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l. Introduction

Agriculture has always been essential for the survival of the human species, not only for food but also
for dressing (cotton and flax fibers) and heating (straw). Furthermore, the farming and agricultural
industry still employ a large part of global human population, estimated at 49 % of the world human
active population (approximately 1.3 billion people) in 2010 (FAO, 2010; Federico, 2008). As the
human population is expected to reach at least 10 billion people around 2100, it will trigger a
multitude of social and economic consequences including of course, agriculture activities as reported
in Figure 1 (Gerland et al 2014; United Nations 2019).

More food Expansion of
imports arable land

Increase of
agricultural productivity

International
relations

Political
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Figure 1: Effects of the rapid population growth.
Sourced and modified from Heilig 2014.

In 2009, the Food and Agriculture Organization of the United Nations (FAQO) estimated that the food
production must increase by 70 percent between now and 2050, in order to sustain the new population.

This is predicted to cost € 75 billion per developed country, on top of the € 130 billion already spent
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on culture every year (FAO, 2009). Striving for an improved crop production and for fighting against

weeds and pathogens, farmers must use more and more chemical substances called pesticides.

I.1. Eternal struggle between undesirable organisms and crops: the birth of

chemical agriculture

Since the beginning of agricultural practises, humans tried to develop the most effective and least
time-consuming methods to cultivate their crops and defend them against phytopathogens and weeds
(Savary et al 2019). The first method used by Sumerians (~4500 years ago) to eradicate the plant’s
competitors and phytopathogens, was the use of elemental sulfur and sulfides (George and Shukla
2011; Abubakar et al 2020). Approximately 3200 years ago, the use of mercury and arsenic (‘para-
pesticides’) was introduced by the Chinese and maintained until the creation of the synthetic
pesticides (~1950s). In 1882, the Bordeaux mixture, a mixture of copper (Il) sulfate and calcium
hydroxide, was developed and largely used in French wine regions to treat various grapevine diseases
caused by fungi (Fleurat-Lessard et al 2011; George and Shukla 2011; Abubakar et al 2020). In the
middle of the 20" century, the official development of pesticides occurred. Due to an increase in
human demographic and massive rural exodus linked to industrial expansion, both the development
of pesticides and farm mechanisation were the solutions to help farmers increase crop yield with less
labour (Aktar et al 2009). The term “pesticides” refers herbicides, insecticides, bactericides and

fungicides, as shown in the figure below (Figure 2).

Other Disinfectants

3-0%\ 4.2% Fungicides
53%

Insecticides and
30 _ fungicides
7 7.3%
74
Herbicides and
84 . algicides

8.3%

Insecticides
49.0%

Fumigants
11.4%

Multiple
11.6%

Figure 2: Classification of pesticides.

Sourced from Donaldson et al 2008.
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The first modern pesticide, dichlorodiphenyl-trichloroethane (DDT), was synthesised by Paul Muller
in 1939 (George and Shukla 2011; Abubakar et al 2020). This marked the beginning of the huge
utilisation of chemical pesticides around the world, which peaked after the Second World War, when
modern synthetic organic chemistry started to grow. This chemical area of research greatly
contributed to the increasing quantity and quality of the harvest and to the accomplishment of the
green revolution (Smith et al 2008).

To increase quality and quantity of crop production, farmers used huge amounts of pesticides that led
to harmful effects and shown to be very dangerous for the environment and human health (Dallaire
et al 2012; Henry et al 2012; Tago et al 2014; Donley 2019). Moreover, these substances can
accumulate in the natural habitats (air, water and soil). Consequently, humans (farmers and rural
population) are exposed to pesticides to the detriment of their health. The World Health Organization
(WHO) reported 3 million pesticide poisoning cases per year, resulting in over 200,000 deaths in
developing countries. In particular, these harmful substances can accumulate in the human body and
target specific systems including the epithelial, gastrointestinal, neurological, respiratory,
reproductive and endocrinal ones. These compounds could also promote cancers. Finally, the efficacy
of pesticides has a limited durability and their extensive use has induced the development of multi-
resistant pathogens. Taking into account these multiple dangers, it becomes urgent to largely reduce
the use of pesticides (George and Shukla 2011; Mahmood et al 2016; Nicopoulou-Stamati et al 2016).
Currently, the status of the problem caused by pesticides can be determined by analysing the methods
of their usage in four of the largest agricultural producers in the world: United States of America
(USA), European Union (EU), Brazil and China. Generally, governments have different rules and
regulatory agencies that govern the banning and/or elimination of these harmful substances. However,
this analysis can provide a glimpse into the global effectiveness of the pesticide regulatory laws
(Donley 2019). Among the top four largest agricultural producers, USA still uses approximately 100
pesticides in quantities of millions of kilos per year that are prohibited in the other three producers
(Figure 3).
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Figure 3: Number of pesticides banned in Europe, Brazil and China.
The numbers represent the amount of pesticides that are approved for use in the USA but are
banned or being phased out in the Europe (EU) (72 pesticides), Brazil (BRA) (17 pesticides) and
China (CHN) (11 pesticides). Sourced and modified from Donley 2019.

The gap between EU and the other large producers is very impressive. Furthermore, in the EU, there
are 446 legal pesticide ingredients commercially available for use according to the European
Commission (European Commission, 2019; Nagi et al. 2020). The main aim of the European
commission is to reduce the risks and impact of pesticide use on human health and the environment.
Keeping this aim in mind, in 2007, the French government introduced the “plan Ecophyto” with the
objective of reducing the sale and use of pesticides by 50% over the next 10 years. Two years after,
on the 21% of October 2009, the European parliament and council introduced a directive 2009/128/EC
with the same objective. In 2015, it became apparent to the French government that this task was

unrealistic and not achieved until 2018 (Figure 4).
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Figure 4: The sales of pesticides in European countries.

Red circle showing the France as the leader in pesticide sales in the EU. Sourced and modified

from Agri-environmental indicator - consumption of pesticides, Eurostat 2018.

Therefore, the French government decided to update the plan and name it as “plan Ecophyto I1.” In
this new plan, decrease in the use, the risks and the impacts of agrochemical products was encouraged.
This plan also highlights that the existing alternative solutions are not sufficiently set up.

1.1.1. Fungicides - the biggest sell-out pesticide category in the EU

In Europe, three other countries Spain, Italy and Germany are also great crop producers (Figure 4).
Taking together, they represent over two thirds of the total EU pesticide sales (in weight), both in
2011 and 2018. When taking a closer look at the pesticide markets in the EU, the group 'Fungicides

and bactericides' is the most important and sold group of pesticides (Figure 5).
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Figure 5: Percentage of total mass in kilograms of different pesticides in 2016 in the EU.

Sourced from Eurostat 2016.

The use of chemical fungicides must decrease for multiple reasons: human health, ecological and
environmental major concerns (George and Shukla 2011; Mahmood et al 2016; Nicopoulou-Stamati
et al 2016). In this context, it was envisaged to develop the antimicrobial photodynamic treatment
(APDT) as an additive option in agriculture.

Since the PEIRENE laboratory has a long-term expertise in photodynamic treatment based on the use
of a photosensitizer, it was decided to gain insight into this challenge on the agriculture side. The
choice was made to work with the fungal phytopathogen, B. cinerea and two of its numerous hosts:
grapevine, one of its major targets and potato, a minor target.
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1.2. Botrytis cinerea

A list of the top 10 most important and dangerous plant pathogenic fungi in the scientific and
economic fields was established by the community of fungal pathologists associated with the journal
Molecular Plant Pathology (Table 1).

Rank Fungal pathogen

Magnaporthe oryzae
Botrytis cinerea

Puccinia spp.

Fusarium graminearum
Fusarium oxysporum
Blumeria graminis
Mycosphaerella graminicola
Colletotrichum spp.
Ustilago maydis

Melampsora lini

O WRONOUVI B WN —

—

Table 1: List of the major fungi impacting crop yield.

Sourced and modified from Dean et al 2012.

Magnaporthe oryzae is the first of the top ten because its target is the rice that is the most cultivated
crop in the world (Khush 2005; Fernandez and Orth 2018). B. cinerea is ranked in second place because
it induces the grey mold or rot that affects plants and their fruits. Furthermore, this fungus infects
more than 200 crops, including wild plants (such as the Rosacee family) and cultivated plants (such
as Vitaceae, Solanacea and Fabaceae) (Keller et al 2003; Williamson et al 2007; Elad et al 2016).

1.2.1. Taxonomy of Botrytis cinerea
1.2.1.1. The genus Botrytis

The Botrytis genus was described for the first time in 1729 by Antonio Micheli in “Nova Plantarum
Genera.” The name is derived from Greek ‘botrus’ means bunch of grapes. More than two centuries
later, Hennebert was accredited for completing the description of the genus (B. fuckeliana /B. cinerea:
teleomorph and anamorph, sexual and asexual reproductive forms, respectively) (Hennebert 1973).
The genus Botrytis includes at least 20 species and one hybrid called B. alli (B. byssoidea x B. aclada)

that differ by morphology and their large host range.
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In 2005, Staats et al. proposed an approach based on genealogy. The genus Botrytis can then be
divided into two clades: the first one includes the 4 botrytis species that attach to the dicots and the
second one consists of 18 other botrytis, 3 of which attack dicot plants and 15 that attach to monocot
plants. Phylogenetic analysis of the plant hosts and the botrytis species suggest that the pathogens
evolve by successive infections from host to host obtaining new pathogenic determinants (Table 2;
Staats et al 2005; Romanazzi and Feliziani 2014).

Common Typical Host/Tissuc
Host-Plant Species

Species Discase Name

Specificity

B. cinerea Pers. [

B. fuckeliana

(de Bary) Whetzel
B_ fabae Sardina

calthae Henncbert
ranunculi Hermebert
. ficariarum Hennebert
- pelargonii Roed

. paconiae Oud.
hvacinthi Westerd.
and Beyma

ndipae Lind

elliptica (Berk.)
Cooke

squamosa Walker
aclada (Fresen.)
Yohalem

allii’(Munn) Yohalem

EEIE T ECIE LT

byssoidea Walker/

B. allii (Sawada)
Yamamoto

globosa Raabe

. porri Buchw.
sphaerosperma
Buchw.

narcissicola Kleb. Ex
Westerd. and Beyma

. polyblastis Dowson
galanthina

(Berk. and Br.) Sacc.
convolura Whetzel

and Drmayton

croci Cooke and Massee
gladioloriem Timm. /
B. drayronii (Budd. and
Wakef.) Scaver

B ® %% & BEY

Gray mould

Chocolate spot

Pcony blight
Hyacinth fire

Tulip fire
Lily fire

Omnion leaf blight
Gray-mould neck rot

Gray-mould neck rot

Mycelial neck rot

Neck rot
Bhght
Smoulder mouid

Narcissus fire
Blight

Bomyis rhizome rot

Crocus blight
Gladiolus blight

Fallen leaves, fruits,
and flowers

Leaves of bean

Stem of marsh-marigold
Butiercup

Butcrcup

Leaves of gerunium

Stems of cultivated peonies
Leaves of hyacinth

Leaves. stems. and flowers
of culdvated tulips

Leaves, stems, and flowers
of culdvated hlics

Leaves of onion

Bulbs of onion. garlic.
and leck

Bulbs of onion. garlic.
and leck

Bulbs of onion, garlic,
and leck

Wild garlic

Bulbs of garlic, leck

Three-cornered Leck
(White-flowered Onion)

Bulbs of narcissus

Leaves of narcissus
Snowdrop

Rhizomes of cultivated iris

Leaves of culavated crocus
Stems of cultivated
gladiolus

=235 plant species

Vicia spp. L..

Pisum spp. L.
Lens spp. L.,

Phaseolus spp. L.
Caltha palustris
Rarnunculus spp. L.
Ficaria verna
Pelargoniwen spp. L.
Paeonia spp. L.
Hyacinthus spp. L.

Tulipa spp. L.
Lilitern spp. L.

Allivum cepa
Allivm spp. L.

Allium spp. L
Allizem spp. L.
Allium ursinum.
Allium spp. L.
Allium triguerrum
Narcissus spp. L.

Narcissus spp. L.
Galanthus spp. L.

Iris spp. L.

Crocus spp. L.
Gladiolus spp. L.

* Hybrid species acconding 1o Yohalem. Nielsen, and Nicolaisen 2003.

Table 2: Species described by Hennebert 1973.
The additional headings represent the common disease names and typical host-plant tissue and

species. Sourced and modified from Staats et al 2005.

1.2.1.2. Botrytis cinerea species

The name of Botrytis cinerea (B. cinerea) was given by Elias Magnus Fries in 1952 in “Fries’s
Systema Mycologicum” (Egerton 2012). This ascomycete belongs to the Leotiomycete class and to
the Sclerotiniacee family (Beever and Weeds 2004). In 1866, Bary established a genetic relationship
between B. cinerea, the asexual organism and Botryotinia fuckeliana, the sexual organism. Groves
and Dayton (1939) observed, for the first time, the in vitro formation of an apothecium (a spore-
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bearing structure) by B. cinerea. This confirmed the systematic link between the B. cinerea and
Botryotinia fuckeliana. The name B. cinerea, the asexual form of teleomorph Botryotinia fuckeliana,
is mainly used among the mycologists and phytopathologists even though the scientific names of

fungi are mainly given by their sexual form (Table 3).

B. cinerea classification

Super kingdom Eukaryota
Kingdom Fungi
Subkingdom Dikarya
Phylum Ascomycota
Subphylum Pezizomycotina
Class Leotiomycetes
Order Helotiales
Family Sclerotiniaceae
Genus Botrytis

Table 3: B. cinerea classification.

Due to its capacity to infect a large range of hosts and because even one single strain can cause
infections in many plants and organs in vitro, B. cinerea was considered for a long time to not be
specialized, which is the opposite for the other species of the genus. B. cinerea is divided into two
sympatric sibling species; transposa, and vacuma (Diolez et al 1995; Giraud et al 1999; Martinez et
al 2003). Transposa possesses two transposable elements named Boty and Flipper. Vacuma does not
contain either of the transposable elements.

Transposable elements are divided into two classes: class I and class Il (Kidwell and Lisch 2001).
Boty belongs to class | that consists of elements that transpose by reverse transcription of an
intermediate RNA. The first transposable element Boty is characterized by a long terminal repeat
present in multiple copies in different regions of the genome (Diolez et al 1995; Giraud et al 1999).
Flipper, the second transposable element, is mobile and inserts itself into nitrate reductase during
spontaneous mutant selection (Levis et al 1997).

Both sibling species, transposa and vacuma, display different abilities to infect different hosts. For
example, vacuma attaches to green peas when transposa is prevalent on bramble (Diolez et al 1995).
This nomenclature is still widely used in the scientific community (Munoz et al 2002; Ma and

Michailides 2005; Samuel et al 2012). Nevertheless, another classification exists that distinguishes
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these two sibling species of B. cinerea. Instead of naming the groups transposa and vacuma, the first
group (Group 1) contains only vacuma strains whereas, the second group (Group 2) contains vacuma
and transposa strains (Fournier et al 2002; Fournier et al 2005; Fournier and Giraud 2008). Recently,
genome sequencing provided more data about B. cinerea (Amselem et al 2011; Hahn et al 2014; van
Kan et al 2017).

1.2.2. Life cycle of Botrytis cinerea

During the life cycle of B. cinerea, the fungus produces mycelium, macroconidia, microconidia,
sclerotia and fruiting bodies called apothecia (Figure 6). Mycelium, macroconidia and sclerotia are
part of the asexual reproduction whereas the rest are involved in the sexual reproduction (Razak and
van Kan 2014).

The mycelium is comprised of an ensemble of grey or olive coloured branched filaments called
hyphae, the diameter of which varies greatly depending on the growth conditions. Generally, when
the mycelium is mature at the fruiting stage, it is able to produce conidia (asexual spores) on many
different substrates. Conidia are approximately 10 pm in length and 5 um in width that are dispersed
by wind, rainfall, or insects (Barnett and Hunter 1998; Holz et al 2004; Schumacher and Tudzynski
2012). Conidia are produced by conidiophores that looks as arbuscule (Figure 6) (Holz et al 2004).
Mycelium and conidia are able to induce the host infection when environmental conditions are
favourable.

However, in unfavourable conditions, the fungus is able to create sclerotia (Jarvis 1980). The structure
of sclerotia consists of mycelial branches fused together to produce a globular mass, that at the
beginning is hyaline, then it turns to a brown colour due to deposition of melanine pigments in the
external protection layer. This external coat keeps the fungus protected for a long period from the UV
radiation and to the other external hazardous factors (Williamson et al 2007).

When climatic conditions are favourable, the sclerotium generates conidia or mycelium. However, it
is also possible that sclerotium can induce the formation of the apothecium containing asci with
ascospores (not frequently observed in nature) (Coley-Smith and Cooke 1971; Faretra et al 1988;
Beever and Weeds 2004). The ascospores are the product of meiosis and their role is to act as a source
of inoculum for disease development.

Last, but not least, are the microconidia, that also aid the fungus in propagating when environmental
conditions are unfavourable. They are generated from the macroconidia germ tubes or from the
mature hyphae cells (Fukumori et al 2004; Holz et al 2007; Schumacher and Tudzynski 2012;

Romanazzi and Feliziani 2014). In sexual reproduction, microconidia can act as the male gamete and
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they may fertilise sclerotia, that likely serves as the female gamete (Faretra et al 1988; Williamson et
al 2007; Veloso and van Kan, 2018). However, sexual reproduction is a very rare event and thus the
mechanism has been poorly described.

X Q'\:::(é\o‘\ &\ %‘
R Infection %‘;ﬁ

Structures™
Ve

j Nec,
Cop Ot Hyphae [2
Plant 02O Uy
Penetration on = o /‘:‘ N@”
10g%"
gc.\‘“‘-‘“p A
Primary o < g
Appressorium / w \

Carpogenic
Germination

25, ( RRTL
5% SHes
—— N \o'\\ O,
[Conidiophore] [, ~ fo %;\

o

Apothecium

Figure 6: Life cycle of B. cinerea.

Sourced from Romanazzi and Feliziani 2014.

1.2.3. The infection process of Botrytis cinerea

The infection can occur when three factors are pooled concomitantly: the pathogen, the host and
environment (Francl 2001). B. cinerea can survive in the vegetable debris in the form of mycelium,
conidia and sclerotia that are the only form able to survive for a long time in the ground (Klaus 2007).
When the environmental conditions become favourable, conidia are produced, dispersed and they
land on leaves where they can germinate in the presence of water (Muvunyi 2012). Moreover, the
sclerotia that are attached to nearby leaves on the ground, can also produce mycelium that will lead
to an infection. The conidia and mycelium need to have an exogenous source of energy for their
developments. For the development of the appressoria, specialized cells used for infecting the host
plant, an exogenous source of energy is also needed (Figure 6) (Kosuge and Hewitt 1964; Yoder and
Whalen 1975; Li et al 2004).

The germination of the conidia is more favoured in a nutrient medium than in water (Clark and

Lorbeer 1977). In water, the germinate filament stops growing immediately after the appearance of
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the conidia’s germ tube. However, this is not the case when conidia are in the presence of nutrients
like glucose, fructose, galactose, because in these conditions, even the old conidia can also germinate
(Kosuge and Hewitt 1964, Clark and Lorbeer 1977; Shiraishi et al 1970a, Edwards and Seddon 2001).
Another important factor favouring the infection of B. cinerea, is that the germ tube of conidia and
mycelium are capable of penetrating the plant’s surface, due to the secretion of hydrolytic enzymes,
that cause cuticle lysis, or due to a pre-existing lesion (injury) in the plant host. The pathogen is then
able to kill epidermal and underlying dermal cells (Jarvis 1989; Muvunyi 2012). B. cinerea starts the
infection on the quiescent leaves and is then able to expand up to the aerial parts of the plant and the
fruits. The primary infection is defined by collapsing brown-coloured tissue and defined margins.
The infection progresses and the fungus becomes able to overcome the host’s defence. In particular,
the hyphae grow in a protrusive way and, as a secondary infection, induces the destruction of the
plant tissue. The hypersensitive response of the plants to the invasion of the pathogen induces the
death of the plant cells near the fungus infection. The problem with this kind of response is that it
favours the development of B. cinerea because it is a necrotrophic fungus (Govrin and Levine 2000).
Upon the death of the plant’s cells, numerous compounds are secreted by the fungus: proteins, toxins,
oxalic acid and reactive oxygen species (ROS). It has been proved that ROS are produced by both the
fungus and the plant (Temme and Tudzynski 2009). In particular, the generation of H2O> (one kind
of ROS) was observed in and around the cell wall of the penetrated host. Even if the plant is able to
induce oxidative stress, the fungus is immune to it. When the lesion induced from the fungus causes
tissue maceration, sporulation is also induced (Van Kan et al 2006).

