Surfaces à courbure moyenne constante dans les variétés homogènes

par Iury Rafael Domingos de Oliveira

Thèse de doctorat en Mathématiques

Sous la direction de Benoît Daniel et de Feliciano Vitório.


  • Résumé

    L'objectif de cette thèse est d'étudier les surfaces à courbure moyenne constante dans des variétés homogènes de dimension 3 avec un groupe d'isométries de dimension 4. Dans la première partie de cette thèse, nous étudions les surfaces à courbure moyenne constante dans les variétés produites \mathbb{S}^2\times\mathbb{R} et \mathbb{H}^2\times\mathbb{R}. Comme résultat principal, nous établissons une classification locale pour les surfaces à courbure moyenne constante et courbure intrinsèque constante dans ces espaces. Dans cette classification, nous présentons un nouvel exemple de surface à courbure moyenne constante et courbure intrinsèque constante dans \mathbb{H}^2\times\mathbb{R}. En conséquence, nous utilisons la correspondence des surfaces soeurs pour classifier les surfaces à courbure moyenne constante et courbure intrinsèque constante dans les autres variétés homogènes de dimension 3 avec un groupe d'isométries de dimension 4, et donc sous ces conditions des nouveaux examples apparaissent dans \widetilde{\mathrm{PSL}}_{2}(\mathbb{R}). Nous consacrons la deuxième partie de cette thèse à l'étude des surfaces minimales dans \mathbb{S}^2\times\mathbb{R}. À cet effet, nous définissons une nouvelle application de Gauss pour ces surfaces, en utilisant le modèle de \mathbb{S}^2\times\mathbb{R} qui est isométrique à \mathbb{R}^3\setminus\{0\}, muni d'une métrique conformément équivalente à la métrique de l'espace euclidien \mathbb{R}^3. Comme résultat principal, nous montrons que deux immersions minimales conformes quelconques en \mathbb{S}^2\times\mathbb{R}, avec la même application de Gauss non-constante, ne diffèrent que par des isométries de \mathbb{S}^2\times\mathbb{R} de deux types particuliers. De plus, si l'application de Gauss est singulière, nous montrons que cette application est forcément constante, et donc, la surface est un cylindre vertical sur une géodésique de \mathbb{S}^2 dans \mathbb{S}^2\times\mathbb{R}. Nous étudions également quelques cas particuliers, et, parmi eux, nous prouvons qu'il n'existe pas d'immersion minimale conforme dans \mathbb{S}^2\times\mathbb{R} telle que l'application de Gauss soit non-constante et anti-holomorphe.

  • Titre traduit

    Constant mean curvature surfaces into homogeneous manifolds


  • Résumé

    The goal of this thesis is to study constant mean curvature surfaces into homogeneous 3-manifolds with 4-dimensional isometry group. In the first part of this thesis, we study constant mean curvature surfaces in the product manifolds \mathbb{S}^2\times\mathbb{R} and \mathbb{H}^2\times\mathbb{R}. As a main result, we establish a local classification for constant mean curvature surfaces with constant intrinsic curvature in these spaces. In this classification, we present a new example of constant mean curvature surfaces with constant intrinsic curvature in \mathbb{H}^2\times\mathbb{R}. As a consequence, we use the sister surface correspondence to classify the constant mean curvature surfaces with constant intrinsic curvature in the others homogeneous 3-manifolds with 4-dimensional isometry group, and then new examples with these conditions arise in \widetilde{\mathrm{PSL}}_{2}(\mathbb{R}). We devote the second part of this thesis to study minimal surfaces in \mathbb{S}^2\times\mathbb{R}. For this, we define a new Gauss map for surfaces in this space using the model of \mathbb{S}^2\times\mathbb{R} isometric to \mathbb{R}^3\setminus\{0\}, endowed with a metric conformally equivalent to the Euclidean metric of \mathbb{R}^3. As a main result, we prove that any two minimal conformal immersions in \mathbb{S}^2\times\mathbb{R} with the same non-constant Gauss map differ by only two types of ambient isometries. Moreover, if the Gauss map is a singular, we show that it is necessarily constant and then the surface is a vertical cylinder over a geodesic of \mathbb{S}^2 in \mathbb{S}^2\times\mathbb{R}. We also study some particular cases, among them we also prove that there is no minimal conformal immersion into \mathbb{S}^2\times\mathbb{R} with anti-holomorphic non-constant Gauss map.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Lorraine. Direction de la Documentation. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.