Thèse soutenue

Méthodes neuronales pour l’analyse des sentiments et la synthèse des textes

FR  |  
EN
Auteur / Autrice : Thien-Hoa Le
Direction : Christophe Cerisara
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 29/05/2020
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire lorrain de recherche en informatique et ses applications
Jury : Président / Présidente : Claire Gardent
Examinateurs / Examinatrices : Christophe Cerisara, Alexis Nasr, Laurent Besacier, Enrique Alfonseca, Irina Illina
Rapporteurs / Rapporteuses : Alexis Nasr, Laurent Besacier

Résumé

FR  |  
EN

Cette thèse aborde deux questions majeures du traitement automatique du langage naturel liées à l'analyse sémantique des textes : la détection des sentiments, et le résumé automatique. Dans ces deux applications, la nécessité d'analyser le sens du texte de manière précise est primordiale, d'une part pour identifier le sentiment exprimé au travers des mots, et d'autre part pour extraire les informations saillantes d’une phrase complexe et les réécrire de la manière la plus naturelle possible tout en respectant la sémantique du texte d'origine. Nous abordons ces deux questions par des approches d'apprentissage profond, qui permettent d'exploiter au mieux les données, en particulier lorsqu'elles sont disponibles en grande quantité. Analyse des sentiments neuronale. De nombreux réseaux de neurones convolutionnels profonds ont été adaptés du domaine de la vision aux tâches d’analyse des sentiments et de classification des textes. Cependant, ces études ne permettent pas de conclure de manière satisfaisante quant à l'importance de la profondeur du réseau pour obtenir les meilleures performances en classification de textes. Dans cette thèse, nous apportons de nouveaux éléments pour répondre à cette question. Nous proposons une adaptation du réseau convolutionnel profond DenseNet pour la classification de texte et étudions l’importance de la profondeur avec différents niveaux de granularité en entrée (mots ou caractères). Nous montrons que si les modèles profonds offrent de meilleures performances que les réseaux peu profonds lorsque le texte est représenté par une séquence de caractères, ce n'est pas le cas avec des mots. En outre, nous proposons de modéliser conjointement sentiments et actes de dialogue, qui constituent un facteur explicatif influent pour l’analyse du sentiment. Nous avons annoté manuellement les dialogues et les sentiments sur un corpus de micro-blogs, et entraîné un réseau multi-tâches sur ce corpus. Nous montrons que l'apprentissage par transfert peut être efficacement réalisé entre les deux tâches et analysons de plus certaines corrélations spécifiques entre ces deux aspects. Résumé de texte neuronal. L'analyse de sentiments n'apporte qu'une partie de l'information sémantique contenue dans les textes et est insuffisante pour bien comprendre le texte d'origine et prendre des décisions fondées. L'utilisateur d'un tel système a également besoin des raisons sous-jacentes pour vraiment comprendre les documents. Dans cette partie, notre objectif est d'étudier une autre forme d'information sémantique fournie par les modèles de résumé automatique. Nous proposons ainsi un modèle de résumé qui présente de meilleures propriétés d’explicabilité et qui est suffisamment souple pour prendre en charge divers modules d’analyse syntaxique. Plus spécifiquement, nous linéarisons l’arbre syntaxique sous la forme de segments de texte superposés, qui sont ensuite sélectionnés par un apprentissage par renforcement (RL) et re-générés sous une forme compressée. Par conséquent, le modèle proposé est capable de gérer à la fois le résumé par extraction et par abstraction. En outre, les modèles de résumé automatique faisant de plus en plus appel à des approches d'apprentissage par renforcement, nous proposons une étude basée sur l'analyse syntaxique des phrases pour tenter de mieux comprendre quels types d'information sont pris en compte dans ces approches. Nous comparons ainsi de manière détaillée les modèles avec apprentissage par renforcement et les modèles exploitant une connaissance syntaxique supplémentaire des phrases ainsi que leur combinaison, selon plusieurs dimensions liées à la qualité perçue des résumés générés. Nous montrons lorsqu'il existe une contrainte de ressources (calcul et mémoire) qu'il est préférable de n'utiliser que l'apprentissage par renforcement, qui donne des résultats presque aussi satisfaisants que des modèles syntaxiques, avec moins de paramètres et une convergence plus rapide.