) 0 ωx(t)
0 0 ωz(t) ωy(t) ωx(t) 0

 , (3.3)

and

θJ = [J11 , J22 , J33 , J23 , J13 , J12]T . (3.4)

Another way to extract linearly the inertia parameters consists in using the equation based
on the conservation of the angular momentum in the inertial reference frame:
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Qr(tk)
(
J ω(tk) + hrw(tk)

)
= Qr(tj)

(
J ω(tj) + hrw(tj)

)
+

∫ tk

tj

Md(t) dt , (3.5)

where tj and tk are two different time-instants, and Qr(t) is the rotation matrix that trans-
forms the coordinates from the body reference frame to the inertial reference frame. In (3.5),
the inertia J appears linearly and it can be easily extracted

Q(tk)hrw(tk)−Q(tj)hrw(tj)−
∫ tk

tj

Md(t) =
(
Q(tj)Γ(ω(tj))−Q(tk)Γ(ω(tk))

)
θJ . (3.6)

The representation (3.6) corresponds to (3.2), with a change of reference frame and with
a linear integration filter (LIF) applied to both side of the equation. The LIF has a low-pass
effect behaviour [Garnier et al., 2003] and its cut-off frequency depends on the time difference
∆t between the two chosen time instants tj and tk. A larger ∆t will results in a stronger low-
pass effect, conversely, a small ∆t will have a weak low-pass effect. This time choice is a user
parameter that has a significant impact on the estimation, since with a large ∆t the model will be
highly sensitive to disturbance torques (Md(t)), while a small ∆t makes the model more sensitive
to measurement errors.

Even if the use of (3.6) is rather popular, in this work we use the model (3.2) directly
coming from the Euler’s equations and keep the inverse form of the satellite dynamics. This
representation allows for additional freedom in the choice of filters since we do not impose the
use of a LIF.

3.1.2 Parameter Estimation: Use of Inverse Model and other Considerations

In order to analyze and develop the estimation method, some further considerations must be
made:

• The satellite is controlled in closed loop, as shown in Figure 2.2, therefore the presence of
the output noise may have some effects on the input [Ljung, 1999; Young, 2011; Forssell,
1999]. A similar estimation problem in the robotic field has been treated as a closed-loop
identification problem [Janot et al., 2013; Brunot et al., 2018]. However, the presence of
the Kalman filter (Figure 2.2) in the loop removes most of the so-called “circulatory noise”,
thus the feedback signal contains no significant trace of the noise process(es) [Veen et al.,
2013].

In fact, the typical issue in closed-loop identification is due to the feedback which correlates
the input signal (ḣrw for the satellite case) with the output noise (ω̃). The presence of a
filter in the feedback highly reduces the noise on the signal received by the controller, and
consequently almost no noise effect is present on the system input4.

It seems therefore permissible to treat the system as operating in open loop, considering
the actuator input torque −ḣrw(t) uncorrelated with the noise on the attitude quaternions
(qn(t)) and on the angular velocity (ω̃(t))5.

4Simulations have been performed and this assumption has been verified for this application.
5However, it should be noted that all the proposed methods in this thesis work also in the classical closed-loop

settings (with no filter in the feedback loop).
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Figure 3.1: Satellite system, in “open-loop”. Figure 3.2: Satellite model in inverse form (EIV
model).

• The open-loop system is represented in Figure 3.1. However, we are interested in the model
written in its inverse form (Figure 3.2) since it allows to linearly extract the parameters to
be estimated (as shown in the previous section). The system equation can be written in
the following form:

g
(
hrw(t), ḣrw(t), ω(t)

)
= f

(
ω(t), ω̇(t)

)
θ −Md(t) , (3.7)

or

g
(
hrw(t), ḣrw(t), q(t), q̇(t)

)
= f

(
q(t), q̇(t), q̈(t)

)
θ −Md(t) , (3.8)

depending whether a gyroscope or a star tracker is used for the output data, and where θ
is a vector containing all the parameters.

The model in linear regression form6, as in (3.7) and (3.8), allows the use of several different
estimation methods.

However, once the sensor noise is considered, the model presents several similarities with
the errors-in-variables model [Söderström, 2007], as it can be seen in Figure 3.2, and,
unfortunately, most methods do not yield consistent estimates in these conditions.

Nonetheless, the satellite measurement noise term (whether it is on the angular velocity or
on the attitude) can be brought to the right side of the model, as shown in Figure 3.3, where
the input of the system is the measured (and therefore noisy) angular velocity ω(t). In
Figure 3.3, fn(·) is a function that cancels out the effect of the noise ω̃ passing through f(·).
It must be noted that since f(·) is nonlinear, fn(·) 6= f(·). The corresponding equation in
linear regression form, for the case of a gyro equipped satellite, is

g(hrw(t), ḣrw(t), ω(t)) = f(ω(t), ω̇(t)) θ −Md(t) + ν(t) , (3.9)

where the term ν collects the effects of the output sensor noise.

This allows a better analysis of the effect of the disturbance and measurement noises. The
filter design of Chapter 4 and 5 is based on such analysis.

• Finally, the signals are assumed to be uniformly sampled with a sampling interval Ts,
obtaining N equation of the form

g(tk) = f(tk)θ + ν(tk)−Md(tk) . (3.10)

6It must be noted that in this work a slightly unconventional notation has been used, since the regressor
f(t) ∈ R3×6 and not R6×3. The transpose operator is therefore not necessary in this equation.
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Figure 3.3: Satellite model in inverse form with noise term brought to the “output”.

3.2 Overview of the State of the Art

Even if not widely developed as the attitude determination topic, there are several works in the
literature dealing with the satellite parameter estimation. The majority of these works deal with
the inertia estimation, being the inertia usually the parameter known with the worse accuracy.
Some works consider also the actuator alignment estimation, either alone or combined with the
inertia estimation. In a few works also other parameters are estimated, as the dipole moment of
the spacecraft.

The most common approach in the literature consists in the use of least squares method. In
[Lee and Wertz, 2002] the authors describe a test and an estimation algorithm applied to the
Cassini probe during its flight to Saturn. A simple slewing maneuver has been commanded, and
a least square algorithm, based on the angular momentum conservation has been applied. The
algorithm uses the angular rate and the commanded torque.

The least squares, again in its batch form, is also used in [Tanygin and Williams, 1997],
where, in addition to the inertia matrix, also the position of the center of mass is estimated.
To avoid dealing with the non-linearity of the Euler’s equation (in its direct form) with respect
to the parameter, the equation is projected to the angular rate. Unlike all the other works,
the coasting maneuvers are exploited to obtain the data for the estimation, instead of specific
imposed trajectories.

In [Keim et al., 2006] the authors work with the Euler’s equations. In this case the angular
rate is not directly available and it is obtained from the attitude quaternions. A second order
filter is applied to the quaternions in order to avoid performing the differentiation. To ensure the
positiveness of the estimated inertia matrix, instead of using a least squares method, the authors
solved a constrained optimization problem.

Online implementations of the least squares are also proposed, as in [Wilson et al., 2002] and
[Manchester and Peck, 2017]. In the latter the estimation problem is formulated as a semidefinite
programming with the constraint of positivedefiniteness of the inertia matrix and the triangular
inequality applied to its diagonal elements to ensure a physically valid result. Both the batch and
the recursive estimations have been considered. For the latter a QR decomposition is exploited.

Another online algorithm is proposed in [Bergmann et al., 1987], where a second-order filter
(in a form similar to a Kalman filter) is developed to extract the inertia matrix, the center-of-mass
location vector and the inverse of the mass. However the gyroscopic term has been neglected.

In [Psiaki, 2005] the algorithm’s estimation equation is based on an integrated version of
Euler’s equations expressed in inertial coordinates. A wide set of attitude related parameters is
estimated, which include moments and products of inertia, scale factors, alignments, and biases
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for all reaction wheels and magnetic torque rods. The estimation problem includes the statistics
of unmodeled torques and sensor errors, and it incorporates a scalar quadratic constraint to
overcome the unobservability of the parameters overall scaling. The solution algorithm employs
an iterative Newton method.

Adaptive attitude control algorithms is an alternative approach to estimate the inertia matrix,
like in [Ahmed et al., 1998] and [Thienel et al., 2008]. In [Ahmed et al., 1998] an adaptive feedback
control algorithm has been developed to provide tracking of commanded spacecraft motion. The
algorithm assumes no initial knowledge of the inertia matrix and the estimation is achieved
adaptively during the tracking of a maneuver which ensures a persistency of excitation.

In the literature several works can be found based on Extended (EKF) or Unscented (UKF)
Kalman filters: in [Norman et al., 2011] the inertia and actuator alignment estimation problem
is considered and the state dynamics is modeled as a discrete-time system, allowing for the im-
plementation of several standard sub-optimal filtering approaches, such as an Extended Kalman
Filter (EKF) or Extended Square-Root Information Filter (ESRIF). In order to make the actu-
ator alignment observable, both kinetic energy and angular momentum measurement equations
are included in the development of the filter.

In [VanDyke et al., 2004] and [Sekhavat et al., 2009] an UKF has been preferred. The
latter work is particularly interesting, since it also presents an approach for synthesizing a set of
optimized maneuvers. An unscented dual state-parameter Kalman filter is used to estimate the
inertial parameters of a control moment gyro actuated spacecraft. The commanded trajectories
are designed to minimize the condition number of an excitation matrix derived from the system
dynamics in order to improve the convergence rate of the parameter estimator and to reduce the
sensitivity of the estimation process to external disturbances and/or measurement noise.

A gyroless satellite is considered in [Yoon et al., 2017], where an extended Kalman Filter is
used to estimate attitude and body rate as well as the attitude parameters, which include sensor
and actuator alignments, spacecraft body moment of inertia and many others. In this work the
gravity gradient torque and the magnetic torque are considered in the estimation, while the sum
of all other disturbance torques are modeled as a drift. Since both the inertia matrix and the
moment of inertia of the RWs are estimated, there is an observability issue that has been solved
by imposing a value to J11. A similar observability problem occurs trying to estimate both the
star tracker alignment and the actuator alignment.

A least correlation method is proposed in [Jun et al., 2010] The paper, does not mention
explicitly satellites, but the topic is exactly what is needed: identification of the inertia matrix
of a rotating body based on an errors-in-variables model. This paper, as the previous paper of
the same authors [Jun and Bernstein, 2006], presents an interesting analysis of the noise model
which, in part, has been taken up for this work. The proposed estimation method, which is called
extended least correlation, is similar to an instrumental variables method with delayed regressor
as instrument. It is shown that the proposed method outperforms the least squares estimator in
case of errors-in-variables models.

There are also works that deal specifically with the actuator alignments, such as [Peck, 2001]
and [Fosbury and Nebelecky, 2009]. In [Peck, 2001] the author considers the actuator alignment
estimation as dual to attitude determination, considering both problems as the problem of finding
the representation of one set of basis vectors relative to another. A least squares method is used
to calculate small misalignments of the actuators with respect to their nominal orientation.
However, in order to obtain good estimates, the inertia matrix must be very accurately known.
For this reason, in [Weiss et al., 2012], the authors design a null-space excitation in order to
partially avoid this limitation. In this paper a spacecraft controlled by an overactuated reaction
wheel array is considered. The redundancy of the actuators allows for the exploitation of the null
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space in order to increase the magnitude of the excitation, while keeping a limited amplitude of
the satellite maneuver.

Among all these works, the vast majority considers the availability of angular velocity mea-
surements with sufficient accuracy. Only in [Sekhavat et al., 2009] and [Yoon et al., 2017] a
gyroless satellite is considered. However, in many emerging small satellites (such as micro and
nano-satellites), for size and cost constraints, only small and imprecise MEMS gyroscopes are
used or in some cases no gyroscopes are present at all. These small satellites often must rely
only on the star tracker measurements for both attitude and rate estimation. Considering the
rapid increase of launches of micro and especially of nano-satellites, the parameter estimation
based on the attitude measurements will become increasingly interesting. At the moment this
topic can be still considered relatively new, with [Yoon et al., 2017] being the main paper on the
subject.

3.3 Parameter Estimation Methods

The parameter estimation problem can be considered as identifying a model among the model
set M(θ) from data generated by the true system S. However, in realistic scenarios, such the
one under consideration, we have

S /∈M(θ) , (3.11)

since the model class (or structure) is typically defined using simplified physics to avoid undue
complexity. In fact, for the satellite rotational dynamics, a rigid body model is considered and
the internal structural response is neglected. Moreover, the external disturbance torques cannot
be accurately modeled. This means that there is no parameter vector θ0 such that S =M(θ0).

However, for analysis purposes, the assumption

S ∈ M(θ) , (3.12)

is considered to be fulfilled, thus it is assumed that a solution to the estimation problem can
be found (∃θ0 : S =M(θ0)).

The typical approach to solve this estimation problem is to define a cost function, which is a
measure of the fitting between the model and the measured data. The solution is given by the
parameter θ which minimizes this cost function.

Let us consider a model in linear regression form, similar to (3.10)7

g(tk) = f(tk)θ + ν(tk) , (3.13)

where ν(tk) represents an additive stationary noise term, and that (3.12) is fulfilled. Given
this model (3.13), we need to implement and adapt a method that can accurately estimate
the set of spacecraft parameters. Given N measurements taken during the experiment, the
overdetermined linear system which is obtained can be solved by the minimization of some cost
function.

Hereafter, we briefly present the main possible approaches to the estimation problem, with a
more detailed description of the instrumental variable (IV) method since the proposed estimation
approaches in this thesis work are based on it.

7For simplicity, we neglect the disturbance torque Md.
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3.3.1 The Least Squares Estimation

The least squares solution of a problem like (3.13) is obtained by finding the value of the param-
eter vector θ which minimizes the sum of the squares of the predition error [Ljung, 1999]:

θ̂LS = argmin
θ

N∑
k=1

∣∣∣∣∣∣g(tk)− f(tk) θ
∣∣∣∣∣∣2 . (3.14)

The least squares solution, obtained by setting the gradient of the cost to zero, is given by:

θ̂LS =

(
N∑
k=1

fT (tk)f(tk)

)−1 N∑
k=1

fT (tk)g(tk) (3.15)

This solution can be written in a more compact form defining the matrices:

f =


f(t1)
f(t2)
...

f(tN )

 , g =


g(t1)
g(t2)
...

g(tN )

 , (3.16)

θ̂LS =
(
fT f

)−1
fT g . (3.17)

For the least squares estimator to be consistent, that is, for θ̂LS to converge to the true
parameter θ0, the following assumption must be made:

A1) The matrix
N∑
k=1

fT (tk)f(tk) is non-singular. This condition depends on the input properties,

which is called “persistency of excitation”. Anyway, this assumption is not restrictive in
the sense that it is not difficult to find an input which satisfies this condition;

A2) The error term ν(tk) is independent of f(tk), that is E(fT (tk)ν(tk)) = 0,

where E(·) = lim
N→∞

N∑
k=1

E(·), and where E(·) is the expectation operator;

A3) The model (3.13) is linear in the parameter and time-invariant;

A4) The error term ν(tk) is a zero-mean stationary process.

It can be easily demonstrated that if the noise terms ν belong to a normal distribution, the
least squares estimator is also the maximum likelihood estimator [Ljung, 1999].

If assumptions A1 to A4 are satisfied, it can be shown that this solution (3.15) yields consis-
tent estimates of the true parameter θ0. Suppose the true model is given by

g(tk) = f(tk)θ0 + ν(tk) . (3.18)

Replacing (3.18) in (3.15) and taking the expectation we obtain:
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E[θ̂LS ] = lim
N→∞

E

( 1

N

N∑
k=1

fT (tk)f(tk)

)−1(
1

N

N∑
k=1

fT (tk)(f(tk)θ0 + ν(tk))

)
= θ0 + lim

N→∞
E

( 1

N

N∑
k=1

fT (tk)f(tk)

)−1(
1

N

N∑
k=1

fT (tk)ν(tk)

)
= θ0 +

(
lim
N→∞

1

N

N∑
k=1

fT (tk)f(tk)

)−1

E(fT ν) .

(3.19)

In order to have consistent estimates, the last term of (3.19) must be zero. Even if the noise
ν(tk) is supposed to be zero mean, a necessary condition is that the regressor f(tk) and the noise
ν(tk) are not correlated. In some cases, such as for the satellite model under consideration, this
assumption is not true and f and ν are correlated.

The Weighted Least Squares Method

A generalization of the standard least squares method is the weighted least squares. Two cases
can be considered: first, different measurements could have different variance. Ordinary least
squares is a maximum likelihood estimator when the components of ν(tk) in (3.13) are gaussian
and independent and identically distributed (i.i.d.). This situation, of constant noise variance,
is called homoskedasticity. Often however the magnitude of the noise is not constant and the
data are not equally reliable (heteroskedasticity). In case of heteroskedasticity, the ordinary least
squares method is no longer the maximum likelihood estimator, and so it is no longer efficient.

The second case, which is more interesting for our application, occurs in MIMO systems,
where different components of the output have different variance. In this case, instead of mini-
mizing the residual sum of squares, a weighted sum of squares is minimized:

θ̂WLS = argmin
θ

N∑
k=1

∣∣∣∣∣∣(g(tk)− f(tk)θ)
TW (g(tk)− f(tk)θ)

∣∣∣∣∣∣2 , (3.20)

where W = diag(wi), wi = 1/σi.
The solution of (3.20) is similar to (3.15):

θ̂WLS =

(
N∑
k=1

fT (tk)Wf(tk)

)−1 N∑
k=1

fT (tk)Wg(tk) . (3.21)

3.3.2 The Instrumental Variable Method

The instrumental variable (IV) method has been studied for several years since it is able to over-
come some of the limitations of the least squares approach while retaining its simplicity [Young,
2011; Söderström and Stoica, 1983]. Even the least correlation method [Jun and Bernstein,
2006], that can reliably estimate EIV models, presents many similarities with the IV method.

The IV method is a variation of the LS method which has the ability to remain consistent
for a class of noise signals which make the LS estimates biased. Both methods are based on a
prediction model structure which is linearly parameterized and both have a similar structure of
the solution.
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Different forms of IV algorithms have been developed, with the main objective of achieving
unbiased estimates with the smallest variance, like the refined IV [Young, 2011].

Given a model written as in (3.13) the basic instrumental variable method consists in the
minimization of the following cost function

θ̂IV = argmin
θ

N∑
k=1

∣∣∣∣∣∣ZT (tk)
(
g(tk)− f(tk) θ

)∣∣∣∣∣∣2 , (3.22)

where Z is the “instrument”, that is a matrix or a vector of the same size of f , to be chosen,
which needs to respect the following properties

{
E(ZT (tk)f(tk)) is non singular
E(ZT (tk)ν(tk)) = 0 .

(3.23)

The analytical solution of (3.22) is closely related to the one of the least squares [Söderström
and Stoica, 1983]

θ̂IV =

[
N∑
k=1

ZT (tk)f(tk)

]−1[ N∑
k=1

ZT (tk)g(tk)

]
, (3.24)

or in matrix form as

θ̂IV = (ZT f)−1(ZT g) . (3.25)

where

f =


f(t1)
f(t2)
...

f(tN )

 , g =


g(t1)
g(t2)
...

g(tN )

 , Z =


Z(t1)
Z(t2)

...
Z(tN )

 . (3.26)

The assumptions for the IV estimator to be consistent, which include (3.23), are:

A1) The matrix E(ZT (tk)f(tk)) is non-singular. This depends on the input properties, which
must be “sufficiently exciting”;

A2) The error term ν(tk) is independent of Z(tk), that is E(ZT (tk)ν(tk)) = 0;

A3) The model (3.13) is linear in the parameter and time-invariant;

A4) The error term ν(tk) is a zero mean stationary process.

The consistency of the IV estimator, again considering the true model (3.18), can be shown
by using the two requirements (3.23):
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E[θ̂IV ] = lim
N→∞

E

( 1

N

N∑
k=1

ZT (tk)f(tk)

)−1(
1

N

N∑
k=1

ZT (tk)(f(tk)θ0 + ν(tk))

)
= θ0 + lim

N→∞
E

( 1

N

N∑
k=1

ZT (tk)f(tk)

)−1(
1

N

N∑
k=1

ZT (tk)ν(tk)

)
= θ0 +

(
lim
N→∞

1

N

N∑
k=1

ZT (tk)f(tk)

)−1

E(ZT ν) = θ0 .

(3.27)

As for the least squares method, a weighted version of the instrumental variable exists, which
can be used to take care of heteroskedastic measures.

One important step of the IV method consists in the construction of a suitable instrument.
The properties in (3.23) are a necessary condition in order to obtain consistent estimates but, in
order to minimize the variance of the estimates, the instrument must be as correlated as possible
with the regressor f . Ideally, the optimal instrument is the noise-free version of the regressor
f [Söderström and Stoica, 1983; Young, 2011]. There are two common basic choices for the
instrument (e.g. [Söderström and Stoica, 1983]):

• use a delayed regressor as instrument;

• use an estimated noise-free regressor as instrument. Typically, an “auxiliary model” (to-
gether with an input signal) is used to generate the noise-free state estimates.

In case a “short” correlation is expected between the noise ν and the regressor f , it is possible
that a delay of a few samples makes the second property of (3.23) satisfied8, while still keeping a
high correlation between instrument and regressor. In this particular case the delayed regressor
as instrument can be the preferred choice, due to its simplicity. However, in other cases, the use
of a delayed regressor as instrument may significantly increase the variance of the IV estimates.

The IV method will be applied to different estimation problems in Chapter 4, 5 and 6. For
each of this problems, a differently tailored IV algorithm has been applied (different regressor
equations, different filtering and prefiltering, different augmented model and different choice of
the instrument).

3.3.3 The Total Least Squares Method

The instrumental variable method is not the only solution to the least squares limitations. One
possible alternative method is the total least squares (TLS), which is a natural generalization of
the least squares approximation method when the data in both f and g are perturbed [Golub
and Van Loan, 1980; Van Huffel and Vandewalle, 1991; Markovsky and Van Huffel, 2007].

To better understand the total least squares method, we have first to consider the ordinary
least squares from a different point of view: the LS method corresponds to correct the left-hand
side g of (3.13) as little as possible in the Frobenius norm sense, so that the corrected system of
equations

ĝ = fθ , (3.28)

8E(f(tk+τ )ν(tk)) = 0 ∀ τ > minimum delay.
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has an exact solution, where ĝ = g + δg. The definition of the total least squares method is
motivated by the attempt to remove the asymmetry of the least squares method: g is corrected
while f is not. In the case of the EIV problem, it is reasonable to treat f and g symmetrically.
The total least squares problem can be defined as:

θ̂TLS = arg min
θ,δfδg

∣∣∣∣∣∣[δg δf ]
∣∣∣∣∣∣
F

(3.29)

subject to
g + δg = (f + δf)θ (3.30)

The least squares approximation is statistically motivated as a maximum likelihood estimator
in a linear regression model under some assumptions. Similarly, the total least squares approxi-
mation is a maximum likelihood estimator in the errors-in-variables model. The classical solution
of the TLS problem makes use of the singular value decomposition. Equation (3.30) is equivalent
to [

f + δf g + δg
] [ θ
−1

]
= 0 . (3.31)

Since the matrix [f g] has rank n + 1, the only way to have a non-trivial solution is to select
δf and δg in order to reduce the rank to n.

Using the singular value decomposition, the matrix [f g], which has rank n + 1, can be
expressed as:

[f g] = UΣV T , (3.32)

where Σ = diag(σ1 · · ·σn+1). The Eckart-Young-Mirsky theorem states that the rank n matrix
[f + δf g+ δg] with the minimum Frobenius norm of the perturbation ||δf δg||F is given by:

U Σ̂V T , (3.33)

where Σ̂ = diag(σ1 · · ·σn, 0)9. The TLS estimation is therefore the solution of

U Σ̂V T

[
θTLS
−1

]
= 0 . (3.34)

The matrix V can be decomposed as:

V =

[
V11 V12

V21 V22

]
, (3.35)

where V11 has dimension n× n and V12 n× 1. Since the matrix V is orthonormal,

V T

[
V12

V22

]
=


0
...
0
1

 (3.36)

and

Σ̂V T

[
V12

V22

]
= 0 . (3.37)

9The singular values are supposed to be arranged in decreasing order.

38



3.3. Parameter Estimation Methods

Since the last term of (3.34) is −1, the TLS solution is obtained by scaling the vector
[V12 V22]T by the factor −V22:

θ̂TLS = −V12/V22 (3.38)

The TLS estimator assumes that all noises in the data have the same variance. Since this
hypothesis is often not true, some variants of this method have been developed, like the LS-TLS
method, which considers the case when some of the data are unaffected by noise [Van Huffel and
Vandewalle, 1991].