The last factor to discuss that influences the fungus’ infection is climatic and microclimatic conditions
(Latorre et al 2015). In particular, humidity and temperature play an important role in the plant’s
infection and for the development of the disease. It was shown that at a temperature range between
15 and 25 °C that germination can occur (Sirry 1957; Shiraishi et al 1970a; Shiraishi et al 1970b;
Davidson and Krysinska-Kaczmarek 2007; Carisse 2016). Moreover, B. cinerea has a very good
development under high humidity (above 90 %) (Yunis et al 1990; Nair and Allen 1993; Williamson
et al 1995; Carisse 2016).

1.2.3.1 The bright side of the Botrytis cinerea infection: noble mold

B. cinerea is also the fungal agent of the noble mold that is beneficial in sweet wine production. The
“disease” development is controlled and even promoted by some specific climatic conditions:
alternating cycles of cold humid nights and dry sunny days. Curiously, it is not due to a specific

population of B. cinerea. So far, according to the literature, there is no genetic link between strains
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causing noble or grey mold. Consequently, winegrowers have to focus on controlling the
environmental growth factors to optimize this noble rot growth. The noble rot takes place at the end
of the growing season (Maygar 2011). The development of noble rot starts when the fungus penetrates
the ripe berries without any alteration of the fruit skin. Subsequently, the fungus decomposes the fruit
skin that becomes porous with high water evaporation. This leads to an enzymatic maceration and an
important increase in sugar concentration in the berries (the pourri roti stage). This increasing sugar
content stops the fungal development resulting in the berries of noble mold having the desirable aroma
of the resulting sweet wine (Negri et al 2017).

The production of these particular liquorous wines started in Hungary or Slovakia (Tokaj or Tokaji
region), Germany (Rhine region) and France (Sauternes region) and grew widespread throughout the
world (Australia, Northern of Italy, USA and South Africa). Examples of these wines are white wines,
such as Tokaji Aszu, Sauternes and Monbazillac and red wines like Amarone (Maygar 2011; Tosi et
al 2012; Fournier et al 2013).

1.2.3.2. The dark side of Botrytis cinerea infection: grey mold

B. cinerea represents a dramatic health problem for a large panel of plant species causing grey mold.
Moreover, as saprophyte it can survive on the seeds or on plant matter in the soil for long periods
(Bardin et al 2018). Furthermore, B. cinerea is also dangerous because it infects crops pre- and post-
harvest. The fungal infection can even start before the harvest and can stay in a quiescent status for a
long time, until the environmental conditions and changes in the host’s physiology become favourable
for fungal development and growth (Droby and Lichter 2007; Feliziani and Romanazzi 2014; Hua et
al 2018)

This pathogen is able to infect a lot of vegetables and small fruit crops such as tomato, apple, grape,
potato and many others (Figure 7) (Droby and Lichter 2007; Feliziani and Romanazzi 2014). The
infection starts on the soft parts of the fruit tissue with the appearance of a dark spot. Depending on

the light quantity, sporification can then develop from the site of infection.
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Figure 7: Grey mold induced by B. cinerea on crops and flowers.
The disease symptoms on vegetative organs (grapevine and potato leaves) or rose petals (top
panel) or on fruits (bottom panel) grape, strawberry and tomatoes.

The infection can occur before harvest and can survive at a low storage temperature (0-5°C). A recent
study from the FAO estimated that, with respect to the total amounts of fruits and vegetables produced
worldwide, between 15 and 50% are lost at the postharvest stage, mainly because of B. cinerea.
Moreover, it is also very complicated to estimate precisely the real cost of the loss due to this
pathogen’s infection. Fungicides and biocontrol treatments that have been designed to fight against
B. cinerea, cost more than €1 billion/annum (Dean et al 2012; Hahn 2014; Romanazzi and Feliziani
2014). Thus, it is clear that B. cinerea triggers a large expensive problem that needs a long-lasting
solution. In this manuscript, two plant targets of B. cinerea are studied: grapevine (Vitis vinifera) and
potato (Solanum tuberosum). The former is more susceptible to B. cinerea infection whereas this is

not the case for the latter.
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1.3. Botrytis cinerea targets: grapevine and potato.

1.3.1. Grapevine plantlets

Grapevine is one of the most cultivated fruit species in the world with a large economic impact and
the main target of B. cinerea during its vegetative and fruit developments. Around the world,
grapevine is mostly used for the production of wine but also for the production of juice, as well as

fresh and dried fruit (Torregrosa et al 2015; Figure 8).

Surface Area Yield
7.5 million ha 0 tonnes Grape production

Surface area
Global grape production
75.1 million tonnes

Global grape production available
72.6 million tonnes

Pressed grape Unpressed grape
39.6 million tonnes 33.0 million tonnes
i i Production . ; -
e Production of Production of grape

of musts & juices

- table grapes for dried grapes
3.7 million tonnes

26.8 million tonnes 6.2 million tonnes

35.9 million tonnes

7~ .1.32 kg to moke 1 litre of wine
/7 28 ke/l 4kg of grapes makes
271 million hi S 1kg of dried grapes
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Figure 8: Schematic presentation of the global viticulture situation in 2014.

Sourced from FAO-OIV FOCUS 2016.

According to the International Organization of Wine and Vine (O1V), France is the top wine exporting
country in the world, producing 17 % of the total wine produced worldwide (OIV 2019; LARVF
2017). Nevertheless, the total area planted with wine grapes in France represents only the third

worldwide place after Spain and China, just before Italy (OIV 2019; Table 4).
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thousand ha 2014 2015 2016 2017 2018

Spain 975 974 975 968 969
China 813 847 858 865 875
789 785 786 788 793
Italy 690 685 693 699 705
Turkey 502 497 468 448 448
USA 450 446 439 434 439

Table 4: Top 6 countries with the largest area under vine used for wine production.

Sourced from OIV 2019.

The wine industry is very important for the French economy and of course for some regions such as
Bordeaux (Nouvelle Aquitaine), Champagne or Bourgogne that produce the most famous vintages in
the world. Fifteen percent of French agriculture incomes were wine generated and this industry still
ensure around 600,000 jobs. In 2019, the sale of French wine and spirits amounted to €14 billion (De
la Hamaide 2020).

1.3.1.1. Botrytis cinerea: a deleterious agronomic and economic impact on
grapevine

The grapevine losses are mainly due to B. cinerea (Keller 2015). It is responsible for decreasing the
production yield and the overall quality of wine (colour, taste and scent) costing at least € 2 billion
worldwide (Ribéreau-Gayon et al 1998; Pszczokowski et al 2001; Elmer and Michailides 2004; Steel
et al 2013).

B. cinerea induces a reduction of amino acids concentration and a change of the typical aroma of
wine by degrading the compounds that gave the characteristic bouquet of wine as a signature (La
Guerche et al 2006). Furthermore, this pathogen excretes enzymes such as polyphenol oxidase and
lacases that oxidise the phenolic compounds (present in grapes) to quinone-type compounds. This
process can eventually lead to the formation of polymers that are noticed when red wine is discoloured
and when white wines turn brown (Pezet et al 2004; Ribéreau-Gayon et al 1998; Pszczolkowski et al
2001).
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1.3.1.2. Vulnerable stages of grapevine to Botrytis cinerea

When the grapevine is in flowering or veraison (stage where the grapes increase in size and start to
accumulate sugars and aroma compounds), B. cinerea infection can better occur, probably due to the
low level of resveratrol produced during the flowering stage (Keller et al 2015). Moreover, the
infection could happen when pollen grains are abundant even when anthers are senescent (Chou and
Preece 1968; Bulit and Dubos 1982; Pearson and Goheen 1998). After infection during the flowering
stage, B. cinerea remains latent until the period of the veraison (Deytieux-Belleau et al 2009). During
veraison, grapes are more sensitive to the infection because of the berry cuticle and the cell wall
modifications (Deloire 2010; Keller 2015). More specifically, there is an increase in waxy deposits
and large changes in the morphology of the wax surface of the berry. Furthermore, the cutin content
decreases significantly (by almost two thirds) in the grapes, rendering the berries more prone to fungal
infection (Deloire 2010).

1.3.1.3. Different susceptibilities of grapevine varieties to Botrytis cinerea

The grapevine varieties present different susceptibilities to B. cinerea. This makes it an essential
management indicator, according to the Integrated Pest Management (Table 5) (Galet 1988; Dry and
Gregory 1988; Marois et al 1992; Kogan 1998; Dubos 2002; Fermaud et al 2011).

Cultivar a b ¢ d e f g h
Grenache Noir 4 3 - -4 - 3 4
Cabernet Franc 3 - - - - - 4 1
Petit Verdot 0-1 - - - - - 1 1
Cabernet Sauvignon 2 - 0 1 1 0 1 1
Mourvedre - - - - - - 1 -
Syrah 2 - 3 3 - - 2
Cot 3 - - - - - 3 3
Roussanne 4 - - - - - - 4

4 - 2 2 3 - 3 3

Pinot Noir 3 4 2 3 4 - - 3
Gewlirztraminer 4 - - - - - 1 4
(Sauvignon Blanc) 4 B 4 3 4 - 1 4

a = Dubos (2002), b = Dry and Gregory (1990). ¢ = Orffer (1979), d = Jackson and Schuster
(1987), e = Robinson (1986), f = Marois et al. (1992), g = Galet (1988), h = ACTA (1980); 0
= highly resistant, | = resistant, 2 = intermediate, 3 = susceptible, 4 = highly susceptible.

Table 5: Susceptibility to B. cinerea of 13 grapevine varieties.

Sourced and modified from Pafitrur De la Fuente 2017.
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Among the multitude of grapevine varieties (around 6000 across the world and those listed in Table
5), three widely grown grapevine varieties: Sauvignon, Chardonnay and Merlot were chosen and
investigated (clones grown in vitro) in our study. The Chardonnay and Sauvignon backgrounds are
highly susceptible to the infection of B. cinerea whereas the Merlot variety is more resistant (Galet
1988; Dry and Gregory 1990; Marois et al 1992; Kogan 1998; Dubos 2002; Fermaud et al 2011).
Furthermore, these grapevine varieties are listed in the top 10 most cultivated and famous grapevines
for wine production in the world (Anderson 2013).

1.3.2. Potato plant and culture

The other plant considered in this work is the potato plant (Solanum tuberosum). This plant species
was chosen because it is one of the most important food crops in the world. Furthermore, it is a
member of Solanaceae family as tomato (Solanum esculentum), already studied in the PEREINE
laboratory (Guillaumot et al 2016). Nevertheless, in contrast to tomato plants, potato plants are not
the favourite B. cinerea host.

Potato constitutes, grown in more than 100 countries that have a large range of climate conditions
(Hawkes, 1994). The total world potato production was estimated around 388,191,000 tonnes in 2017
(Figure 9) (FAOSTAT, 2019). The potato originated from Peru where some wild relatives still exist
and represent a pool of genetic and morphological diversity (Spooner et al 2005).

World potato average yield (tonnes/hectare)

SERURGRaSBEBRRNU

Figure 9: The average world production of potato over the last 30 years.

Estimations were done for 2018 and 2019. Sourced from Potato Pro 2020.
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1.3.2.1. Potato a staple food

The ever-increasing difference between cereal demand due to population growth and the reduction in
wheat crop yield, has caused basic food shortages in many places around the globe. Thus, the potato
tuber has become one of the main foods to the global population. It is highly nutritious and when it
is fresh, the tubers are made up to 20 % of dry matter and 80 % water. Within this dry matter, there
is fibre, protein, a small amount of fatty acids and 75 % starch. On top of these food types, the dry
matter also contains minerals (magnesium, phosphorus and potassium) and vitamins (C, B1, B3 and
B6) (Prokop and Albert 2008; Camire et al 2009).

To guarantee a good yield of potato production, it is important to consider the factors that ensure the
quality of this perennial plant. Other than plant infection by pests (see Table 6 and next section), the
most important factor for determining a healthy potato growth is the climatic environment (Monteith,
2000). In particular, the temperature is reportedly the primary factor that drives the phenotypical and
morphological development (Hodges 1991). Another main factor that influences the phenological
development of the potato is the temperature of the crop from the sunlight (Ewing and Struik 1992).
Additional factors such as the lack of water and the day-length can slow down the development in

some plants.
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1.3.2.2. Potato pathogens

The following table (Table 6) reports the principal pathogens in potatoes.

Pathogen

(a) fungi
Alternaria solani
Erysiphe cichoracearurm
Fusarium spp.
Macrophomina phaseclina
Phoma fo eara
Phytophthora infestans
Rhizoctonia solani

Spongospora subterranea
Synchyirium endobioticum
Verricillium spp.

(b) bacterna
Erwinia caroto ora
ssp. atroseplica
Pseudomonas solanacearum

Cla ibacter michiganense
ar. sepedonicum
Streptomyces scabies

(c) viruses
PLRYV Potato leafroll virus
PVYe Potato virus Yo
PVNn Potato virus Y»
PV A Potato virus A
PVX Potato virus X
PVM Potato virus M

{d) nematodes
Globodera rostochiensis
Globodera pallida

Meloidogyne chitwoodi
Meloidogyne incognita
Meloidogyna hapla
Meloidogyna ja anica
Nacobbus aberrans

Pratylenchus penetrans
Pratylenchus spp.

Discase/
Commonname

Early blight
Powdery mildew
Fusarium dry rot
Charcoal rot
Gangrene

Late blight
Black scurf/f
stem canker
Powdery scab
Wart
Verticillium wilt

Black leg, soft rot
Bacterial wilt,
brown rot

Ring rot

Common scab

Golden nematode
White potato cyst
nematode

Root knot nematode

idem

idem

idem

False root-knot
nematode
Lesion nematode
Lesion nematode

Distribution

Worldwide

L. America, Europe, Near-East
Worldwide

Worldwide where T =28 <C

N. America, Europe. Asia, Oceania

Worldwide
Worldwide

Woerldwide
Africa, Asia. America, Europe
Worldwide

Worldwide

Asia, Africa, S. America
{probably worldwide)
Worldwide

Worldwide

Woridwide
Worldwide
Europe. USSR
Worldwide
Worldwide

E. Europe

Woridwide
N.W. Europe, S. America

Worldwide?

Europe, America, Africa, Asia
Europe, America

Africa, Asia,S. America
America, India, USSR,

N.W. Europe

N. America, Europe
Worldwide

Table 6: Principal pathogenic agents that cause losses in the potato.

Sourced from Jeger et al 1996.
In this list, among fungi, B. cinerea does not appear because grey mold is considered as a minor
disease for potato crop (Kirk and Merlington, 2012). However, fungi that belong to the same division
of B. cinerea appear in the table above. Therefore, it was supposed that the experiments conducted
on B. cinerea could be reproduced on other ascomycota fungi in the future. Furthermore, the fungi
that attack essential crops like rice and the potato are of interest for the application of this treatment.
Keeping this idea in mind, four different varieties of potato are taken into consideration due to their
fungal susceptibility in this PhD manuscript: Bintje, Grenadine, Hinga, and Laurette. Even though no
specific data linking these potato varieties and B. cinerea was found, the choice of these four varieties
was driven mainly by their commercial and/or historical interest in Europe. Nevertheless, the Bintje
variety is highly susceptible against a large range of pests (bacteria, fungus and virus). Specifically,
this variety shows a low resistance to fungal diseases, such as early blight caused by Alternaria solani
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(Ascomycete). However, potato varieties show different susceptibilities to different kinds of
pathogens. Grenadine and Laurette are very sensitive to downy mildew induced by different
oomycetes (European Cultivated Potato Database; Garrigues Freres SAS Rodez (Aveyron, France),
Grocep Lauriere (Haute-Vienne, France)). Lastly, the Hinga variety is highly susceptible to the potato

virus M.

I.4. Disease management

B. cinerea is characterized by its genetic variability that makes the control of the disease very difficult.
Moreover, since it is a saprophyte it can survive on the seeds or on plant matter in the soil for long
periods (Bardin et al. 2018). Many treatments have been used to fight off and control this fungus.
However, they are currently becoming inefficient due to the development of resistances. Some of the

most important methods will be described in this section.

1.4.1. Plant prophylaxis to fight Botrytis cinerea

Many chemical and biological treatments are still used to fight off and control B. cinerea. However,
they are becoming inefficient due to the development of resistance. Thus, the search for new
treatments, respecting the environmental laws, is currently underway. The measures used in order to
protect plants before the development of fungal infections are called prophylactic treatments (Maloy
2005). Despite preventative treatments (control of temperature and humidity), fungal infection can
still occur but in a lesser extent.

Concerning B. cinerea, the greenhouse prophylactic treatment is based on the elimination of quiescent
leaves and infected organs. The fungus, being a necrotic plant pathogen, is thus unable to grow and
develop a secondary infection (Kéhl et al 1999; Dik and Wubben 2004).

Other important methods to reduce the B. cinerea infection in greenhouses are the control of the
number of plants per square metre and the removal of excess leaves. This can therefore allow optimal
air circulation and thus, diminish humidity (Daugaard et al 2003; Decognet et al 2009). It is also
known that fertilization plays an important role limiting the fungal development (Volpin and Elad
1991; Elad and Volpin 1993; Daugaard et al 2003). Although this kind of treatment can be useful in
agriculture, it is not enough to eliminate the diseases linked to B. cinerea. Therefore, other treatments

are summarized below.
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1.4.2. Chemical treatments

Chemical treatments encompass the use of fungicides to fight against fungal plant pathogens. To this
day, it remains an indispensable tool to ensure plant protection in order to have sufficient food supply
for the ever-growing population. Moreover, the overuse of fungicides has led to the development of
multi resistance in the fungus, thus rendering these fungicides ineffective (Wang et al 1986; Leroux
et al 2002, Kretschmer et al 2009). A typical example of resistance to fungicides was observed with
dicarboximides (iprodione, vinclozolin) (Pommer and Lorenz 1982). Fungicides are grouped based
on their mode of action: multi-site, oligo-site and uni-site (Figure 10). The action of the former is
directly against multiple enzymatic systems (glycolysis enzymes, Krebs cycle enzymes and electron
transport chain). Thanks to their large spectrum of action, these class of pesticides, including
dithiocarbamates (mancozebe, manebe), phthalimides (captan, folpel) and chloro-nitriles
(chlorothalonil), induce a lower risk of developing resistance. The oligo-site and uni-site fungicides
are more specific and block one fungal metabolic pathway (Brent and Hollomon 1998; Leroux and
Gardan 2003). In particular, they can act on the biosynthesis of the most important living molecules

like carbohydrates, lipids, proteins and nucleic acids.

Secretion of sulfur amino acids
Respiration (Anilinopyrimidines)
Multisites

(Dithiocarbamates) oot

vésicules
Respiration apparal de Goigs

Complex 1l (Qols) A\

"""" Sterol synthesis (I1BS)
Class Il (Hydroxyanilides)

Respiration ‘,
Complex Il {SDHIs) :

ZO-H pE )

Respiration
Decoupling (Pyridinamines)

mitochondiia
Osmotic signal transduction

(Dicarboximides;
Phenylpyrroles)

Synthesis of sulfur amino acids clomarique

{Anilinopyrimidines)

Antimicrotubules
(Benzimidazoles; N-
phenylcarbamates)

Cyiosqueelie

Figure 10: Action modes of some of the main organic fungicides.

Sourced and modified from Leroux and Gardan 2003 and Lepoivre 2007.
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Resistant strains are adapted to new environments that have regular treatments by fungicides, thus
improving the biological characteristics of this strain (Milgroom et al 1989). This type of resistance
is called acquired resistance and it is different to natural resistance that is already inborn in the fungus
before the application of the fungicide (Leroux et al 1999; Leroux et al 2013a; Wiesch et al 2011).
Natural resistance is generated by the continuous mutations of sensitive strains.

Resistance is induced by the appearance of mutations in the fungus population treated by fungicides.
DNA mutations could change the gene structure and create a new allele in the treated population (Mc
Donald and Linde 2002). The number of resistant strains increases and by opposition, decreases the
efficacy of fungicides. This acquired resistance is often determined by a mutation affecting the
structure of the target protein of fungicides (Uesugi et al 1993; Leroux et al 2002; Wood and
Hollomon 2003).

B. cinerea characteristics (sexual and asexual reproduction, large host range, etc.) make it very
resistant to fungicides. For this reason, large doses of fungicides are necessary to treat the infection

and this causes environmental pollution (Brent and Hollomon 1998).

1.4.3. Biological pest control

To bypass the utilization of fungicides, another treatment to control the fungus’ infection is needed.
In this context, a biological pest control that involves an active human management role is used and
is a fundamental part of the integrated pest management (IPM) program (Barzman et al. 2015).