Both TLS and IV have very similar performance as shown in [Van Huffel and Vandewalle,
1989; Söderström and Mahata, 2002], therefore, in ideal conditions, it is difficult to suggest one
over the other. The main advantage of the IV approach is that its implementation remains simple
and consistent without requiring a priori knowledge of the noise statistics, while the TLS should
be carefully used in more complex scenarios, such the one considered in this thesis work. In
particular, one of the main reasons that made the IV choice prevail over the TLS is the difficult
tuning of the TLS algorithm given the different noise standard deviations.

3.3.4 The Kalman Filter as Parameter Estimation Method

The Kalman filter has been initially developed with the purpose to estimate the state of a dynamic
system given known parameters and noisy measurements [Haykin, 2001; Brown and Hwang,
1992], and it is widely used for aerospace applications [Crassidis and Junkins, 2011]. However,
it may be also used to estimate parameters given a known state and noisy measurements or
to simultaneously estimate both the state and parameters of a system [Ljung, 1979; Klein and
Morelli, 2006].

In its simplest form, the Kalman filter addresses the general problem of estimating the state
x of a discrete-time process that is governed by the linear stochastic difference equation:

xk = Axk−1 +Buk + wk−1

yk = Hxk + vk ,
(3.39)

where xk is the state, uk is the input, yk is the output and the random variables wk and vk
represent respectively the process and measurement noise. They are assumed to be independent
of each other, white, and with normal probability distributions:

wk ∼ N(0, Q)

vk ∼ N(0, R) .
(3.40)

The Kalman filter uses a form of feedback control: the filter estimates the process state at
some time and then obtains feedback from the noisy measurements and corrects the estimate.
The equations of the Kalman filter fall therefore into two groups: time update equations (or
predictor equations) and measurement update equations (or corrector equations):

predictor equations:
x̂−k = Ax̂k−1 +Buk

P−k = APk−1A
T +Q

(3.41)

corrector equations:
Kk = P−k H

T (HP−k H
T +R)−1

x̂k = x̂−k +Kk(yk −Hx̂−k )

Pk = (I −KkH)P−k

. (3.42)
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In order to exploit the Kalman filter for parameter estimation, a joint state and parameter
identification technique must be used. A common approach to estimate model parameters is to
augment the state vector with the unknown parameters and then estimate the augmented state
through a Kalman filter.

The Kalman filter can be extended to nonlinear models (like for the satellite case under
consideration) by means of linearization (extended Kalman filter), and thus it can be applied
directly even to the direct (forward) model.

3.3.5 Optimal Instrumental Variable Estimation

Up to now we have mainly focused on the consistency of the estimator. The instrumental variable
method has been chosen for its capacity to remain consistent in a wide range of conditions, where
some other methods fail. However, consistency is not the only desirable property of an estimator,
also minimal variance of the estimates should be achieved. Optimal IV methods (in the sense of
minimum variance of the estimates), that include the use of prefilters, have been long studied,
considering open-loop linear systems [Young, 2011; Söderström and Stoica, 1983], closed-loop
linear systems [Hof, 1998; Gilson and Hof, 2005; Gilson et al., 2011], as well as continuous-time
systems [Young, 1981; Chen et al., 2016; Garnier, 2015].

The Box-Jenkins Model and the Instrumental Variable

To introduce the optimal filtering, a more general form of system model must be defined, which
is usually referred to as Box-Jenkins model. Typically, it is often described in discrete-time.
However, as commonly done for grey-box modeling, the satellite is modeled in continuous time.
For this reason, a continuous-time Box-Jenkins model10 is considered hereafter (Figure 3.4).

The system to be identified is assumed to be continuous time of finite order:

G(θ) : x(t) =
B(s)

A(s)
u(t) , (3.43)

where x(t) is the output, u(t) is the input and A(s) and B(s) are polynomials in s:

A(s) = sna + a1s
na−1 + ...+ ana

B(s) = b0s
nb + b1s

na−1 + ...+ bnb
(3.44)

The system is parametrized by the coefficients of the polynomials A(s) and B(s):

θ = [a1, a2...ana , b0, ...bnb ]
T ∈ Rna+nb+1 (3.45)

A measuring noise ν(t) is added to the output x(t). The noise model is defined by:

H(η) : ν(t) =
D(s)

C(s)
e(t) , (3.46)

where
C(s) = snc + c1s

nc−1 + ...+ cnc

D(s) = d0s
nd + d1s

nd−1 + ...+ dnd
(3.47)

10Also a continuous-time hybrid Box-Jenkins model can be found in the literature, where the noise is modeled
in discrete time, while a continuous-time approach is kept for the system dynamics.
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and e(t) is a Gaussian zero-mean white noise, i.e. e(t) ∼ N(0, σ2). The associated noise model
parameters are stacked columnwise in the parameter vector

η = [c1, ...cnc , d0, ...dnd ]
T ∈ Rnc+nd+1 . (3.48)

The whole model is defined by:

M(θ , η) :



x(t) = B(s)
A(s)u(t)

ν(t) = D(s)
C(s)e(t)

y(t) = x(t) + ν(t)

(3.49)

This set of models, parametrized by (θ, η) corresponds to the set of candidate models in which
we seek the model that explains the measured data under a given identification criterion.

The following assumption are made:

A1) The polynomial A(s) has all zeros in the negative half-plane (the system is stable);

A2) The polynomials A(s) and B(s) are coprime;

A3) The input u(t) is persistently exciting of order na + nb and is independent of the noise
ν(tk);

A4) The polynomials C(s) and D(s) are coprime;

A5) the true model, G0, belongs to G(θ)11.

The problem of an optimal filtering for the IV method has been studied in several works.
In [Söderström and Stoica, 1983], a discrete model is considered, while a hybrid Box-Jenkins
model can be found in [Young et al., 2008; Young, 2011]. A full continuous model can be found
in older works (for example in [Young, 1981]). In all these works, the optimal IV prefilter for the
Box-Jenkins model has the following form

Fopt(s) =
C(s)

D(s)A(s)
, (3.50)

and the solution of the optimal12 IV, for a continuous-time model, is

θ̂optIV =

[
N∑
k=1

ZTf (tk)φf (tk)

]−1[ N∑
k=1

ZTf (tk)yf (tk)

]
, (3.51)

with

φ(tk) = [−y(na−1)(tk) , · · · ,−y(tk) , u
(nb)(tk) , · · · , u(tk)] , (3.52)

where Z(tk) is a noise-free version of the regressor φ(tk), and y(n), u(n) represent the nth-time
derivative of y and u.

11∃θ0 : G0 = G(θ0).
12Optimal in the sense of yielding estimates with minimum variance.
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Figure 3.4: Box-Jenkins model.

This important result will be used in the following chapters in order to design the sub-optimal
filter (we say “sub-optimal” since, due to the nonlinear terms of the satellite equation, this theory
cannot be exactly applied).

In fact, even if the satellite model of Figure 3.2 looks quite different, by moving the effect of the
measuring noise to the output, it can be represented in a form similar to the Box-Jenkins model
(Figure 3.3). The main difference is due to the nonlinearity from the gyroscopic effect in (3.2).
This nonlinearity, given the model inversion, does also affect the overall noise ν. However, as
already shown, the satellite system can still be written in linear regression form with respect
to the parameters θ, therefore no model approximation is necessary for the IV cost function.
Another main difference with respect to Figure 3.4 is the presence of two noise sources on the
output, but, as it will be shown in Chapter 5 and 6, an approximation can be found.

The Refined Instrumental Variable Method

Typically, the ARMA (autoregressive moving average) noise model D(z−1)
C(z−1)

(or the equivalent con-

tinuous version, CARMA, D(s)
C(s) ) is not known, therefore in order to design the optimal prefilter,

the noise model must be estimated. This is what is done in the refined instrumental variable
(RIV) method [Young, 2008; Young, 2011]. The RIV algorithm is iterative and it can be briefly
summarized as follows (here it is described considering a hybrid Box-Jenkins model):

1. Estimate the system model parameters (A(s) and B(s)) with the simplified refined instru-
mental variable (SRIV) method (or SRIVC for the continuous-time model). This consists
in setting C(z−1) = D(z−1) = 1, thus assuming that the output measurements are affected
by a white noise. Therefore, the first IV estimation uses as prefilter simply 1

A(s) ;

2. With the previously estimated system parameters, form the estimate

x̂(t) =
B(s)

A(s)
u(t) (3.53)

and calculate the residuals
ξ̂r(t) = y(t)− B(s)

A(s)
u(t) ; (3.54)

3. From the residuals ξ̂r(t) estimate the noise model D(z−1)
C(z−1)

by using an ARMA estimation
algorithm;
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4. Estimate the system model parameters using as prefilter

F =
1

A(s)

C(z−1)

D(z−1)
. (3.55)

Repeat steps 2-3-4 until parameter convergence is reached.

3.4 Next Steps towards the Satellite Parameter Estimation

In Section 3.3 several parameter estimation methods have been presented, and after a first initial
analysis, the instrumental variable method has been chosen to be the base for this thesis work.
The main reasons that brought to the IV approach choice are the following:

• it can be easily applied to models in linear regression form with respect to the parameters;

• like the least squares (LS) method, it relies on a convex cost function that has an analytical
solution;

• it is able to overcome the limitation of the LS regarding the biased estimates due to the
noise in the regressor;

• it is robust with respect to noise non-idealities;

• contrary to other methods, the IV estimator is not affected by the use of the inverse model
for the linear system case [Ho and Enqvist, 2018].

Moreover, since the system presents only “mild” nonlinearities under the satellite operating
conditions, a quasi-optimal filter can be designed to get close to minimum variance parameter
estimates. Finally, as shown in Section 3.3, the IV approach can be considered to be relatively
new in the aerospace domain making its implementation further interesting.

However, besides the IV choice, several additional and important tailoring operations and
data processing steps are necessary to produce accurate results for our estimation problem. These
steps and adaptation are included as parts of the specific estimation problems and are described
in details in the next chapters:

• Estimate the state derivatives (see Chapter 4, 5 and 6),

• Estimate and remove the possible bias effects due to the nonlinear term of the noise (see
Chapter 4, 5 and 6),

• Compensate for the drift of the gyroscope measurements (see Chapter 4),

• Estimate and remove the main deterministic components of the disturbance torque Md(t)
(see Chapter 5 and 6),

• Estimate and compensate the possible delay between the input and output measurements
(see Chapter 6),

• Include a prefiltering to reduce the effect of the measurement noise and of the unmodeled
terms of the disturbance torque (see Chapter 3 and for more details Chapter 5 and 6),

• Improve the information content of the data by means of optimized satellite maneuvers
(Chapter 7).
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In this chapter we consider the inertia estimation problem for a gyro-equipped satellite. This
is the most common scenario considered in the literature, as described in Section 3.2. The main
objective consists in showing how the instrumental variable can also be adapted and effectively
applied to this estimation problem.

As shown in Section 3.1.1, by considering the model in its inverse form the inertia parameters
can be linearly extracted:

M(t) +Md(t) =
(

Γ(ω̇(t)) + ω(t)×Γ(ω(t))
)
θJ , (4.1)

or in the specific case of reaction wheels as actuators

− ḣrw(t)− ω(t)×hrw(t) +Md(t) =
(

Γ(ω̇(t)) + ω(t)×Γ(ω(t))
)
θJ . (4.2)

with

θJ = [J11 , J22 , J33 , J23 , J13 , J12]T . (4.3)

This is a major advantage for the estimation process, however, further problems need to be
tackled. Firstly, in Section 4.1 we analyze the overall noise term since, given the model inversion,
the measurement noise properties may change in this inverse model. Section 4.2, deals with the
filter design. The designed filter is used to estimate the unmeasured state derivatives, while it
has also a function of “prefilter” for the IV method (Section 3.3.5). Afterwards, in Section 4.3,
the proposed IV approach is implemented to the satellite case, where a closed-loop auxiliary
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model is used to generate the required intrument. The results, to demonstrate the performance
of the proposed method, are presented in Section 4.4. The IV algorithm is tested via Monte
Carlo simulations and its results are compared to the more common LS approach. Finally, in
Section 4.5, the method is extended in order to deal with a biased gyroscope, and additional
simulations further illustrate the algorithm performance (Section 4.6). Part of this work has
been published in [Nainer et al., 2018].

4.1 Satellite Model and Noise Analysis

The analysis of the noise term in the inverse model is an important step for the development
and implementation of an estimation method, like the instrumental variable. Firstly, the choice
of the IV “prefilter” highly depends on the overall noise behavior. Secondly, especially given
the nonlinear structure of the system, the model inversion may drastically change the noise
properties. In fact, even if the output (angular velocity) is assumed to be affected by a zero-
mean noise, the same cannot be necessarily true for the overall noise term in the inverse model
(e.g. the zero-mean property may not hold anymore).

In this work, a grey-box study of the noise analysis is performed. This is approach, quite
uncommon in the system identification community, is taken since an inverse model is used for
the parameter estimation. As shown in Section 3.1.2 (Figure 3.3), the noise model is directly
influenced by the satellite inverse model. Since the satellite model structure is known, under
some initial assumptions on the sensor noise, the overall noise term (given also the system
nonlinearities) can be better analyzed through a grey-box approach.

As a first step, the simplest noise model (2.22) is here considered (a more complete gyroscope
model is considered in the next sections)

ω = ω + ω̃ , (4.4)

where the three components of ω̃ are supposed independent on each other and independent
on the angular velocity ω. They are also supposed to have the following normal distribution

ω̃x ∼ N(0, σ2
x) , ω̃y ∼ N(0, σ2

y) , ω̃z ∼ N(0, σ2
z) . (4.5)

In this case we consider that the gyroscope measurement errors have the same standard
deviation σ on the three axes. The case where the sensor noises have different standard deviations
on each axis is analyzed in Chapter 5 and 6.

By substituting (4.4) into the satellite inverse model (4.2), the following equation is obtained

−ḣrw − (ω − ω̃)×hrw︸ ︷︷ ︸
Ma

+Md =
(

Γ
(
ω̇ − ˙̃ω

)
+ (ω − ω̃)×Γ

(
ω − ω̃

))
︸ ︷︷ ︸

φ

θJ . (4.6)

where the dependency on the time (t) has been omitted for sake of simplicity, and where Ma

represents the overall torque generated by the actuators (including their gyroscopic effects).
Following the approach of [Jun et al., 2010], the regressor matrix φ can be split into three

parts

φ = ψ − δ − ε , (4.7)

where
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ψ = Γ(ω̇) + ω×Γ(ω) , (4.8)
δ = Γ( ˙̃ω) + ω̃×Γ(ω̃) , (4.9)

ε = ω×Γ(ω̃) + ω̃×Γ(ω) . (4.10)

Therefore, the right-hand side of (4.6) can be rewritten as

ψ θJ − δ θJ − ε θJ . (4.11)

The only term that can be computed is ψ, since it is only function of the measurements ω,
while the other two terms, δ and ε are function of the noise free angular velocity ω and of the
noise realization ω̃. We can consider the two terms δ θJ and ε θJ as noise terms.

The full model becomes

− ḣrw − ω×hrw = ψ θJ + ν −Md , (4.12)

where ν = −δ θJ − ε θJ − ω̃×hrw contains the whole overall noise effects.
In order to apply an estimation algorithm, we first need to analyze the overall noise in the

model equations, and thus study the noise property based on the measurement assumptions
in (4.4). The term ω̃ appears in quadratic form only in the second term of (4.9), which can be
rewritten as  0 −ω̃yω̃z ω̃yω̃z (ω̃2

y − ω̃2
z) ω̃xω̃y −ω̃xω̃z

ω̃xω̃z 0 −ω̃xω̃z −ω̃xω̃y (ω̃2
z − ω̃2

x) ω̃yω̃z
−ω̃xω̃y ω̃xω̃y 0 ω̃xω̃z −ω̃yω̃z (ω̃2

x − ω̃2
y)

 . (4.13)

Even if the noise ω̃ is zero-mean, the overall noise term −δθJ − εθJ may have non-zero
expected value due to its nonlinear terms (4.13). The nonlinear noise terms (4.13) are overall
zero-mean only if σx = σy = σz (considering also the assumption that the three components
of the noise are mutually independent). If at least one axis presents a different noise standard
deviation, there will be a non-zero term that should be taken into account by the estimator. In
all the other terms of the overall error, the measuring noise ω̃ is simply multiplied by a noiseless
signal and therefore it maintains the original zero-mean property.

Considering a zero-mean Gaussian white noise for ω̃, the overall noise model can be further
approximated as

νi ' Di(s) ω̃i = (d0,i + d1,is) ω̃i ∀i = x , y , z , (4.14)

where Di(s) is the noise transfer function that comes from a linearization of the term νi with
respect to the noise. It has to be noticed that the transfer function is not proper due to the use
of the inverse model.

4.2 Filtering for Derivative Estimation

The regressor matrix ψ in (4.12) contains both the measured angular velocity ω and its derivative
ω̇. Since the gyroscope provides only ω, the time derivative should be computed. However, a
numerical differentiation significantly amplifies the noise. There are different ways to overcome
this drawback, depending on whether the system is linear or nonlinear. In this particular scenario
it should be noted that, even if the regressor is nonlinear with respect to the states, the state
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derivatives ω̇ appear only in linear terms (Γ(ω̇)θ). For this reason, techniques typically used for
linear systems can be used as well.

In this case, a state-variable filter (SVF) is used as a way to avoid numerical differentiation,
and moreover, as it is shown further below, it does also achieve the function of the prefilter for
the IV method. The SVF is a low-pass filter and its general form is as follows

F (s) =
1

(γ s+ 1)n
, (4.15)

where γ is the only user-parameter to be chosen in order to define the SVF bandwidth, while
n is the order of the filter. For this particular application, the order is set to n = 1 since only the
first derivative needs to be estimated. A low-pass filter attenuates the amplification of the noise
at the high frequencies, so it contrasts the noise amplification due to numerical differentiations.
However, an even more elegant solution consists in rewriting the filtered derivative state (ω̇f ) as
a function of the original measured angular velocity (ω) and its filtered equivalent (ωf ). In fact,
for n = 1, the following holds

ω̇f =
1

γ s+ 1
ω̇ =

ω s

γ s+ 1
=

1

γ

γω s+ ω − ω
γ s+ 1

=
1

γ

ω(γ s+ 1)− ω
γ s+ 1

=
ω − ωf
γ

. (4.16)

In a similar way it can be demonstrated that for a second order SVF

ω̈f =
ω − 2γω̇f − ωf

γ2
. (4.17)

Since filters generate phase lags and distortions due to different signal amplification depending
on the signal frequency, the only way to keep the equality unchanged is to apply the SVF on
both sides of the equation (4.12).

(
− ḣrw − ω×hrw

)
f

=
(
ψ
)
f
θJ +

(
ν −Md

)
f

=

(
Γ
(ω − ωf

γ

)
+
(
ω×Γ(ω)

)
f

)
θJ +

(
ν −Md

)
f
,

(4.18)

where (·)f means that the filter is applied. In this equation, the fact that ω̇ appears linearly
in Γ has been exploited and the filter has been directly applied to the state (Γf = Γ(ω̇f )). The
same approach is also applied to hrw to compute ḣrw,f .

In this case, the SVF does also perform as a prefilter for the IV method. In fact, considering
that the inverse satellite model does not have any integrator, and that the noise model is well
approximated as (4.14), the optimal IV prefilter design of Section 3.3.5 would yield as prefilter

Fi(s) =
1

Di(s)
=

1

d1,i s+ d0,i
∀i = x , y , z , (4.19)

that is exactly a scaled version of (4.15) with n = 1.

4.3 Proposed Instrumental Variable for Inertia Estimation

The instrumental variable method was introduced in Chapter 3. However, additional steps need
to be tackled in order to adapt it to the inertia estimation problem. Given the model in linear
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regression form, and the SVF for the state derivative estimation, the solution of the IV cost
function becomes

θ̂IV−SV F = argmin
θJ

N∑
k=1

∣∣∣∣∣∣ZTf (tk)
(
Maf

(
ω(tk), hrw(tk)

)
− ψf

(
ω(tk)

)
θJ

)∣∣∣∣∣∣2 . (4.20)

The choice of the instrument Z plays a fundamental role in the IV approach, since from
it depends whether the estimation method yields accurate results and whether the variance is
similar to its least square counterpart (considering the same prefilter). As already mentioned, to
guarantee consistent estimates it is required that E(ZT ν) = 0, while, to achieve estimates with
low variance, a strong correlation between Z and ψ is needed.

Typically, for the IV method, the instrument is built from noise-free estimates of the output
states (in this case ω̂). To do so, an auxiliary model is built based on the previous knowledge
of the system parameters and the output signal is generated based on the input (−ḣrw and
its gyroscopic effect for the satellite case). This approach is very common in the literature,
but, even if a noise-free input signal is available, it can be only used if the system is stable.
Unfortunately, this is not the case for the satellite system given its double integrator behavior.
This means that by simulating an auxiliary model in open-loop, its output ω̂ could drift from the
true signal ω and, after some time, the correlation between Z and ψ may become significantly
low. A possible solution consists in the generation of ω̂ by simulating the auxiliary model in
closed-loop and therefore avoiding any possible drift of the estimated angular velocity. This
approach presents many similarities with the closed-loop identification problem, even if it is used
for different reasons.

In order to run the auxiliary model in closed-loop, additional information are required: firstly,
the reference signal given to the controller should be available, secondly the controller model
should be either known or separately estimated. In this work the controller is considered to
be known, which is quite a realistic assumption. Moreover, due to the nonlinear structure of
the controller, its estimation would be non-trivial. Since the auxiliary model uses a value of the
parameters, the estimation algorithm includes an iterative process in which at each iteration new
estimated parameters are used to update the auxiliary model.
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Figure 4.1: IV implementation scheme with the auxiliary model.

The overall estimation algorithm (Figure 4.1) can be synthesized as follows:

1 • Choose the cut-off frequency of the SVF filter (user-parameter γ) ;
2 • Prefilter the model (4.12) with the low-pass SVF, and computed the filtered state

derivative as in (4.16) ;
3 • Initialize the inertia parameters, either from a priori information (e.g. from CAD

software) or from a LS-SVF estimate:

θ̂LS−SV F =

[
N∑
k=1

ψTf (tk)ψf (tk)

]−1[ N∑
k=1

ψTf (tk)Maf (tk)

]
; (4.21)

4 do
5 • estimate the noise-free output ω̂ from the reference signal r(t) and the closed-loop

auxiliary model based on the previous inertia estimate θ̂;
6 • build the (filtered) instrument Zf

Zf = Γ( ˙̂ωf ) +
(
ω̂×Γ(ω̂)

)
f

; (4.22)

7 • estimate the parameters with the IV method

θ̂IV−SV F =

[
N∑
k=1

ZTf (tk)ψf (tk)

]−1[ N∑
k=1

ZTf (tk)Maf (tk)

]
, (4.23)

8 • update the auxiliary model with the new estimated parameters.
9 while (max

(
|θ̂(new)− θ̂(previous)|/θ̂(previous)

)
< threshold;

It should be noted that very few iterations are necessary for this sub-optimal IV method. In
fact, for the proposed numerical example, convergence was reached in 3-4 iterations.
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The only user-parameter in this method is a constant γ that defines the SVF cut-off frequency.
This parameter depends mainly on the effect of the gyroscope noise and of the disturbance torques
during the satellite maneuver. A deeper analysis on the choice of the low-pass filters is done in
Chapter 5 and 6, which considers both the noise sources and the disturbance torque for the filter
design.

4.4 Simulation Results

The performance of the proposed method has been tested via numerical simulations. The true
inertia value for the satellite was set as

J0 =

31.3819 −1.1136 −0.2601
−1.1136 21.1878 −0.7783
−0.2601 −0.7783 35.7042

 [kgm2] , (4.24)

which are typical values of a microsatellite inertia. The spacecraft is controlled in closed-loop
by a PD controller and the reaction wheel actuators present a second order dynamics (with a
time constant of 1 s). For the FOG gyroscope, a zero-mean Gaussian noise is considered with
σx = σy = σz = 8.5 · 10−5 rad/s as standard deviation. A random-walk term is also taken into
consideration to simulate the drift behavior, generated by integrating a zero-mean Gaussian noise
with σb = 1.3 · 10−6rad/s2. The satellite was affected by a disturbance torque, with a varying
amplitude oscillating between ±3 · 10−5Nm. The sampling frequency for all the measurements
is set to 4Hz, while a parameter γ = 100 (corresponding to a cut-off frequency of 0.01 rad/s) is
used for the low-pass prefilter (SVF). The IV method has been initialized by the least squares
algorithm, so no initial knowledge is required for the estimation algorithm. The satellite has been
excited in all his three axes by a simple maneuver, as shown in Figure 4.2, for a total duration
of the simulation of 650 s.
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Figure 4.2: Angle reference profile, represented in Euler’s angles (sequence z-y-x).

A realization of the input-output data used for the inertia estimation is shown in Figure 4.3
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Figure 4.3: Input-Output data: reaction wheel total angular momentum hrw at the top, and
satellite measured angular velocity ω at the bottom.

J11 [kgm2] J22 [kgm2] J33 [kgm2] J23 [kgm2] J13 [kgm2] J12 [kgm2]

mean st.d. mean st.d. mean st.d. mean st.d. mean st.d. mean st.d.
θ̂LS 31.028 0.050 20.880 0.047 35.444 0.058 -0.642 0.036 -0.449 0.043 -0.839 0.042

θ̂IV 31.385 0.051 21.185 0.050 35.705 0.059 -0.780 0.035 -0.254 0.043 -1.114 0.044

θ0 31.382 21.188 35.704 −0.778 −0.260 −1.114

Table 4.1: Parameter estimation results for the LS-SVF and IV-SVF methods.

The proposed method results from a Monte Carlo simulation of 100 runs are shown in Ta-
ble 4.1 where the parameter estimates of the IV approach are compared with the ones from
the LS based method. Figure 4.4, showing the inertia errors of the estimates in a box plot13,
illustrates more clearly the different performance between the SVF-LS and SVF-IV methods.

The similar variance between the LS and IV methods demonstrates how, for this application,
effective instruments are obtained by using a closed-loop auxiliary model. Additionally, the
uncorrelation between the instrument Z and the overall noise ν allows for consistent estimates
from the IV method, while the least squares results present, as expected, an evident bias.

To test the sensitivity of the LS and IV methods with respect to the SVF cut-off frequency,
4 different Monte Carlo simulations have been performed, having each a different value for user-
parameter γ. The results, for the first inertia parameter, J11, are shown in Figure 4.5. It is
evident how the choice of the filter highly affects the LS estimates, and for small values of γ the
results are significantly biased (for γ = 1 the error was above 20 kgm2). Instead, the IV method,
yields accurate results over a wide range of γ values. Moreover, the variance remain small for a
wide range of γ and only for γ = 1 it begins to significantly increase.

To better visualize the comparison, the mean squared error (MSE) has been computed for

13Box plots are often used in this work to show the results. The main box includes the data from the 25th to
the 75th percentile. The circle (or line) inside the box represents the median. The two lines (whiskers) extend
from the box to a distance corresponding to 2.7σ (standard deviations). Possible outliers are plotted as individual
circles ◦ or crosses +.
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Figure 4.4: Box plots for the errors of the inertia parameter estimates. In red (on the left) the
results for the LS-SVF, while in blue (on the right) the results for the IV-SVF.
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Figure 4.5: Box plots of the error in the Ĵ11 estimate for different values of γ. In red (on the
left) the results for the LS-SVF, while in blue (on the right) the results for the IV-SVF.

both the LS and IV results. The average value among the 6 inertia parameter errors is shown in
Figure 4.6.

At a first glance, the results obtained from the least squares (Figure 4.6) seems to be still ac-
ceptable (from an application viewpoint) if a good prefilter (SVF) is used. This can be explained
by the relatively good sensor measurements, thus resulting in an high signal to noise ratio.

A new Monte Carlo simulation has been performed, where the gyroscope has a standard
deviation 4 times higher than what was previously considered: σx = σy = σz = 34 · 10−5 rad/s.
The results are shown in Figure 4.7. In this case, the IV results are, as expected, still unbiased,
while, on the other hand, the LS performs poorly, with a large bias affecting the estimated
parameters.
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Figure 4.6: Log-plot of the average MSE for the LS-SVF (in red) and IV-SVF (in blue) methods
for different values of γ.
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Figure 4.7: Box plots for the errors of the inertia parameter estimates with σ = 34 · 10−5 rad/s.
In red (on the left) the results for the LS-SVF, while in blue (on the right) the results for the
IV-SVF.

These results well justify the choice of the IV method, since its performance is robust with
respect of the user-parameter choice and it is able to yield unbiased estimates for the wide variety
of test performed. Moreover, the use of the SVF allows for an accurate parameter estimates
despite the unmeasured angular accelerations ω̇.

Instead, the LS method is not as reliable considering its high sensitivity to the filter user-
parameter and that it yields biased estimates. In particular, its use should be avoided for low
signal to noise ratio, as shown by the simulation results, since the bias can become unacceptably
large and significantly affect the quality of the estimates.

4.5 Solution for the Inertia Estimation with Biased Gyroscope

At first we considered the simple gyroscope model (2.22), (4.4), however, depending on the
gyroscope quality, this model could be far from the truth. A more realistic gyro model (2.23) is
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due to Farrenkopf:

ω = (1 + fG)ω + ωb + ω̃ , (4.25)

where additional terms are present, which may affect the parameter estimation. The first
is the gain factor fG, that scales the overall angular velocity measures. The second is the drift
term ωb. Typically, for accurate gyroscopes fG ' 0, therefore the gain error effect is very limited
compared to the other noise sources. The drift term, instead, could have some important and
detrimental effects on the measures.

For this work we consider the gain fG to be close to zero and thus negligible, and therefore,
the measurement model under consideration is

ω = ω + ωb + ω̃ . (4.26)

The drift term ωb is often modeled as a random walk term (ω̇b = ωd , ωd ∼ N(0, σ2
d)),

however, considering the relatively short duration of the experiment, its value remains almost
constant during the maneuver. It seems therefore acceptable to approximate the drift as an
unknown bias:

ω = ω + b+ ω̃ , (4.27)

where the term b corresponds to the integrated random walk noise up to the experiment time.
A solution to the estimation problem with “biased” gyroscope consists in estimating and

removing the effect of the bias generated from the drift term in the gyroscope model.
For linear systems a common technique consists in detrending the data, for instance by

removing the average input signal value to the input data, and the output average to the output
([Ljung, 1999], Ch.14). However, this approach cannot be applied in this scenario given the
nonlinearity of the satellite system.

As done previously, (4.27) is substituted into the satellite model (4.2)

− ḣrw − (ω − b− ω̃)×hrw +Md =
(

Γ
(
ω̇ − ḃ− ˙̃ω

)
+ (ω − b− ω̃)×Γ

(
ω − b− ω̃

))
θJ . (4.28)

and the equation can be split as in (4.7)-(4.10) since the function Γ(·) is linear in the pa-
rameter. The term ḃ is clearly zero, while ω̃×Γ(ω̃) has been already considered in the previous
noise analysis. The constant term b×Γ(b) can be removed by means of an augmented regressor.
The crossed terms that contain a noise multiplied by a bias, as b×Γ(ω̃), can be treated as an
additive noise and they do not generate bias. The following terms remain and their effect must
be considered: (

− b×Γ(ω)− ω×Γ(b)
)
θJ − b×hrw . (4.29)

Expanding the three terms in (4.29), and collecting the bias components, we obtain

− b×Γ(ω) θJ = 0 −(J13ωx + J23ωy + J33ωz) (J12ωx + J22ωy + J23ωz)
(J13ωx + J23ωy + J33ωz) 0 −(J11ωx + J12ωy + J13ωz)
−(J12ωx + J22ωy + J23ωz) (J11ωxJ12ωy + J13ωz) 0

bxby
bz

 ,
(4.30)
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− ω×Γ(b) θJ =

 (J12ωz − J13ωy) (J22ωz − J23ωy) (J23ωz − J33ωy)
(−J11ωz + J13ωx) (−J12ωz + J23ωx) (−J13ωz + J33ωx)
(J11ωy − J12ωx) (J12ωy − J22ωx) (J13ωy − J23ωx)

bxby
bz

 , (4.31)

− b×hrw = h×rwb =

 0 −hz hy
hz 0 −hx
−hy hx 0

bxby
bz

 . (4.32)

It must be noted that the terms (4.30) and (4.31) contain the unknown parameter J . This
problem can be overcome by using the nominal value of the inertia, and the estimates can be
further refined by substituting J with the estimated inertia Ĵ .

Defining as B the sum of the matrices that multiply b in (4.30)-(4.32), the full model for the
inertia estimation has an augmented regressor ψaug as follows

Ma = ψaugθaug =
[
ψ I3 B

] θJb0
b

 . (4.33)

thus 6 additional parameters, 3 (b0 ∈ R3×1) to compensate for the constant effect due to the
biased gyroscope measurements (b×Γ(b)), and 3 (b ∈ R3×1) to compensate for the varying effect
depending on ω (4.29).

As before, the low-pass prefilter (SVF) is applied on both side of the equations, thus the IV
solution is

θ̂augIV−SV F =

[
N∑
k=1

ZTaug,f (tk)ψaug,f (tk)

]−1[ N∑
k=1

ZTaug,f (tk)Maf (tk)

]
, (4.34)

4.6 Simulation Results with Biased Gyroscope

In order to test the effectiveness of the proposed IV method with an augmented regressor, a new
Monte Carlo simulation of 100 runs have been performed. The same reference signal used in
Section 4.4 is used for this simulation (Figure 4.2), however, a significant initial bias has been
added to the drift term ωb

ωb(t = 0) = [9 , −8 , 11]T · 10−4rad/s , (4.35)

while the zero-mean gaussian noise and the random-walk term were kept as in the previous
simulations (σx = σy = σz = 8.5 · 10−5 rad/s , σb = 1.3 · 10−6rad/s2).

The first proposed IV method (4.23) has been compared with its augmented version (4.34),
and for sake of clarity they have been renamed as IV1 and IV2, respectively. The results, from
a Monte Carlo simulation of 100 runs, are shown in Figure 4.8 where the estimation error for
each parameter is plotted, as well as in Table 4.2. For the “standard” IV method (in red) the
results present a significant bias, while the augmented version (in blue) still yields consistent
estimates despite the large amount of bias in the angular velocity measurements. Additionally,
both methods present similar variances, thus the additional estimated parameters do not worsen
the precision of the new proposed algorithm.
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Figure 4.8: Box plots for the errors of the inertia parameter estimates. In red (on the left) the
results for the IV-SVF (IV1), while in blue (on the right) the results for the augmented IV-SVF
(IV2).

J11 [kgm2] J22 [kgm2] J33 [kgm2] J23 [kgm2] J13 [kgm2] J12 [kgm2]

mean st.d. mean st.d. mean st.d. mean st.d. mean st.d. mean st.d.
θ̂IV1

31.428 0.066 20.623 0.060 34.631 0.062 -1.739 0.046 0.298 0.057 -1.541 0.054

θ̂IV2
31.380 0.072 21.181 0.060 35.713 0.076 -0.780 0.052 -0.261 0.064 -1.104 0.054

θ0 31.382 21.188 35.704 −0.778 −0.260 −1.114

Table 4.2: Parameter estimation results for the IV-SVF method without (θ̂IV1) and with (θ̂IV2)
gyroscope bias compensation.

4.7 Conclusions

In this chapter an instrumental variable method has been developed and applied for the inertia
matrix estimation from telemetry data. Due to the lack of angular acceleration measurements,
a SVF prefilter has been applied in order to avoid performing the derivatives. The proposed IV
based algorithm exploits a closed-loop auxiliary model to generate the output noise-free estimates
required by the instrument. Since the auxiliary model operates in closed loop and it uses the
same reference signal as the real system, drifts between real and estimated output is avoided.

A comparison with a least squares estimation has been made. Due to the similarities with
a typical errors-in-variables model, it has been shown how the least squares approach cannot
guarantee unbiased and consistent estimates, while the IV counterpart is able to overcome the
LS limitations and obtain accurate inertia estimates. Moreover, the results show also how the
IV is significantly more robust with respect to the choice of the SVF cut-off frequency. It should
also be noted that, given the same prefilter, the LS method has theoretically lower variance
than the IV method. The almost identical standard deviations in the estimates for the two
approaches demonstrates therefore the effectiveness of the instrument generated from the closed-
loop auxiliary model.

Finally, the case of biased gyroscope has been considered, and it has been shown how, with an
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appropriate modification of the IV method, consistent parameter estimates can still be obtained.
Even if this approach has a higher number of parameter to be estimated, the variance increase
is relatively small compared to the results of Section 4.4 making its use interesting if a high
gyroscope measurement bias is expected.

There are, however, satellites that do not use gyroscopes, but rely mainly on the star tracker
sensor for both attitude and angular velocity estimation. For these gyroless satellites, the method
proposed in this chapter cannot be applied. This is the main focus of the following chapter, where
the IV approach is extended in order to work directly on attitude measurements. In this new
scenario, the prefilter design is more critical given that also a second order time-derivative is
required. Moreover, the effects of the disturbance torques are better analyzed and compensated
in the inertia estimation algorithm.
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In Chapter 4 it has been shown how to obtain consistent estimates of the inertia matrix by
using the instrumental variable method. For the algorithm, it was assumed that angular velocity
measurements were available, as done by the majority of works in the literature. However, small
satellites (Myriade, CubeSat, ...) are emerging due to their lower costs. These types of satellites
have less sensor availability compared to bigger spacecraft, making the attitude determination
as well as parameter estimation more challenging. Usually in larger satellites, both star tracker
and accurate gyroscopes (e.g. fiber-optic gyroscopes (FOG)) are used for attitude and rate
estimation. However, in smaller satellites, for size or cost constraints, small MEMS gyroscopes
are used (as well as the star tracker for attitude measurements). These gyroscopes present much
worse accuracy than FOGs, due to much higher random walk noise and to a higher sensitivity
to the environment conditions. These types of satellites typically rely only on star tracker
measurements for both attitude and rate estimation. Studies on attitude and rate estimation in
gyroless conditions have been made, however, as shown in Section 3.2, very few works focused
on the satellite parameter estimation from star tracker measurements only.

In this chapter the instrumental variable method has been tailored to work on gyroless satel-
lites, therefore relying solely on attitude measurements. Additionally, a detailed noise analysis
is performed that allows for an effective choice of the prefilter.

For the numerical experiment, all the data that have been processed and presented in this
chapter have been generated by a high-fidelity simulator from CNES, where all possible sources
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of disturbance are present. The simulation conditions are therefore as close as possible to the real
environment. Finally, the method is tested with real data recorded during a set of maneuvers on
the Picard satellite. This work, with the exception of the Picard’s results, has been published
in [Nainer et al., 2019].

5.1 Satellite Closed-Loop System

For this study we consider the Microcarb satellite. Microcarb is a micro-satellite that will be
launched in 2021 to map sources and sinks of carbon dioxide. Since this spacecraft is still
in development, only Microcarb simulated data have been used. The real telemetry data are
obtained from the Picard satellite, an older but similar micro-satellite.

Given the open-loop satellite dynamics unstability (it contains two integrators from torque
to attitude), all the experiments must be carried out under a closed-loop control configuration.
The overall system is shown in Figure 5.1. Since the spacecraft is gyroless, and to improve the
signal to noise ratio, the feedback includes an extended Kalman filter (EKF) that estimates the
satellite angular rate (required by the controller) from the attitude measurements (e.g. [Crassidis
et al., 2007]). Since the extended Kalman filter is based on an approximate model and because
we aim to have a fully independent estimation method, we prefer not to use the angular rate
obtained this way. The satellite controller structure [Genin and Viaud, 2018] is as follows

K(s) = (Kp +Kd · s)
1

s

1

1 + τ1 · s
1 + τ2 · s
1 + τ3 · s

, (5.1)

and it includes the following feedforward control law

Kff = Gff · J · ω̇target(t+ ∆T ) , (5.2)

where ω̇target is the target acceleration, Gff and ∆T are two tuning parameters.

Figure 5.1: Closed-loop satellite system. The equivalent torque generated by the reaction wheels
is represented by −ḣrw, while r1 and r2 are the reference and feedforward signals, respectively.
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5.2 Satellite Model and Noise Analysis

5.2.1 Satellite Model

The satellite model is kept in its inverse form like in the gyro-equipped case. As shown in (3.2)
in Chapter 3 and later used in Chapter 4, we can write

− ḣrw(t)− ω(t)×hrw +Md(t) = J ω̇(t) + ω(t)×J ω(t) , (5.3)

and

− ḣrw(t)− ω(t)×hrw +Md(t) =
(

Γ(ω̇(t)) + ω(t)×Γ(ω(t))
)
θJ , (5.4)

for the equivalent system in linear regression form. However, under the new assumptions,
we do not have access to the angular velocity measurements ω. Therefore, the angular velocity
must be computed from the attitude measurements provided by the star tracker.

As shown in Chapter 2, the attitude expressed in quaternions can be directly related to the
angular velocity and its derivative (in the body reference frame)

ω = 2W (q)q̇ , ω̇ = 2W (q)q̈ , (5.5)

where W (·) is defined as follows

W (q) =

 q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0

 . (5.6)

5.2.2 Noise Analysis

Since the attitude is also affected by measurement noise, the noise effect on the reconstructed
angular velocity should be analyzed. We first consider the case where the star tracker frame is
aligned with the body reference frame, thus we have the following measurement equation

q(tk) = qn(tk)⊗ q(tk) , (5.7)

where, for small errors, as in Chapter 2

qn(tk) ' [1 , ex/2 , ey/2 , ez/2]T , (5.8)

with

ex ∼ N(0, σ2
x) , ey ∼ N(0, σ2

y) , ez ∼ N(0, σ2
z) , (5.9)

where ex, ey, ez are assumed to be mutually uncorrelated. By expanding (5.7) and omitting
the time tk for sake of simplicity, we obtain

q =


q0 − exq1

2 −
eyq2

2 −
ezq3

2
q1 + exq0

2 −
eyq3

2 + ezq2
2

q2 + exq3
2 +

eyq0
2 −

ezq1
2

q3 − exq2
2 +

eyq1
2 + ezq0

2

 , (5.10)

therefore the measured quaternion can be rewritten in additive form as

q = q + q̃ , (5.11)
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where

q̃ =


− exq1

2 −
eyq2

2 −
ezq3

2
exq0

2 −
eyq3

2 + ezq2
2

exq3
2 +

eyq0
2 −

ezq1
2

− exq2
2 +

eyq1
2 + ezq0

2 .

 (5.12)

From (5.5) the angular velocity ω can be computed from the measured quaternions (and their
derivatives) as

ω = 2W (q)q̇ = 2W (q)q̇ + 2W (q̃)q̇ + 2W (q) ˙̃q + 2W (q̃) ˙̃q , (5.13)

with

˙̃q =
1

2


−ėxq1 − exq̇1 − ėyq2 − ey q̇2 − ėzq3 − ez q̇3

ėxq0 + exq̇0 − ėyq3 − ey q̇3 + ėzq2 + ez q̇2

ėxq3 + exq̇3 + ėyq0 + ey q̇0 − ėzq1 − ez q̇1

−ėxq2 − exq̇2 + ėyq1 + ey q̇1 + ėzq0 + ez q̇0

 . (5.14)

and where ėi represents the numerical differentiation of ei, and therefore having as variance
σ2
ėi

= 2σ2
ei/(∆T )2 (or σ2

ėi
= 2σ2

ei/(2∆T )2 in case of the central differentiation) where ∆T is the
sampling period.

Equation (5.14) can be approximated as

˙̃q ' 1

2


−ėxq1 − ėyq2 − ėzq3

ėxq0 − ėyq3 + ėzq2

ėxq3 + ėyq0 − ėzq1

−ėxq2 + ėyq1 + ėzq0

 , (5.15)

assuming
‖ė‖ ‖q‖ � ‖e‖ ‖q̇‖ , (5.16)

which is a very realistic condition in our satellite scenario: the quaternion is an unit vector, while
its derivative is usually small for satellite maneuvers; moreover the noise on the quaternions is
smaller than its derivative.

Since 2W (q)q̇ = ω, the noise on ω is as follows

ω̃ = ω − ω = 2W (q̃)q̇ + 2W (q) ˙̃q + 2W (q̃) ˙̃q . (5.17)

From assumption (5.16), and considering that ‖q‖ � ‖q̃‖, the overall noise on the angular velocity
can be approximated as

ω̃ ' 2W (q) ˙̃q =

ėx(q2
0 + q2

1 + q2
2 + q2

3)
ėy(q

2
0 + q2

1 + q2
2 + q2

3)
ėz(q

2
0 + q2

1 + q2
2 + q2

3)

 =

ėxėy
ėz

 , (5.18)

since q(t) is a unit quaternion.
From this result, the overall noise on the angular rate is directly related to the noise on the

quaternions, and if the noise e is zero-mean and with components mutually uncorrelated, the
same can be said for ω̃.

In the more general case where the star tracker is not aligned with the body reference frame,
an additional rotation must be performed. Therefore the angular rate ω in the satellite frame
can be written as

ω = Rωst , (5.19)
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where ωst is the angular rate in the star tracker reference frame and R is the rotation matrix
transforming from the star tracker to the body reference frame. If the three components of the
noise e have the same standard deviation σe then, even after the rotation, the noise term ω̃
remains zero-mean with its three components mutually uncorrelated.

This can be demonstrated as follows:
Suppose that ω is a zero mean vector such that E(ω2

x) = E(ω2
y) = E(ω2

z) = σ2 and with the
three components uncorrelated.

• The zero mean property is clearly maintained after a rotation since E(Rω) = RE(ω) = 0.

• To demonstrate that the three components of ω remain uncorrelated, we first apply a
rotation about the x-axis with an angle α to the vector ω:

ω′ =

1 0 0
0 cos(α) sin(α)
0 −sin(α) cos(α)

ω =

 ωx
ωycos(α) + ωzsin(α)
−ωysin(α) + ωzcos(α)

 . (5.20)

The first component of ω′ is clearly independent of the other two, therefore E(ω′x ω
′
y) =

E(ω′x ω
′
z) = 0. Also the second and third component are independent since:

E(ω′y ω
′
z) = E(−ω2

ysin(α)cos(α) + ω2
zsin(α)cos(α) + ωyωzcos

2(α) + ωyωzsin
2(α)) = 0 ,

(5.21)
since ωy and ωz are uncorrelated and they have the same variance.

The components of the vector ω′ have also the same variance of the original vector ω. For
the first component this statement is trivial. For the other two we have:

E(ω′y ω
′
y) = E(ω2

ycos
2(α) + ω2

zsin
2(α) + 2ωyωzsin(α)cos(α)) = σ2

E(ω′z ω
′
z) = E(ω2

ysin
2(α) + ω2

zcos
2(α)− 2ωyωzsin(α)cos(α)) = σ2 .

(5.22)

Applying a second rotation about the y-axis and a third rotation about the z-axis the
situation does not change: the three components remain uncorrelated and their variance
does not change.

However, if the three noise components have different variance, then there will be a correlation
between ω̃x, ω̃y and ω̃z.

The overall effect of the noise in the satellite model is then simply computed by substituting
ω = ω+ ω̃ where ω̃ = ė as in (5.18). Once the substitution is performed, similarly to Chapter 4,
the following is obtained

−ḣrw − (ω − ω̃)×hrw︸ ︷︷ ︸
Ma

+Md =
(

Γ
(
ω̇ − ˙̃ω

)
+ (ω − ω̃)×Γ

(
ω − ω̃

))
︸ ︷︷ ︸

φ

θJ . (5.23)

By following the same steps as in (4.7)-(4.10), (5.23) can be rewritten as

− ḣrw − ω×hrw = ψ(ω̇, ω) θJ + ν −Md , (5.24)

where the overall noise is contained in ν:

ν = −δθJ − εθJ − ω̃×hrw . (5.25)

with

63



Chapter 5. Inertia Matrix Estimation for Gyroless Satellite

ψ = Γ(ω̇) + ω×Γ(ω) ,

δ = Γ( ˙̃ω) + ω̃×Γ(ω̃) ,

ε = ω×Γ(ω̃) + ω̃×Γ(ω) .

(5.26)

As before, noise term ω̃ appears in a quadratic form only in the second term of δ as 0 −ω̃yω̃z ω̃yω̃z (ω̃2
y − ω̃2

z) ω̃xω̃y −ω̃xω̃z
ω̃xω̃z 0 −ω̃xω̃z −ω̃xω̃y (ω̃2

z − ω̃2
x) ω̃yω̃z

−ω̃1ω̃2 ω̃1ω̃2 0 ω̃xω̃z −ω̃yω̃z (ω̃2
x − ω̃2

y)

 . (5.27)

As in the previous chapter, we can conclude that a necessary (and sufficient) condition to
have a zero-mean overall noise effect is that the three components ω̃1, ω̃2, ω̃3 must be mutually
uncorrelated and have the same variance. Since star trackers have usually different variance on
different axes, the assumption of equal variance is no more satisfied.