This method is based, mostly, on the use of a microbial agent that can be in a competitive relationship
with the harmful pathogen. Often the microbial agent used is an organism, such as a parasite, or a
pathogen itself, which acts as a natural antagonist of the undesired pathogen. However, the biological
pest control can show side-effects in biodiversity, particularly if the consequences of introducing
another species in a predefined system is not evaluated. In order to determine the best biological pest
protection, specific requisites are necessary. Firstly, knowledge of the pathogen’s biology and of the
microorganism used for the treatment is required. Secondly, the experiment must be repeatable in
laboratory and finally, validation in real conditions must be performed. Moreover, such as for other
treatments discussed in the next sections, the final objective of this kind of treatment is to reduce the
presence of the pathogen or, at the very least, minimize its activity (Cook et Baker 1984). Other
biological treatments include the use of mineral agents and plant oils to fight against B. cinerea.
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1.4.3.1. Microbial agents

The biological pest control, with the use of micro-organisms antagonists against B. cinerea such as
other filamentous fungi, yeast and bacteria, has been intensively studied (Newhook 1951; Wood
1951; Van Lenteren 2000; Paulitz and Belanger 2001; Mari et al 2003; Elmer and Reglinski 2006;
Droby et al 2009). In 1951, Newhook and Wood inoculated quiescent lettuce leaves with B. cinerea
antagonists, Fusarium spp. and Penicillium claviforme and as a result, B. cinerea was not able to
attach to the leaves. This strategy was later confirmed by Newhook in 1957 using tomatoes grown in
a greenhouse and in order to inhibit the B. cinerea infection, a spore suspension of Cladosporium
herbarum and Penicillium sp was used. Many other examples of micro-organisms used as a biological
control against B. cinerea are reported in the literature (Bhatt and Vaughan 1962; Blakeman 1972;
Blakeman and Sztejnberg 1974; Nelson and Powelson 1988; Elad et al 1995; De Meyer and Hofte
1997; Latorre et al 1997; Kohl et al 1998; Sean et al 1999; Nicot et al 2003; Buck and Jeffers 2004;
Bardin et al 2008; Calvo-Garrido et al 2019; Sarven et al 2020).

Microorganisms can also be competitors of B. cinerea for essential nutrients like nitrogen, carbon,
macro- and micro-elements in the soil. The lack of these nutritious elements can interfere with B.
cinerea’s capability to produce hydrolytic enzymes necessary for infecting the plant host. They can
also change the pH of the soil that must be acidic for B. cinerea development (Blakeman and Fokkema
1982; Paul et al 1997; Filonow 1998; Kapat et al 1998; Duffy et al 2003; Manteau et al 2003; Elad
and Stewart 2004; Schoonbeek et al 2007). In particular, this competition leads to the reduction of
spore germination or mycelium growth, which is essential for the pathogen’s growth and development
(Blakeman and Fokkema 1982, Blakeman 1993).

Antibiosis one of the latest method developed against B. cinerea, involves the antagonist organism
producing toxic secondary metabolites for the target pathogenic agent. These metabolites can inhibit
the germination, sporulation and the mycelial growth of the pathogenic fungus (Montesinos et al
2009). Finally, hyper parasitism is another strategy that can also be used against B. cinerea (Whipps
and Gerlagh 1992; Yu and Sutton 1997; Fravel 2005).

1.4.4. Mineral and organic compounds

These composites can act as natural fungicidal agents to control pathogenic agents in plants (Tripathi
and Dubey 2004). An example is chitosan and its derivatives, which show plant protection proprieties
against some phytopathogens (Bautista-Banos et al 2006). In the case of B. cinerea, chitosan (Figure
11) was used as a protection on post-harvest fruits (EI-Ghaouth et al 1997, Choi et al 2002, Oliveira
Junior et al 2012).
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Figure 11: Effect of chitosan on mycelium of B. cinerea.

Scanning electron micrographs of B. cinerea mycelium after 5 days of cultivation at 25°C. (left):
control mycelium (right): mycelium treated with chitosan. Scale bars represent 20 um. Sourced and
modified from Oliveira Junior et al. 2012.

Nigro et al (2006) showed the potential of nineteen salts on the control of B. cinerea development on
post-harvest raisins. Calcium chloride, potassium carbonate, sodium bicarbonate and sodium
carbonate were able to reduce the fungus incidence in vivo (Nigro et al 2006). In another interesting
study (Yildirim and Mericli Yapici 2007), food additives such as potassium sorbate, sodium benzoate,
methylparaben, propylparaben and sorbic acid, showed strong inhibition on the mycelial growth and

conidia germination in B. cinerea.

1.4.5. Plant essential oils

Another method associated with biological pest control, in particular at post-harvest, involves the use
of plant essential oils. These oils are extracts from plants and they show efficacy against microbial
pathogens. The active ingredients are commonly aromatic substances such as flavonoids, phenols,
alkaloids, sterols (Burt et al 2004). It has been demonstrated that the plant essential oils inhibit the
mycelium growth of fungi (Manohar et al 2001; Marin et al 2004; Velluti et al 2004; Burgiel and
Smaglowski 2008; Hadizadeh et al 2009). Burgiel and Smaglowski (2008) described complete
growth inhibition of B. cinerea on media with a 0.5 % addition of tea tree oil. Banani et al (2018)
displayed the efficacy of thyme essential oils against B. cinerea on apple fruit. Hou et al (2020)
reported the capacity of phenolic acids extracted from rice straw, to induce a strong inhibitory effect
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on B. cinerea. In conclusion, because of their reduced environmental toxicity, plant oils can be
considered a good alternative to fungicides. However, while the probability to develop resistance in
pathogens is reduced, it can still occur and this is a disadvantage of using plant oils against fungal

pathogens (Daferera et al 2003).

I.5. Looking for an efficient alternative treatment for Botrytis cinerea:
photodynamic therapy

1.5.1. Photodynamic therapy in agriculture

Photodynamic therapy (PDT) is a treatment that involves a photosensitizer (PS), light and oxygen.
The PS, if activated by light, will interact with oxygen and induce the formation of reactive oxygen
species (ROS), toxic for the living cells (Mgller et al 2007; Donnelly et al 2008; Benov 2015). PDT
has been used in medicine: oncology, ophthalmology and dermatology (Dolmans et al 2003; Konopka
and Goslinski 2007, Robertson et al 2009; Babilas and Szeimies 2010; Darlenski and Fluhr 2012;
Dabrowski and Arnaut, 2015; Habermeyer and Guilard 2018).

PDT has been successfully used to inactivate microorganisms such as bacteria, yeast and fungi and
has thus been named antimicrobial photodynamic therapy (APDT or PDI Photodynamic Treatment
Inhibitor). Since the 1990s, resistant Gram-negative bacteria could efficiently be killed by cationic
charged PSs (Hamblin and Abrahamse 2020). Since then, it has been envisaged to be used against
multidrug resistant microorganisms because this therapy does not lead to the development of
resistance (Maisch 2009; Huang et al 2010). For this reason, APDT can be considered an alternative
strategy for fighting plant pathogens. Furthermore, APDT applications have already been investigated
from the field of medicine to the agricultural industry, including food and water decontamination
(Jori and Brown 2004; Luksiene 2005; Alves et al 2010; Kashef et al 2017; Glueck et al 2019;
Almeida et al 2020).

1.5.2. Photosensitizers

In order to breakdown APDT and understand the potential of the PS, the mechanism of activation is
described herein. This phenomenon was first described and explained by Jablonski and has thus
explained by the Jablonski diagram (Figure 12) (Dabrowski et al 2016). Upon irradiation, the PS
absorbs a photon and is excited from the ground state (S0) to an excited singlet state (S1). This state
is unstable, so the PS can undergo two different pathways. On one hand, it is possible that it returns

to its stable ground state, converting the energy into heat or light. The latter known as fluorescence.
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On the other hand, the PS can undergo an intersystem crossing that brings the PS to an excited triplet
state (T1). In this state, the PS can induce phosphorescence, or it can react with other molecules
inducing the formation of ROS. The triplet can form ROS via two possible reactions mechanisms:
type I and type Il (Foote 1991; Baptista et al 2017, Hamblin and Abrahamse 2020). The type I reaction
involves the PS in the excited triplet state giving an electron or a proton to biological substrates. This
reaction generates radical anion or cation species (superoxide anion radicals, hydroxyl radicals and
hydrogen peroxide). The type Il reaction mechanism involves the reaction between the excited triplet

state of the PS and molecular oxygen, thus forming cytotoxic singlet oxygen (*O2).
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Figure 12: Photodynamic reaction pathway of PS with light and oxygen according to Jablonski.

Sourced from Dabrowski et al 2016.

1.5.2.1. Classification of the different PS

PS can be natural and synthetic compounds. These natural PS are extracted and purified from living
system (plants, fungi). Lots of applications have already been described (Azizullah et al 2014; Song
et al 2014; de Menezes et al 2014a/b; Fracarolli et al 2016; Yoshida et al 2017; Spaeth et al 2018;
Lukseviciute and Luksiene 2020). The second type of PS concerns molecules that can be synthesized
by chemical reactions and also successfully tested on various domains (Hidalgo et al 2015; Nazir et
al 2015; Abrahamse and Hamblin 2016; Song et al 2017; Muehler et al 2017; Hamblin and
Abrahamse 2020).

More specifically, PS can be divided into porphyrinoid and non-porphyrin molecules (Issawi et al 2018).

The difference between these two categories is that the porphyrinoid compounds consist of a tetrapyrrolic
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backbone whereas the other groups are represented by a variety of other structures. In this manuscript,

only the porphyrinoid PS are taken into consideration: porphyrin and chlorin (Figure 15 and 18).

1.5.2.2. Tetrapyrrolic photosensitizers: porphyrins and chlorins

In this present manuscript, the biological applications of porphyrins and chlorins are developed.
1.5.2.3. Porphyrins

Porphyrin means “purple” in Greek, and these PS are among the most studied and well-known
photosensitizers (Milgrom 1997). They are intensely coloured compounds. The principal
characteristic of porphyrins is their particular structure that consists of 4 pyrrole moieties bound

together by methine bridges (Figure 13).

Figure 13: Basic chemical structure of porphyrin.

These macrocycles are capable of binding metals in the center of the ring, via the nitrogen atoms.
When the porphyrin is metalated, the photophysical, photochemical and photobiological proprieties
change. Porphyrins are characterized by a specific UV-Vis spectrum (from 400 nm to 800 nm). All
porphyrins show a spectrum where a large intense band, the Soret band, is detected around 400 nm.
In the free base porphyrin, the Soret band is accompanied by four smaller band called Q-bands

whereas the metalated derivatives only have two Q bands (Valicsek and Horvath 2013) (Figures 14).
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Figure 14: UV Vis absorption spectrum of free base and metalated porphyrin.
On the left: free-bases porphyrin, on the right: metalated porphyrin. Sources and modified from
Josefsen and Boyle 2008 and Zakavi et al 2012.

The porphyrin taken into consideration in this manuscript is a free base 5,10,15,20-(tetra-4-

sulfonatophenyl) porphyrin tetra-ammonium (TPPS) (Figure 15).

SO3°

Figure 15: Chemical structure of free base 5,10,15,20-(tetra-4-sulfonatophenyl) porphyrin tetra-
ammonium (TPPS).

NH4* is the counter ion.

1.5.2.4. Chlorins

Chlorophyll derivatives from plants and bacteria are known to be good PSs (Alisson and Maghissi
2013). These derivatives are namely, chlorins and bacteriochlorins, and they display different
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photochemical, photophysical and photobiological properties. The chlorin macrocycle is the skeleton
of chlorophyll a and b in plant photosynthesis whereas bacteriochlorins provide the basis for the
structure of bacteriochlorophyll a in bacteria. These molecules are almost identical to porphyrins in
chemical structure. However, they differ as chlorin loses one double bond in one of the pyrrole

moieties and the bacteriochlorin loses two double bonds (see Figure 16; Yoon et al 2013).

X ,
\ NH N=
\ //
HN
! A

Figure 16: Basic chemical structure of chlorin and bacteriochlorin.
The arrows in red display where the double bond has been lost.

The loss of these double bonds causes a red-shift of absorption of the Q-bands (Figure 17).
| ‘ | . | .
=—porphyrin
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Figure 17: Difference between the UV vis spectra of porphyrin, chlorin and bacteriochlorin.

Sourced from Abrahamse and Hamblin, 2016.

The reason why bacteriochlorin is not commonly used is due to its tendency to undergo oxidation
rapidly. The chlorin taken into consideration here is chlorophyllin (see structure in Figure 18). This
PS is an approved food additive (E140 and E141) and it behaves like a typical PS; after light-
Introduction

Veronica Ambrosini | Thése de doctorat | Université de Limoges | 2020
Licence CC BY-NC-ND 3.0

30



activation, it produces ROS that are harmful for pathogens, bacteria, viruses and fungi (Luksiene et
al., 2004; Luksiene, 2005; Luksiene et al 2010; Luksiene and Brovko, 2013; Luksiene, 2014; Glueck
et al 2019; Luksiene and Buchovec, 2019; Lukseviciute and Luksiene 2020).

Figure 18: Chemical structure of chlorophyllin (E140).

Na™* is the counter-ion

1.5.2.5. Natural porphyrins and tetrapyrrolic pathway

Tetrapyrrolic pathways play an important role in biological systems. Products of these pathways are
naturally occurring heme and chlorophyll. These two structures consist of a porphyrin and a
porphyrin-type molecule (chlorin) in the active centre, respectively (Battersby et al 1980, Senge et al
2015). Heme and chlorophyll also differ by the metal that they have in the centre. Chlorophyll has a
Mg?* metal, whereas heme has a Fe?* (Figure 19).

The tetrapyrrolic pathway, that allows for the formation of heme and chlorophylls, is highly regulated.
This pathway and a part of this regulation is discussed in the publication below (Ambrosini et al.
2019 “How protoporphyrinogen X oxidase inhibitors and transgenesis contribute to elucidate plant

tetrapyrrole pathway”).
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Human Blood
Hemoglobin Plant Chlorophyll

Figure 19: Chemical structure of Hemoglobin and chlorophyll.
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1.5.2.6. PUBLICATION 1: How protoporphyrinogen X oxidase inhibitors and
transgenesis contribute to elucidate plant tetrapyrrole pathway

Journal of Porphyrins and Phthalocyanines Published at http:/ivww.worldscinet.comjpp/
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ABSTRACT: Several families of herbicides, especially diphenyl ether (DPE) and pyrimidinedione,
target the plant tetrapyrrole biosynthesis pathways and in particular one key enzyme, protoporphyri-
nogen IX oxidase (PPO). When plants are treated with DPE or pyrimidinedione, an accumulation of
protoporphyrin IX, the first photosensitizer of this pathway, is observed in cytosol where it becomes very
deleterious under light. Indeed these herbicides trigger plant death in two distinct ways: (i) inhibition of
chlorophylls and heme syntheses and (ii) a huge accumulation of protoporphyrin IX in cytosol. Recently,
astrategy based on plant transgenesis that induces deregulation of the tetrapyrrole pathway by up- or down-
regulation of genes encoding enzymes, such as glutamyl-fRNA reductase, porphobilinogen deaminase and
PPO, has been developed. Against all expectations, only transgenic crops overexpressing PPO showed
resistance to DPE and pyrimidinedione. This herbicide resistance of transgenic crops leads to the hypothesis
that the overall consumption of herbicides will be reduced as previously reported for glyphosate-resistant
transgenic crops. In this review, after a rapid presentation of plant tetrapyrrole biosynthesis, we show how
only PPO enzyme can be the target of DPE and how transgenic crops can be further resistant not only to
herbicide but also to abiotic stress such as drought or chilling. Keeping in mind that this approach is mostly
prohibited in Europe, we attempt to discuss it to interest the scientific community, from plant physiologists
to chemists, who work on the interface of photosensitizer optimization and agriculture.

KEYWORDS: diphenyl ether, herbicides, photosensitizers, plant transgenesis, protoporphyrinogen
oxidase, pyrimidinedione, tetrapyrroles.

INTRODUCTION by agrochemical industries: fungicides, herbicides and
bactericides. These molecules are normally very specific
and directed against one specific living group. For
example, adventices (weeds) are eliminated by glyphosate
or oxyfluorfen [1, 2]. Nevertheless, time exposures and
treatments make these molecules hazardous for other
groups such as humans and wildlife [3]. Thus, around the
world, agricultural practices based on excessive pesticide
consumption have become an increasing and major
problem for both human and wildlife health. Therefore,
*Correspondence to: Catherine Riou, tel.: +33 55545 74 74,  environmental protection must be rapidly taken into
email: catherine.riou @unilim.fr. account and resolved.

After the Second World War, crop yields and
agricultural dependencies were considerably raised,
becoming largely dependent on pesticides, and making
the agriculture and crop business very efficient and
profitable. However, this was also very destructive for
wildlife and, unfortunately, detrimental to human health.
Three main classes of pesticides are largely produced
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In agriculture, two situations must be considered:
the pre-harvest when plants are cultivated and the post-
harvest when fruits and vegetables are harvested. The
first is directly linked to open field farming and very
dependent on pesticide inputs such as herbicides and
antimicrobial molecules, for crop yield performance. The
latter situation concerns vegetable and fruit conservation
or preservation for the food industry. To gain insight
into the exciting challenge in optimized agriculture and
food industry, Antimicrobial PhotoDynamic Treatment
(APDT) has been recently envisaged for the improvement
of agriculture with respect to wildlife and environmental
health and safety. APDT in agronomy could be a large-
scale strategy for both pre- and post-harvests. Independent
of the situation, APDT depends on a complex molecule
excited by light called a photosensitizer (PS). The aim
of this approach is to kill microorganisms or weeds
that are largely responsible for food rot or decrease in
crop yields, without depletions of crop growth. Recent
studies based on exogenous photosensitizer treatment
on various species growing in vitro or in field against
bacteria or fungi were performed with encouraging
results [4-14]. The recent studies about potential direct
APDT applications on plants and/or microorganisms
have been collected and largely illustrated in Issawi et al.
[15]. Otherwise, to our knowledge, only a few research
teams have implemented the APDT approach in fruit
decontamination and conservation [16-19]. They tested
a natural PS from chlorin group, chlorophyllin (a food
additive known as E140) or curcumin on fruits such as
strawberries, showing a delay of fruit rot [20-24]. This
strategy was also applied to vegetables such as lettuce,
tomato and spinach [19]. All the data relative to food
preservation have been well reviewed and thus will not
be emphasized in this review [16, 23, 25-29].

In our opinion, an additional side of plant photo-
dynamic treatment that could be described as indirect
photodynamic treatment which is based on plant
transgenesis tools is generating a lot of interest but has not
yet been compiled. This alternative, imagined in 2000s,
only concerns herbicide resistance [30]. Until now, 60%
of pesticides used worldwide correspond to herbicide
molecules that are directed against undesired plants [31].
The difficulty is that plants called adventices (or weeds)
have a very rapid growth rate and a huge seed production,
making them very efficient and mostly dominant in crop
fields.

Since the two last decades, manipulations of
tetrapyrrole biosynthesis genes have been carried out to
kill plants by forcing them to accumulate photosensitizers
(PS) such as protoporphyrin IX, the first natural PS.
Surprisingly, these transgenic plants showed herbicide
resistance and all the tested herbicides recognized the
same enzyme target, the protoporphyrinogen IX oxidase
called Protox or PPO (Fig. 1). Indeed, at least 6 classes
of herbicides are PPO inhibitors. They recognize and
inhibit its catalytic site [32, 33]. In this review, only two

Copyright © 2019 World Scientific Publishing Company
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classes: diphenyl ether (DPE) and pyrimididione, which
are largely used in agriculture all over the world, will be
investigated [15, 32-37]. It was thought that the strategy
implying foreign PPO expression by plant transgenesis
was a good way to diminish herbicide demand
as previously shown with glyphosate and transgenic
plants overexpressing foreign S-enolpyruvylshikimate-
3-phosphate synthase (EPSP) that is not recognized and
inhibited by glyphosate [38]. Nevertheless, in a European
context, where genetically modified plants are not
welcome, this type of approach should probably be given
up. Regardless, transgenic plants and gene manipulations
have given rise to a better understanding of tetrapyrrole
pathway regulation. Furthermore, the study of these
plants has shown interactions between tetrapyrrole
pathway regulation and response to abiotic stress such as
chilling or drought [39, 40]. Therefore, after describing
the plant tetrapyrrole biosynthesis, we will focus on the
effects of overexpression of PPO and other key enzymes
in crops, in order to better understand the mechanism
that could explain herbicide resistance in PPO transgenic
plants.

Plant tetrapyrrole biosynthesis

The tetrapyrrole biosynthetic pathway has been
described in mammals, plants and microorganisms [15,
41-43]. The tetrapyrrole core is a complex macrocycle
that can be linked to a long linear carbon chain, as in
chlorophylls, to fix them in thylids or surrounded by
proteins to form hemoglobin or Cytochrome P450.
Tetrapyrroles are able to bind a metal in its core,
magnesium for chlorophylls or iron for hemoglobin,
with metalation being under the control of chelatases.
Tetrapyrroles, metallated or not, play a crucial role in
sunlight collection (chlorophylls a and b), nitrogen
fixation, oxygen transport, and ROS scavenging (heme)
[43-46].