Therefore, for the gyroless case, the non-zero expected value of the overall noise should be
taken into consideration to correctly estimate the inertia parameters.

From now on, we will consider the regressor ψT (·) directly as function of the quaternions and
their derivatives

ψ
(
q(t), q̇(t), q̈(t)

)
= Γ

(
2W (q(t))q̈(t)

)
+
(

2W (q(t))q̇(t)
)×

Γ
(

2W (q(t))q̇(t)
)
, (5.28)

and therefore the overall model in linear regression form becomes

− ḣrw(t)−
(

2W (q(t))q̇(t)
)×
hrw(t) = ψ

(
q(t), q̇(t), q̈(t)

)
θJ + ν(t)−Md(t) . (5.29)

5.3 Derivative Estimates

The model (5.29) is function of the attitude quaternion q(t), as well as of its time derivatives
q̇(t), q̈(t). However the star tracker provides only the angular position q. The simplest solution
would be to perform a numerical differentiation, having as main drawback a significant noise
amplification. A way to limit the noise amplification consists in filtering the signal before per-
forming the differentiation. The SVF approach of Chapter 4 cannot be used in this case since
all the state derivatives appear nonlinearly in the model. Indeed, while in (4.1) the derivative
term appears linearly in Γ(ω̇), the same is not true for the derivative terms in (5.28) and (5.29).

Therefore, other solutions must be sought. In order to avoid distortion of the signal, the filter
must not generate any phase lag, its magnitude should be as flat as possible in the passband,
and it should have a cut-off frequency above the bandwidth of the satellite dynamics. Since we
consider an offline estimation method, a smoothing operation based on a Butterworth low-pass
filter is chosen, since it has a maximally flat magnitude in the pass-band. This smoother consists
in applying the filter in both forward and backward directions in order to cancel any phase lag
inherent to the filtering. Since the filtering could slightly change the mangnitude of the quater-
nions, a normalization is performed. Afterwards, the derivatives are computed through central
finite differences. If instead an online estimation is required, then the Butterworth smoother
could be replaced by a delayed state-variable filter (DSVF) [Tsang and Billings, 1994]. The
DSVF is a filter that has a frequency response presenting constant unit gain and an almost lin-
ear phase with respect to the frequency in the passband of the filter. Usually, the filter is based
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on a Butterworth filter since it presents a maximally flat amplitude characteristic and an almost
linear phase characteristic for frequencies below the cut-off. Then, all-pass equalizers are used
to further improve the linear phase characteristic in the pass band of the Butterworth filter. A
more detailed description of the DSVF is given in Appendix B.

Other approaches are available in the literature, such as the integrative random walk smoother
(IRWSM) [Young, 2011], the Wavelet decomposition-based smoothing [Coca and Billings, 1997],
and polynomial smoothing like the Savitzky-Golay filter [Savitzky and Golay, 1964; Schafer,
2011]. However, their performance is not necessarily superior to the Butterworth low-pass
smoothing, or for the IRWSM case, its implementation is not as trivial.

It should be noted that this procedure is mainly used to remove the high-frequency noise
components without altering the noise-free signal. The main part of the data processing is
performed afterwards by the so called “prefilter”14, and it allows to obtain low-variance parameter
estimates.

5.4 Prefilter Design for Instrumental Variable

The implementation of a basic IV method, thus solving (3.22), can only guarantee consistency
of the estimates, whereas the variance could still be large making the parameter estimates not
reliable.

The optimal instrumental variable method, described in Chapter 3, exploits a suitable filter
in order to minimize the variance of the estimates. To apply this method, the various components
of the Box-Jenkins model must be recognized in the system equation and, first of all, the noise
model must be identified.

Equation (5.29) corresponds to the model of Figure 3.3 where the effect of the noise on the
attitude has been brought to the output side and added to the disturbance torque. This model
has many similarities with the Box-Jenkins model of Figure 3.4, and the idea to exploit the
optimal IV filter (3.50) developed for this model would be very attractive. Unfortunately, apart
from the nonlinearity of the model, in (5.29) two independent noise sources are present on the
output. As far as the authors are aware, multiple noise sources have never been deeply studied
and the prefilter design is not obvious [Mahata and Garnier, 2006]. Given the two independent
noise sources, the overall noise cannot be obtained as the output of a single equivalent filter
with a white noise input, therefore an approximation is sought: a linear shaping filter which
approximates the power spectrum of the overall wideband noise is estimated and its inverse is
used as a prefilter. Even if there is no theoretical demonstration of optimality, this approximation
is justified by the intent to develop a filter which whitens the output noise. The intuitive reasoning
behind this filter, is that, if the residual is highly colored, it means that there is still information
in the data that has not been captured, therefore better estimate can still be achieved.

The satellite model (3.8) is nonlinear, therefore the theory does not provide any optimal
filter for the IV method. Anyway, since the operating conditions of the satellite do not vary
significantly, by performing a linearization of the model, we can design a sub-optimal filter that
will be still able to achieve good performance [Brunot et al., 2018; Nainer et al., 2019].

As already mentioned, the model of Figure 3.4, presents several similarities with (5.29) at
exception from the double noise source and the presence of some nonlinearities. Even before
performing any linearization, we can observe that the term ψ(·) does not have any integrator
inside, but only derivatives. Therefore for the filter construction, considering that for linear

14The prefilter is not applied directly to the measured states, but it is applied to regressor ψ and the input
ḣrw − ω×hrw.
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systems the optimal IV filter is C(s)
A(s)D(s) (Section 3.3.5), in this particular case, we can set

A(s) = 1, and only the terms ν(t) and Md(t) affect the filter design.
From Section 5.2.2, the overall noise term is (5.25)

ν = −δθJ − εθJ − ω̃×hrw . (5.30)

By linearizing the term ν around the operating conditions a linear approximation of ν is
obtained (of the type D(s)

C(s) , where in this case C(s) = 1 given the absence of integrators in the
noise model). Since the noise term bandwidth is not affected by its sign, the linearization point
has been chosen as the average of the absolute values of hrw and ω during the satellite maneuver

h∗rw =
1

N

N∑
k=1

∣∣∣hrw(tk)
∣∣∣ , ω∗ =

1

N

N∑
k=1

∣∣∣ω(tk)
∣∣∣ . (5.31)

In order to linearize ν, we first compute the linearization with respect to ω̃ and ˙̃ω, and then,
exploiting (5.18), we obtain a linearization with respect to e and its derivatives:

νl = (∇ ˙̃ων) ˙̃ω + (∇ω̃ν) ω̃ = −J ˙̃ω − (ω×J − (Jω)× − h×rw) ω̃ (5.32)

This linearization has the following form15

νl =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 ω̃ +

b11 b12 b13

b21 b22 b23

b31 b32 b33

 ˙̃ω (5.33)

Since the noise ω̃ can be accurately approximated by ė (as shown in (5.18)), (5.33) can be
rewritten as

νl =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 ė+

b11 b12 b13

b21 b22 b23

b31 b32 b33

 ë . (5.34)

To have three separate scalar noise models (and thus a three scalar filters), the matrices
in (5.34) are diagonalized by calculating the diagonal terms as a mean square of the row values

ai =
√
a2
i1 + a2

i2 + a2
i2 , bi =

√
b2i1 + b2i2 + b2i2 for i = 1 · · · 3 , (5.35)

νl '

a1 0 0
0 a2 0
0 0 a3

 ė+

b1 0 0
0 b2 0
0 0 b3

 ë . (5.36)

The noise model transfer function can be therefore written as

Dl(s) = D1 s+D2 s
2 . (5.37)

It should be noted that in this particular noise model there are no terms without differential
operator s.

In case of a disturbance free satellite, the inverse of the noise model ( 1
Dl(s)

), weighted by the
different standard deviations of the three e components, would be the sub-optimal filter.

15we temporary use aij to describe the linearized noise model. It should not be confused with the actuator
alignment a in Chapter 6.
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For the disturbance, we consider a white noise filtered with very low-pass cut off, thus having
a behavior similar to a bounded random walk signal. This model represents the residual term
after having estimated and removed the constant components. Also the gravity gradient torque
can be removed, since it can be accurately computed from the satellite attitude with respect
to the Earth [Curtis, 2013]. Therefore, the following transfer function is used to describe the
disturbance model

Md,s =
γ

s+ γ
η with ηx ∼ ηy ∼ ηz ∼ N(0, σ2

η) , (5.38)

where γ is an empirical value (e.g. γ = 0.002 rad/s) to describe the low-pass behavior of the
disturbance torque. Alternatively, the disturbance torque could be modeled by a simpler integral
random walk noise Ṁd = η, like in [Yoon et al., 2017].

Since these two noise terms (ν and Md) are uncorrelated, the two transfer functions cannot
be simply added. The correct way to combine these noise terms is to add the power spectra
with their respective gains. However, in this particular case the two spectra are substantially
disjoint: the noise effect produces a high pass spectrum, while the disturbance is strongly low-
pass. Therefore, since there is no overlapping, it is permissible to add the two transfer functions,
with their respective gains, instead of combining the two power spectra.

The noise term including the disturbance can be then approximated as

νi = (bi s
2 + ai s)ei +

γ

s+ γ
ηi ∀ i = x, y, z . (5.39)

In order to “merge” the terms, the ratio between σe and ση must be computed. The value of σe
can be easily obtained from the sensor datasheet, while for ση, a rough estimate can be obtained
from the knowledge of the typical disturbance torque magnitude. The overall noise model can
be then written as16

H(s) = b s2 + a s+
σηγ/σe
s+ γ

=
d3s

3 + d2s
2 + d1s+ d0

s+ γ
, (5.40)

and the prefilter F (s) used in the IV is the reciprocal of the full noise transfer functionH(s) (5.40)

F (s) = (H(s))−1 =
s+ γ

d3s3 + d2s2 + d1s+ d0
(5.41)

An example of the F (s) magnitude, for the satellite scenario under consideration, is shown in
Figure 5.4.

This approach can be linked to the refined IV (Section 3.3.5). In fact, the grey-box analysis
of the noise (and disturbance) model substitutes the ARMA noise model estimation in the more
common RIV approach. Moreover, as in (3.55), the prefilter is designed as the inverse of the
noise model, where, in this particular scenario, A(s) = 1. A more direct comparison between
these two approaches is shown in Chapter 6.

5.5 Augmented Model and Algorithm Implementation

In Section 5.2 it has been shown how, depending on the star tracker orientation and noise stan-
dard deviation, the noise term ν may have a non-zero expected value. Moreover, the disturbance

16For ease of notation we consider here just one of the three components of the noise transfer function.
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torque contains some slowly varying terms, which must be estimated and removed. One sug-
gested solution to deal with these terms consists in augmenting the regressor (and therefore the
instrument and the parameter vector as well)

ψaug(tk) =
[
ψ(tk) I3

]
Zaug(tk) =

[
Z(tk) I3

] ∀k ∈ [1 · · ·N ] , (5.42)

where the identity matrix I3 allows the estimation of the overall constant terms due to the
measurement noise and the disturbance Md(t).

In the satellite scenario under consideration, the prefilter (Figure 5.4) has a very slow dynam-
ics, therefore the initial conditions of the filter have a significant impact on the inertia estimates.
Waiting for the end of the transient behavior may result in discarding a significant portion of
the data. A better solution consists in estimating the filter initial conditions together with the
satellite parameters. To do so, the (filtered) regressor and instrument are further augmented as

ψaug,f (tk) =
[
ψf (tk) I3 Tr1(tk) Tr2(tk) Tr3(tk)

]
,

Zaug,f (tk) =
[
Zf (tk) I3 Tr1(tk) Tr2(tk) Tr3(tk)

]
,

(5.43)

where Tri(tk) are the transient behaviors corresponding to each one of the filter poles (in this
case we considered a third order filter) which may have one of the following forms17

Tri(tk) =


I3 e

αtk ;

I3 e
αtksin(ω1tk) ;

I3 e
αtkcos(ω1tk) ;

I3 tke
αtk .

(5.44)

These four forms correspond to: real pole, couple of complex poles, and double real pole,
respectively.

The fully extended parameter vector θaug contains now 12 parameters in addition to θJ .

As in Chapter 4 (Section 4.3), we build the instrument from a closed-loop auxiliary model.
The feedforward and the PD components of the controller are supposed to be known, and thus
only the inertia parameters are required by the auxiliary model. Since the inertia has not yet
been estimated, the auxiliary model is initialized with a preliminary estimate. Then, when a new
estimate becomes available, the model is updated and a few iteration are made until convergence.

The IV based algorithm for the inertia estimation from star tracker can be synthesized as

17For sake of simplicity the diagonal terms of the matrices are considered the same. In a more general form,
each component could have a different transient behavior.
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follows:

1 • apply the Butterworth smoothing filter to the quaternion measurements q(tk) and
compute the time derivatives q̇(tk), q̈(tk) ;

2 • initialize the inertia parameters, either from a priori information (e.g. from CAD
software) or from a low-pass filtered LS (LS-F) estimatea

θ̂LS−F =

[
N∑
k=1

ψTf (tk)ψf (tk)

]−1[ N∑
k=1

ψTf (tk)Maf (tk)

]
, (5.45)

3 do
4 • estimate the noise-free output ω̂ from the reference signal r(t) and the closed-loop

auxiliary model based on the previous inertia estimate θ̂ (it should be noted that
the instrument can be directly built from ω, so the noise-free estimate of q is not
required);

5 • build the prefilter F (s) based on the noise analysis that also depends on the
parameter θJ ;

6 • build and filter by F (s) the instrument instrument Zf

Zf = Γ( ˙̂ωf ) +
(
ω̂×Γ(ω̂)

)
f

; (5.46)

7 • augment the filtered regressor ψf (·) and the instrument Zf (·) as in (5.43):

ψaug,f (tk) =
[
ψf (tk) I3 Tr1(tk) Tr2(tk) Tr3(tk)

]
,

Zaug,f (tk) =
[
Zf (tk) I3 Tr1(tk) Tr2(tk) Tr3(tk)

]
,

(5.47)

8 • estimate the parameters with the IV method

θ̂IV−F =

[
N∑
k=1

ZTaug,f (tk)ψaug,f (tk)

]−1[ N∑
k=1

ZTaug,f (tk)Maf (tk)

]
, (5.48)

9 • update the auxiliary model with the new estimated parameters.
10 while (max

(
|θ̂(new)− θ̂(previous)|/θ̂(previous)

)
< threshold;

aThis is a LS method that uses a low-pass filter, similar to F (s), as prefilter.

5.6 Numerical Results from High-Fidelity Simulator

The proposed estimation method has been tested through numerical simulations. The MicroCarb
gyroless satellite, from the Myriade class, has been considered for this experiment. In order to
generate the data, a high fidelity simulator from CNES has been used. The main parameters of
the simulators are shown hereafter. The nominal satellite inertia matrix is

J0 =

20.3852 −3.7497 −1.7515
−3.7497 24.5764 0.7836
−1.7515 0.7836 29.0328

 [kgm2]. (5.49)

The satellite is controlled by four reaction wheels. Since we assumed that the actuator alignments
are known as well as their inertia, and that the noise on the reaction wheel speed readings is
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negligible, we have direct access to the reaction wheel angular momentum hrw. All the sensor
sampling frequencies are set to 4Hz. The noise standard deviation on the star tracker was set
as σx = σy = 11.7 · 10−6 rad and σz = 93 · 10−6 rad. The star tracker model had also bias and
harmonic (at the orbital frequency) noise terms: the bias was set to bx = by = 58 ·10−6rad , bz =
53 · 10−6 rad, while the harmonic amplitude was αx = αy = 8 · 10−6rad , αz = 23 · 10−6rad (both
in the star tracker frame).

The transformation matrix to move from the star tracker frame to the satellite frame was the
following

Qsatsst =

 cos(β) 0 sin(β)
−sin(β) sin(α) −cos(α) sin(α) cos(β)
sin(β)cos(α) −sin(α) −cos(α) cos(β)

 , with α = 15◦ and β = 0◦ . (5.50)

All the main types of disturbance torques are considered18: aerodynamic torque, solar ra-
diation pressure, magnetic torque, gravity gradient torque, as well as internal oscillation in the
structure (mainly due to flexible elements like solar panels). Additionally, the satellite is equipped
with a scanning mirror, that is generating additional disturbances. During the simulations, the
solar panel are kept fixed in order to avoid any change of the satellite inertia during the estima-
tion. The control law is described in (5.1) and (5.2). The reference guidance profile is shown in
Figure 5.2, and it is kept the same for every simulation.
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Figure 5.2: Attitude and angular rate reference profile.

Figure 5.3 shows the input-output of the satellite for a single simulation.
Two types of Monte Carlo simulations are performed:

• in the first type of simulation the star tracker follows the simple model (5.7);

18The satellite is operating in low Earth orbit (LEO).
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Figure 5.3: Input (reaction wheel total angular momentum) and output (in quaternions) of the
satellite.

• the second considers a more realistic case, where also bias and harmonic noise terms are
present.

In order to have a different disturbance torque profile, the initial satellite orbit position has been
randomly changed in every simulation. The prefilter has been designed following Section 5.4 and
its typical magnitude is shown in Figure 5.4.
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Figure 5.4: Magnitude Bode plot of the filter used in the IV method.

Table 5.1 shows the results from a Monte Carlo simulation of 100 runs. The IV estimates for
both star tracker models present a low variance and a slight bias, however, the presence of bias
in the quaternions does not seem to have a significant impact in the performance. The slight
bias is mainly due to the disturbance torque, while, even in the biased star tracker case, the
correlation between the noise term e and the noise free quaternions q is too small to generate
any significant effect (as shown in the comparison of Table 5.1). The table includes also the
results from a least squares algorithm with a second-order low pass filter, used as comparison,
which shows a considerably higher variance and bias. The bias of the least squares results, from
an application viewpoint, can be considered still low. This is mainly due to two factors: the use

71



Chapter 5. Inertia Matrix Estimation for Gyroless Satellite

of a well-tuned prefilter and the use of an accurate star tracker (low noise standard deviation).
In fact, as it has been shown in Chapter 4, either a not well-tuned prefilter, or simply a lower
signal to noise ratio can easily affect the quality of the LS estimates.

J11 [kgm2] J22 [kgm2] J33 [kgm2] J23 [kgm2] J13 [kgm2] J12 [kgm2]

mean st.d. mean st.d. mean st.d. mean st.d. mean st.d. mean st.d.
θ̂LS 20.431 0.034 24.687 0.033 29.021 0.036 0.766 0.033 -1.742 0.031 -3.783 0.041

θ̂IV1
20.397 0.006 24.625 0.008 29.054 0.008 0.776 0.011 -1.742 0.009 -3.743 0.005

θ̂IV2
20.397 0.006 24.625 0.008 29.055 0.008 0.776 0.010 -1.741 0.009 -3.743 0.005

θ0 20.385 24.576 29.033 0.784 −1.751 −3.768

Table 5.1: Results from a Monte Carlo simulation of 100 runs using different satellite starting
orbit positions. The true value is represented by θ0. θIV1 is the inertia estimate for the unbiased
star tracker, whereas θIV2 is for the biased case. In this simulation settings, the performance
difference is negligible. Additionally, θLS shows the results from a least squares method with a
second order low-pass filter.

The main user-parameter to be set is the ratio between ση and σe since its value determine
the frequency for the intersection between the noise and disturbance transfer functions, thus
it determines the cut-off of the filter. Figure 5.5 shows the mean square errors of the inertia
estimates for different ratios, in order to demonstrate the algorithm robustness.
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Figure 5.5: Sum of the mean square errors (MSE) of the 6 inertia parameter estimates for
different values of the user-parameter τσ. The value of τσ is represented as its ratio with an
empirical optimal value τopt.
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5.7 Inertia Estimation Using Real Data

Picard is a CNES microsatellite from the Myriade series, that was launched in 2010 and remained
operational till 2014. Before its end of life, an adaptive attitude control law has been tested [Pittet
et al., 2015] and from that experiment real telemetry data have been recorded that can be used
to further test the proposed parameter estimation algorithm.

The maneuver in the experiment was as follows

• at t = 3600 s, 15◦ guidance step on the X axis,

• at t = 14400 s, 15◦ guidance step on the Y axis,

• at t = 25200 s, 15◦ guidance step on the Z axis,

• at t = 36000 s, 3-axis guidance step back to Sun pointing guidance.

The attitude measurements have been provided by a star tracker, while the actuation is
provided by reaction wheels and magnetic rods, thus the model is

MT (t)− ḣrw(t)− ω(t)×hrw(t) = ψ(ω, ω̇) θJ + ν(t)−Md(t) , (5.51)

whereMT (t) is the torque generated by the magnetorquer. Since (5.51) corresponds to (5.24),
with the only exception ofMT (t), the algorithm described in Section 5.5 can be directly applied to
the Picard telemetry data. The input-output data are shown in Figure 5.6. During the maneuvers
both the input and output are sampled at 1Hz. Since some star tracker measurements were
missing, an interpolation has been performed in order to reconstruct the missing data at evenly
spaced instants.

For the algorithm implementation, the Butterworth smoother and the prefilter F (s) (5.41)
have been applied to the whole dataset. However, for the estimation only the data during the
change of satellite attitude have been used since in the time intervals between the maneuvers
the satellite was not excited as it can be seen in the quaternion measurements of Figure 5.6.
Finally, since there is a large time difference among the maneuvers, the bias effects of the noise
and in particular of disturbance torque have been separately estimated for each maneuvers. The
solutions consisted in building the following augmented regressor (and corresponding instrument)

ψaug,f (tk) =
[
ψf (tk) I3 03 03 03

]
if tk ∈ maneuver n◦1 ,

ψaug,f (tk) =
[
ψf (tk) 03 I3 03 03

]
if tk ∈ maneuver n◦2 ,

ψaug,f (tk) =
[
ψf (tk) 03 03 I3 03

]
if tk ∈ maneuver n◦3 ,

ψaug,f (tk) =
[
ψf (tk) 03 03 03 I3

]
if tk ∈ maneuver n◦4 ,

(5.52)

where maneuver n◦i represents set of data belonging to the i-th maneuver (change of attitude).
It should be noted that the estimation of the filter initial conditions are not required in this case,
considering the relatively long experiment duration with respect to the transient time.

The obtained estimated inertia parameters are shown in Table 5.2

J11 J22 J33 J23 J13 J12

θ̂IV [kgm2] 18.65 15.88 21.91 0.16 0.76 −2.15

Table 5.2: Inertia Estimate from the Picard data
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Figure 5.6: Input-output data of the Picard experiment.

In this real scenario we do not have exact values for comparison, so a torque cross-validation is
performed to analyze the results. This consists of comparing the total torque (MT−ḣrw−ω×hrw)
with its effect on the system (ψ(q̈, q̇, q) θ̂). In order to avoid a large noise amplification, a smoother
with cut-off at 0.2 rad/s has been applied to the quaternions before computing ω and ω̇, and to
hrw for performing the torque cross-validation19. The results of this comparison are shown in
Figure 5.7. A good fit among the signals can be observed, which indicates a good estimate of
the inertia parameters, despite the little excitation given to the satellite in the experiment.

5.8 Conclusions

The IV method for inertia parameter estimation has been adapted to work directly from star
tracker measurements. Firstly, a detailed grey-box analysis of the noise has been performed,
allowing for the design of a high-performance prefilter for the estimation. Secondly, the method
has been augmented in order to better deal with the disturbance torque as well as to deal with the
initial transient of the filter if inaccurate filter initial conditions were set. The use of data from the
CNES high-fidelity simulator allowed to perform a realistic validation of the proposed method.
Since the simulator considers all the main disturbance torques, satellite internal oscillation as
well as sensor non-idealities, this is probably the closest benchmark that can be achieved without
relying on real-data. The results can be considered very satisfying given the high accuracy
achieved. The good performance was also confirmed by the use of real telemetry data from the
Picard satellite: the torque cross-validation showed a good match between the input torque and
the equivalent torque resulted in the estimated spacecraft model.