The first common precursor is the 5-aminolevulenic
acid (5-ALA), which may come from succinyl-CoA
glycine via the Shemin pathway or glutamate via the
C5 pathway. The C5 pathway is characteristic of plants
and of most bacteria, while the Shemin pathway is
characteristic of humans, some bacteria and yeasts. After
the formation of 5-ALA, a series of chain reactions leads
to the formation of uroporphyrinogen III. Subsequently
the uroporphyrinogen III can lead to the formation of
siroheme (synthesized in bacteria, yeast and plants),
cobalamin B12 (synthesized in bacteria and archaea),
cofactor F430 (which only exists in methanogenic
bacteria) and coproporphyrinogen III through the
coproporphyrinyl oxidase [47-49]. Following formation
of coproporphyringen III, protoporphyrin IX (PPIX)
is produced. PPIX is the main key precursor of heme
and chlorophylls (Fig. 1). Thus, its synthesis has to be
highly regulated. Furthermore, PPIX must be confined
in the plastidial compartment to avoid its potential
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Fig. 1. Plant tetrapyrrole biosynthesis pathway and chlorophyll

turnover in chloroplast. The two key enzymes of tetrapyrrole

pathway: GluTR: glutamine -RNA reductase and PPO: protoporphyrinogen IX oxidase are shown in red. Protoporphyrin IX is
located in thylakoids of chloroplasts and leads to heme and chlorophylls. Heme is partially translocated into cytosol (blue dashed
arrow). GSA: Glutamate semialdehyde aminomutase; PBS: porphybilinogen synthase; UROS: uroporphyrinogen synthase; UROD:
uroporphyrinogen decarboxylase: CPO: coproporphyrinogen oxidase. Black arrows in green box indicate chlorophyll turnover
pathway with the major derivatives that are also photosensitizers and enzymes. MgD: Mg-dechelatase; DEPH: dephytylase, PPH:

pheophytinase, PAO: pheophorbide oxygenase; SGLD: stay-green |

photo-activation which could be fatal to plants. Two
other compounds, uroporphyrinogen III and copropor-
phyrinogen III, could also have the capacity to become
powerful PSs [15]. Due to the vital importance of this
pathway for plant life, it is thoroughly regulated at
transcriptional and post-transcriptional levels. The
rate-limiting step is certainly the synthesis of 5-ALA,
particularly the activity of glutamyl fRNA reductase
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(GIuTR) that is encoded by a small genetic family called
Hem A [15, 42]. Moreover, glutamine -RNA reductase
(GIuTR) is the second key enzyme of the pathway that
is regulated by feedback by regulator protein (Flu) but
it has never been identified as a potential herbicide or
drug targets [42]. In plants, enzymes, especially UROS,
UROD, CPO and PPO, must always be expressed in
large amount even under normal conditions, in order to
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supply metabolites of tetrapyrrole in case of stress [41].
In addition, at the heme/chlorophyll branching point,
protoporphyrinogen oxidase and magnesium chelatase
are subjected to redox regulation by thioredoxin.
Moreover, in the Mg branch, the synthesis of 5-ALA
is under negative control through protochlorophyllide
[41,42,50-52].

Overexpression of PPO in crops

In the beginning of the 2000s, genes encoding PPO
were cloned from bacteria, humans and plants and used to
generate transgenic rice, maize and tomatoes [53-58]. In
plants and algae, two classes of PPO were characterized,
namely PPO-1 and PPO-2, from chloroplasts and
mitochondria respectively [55]. Both plant isoenzymes
PPO-1 and PPO-2 are coded by Hem Y, but the two
isoenzymes of tobacco or spinach show a weak amino acid
sequence identity (around 27% for tobacco PPO-1 and 2)
[59]. Both PPOs are bound to the internal membranes of
chloroplasts or mitochondria; PPO-1 enzymes are linked
by their Nt sequence at the consensus domain (Gly-X-
Gly-XX-Gly) to thylakoids. Until now, no cytoplasmic
PPO has been identified [60]. The hypothesis underlying
overexpression of gene encoding PPO was that the plants
were not able to live anymore due to a huge accumulation
of PPIX. Surprisingly, transgenic crops like Arabidopsis
and rice, overexpressing human, bacterial or plastidial
plant PPO genes, could survive, showing a significant
amount of protoporphyrin IX responsible for bronzing
necrosis or photobleaching, and an increase in superoxide
dismutase and peroxidases activities that mitigate
photodynamic stress [53-56, 58]. Tomato plants over-
expressing plastidial Arabidopsis thaliana PPO under
the control of 35S promoter showed significantly higher
enzyme activity and a resistance to the DPE herbicide
acifluorfen [55]. To a larger extent, the transgenic crops
overexpressing plant plastidial, bacterial or human PPO
showed resistance to DPE, pyrimidinediones such as
butafenacil, and even to abiotic stress, for instance,
drought and chilling. Phung ef al. studied the response
of transgenic rice expressing bacterial PPO and showed a
resistance to drought stress conditions [38].

Overexpression of other key enzymes in crops

Additionally, gene encoding bacterial ferrochelatase
overexpression leads to acifluorfen resistance in rice
plants due to heme overexpression which plays a crucial
role in signaling and ROS scavenging [61]. Furthermore,
overexpression of ATHEMA1 encoding Glutamine fRNA
reductase (GluTR) leads to protochlorophyllide accumul-
ation in Arabidopsis and much more in tobacco plants
[62]. RUGI gene encoding porphobilinogen deaminase
(PGBD) was characterized and overexpressed in
Arabidopsis thaliana showing leaf necrotic spots and
supernumerary shoot meristems [63].
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The chlorophyll catabolic pathway has not yet
been manipulated to overproduce endogenous PS like
pheophorbide, probably due to the tiny regulation of
chlorophyll inside cells. However, several harmful PS
like pheophytine and pheophorbide can be found within
that turnover pathway [64].

Suppression of key gene expression involved
in tetrapyrrole pathway

Antisense RNA was used to knock down the genes
encoding key enzymes of the tetrapyrrole metabolic
pathway. Mock and Grimm reduced the level of
UROD leading to the accumulation of the harmful PS
uroporphyrin ITI and subsequently growth inhibition in
tobacco under intense light (Fig. 1) [65]. Intriguingly,
RNA antisense against UROD and CPO in tobacco
induced, beyond the accumulation of uroporphyrin
IIT and coproporphyrin III, necrotic lesions similar to
the hypersensitive reaction after pathogen attack, with
the high level of pathogenesis-related proteins and
salicylic acid conferring resistance against tobacco
mosaic virus [66].

Moreover, PPO antisense expression leading to
systemic acquired resistance was also reported in
Arabidopsis thaliana [67]. Ayliffe and co-workers
developed an activation tagging system based on a
transposable element to enable UROS gene silencing
in barley. They showed that the reduced UROS enzyme
activity led to the accumulation of the substrate
hydroxymethylbilane, which spontaneously cyclizes to
form uroporphyrin I, resulting in necrotic lesions and
involved in retrograde signaling [68].

Unexpectedly, antisense against the CHL-H subunit
of magnesium chelatase (one of the three subunits
of Mg chelatase) in transgenic barley did not cause a
photosensitive reaction but instead caused a reduced
level of heme and chlorophyll due to negative feedback
in the early steps of the tetrapyrrole synthesis [69].

How do PPO transgenic plants resist DPE?

Indeed, deregulations of the plant tetrapyrrole path-
way, especially based on PPO overexpression, lead to
resistance to several families of herbicides, particularly
DPE (oxyfluorfen, acifluorfen) and pyrimidinedione
(butafenacil). Photodynamic herbicides and PPIX target
the same site of the PPO protein [55,70,71]. The inhibition
of PPO by DPE (acifluorfen) or pyrimidinedione (butafen-
acil) is a competitive inhibition that inhibits PPO activity
(Fig. 2a). Moreover in tobacco, at position 392 of PPO,
a Phe or Tyr in mitochondrial PPO (PPO-2), seems to be
essential for the orientation of the herbicide molecule into
the pocket [71]. The first ring (A) of proto IX is stacked
by Phe*”, the second ring (B) is stacked between Leu™
and Leu*™, and the propionate carboxylate of the third
ring (C) is bound to Arg® while the fourth ring (D) is
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Fig. 2. Herbicides and Protoporphyrinogen IX competition on Ct of mitochondrial PPO (a) Tridimensional structure of
mitochondrial PPO from tobacco (Nicotiana tabacum) is from UniProt bank (access number 024 164). Herbicides are represented
by acifluorfen as diphenyl ether and butafenacil as pyrimidinedione. The blue dashed arrow indicates a normal interaction
between protoporphyrinogen IX substrate and the pocket of PPO with the essential position of Phe**? and the red dashed lines
the inhibition by photo-herbicides on the same site of PPO. (b) Ring A and ring B of protoporphyrinogen IX is stacked by
Phe*” and between Leu**® and Leu*™, respectively. The propionate carboxylate of the ring C is bound to Arg”® and the fourth
ring (D) is located near the Flavin Adenine dinucleotide Domain (FAD domain), modified from Heinemann et al., 2017 [73].
(c) Multiple amino-acid sequence alignments of plant PPO-2: Nicotiana tabacum (access number 024164), Arabidopsis thaliana
(access number Q8S9J1) and Spinacia oleracea (access number Q94IG7). Red boxes indicate amino acids involved in substrate/
herbicides recognition
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(a)

7

PPO
overexpression

Herbicide resistance

Drought, flooding and
chilling resistance

Fig. 3. Photo-herbicide, crop and PPO transgenesis strategy. (a) crop sprayed by an herbicide such as DPE or pyrimidinedione is
dying. (b) Transgenic crop overexpressing PPO treated or not by DPE or pyrimidinedione, well grows showing some leaf necrosis
represented by black spots. Moreover, this plant becomes multi-resistant to abiotic stresses such as drought, chilling and flooding

located near the FAD domain (Fig. 2b) [71-73]. In other
species, such as Arabidopsis and spinach, these functional
amino acids seem to be shifted (Fig. 2c). When DPE
interacts with PPO, extra production of protoporphyri-
nogen IX is delocalized from the chloroplast to the
cytosol and transformed into PPIX. Protein transporters
from chloroplasts to cytoplasm and putative cytoplasmic
PPO are still unknown.

Cytoplasmic PPIX becomes photo-activated and
consequently leads to a high ROS production that
triggers plasma membrane oxidation and death [33, 68].
When genes encoding PPO are overexpressed in plants,
PPIX remains in chloroplasts where it is less deleterious.
Indeed, PPIX triggers ROS production but as it occurs in
chloroplasts that are double membrane organelles, plant
cellsareself-protected as supposed by Liand Nicholls [55].
When genes encoding PPO were overexpressed in plants,
a decline of porphyrin intermediates (Fe-protoporphyrin
IX, Mg-protoporphyrin IX, protochlorophyllide, Mg-
protoporphyrin methyl ester) was observed while the level
of heme and chlorophyll remained unchanged. Indeed,
these metabolites act as signal molecules in the complex
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network controlling stress-responsive gene induction.
Moreover, the unbound heme serves as a ROS scavenger
through its incorporation in apoproteins such as catalase
and peroxidase. Furthermore, chlorophyll plays a pivotal
role in maintaining photosynthesis under stress [38, 39,
43]. Finally, when transgenic plants overexpressing PPO
are treated with a photo-herbicide, they become resistant
to the herbicide (Fig. 3).

CONCLUSION

Until recently, all the strategies performed to bypass
or decrease herbicide use based on plant tetrapyrrole
deregulation by transgenesis were essentially foreseen
to increase crop yield, as was achieved for glyphosate
resistance of transgenic crops [74]. Indeed, it was shown
that transgenic crops resistant to glyphosate led to a true
decrease in herbicide consumption the first time they
were cultivated in fields. Unfortunately, with time, weeds
became super-resistant to glyphosate, and farmers are
now forced to use higher amounts of glyphosate, even
more than before transgenesis. Thus, this type of approach
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in agriculture must be considered as very dangerous for
plant, wildlife, water contamination and human health
as shown with glyphosate transgenic plants largely
cultivated around the world [40]. Fortunately, researchers
developing PPO-overexpressing transgenic crops showed
a surprising result, resistance to drought, which is also
of interest with the idea to generate plants able to be
resistant to the Earth’s global warming. Moreover,
their work helped increase understanding of the high
regulation of this key pathway to respond to abiotic stress
[38, 39]. Therefore, to gain insight into the reduction of
herbicide consumption, a direct photodynamic treatment
must be developed using a very low concentration of
very efficient PS, which will be rapidly photodegraded
and will kill weeds without altering crop growth and
development, as previously described by our team [9, 12,
15] and those of Almeida [14] and Braga [6-8, 10-11].
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1.6. PhD objectives

Since the 1960’s, the use of huge amounts of pesticides to increase crop yield caused environmental
pollution, loss of fauna and flora biodiversity, and the development of multi-resistant plant pathogens.
Now, agriculture practises must become environmentally friendly especially in Europe and moreover
in France. Thus, new strategies to improve agriculture, without side effects for the environment and
human health, need to be developed. One of the major problems in agriculture remains the struggle
against pathogens, especially fungi. Various strategies to fight against fungi in particularly B. cinerea
have been described in the introduction of this manuscript. In this PhD work, in order to combat
against this fungus, a new approach called antimicrobial photodynamic treatment (APDT) is
investigated. This treatment is based on the activation of a photosensitizer (PS) under sunlight.(Figure
20).

!
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Figure 20: Scheme of APDT mechanism in the context of this manuscript
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In the third chapter, the response of B. cinerea to exogenous TPPS and Chl treatments was
investigated under a 16-hour photoperiod and dark conditions. TPPS was chosen because encouraging
results were already obtained on Arabidopsis and tomato plantlets (Guillaumot et al 2016; Issawi et
al 2018). More specifically, the anionic porphyrin tetra-4-sulfonatophenylporphyrin tetra-
ammonium(TPPS) did not provoke any harmful effect on both plantlets, even at concentrations as
high as 50 uM. However, cationic tetra(N-methylpyridyl) porphyrin, tested at 3.5 puM, inflicted
harmful effects on both 14-day-old Arabidopsis and tomato plantlets.

Furthermore, TPPS is a synthetic molecule and we hypothesised that Chl, a natural water-soluble
compound, could be a better candidate for future agricultural applications.

In chapter 1V, the effect of TPPS was investigated on in vitro clonal grapevine plantlets (Vitis
vinifera). Moreover, the experiments were conducted on three different varieties: Sauvignon,
Chardonnay and Merlot because of their different susceptibilities to B. cinerea. The overall goal was
to reproduce a “pathosystem prototype” in vitro by using a micromolar concentration of TPPS. This
pathosystem was developed using detached grapevine leaves in contact with B. cinerea pre-treated
or not with TPPS. The results were reported at the end of chapter IV in the manuscript (submitted
paper in Scientific Reports “Photodynamic inactivation of Botrytis cinerea by an anionic porphyrin:
an alternative pest management of grapevine).

However, in chapter V, the response of potato plantlets (Solanum tuberosum) to an exogenous supply
of TPPS and Chl was measured. In this case, four different varieties were taken into consideration:
Bintje, Hinga, Grenadine and Laurette. The fact that different varieties of well-known plants were
studied represents a milestone for this type of strategy. Furthermore, a pathosystem for potato was
not developed in this work as it will be more interesting to investigate the effect of the APDT against

a more common potato pest such as Alternaria solani.
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1. Material and methods

I1.1. Photosensitizers

Two photosensitizers are used in this work. The first PS corresponds to a free base porphyrin
5,10,15,20-(tetra-4-sulfonatophenyl) porphyrin tetra-ammonium (hamed TPPS) and the second one,
a chlorin: chlorophyllin (named Chl) (Figure 15 and 18, respectively).

Both PS are perfectly water-soluble and thus, prepared in sterile and pure water to a final
concentration of 1 mM. TPPS can be stored for two weeks and Chl that is unstable in solution, not
more than few days. Both stock solutions are kept under dark conditions at 21 °C. TPPS was
purchased from the company PorphyChem (Dijon, France) and Chl from the company Carl Roth
(Karlsruhe, Germany).

I1.2. Fungal material and culture

11.2.1. Botrytis cinerea strain
The strain of B. cinerea (UBOCC-A-117017) was collected and isolated from infected tomato plants.
This was provided by Dr Weill from the UBO Culture Collection, UBOCC-EDSIAB, Plouzane,

France.

11.2.2. Botrytis cinerea mycelium growth curve on agar medium

The B. cinerea culture medium was potato dextrose agar (PDA purchased from Difco). After
autoclaving (120°C for 20 min), PDA was supplemented with or without TPPS in the concentration
range of 0.5-3.5 uM or with 25 and 50 uM Chl, respectively.

To maintain the fungus growth or to follow PS effect on mycelium growth, a plug of 0.6 cm diameter
of two-week old B. cinerea was placed in the middle of Petri dish containing PDA with or without
PS at the desired concentration. Measurements of diameter of the circular mycelium growth were
performed every day to draw the growth curves. For both PS, the growth was monitored under 16h

photoperiod and dark conditions.

11.2.3. Botrytis cinerea spore isolation and germination

The culture medium for maintaining and germinating the spores was Potato Dextrose Broth (PDB),
autoclaved at 120 °C for 20 min.

Material and methods
Veronica Ambrosini | Thése de doctorat | Université de Limoges | 2020
Licence CC BY-NC-ND 3.0
43



11.2.3.1. Spore extraction

A plate containing at least two-week old B. cinerea was harvested by gently scraping the gel surface
of the culture in the presence of 10-15 ml of 0.05 % solution of Tween 80. Sterile mini glass beads
(2 mm diameter) were added to the suspension that contained mycelium and spores. The suspension
was vortexed for 10 seconds, 3 times. Subsequently, the suspension was filtered on a 40 um nylon
filter to remove the mycelium. Spore numeration was performed under Malassez cell and the enriched

spore suspension was diluted in order to reach a concentration of 10°-10° spores.ml™.

11.2.3.2. Photodynamic treatment of TPPS on spore germination

To investigate TPPS potential inhibitory effect, the protocol described in Alasmari et al 2017 was
followed and slightly modified. The experiment was conducted in vitro under a 4-hour illumination
(photon flux density of at least 100 pmol.m2.s™") with 3.5, 12.5 and 50 uM TPPS.

The extracted spores were suspended in a phosphate buffer (pH 7) in a small Petri dish (60 mm
diameter), at a concentration of at least 10* spores.ml™, in a 4 ml final volume. Aliquots of 2 ml of
spores suspension were mixed with the same volume of TPPS solution (1:1 v/v). The Petri dishes
were left under light for at least 4 hours under low stirring (80 rpm). In order to determine the viable
spore reduction after 4-hour light exposure, 100 ul of each sample was transferred on PDA and
incubated for 4-5 days at 22°C under dark. The following calculation was used for determining the
percentage reduction by counting the colony forming units (CFU):

% Reduction = (A-B)/A*100

Where:

A: the mean of spore reduction without PS after 4 hours of illumination

B: the mean of spore reduction with PS after 4 hours of illumination

11.3. Plants material: varieties and cultures

11.3.1. Grapevine clone culture

Chardonnay (clone 7535) was provided by Pr. Clément (Université de Reims, Champagne-Ardenne,
France). Sauvignon (clone 379) and Merlot (clone 373) were provided by the Institut Francais de la
Vigne et du Vin (Bordeaux, France). Intermodal explants of grapevine were dissected and placed in
glass tubes or jars containing half Chée and Pool medium and 2 % (w/v) sucrose, Sobigel solidified
medium (pH 5.9) for 1 to 3 months. PS were added to the medium after autoclaving. The cultures

were then exposed to an Osram spectrum white lamp (photon flux density of 120 pmol.m2.s™!) for
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16 hours and the temperature was maintained at 24 °C. Chee and Pool medium was purchased from
Duchefa Biochemistry (Haarlem, Holland). Roots and aerial parts were rapidly dissected, frozen into

liquid nitrogen and stored at -20 °C until use.

11.3.2. Infection of two- month-old grapevine leaves with Botrytis cinerea
mycelium

Two-month-old grapevine detached leaves and four-day-old mycelium plug (0.6 cm diameter) were
used to perform the “In vitro infection” experiment. This type of experiment was only performed for
grapevine leaves. Mycelium plugs were firstly incubated in 12.5 or 50 uM TPPS and gently stirred
for 8 hours at 22 °C under dark conditions. After incubation, fungus discs were placed on the upper
leaf epidermis of the grapevine from Chardonnay, Merlot and Sauvignon varieties. The co-cultures
were monitored daily and photographed under a Leica stereomicroscope.

11.3.3. Potato clone culture

Bintje, Hinga, Grenadine and Laurette clones were provided by Grocep, Lauriere (Haute-Vienne,
France). Intermodal explants of 1-month-old clonal plantlets were dissected and placed in glass tubes
or jars containing Murashige and Skoog (MS) basal medium plus MS vitamins, 2 % (w/v) sucrose
and 100 mg.L myo-inositol solidified medium (pH 5.8). Photosensitizers were added to the medium
after autoclaving. MS medium including vitamins was purchased from Duchefa Biochemistry
(Haarlem, Holland). The cultures were then exposed to white light (photon flux density of 120
pumol.m 2.s™!) under a 16-hour photoperiod at 22 °C for 14 days or 1 month. Roots and aerial parts

were quickly dissected before liquid nitrogen freezing and stored at -20 °C until use.

I1.4. Microscopic analysis of mycelium or germinating spores

11.4.1. Confocal microscopy analysis

A LSM510META Zeiss confocal microscope (Carl Zeiss France, Marly-le-Roi, France) was used to
perform the microscopic analysis on the B. cinerea mycelium and spores.

The samples used for the mycelium were a culture of 4 days old B. cinerea grown under dark on PDA
containing 3.5 uM TPPS or 50 uM Chl. The spores were incubated in buffer phosphate or in PDB
medium with a concentration of 10 uM TPPS or Chl at 22 °C. After incubation, the suspension was
centrifuged for 5 minutes at 10,000 rpm. Subsequently, the pellet was resuspended in a new buffer
phosphate or PDB medium without photosensitizers. The data was acquired using the spectral
Material and methods
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acquisition mode for TPPS and Chl localisation (excitation wavelength was 405 nm and the emission

was detected at 640 nm) and under the channel mode for examination of mycelium and spores.

11.4.2. Environmental Scanning Electronic Microscopy on mycelium fungus and

infected leaves

This experiment was performed to visualise TPPS effect on mycelium structure and/or pathosystem:
isolated leaves, B. cinerea and TPPS. Environmental Scanning Electronic Microscopy (ESEM) was
conducted on B. cinerea mycelium. The fungus grew on plates containing, or not, TPPS for 4 days
under 16 h of photoperiod or under dark. These were then examined under Environmental Scanning
Electronic Microscope (ESEM Quanta 450, Felmi-ZFE, Graz, Austria). The width of hyphae was
measured from the pictures obtained from ESEM. Furthermore, ESEM analysis was conducted on
the two- month-old grapevine leaves infected with the 4-day-old B. cinerea mycelium pre-treated or
not with TPPS.

11.5. Determination of enzymatic activities linked to ROS production
11.5.1. Extraction buffer composition

A) For Botrytis cinerea

After grinding in liquid nitrogen, the fine powder of mycelium that contains total proteins was
dissolved in 1 mL of extraction buffer containing 50 mM phosphate buffer pH 7.8, 1 mM 1,4-
dithiothreitol (DTT), 1 mM ethylene diamine tetra acetic acid, 1% (w/v) polyvinylpyrrolidone (PVP)
and 10% (v/v) glycerol. This solution was centrifuged at 13,000 rpm for 20 minutes at 4°C. The

protein concentration of the supernatant was determined according to Bradford (1976).

B) For plantlets

The protocol for the plant protein extraction was the same with the exception of extraction buffer that
contains polyvinylpolypyrrolidone (PVPP) instead of PVP. PVPP inhibits interference between plant
phenolic compounds and Bradford solution (Bio-Rad, France).

11.5.2. Superoxide Dismutase
The superoxide dismutase (SOD) activity protocol was performed for fungus and plants, in the
absence of bathocuproine sulfonate (Guillaumot et al 2016). The standard curve was set so that the

increase in absorbance at 560 nm was between 0.02 and 0.03 absorbance units per minute and was

Material and methods
Veronica Ambrosini | Thése de doctorat | Université de Limoges | 2020
Licence CC BY-NC-ND 3.0
46



monitored for 5 min. One unit of SOD was defined as the amount of enzyme required for a 50 %
inhibition of NBT reduction. Five uL of the enzyme extract were used and the SOD specific enzyme
activity was determined according to the protein concentration of each sample.

11.5.3. Catalase

The measurement of catalase (Cat) was performed for fungus and plants, according to the protocol
described by Guillaumot et al 2016. Rapidly, 20 ug of total soluble proteins were transferred to a 50
mM phosphate potassium buffer (pH 7.0). To start the reaction, H.O> was added to a final
concentration of 20 mM and the final volume was 1 mL. The measurement of absorbance at 240 nm
was monitored for 3 minutes and the H.O> disappearance was calculated using the slope of the linear

portion of the resulting curve using a molar extinction coefficient of 43.6 M~'.cm™.

11.5.4. Guaiacol Peroxidase

As this enzyme activity is only described for plants, it was conducted on in vitro plants roots or aerial
parts, according to the protocol described by Guillaumot et al 2016. The guaiacol peroxidase activity
(GPX) was monitored at 436 nm. The increase in the absorbance is due to the formation of
tetraguaiacol. For each sample, 10 pg of total soluble proteins were transferred to 50 mM phosphate
potassium buffer (pH 7) and supplemented with 0.25% guaiacol (5% stock solution in 95% ethanol
w/v). To start the reaction, H2O2 was added to a final concentration of 2.5 mM and the absorbance
was monitored for 2 minutes. Molar extinction coefficient used for the calculation is of 25.5

mMl.em™,

11.6. Hydrogen peroxide quantification

The measurement of hydrogen peroxide (H202) was always performed on fresh samples according to
Guillaumot et al (2016). Fresh mycelium or plants (roots or aerial parts) are grounded in liquid
nitrogen. 1 mL of extraction buffer was then added to the samples and the homogenates were
centrifuged at 13,000 rpm at 4 °C for 20 min. As H20> reacts with an acidic solution of titanium (I11)
sulfate (Ti2(SOa)s) to form pertitanic acid (TiO(H202)*"), 335 uL of 0.1% titanium III sulfate (v/v) in
a solution of 20% (w/v) H2SQO4, was added to the mixture. The absorbance was then read at 415 nm.

H,0, amounts were expressed as nM.g™* protein.
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11.7. Lipid peroxidation and MDA assay

This test was based on the determination of malondialdehyde (MDA) content. Approximately, 150
mg of fresh or frozen fungus or plants (roots or aerial parts), were grounded in liquid nitrogen. 1.5
mL of 20% (w/v) TCA was added to the powder. The mixture was centrifuged for 20 min at 13,000
rpm at 4 °C. The following procedure was performed in haemolysis tubes. For each sample, 0.5 ml
was added to either 0.5 ml1 20% TCA (—TBA) or 20% of TCA supplemented with 0.5% thiobarbituric
acid (+TBA). These samples were transferred into a water bath for 30 minutes at 95 °C. Afterwards,
the samples moved on ice to cool. Optical densities were determined at three wavelengths: 440, 532
and 600 nm, respectively. The peak at 400 nm is due to the possible presence of porphyrin in the
extract and subsequent interference with absorbance readings (Guillaumot et al 2016)

1) [(Abs 532+TBA—Abs 600+TBA) — (Abs 532-TBA—Abs600-TBA)] =A.

2) {[(Abs 440+TBA — Abs 600+TBA) — (Abs 440-TBA — Abs 600-TBA)] 0.0571} = B.

3) MDA equivalents (nmol.mIY) = [(A — B)/157,000].10°

11.8. Proline content determination

250 mg of the mycelium were grounded at 4°C in 1.5 mL of 5% (w/v) 5-sulfosalicylic acid (SSA).
After centrifugation at 13,000 rpm for 15 min at 4°C, 0.2 ml of the supernatant was mixed with 0.8
ml of 1% (w/v) ninhydrin in 60% (v/v) acetic acid. The samples were incubated at 100 °C for 20 min
and were allowed to cool to room temperature before the addition of 1 mL toluene. After a 4 h
incubation at room temperature, the upper organic phase was isolated, collected and the absorbance
was read at 520 nm. A standard curve was established with proline and the content was expressed in

umol g* fresh weigh.

11.9. Total thiol Assay
After liquid nitrogen grinding, 1 ml of 0.2 N HCI was added to 100 mg of mycelium powder or plants

(roots or aerial parts), the mixture was vigorously vortexed and kept on ice. A centrifugation at 13,000
rpm at 4 °C for 20 minutes was then performed. Afterward 500 pL of the extract solution were
neutralized with 400 uL NaOH (0.2 M) and 50 pL NaH2POj (0.2 M). 700 uL of 0.12 M NaH2POu, 6
mM EDTA and 0.1 mL of 6 mM Dithiobis 2 nitro benzoic acid (DTNB) were added to 200 pL extract.
For standards, the extract was replaced by 0, 5, 10, 25 and 50 ug.mL™* glutathione (total volume 1
mL). The absorbance at 412 nm was read 5 minutes after the addition of standard or extract.
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11.10. Cellular leakage of Botrytis cinerea

The protocol was modified from Lunde and Kubo, 2000. Cellular leakage is determined by
quantifying the intracellular component’s release to the medium from washed cells by a simple
spectrophotometry method. Four plugs of 4-day-old mycelium were transferred into 40 ml of PDB
solution for at least one week to grow. 1.5 g of fresh fungus were then weighed, washed 3 times with
PBS solution and incubated with a fresh solution of 20 mL PDB solution, containing two different
concentrations of TPPS (1.5 and 3.5 uM). The new tubes were incubated in agitation at least for one
hour under dark conditions. Subsequently, the fungus in solution was removed by centrifugation (10
min, 10,000 rpm) and absorbance of supernatant was read at 260 and 280 nm.

11.11. Modification of pH medium by Botrytis cinerea extracellular secretion

Agqueous stock solutions of 1 mM TPPS were prepared in two different pH ranges: 5.5 and 10.8. From
these two stock solutions at different pH, several dilutions were made: 1.5, 3.5, 10, 12.5 and 50 uM
TPPS. These dilutions were made four times: into two groups of dilutions at pH 5.5 and the other two
at pH 10.8. From here, 4 plugs of 0.6 cm 4-day-old or 15-day-old B. cinerea were placed into each
50 ml tube (water control and 1.5-50 uM TPPS) and were incubated for at least 1 hour under dark

conditions and low agitation (90 rpm) (Figure 21).

TPPS stock solution
(1 mM)

I |
pH 5.5 pH 10.8
I I
[ I I I ) [ I I I |
1.5phi 3.5 b 10phd 125 phd 30 ph 1L5phf 350 10pAD 125 g 30 pM

e e

4-day old  15-day old 4-day old  15-day old
B. cinerea  B. cinerea B. cinerea  B. cinerea

Figure 21: Diagram of solutions made for investigation of extracellular secretion starting from
the stock solution of TPPS (ImM in water).
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The pH of the different mixtures (control, 1.5 and 50 uM TPPS) was measured before and after adding
the fungus plugs. After incubation, the fungus plugs were removed prior to UV-Vis spectrum

determination.

11.12. Statistical Analysis

All biological experiments were performed at least three times independently. Results were expressed
as a mean = SD (Standard Deviation). The data were analysed by t-student test and one-way ANOVA
using the PAST free software.
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Chapter I11. Photoactivation and inhibitory effect of TPPS

and Chl on Botrytis cinerea

In this chapter, the effects of TPPS and Chl on B. cinerea were studied. Both PS were tested on the
growth of B. cinerea myceliun under a 16 h photoperiod and dark conditions. Moreover, the TPPS
efficacy was also investigated on spore germination. This is considered as a sine qua non step to

develop our strategy.

I11.1. Results

I11.1.1. TPPS and Chl effect on Botrytis cinerea mycelium growth

The growth curve of B. cinerea was constructed using three different concentrations of TPPS (0.5,
1.5 and 3.5 uM) under a 16 h photoperiod and dark conditions.

A low concentration of photoactivated TPPS (0.5 uM) induced a delay in the mycelium growth,
whereas 1.5 uM of photoactivated TPPS completely inhibited the growth of the B. cinerea mycelium
(Figure 23). Therefore, this concentration represents the minimum fungicidal concentration (MFC).
Furthermore, under dark conditions, the growth of the treated mycelium and control were identical.
This thus suggests that TPPS, under dark, did not interfere with the growth and was not cyto- or
genotoxic for fungal cells. Overall, TPPS, tested at 1.5 uM, seems to be a very efficient fungicide.
According to our previous works on Arabidopsis and tomato plantlets that are insensitive to 50 uM
TPPS, this was very encouraging to defend the PDT strategy against fungus without alteration of
plant growth (Guillaumot et al 2016; Issawi et al 2018). Thus, it was decided to continue to work
with TPPS to validate our approach even if it is not a natural PS.

The same test procedure was carried out for a natural PS, Chl, at 25 and 50 puM. Surprisingly, in
presence of 25 uM Chl, the growth of the fungus slowed down and after the four day culture, it
restarted to grow suggesting a degradation of photoactivated Chl in the medium (Figures 23-24).
Furthermore, Chl tested at 50 uM was able to inhibit the fungus growth (Figures 22-23). Even if this
was a very high concentration compared to the MCF of TPPS, it was considered that the
photoactivated Chl was very promising. This is because of its ability to inhibit fungus growth and the
fact that it is a naturally occurring PS. Moreover, it was observed that under dark conditions, the

fungal growth was very slightly slowed down in both 25 and 50 uM Chl (Figure 24)
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0.5 pM TPPS 25 pM Chl
1.5 pM TPPS 50 pM Chl
3.5 uM TPPS

Figure 22: Mycelium growth monitoring under dark and light conditions in presence of TPPS or
Chl.

Plugs isolated from a 14-day-old culture were placed in the centre of the Petri dish containing or
not the PS. Petri dishes were placed under a 16h photoperiod (light) or under dark conditions.
Different concentrations of TPPS (0.5, 1.5 and 3.5 uM) (left) and Chl (25 and 50 uM) (right) were
tested. Petri dishes were photographed after 4 day-culture.

In order to construct the growth curve, the diameter of the fungus was measured daily, starting from
0.6 cm. As shown by the growth curve of the control under light and even under dark conditions
(Figure 22), the fourth day corresponded to the end of the exponential growth phase. Therefore, all

further investigations were conducted with 4-day-old B. cinerea mycelium.
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Figure 23: B. cinerea growth curve.
a): Growth curve of B. cinerea under a 16 h photoperiod (left) and dark conditions (right) using
TPPS at different concentrations. b): Growth curve of B. cinerea under a 16 h photoperiod and
dark conditions using Chl at different concentrations. Results are the mean of three independent

experiments + sd.

I11.1.2. Localisation of TPPS and Chl in Botrytis cinerea mycelium and
germinating spores

111.1.2.1. In mycelium

The two PS had effects on the growth of B. cinerea. TPPS induced a dramatic effect on the
mycelium’s growth curve whereas Chl slows down the growth. Therefore, it was decided to visualise
the PS in the B. cinerea mycelium and spores by confocal microscopy. In previous work on tobacco
plant cells (TBY-2 cells), where TPPS was the most efficient cell killer, it was mainly found in plant
cell walls (Issawi et al 2019). From these findings, a similar localisation of TPPS was expected in the
fungal cell wall even if the cell wall composition is completely different to that of the plant cell wall.
The samples used for the mycelium were a culture of B. cinerea cultivated on PDA containing 3.5
uM TPPS or 50 uM Chl. Surprisingly, TPPS and Chl were found in the cytoplasm of four-day-old
mycelium cells without any specific cytoplasmic localisation (Figure 24).
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Phase contrast TPPS Phase contrast Chl

Figure 24: Cellular localisation of both PS in B. cinerea mycelium by confocal microscopy.
Left pictures: localisation of TPPS with its corresponding picture in contrast phase and right
panel: Chl localisation with its corresponding picture in contrast phase. Analysis was performed on
B. cinerea mycelium cultivated under dark for 4 days on PDA containing 3.5 uM TPPS or 50 uM
Chl. For both TPPS and Chl detection, spectral mode was used (cf mat and meth.).
Scale bar is 20 um.

111.1.2.2. In spores

According to literature, after 4-6 h of inoculation, the spores were swelling and after approximately

10 hours, the germ tube appeared (Figure 25; Gull and Trinci, 1971).).

Figure 25: Scheme of spore germination.

(Left): Dormant spore; (Middle): beginning of germination including swelling (conidia wall
increasing thickness from 263 to 339 nm); (Right): Emergence of germ tube. Sourced and modified
from Gull and Trinci, 1971.

The isolated and counted spores (~10%-10° spores.ml™) were incubated under dark conditions in 10

MM of both PS. The incubation with PS was performed for at least 16 hours (cf mat and meth).
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Phase contrast TPPS Phase contrast Chl

Figure 26: Localisation of TPPS and Chl in non-germinated spores of B. cinerea by confocal
microscopy.

Dormant spores were incubated in the presence of 10 uM for both PS for 16 h under dark
conditions. Left pictures: localisation of TPPS with its corresponding picture in contrast phase and
right pictures: Chl localisation with its corresponding picture in contrast phase. Detection was

performed as described in mat and meth. Scale bar is 20 um.

TPPS was located in cell wall and inside cell whereas Chl was mainly localized in the spore cell wall
(Figure 26). It was hypothesised that the charge of the PS : negative for TPPS and Chl at physiological
pH, determines the localisation of the PS in the fungal cells.

Ph

Spore labelling was followed up by the study of germinating spores in PDB and confirmed dormant
spore labelling for both PS (Figure 27). This is particularly true for Chl that is not localised inside the
cell wall of young hyphae generating by germinating spores (Figure 27).
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Phase contrast TPPS Phase contrast Chl

Figure 27: Localisation of both PS in germinated spores of B. cinerea by confocal microscopy.
Germinated spores were incubated in PDB containing 10 uM TPPS or Chl for 16 hours under dark
conditions. Left pictures: localisation of TPP with its corresponding picture in contrast phase and
right panel: Chl localisation with its corresponding picture in contrast phase. Spectral mode

detection was used for PS localisation (c¢f mat and meth.). Scale bar is 20 um.

For the Chl experiments on B. cinerea, only growth curves as well as localisations in mycelium and
spores were performed because this study started less than one year ago in 2019 and because it was
not possible to work in the laboratory during lockdown. Nevertheless, according to our preliminary

results on B. cinerea, Chl seems very promising.
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111.1.3. The ability of photoactivated TPPS on Botrytis cinerea
111.1.3.1. Phenotypic mycelium analysis under Environmental Scanning Electron

Microscopy
Environmental Scanning Electron Microscopy (ESEM) analysis was very useful to investigate the
potential mycelium phenotype modifications that could not be observed under light microscope
(Figure 28).

Control 1.5 uM TPPS

/

Figure 28: Four-day-old mycelium phenotype grown in presence of photoactivated TPPS.
Analyses were performed using ESEM. a) Untreated mycelium (control); b) mycelium treated with
1.5 uM TPPS; c) mycelium treated with TPPS tested at 3.5 uM. Scale bar (um) is reported on each

picture.

The mycelium treated with TPPS, under a 16 h photoperiod, is stressed thus producing spores and
characterised by different hyphae widths (Table 7). In presence of TPPS, the hyphae shows a reduced
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width. For the mycelium treated with 1.5 uM TPPS, there is a 71 % reduction in width whereas the
mycelium treated with 3.5 uM TPPS displays a 69 % reduction. Furthermore, the hyphae appear less
organized in terms of structure and produce spores (see submitted paper).

4.7+ 0.9 um 1.36 + 0.4 pm 1.45+ 0.2 um

Table 7: Widths of B. cinerea hyphae in control and TPPS conditions.

Results are the average widths from three independent experiments + sd.

111.1.3.2 PDT with TPPS on spores germination

Preliminary germination test: development of the system

Three increasing concentrations of TPPS: 3.5, 12.5 and 50 uM TPPS; were taken in consideration for
evaluating the capacity of TPPS to inhibit the germination of spores. As seen previously, the MFC is
1.5 pM TPPS for mycelium. However, this concentration is not reported as it does not exhibit any
show effect on the spore germination. The extracted spores were then suspended in phosphate buffer
and left for 4 hours under light conditions (cf mat and meth for further details).

After 4 hours of incubation with TPPS (or without in the control), 100 ul samples from each condition
were transferred and streaked on PDA-Petri dishes. The spore colony appearance and their number
(CFU) were determined and evaluated related to control. Only 7 % colony reduction was determined
for sample treated by 3.5 uM TPPS, a significant reduction was observed for the two other TPPS
treated samples: 12.5 % reduction for 12.5 uM TPPS and 50 % for 50 uM TPPS, respectively
suggesting a strong TPPS stress interfering with germination (Figure 29). This latest result is of
interest for the proposed APDT strategy because of the inhibitory effect of TPPS on B. cinerea spore

germination.
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Figure 29: Effect of TPPS on spore viability.
CFU were determined as described in mat and meth. The number of spore colonies was determined
for 3.5,12.5 and 50 uM TPPS under illumination. Results are the mean of three independent

experiment = sd.

111.1.4. ROS production and mycelium response at biochemical level conducted

on the mycelium of Botrytis cinerea under light conditions

The first test carried out was the determination of the proline content. Proline can act as a singlet
oxygen gquencher as well as a free radical scavenger (Guillaumot et al 2016). The proline content was
assayed as an indicator of general stress response in living cells and as a marker of oxidative stress
too. As expected, in response to stress induced by photoactivated TPPS, the proline content increased
(Figure 30a).

To gain insight of the fungal response to photodynamic treatment in presence to TPPS, total thiol
assay was performed. Even after a 0.5 uM TPPS treatment, a dramatic total thiol content decrease
was noticed, suggesting at a biochemical level, a strong stress not observed at phenotypical level
(Figures 30a and b).
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Figure 30: Proline and total thiol contents of TPPS treated mycelium grown under a 16 h
Pphotoperiod.

a) Proline content and b) Total thiol content of four-day-old mycelium. Results are the mean of

three independent experiments + sd (**: p<0.01; ***: p<0.001; ns: not significant).