So far, the proposed methods focused on the inertia matrix estimation problem. Even if the
inertia parameters play a fundamental role in the satellite rotational dynamics, a correct knowl-
edge of the actuator alignments is almost as important to guarantee an effective attitude control

19It should be noted that such low value for the smoother cut-off should never be used for the estimation since
it is well below the bandwidth of the noise-free signal, thus it does create distortions. In this case it is used just
to better visualize the torque cross-validation.
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Figure 5.7: Torque cross-validation: measured (solid lines), estimated (dash-dot lines).

design. This is the topic of the next chapter, in which the IV is adapted to perform simulta-
neous inertia and actuator alignment estimation. Moreover, the star tracker measurements will
be considered not perfectly synchronized with the reaction wheel speed readings, thus adding an
additional challenge in the estimation problem.
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The mass distribution is the most important parameter that governs the satellite dynamics,
therefore its correct estimation highly affects the attitude control performance, especially when
a feedfoward action is used. However, the same can be said for the actuator alignments since
they directly affect the generated control torque. For this reason, a simultaneously estimation of
all these parameters is a problem of great interest.

In this chapter, a very general case is considered: estimating both the inertia and actuator
alignment parameters while still considering a gyroless satellite (as in [Yoon et al., 2017]). It
is also considered that the star tracker measurements are not perfectly synchronized with the
actuator speed readings, causing a delay between the input and output signals in the telemetry
data. This particular problem is not dealt by the satellite parameter estimation literature,
although it affects the accuracy of the estimates.

The IV method is further developed for the simultaneous estimation of both parameters, as
well as to take into consideration the aforementioned delay. Finally, a more elegant solution is
proposed for the filter design compared to the one proposed in Chapter 5. This work, including
part of the noise analysis of Chapter 5 has been submitted to a journal [Nainer et al., 2020b].

6.1 Satellite Model for Parameter Estimation

The closed-loop satellite system is the same as in Chapter 5 since it is based on the CNES high-
fidelity simulator for the MicroCarb satellite, therefore the reader may refer to Section 5.1 for
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further details.
The satellite modeling is still based on the Euler’s equations, however, also the actuator

alignment parameters must be linearly extracted in order to apply an IV method. As shown in
Section 2.2.2, the satellite rotational dynamics is described as follows

− ḣrw(t)− ω(t)×hrw(t) +Md(t) = J ω̇(t) + ω(t)×J ω(t) , (6.1)

with

hrw(t) =
n∑
i=1

Jrw,iΩi(t)ai . (6.2)

As before (3.2), we can extract the inertia parameters

ḣrw − ω×hrw +Md =
(

Γ(ω̇) + ω×Γ(ω)
)
θJ , (6.3)

with θJ = [J11 , J22 , J33 , J23 , J13 , J12]T , and where the dependency on the time tk has been
omitted for sake of simplicity.

The actuator alignment parameters ai, defined as unit vectors parallel to the reaction wheel
axes, can be treated in a similar way as done for the inertia parameter vector θJ :

• A first intuitive approach consists in extracting the alignment parameter vectors ai, or
the alignment error vectors (with respect to the previously known value ai) ea,i = ai −
ai from (6.2). In both cases unit norm constraints must be respected: ||ai||2 = 1 or
||ai + ea,i||2 = 1. In the case of alignment error estimation the equation is

hrw = hrw + χ(Jrw,Ω) ea = hrw +
[
Jrw,1Ω1I3 Jrw,2Ω2I3 · · · Jrw,nΩnI3

]
ea , (6.4)

with ea = [ea1 , ea2 · · · , ean ]T and where hrw is the reaction wheel angular momentum
computed with the nominal ai directions.

However, this approach would require to solve a quadratic programming problem with
n quadratic equality constraints (||ai + ea,i||2 = 1). The addition of multiple quadratic
constraints transforms the estimation process into a nonconvex optimization problem [Bar-
On and Grasse, 1994; Bar-On and Grasse, 1997; Golub and Von Matt, 1991].

• In this work, an alternative solution is chosen. Since there is no guarantee to reach the
global minimum of the previous cost function, a different model has been considered, which
consists in representing the misalignment equation with two parameters instead of three as

ai ' ai + αiu1,i + βiu2,i for i = 1, · · ·n , (6.5)

where u1,i and u2,i are two unit vectors orthogonal to the direction ai and to each other
(their computation is described in Section 6.4). With this notation, we can linearly extract
the misalignment parameters αi and βi while the quadratic constraint can be avoided20

hrw = hrw + ρ(Jrw, ω,Ω, Ω̇, u1, u2)θe (6.6)
20Equation (6.5) does not yield an exactly unit norm result, but it will be shown that a solution can be found.
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with

ρ(·) =
[
Jrw,1Ω̇1u1,1 + ω×(Jrw,1Ω1u1,1) Jrw,1Ω̇1u2,1 + ω×(Jrw,1Ω1u2,1) · · ·

· · · Jrw,nΩ̇nu2,n + ω×(Jrw,nΩnu2,n)
]
,

(6.7)

and where

θe = [α1 , β1 , α2 , β2 , · · · , αn , βn]T (6.8)

Figure 6.1: Geometrical representation of α and β.

Given this misalignment description (6.6), the full equation in linear regression form be-
comes the following

− ḣrw − ω×hrw +Md =
[
Γ(ω̇) + ω×Γ(ω) ρ(Jrw, ω,Ω, Ω̇, u1, u2)

] [θJ
θe

]
. (6.9)

Since only star tracker measurements are available, (6.9) must be written as a function
of the quaternions q rather than the angular rate ω. For this purpose it is sufficient to
substitute ω and ω̇ with 2W (q)q̇ and 2W (q)q̈ respectively (see (2.8)), which leads to the
linear regression estimation model

−ḣrw −
(

2W (q)q̇
)×
hrw +Md =

=
[
Γ(2W (q)q̈) +

(
2W (q)q̇

)×
Γ(ω) ρ(Jrw, q, q̇,Ω, Ω̇, u1, u2)

] [θJ
θe

]
.

(6.10)
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It should be noted, that even if the terms α and β are small, (6.5) yields a non-unit
vector (Figure 6.1). An Euclidean normalization is therefore necessary after the estimation
of these parameters. In order to improve the accuracy of the estimates, the estimation
process is iterated until α and β become negligible, as it will be described in more detail
in Section 6.4.

6.2 Noise Term in the Linear Regression Model

For the time derivative estimation of the quaternions, q̇ and q̈, as in Section 5.3, a Butterworth
based smoother is used in order to reduce the noise amplification. One of the reasons behind this
choice is the maximally flat magnitude in the pass-band of the Butterworth filter. However, as
already mentioned in Section 5.3, the smoother cut-off is limited by the bandwidth of the system
noise-free input-output signals and therefore an additional prefilter must be designed in order to
guarantee estimates with low variance.

The overall noise term for the new model must be analyzed in order to design a suitable
filter. Since the encoders used for the reaction wheel speed measurements are very accurate, we
can consider them noise free without loss of accuracy.

From (5.7)-(5.18), it has been shown how by computing the angular velocity ω from the
measured quaternions q, the overall noise on the angular velocity can be accurately approximated
as

ω̃ =
[
ėx , ėy , ėz

]
. (6.11)

Therefore, as in Chapter 5, we can directly analyze the noise in (6.9), instead of (6.10),
replacing the noise-free angular rate ω with ω − ω̃.

−ḣrw−(ω−ω̃)×hrw+Md =
[

Γ(ω̇ − ˙̃ω) + (ω − ω̃)×Γ(ω − ω̃)︸ ︷︷ ︸
φJ

ρ(Jrw, (ω − ω̃),Ω, Ω̇, u1, u2)︸ ︷︷ ︸
φa

] [θJ
θe

]
.

(6.12)
The study of the noise on the first term φJ of the full regression matrix in (6.12) relative to

the inertia parameter remains unchanged with respect to the one done in (4.7)-(4.13). Therefore,
similarly as in (4.7), we can substitute the noise-free term by the measured equivalent and two
additional noise terms:

φJ θJ = ψ θJ − δθJ − εθJ . (6.13)

with

ψ = Γ(ω̇) + ω×Γ(ω) ,

δ = Γ( ˙̃ω) + ω̃×Γ(ω̃) ,

ε = ω×Γ(ω̃) + ω̃×Γ(ω) ,

(6.14)

and where −δθJ − εθJ represents the “noisy” terms. The same analysis done in Section 5.2.2
remains valid regarding −δθJ−εθJ , thus the zero-mean property is not respected if ω̃ has different
standard deviation on its three components.

For the second term ρ of the full regression matrix in (6.12), under the assumption of negligible
noise on the reaction wheel speeds, the analysis is straightforward. Given
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φaθe =
(
ρ(Jrw, (ω − ω̃), Ω̇, u1, u2)

)
θe , (6.15)

the overall noise is[
ω̃×(Jrw,1Ω1u1,1) ω̃×(Jrw,1Ω1u2,1) · · · ω̃×(Jrw,nΩnu2,n)

]
θe , (6.16)

which maintains the zero-mean property of ω̃.
Finally, we need to consider the noise effect in the left-hand side of (6.12). In this part we

only have the following noise and disturbance terms

ω̃×hrw +Md . (6.17)

Therefore (6.12) can be rewritten as

− ḣrw − ω×hrw =
[
ψ(ω, ω̇) ρ(Jrw, ω, Ω̇, u1, u2)

] [θJ
θe

]
+ ν −Md , (6.18)

where ν collects all the effects due to measurement noise. In order to simplify the nota-
tion, (6.18) will be rewritten as

g(hrw, ω) = f(ω, Jrw,Ω, u1, u2) θ + ν −Md , (6.19)

where

θ =

[
θJ
θe

]
. (6.20)

Disturbance Torque

The disturbance torque Md depends on the following different factors: gravity gradient torque,
aerodynamic torque, solar radiation pressure, magnetic torque, as well as some internal oscillation
in the satellite structure (e.g. solar panel oscillation). The magnitudes of these components
depend on the satellite orbit. The sum of these terms can be well approximated as

Md = Md,d +Md,s , (6.21)

where Md,d contains the “deterministic” part that can be estimated with sufficient accuracy,
while Md,s can be considered as a stochastic term. For a low-Earth orbit satellite, the determin-
istic part can be approximated as [Sidi, 1997]

Md,d = M0 +M1sin(ω0t+ φ1) +M2sin(2ω0t+ φ2) +Mg , (6.22)

where ω0 is the satellite orbital rate and Mg is the gravity gradient torque that can be
accurately computed. The stochastic term of the torque is approximated as

Ṁd,s = −γMd,s + η where ηx ∼ ηy ∼ ηz ∼ N(0, σ2
η) , (6.23)

and where γ > 0 is a scalar value determining the frequency domain of the disturbance. A
similar approach has been proposed in [Yoon et al., 2017], where instead a simple continuous
random walk process has been utilized (Ṁd,s = η). Since the disturbance torque amplitude is
bounded and a common integral random walk grows indefinitely, the process (6.23) has been
preferred.
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6.3 Filter Design

As in Chapter 5, we perform a linearization of the noise model and from it we design a sub-optimal
filter that will ensure low variance estimates from the IV approach. Even before performing
any linearization, we can observe that the regressor term f(ω, Jrw,Ω, u1, u2) does not have any
integrator inside, but only derivatives, therefore for the filter construction we can set A(s) = 1,
and only ν(t) and Md(t) affect the filter design.

From Section 6.2, we have

ν = −δθJ − εθJ + ω̃×
( n∑
i=1

(Jrw,iΩiu1,i + Jrw,iΩiu2,i)
)
− ω̃×hrw . (6.24)

By linearizing the ν term around the operating conditions a linear approximation of ν is
obtained (of the type D(s)

C(s) , where in this case C(s) = 1). Since the noise term bandwidth is not
affected by its sign, the linearization point has been chosen as the average of the absolute values
of hrw, ω and Ω during the satellite maneuver:

h∗rw =
1

N

N∑
k=1

∣∣∣hrw(tk)
∣∣∣ , ω∗ =

1

N

N∑
k=1

∣∣∣ω(tk)
∣∣∣ Ω∗ =

1

N

N∑
k=1

∣∣∣Ω(tk)
∣∣∣ . (6.25)

By linearizing ν, following the same steps shown in (5.33)-(5.37), a noise polynomial matrix
of the following form is obtained

Dl(s) = D1 s+D2 s
2 , (6.26)

where a continuous-time notation is kept to have a simpler representation. Since the noise
ω̃ ' ė (as shown in (5.18)), there are no terms without differential operator s. To simplify the
filter, the matrices in (6.26) are diagonalized by calculating the diagonal terms as a mean square
of the row values.

As done in the previous chapter, we have to combine the noise modelDl(s) with a disturbance
torque model in order to obtain the sub-optimal filter. In case of a disturbance free satellite, the
inverse of the noise model ( 1

Dl(s)
), weighted by the different standard deviations of the three e

components, would be the sub-optimal filter.
For the disturbance, as mentioned in Section 6.2, we consider a highly colored noise (that

is similar to a bounded random walk process), which represents the residual term after having
estimated and removed the constant and sinusoidal components by means of an augmented
regressor (see Section 6.4). Also the gravity torque can be removed, since it can be accurately
calculated from the satellite attitude with respect to the Earth [Curtis, 2013]. Therefore, the
following transfer function is used to describe the stochastic components of the disturbance

Md,s(s) =
γ

s+ γ
, (6.27)

where γ is an empirical value (e.g. γ = 0.002 rad/s) to describe the low-pass behavior of the
disturbance torque.

Since these two terms (noise and disturbance) are uncorrelated, the two power spectra add
together, with their respective gains, giving an overall spectrum like the one of Figure 6.2. In
this figure, the colored solid lines show the two “noise” components, while the black dashed line
shows the overall spectrum. While in Chapter 5 we have approximated the overall spectrum
with a simple summation of the two single spectra, we want here to find a more elegant solution.
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Figure 6.2: Disturbance torque spectrum ap-
proximation in solid blue line, measurement
noise term in solid red line, and overall noise
spectrum in dashed black line.
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Figure 6.3: Reciprocal of the overall noise spec-
trum in dashed black line, and its third-order
filter approximation in solid red line.

Following the idea of the optimal prefilter for the Box-Jenkins model, we are looking for a
filter which has a reciprocal magnitude with respect to the overall noise term. However, the
spectrum of Figure 6.2 is not necessarily a rational spectrum and neither its reciprocal. We are
therefore looking for a rational transfer function, possibly of a low order, which approximates the
reciprocal of the overall noise spectrum. There are different options available in the literature for
this purpose. An alternative method, based on the cepstrum properties and described in detail
in Appendix A, has been developed and used for this case. The result of this filter synthesis is
shown in Figure 6.3, where the dashed black line represents the reciprocal of the overall noise
spectrum, while the red line represents an approximation with a third order filter F (s), which
will be later used as a prefilter for the parameter estimation algorithm. The structure of F (s) is
equivalent to the one described in (5.41) of Section 5.4:

F (s) =
c1s+ c0

d3s3 + d2s2 + d1s+ d0
. (6.28)

Calculation of the Prefilter from the Residuals

Instead of following a full grey-box approach for the noise model, and thus the corresponding
filter design, a black-box approach can be taken. This consists in estimating the noise ARMA
model from the residuals and to use its inverse transfer function as prefilter, as shown in Sec-
tion 3.3 [Young, 2011]. In this case, the residuals are simply defined as ξr = g(tk) − f(tk) θ̂.
However, in this satellite scenario, this refined IV approach presents some additional difficulty
with respect to the theoretical approach based on the Box-Jenkins model (Figure 3.4). In fact,
since this is an iterative process, the noise model is initialized as a simple white noise and thus
the initial prefilter is based only on the system transfer function denominator. For the satellite
inverse model, given the presence of no integrator terms, this does result in the use of no pre-
filter for the first iteration and thus in highly unreliable parameter estimates. In order to avoid
this issue, even for the first iteration, a low-pass filter has been applied for the first step of the
iteration.

The overall iterative process is then as follows

1. Obtain a first estimate of θ with the use of a second order low-pass filter

F (s) =
1

(γ s+ 1)2
. (6.29)
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2. With the previously estimated satellite parameters θ̂, compute the residuals

ξr = g(tk)− f(tk) θ̂ . (6.30)

3. Estimate the parameters of the ARMA noise model

ξr(tk) =
D(z−1)

C(z−1)
e(tk) (6.31)

where e(tk) is assumed to be white noise source.

4. prefilter the g(t) and the regressor f(t) with the filter

F (z−1) =
C(z−1)

D(z−1)
(6.32)

5. Based on the prefiltered data, compute a new IV estimation on the satellite parameters.

Repeat steps 2-3-4-5 till convergence.
The estimation of the noise model ξr(tk) = D(z−1)

C(z−1)
e(tk) presents additional difficulties in

the satellite scenario due to the system inversion. The majority of the residual are due to
the derivation of the noise, so the overall expected noise model is the inverse of a low-pass
filter. This is a very uncommon noise model, and not all the commonly used option in the
literature can reliably estimate this model. For example, the ivarma routine from the CAPTAIN
toolbox [Taylor et al., 2007] did perform poorly. The armax routine from Matlab, as well at the
cepstrum based approach of Appendix A, resulted capable of correctly estimating this ARMA
model.

Applying this cepstrum based method, or the armax routine the transfer function D(z−1)
C(z−1)

can
be estimated from the residuals. The prefilter to be used for the parameter estimation consists
then in the inverse of the noise estimated model C(z−1)

D(z−1)
. The noise model, and thus the prefilter,

can be also converted into a continuous-time model (CARMA) in order to have a form similar
to (6.28) and allowing to use the same approach for the filter initial condition estimation. An
example of the estimated prefilters Ĥ∗(s) (one for each axis), in continuous time, is shown in
Figure 6.4. For sake of clarity, a unit steady state gain has been imposed for each filter in this
plot.

It should be noted that the prefilter design from the residual analysis yields low-pass filters
with a cut-off slightly higher than the ones from the tailor-made approach at the beginning of
this section (Figure 6.3). From tests based on the experiment results, the lower cut-off of the
tailor-made prefilter (6.28) seems to work slightly better than the one obtained from the residuals.
Moreover, in order to have a good estimate of the ARMA noise model at low-frequencies, a long
experiment is required since for an experiment of duration Te the frequency resolution is 1

2Te
.
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Figure 6.4: Estimated prefilters from the residuals.

6.4 Augmented Model and Delay Estimation

6.4.1 Augmented Regressor and Instrument

In Section 5.2, it has been shown how, depending on the star tracker orientation and noise stan-
dard deviation, the noise term ν may have a non-zero expected value. Moreover, the disturbance
torque contains some harmonic terms (which depend on the orbital frequency ω0) that should
be estimated and removed. The solution to deal with these terms consists in augmenting the
regressor (and therefore the instrument as well):

f∗aug(tk) =
[
f(tk) I3 I3sin(ω0tk) I3cos(ω0tk) I3sin(2ω0tk) I3cos(2ω0tk)

]
Z∗aug(tk) =

[
Z(tk) I3 I3sin(ω0tk) I3cos(ω0tk) I3sin(2ω0tk) I3cos(2ω0tk)

] ∀k ∈ [1 · · ·N ] ,

(6.33)
where the identity matrix I3 allows the estimation of the overall constant terms due to the

measurement noise and the disturbance Md(t), while the other terms are added to estimate the
sinusoidal components of Md(t).

In the satellite scenario, the filter (Figure 6.3) has a slow dynamics, therefore the initial
conditions of the filter have a significant impact on the inertia estimates. Waiting for the end
of the transient behavior may result in discarding a significant portion of the data. A better
solution consists in estimating the filter initial condition together with the satellite parameters.
To do so, the (filtered) regressor and instrument are further augmented as done in Chapter 5

faug,f (tk) =
[
f∗aug,f (tk) Tr1(tk) Tr2(tk) Tr3(tk)

]
,

Zaug,f (tk) =
[
Z∗aug,f (tk) Tr1(tk) Tr2(tk) Tr3(tk)

]
,

(6.34)

where Tri(tk) are the transient behaviors corresponding to each one of the filter poles (in this
case we considered a third order filter). The fully extended parameter vector θext contains 24
parameters in addition to θ.
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6.4.2 Modified Regressor for Sensor Delay Compensation

The input and output measurements could be not perfectly synchronized. In our case, the star
tracker measures have an unknown constant delay of a fraction of sampling period21 with respect
to the RW speed measures. To overcome this issue, a specific approach is proposed.

Let us consider the following system

y(tk) = ψ(u(tk)) θ , (6.35)

and suppose the input u is available at instants tk − tδ instead of tk. Instead of solving the
regressor equation22

θ̂ = argmin
θ

N∑
k=1

∣∣∣∣∣∣y(tk)− ψ(tk) θ
∣∣∣∣∣∣2 , (6.36)

the following augmented equation is solved:[
θ̂1

θ̂2

]
= argmin

θ1θ2

N∑
k=1

∣∣∣∣∣∣ [ψ(u(tk − tδ)) ψ(u(tk+1 − tδ))
] [θ1

θ2

]
− y(tk)

∣∣∣∣∣∣2 . (6.37)

The first term in the regression can be considered as a linear interpolation of the function ψ
between instants tk − tδ and tk+1 − tδ:[

ψ(tk − tδ) ψ(tk+1 − tδ)
] [θ1

θ2

]
=
(
ψ(tk − tδ)

θ1

θ1 + θ2
+ ψ(tk+1 − tδ)

θ2

θ1 + θ2

)
(θ1 + θ2)

' ψ
(
tk +

θ2

θ1 + θ2
∆T − tδ

)
(θ1 + θ2) ,

(6.38)

where the u terms have been omitted for ease of notation. It should be noted that in these
equations the operations on θ must be considered element-wise.

Since the best model fit is expected at time tk, solving for

tk = tk +
θ2

θ1 + θ2
∆T − tδ (6.39)

we obtain:

tδ =
θ2

θ1 + θ2
∆T (6.40)

θ = θ1 + θ2 . (6.41)

In our specific case, since we want to correct the delay of the star tracker measures with
respect to the reaction wheel speed readings, only the first part of the regressor (6.18) related
to the inertia parameters θJ has to be duplicated, leaving the remaining part unchanged. From
the two parameter vectors θJ1 and θJ2 we can calculate the inertia parameter as θJ = θJ1 + θJ2.

It should be noted, that in this particular scenario, the gyroscopic term in the regressor (6.7)
related to the alignments parameters combines together input and output states with incorrect
timing. Therefore, a small error due to the delay is still present, even if negligible as shown in
the numerical example hereafter.

21The proposed approach can be easily extended to delays larger than one sampling period.
22The LS solution is considered here for simplicity, but the extension to the IV solution is straightforward.
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6.4.3 Proposed Instrumental Variable Based Algorithm

In this chapter we choose to use a delayed regressor as instrument Z, also to test how this
alternative approach performs in this application. The delay should be sufficiently large to
guarantee the second property of (3.23), but still to be as small as possible to have a high
correlation with the regressor f(·) (first property of (3.23)). For this particular application, since
the overall noise comes mainly from a numerical derivative and double derivative of a white noise,
a delay of a few samples is sufficient to obtain a negligible correlation with the noise. Moreover,
given also the slow dynamics of the satellite, a high correlation between the instrument and the
regressor is maintained. The overall estimation algorithm can be synthesized as follows

1 • Apply the Butterworth smoothing filter to the quaternion measurements q(t) and
compute the time derivatives q̇(t), q̈(t) ;

2 • Initialize the reaction wheel alignment vectors with their nominal values āi ;
3 do
4 • Compute u1 and u2 for each reaction wheel:
5 for each direction ai, compute the cross product between ai and the three

main axes x-y-z

v1i = a×i [1 0 0]T , v2i = a×i [0 1 0]T , v3i = a×i [0 0 1]T , (6.42)

6 from the vector vi having the maximum norm, compute

u1i =
vji
||vji ||

, (6.43)

7 compute a second unit vector u2i , normal to u1i and to ai

u2i = a×i u1i , (6.44)

8 • Build the linear regression equation (3.8) and filter the regressor f(·), the
instrument Z(·) and the input vector g(·) with the prefilter F (s) designed as in
Section 6.3,

9 • Estimate the parameters with the IV method

θ̂IV =

[
N∑
k=1

ZTaug,f (tk)faug,f (tk)

]−1[ N∑
k=1

ZTaug,f (tk)gf (tk)

]
, (6.45)

where (·)f represents the filtered matrix,
10 • Update the alignment vectors ai(k) = ai(k − 1) + αiu1i + βiu2i , and normalize

them. Also update the prefilter F (s).