As both assays (proline and thiol contents) demonstrated a strong stress undergone by TPPS treatment
on B. cinerea mycelium, it was decided to deeply explore the response induced by photodynamic
stress generated by photoactivated TPPS.

MDA assay was conducted to investigate lipid peroxidation due to TPPS photoactivation. The decline
in cellular function was greatly linked to lipid peroxidation that significantly increased after treatment
with 1.5 pM TPPS. This could also explain why mycelium growth alteration was not observed for
0.5 uM TPPS treated mycelium whereas thiol content decreased (Figures 30b and 31b).

As photoactivation of TPPS implied ROS production and especially H202 production, the production
of this specific ROS species was quantified in the fungus’ mycelium. The choice to measure H>O>
production is due to its stability, compared to other ROS, and its ability to diffuse into cells. The
increasing amount of H>O> in treated B. cinerea indicates that TPPS undergoes type 1 reaction to
form H20> (Figure 31a).

Another side of the fungal ROS defence arsenal against oxidative burst concerns the enzymes such
as catalase (Cat) and superoxide dismutase (SOD). A Cat activity was detected in 0.5 uM TPPS
treated mycelium but not in that of 1.5 uM TPPS (data not shown). SOD, enzymes that catalyse the
dismutation of the superoxide radical anion to produce molecular oxygen (O2) and H.O,, SOD
enzyme activity never changed either in the control or in TPPS-treated mycelium (Figure 31c). Thus,

it appears that there was no production of the superoxide radical anion.
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Figure 31: Biochemical assays in four-day-old TPPS treated mycelium.

a): H20- assay of four-day-old mycelium of B. cinerea; b): MDA assay of four-day-old mycelium of

B. cinerea; c): SOD enzymatic activity of four-day-old mycelium of B. cinerea. All assays were

conducted in light conditions (16-hour photoperiod). Results are the mean of three independent

experiments + sd (*: p<0.05; **: p<0.01; ***: p<0.001; ns: not significant).
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I11.2. TPPS effect on Botrytis cinerea mycelium under dark conditions

TPPS did not seem to influence mycelium growth under dark conditions. Indeed, the treated fungus
in the presence of TPPS (0.5-3.5 uM) grew as the control (Figures 21 and 22). However, some
unexpected results were obtained on TPPS treated mycelium under dark conditions that were

developed in this section.

111.2.1. Mycelium phenotype analysis under dark conditions
The 4-day-old fungus was observed under ESEM and the fungus structure appeared modified even

from low TPPS concentrations (Figure 32, table 8).

Figure 32: Four-day-old mycelium phenotype grown in presence of TPPS under dark conditions.
Analyses were performed using ESEM. a) Control; b) 7.5 uM TPPS; c) 3.5 uM TPPS; d) 10 uM

TPPS. Scale Bar is reported on each picture.
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In contrast to light conditions, the hyphae width increased under dark conditions (Table 8).
Surprisingly, no photo-activated TPPS induced a stress that caused changes in the structure of the
fungus hyphae. The effect did not seem to depend on the concentration of TPPS, but rather on its
presence. Further experiments are required to confirm the hypothesis that TPPS can alter the form of

the B. cinerea hyphae.

Control 1.5 pM TPPS 3.5 UM TPPS 10 pM TPPS
4.4+ 0.8 um 6.03 + 1.3 um 5.9+ 1.12 pym 6.0+ 1.6 um

Table 8: Effect of TPPS on widths of B. cinerea hyphae under dark conditions.
Three increasing TPPS concentrations were tested on 4-day-old B. cinerea. Measurements were
conducted via ESEM analysis (figure 33). Results represent the average widths and the mean of 3

independent experiments + sd.

111.2.2. The fungus mycelium grown in dark — stress or not?
In order to evaluate the stress that caused these structural variations, biochemical assays were
conducted. To monitor the general response of the fungus to abiotic stress, proline and total thiol

contents of 4-day-old B. cinerea mycelium under dark conditions were measured (Figure 33).
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Figure 33: Proline and thiol contents in TPPS treated mycelium under darkness.
a) Proline content and b) Total thiol content in 4-day-old mycelium. Results are the mean of three

independent experiments £ sd (**: p<0.01; ***: p<0.001).
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111.2.2.1. Cellular leakage of Botrytis cinerea

To further investigate this stress, it was decided to measure the cellular leakage. The hypothesis from

this experiment was that the fungus, after a 1-hour incubation with 1.5 and 3.5 uM TPPS, became

stressed. Thus, releases nucleotides mainly detected at Abs 260 nm and proteins at Abs 280 nm into

the medium (Figure 34). The fungus secreted in medium both nucleotides and proteins suggesting a

leak from cells in response to TPPS presence.
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Assays were performed as described in mat and meth. Results are the mean of three independent
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Figure 34: Cellular leakage assays.
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111.2.3. TPPS and Botrytis cinerea — an investigation of different pH levels in dark

conditions

Accidentally, it was observed that when the mycelium plugs were in contact with a diluted TPPS
solution, the solution changed colour from brown to green suggesting an acidification of the medium.
From previous work, it was known that the colour of the TPPS solution depends on pH and becomes
green (protonated form) at acidic pH (Leroy-Lhez et al 2019; Issawi et al 2019).

After cultivating B. cinerea for 4 days and at least 15 days under dark, 4 plugs of 0.6 cm were collected
from the Petri dishes and discarded into diluted TPPS solutions. More specifically, these solutions
were prepared by diluting the acidic (pH 5.5) and basic (pH 10.8) TPPS stock solution (1 mM)

Behaviour of Botrytis cinerea mycelium in acidic pH

Four plugs of 4-day or 15-day-old B. cinerea were added into the diluted acidic solutions of TPPS.
The solutions changed from dark brown to two different colours: lime green (4-day-old) and purple
(15-day-old) (Figure 36). These colour changes were linked to the acidification of the medium which
led to the protonation of TPPS for 4-day-old mycelium (Figure 36). However, an unexpected result
was obtained for the 15-day-old mycelium where the fungus was able to slightly increase the pH of
the solution (Figure 35-36, Table 9).
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water 15 3.5 10 125 50 uM TPPS

Figure 35: TPPS behaviour in acidic media with young or old mycelium.

a) Tubes containing serial concentrations of TPPS stock solution (1 mM, pH 5.5) without
fungus plugs; b) 4 plugs of 4 day-old mycelium were added to the different TPPS
concentrations and incubated at least 1 h under dark conditions; c) 4 plugs of 15-day-old
mycelium were added to the different TPPS concentrations and incubated at least 1 h under

dark conditions.
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Mycelium pH before fungus pH after fungus

addition addition
4-day-old B. cinerea Control water 7.9+0.33 4.45 +0.051
1.5 uM TPPS 7.83 +0.002 4.46 + 0.005
50 uM TPPS 7.14 +0.04 4.39 +0.08
15-day-old B. cinerea Control water 7.9+0.02 7.9+0.72
1.5 uM TPPS 7.83 +0.06 8+05
50 uM TPPS 7.14 +0.09 7.4+0.25

Table 9: pH variations of medium after mycelium incubation under dark conditions.
pH was measured before and after fungus addition in medium containing two TPPS

concentrations (1.5 and 50 pM).

According to Leroy-Lhez et al 2019, the UV-vis spectra were monitored for both the lowest
and highest concentrations of TPPS. Prior to measuring the UV-Vis spectra, the fungi plugs
were removed (Figure 37).
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Figure 36: UV-Vis spectra of 1.5 and 50 uM TPPS solutions with and without 4-day-old or
15-day-old B. cinerea mycelium.

In the 4-day-old fungus, there are overlapped UV-Vis spectra of 1.5 a) and 50 ¢) uM TPPS in
acidic pH solution incubated without (brown) and with ( ) 4-day-old fungus for at least
an hour. In the 15-day-old fungus, there are overlapped UV-Vis spectra of 1.5 b) and 50 d)
UM TPPS in acidic pH solution incubated without (brown) and with (purple) 15-day-old
fungus for at least an hour.

In the case of the 4-day-old fungus, a shift of the Soret band of the TPPS that suggests its
protonation was observed for both concentrations (1.5 and 50 uM) (Figure 37). However, this
was not the case in the 15-day-old B. cinerea where a slight protonation was observed in the 50
uM TPPS acidic solution (Figure 37, table 9).

In conclusion, an acidification of the medium was observed by 4-day-old B. cinerea but not in
the case of 15-day-old fungus. This specific result of the 15-day-old fungus has never been

reported in the literature and need to be further explored in the future.
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Behaviour of Botrytis cinerea mycelium in basic pH

The pH of the porphyrin stock solution was adjusted by adding a drop of 1 M NaOH solution
to achieve a pH of 10.8. From here, the dilutions shown in Figure 37, were made. Four plugs
of 4-day-old or 15-day-old B. cinerea were added into the dilutions of the basic solution of
TPPS (pH 10.8). These solutions changed colour from purple to lime green when 4-day-old
mycelium plugs were added to the solution (Figure 37b). Nevertheless, with 15-day-old
mycelium, the colour of the solution stayed purple as the control without mycelium (Figure 37a
and c, Table 10).

water 1.5 35 10 125 50 uM TPPS

Figure 37: TPPS behaviour in basic media with young or old mycelium.

a) Tubes containing serial concentrations of TPPS stock solution (1 mM, pH 10.8); b) 4 plugs
of 4 day-old mycelium were added to the different TPPS concentrations and incubated at least
1 h under dark conditions; c) 4 plugs of 15-day-old mycelium were added to the different
TPPS concentrations and incubated at least 1 h under dark conditions.
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Mycelium pH before fungus pH after fungus

addition addition
4-day-old B. cinerea Control water 7.9+0.03 4.49 +0.18
1.5 uM TPPS 8.11 + 0.02 3.76 + 0.05
50 uM TPPS 7.69 + 0.05 3.03 +0.013
15-day-old B. cinerea Control water 7.9+0.25 6.41 +0.03
1.5 uM TPPS 8.11 + 0.045 6.29 + 0.16
50 uM TPPS 7.69 + 0.0722 6.30 + 0.045

Table 10: pH variations of medium after mycelium incubation under dark and basic
conditions.

pH was measured before and after fungus addition in medium containing two TPPS
concentrations (1.5 and 50 uM). Four plugs from 4-day or 15-day-old B. cinerea grown

under dark conditions were added to the solution for 1 hour.

Also, in this case, the UV-vis spectra were measured from the lowest to the highest
concentration of TPPS. The highest concentration had to be diluted by a factor of 10 and prior

to measuring the UV-Vis spectra, the fungi plugs were removed (Figure 39).
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Figure 38: UV-Vis spectra of 1.5 and 50 uM TPPS solutions with and without 4-day-old or
15-day-old B. cinerea mycelium.

In the 4-day-old fungus, there are overlapped UV-Vis spectra of 1.5 a) and c) 50 (Bottom)
UM TPPS in basic pH solution incubated without (purple) and with (red) 4-day-old fungus for
at least an hour. In the 15-day-old fungus, there are overlapped UV-Vis spectra of 1.5 b) and

d) 50 (Bottom) uM TPPS in basic pH solution incubated without (green) and with (purple)

15-day-old fungus for at least an hour.

As previously noted in the acidic conditions, the 4-day-old fungus acidified the solution in an
almost extraordinary fashion. In this case, the young fungus could reduce the pH from 8 to less
than 4. However, the 15-day-old fungus marginally changed the pH and the solution stayed

neutral.
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111.3. Discussion

As discussed in the introduction, there are many different biological and chemical methods used
to fight against B. cinerea. None of them are 100 % efficient and some generate fungus multi-
resistance. Moreover, all these measures are a burden for the agronomical economy costing
more than €1 billion ever year (Dean et al 2012; Hahn 2014; Romanazzi and Feliziani 2014).
Therefore, in the fight against B.cinerea, a new more cost-effective treatment is needed. In this
context, APDT is thought to be a new and valuable strategy that should not induce multi-

resistance of fungus.

APDT and studies on other fungi

APDT against fungi has already been reported in literature. For instance, a porphyrin and
potassium iodide adjuvant co-encapsulated in micelles, methylene blue psoralen and riboflavin
were able to efficiently inactivate fungi like Candida albicans (Sousa et al 2019; Castro et al
2020). Before this, an aluminium phtalocyanine chloride nano-emulsion was investigated for
its effectiveness against Candida albicans and Candida tropicalis (Rodrigues et al 2019). In
another study concerning methylene blue by itself, it was able to kill the Colletotrichum
abscissum fungus and proved to be harmless against plant organs; in addition, this treatment
did not induce any secondary resistance (Gonzales et al 2017). Also, Colletrichum acuratum
and Aspergillus nidulans were inactivated photodynamically by coumarins, furocoumarins and

phenothiazinium (De Menezes et al a, b; 2014; Fracarolli et al 2016).

TPPS as a good candidate to fight against Botrytis cinerea

As seen above and until now, very few studies including APDT and B. cinerea have been
performed (Imada et al 2014). As a first and key step, an efficient PS able to kill fungus, without
altering plant development, must be identified. According to our results on the B. cinerea strain,
this PS is the anionic porphyrin TPPS that inhibits mycelium growth with a MFC of 1.5 uM
after photoactivation. Several points are in favour of further large use of TPPS: 1) TPPS does
not show visible effect on the mycelium growth under dark conditions; 2) TPPS does not
aggregate in solution and can easily permeate through cell walls and membranes (Leroy-Lhez
et al 2019; Issawi et al 2019); 3) it is efficient at a very low concentration against fungus (see
submitted paper); 4) it does not alter some species of plant growth in vitro even at high
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concentrations (Guillaumot et al 2016; Issawi, 2018, cf chap IV and V of this work); 5) it is
able to reduce the sporulation.

The only inherent defect of TPPS remains its chemical origin which explains the interest
towards a natural PS: chlorophyllin that is also presented in this work. However, the
concentration that inhibits the fungus growth is 50 UM which is far more than the MCF of
TPPS. It was hypothesized that it could be due to the rapid degradation of Chl in the fungus
growth medium. This hypothesis was considered because experiments determining the
photostability of Chl in water and in PDB were conducted (data not shown). After 24 hours,
Chl is almost completely photodegraded.

Effect of light on Botrytis cinerea growth

APDT is based on the use of UV-visible light. Therefore, it is of importance to take into account
the general effect of light on B. cinerea growth. Fungi can sense light and use it to prepare
themselves against stressful conditions in its environment (Schumacher 2017; Dias et al 2019).
Previous studies showed that B. cinerea has a large absorption spectrum, spanning from the
near-UV to the far IR region (Kumagai and Oda 1969; Tan and Epton 1973; Tan and Epton
1974; Tan 1975; Suzuki et al 1977; Suzuki and Oda 1979). Asexual and sexual reproduction
are also regulated by light and the presence of light favours conidia formation whereas the
absence (dark conditions), favours sclerotia development. However, rather surprisingly, a larger
number of conidia is formed in cultures that are cultivated in light-dark cycles, than in constant
light. This phenomenon shows that also the dark has an importance for the conidiation.
However, the dark-pigmented sclerotia do not seem to induce a switch between the two types
of reproduction whereas sclerotia is able to generate mycelium and conidia. The latter can
produce microconidia and when these conidia have the female gametes, they encounter the male
gametes of sclerotia. Upon illumination, these two gametes undergo sexual reproduction to
form apothecia (Faretra et al 1988).

The effect described herein is generated after exposure to daylight or white light, but it is
interesting to also understand the power that a specific wavelength can have on the pathogen
and in particular, on the conidia development (Tan 1974; Tan and Epton 1974). Specifically,
UV light alone allows conidia development, and this is not the case under blue light irradiation.
Under this type of light, the formation of sclerotia does not occur (Suzuki et al 1977; Suzuki

and Oda 1979). However, if B. cinerea is exposed to far-red light after being exposed to blue
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light, the conidia can start to develop once again (Figure 40). Whereas, if blue light illumination
is followed by red light exposure, conidiation does not occur (Tan 1974,1975). Despite this,
green light can prevent mycelial growth and conidial germination (Zhu et al 2013).

NEAR-UV light
PROMOTES CONIDIATION

BLUE light
REPRESSES CONIDIATICN
& LOPMENT

RED light
REPRESSES CONIDIATION

FAR-RED light
PROMOTES CONIDIATION

Figure 39: Different light regions and their effects in life of B. cinerea.

Sourced from Schumacher 2017.

Therefore, it is clear that the fungal infection and life cycle can be controlled by the modulation
of light. From this fact alone, the idea was to utilise the therapy called Antimicrobial
Photodynamic Therapy (APDT) against B. cinerea. This therapy incorporates the use of a
molecule called a photosensitiser (PS) and light which results in the photosensitiser being
excited and can react with oxygen to form reactive oxygen species (ROS; for more details see
introduction; Wainwright et al 2017).

Effect of TPPS under dark conditions

Surprisingly, TPPS did not delay mycelium growth under dark conditions. However, the
structure of the TPPS treated fungus was altered and larger than the control under ESEM
analysis. The width of the control was 4.4 um and 6 pm for the treated. Overall, it appeared

that the effect does not depend on the concentration of TPPS, but rather on the presence of this
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porphyrin. Under dark conditions, TPPS becomes protonated in its inner core because of
medium acidification by mycelium cells. Moreover, the presence of the porphyrin induces an
increased production of proline and total thiols and an increase in nucleotide and proteins
secretion into the medium (called cell leakage). All of this data confirm that the fungus is under
stress. It has been reported that fungal pathogens have the capability to modulate their
environmental pH in order to escape the immune responses of their host and in an effort to
destroy their host (Manteau et al 2004). In particular, at pH 5.5, multiple organic molecules
such as oxalic acid and polysaccharides, or enzymes such as polygalacturonase and laccases
are secreted by the fungus and can change the extracellular pH medium (Manteau et al 2003;
Vylkova, 2017). B. cinerea, in particular, uses a defence strategy based on the acidification of
its environment with the production of organic acids, such as oxalic acid or citric acid (Rolland
et al 2009). This can explain why the anionic porphyrin TPPS was protonated and showed a
different structure, highlighted by its UV-Visible spectrum. From the colour changes, pH
measurements and UV-vis spectroscopy, it appears that the 15-day-old fungus can somehow
deprotonate the porphyrin in acidic solution. To our knowledge, this is the first reported
scenario where a fungus can deprotonate the porphyrin in acidic media. B. cinerea changes its

environment from an acidic pH to basic one.

Chlorophyllin — a natural PS with lots of promises for the future

According to previous results presented above, the study of Chl on B. cinerea must be carefully
continued. Furthermore, as shown by confocal microscopy analysis, Chl is only localised and
retained in the spore cell wall and not found in hyphae. It was hypothesised that this could be
one of the reasons why Chl (25 uM) only limits mycelium growth under illumination. Thus,
Chl is a very promising and interesting PS that will be able to limit the fungal infection. To

clarify the real power of Chl further investigations are planned.

I11.4. Conclusion

So far, these promising results, in particular under light conditions, have been obtained in vitro.
Also, the experiments discussed in this chapter should be done in a greenhouse and in fields to
determine the real potential and efficacy of PS against B. cinerea. On one hand, it was
impressive that at a low uM concentration of TPPS, was so effective against our strain of B.
cinerea. These results highlight the potential of the use of TPPS against B. cinerea in agronomic
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practices. On the other hand, it was so interesting the capability of the natural PS to limit the
growth of the strain. From here, it should be envisaged to use the other kinds of PS to fight
against this pathogen. To conclude, it would also be interesting to further investigate the
potential of TPPS under dark conditions. The results obtained give hope to be able to find the
right balance between PS and light to moderate the aggressiveness caused by B. cinerea on

plants.
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Chapter 1V: Photoactivated TPPS effect on grapevine

varieties: Chardonnay, Merlot and Sauvignon

In chapter 111, the potential of photoactivated TPPS against the mycelium and spores of B. cinerea
was demonstrated, suggesting that TPPS was a very good candidate for a potential APDT application.
An important preliminary result was the effect of a low micromolar TPPS concentration (MFC = 1.5
p1M) on mycelium growth. This was an excellent start for a future APDT in agriculture. To continue
towards this goal, it was of interest to demonstrate that TPPS does not induce harmful effects on plant
species other than Arabidopsis (Arabidospis thaliana var. Wassilewskija) and tomato (Solanum
Lycopersicum var. Bali) (Guillaumot et al 2016; Issawi et al 2018).

Thus, we decided to study a woody and perennial plant species: grapevine (Vitis vinifera) that
represents one of the major targets of B. cinerea. In this chapter, we worked on three widely grown
grapevine varieties: Sauvignon, Chardonnay and Merlot (clones grown in vitro, cf mat and meth). As
previously mentioned in the introduction (section 1.3.1.3.), Chardonnay and Sauvignon backgrounds
could be considered highly susceptible to the infection of B. cinerea which is contrary to the Merlot
variety (Galet 1988; Dry and Gregory 1990; Marois et al 1992; Kogan 1998; Dubos 2002; Fermaud
et al 2011). Furthermore, one of the aims of this work was to focus on the notion of variety and their
response to the same TPPS treatment.