11 while (
n∑
i=1

α2
i + β2

i ) < threshold;

6.5 Numerical Simulations and Results

A high-fidelity simulator from CNES, featuring the Microcarb gyroless satellite, has been used
to test the proposed estimation method. The true inertia matrix of the spacecraft as well as the
reaction wheel alignment matrix are

87



Chapter 6. Inertia and Actuator Alignment for Gyroless Satellite

J =

20.2609 −1.3756 −2.1707
−1.3756 23.2558 −0.3744
−2.1707 −0.3744 27.8365

 [kgm2] , (6.46)

Arw =

−0.0406 0.7302 −0.0201 −0.6940
0.6983 0.6832 0.7045 0.7200
−0.7146 −0.0067 0.7094 0.0055

 . (6.47)
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Figure 6.5: Attitude and angular rate reference profile.
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Figure 6.6: Angular momentum for each of the 4 reaction wheels (at the top). Satellite attitude
expressed as Euler angles (x-y-z) at the bottom.

Four reaction wheels are used in a pyramidal configuration allowing one level of redundancy
in case of reaction wheel failure. This configuration also allows a change of the reaction wheel
speeds without changing the overall torque applied to the satellite by moving along the null-space
vector. The star tracker sampling frequency is set to 16Hz, while the reaction wheel speeds were
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Figure 6.7: Box plot for the inertia estimate errors.

sampled at 1Hz. The star tracker white noise component has the following standard deviation
σx = σy = 11.4 · 10−6rad and σz = 93.0 · 10−6rad. In the high-fidelity simulator, the star tracker
model has also bias and harmonic (at the orbital frequency) noise terms. The bias terms are set
to value of around 55 · 10−6rad. Additionally, a delay of 0.125 s has been set for the attitude
sensor readings. All the main types of disturbance torques, typical for a low-Earth orbit satellite,
are considered: aerodynamic torque, solar radiation pressure, magnetic torque, gravity gradient
torque, as well as internal oscillation in the structure (mainly due to flexible elements like solar
panels). During the simulations, the solar panels are kept at the same position in order to avoid
any change of the satellite inertia during the maneuver. The initial misalignment for the reaction
wheels is set to be around 2◦ for each actuator, while the initial inertia values have been set with
an error of about 10% with respect to the true values. The attitude control law is described
in [Genin and Viaud, 2018]. Additionally, a mild null space excitation has been added in order
to improve the accuracy of the estimated parameters. To do so, the following additional torque
has been applied to the 4 reaction wheels

Trw,0 = CtNrw , (6.48)

where Nrw is the null vector of Arw (ArwNrw = 0), and Ct is the magnitude of the null
space torque. In order to avoid reaction wheel saturation, the sign of Ct was changed every
5 s. The reference guidance profile is shown in Figure 6.5, and it is kept the same for every
simulation, while the orbital position was set each time differently in order to have different
disturbance torques for each experiment. Figure 6.6 shows the input-output of the satellite for
a single simulation. Since the input and output signal have different sampling frequency, the
actuator speed are upsampled at 4Hz, while the attitude measurement are downsampled (after
the smoothing operation) at 4Hz. For the instrument Z, a delay of 6 samples, equivalent to
1.5 s, was used. This delay is enough to guarantee the second property in (3.23), while, due to
the slow maneuvers of the satellite, the correlation between Z and f remains still very high.

The results from a Monte Carlo simulation of 100 runs are shown in Figure 6.7 and 6.8, where
the errors of the inertia and alignment parameters have been represented as box plots. The
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Figure 6.8: Box plot for the alignment estimate error vectors for each of the 4 reaction wheels.

misalignment of the estimates is described as two angles (α, β) that correspond to the alignment
correction of (6.5) in order to have a more intuitive representation. There is no evident bias
in the inertia estimates as well for the alignments, thanks to the use of the IV method and to
the augmentation of the regressor matrix, while the use of the filter allowed to have estimates
with a low variance. The delay of the star tracker is correctly estimated, as it is shown in
Table 6.1, where t̂δ is computed as the average of (6.40) among the three diagonal inertia terms.
The overall inertia and actuator alignments estimates are shown in detail in Table 6.2 and 6.3,
whereas, differently from the plots, a vector representation is kept for the actuator alignments.

Table 6.1: Star tracker delay results.
true delay (tδ0) mean (t̂δ0) st.d. (σt̂δ)

0.125 s 0.120 s 0.002 s

Table 6.2: Inertia parameter estimates.
J11 [kgm2] J22 [kgm2] J33 [kgm2]

mean st.d. mean st.d. mean st.d.
Ĵ 20.209 0.045 23.253 0.055 27.856 0.058

J0 20.261 - 23.256 - 27.837 -

J23 [kgm2] J13 [kgm2] J12 [kgm2]
mean st.d. mean st.d. mean st.d.

Ĵ −0.369 0.018 −2.130 0.096 −1.376 0.009

J0 −0.374 - −2.171 - −1.376 -

In case of satellite affected by a smaller disturbance torque, better results could be obtained
since a “stronger” filter (lower cut-off frequency) could be applied to the system equations. Over-
all, the results are satisfactory, also considering the large number of parameters that are esti-
mated.
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Table 6.3: Reaction wheel alignment vector estimates.
a1 [-] a2 [-] a3 [-] a4 [-]

mean st.d. mean st.d. mean st.d. mean st.d.
−0.0427 0.0025 0.7293 0.0019 −0.0199 0.0027 −0.6923 0.0016

â 0.6975 0.0016 0.6842 0.0020 0.7039 0.0021 0.7216 0.0015
−0.7153 0.0015 −0.0057 0.0054 0.7100 0.0021 0.0042 0.0030

−0.0406 0.7302 −0.0201 −0.6940
a0 0.6983 - 0.6832 - 0.7045 - 0.7200 -

−0.7146 −0.0067 0.7094 0.0055

Table 6.4: Inertia and alignment estimate MSE for the different methods.
Proposed Method 1 Method 2 Method 3

JMSE [kg2m4] 0.0312 0.1706 0.2299 0.5084

aMSE [−] 1.298 · 10−4 6.461 · 10−4 8.384 · 10−4 36.30 · 10−4

To further demonstrate the performance of the developed method, and in particular the
effectiveness of all the proposed techniques, a comparison is made. We considered three other
methods, which follow all the steps presented in Section 6.3-6.4 but one

• Method 1: Instrumental variable with a filter designed only to tackle the noise on the
measurements;

• Method 2: Instrumental variable without the estimation of the delay;

• Method 3: Least squares (equivalent to the proposed method, but with no delay for the
instrument Zaug, so Zaug = faug).

The results are represented in Figure 6.9 and 6.10, where the proposed method is shown in
black, method 1 in blue, method 2 in red, and method 3 in yellow. The proposed approach
presents lower bias and variance with respect to the others, showing how all the developed
method steps do improve the parameter estimates, especially for the actuator alignments. The
comparison with method 2, in particular, shows that a small timing error in the measures can
have a non-negligible effect on the estimates. It also shows the effectiveness of the proposed
delay compensated method.

A more compact comparison is given in Table 6.4, were the sum of the mean squared errors
(MSE) are given for each method. The proposed method has a significantly lower MSE.

In this realistic simulation scenario, the proposed method presents a good performance in
both inertia and alignment parameter estimation. Moreover, the several Tailor-made steps and
augmentations in the algorithm are well justified as shown by the comparisons.

6.6 Conclusions

In this chapter the estimation problem has been extended to the simultaneous estimation of the
inertia and the actuator alignments. To overcome the problem of the unit length constraints
of the alignment vectors, an iterative method has been developed, which reduces the number
of parameters to be estimated and removes the constraints. The disturbances have been deeply
analyzed in order to remove all their deterministic components by means of an augmented re-
gressor. As in Chapter 5, a detailed noise analysis has been performed, allowing for the design
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of a prefilter which improves the algorithm estimation performance (low-variance estimates). To
further justify this prefilter, also a black-box approach has been tested that estimates the noise
ARMA model from the residuals. Both the gray-box and black-box approach for the prefilter
design yield similar filters, with a slight difference in the cut-off frequency.

Moreover, the issues due to an incorrect timing of the input signals have been considered and
a method has been developed, which allows the estimation the timing error and compensate for
its effects on the estimates. All the proposed solutions have been validated through numerical
simulations, which use data of a high-fidelity simulator, showing that the developed method
has good performances as well that the removal of the timing error improves considerably the
estimation accuracy.

Up to this point, the maneuvers for the parameter estimation have been chosen based on some
simple rules which in most cases guarantee the persistence of excitation, and the minimization of
the variance of the estimates has been obtained with a suitable selection of the prefilter. In the
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next chapter we will show that also a suitable choice of the maneuver, by means of experiment
design methods, may positively affect the estimation precision.
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Up to this point the excitation signal used for the experiments has been generated following
these simple general rules:

• the signal on the three satellite axes must be excited;

• the excitation of the different components must be linearly independent (e.g. avoid to have
the same maneuver on different axes);

• the level of the excitation signal must be as high as possible, compatibly with the system
and actuator constraints.

For the satellite inertia estimation it is trivial to generate maneuvers that guarantee persis-
tency of excitation. However, even if the parameters are identifiable, it is well known that the
variance of the parameter estimates does also depend on the excitation signal. Therefore, in
the whole estimation process, the experiment design, together with the use of an appropriate
estimator, is one of the most important steps. The objective of the experiment design is to excite
the system in order to obtain data with the highest information content. Several works have
studied the optimal excitation problem [Goodwin and Payne, 1977; Armstrong, 1989; Walter
and Pronzato, 1990; Franceschini and Macchietto, 2008], however, its application to the satellite
parameter estimation is very recent. In [Weiss et al., 2015] the authors propose a receding hori-
zon optimization of the null motion in order to better estimate the reaction wheel alignments.
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A different solution for the same problem is described in [Leve and Jah, 2014]. In [Sekhavat
et al., 2009] the authors minimize the condition number of the regressor matrix to design the
maneuver. Another approach is shown in [Zhai et al., 2017], where a performance index similar
to the condition number is used to optimize the maneuver to better estimate the satellite inertia
matrix.

Even if the literature on satellite experiment design is quite limited, some related works
can be found in the robotic field. Robot dynamics presents indeed many similarities with the
rotational dynamics of satellites. Therefore many of these works can be easily adapted to the
spacecraft case. In [Gautier and Khalil, 1992], the authors propose an optimization method based
on the linear combination of the condition number and the equilibrium of the set of equations
that generate the parameters. In [Swevers et al., 1997], a D-optimality criterion on the Fisher
information matrix is used. Additionally, instead of optimizing a set of maneuvers points, the
maneuvers are represented as a finite Fourier series, thus significantly reducing the number of
parameters to be processed. Another similar approach, still based on the finite series Fourier
representation, is proposed in [Park, 2006]. In [Calafiore et al., 2001], a genetic algorithm is used
to determine excitation trajectories that minimize either the condition number of the regression
matrix or the logarithmic determinant of the Fisher information matrix. A different maneuver
parametrization is presented in [Rackl et al., 2012], where B-splines are used. The cost function
is based on a combination of the condition number and the sum of the joint torques, where the
latter term is included in order to improve the signal-to-noise ratio.

In this chapter, we consider the satellite experiment design problem for the inertia parameter
estimation. The system under consideration is a small platform that well simulates a satellite
behavior. Since this platform is also tested on a parabolic flight [Evain et al., 2019], only very
short maneuvers can be performed (for about 5 s) adding additional challenges to the maneuver
design. The experiment design, and the relative inertia parameter estimation, has been tested
both via numerical simulation and through real experiments in a (close to) zero-G environment.
This work has been published in [Nainer et al., 2020a].

7.1 Problem Statement

For testing purposes, we consider a satellite-type platform (Figure 7.6). However, this work can
be adapted to any satellite since they all have the same system model structure. The platform is
equipped with a gyroscope for the angular velocity measurements and it uses 6 control moment
gyros (CMGs) to generate the necessary torque for the attitude control. The overall rotational
dynamics in the body reference frame is almost identical to the one in (4.2), that is

M(t)− ω(t)×hC(t) +Md(t) =
(

Γ(ω̇(t)) + ω(t)×Γ(ω(t))
)
θ . (7.1)

where M(t) is the sum of the torques generated by the CMGs. Like in Chapter 4, by linearly
collecting the 6 independent inertia parameters and by rewriting the model as a function of the
measured angular rate ω we obtain

M(t)− ω(t)×hC(t)︸ ︷︷ ︸
y(t)

=
(

Γ(ω̇(t)) + ω(t)×Γ(ω(t))
)

︸ ︷︷ ︸
ψ(t)

θ + ν(t)−Md , (7.2)

where the term ν(t) ∈ R3×1 collects the overall noise effect.
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We are now interested in the following problem: Suppose we have found an unbiased and
consistent estimator for θ, find the excitation profile ω(t) that minimizes the variance of the
estimate θ̂.

Typically, this is a “chicken-and-egg” problem since for the design of optimal maneuvers (to
estimate a system) the knowledge of the system itself is required. Anyway, even an approximate
knowledge of the system parameters is often sufficient to obtain effective optimized maneuvers.

The experiment design requires three main steps

1. Choose a suitable representation of the reference profile to be optimized,

2. Build a functional to be minimized while including the system constraints23,

3. Select and apply an optimization solver.

7.2 Parametrization Choice for The Maneuver Profile

Several possible parametrizations exist for the representation of the reference profile ω(t). The
simplest solution consists in optimizing a finite set of equispaced points for the maneuver, and af-
terwards, interpolate a curve through them. However, the final curve built through interpolation
may not necessarily respect all the imposed constraints [Swevers et al., 1997]. This issue can be
reduced by increasing the number of points in the optimization, thus increasing the complexity of
the cost function. Another approach consists in using a finite Fourier representation as in [Swev-
ers et al., 1997; Park, 2006]. With this parametrization, the number of optimization parameters
is significantly reduced and the derivative can be computed analytically, thus without loss of
accuracy. However, the Fourier based representation is less flexible with respect to maneuver
constraints. For example, in [Park, 2006], in order to guarantee initial and final conditions of
the maneuver, a low order polynomial is added to the Fourier representation.

Given the very short maneuver constraint (due to the parabolic flight experiment limita-
tions), a flexible maneuver parametrization should be preferred. For this reason, a cubic B-spline
parametrization, as in [Rackl et al., 2012], is used. Splines are piecewise polynomials with pieces
that are smoothly connected together. The joining points of the polynomials are called knots.
An important property is that, in case of splines with uniform (and unit) knot spacing, we have

s(t) =
∑
k

ckβ
n(t− k) . (7.3)

This means that a spline s(t) can be expressed as a sum of integer shifts of a B-spline of degree n,
denoted as βn. A B-spline βn is a symmetrical bell-shaped function obtained from a (n+ 1)-fold
convolution of a rectangular pulse β0. Thanks to the representation defined in (7.3), each spline
is defined by its sequence of coefficients ck, which has the convenient structure of a discrete signal
even though the underlying model is continuous. Moreover, B-splines are easy to manipulate.
For instance, the derivative can be calculated as

dβn(t)

dt
= βn−1(t+

1

2
)− βn−1(t− 1

2
) . (7.4)

One more interesting property of the splines is the so-called convex hull property [Schumaker,
2007]. This means that the curve lies in the convex hull defined by its control points, as shown in

23Some optimization solvers can also handle constraints. However, due to the complexity of the constraints, we
preferred to include them in the cost function as soft constraints.
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Figure 7.1: Convex hull property of a cubic spline.

Figure 7.1. This property will be exploited in order to impose the respect of the constraints also
at intermediate points without interpolating the function values (if the control points respect the
constraints, all the curve will do).

7.3 Experiment Design

7.3.1 Fisher Information Matrix Based Experiment Design

The problem of finding effective excitation trajectories is a common problem in the field of
parameter identification and different approaches have been presented in the literature. In the
design of experiments for estimating a statistical model, optimal design, in combination with an
unbiased estimator, allows parameters to be estimated with minimum variance24. An optimal
excitation design requires a lower number of experimental runs (or shorter runs) to achieve a
sufficient estimation accuracy. Intuitively, data with higher information content with respect to
the parameters to be estimated should yield more accurate estimates. This concept is represented
by the Fisher information matrix [Goodwin and Payne, 1977], which is a measure of the amount
of information that a measured variable x provides on the unknown parameter θ. It is formally
defined as

I(θ) = E[∇θ log(p(x|θ))∇θ log(p(x|θ))T ] , (7.5)

or equivalently by
I(θ) = −E[∇2

θ log(p(x|θ))] , (7.6)

where p(x|θ) is the probability of the observed variable x for a given value of θ. In case of a
linear regression equation

y = ψ θ + e , (7.7)

where e is assumed to be a vector of independent identically distributed random variables with
zero mean and covariance matrix σ2I, it can be easily demonstrated that the Fisher information
is given by ([Ljung, 1999], Ch.7 and Ch.13)

I(θ) =
ψTψ

σ2
. (7.8)

24As in the majority of this work, we considered S ∈ M(θ) (3.12).
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In fact, for a SISO system, considering (7.7), the probability density function of y − ψ θ is

p(y − ψθ|θ) =
1√

2πσ2
e−

(y−ψθ)2

2σ2 . (7.9)

Taking the logarithm of (7.9) and differentiating with respect to θ we obtain:

∇θ(log(p(y − ψθ|θ)) =
yψT

σ2
− ψθψT

σ2
. (7.10)

Taking another derivative, the expectation of the Hessian matrix, which is the negative of the
Fisher information, is

E(∇2
θ(log(p(y − ψθ|θ))) = −ψ

Tψ

σ2
. (7.11)

In case of N measures, the values of y(ti) and ψ(ti) can be stacked respectively into a vector
Y and a matrix Ψ as

Y =


y(t1)
y(t2)
...

y(tN )

 , Ψ =


ψ(t1)
ψ(t2)
...

ψ(tN )

 . (7.12)

Since the Fisher information matrix associated to a set of independent samples is equal to the
sum of the individual Fisher information matrices, we have

I(θ) =
ΨTΨ

σ2
. (7.13)

The Fisher information matrix is related to the Cramer-Rao lower bound [Kay, 1998; Young,
2011]. The Cramer-Rao inequality states that, for any unbiased linear estimator for θ, we have

V ar(θ̂) ≥ I(θ)−1 . (7.14)

The maximization of the Fisher information corresponds therefore to the minimization of the
lower bound of the variance of the estimates.

The least squares (LS) solution

θ̂LS = (ΨTΨ)−1ΨTY (7.15)

has variance
V ar(θ̂) = σ2(ΨTΨ)−1 , (7.16)

which is exactly the inverse of the Fisher information.
In the satellite application, the regressor ψ(ω) is correlated with the noise ν, and therefore

a least squares method would yield biased estimates [Jun et al., 2010]. To obtain consistent
parameter estimates, as shown in Chapter 4-5-6, an instrumental variable (IV) method can
be used [Söderström and Stoica, 1983; Young, 2011]. For the basic IV, the analyical solution
(repeated here for sake of clarity), similar to the least squares one, is given by

θ̂ = (ZTΨ)−1ZTY , (7.17)

where Z is an instrument, that should be correlated with the regressor Ψ and uncorrelated with
the noise ν. Given (7.7), the IV parameter variance is

V ar(θ̂IV ) = σ2(ZTΨ)−1ZTZ(ΨTZ)−1 , (7.18)
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which is similar to (7.16). Considering that the optimal instrument Z is the noise-free version of
Ψ, optimizing a functional based on (7.15) and (7.16) is effective also if the IV method is used.
In fact, (7.18) can be well approximated as

V ar(θ̂IV ) ' σ2(ZTZ)−1 . (7.19)

and, since the noise-free signal is used for the optimization, using (7.19) or (7.16) is equivalent.
For a detailed description of the IV approach the reader may refer to the Section 3.3.

As a result, in the simple regression model (7.7), an optimal experiment design should max-
imize (7.13) or almost equivalently minimize (7.16).

Most of the design strategies that can be found in the literature have as objective the mini-
mization of some functional ρ(V ar(θ)). Among them, the most common criteria are [Franceschini
and Macchietto, 2008; Walter and Pronzato, 1990]:

• D-optimality

This optimality criterion requires to maximize the determinant of ΨTΨ. Since the deter-
minant is the product of the eigenvalues, which is inversely proportional to the product of
the axes of the confidence ellipsoid, maximizing the determinant is equivalent to minimize
the volume of the confidence ellipsoid of θ̂.

• E-optimality

It requires the maximization of the smallest eigenvalue of the Fisher information matrix,
equivalent to maximizing the minimum eigenvalue of ΨTΨ. Geometrically, the E-optimal
design minimizes the maximum diameter of the asymptotic confidence ellipsoids of θ̂.

• A-optimality

This criterion seeks to minimize the trace of (ΨTΨ)−1. It results in minimizing the average
variance of the estimate θ̂.

• Condition Number Minimization

This optimality criterion minimizes the condition number for inversion of the matrix ΨTΨ,
thus reducing the sensitivity of the estimate to perturbations in the input data and to
round-off errors made during the solution process. It should be noted that the condition
number is not influenced by any scaling factor on the regressor Ψ. Therefore, the cost
function should also include a penalty term in order to improve the signal to noise ratio.

7.3.2 Noise Model Correction Filter

Equation (7.16) assumes that e(t) in (7.7) is a white noise. However, in the satellite model (7.2),
the noise term ν(t) does not respect this assumption. In fact, even if nonlinear, ν can be well
approximated as

ν ' (γs+ 1) e , (7.20)

where e is a white noise source, γ is a scalar real positive value and s is the differential operator.
This approximation, also used in Chapter 4, has been shown in detail in Chapter 5, where a
similar noise model has been obtained (5.37). The additional differential operator s in (5.37)
with respect to the new model (7.20) is simply due to the use of attitude measurements instead
of angular velocity measurements. We remind the reader, that this unusual improper transfer
function comes from the use of an inverse model.
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Many of the papers cited in the introduction, that deal with satellite and robot experiment
design, did not consider that the white noise assumption was not fulfilled. This comes, again,
from the use of the inverse model to obtain equations in linear regression form. In this case, even
if the sensor is affected by an ideal white noise, the overall noise term ν presents a high-frequency
amplification behavior.

Therefore, by not respecting the white noise assumption, optimizing a functional based
on (7.16) does not generate an optimal maneuver. A solution consists in prefiltering (7.2) with
the inverse of the noise transfer function in order to respect the hypotheses in (7.7). A low-pass
filter

F (s) =
1

γ s+ 1
(7.21)

is therefore applied to both sides of (7.2) to come up with

yf (t) = ψf (t)θ + νf (t) , (7.22)

where (·)f means that the signal is filtered by F (s). This approach is very similar to what
is done in the optimal IV method [Young, 2011] in order to have white residuals. For this
filtered equation, the assumption of white noise (νf (t) ∼ N(0, σ2)) is “approximately” fulfilled.
Therefore, the scheme described in the previous subsection can now be applied to (7.22) and the
variance to be minimized becomes

V ar(θ̂) = σ2(ΨT
f Ψf )−1 . (7.23)

7.3.3 Including Physical Constraints in the Cost Function

Considering Section 7.1.1 and 7.1.2, the optimization aims at minimizing a functional ρ(·) based
on one of the possible criteria. For example, using the D-optimality criterion, the following cost
function can be formulated

ρD = −log
(
det
(
Ψf (ω, ω̇)TΨf (ω, ω̇)

))
. (7.24)

However, in addition to the minimization of the cost function, an optimal trajectory should
also respect some physical constraints (e.g. saturation of the platform actuators). The easiest
solution consists in treating the system constraints as soft constraints, and therefore adding
some penalty terms to the functional to be minimized that reach high values when close to the
saturation/physical limits. Three types of constraints are considered: torque saturation, angular
momentum saturation, and initial and final conditions of the maneuver. However, for more
complex scenarios, other constraints could be added the same way, such as constraints on the
satellite attitude in order to avoid the blinding of the star tracker.

First, the actuator constraints should be converted into state constraints

|MC(t)| ≤Mmax ⇒ |ω̇(t)| ≤ ω̇max , (7.25)
|hC(t)| ≤ hmax ⇒ |ω(t)| ≤ ωmax . (7.26)

In this work a limit has been set for each of the components of the angular rate ω and of the
angular acceleration ω̇. Moreover, some small safety margins are considered in the conversions
Mmax → ω̇max and hmax → ωmax.
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Once the constraints are defined on ω and ω̇, the full cost function to be minimized, making
use of (7.23), (7.25), (7.26), has the following form

ωref = argmin
ω

(
ρ
((

Ψf (ω, ω̇)TΨf (ω, ω̇)
))

+ penalty
)

(7.27)

where ρ(·) is a functional that depends on the chosen optimization criterion and the penalty,
containing the physical limitation and the initial and final conditions of the maneuver, is defined
as

penalty = K1(ω(t1)− ωinitial)6 +K1(ω(tN )− ωfinal)6+

+K2

∑
[Q(ω(tk), ωmax) +Q(−ω(tk),−ωmax)]+

+K3

∑
[Q(ω̇(tk), ω̇max) +Q(−ω̇(tk),−ω̇max)] ,

(7.28)

with

Q(x, threshold) =

{
0 x ≤ threshold
(x− threshold)6 x > threshold

. (7.29)

and where K1, K2 and K3 are some constants to weigh the different penalty terms. The summa-
tion in (7.28) should be extended to a thick grid of points in order to ensure that the constraints
are respected for the whole signal.