Therefore, this chapter is divided into three main parts: the first one targets the basic study of the
three clonal varieties at the phenotypical and biochemical level, the second part concerns how they
react to the presence of TPPS under a 16 h photoperiod and the third part, the development of the
desired pathosystem (detached grapevine leaves/B. cinerea mycelium treated or not by TPPS). This
last part is in the form of the submitted paper “Photodynamic inactivation of Botrytis cinerea by an
anionic porphyrin: an alternative pest management of grapevine”. At the time that this thesis was
written, this paper was currently under revision in Scientific Reports.

Finally, it is important to note that in the beginning of this PhD work, the Chardonnay clone was the
only available in the laboratory and more assays were conducted on it and presented in the last part

of this chapter as supplementary results.
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IV.1. Chardonnay, Merlot and Sauvignon phenotypical analysis

As a first step of the grapevine work, the growth and development of the three varieties were studied
under normal conditions without TPPS. Intermodal dissections of two-month-old clonal plantlets
were performed and each internode (approximately 5 per plantlet), without leaf, was deposited on
new medium in tubes or jars as described in mat and meth.

No obvious differences in terms of growth or phenotype were noticed (Figure 40). A nice growth was
clearly observed after one month for the three varieties with well-developed root and aerial parts
(Figure 40). For each variety, plantlets produced around two sets of well-expanded pairs of leaves.
However, some plantlets generated from the same “parent” or clonal plantlets were stressed with a
shorter stem and fewer leaves, suggesting somaclonal variations and/or external factor incidence.
Moreover, some internodes never generated plantlets. Even if in vitro culture with clonal explants
represents the highest control conditions (light, temperature, humidity, culture medium), explant
cultures still show variations (seasonal for example) that could not be explained. It was considered
that after 3 months, development of plantlets even in jars was no longer optimal due to physical and
medium limits. For instance, leaves were twisted and appeared less green suggesting an early

senescence process especially for Merlot and Chardonnay clones (Figure 40).
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Sauvignon Chardonnay  Merlot

Figure 40: Growth and development of the three studied grapevine varieties: Sauvignon,
Chardonnay and Merlot.

Dissected internodes were cultivated in jars for 1 month (top), 2 months (middle) and 3 months
(bottom).

IV.1.1. Total thiol content in the three grapevine varieties

Even if grapevines did not seem to be affected at the phenotypical level by in vitro culture, this result
had to be confirmed at the biochemical level. It is known in literature that measuring the thiol content
measurement is a good indicator of stress (Ulrich and Jakob, 2019). Thus, the total thiol contents were
determined in isolated roots (R) and aerial parts (A.P) of each variety aged 1-3 months.

The one-month-old plantlets from each variety produced high and very similar amounts of total thiols
in both roots and aerial parts (around 100 nmol g* FW) (Figure 41a). After one-month culture, a low
reduction of total thiol content was measured in the roots whereas it significantly doubled in the aerial
parts of the Merlot and Sauvignon varieties (up to 200 nmol g* FW ) (Figure 41b and c). The
exception came from Chardonnay’s aerial parts where the thiol content remained relatively constant

around 100 nmol g FW after 2- and 3-month-old cultures (Figure 41b and c). To conclude, the aerial
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parts seemed to be more affected than the roots, probably due to the culture conditions in tubes or
jars. However, Sauvignon and Merlot plantlets were more sensitive to the in vitro culture conditions
than Chardonnay clones. This result was of importance for the rest of the study (comparison of the

response of three varieties to APDT) and because it showed how relevant it was to work with different

backgrounds.
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Figure 41: Total thiols assay on the three varieties of grapevine.

The filled boxes represent the roots and the dotted boxes to the aerial parts of each variety. S:
Sauvignon, C: chardonnay and M: Merlot. The experiment was conducted on 1- (a), 2- (b), and 3-
month (c) old plantlets culture. Results are the mean of five independent experiments + sd (*:
p<0.05; **: p<0.01; ***: p<0.001; ns: not significant).
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IV.1.2. TPPS photodynamic treatment on grapevine varieties

As already mentioned, all pre-tests with photoactivated TPPS tested at various concentrations were
monitored on Chardonnay plantlets and the results are given in supplementary data at the end of this
chapter. As Chardonnay explants supported the presence of 12.5 UM TPPS under a 16 h photoperiod,
it was decided that 12.5 uM TPPS will be the working concentration for all studies on grapevine for

the three backgrounds.

IV.1.3. TPPS effect on grapevine phenotype
For the three grapevine varieties, photoactivated TPPS tested at 12.5 uM induced a slowdown of their

growth and development with shorter roots and stem length for one-month-old plantlets (Figure 42).

12.5 uM 12.5 uM 12.5 uM
Control TPPS Control TPPS Control TPPS

Sauvignon Chardonnay Merlot

Figure 42: One-month-old grapevine plantlets grown in the presence of 12.5 uM TPPS.
Plantlets were grown in vitro under a 16 h photoperiod. The name of each variety is reported on the

pictures. For the Sauvignon clone, two treated plantlets were photographed.

Differences blurred after one-month culture. The two-month-old plantlets phenotype from each
variety treated or not with TPPS looked very similar suggesting that TPPS no longer had any ulterior

effect (Figure 43).
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12.5 uM 12.5 uMm 12.5 uM
Control TPPS Control TPPS Control TPPS

Sauvignon Chardonnay Merlot

Figure 43: Two-month-old grapevine plantlets grown in the presence of 12.5 uM TPPS or not.

Sourced from Ambrosini et al. 2020.

The 3-month-old plantlets grown in vitro confirmed what had been phenotypically observed for the
2-month-old culture (pictures not shown). To confirm this normal phenotype in the presence of TPPS,
the total thiols content and GPX activity were determined on 2- and 3-month-old plantlets.

These assays were not performed on 1-month-old plantlets because of their limited growth that led to

less starting material, especially for TPPS-treated Sauvignon roots.

IV.1.4. Photoactivated TPPS effect on the two- and three-month-old plantlets
IV.1.4.1. Total thiols assays

Monitoring the thiol production in one-month-old plantlets in the presence of photoactivated TPPS
was very informative for two reasons: thiols are involved in the general stress response and they
constitute a pool of antioxidant molecules that act as a primary defence against biotic and abiotic
stress. Thus, upon TPPS illumination in the 2- and 3-month culture, the total thiols contents were
determined in organs (roots and aerial parts) isolated from plantlets of the three backgrounds (Figures
44- and 5).

As a first result, no significant difference in thiol content was determined in aerial parts for the three
varieties whether after two- or three-month culture suggesting a limited stress (Figure 44). The
situation was quite different for roots that were directly in contact with photoactivated TPPS. After a
2-month culture, Sauvignon- and Merlot-treated roots showed a significant increase in thiol content

whereas the same treatment did not seem to disturb the Chardonnay root apparatus (Figure 44).
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According to the conclusions inferred from Figure 42, Sauvignon and Merlot varieties seemed to be
more sensitive to tissue culture when treated with TPPS. Thus, it was not surprising that both
background responses were stronger than the one determined for Chardonnay roots after 2 month-
culture. However, the Merlot response, at the root level, seemed to be boosted compared to that of

the Sauvignon (Figure 44).
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Figure 44: Total thiol assay of 2-month-old grapevine plantlets upon TPPS illumination.

Total thiols (nmol gt Fw)

The black boxes correspond to control roots (R) and aerial parts (A.P) and green boxes to the roots
and aerial parts isolated from TPPS treated plantlets. Results are the mean of five independent

experiments + sd (**: p<0.01; ns: not significant).

Surprisingly after a 3-month culture, Sauvignon roots treated or not with TPPS were similar in terms
of thiol content suggesting that TPPS no longer had an effect. Additionally, the same situation was
observed for Merlot 3-month-old treated roots with a significant decrease in thiol content compared
to the huge amount in 2-month-old treated roots: from around 350 to 100 nmol g* FW (Figures 44
and 45).
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To conclude, an unexpected increase in thiol contents was measured for Chardonnay treated roots
(Figure 45).
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Figure 45: Total thiol assay of 3-month-old grapevine plantlets upon TPPS illumination.
The black boxes correspond to control roots (R) and aerial parts (A.P) and green boxes to the roots
and aerial parts isolated from TPPS treated plantlets. Results are the mean of five independent

experiments + sd (**: p<0.01; ***:p<0.001; ns: not significant).
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IV.1.4.2. Guaiacol peroxidase activity in 2 and 3-month-old grapevines

Guaiacol peroxidase (GPX) could be involved in the scavenging of H202 produced by the photo-
activation of TPPS. Thus, it was decided to measure its activity as a good indicator of oxidative burst
triggered by photoactivation of TPPS. GPX enzymatic assays were carried out on the two- and three-

month-old plantlets (Figures 46 and 47).
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Figure 46: GPX enzymatic activity in 2-month-old isolated grapevine organs upon TPPS
illumination.

The black boxes correspond to control roots (R) and aerial parts (A.P) and green boxes to the roots
and aerial parts isolated from TPPS treated plantlets. Results are the mean of five independent + sd

(**: p<0.01; ns: not significant).

In the control roots, the GPX activity was very different for the three varieties (Figure 46). While it
was approximately 200 pmol.mg™.prot.min or less in Sauvignon and Chardonnay roots,
respectively, it increased until 600 umol.mg™.prot.min"! in Merlot roots (Figure 46). Moreover, while
GPX remained very similar in the root and aerial parts of Sauvignon, it greatly decreased in

Chardonnay and Merlot aerial parts (Figure 46). The GPX activity became less obviously marked on

Chapter IV
Veronica Ambrosini | Thése de doctorat | Université de Limoges | 2020

Licence CC BY-NC-ND 3.0
85



3-month-old organs from the three varieties (Figure 47). It was thought that monitoring GPX in
organs of the three backgrounds could contribute to their characterization.

The oxidative burst induced by photoactivated TPPS reflected a stable GPX activity, which remained
undetectable after 2-month culture in Sauvignon, Chardonnay roots and aerial parts as well as in the
Merlot roots (Figure 46). This activity only increased in Merlot’s aerial parts although the thiol
content remained constant (Figure 44 and 45). This increase in GPX activity was also observed in the
3-month-old Sauvignon and Merlot varieties but remained constant in Chardonnay aerial part (Figure

47).
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Figure 47: GPX enzymatic activity in 3-month-old isolated grapevine organs upon TPPS
illumination.

The black boxes correspond to control roots (R) and aerial parts (A.P) and green boxes to the roots
and aerial parts isolated from TPPS treated plantlets. Results are the mean of five independent + sd
(**: p<0.01; ***: p<0.001; ns: not significant).

Combining all the data presented above confirmed, that under a 12.5 uM TPPS photo-treatment,

Chardonnay, Sauvignon and (possibly in a lesser manner) Merlot variety were not really stressed as
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shown by phenotype and biochemical assays. Thus, towards the goal of APDT, a preliminary
experiment was developed using detached leaves, B. cinerea mycelium plugs and TPPS. The results
were reported in the submitted paper in the next section.
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IV.2. PUBLICATION 2: “Photodynamic inactivation of Botrytis cinerea by an

anionic porphyrin: an alternative pest management of grapevine”

www.nature.com/scientificreports

scientific reports

Chapter IV

W) Check for updates

Photodynamic inactivation

of Botrytis cinerea by an anionic
porphyrin: an alternative pest
management of grapevine

Veronica Ambrosini, Mohammad Issawi, Vincent Sol & Catherine Riou™”

Botrytis cinerea is a necrotic plant fungus that causes gray mold disease in over 200 crops, including
grapevine.Due toits genetic plasticity, this fungus presents strong resistance to many fungicides.
Thus, new strategies against B. cinerea are urgently needed. In this context, antimicrobial
photodynamic treatment (APDT) was considered. APDT involves the use of a photosensitizer that
generates reactive oxygen species upon illumination with white light. Tetra-4-sulfonatophenyl
porphyrin tetra-ammonium (TPPS) was tested on B. cinerea using light. 1.5 utM TPPS completely
inhibited mycelial growth.TPPS (12.5 pM) was tested on three grapevine clones from Chardonnay,
Merlot and Sauvignon, grown in vitro for 2 months. Treated root apparatus of the three backgrounds
increased thiol production as a molecular protection against photoactivated TPPS, leading to a normal
phenotype as compared with control plantlets. Finally, 2-month-old grapevine leaves were infected
with 4-day-old mycelium of B. cinerea pre-incubated or not with TPPS.The pre-treated mycelium was
unable toinfect the detached leaves of any of the three grapevine varieties after 72 h growth when
subjected to a 16 h photoperiod, contrary to untreated mycelium.These results suggest a strong
potential of photo-treatment against B. cinerea mycelium for future agricultural practices in vineyard
or other cultures.

The great challenge of agriculture is to produce sufficient food for the ever-growing world population. Since the
60 s, to access this performance, agri-business practices that include excessive uses of pesticides and fertilizers
are becoming the main cause of soil, water and air pollution, as well as loss of fauna and flora biodiversity'=.
Moreover, this industrial agriculture triggers major public health problems such as infertility, cancers and child
malformations®*. Aware of the need to reduce all these dramatic environmental damages, the European Union
introduced the directive 2009/128/EC to reduce the use of pesticides.

To fight off plant competitors and pathogens, new approaches are necessary for safe practices in agriculture
such as genetically modified plants, genetic improvements, as well as organic and integrated agriculture®®. The
photodynamic treatment is a general and new concept with a large spectrum of applications for animal and
plant cells, plant and animal pathogens, as well as microorganisms”-'%. Thus, photodynamic treatment could
represent an innovative and powerful strategy to fight off plant competitors and pathogens in future agricultural
practices'”. One of the key actors of APDT is a molecule called a photosensitizer (PS). When irradiated with
light, this molecule produces reactive oxygen species that are toxic for cells'®. By contrast, most PSs present low
levels of cytotoxicity or genotoxicity in the dark®2. Furthermore, biological applications are best conducted
with water-soluble PSs which are ideally prone to quick photodegradation, thus avoiding a buildup of toxicity.
PSs are classified in many groups such as porphyrins, chlorins, coumarins, furocoumarins, phthalocyanines
and phenothiaziniums. Porphyrins and chlorins such as chlorophyllin, have been shown to be very effective
against bacteria on kiwi leaves tested in vitro?'**. Coumarins, furocoumarin and phenothiaziniums were shown
to be active against the plant-infecting fungi Colletrichum acuratum and Aspergillus nidulans**-**. Finally, when
tested on Citrus sinensis petals and leaves, methylene blue was able to kill the Colletotrichum abscissum fungus
and proved to be harmless to plant organs; in addition, this treatment did not induce any secondary resistance?.

Previous research works explored the in vitro phenotypical and molecular responses of Arabidopsis and
tomato plantlets to the photodynamic stress induced by an exogenous supply of PS*?%. The cationic tetra
(N-methylpyridyl) porphyrin, either free base or zinc-complexed, tested at 3.5 uM, inflicted harmful effects

PEIRENE-EA7500, Faculty of Sciences and Technology, University of Limoges, 123 avenue Albert Thomas,
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Figure 1. Growth curves of B. cinerea mycelium (a) in the dark conditions and (b) under 16 h photoperiod.
Growth curve of B. cinerea was performed as follows: a plug of 0.6 cm diameter was placed in the middle of
plates containing PDA medium supplemented with or without TPPS. Three TPPS concentrations: 1, 1.5 and
3.5 uM were tested in the dark and under light. Results are the mean of three independent experiments + sd.

on both 14-day-old Arabidopsis and tomato plantlets. Nevertheless, while Arabidopsis plantlets were killed,
tomato plantlets could be rescued after a 14 day-treatment®®. Surprisingly, the anionic porphyrin tetra-4-sul-
fonatophenylporphyrin tetra-ammonium (TPPS) did not provoke any harmful effect on both plantlets even at
concentrations as high as 50 uM?"2%. With the aim to develop APDT for agriculture applications, TPPS could
be a good candidate because of its low toxicity for plants. Moreover, TPPS remains negatively charged in many
chemical environments even under acidic pH and does not aggregate in solution, allowing it to easily permeate
cells through cell walls and membranes***°. Therefore, we hypothesized that TPPS could be a good PS candidate
to kill the plant pathogen B. cinerea and has potential to be a safe option for grapevine ( Vitis vinifera L.) explants.

B. cinerea is frequently responsible for drastic reductions in crop yields at harvest and for reducing wine
quality®!32, This fungus displays very strong resistance to many fungicides, due to its genetic plasticity which
confers its diversity in morphology, mycelial growth, sporulation and virulence®*-%. For the Integrated Pest man-
agement, the grapevine’s susceptibility to B. cinerea can be considered an essential management indicator?*-43.
According to the classification proposed by Dubos*? and Fermaud et al.**, Chardonnay and Sauvignon are highly
susceptible to B. cinerea infection whereas the Merlot variety is more resistant. Furthermore, these three varieties
are listed in the top 10 most cultivated and famous grapevines for wine production in the world**.

Therefore, as a first and necessary step, TPPS was tested separately on the three grapevine backgrounds and
on B. cinerea mycelium with the aim of killing the plant pathogen without affecting plantlet growth and develop-
ment. As a second and final step, grapevine detached leaves infected with B. cinerea mycelium were tested with
and without TPPS pre-treatment.

Results

Mycelium growth. The effect of three increasing concentrations of TPPS was monitored on B. cinerea
mycelium growth under dark and light conditions as described in the material and methods section. As the four
curves obtained with or without TPPS in the dark coincided within the standard deviation, we confirmed that,
by itself, TPPS did not exhibit any cyto- and/or genotoxic activity against the fungus (Fig. 1a). Under light and
at a low TPPS concentration (1.5 uM), mycelium growth was completely inhibited (Fig. 1b). Furthermore, 1 uM
TPPS significantly slowed down mycelium growth under light; however, after a 7 day-culture, the colony reached
a size similar to that of the control (Fig. 1b). Therefore, 1.5 uM of photoactivated TPPS has been chosen as the
minimum fungicidal concentration (MFC). As shown by the growth curves in the dark and in light conditions,
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Figure 2. Microscopic observation of B. cinerea and TPPS localization in mycelial cells. (a) B. cinerea visualized
under light using environmental scanning electronic microscope. The left picture corresponds to the control
hyphae and the middle picture to the irradiated hyphae treated with 1.5 uM TPPS. Treated hyphae shows spore
formation (right image). (b) TPPS localization in B. cinerea hyphae by confocal microscopy. B. cinerea was
cultivated for 3 days in presence of 3.5 uM TPPS in the dark. Sample was excited at 405 nm and TPPS detection
was performed under spectral acquisition with a peak of emission around 640 nm. Scale bar: 20 um.

the fourth day of culture corresponded to the end of the exponential growth phase (Fig. 1). Thus, all further
experiments were conducted with 4-day old mycelium.

Effect of photoactivated TPPS on hyphae morphology. As the mycelium growth was affected by
photoactivated TPPS, it was decided to carefully look at the hyphae structure, using ESEM. As expected, photo-
activated TPPS induced important phenotypic changes of the hyphae, compared with the control that showed
very regular hyphae with a well-organized structure (Fig. 2a). In presence of 1.5 uM TPPS, hyphae were nota-
bly less organized, exhibited irregular shapes and produced some spores (Fig. 2a). Moreover, the TPPS-treated
hyphae presented a reduced width (1.36 um) compared with the control (4.7 um) (data not shown).

Chapter IV
Veronica Ambrosini | Thése de doctorat | Université de Limoges | 2020
Licence CC BY-NC-ND 3.0
90



H,0, content (nmol.g *prot)

Figure 3. Biochemical activities measured in B. cinerea mycelium under a 16 h photoperiod white light for

4 days. Hydrogen peroxide (H,O,) production, MDA, total thiol contents and MTT assay were performed with
control mycelium (untreated, dotted box) and mycelium treated with 1.5 uM TPPS (black box). Results are

the mean of three independent experiments. Statistical significance is determined by a one way ANOVA test
(*P <0.05, ***P <0.001).

TPPSlocalizationinside mycelial cells. According to the phenotypical effects observed in TPPS-treated
mycelium under light, it was of interest to localize TPPS inside the cells. TPPS was found inside several cells of
4-day-old mycelium (Fig. 2b). This intracellular localization could explain the very strong inhibitory effect of
photoactivated TPPS on mycelial growth. As TPPS was located inside cells, this showed that it could cross the
cell wall and accumulate in the cell cytoplasm.

Biochemical activities of TPPS-treated B. cinerea mycelium. To gain insight into the effect of pho-
toactivated TPPS on the mycelium, biochemical assays linked to oxidative stress and cell metabolism activity,
were conducted. As expected, increases in both H,O, and MDA contents were observed in treated mycelium
compared to the control, demonstrating at the molecular level that the fungus was stressed (Fig. 3). Metabolic
activity, linked to mitochondrial respiration, was monitored with the MTT assay. Indeed, under light, formazan
production decreased in the treated hyphae compared with the control, thus explaining the fungal growth inhi-
bition (Fig. 3). While MDA indicated an increase in lipid peroxidation in the presence of photoactivated TPPS,
the thiol content provided additional evidence that the fungus was not dead but only deeply stressed (Fig. 3).