A simpler, but effective approach is to exploit the spline convex hull property and extend the
summation for the penalty only to the spline control points ωcp,k. This leads to a slightly more
conservative constraints.

This nonconvex optimization problem can be solved using one of the available optimization
tools. For this work we used the optimization toolbox from Matlab, and in particular the fminunc
routine.

7.4 Numerical and Experimental Results

To illustrate the effectiveness of the maneuver design, the method is firstly tested via a Monte
Carlo simulation. Then, a real experiment is performed on a parabolic flight, where the platform
is commanded with the optimized maneuver in a zero-G environment typical of a satellite.

7.4.1 Numerical Simulations

For the numerical simulations, the platform-satellite inertia J was set to0.022 0 0
0 0.022 0
0 0 0.027

 [kgm2] , (7.30)

and the CMG cluster saturation limits have been set to
MC,x ≤ 0.040Nm

MC,y ≤ 0.040Nm

MC,z ≤ 0.047Nm


hC,x ≤ 0.0210Nms

hC,y ≤ 0.0210Nms

hC,z ≤ 0.0254Nms

. (7.31)

To take some safety margins to avoid saturation, the maximum angular velocity and acceleration
for the optimized maneuver have been set to |ωmax| ' 0.3 rad/s and |ω̇max| ' 0.9rad/s2. The

102



7.4. Numerical and Experimental Results

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time [s]

-0.2

-0.1

0

0.1

0.2
re

f [r
ad

/s
]

x

y

z

Figure 7.2: Initial reference profile used for the optimization.

minimum ↑
eigenvalue

trace ↓ determinant ↑ condition ↓
number

basic 0.099 21.27 0.0036 3.271

A-opt 1.663 2.431 330.6 1.546

D-opt 1.683 2.434 331.3 1.568

E-opt 1.746 2.528 253.8 1.465

Cond. N◦ - opt 1.532 2.883 115.3 1.426

Table 7.1: Main parameters for different optimality criteria. The arrows indicate whether a large
↑ or small ↓ value is better.

initial and final angular velocity for the maneuver were set equal to zero, while the experiment
duration was set to 5 s. The maneuvers are represented by cubic splines with a grid step of
0.1 s. Figure 7.2 shows the basic reference profile used as initial maneuver for the optimization
algorithm. The choice of this initial profile was based on the two main conditions in order to
avoid close to singular regressor: all three axes should be excited and the maneuvers should not
be the same on different axes. The prefilter was set as

F (s) =
1

γ s+ 1
, (7.32)

where γ = 0.8. With a posteriori check we have verified that, with this value of γ, the error
νf becomes reasonably white. Firstly, an optimized maneuver has been computed for each one
of the four criteria of Section 7.3.1. The main criterion parameters of the differently generated
maneuvers are shown in Table 7.1, where it is clearly visible how the optimized maneuvers have
better “criterion” values with respect to the basic profile. On the other hand, for this particu-
lar application, the different optimization criteria do not yield significantly different maneuver
“properties”. For example, it may be observed that optimizing the determinant we obtain also a
good value of minimum eigenvalue and of the trace.
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Figure 7.3: D-opt maneuver.

The practical advantage of the experiment design has been studied via a Monte Carlo sim-
ulations, where the satellite inertia has been estimated both from the basic and the optimized
reference profiles. Additionally, also a scaled version of the basic profile is used in order to
have the same maximum angular velocity ω amplitude compared to the optimized maneuver
(|ωmax| ' 0.3 rad/s). This “scaled” maneuver (ω∗ref ) is simply the basic maneuver of Figure 7.2
multiplied by 1.5 (ω∗ref = 1.5 · ωref ).

Since there is very little difference among the different optimization criteria, only the D-opt
maneuver has been used (Figure 7.3) in this comparison. The noise standard deviation on the
angular velocity measurement was set as σ = 0.025 rad/s for each of the three axes. As mentioned
in Chapter 4-5-6, since the regressor ψ(ω) is correlated with the noise ν [Jun et al., 2010], an
IV method has been used to obtain consistent estimates of the inertia parameters. Given the
high similarity with the estimation problem of Chapter 4, the same IV implementation has been
used with the main but fundamental difference that also the filter initial conditions have been
estimated (similarly to Chapter 5). In fact, given the very short experiment duration, if wrong
initial conditions are set, the filter transient has an important impact on the accuracy of the
estimates [Garnier et al., 2003], making the overall algorithm unreliable.

The results from a Monte Carlo simulation of 100 runs are shown in Table 7.2 and in Fig-
ure 7.5. The increase of accuracy with the optimized reference profile is significant as it can be
observed from the much smaller standard deviation in all the parameter estimates. The use of op-
timized maneuvers is therefore fully justified. Moreover, as shown in Figure 7.4, for the optimized
maneuver, the actuator speeds are consistently within their operation range (|Ωmax| = 5 rad/s)for
the majority of the simulation experiment.
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J11 J22 J33 J23 J13 J12

basic avg. 22.24 22.33 27.30 0.14 0.12 0.15
st.d. 1.12 1.67 1.30 1.27 1.01 1.20

scaled avg. 22.14 22.15 27.15 0.05 0.05 0.05
st.d. 0.67 0.96 0.76 0.74 0.60 0.69

D-opt avg. 22.12 22.11 27.02 0.04 0.10 0.01
st.d. 0.38 0.33 0.35 0.23 0.24 0.28

true 22.00 22.00 27.00 0.00 0.00 0.00

Table 7.2: Inertia estimates from the different reference profiles [10−3kgm2]
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Figure 7.4: Box plot for the inertia estimate errors. In red the results from the basic profile, in
yellow the ones from the scaled basic profile, and in blue the ones of the D-opt profile.
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Figure 7.5: CMG speeds obtained from the D-opt maneuver.
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7.4.2 Zero-Gravity Experiment

Experiments have been performed on a real platform developed by ISAE-SUPAERO, ONERA
and CNES (Figure 7.6). The platform, named SCRAT-0g, has been tested on a parabolic flight
that simulated a close to zero gravity environment. The purpose of this experiment was to test
a satellite attitude controller on a platform which simulates a real satellite. The test has been
repeated a few times, collecting the values of angular rate (from the gyroscope) and actuator
angular momentum (generated by the 6 CMGs) at a sample rate of 16Hz. The gyroscope
white noise had a standard deviation of σ = 0.095◦/s on each axis. The experiment was in free
floating, therefore, after the platform release, the unavoidable relative motion with respect to the
airplane caused premature collisions with the inner walls. Since the final part of the maneuver
was unusable, it was necessary to truncate the data. For the inertia estimation, 5 experiment
data have been used, with a duration that varied from 2 s up to around 4 s. The input-output
data of the longest achieved experiment is shown in Figure 7.7. Since the platform tracking was
not very accurate, the angular velocity ω does not perfectly match the commanded reference
optimized profile. Similarly to the simulation case, the inertia has been estimated by an IV
method with a prefilter to deal with the derivatives in the system equation and their effect on
the noise.

Figure 7.6: A picture of the SCRAT-0g platform tested on a parabolic flight (courtesy of ISAE
SUPAERO and ONERA).

In order to improve the estimation accuracy, the final inertia has been computed as a weighted
average of the 5 different estimates, where the weights were given by the covariance of the
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Figure 7.7: Input-Ouput data from the zero-G experiment.

residuals ([Ljung, 1999], Ch.14):

θ̂ = P
n∑
i

(
Pi
)−1

θ̂i , (7.33)

where θ̂i is the i-th inertia estimate and Pi is its corresponding covariance, and where

P =

( n∑
i

(
Pi
)−1
)−1

. (7.34)

The final result is shown in Table 7.3, where it is compared to the inertia from the approximated
CAD (computer-aided design) model.

J11 J22 J33 J23 J13 J12

θ̂ [10−3kgm2] 20.04 21.26 25.75 0.09 0.04 1.08

θCAD [10−3kgm2] 20.80 20.80 26.00 0 0 0

Table 7.3: Inertia Estimate from zero-G test

In this case we do not have a true value for comparison as for the simulations, but the inertia
estimate is reasonably close to the nominal CAD values25. Introducing the estimated parameters
in (7.2), it is possible to do a cross validation by comparing the total torque (M − ω×hC) with
its effect on the system (ψ θ̂). This comparison is depicted in Figure 7.8, which shows a good
match among the signals. To have a better way to evaluate these experiment results, Figure 7.9
shows the torque cross-validation26 for a realization of the numerical simulation of the previous
subsection (still using the D-opt reference profile). The fit in the torque cross-validation for the
real experiment is not very different from the numerical simulation case, further illustrating the

25Ideally, the inertia values for the simulation and for the CAD model should be the same. However, last minute
changes on the platform resulted in a slight difference between the two.

26In this case, the noise-free ω is available and it can be directly used to build ψ.
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accurate inertia estimation. The slightly worse match is justified by the presence of disturbance
torques and other nonidealities in the zero-G experiment.
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Figure 7.8: Torque cross-validation for the zero-G experiment: measured (solid lines), one-step
ahead prediction (dash-dot line).
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Figure 7.9: Torque cross-validation for the numerical simulation: measured (solid lines), one-step
ahead prediction (dash-dot line).

Both the experiment design and the inertia estimate can be considered satisfactory, not just
in the numerical results, but also in the real experiment on the parabolic flight. The results
are rather impressive, despite the very short duration of the experiments and the disturbance
torques affecting the platform.
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7.5 Conclusions

In this work, we addressed the problem of finding optimal excitation maneuvers for the estimation
of satellite inertia parameters. A cubic B-spline signal representation was introduced and a
constrained nonlinear optimization was formulated, based on a Fisher information cost function
minimization. The performance and practicability of the maneuvers obtained by the proposed
approach have been tested both through numerical simulations and in a real experiment on
a parabolic flight. The estimation results have illustrated the effectiveness of the proposed
optimized maneuver, with positive effects in the real zero-G experiment, where good estimates
have been obtained, especially considering the very small dataset.

Even if, given the prototype constraints, only very short maneuvers have been considered, the
extension to the typical satellite scenarios which allows for longer maneuvers is quite straight-
forward. The maneuver length can be directly changed in the optimization function as well
as the actuator constraints, while, given the typical slower dynamics of satellite with respect
to SCRAT-0g, the sampling time can be increased thus maintaining the overall computational
complexity almost unchanged. If really long maneuvers must be performed, a different and more
compact signal representation must be chosen to limit the optimization computational complex-
ity, based for example on a finite Fourier series.
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In this final chapter, we give an overview of the contributions related to the satellite parameter
estimation problem. Additionally, possible future works, especially regarding the extension of
the proposed methods, are suggested.

Although this thesis is focused on the satellite application, many of the analyses here pre-
sented can be extended to other fields of application. In particular, the noise analysis and the
IV tailored solution can be extended to other estimation problems that use an inverse model of
the real system (e.g. robot dynamics estimation).

8.1 Contribution Overview

In the following subsections, the main contributions of this work are briefly described. They are
presented in the same order as they appear in the thesis, starting from Chapter 3 and 4.

8.1.1 Analysis, Development and Design of a Tailor-made IV Method for
Satellite Parameter Estimation

In Chapter 3, it is shown how by using the inverse system model of the satellite a useful model in
linear regression form can be obtained. However, it is also highlighted how this system inversion
transforms the original model into an EIV model, thus highly limiting the choice of estimation
methods that are capable to yield unbiased parameter estimates.
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In Chapter 4, the IV method is proposed for the inertia parameter estimation and it is shown,
both theoretically and by numerical simulations, how the use of the IV can overcome the least
square limitation and obtain unbiased results. The closed-loop nature of the system, typically
an issue in identification, is exploited to build a closed-loop auxiliary model that is used to
generate the noise-free estimates to build the instrument. Additionally, a first step towards a
grey-box noise model for the inverse model is made. From a practical perspective, a SVF filter
is applied in order to compute the state time derivatives as well as to work as a prefilter for the
IV method. Finally, the inertia estimation problem from biased gyroscope measurements has
been considered, and the gyroscope bias effect on the estimates has been analyzed. A modified
IV estimation algorithm has been proposed, which is able to estimate and remove the effect of
measurement bias.

8.1.2 Satellite Inertia Estimation for Gyroless Satellites

In Chapter 5, the gyroless case is studied. Firstly, since the SVF filter is no more applicable,
alternative methods are considered to deal, in part, with the noise amplification due to the time
derivatives. Secondly, a detailed noise analysis is performed that studies the effect of the noise
on the attitude measurements on the full inverse model. The result of this analysis, together
with an approximated model of the disturbance torques, are used to the design of a sub-optimal
filter for the IV method. Additionally, the model and the respective estimation algorithm are
augmented in order to estimate and compensate the filter initial condition and to remove some of
the deterministic components of the disturbance torque. The estimation of the initial condition
of the prefilter allows for a better use of the telemetry data since the initial filter transient is
estimated and removed, avoiding the need of discarding the initial data. This has a significant
importance for short experiments, as the one described in in Chapter 7, but it is also important
for standard experiments, where the greater availability of data still has some benefits on the
estimation accuracy.

The good performance the algorithm is shown through the numerical simulation as well by
using real telemetry data from the Picard CNES satellite.

8.1.3 Extension to the Actuator Alignment Estimation

In Chapter 6, the identification problem is extended to the actuator alignment estimation. An
iterative algorithm has been implemented in order to avoid dealing with the quadratic constraints
implied by the alignment vectors. Additionally, a non-perfect synchronization among the sensors
is considered. As far as the author knows, this issue has never been considered in the literature.
However, as shown by the simulations, even a small syncronization error may have non negligible
negative effects on the estimation accuracy. A method, which uses a double regressor, has been
developed to estimate the time shift of the data and remove its effect. In this IV implementation,
a delay regressor has been used as instrument, thus no information about the closed-loop system
and in particular the satellite controller are needed. In this part of the work an alternative
method has been developed and tested for the design of the prefilter. The method exploits the
cepstrum properties to obtain an approximation of the filter impulse response and it seems well
suited for the type of CARMA noise model of this application. Again, the algorithm is tested
on data generated by a high-fidelity simulator from CNES in order to validate the performance
in this new case, as well as to justify all the “extensions” of the method.
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8.1.4 Design of Maneuvers for Satellite Inertia Estimation

The final part of this work (Chapter 7) shifts the focus from the estimation algorithm to the
experiment design. The objective was to design maneuvers that result in telemetry data with
higher information content. In this particular case, the maneuver design was focused on a small
real prototype that has been also tested on a parabolic flight. In order to design optimized tra-
jectories, a B-spline parameterization is chosen for the reference profile, and then the maneuver
is computed by minimizing a functional based on the Fisher information matrix. The optimiza-
tion algorithm considers the very peculiar noise model resulted by the inversion of the satellite
model. Different optimality criteria are tested, and the optimized maneuvers are compared with
a typical testing maneuver, showing how the proposed experiment design results in drastically
more precise inertia estimates. Finally, the maneuver generated by the experiment design has
been tested on the real prototype in close to zero-G conditions. Also in the real experiment,
accurate inertia estimates have been obtained, especially considering the extremely short data
sets.

8.2 User Parameter Guide

In this thesis a tailored instrumental variable method has been used for the inertia parameter
estimation. However, depending on the specific application, different approaches have been
implemented as well as different way to filter the model equations. Hereafter is a brief guide for
a correct use of the algorithms:

• Instrument “construction”: Two main approaches have been used in this work. The first
consists in building and running a closed-loop auxiliary model to obtain noise-free signal
estimates, while the second approach uses a delayed regressor as instrument. For the
latter case, the choice of the delay plays an important role. As already mentioned, a large
delay reduces the correlation between the instrument and the regressor and it results in a
higher standard deviation, while a too small delay may not be sufficient to guarantee the
uncorrelation property with the noise term, determining unconsistent estimates. However,
in this satellite case, the tuning of the delay is quite straightforward since, considering the
presence of first and second order derivatives in the noise term, a delay of a few samples is
sufficient to obtain a negligible correlation between the instrument and the regressor. In this
scenario, a delay between 4 and 6 sample is a good trade-off to obtain consistent estimates
without increasing significantly the variance. The short delay, of 4 samples is suggested in
case of fast maneuvers with respect to the sampling frequency (like in Chapter 7), while a
delay of 6 sample can be used for less agile maneuvers (like in Chapter 6). Nonetheless, if
the computational complexity is not an issue and the controller is known, the use of the
closed-loop auxiliary model is suggested.

• User-parameter tuning: Despite the overall IV implementation may seem complex (like
in Chapter 5 and 6), there are only two main parameters that need to be chosen: the sensor
noise standard deviation and the disturbance torque standard deviation. This presents
many similarities with the EKF parameter estimation approach that makes use of the
noise covariance matrix (often named R) and the process covariance matrix (often named
Q) as user parameters. The sensor noise standard deviation can be directly taken from the
datasheet, while, as for theQmatrix in the EKF, the disturbance standard deviation tuning
is more difficult. Since the estimation is performed offline, an analysis of the residuals can
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be performed to guide the choice of the filter, as done in Chapter 6. In case of long
experiments, the whole filter design can be based on the ARMA model obtained from the
residuals. In this case, we can still exploit the grey-box modeling of the noise by imposing
a −40 dB/decade at the high frequencies.

8.3 Future Works

8.3.1 Recursive Parameter Estimation

A recursive implementation of the IV method would be an interesting additional development,
allowing for an online parameter estimation. Since the IV method has a cost function closely
related to the LS, there are already tools that can be applied to transform the IV method into a
recursive algorithm (i.e. the QR decomposition may be a valid technique to solve this problem).
One of the main points that needs to be tackled is the generation of the instrument. The use
of an auxiliary model to generate the instrument is well suitable for offline estimation, and its
implementation to an online algorithm can be difficult due to its computational complexity. How-
ever, there are other solutions that can be applied without increasing the overall computational
complexity. The simplest solution consists in using a delayed regressor as instrument, as done
in Chapter 6. If instead the satellite tracking performance is very precise (ωref ' ω), the instru-
ment may use directly as noise-free signals the reference signals given to the controller [Brunot
and Janot, 2018].

8.3.2 Estimation with Attitude and Angular Velocity Sensors

In this thesis we considered the estimation from gyroscope measurements or from star tracker
measurements. If the accuracy of the two sensors is similar, they can be both used in order to
obtain better parameter estimates. Given the very different characteristics of the two sensors,
a complementary filter can be used to merge the measurements [Higgins, 1975; Mahony et al.,
2008] as an alternative to the Kalman filter. The low-pass filter should be applied to the angular
velocity computed from the attitude measurements, since at low-frequencies the differentiation
amplifies only slightly the noise, while the measurements from the gyroscope would be filtered
be a high-pass filter. An additional advantage of this approach is that the effect of the bias from
the gyroscope sensor, being at low frequency, is directly removed.

8.3.3 Null Space Experiment Design

In Chapter 7, satellite maneuvers have been optimized in order to improve the inertia estimation.
However, the same can be done for the actuator alignment estimation. In this case, also a null-
space excitation does improve the Fisher information matrix. In [Leve and Jah, 2014] and
[Weiss et al., 2015], the authors tried to exploit the null space, however they only considered the
experiment design for the actuator alignment. In this scenario, for a satellite with 4 reaction
wheels, the null space consists in a 4-dimensional vector with fixed orientation, thus making
the experiment design almost trivial. However, the problem could be made more complex by
performing an experiment design for both inertia and actuator alignment estimation. In this case,
the amount of freedom due to actuator saturations changes significantly during the experiment.
Therefore, an optimal experiment design should exploit the null-space by considering that the
amount of torque available within the saturation limits changes significantly during the maneuver.
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A

Cepstrum Based Filter Synthesis

In this appendix a novel filter synthesis method is proposed, as an alternative to the armax
routine of Matlab or to the ivarma from the CAPTAIN toolbox [Taylor et al., 2007]. The
purpose of this method is to determine the coefficients of a rational transfer function D(z−1)

C(z−1)

which best approximates the behavior of the measured residuals. Unlike methods which are
based on a high order AR approximation of the noise filter (e.g. ivarma), in this case a high
order FIR (finite impulse response) is used. The use of a FIR representation has been proved
more suitable for the noise models used in this work, which contains only derivatives.

The input of the algorithm is the time sequence of the estimation residuals, from which the
power spectrum density is calculated. However, if the power spectrum is already known, as for
the prefilter calculation of Chapter 6, this step can be skipped and the calculation can begin at
step 3 of the algorithm.

A detailed description of the method is given beneath.

Method

In general, when a wide sense stationary signal e(k) passes through a linear system H(z−1), the
autocorrelation of the output ξ(k) is related to to the autocorrelation of the input e(k) by the
relation:

Rξ = Re ∗Rh, (A.1)

where Rh(k) =
∑

i h(i)h(k + i) is the autocorrelation of the filter impulse response.
This statement can be demonstrated by the following equations:

Rξ(k) = E[ξ(n)ξ(n+ k)] =

= E
[∑

i

∑
j

h(i)h(j)e(n− i)e(n+ k − j)
]

=

=
∑
i

∑
j

h(i)h(j)E[e(n− i)e(n+ k − j)] =

=
∑
i

∑
j

h(i)h(j)Re(k + i− j)

assuming that m = j − i
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Rξ(k) =
∑
l

Re(k −m)
∑
i

h(i)h(m+ i) =

=
∑
l

Re(k −m)Rh(m) = Re(k) ∗Rh(k) .

Since in our case the input is supposed to be a white noise, its autocorrelation is simply a
Kronecker pulse multiplied by a constant σ2

e and therefore

Rξ = σ2
eRh . (A.2)

The application of the Fourier transform to (A.2) yields:

F(Rξ) = σ2
e |H(ejω)|2 . (A.3)

Taking the square root of (A.3) and neglecting the constant term σe (since we are interested
only in the shape of the filter) we obtain the magnitude of the filter transfer function |H(ejω)|.
By exploitation of the cepstrum properties, it is possible to find a minimum phase sequence ĥ(n)
which corresponds to a filter Ĥ(eiω) with the same magnitude. It is now possible, from the
sequence ĥ(n), to estimate the coefficients of low order polynomials C(z−1) and D(z−1), which
yield an impulse response h2(n) that approximates ĥ(n) in a least square sense. The inverse of
this transfer function C(z−1)

D(z−1)
is taken as prefilter.

Based on the previous considerations, the proposed filter synthesis method is composed by
the following steps:
Algorithm 1: Main steps of the filter estimation algorithm
1 calculate the autocorrelation sequence of the estimation residuals;
2 apply a Fast Fourier Transform to the autocorrelation sequence, obtaining a power

spectrum density;
3 calculate the magnitude of the residual spectrum taking the square root of the power

spectrum;
4 calculate the prefilter magnitude, which is the reciprocal of the spectrum magnitude;
5 find a minimum phase impulse response of the prefilter from its magnitude, exploiting

the cepstrum properties;
6 use a linear regression to find the coefficients of the filter D(z−1)

C(z−1)
that best approximate

the calculated impulse response;
7 take the inverse C(z−1)

D(z−1)
as prefilter.

Step 5 requires an additional explanation. The noise transfer function H(eiω) is supposed
to be stable. This means that its impulse response becomes negligible after a few samples. It
can be therefore approximated with a FIR (moving average) filter with sufficient length. The
calculation of the inverse transform of H(eiω) can be done numerically by means of a FFT. The
result would be a finite length non-causal zero phase sequence. In order to obtain a simpler
time response, a minimum phase solution is sought. A minimum-phase FIR transfer function
is characterized by the fact that all the zeros are located on or inside the unit circle in the Z
plane. Therefore, in order to obtain a minimum phase solution without affecting the magnitude
of the transfer function, all the zeros outside the unit circle must be moved inside, replacing
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them with their reciprocals. The polystab function of Matlab cannot be used for this purpose,
since for large size vectors (the length of the estimated FIR transfer function is of the order of
200 samples in our experiments) it becomes unstable producing unreliable results. A solution to
this problem has been found exploiting the properties of the cepstrum sequences.

The cepstral sequence associated with a function H(z−1) is defined as the inverse Z-transform
of log(H(z−1)):

c(n) = Z−1[log(H(z−1))] . (A.4)

The FIR approximation Ĥ(eiω) of the transfer function H(eiω) can be considered as a poly-
nomial with coefficients h(n), that can be decomposed as:

Ĥ(z−1) = AzN/2
N∏
k=1

(1− zkz−1) . (A.5)

It can be easily shown that the zeros inside the unit circle and the ones on it contribute to the
causal component of c(n) = Z−1[log(H(z−1))], while the ones outside the unit circle contribute
to the anti-causal component of c(n). In fact, for |zk| < 1

Z−1[log(1− zkz)] =

{
z−nk
n n < 0

0 n ≥ 0
(A.6)

and

Z−1[log(1− zkz−1)] =

{
−znk
n n > 0

0 n ≤ 0
. (A.7)

It follows that a time reversal of the values of c(n) for n < 0 corresponds to move the zeros
z−1
k external to the unit circle to their reciprocal position zk and gives the cepstral sequence
c2(n) associated to a minimum phase filter:

c2(n) =


0 n < 0
c(0) n = 0
c(n) + c(−n) n > 0

. (A.8)

The sequence c2(n) corresponds therefore to a FIR transfer function H2(z−1) with the same
magnitude of H(z−1) but with a minimum phase. At this point, one could go back to the impulse
response h2(n) of H2(z−1) by an inversion of the cepstral transformation. However, there is a
shorter way using the recursion formula (Oppenheim and Schafer, 1975, Ch.10):

h2(n) =


0 n < 0

ec(0) n = 0

c2(n)h2(0) +
n−1∑
k=1

k
nc2(k)h2(n− k) n > 0

. (A.9)

Example

As an example, the following ARMA model is considered

H(z−1) =
3.851z−3 − 3.752z−2 − 0.1481z−1 + 3.95

1.926z−1 + 1.975
, (A.10)
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Figure A.1: Bode plot of the true (black line) and estimated model with the proposed method
(red lines) from a Monte Carlo of 100 runs.

where its transfer function has a similar “shape" to the one that we expect from the satellite
inverse model overall noise27 (a high-pass amplifier due to the derivatives term, and a low-pass
due to the disturbance torque).

The proposed cepstrum-based ARMA model estimation is applied to the ARMA output ξ

ξ(k) = H(z−1) e(k) , (A.11)

where e(tk) is a zero-mean white noise signal. For this numerical simulation, 5000 output
samples have been considered and used by the proposed algorithm.

The results are shown in Figure A.1 where the black line represents the overall true spec-
trum of the residuals (a high-pass amplifier due to the derivatives term, and a low-pass due to
the disturbance torque) while in red the third order estimated model with the cepstrum based
approach from a Monte Carlo of 100 runs. In case of the IV method, the prefilter is then simply
the reciprocal of the estimated ARMA transfer function.

27Chapter 5 and 6 for further details.
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B

Application of Delayed State Variables
Filter

As shown in Chapter 5, there is the need to filter the quaternion signal before calculating its
derivative. Since the system equation is nonlinear, no signal distortion is allowed. The solution
exploited in Chapter 5 has been a zero lag smoother, which uses a forward and a backward filtering
step to ensure a zero lag. However, this method can only be applied for off-line estimation. An
alternative can be found using a delayed state-variable filter (DSVF). The DSVF is a filter
that has a frequency response presenting constant unit gain and an almost linear phase with
respect to the frequency in the passband of the filter. This means that all the signal components
in the passband are subject to a constant delay [Tsang and Billings, 1994]. These filters are
commutative with a nonlinear function. This means that, given a signal x(t) passing through
a nonlinear function F (·), applying the delay filter at the resulted signal y(t) will give the
same output yf (t) as applying the filter directly to x(t) before going through function F (·) (See
Figure B.1).

F (·)

F (·)

filter
delay

filter
delay

x

xf

yf

yfx

y

Figure B.1: The order of the nonlinear function F (·) and of the delay filter does not change the
output.

Delay filter

A delay filter has a frequency response that presents constant unit gain and an almost linear phase
with respect to the frequency in the passband of the filter. No finite order filters can produce such
response exactly, therefore an approximation of such response will be sought. The Butterworth
filter, given a cut-off frequency ΩC presents a maximally flat amplitude characteristic and an
almost linear phase characteristic for frequency below the cut-off frequency ΩC . For these reasons,
a Butterworth filter is considered for the approximation of the delay filter.
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Appendix B. Application of Delayed State Variables Filter

The transfer function for a third-order Butterworth filter is as follows:

Hb(s) =
Ω3
C

s3 + 2s2ΩC + 2sΩ2
C + Ω3

C

(B.1)
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Figure B.2: Bode plot for a third-order Butterworth filter with a cut-off frequency ΩC = 1 rad/s.

However, as it can be seen from Figure (B.2), the phase is not exactly linear in the the pass
band (below the cut-off frequency ΩC), or equivalently, the group delay is not constant (Figure
B.3). The Butterworth filter can be improved by using equalization filters. Since the group delay
of the Butterworth filter needs to be constant, while its magnitude need to be kept the same, a
constant gain all-pass equalizer should be considered:

He(s) =
(s− α)2 + β2

(s+ α)2 + β2
. (B.2)

The equalizer He(s) group delay is

Te(ω) =
4α(ω2 + α2 + β2)

(α2 + β2 − ω2)2 + 4α2ω2
, (B.3)

where in this case ω represents the frequency (and no more the satellite angular rate).
The values of α and β are selected in order to have an overall group delay that best approx-

imates a constant delay. For such objective, the following cost function is minimized

J =

∫ ΩTmax

0

(
T0 − Tb(ω)− Te(ω)

)2
dω , (B.4)

where T0 is the nominal group delay, Tb(ω) is the group delay of the Butterworth filter, and
ΩTmax is the frequency where the Butterworth filter group delay is a maximum.

The group delay of an equalized butterworth filter is shown in Figure B.4, and it is significantly
more flat in the frequency of interest (below the cut-off frequency).
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Figure B.3: Group delay for the third-order Butterworth filter with a cut-off frequency ΩC =
1 rad/s.

Delayed state variable filter implementation

The derivative estimation through a DSVF filter is very similar to the SVF one shown in Chapter
4. Let us consider the following forth-order Butterworth filter

FB4(s) =
Ω4
C

s4 + (c1 + c2)ΩCs3 + (c1c2 + 2)Ω2
Cs

2 + (c1 + c2)Ω3
Cs+ Ω4

C

(B.5)

with
c1 = −2 cos

(
5

8
π

)
and c2 = −2 cos

(
7

8
π

)
. (B.6)

as well as a second-order equilizer (all-pass filter) (B.2).
By denoting a signal y(t) and yf (t) being the corresponding filtered version by the Butter-

worth filter, its successive filtered derivatives are as follows

ẏf = Ω4
CFB3(s)y − Ω4

CFB3(s)yf , (B.7)

ÿf = Ω4
CFB2(s)y − ((c1 + c2)Ω3

C)FB2(s)ẏf − Ω4
CFB2(s)yf , (B.8)

...
y f = Ω4

CFB1(s)y − (c1c2 + 2)Ω2
CFB1(s)ÿf − (c1 + c2)Ω3

CFB1(s)ẏf − Ω4
CFB1(s) , (B.9)

where
FB3(s) =

1

s3 + (c1 + c2)ΩCs2 + (c1c2 + 2)Ω2
Cs+ (c1 + c2)Ω3

C

, (B.10)

FB2(s) =
1

s2 + (c1 + c2)ΩCs+ (c1c2 + 2)Ω2
C

, (B.11)

FB1(s) =
1

s+ (c1 + c2)ΩC
. (B.12)
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Figure B.4: Group delay for the equalized Butterworth filter with a cut-off frequency ΩC =
1 rad/s.
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Résumé en français

Cette thèse traite de l’estimation des paramètres du modèle satellite qui régissent la dynamique
de rotation et qui affectent son contrôle d’attitude. L’attitude est l’orientation tridimensionnelle
d’un vaisseau spatial par rapport à un référentiel spécifié. La capacité de contrôler son attitude
est essentielle pour presque tous les satellites. Très souvent, une précision de pointage élevée
est requise, en particulier pour les satellites construits pour des applications qui impliquent
l’observation ou la mesure au sol ou dans l’espace. En général, la précision de pointage requise de
la structure de l’engin spatial est déterminée par sa mission. Les applications les plus exigeantes
sont celles qui impliquent un télescope, où l’erreur de pointage admissible est de l’ordre de 10−6

degrés.
Les méthodes de contrôle d’attitude peuvent être divisées en deux catégories : les méthodes

actives, qui contrôlent le satellite en utilisant des actionneurs de couple, et les méthodes pas-
sives, qui utilisent la réaction du satellite à un certain effet physique pour assurer sa stabilité
(par exemple stabilisation du gradient de gravité) ou qui utilisent propriétés du moment angu-
laire (stabilisation de spin). Les méthodes passives ne peuvent fournir qu’un contrôle d’attitude
grossier, adapté aux satellites simples, qui ne nécessitent qu’un alignement de base. Dans ce
travail, nous considérons le contrôle d’attitude actif, qui est utilisé par la plupart des satel-
lites. Le système de contrôle d’attitude (parfois appelé système de détermination et de contrôle
d’attitude, ou ADCS) comprend des capteurs, des actionneurs, des ordinateurs, des logiciels et
des équipements de support au sol. Le schéma de commande typique d’un ADCS est illustré à
la Figure 1.

Figure 1: Schéma de contrôle d’attitude.

La connaissance précise du modèle de dynamique de rotation des satellites est fondamentale
pour plusieurs raisons. Tout d’abord, pour un réglage optimal du système de détermination
d’attitude et de contrôle, en particulier si un contrôleur prédictif est utilisé. Ensuite, des mod-
èles mathématiques précis d’un satellite sont nécessaires à de nombreuses autres fins, comme le
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diagnostic, la simulation ou encore l’estimation d’état.
Par ailleurs, une estimation précise des paramètres de dynamique de rotation des satellites

n’est possible qu’en orbite. En fait, plusieurs facteurs modifient la masse globale et sa distribution
après le lancement du satellite, tels que : la consommation de carburant, le déploiement des
panneaux solaires et la déformation de la structure du vaisseau spatial. De plus, l’alignement des
actionneurs peut légèrement changer après le lancement en raison de la distorsion du cadre. Cela
conduit au sujet de cette thèse : estimation des paramètres des satellites à partir des données de
télémétrie. Tous les algorithmes d’estimation proposés dans ce travail sont basés sur des données
de télémétrie collectées lors d’une manœuvre d’attitude appropriée.

Le séquencement des chapitres de cette thèse suit en partie la chronologie des activités du
travail doctoral. Tout d’abord, un modèle mathématique de la dynamique d’attitude du satellite a
été défini, basé sur deux ensembles de paramètres : la matrice d’inertie et la matrice d’alignement
de l’actionneur. Ensuite, une méthode fiable et cohérente a été recherchée en commençant par
des conditions relativement simples et proches de l’idéal. Plusieurs sources d’erreur et d’autres
objectifs ont été progressivement ajoutés, jusqu’à ce que le modèle mathématique se rapproche
le plus possible de l’environnement réel. Aussi des simulations proches des conditions réelles de
l’environnement ont été recherchées: un simulateur haute fidélité du CNES a été utilisé et des
tests ont également été effectués sur les données collectées à partir d’un vrai satellite. Enfin,
après avoir obtenu des algorithmes d’estimation satisfaisants, le plan d’expérience a été pris en
considération, dans le but d’améliorer encore la précision des estimations.

L’organisation détaillée de la thèse est présentée ci-dessous.
Le premier chapitre donne un aperçu du contexte du problème et définit les motivations ainsi

que la portée de ce travail. Une brève description de la structure du satellite est donnée et le
problème général de l’identification du système est présenté. Un ordre de grandeur typique est
également donné concernant les poids et les orbites des satellites.

Le Chapitre 2 commence par quelques définitions qui sont utilisées dans la suite de ce travail
: les principaux systèmes de référence d’une part et les méthodes de représentation d’attitude
d’autre part, avec un accent sur les propriétés du quaternion, puisque les quaternions sont large-
ment utilisés dans la suite du document. Ensuite, les équations qui régissent la dynamique de
rotation des satellites sont présentées. Ces équations sont utilisées pour construire un modèle
de type boîte grise, où les paramètres inconnus sont représentés par l’inertie du satellite (ou
par l’inertie et les vecteurs d’alignement de l’actionneur dans le cas plus général). Le modèle
est ensuite complété par le couple de perturbation. Le chapitre se termine par une description
des principaux capteurs satellites (capteur d’étoiles, gyroscope, encodeur de roue de réaction) et
des actionneurs de contrôle d’attitude (roues de réaction, actionneur gyroscopique et magnéto-
coupleur).

Le problème de l’estimation des paramètres est abordé au Chapitre 3. L’état de l’art présente
les différentes solutions proposées dans la littérature pour l’estimation des paramètres satelli-
taires. De nombreux auteurs proposent des méthodes basées sur les moindres carrés ou sur le
filtre de Kalman. Dans la littérature, aucun auteur n’a jamais utilisé la méthode de la variable
instrumentale (IV), malgré ses propriétés intéressantes. Quelques considérations sont faites sur
les problèmes possibles pour cette estimation des paramètres. Tout d’abord, il est brièvement
montré comment dans cette application particulière, la structure du système en boucle fermée
n’affecte pas de manière critique l’identification grâce à la présence d’un filtre dans la boucle
de rétroaction. Deuxièmement, les avantages et les inconvénients liés à l’utilisation du modèle
satellite inverse sont présentés, avec un accent particulier sur les similitudes par rapport au mod-
èle « errors-in-variables » (EIV). Après une description du modèle satellite pour l’estimation
des paramètres et des méthodes d’estimation possibles, le chapitre se termine par le choix de
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méthode de l’auteur: la variable instrumentale (IV). Afin de justifier ce choix, les principaux
avantages de l’approche IV sont présentés, l’accent étant mis sur les conditions EIV qui rendent
plusieurs autres méthodes biaisées. Cependant, comme mentionné dans ce chapitre, compte tenu
également de la nouveauté de l’approche IV pour cette application, plusieurs étapes supplémen-
taires et des ajustements sur mesure doivent être apportés à la conception de la méthode IV afin
de fonctionner efficacement.

Au Chapitre 4, le problème d’estimation de l’inertie pour un satellite équipé de gyroscopes est
examiné. Il s’agit du scénario le plus courant considéré dans la littérature. L’objectif principal
de ce chapitre consiste à montrer comment la méthode de variable instrumentale peut également
être adaptée à ce problème d’estimation. Des mesures de fréquence angulaire ont été envisagées,
qui passent par le modèle inverse non linéaire, et une analyse détaillée du bruit est effectuée,
qui est ensuite utilisée pour définir un filtre optimal. Ce filtre a pour fonction de réduire la
variance des estimations, mais il est également utilisé pour éviter la différenciation numérique
nécessaire au calcul de l’accélération angulaire. L’algorithme proposé utilise un modèle auxiliaire
pour construire l’instrument, qui est mis à jour de manière itérative avec les paramètres calculés.
La méthode a été validée par des simulations de Monte Carlo, où également une estimation
par moindres carrés a été exécutée pour comparaison. Il est démontré que la méthode IV peut
surmonter les limites des moindres carrés et obtenir des résultats non biaisés, malgré le bruit
dans le régresseur. La nature en boucle fermée du système, qui pose généralement un problème
lors de l’identification, est ici exploitée pour garantir que le modèle auxiliaire en boucle fermée,
qui est utilisé pour générer l’instrument, n’a aucune dérive par rapport au système réel. Dans la
dernière section de ce chapitre, l’effet de la dérive du gyroscope sur les estimations a été analysé
et une solution a été proposée pour estimer et supprimer une partie de l’effet de dérive. Cette
solution a également été validée par des simulations, montrant que la méthode est robuste même
en cas de valeurs de biais très élevées.

Au Chapitre 5, la méthode de variable instrumental est étendue aux satellites sans gyroscope.
Cela permet d’estimer les paramètres d’inertie également pour les petits satellites, qui utilisent
souvent des gyroscopes MEMS bon marché et inexacts (ou parfois pas de gyroscope du tout).
Premièrement, le filtre du Chapitre 4 n’étant plus applicable, d’autres méthodes sont envisagées
pour traiter, en partie, de l’amplification du bruit due aux dérivées temporelles. Deuxièmement,
une analyse détaillée du bruit est effectuée qui étudie l’effet du bruit sur les mesures d’attitude sur
le modèle inverse complet. étant donné que le nouveau signal d’entrée est basé sur les quaternions
d’attitude, qui sont liés à la vitesse angulaire et à l’accélération angulaire par des équations non
linéaires, certaines linéarisations ont été nécessaires pour concevoir le préfiltre (mais aucune
linéarisation n’est effectuée dans le modèle pour les paramètres estimés). De plus, en raison de la
relation non linéaire entre les quaternions et la vitesse angulaire, il n’a pas été possible d’utiliser
un filtre à variable d’état pour éviter la différenciation numérique. Un filtre Butterworth a
été utilisé à la place, suivi d’un préfiltre. Les résultats de cette analyse, ainsi qu’un modèle
approximatif des couples de perturbation, sont utilisés pour la conception d’un filtre sous-optimal
pour la méthode IV. De plus, le modèle et l’algorithme d’estimation respectif sont augmentés afin
d’estimer et de compenser la condition initiale du filtre et de supprimer certaines des composantes
déterministes (constantes et sinusoïdales) du couple de perturbation. L’estimation de l’état initial
du préfiltre permet une meilleure utilisation des données de télémétrie puisque le transitoire de
filtre initial est estimé et supprimé, évitant ainsi d’avoir à jeter les données initiales. Cela a une
importance significative pour les expériences courtes, comme celles décrites au Chapitre 7, mais
il est également important pour les expériences standards, où la plus grande disponibilité des
données présente encore certains avantages sur la précision de l’estimation. Pour les simulations
numériques, toutes les données utilisées dans ce chapitre ont été générées par un simulateur haute
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fidélité du CNES, où toutes les sources possibles de perturbation sont présentes. Les conditions
de simulation sont donc aussi proches que possible de l’environnement réel (Figure 2). Enfin, la
méthode a également été testée avec des données réelles enregistrées lors d’une expérience sur le
satellite Picard avant sa fin de vie.

Figure 2: Satellite MicroCarb du simulateur haute fidélité (source: CNES).

Au Chapitre 6, le problème d’identification est étendu à l’estimation de l’alignement de
l’actionneur, tout en considérant un satellite sans gyroscope. Pour l’estimation de l’alignement,
un algorithme itératif a été développé afin d’éviter de traiter les contraintes quadratiques im-
pliquées par les vecteurs unitaires. De plus, une synchronisation non parfaite entre les capteurs
est prise en compte (les mesures du suiveur stellaire ne sont pas parfaitement synchronisées avec
les lectures de vitesse de l’actionneur). À la connaissance de l’auteur, cette question n’a jamais
été abordée dans la littérature. Cependant, comme le montrent les simulations, même une petite
erreur de synchronisation peut avoir des effets négatifs non négligeables sur la précision des es-
timées. Une méthode, qui utilise un double régresseur, a été développée pour estimer le décalage
temporel des données et supprimer son effet. Dans cette implémentation IV, un régresseur re-
tardé a été utilisé comme instrument, donc aucune information sur le système en boucle fermée
et en particulier le contrôleur satellite n’est nécessaire. Dans cette partie du travail, une méthode
alternative a été développée et testée pour la conception du préfiltre. La méthode exploite les
propriétés du cepstre pour obtenir une approximation de la réponse impulsionnelle du filtre et
elle semble bien adaptée au type de modèle de bruit de cette application. Là encore, l’algorithme
est testé sur des données générées par le simulateur haute fidélité du CNES afin de valider les
performances dans ce nouveau cas, ainsi que de justifier toutes les «extensions» de la méthode.

La partie finale et la dernière contribution de cette thèse (Chapitre 7) se concentrent sur
la conception de l’expérience pour l’estimation de l’inertie du satellite. Jusqu’à ce point, les
expériences ont été réalisées en considérant l’exigence de persistance de l’excitation. Ceci a été
obtenu en suivant quelques règles simples pour les manœuvres: les trois axes du satellite doivent
être excités, l’excitation sur différents axes doit être linéairement indépendante (par exemple
éviter d’avoir la même manœuvre sur différents axes) et le niveau du signal d’excitation doit être
le plus élevé possible, compatible avec le système et l’actionneur contraintes. La persistance de
l’excitation est une condition nécessaire, mais on peut faire plus mieux. Dans cette dernière partie
du travail, des techniques de conception d’expériences ont été exploitées dans le but d’améliorer
encore la précision de l’estimation des paramètres. Afin de concevoir des manœuvres optimales,
la méthode proposée utilise une représentation cubique B-spline de la trajectoire. La manœuvre
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optimisée est obtenue grâce à la minimisation d’une fonction basée sur la matrice d’informations
de Fisher. Le processus d’optimisation prend également en compte les contraintes physiques dues
à la saturation des actionneurs. Différents critères d’optimalité sont testés et les manœuvres
optimisées sont comparées à une manœuvre de test typique, montrant comment la conception
de l’expérience proposée aboutit à des estimées des paramètres de la matrice d’inertie nettement
plus précises. Enfin, la manœuvre générée par la conception de l’expérience a été testée sur un
vrai prototype, un modèle réduit simulant un satellite, dans des conditions proches de zéro-G (vol
zéro-G). Toujours dans l’expérience réelle, des estimations précises de l’inertie ont été obtenues,
en particulier compte tenu des ensembles de données extrêmement courts.

Le dernier chapitre résume les principales contributions de ce travail et propose quelques
pistes de réflexion pour de futurs travaux. La première proposition est l’utilisation de filtres
complémentaires, comme alternative au filtre de Kalman, pour combiner le signal du suiveur
stellaire et du gyroscope. La deuxième proposition, pour l’estimation de l’alignement des action-
neurs, est d’exploiter l’espace nul noyau des actionneurs, en les utilisant près de leurs limites de
saturation.
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Résumé

Cette thèse porte sur la détermination des paramètres du modèle dynamique d’un satellite
pour son contrôle à l’aide de la théorie de l’identification des systèmes. Plusieurs algorithmes
d’estimation paramétrique sont développés et adaptés à différentes configurations de mesures de
données (gyroscope ou star tracker). Ces algorithmes permettent d’estimer la matrice d’inertie du
satellite ainsi que l’alignement des actionneurs à partir des données de télémétrie. Pour réaliser
cette estimation, la méthode de variable instrumentale est privilégiée. Des filtres sont élaborés
afin d’améliorer significativement la précision de l’estimation, et ce même en présence de bruits
de capteur et de perturbations au niveau des actionneurs. Les performances des algorithmes pro-
posés sont analysées et validées à l’aide de simulations Monte Carlo à partir de données issues
d’un simulateur haute-fidélité du CNES. La deuxième contribution concerne l’optimisation de
la richesse des manœuvres réalisées par le satellite tout en respectant les contraintes physiques
du système. L’efficacité des nouvelles trajectoires proposées est démontrée d’une part via des
simulations de Monte Carlo et d’autre part à l’aide de tests effectués lors d’un vol zéro gravité
en avion.

Mots-clés: Satellites, Estimation des Paramètres, Plan d’expérience, Variable Instrumentale,
Modèle boîte grise, Traitement du Signal.

Abstract

The system identification for satellite attitude control is investigated in this thesis. Several
parameter estimation algorithms are developed and adapted to the different types of sensor (gyro-
scope or star tracker). These algorithms allow to estimate, from the telemetry data, the satellite
inertia matrix as well as the actuator alignments. For these estimation algorithms, an instru-
mental variable approach is considered. Filters are designed in order to significantly improve the
accuracy and precision of the estimates, even in presence of sensor noise and disturbance torques.
The performances of the proposed algorithms are analyzed and validated via Monte Carlo sim-
ulations using data from a high-fidelity simulator from CNES. The second main contribution
concerns the optimization of maneuvers to improve the information content in the data, while
respecting the physical constraints of the satellite. The effectiveness of the generated trajectory
is evaluated both via Monte Carlo simulations and through real experiments in a zero-gravity
environment.

Keywords: Satellites, Parameter Estimation, Experiment Design, Instrumental Variable, Grey-
box Model, Signal Processing.
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