TPPS and grapevine plantlets grown in vitro. Internodal explants from each variety: Merlot, Sauvi-
gnon and Chardonnay, were placed on 12.5 uM of TPPS for two months in growth chamber as described in the
material and methods section. Each culture was examined during a period of 3-months and the explant sub-
culture was performed from 2-month-old plantlets. There was no phenotypical difference between the control
and the treated plantlets after a 1-month culture (Fig. 4). To confirm the absence of the phenotypical effect of
photoactivated TPPS, we measured the thiol content in aerial and root organs of treated and control plantlets
from the three varieties (Table 1). Roots from the three varieties, that were in contact with photoactivated TPPS,
showed a significant increase in the total thiol content compared to the control (Table 1). At the aerial level, while
no difference in thiol content was observed in Sauvignon and Merlot, there was a significant difference in the
total thiol content measured in Chardonnay (Table 1). This could suggest that the Chardonnay variety is more
sensitive to photoactivated TPPS than the two other backgrounds although no visible outcome could be seen at
the phenotypic level (Fig. 4).

TPPS effect on B. cinerea infected leaves. The final interest of this work was to put together grape-
vine, B. cinerea and TPPS with the expectation to kill the pathogen without disturbing plants. As a preliminary
assay, before the development of a complete plant pathosystem, our antifungal photodynamic treatment was
tested on detached grapevine leaves from two-month-old plantlets. Experiments were conducted as described
in the material and methods section, in the growth chamber. The infection was monitored for 72 h. Before 48 h,
no change was observed in leaves from the three clones (data not shown). After 48 h, the untreated B. cinerea
started to invade the leaf surface of the three varieties. The growth of the mycelium, pre-treated with 12.5 uM
of TPPS for 8 h, was not completely inhibited (Fig. 5). However, after a 50 uM TPPS pre-treatment, the growth
of mycelium was totally inhibited on the leaf surface suggesting that the strategy described in this study worked
efficiently.

ESEM analysis was conducted on infected leaves. In uninfected leaves, the structure was well-defined and
organized (Fig. 6). However, in the infected leaves when B. cinerea was not pre-treated with TPPS, the fungus
completely invaded the leaves, making the structure unrecognizable (Fig. 6). By contrast, when B. cinerea was
pre-treated with 50 uM of TPPS, ESEM pictures showed a leaf structure almost identical to that of the control
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Figure 4. Grapevine varieties growing on control medium and on medium supplemented with 12.5 uM TPPS.
Pictures correspond to plantlets from each variety, cultured during one month in glass tubes containing control
medium (left) or medium with 12.5 uM TPPS (right).

Total thiol content (nmol/g FW) :

Roots Aerial organs

Control ‘TPPS Control TPPS
Sauvignon 66.63+17.96 134.12 +44.44** 174.8+42.13 246+ 5546
Chardonnay 4447+5.8 77.5+ 14.8** 69.35+11.18 106.7 +13.4*
Merlot 107.7 £14.56 361.38 £55.45** 292.77 +60.9 297.7+70.3

Table 1. Total thiol content of 2-month old grapevine plantlets. Roots and aerial organs from each variety:
Sauvignon, Chardonnay and Merlot, were separately frozen and analyzed. TPPS was tested at 12.5 uM. FW
fresh weight. Results are the mean of three independent experiments+sd. Statistical significance is determined
by a one way ANOVA test (*P <0.05, **P <0.01). Statistical analysis was always performed against the control.
When no indication, not significant.

confirming the macroscopic phenotype (Fig. 6). It was noticed for the Sauvignon variety, that spores were pre-
sent in the pre-treated B. cinerea suggesting that Sauvignon was more susceptible than the other two varieties.
For further investigation, biochemical assays were performed. H,0, quantification, linked to oxidative stress,
was conducted for the three leaf conditions and the three varieties after infection or not with TPPS. Aftera72h
treatment, a basal content of H,0O, was detected in the three leaf varieties, very similar for Chardonnay and
Sauvignon leaves and slightly lower for Merlot (Table 2). When the leaves were infected by a 4-day-old B. cinerea
mycelium, the H,O, content significantly increased for the three varieties especially for Sauvignon (more than
3.5-fold higher than the control leaf) explaining its strong susceptibility to B. cinerea (Table 2). An increase in
H,0, production in all leaf types in contact with B. cinerea was expected. Concerning the leaves infected by the
fungus pre-treated with 50 uM TPPS for 8 h, no significant difference was observed between Chardonnay and
Merlot leaves compared to leaves infected by the fungus. No signs of infection were observed after 72 h culture
(Fig. 5, Table 2). B. cinerea, pre-treated with TPPS, was no longer able to induce a high production of H,0, in
Sauvignon leaves (Table 2). The H,0, content nearly reached the basal level detected in the control Sauvignon
leaves (Table 2). As a response to this H,O, production detected in the leaves induced by B. cinerea, and to gain
insight into the leaf’s proper response, we measured the total thiol content in leaves that were subjected to the
three different treatments. For Chardonnay and Merlot detached leaves, no significant difference was observed
between the control, infected leaves and infected leaves pre-treated with TPPS (Table 2). A significant increase
in thiol content was only observed for Sauvignon leaves between the control and the infected leaves. This result
suggested that Sauvignon leaves were able to fight against the fungus infection with a thiol induced response
(Table 2). Nevertheless, we also confirm that our pretreatment with TPPS inhibited B. cinerea growth on leaves
for each variety. These results are promising for the development of APDT treatments in agriculture (Figs. 5, 6).

Discussion

Botrytis cinerea is a very serious problem in a large variety of plants. It is a necrophytic fungus that induces ROS
production that contributes to plant cell destruction during its infection®. This fungus is able to infect leaves,
stems, flowers and fruit, causing severe damages and commercial losses in agriculture. In vineyards, the fungus
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Figure 5. TPPS pre-treatment of B. cinerea leads to inhibition of mycelial growth on grapevine leaves. Pictures
were taken after a 72 h infection of B. cinerea. Detached leaves from the three varieties, without any contact
with B. cinerea (upper panel). On the three other panels, 4-day-old B. cinerea mycelium plugs were placed on
detached leaves. Before contact with these leaves, the plugs were pre-incubated or not with 12.5 or 50 uM TPPS
for 8 h under dark conditions. Subsequent to pretreatment with 12.5 uM TPPS, mycelium growth was reduced,
but the infection was not inhibited. The lower panel corresponds to mycelium pretreatment with 50 uM TPPS:
B. cinerea was no longer able to invade the leaf surface. The circular plugs correspond to the 6 mm mycelium
disc placed on the leaf surface at the beginning of the experiments. Scale bar: 2 mm.

induces several deleterious effects on both quality and quantity of vine production. Despite all the damage it can
cause, under specific weather conditions, its growth on grapes induces noble rot that gives rise to sweet wine.
However, the fight against this pathogen remains a daily struggle especially for fruit production in summer or
fall. For more than 50 years, the use of specific fungicides has largely been envisaged and in that time, B. cinerea
found coping strategies. As a consequence, fungicide treatments gradually became inefficient, even the famous
CuSO; solution also known as ‘Bordeaux mixture’ lost its effectiveness against fungal pathogens***”. Moreover,
the copper divalent ion, also toxic for plants, contributes to soil pollution***.
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Figure 6. Scanning microscopy observations of leaves infected or not by B. cinerea pretreated or not with
TPPS. After treatment with TPPS, the fungus was unable to infect the Chardonnay and Merlot leaves. For the
Sauvignon variety, spores have been observed on leaf surface, even after TPPS pretreatment.

: 904499 33888 337444 340+ 41
Sauvignon 255+61 Cot IL=** IL=* 434134 IL=*
Chardonnay | 204.6+59 ‘(*:723 56 éoff,;w 2066+41 | 29164583 35134595
Merlot 156435 | 2oL 2ie 282425 | 3234158 259549

Table 2. Biochemical activity assays in detached grapevine leaves infected or not by B. cinerea. Detached
leaves from Sauvignon, Chardonnay and Merlot varieties were tested and analyzed. C control (healthy leaf),

IL leaves infected with B. cinerea, PBc leaves infected with B. cinerea pre-incubated with 50 uM TPPS for 8 h,
FW fresh weight. Results are the mean of three independent experiments. Statistical significance is determined
by a one way ANOVA test (*P <0.05, **P<0.01; ***P <0.001). Statistical analysis was performed for each assay
and was represented as follows: C=*** in IL column meant C compared to IL with a P<0.001. No indication
means not significant.
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Therefore, new strategies against fungi are urgently needed. Wang et al.*’ used naturally occurring eugenol
(EC50 value of 235 uM for B. cinerea). This was found to mainly affect fungal mycelium growth rather than
the germination of spores as shown in previous reports on fungicides, such as carbendazim and N-phenyl
carbamates®!>2,

In a similar way, Fleurat-Lessard et al.>* discovered a strategy whereby they investigated the potential of
FeSO, and found that the sulfate anion determines the inhibition of mycelium growth in pathogenic fungi that
is similar to B. cinerea at high concentrations (range of 0.5-20 mM). They also tested different iron salts and
found that those with bromide, chloride and sulfate anions showed the best antifungal activity. In particular, the
addition of an ammonium counterion to the sulfate moiety contributed to the inhibition of mycelium growth
in the pathogenic fungus Eutypa lata, an ascomycete like B. cinerea.

Therefore, taking these results from previous works into account-28%:53, we decided to test TPPS, a molecule
that presents four external sulfonate groups linked by a tetrapyrrole ring. Indeed, TPPS with an ammonium
counterion could be an excellent antifungal candidate. Moreover, it was demonstrated that TPPS remains nega-
tively charged in a large array of chemical environments, even under acidic pH and does not aggregate in media,
allowing it to diffuse through cell walls and membranes more easily>**. Therefore, this PS was thought to be an
excellent candidate for APDT.

Under white light, TPPS at a very low concentration (MFC= 1.5 uM) induced a severe inhibition of B. cinerea
mycelium growth which led to death. We did not succeed to rescue the mycelium after this treatment. To our
knowledge, there is little to no information available on the fungistatic or fungicidal effect of light-activated pho-
tosensitizers on B. cinerea™. The first step was to investigate whether the anionic porphyrin was able to induce any
changes in the mycelium structure. In the previous study, it was shown that the structure of the B. cinerea hyphae
changed after treatment with antibiotics, eugenol, FeSO, and tea tree 0il°*>*>5¢. Moreover, it has been shown
that stressed mycelium often produces spores and could show altered cell elongation®”. According to our data,
TPPS also induced a structural change on the fungus. More specifically, the structure of the PS-treated fungus
was thinner than the structure of the control. The treated mycelium produced spores implying that the fungus
was under stress. Therefore, it was of interest to localize TPPS inside the cells. In tobacco plant cells, TPPS was
also tested at 3.5 uM and it was the most effective porphyrin PS to induce cell death under a short light period
of 5 h and it was proven to mainly localize in the cell wall***%. Thus, a similar localization of TPPS was expected
in the fungal cells. The multi-layer fungal cell wall is enriched in neutral sugars and proteins and poor in chitin
and uronic acids, suggesting a neutral global charge of the cell wall*®. Nevertheless, the B. cinerea cell wall com-
position and it’s global charge remain controversial. It was hypothesized that this neutrality could allow TPPS
to cross the fungal cell wall which is completely different from the tobacco cell wall*>**". Further analyses, such
as the H,O; content, MDA, MTT, total thiols and microscopy analysis, confirmed fungus stress to the point of
dying. Our findings proved that TPPS, due to its characteristics, could be a valid alternative to classic fungicides*”.

From our previous studies, 50 uM TPPS was our reference for plantlets grown in vitro from seeds: Arabidop-
sis and tomato? %%, In this new study, we changed our plant model: grapevines that are obtained from clones,
to establish a pathosystem with B. cinerea. Comparing with the other plant species, the grapevine varieties did
not grow optimally at root apparatus level in the presence of 50 uM TPPS. Thus, the concentration was reduced
to 12.5 uM TPPS for all the chosen varieties: Chardonnay, Merlot and Sauvignon. The choice of these three
varieties was due to their different susceptibility to B. cinerea*>*>. Furthermore, 12.5 uM TPPS did not induce
any phenotypical nor biochemical modification of the three grapevine plantlets. In addition, this TPPS concen-
tration was approximately ten times higher than the minimal concentration inhibiting the mycelium growth
(1.5 uM); thus, the strategy presented in this article could work against pathogens without altering plant growth
and development.

The final aim was to demonstrate TPPS efficiency against B. cinerea in 2-month-old infected grapevine leaves
to validate the hypothesis of mimicking a pathosystem. The in vitro cultures and artificial system demonstrated
the potential of our strategy. ESEM images from infected leaves, of the three grapevine varieties, after 72 h treat-
ment confirmed that these leaves infected with B. cinerea pre-treated with 50 uM TPPS were similar to that of the
control. For the Sauvignon variety, the presence of spores on infected leaves confirmed that it is more sensitive
to the fungus infection than the other two varieties*»**. This is also confirmed by the measure of the total thiol
content, considered as a primary and strong defense to infection®'.

In conclusion, TPPS was able to kill the pathogen B. cinerea without harming the grapevine leaves in vitro.
Moreover, this molecule does not produce any biochemical nor phenotypical changes on the plantlets grown
in vitro. These preliminary experiments carried out are indeed promising and, in the future, experiments could
be done in a greenhouse and in fields to determine the real potential and efficacy of TPPS against plant patho-
gens. The results and findings presented herein are also very encouraging because the photodynamic treatment
has been developed using a low concentration of PS. Therefore, we show that APDT can be used for the struggle
against phytopathogens in the agronomic practices as the PS is effective against plant pathogens and exhibits
non-toxic side effects toward plants.

Material and methods

Photosensitizer. 5,10,15,20-(tetra-4-sulfonatophenyl) porphyrin tetra-ammonium (TPPS) was purchased
from PorphyChem (Dijon, France). The stock solution (1 mM) was prepared in distilled water and kept in the
dark at room temperature for 2 weeks.

Botrytis cinerea culture. The B. cinerea strain (UBOCC-A-117017) used in this study was isolated from
infected tomatoes and provided by Dr Weill (Université de Bretagne Occidentale, Brest, France). The culture
was maintained on potato dextrose agar (PDA). The growth curve of B. cinerea was performed as follows: a
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plug (0.6 cm diameter) of 2-week old B. cinerea mycelium was placed in the middle of plates containing PDA
medium supplemented with or without TPPS in the concentration range 0.5-3.5 uM. TPPS was added to the
PDA medium just after autoclaving (120 °C, 20 min). Plates were incubated at 22 °C, either in the dark or sub-
jected to a photoperiod of 16 h (Osram large spectrum white lamp: photon flux density of 120 pmol m=2 s7!).
Daily measurements of the diameter of the fungus were performed and reported to draw the growth curves.

Grapevine clone culture. Chardonnay (clone 7535) was provided by Pr. Clément (Université de Reims,
Champagne-Ardenne, France). Sauvignon (clone 379) and Merlot (clone 373) were provided by the Institut
Frangais de la Vigne et du Vin (Bordeaux, France). Intermodal explants of grapevine were dissected and placed
in glass tubes or jars containing half Chée and Pool medium, and 2% (w/v) sucrose-solidified medium (pH 5.9)
for 2 months. TPPS was added to the medium after autoclaving. Chée and Pool medium was purchased from
Duchefa Biochemistry (Haarlem, Holland). The cultures were then exposed to white light (Osram large spec-
trum white lamp: photon flux density of 120 umol m?s™!) for 16 h and the temperature was maintained at 24 °C.

Infection of young leaves with B. cinerea. Two-month-old grapevine leaves and four-day-old myce-
lium plug (0.6 cm diameter) were used to perform the experiment. Mycelium discs were firstly incubated in 12.5
or 50 uM TPPS in the dark and gently stirred for 8 h at 22 °C. Fungus discs were then placed on the upper leaf
epidermis of the grapevine (Chardonnay, Merlot and Sauvignon) and were left for at least 72 h under white light
(Osram large spectrum white lamp: photon flux density of 120 umol m~2 s7!). The co-cultures were monitored
daily and photographed using a Leica stereomicroscope.

MTT assay. A 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay was carried out
on the fungus mycelium, that was treated with TPPS or not, and had grown for 4 days under photoperiod. The
MTT assay was performed to quantify the mitochondrial activity of mycelial cells. The fungal samples were fro-
zen in liquid nitrogen and were grounded to a powder. 1 mL of 0.1% (m/v) MTT solution was added to 150 mg
of powder. Samples were left in the dark and stirred for 3 h at room temperature. The suspension was centrifuged
at 4000xg for 10 min. Supernatant was discarded and 1 mL of isopropanol was added to the pellet. Samples were
vortexed and centrifuged at 4000xg for 10 min. Absorbance was read at 590 nm.

Determination of malondialdehyde content. Approximately 150 mg of fresh or frozen fungal mate-
rial was grounded in liquid nitrogen. 1.5 mL of 20% (w/v) TCA was added into the powder. The mixture was
centrifuged at 13,000xg at 4 °C for 20 min. The supernatants were analyzed for their malondialdehyde (MDA)
content as described by Issawi et al.?5.

Hydrogen peroxide quantification. The measurement of Hydrogen peroxide (H,0O,) was performed
according to Guillaumot et al. 2016*7. 1 mL of extraction buffer (50 mM, pH 7.8) was added to fresh samples
such as mycelium, plantlets or in vitro detached leaves. The composition of the extraction buffer added to the
mycelium samples was 1 mM EDTA, 1% (w/v) PVP, 10% (v/v) glycerol and 1 mM DTT. For the plantlet and
the leaf samples, the extraction buffer was almost identical, however PVPP was used in the buffer, instead of
PVP. All samples had been frozen in liquid nitrogen, prior to being grounded into a powder. Homogenates were
centrifuged at 13,000xg at 4 °C for 20 min. 335 puL of 0.1% titanium III sulfate (v/v) was dissolved in a solution
of 20% (w/v) H,SO, and this solution was added to supernatants. Absorbances were read at 415 nm and H,O,
levels were expressed as nM g ! protein. Protein concentration was determined by Bradford assay using BSA as
standard (Bradford, 1976)%.

Total thiol assay. Approximately 100 mg of fine powder has been obtained from the samples (fungus,
plantlets or in vitro detached leaves). After grinding in liquid nitrogen, 1 mL of 0.2 N HCI was added to the
powder. A centrifugation at 13,000xg for 20 min was performed. Afterward, 500 pL of the supernatant was neu-
tralized with 400 uL NaOH (0.2 M) and 50 uL NaH,PO, (0.2 M). 700 uL of 0.12 M NaH,PO,, 6 mM EDTA and
0.1 mL of 6 mM dithiobis-2-nitro-benzoic acid (DTNB) was added to 200 uL of extract. A standard calibration
curve was prepared by replacing the extract with 0, 5, 10, 25 and 50 ug/mL glutathione solutions (total volume
1 mL). Absorbance at 412 nm was read 5 min after the addition of glutathione or extract.

Environmental scanning electronic microscopy. Environmental Scanning Electronic Microscopy
(ESEM) was performed on B. cinerea mycelium and in vitro detached leaves after fungus infection. Mycelium
grew on plates supplemented or not with TPPS for 4 days under 16 h photoperiods and was examined under
Environmental Scanning Electronic Microscope (ESEM Quanta 450, Felmi-ZFE, Graz, Austria). Sizes of hyphae
or branching filaments that constitute the mycelium of the fungus, were measured from ESEM pictures.

Two-month-old healthy grapevine leaves and leaves infected with B. cinerea pre-treated or not with TPPS
were examined under ESEM.

Confocal microscopy analysis. Mycelium was cultivated for 4 days on media containing 3.5 uM TPPS
in the dark. Data acquisition with a LSM510META Zeiss confocal microscope (Carl Zeiss France, Marly-le-Roi,
France) was performed under the spectral acquisition mode for TPPS localization inside the mycelium (excita-
tion at 405 nm, emission detected at 640 nm) and under the channel mode for examination of the mycelium.
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Statistical analysis. All biological experiments were performed at least three times independently. Results
were expressed as a mean+ SD (Standard Deviation). The data were analyzed by one-way ANOVA using the
PAST free software.
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IVV.3. Supplementary results
IVV.3.1. Additional result from the last part of the submitted paper

To complete results exposed in figure 5 and Table 2 from the submitted paper, the GPX activity was
measured in the detached leaf, detached leaf + B. cinerea and detached leaf + B. cinerea pre-treated
with 50 UM TPPS from the three varieties (Figure 48).
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Figure 48: GPX activity in our experimental pathosystem.
Results are the mean of five independent experiments + sd (*: p<0.05; **: p<0.01; ns: not

significant).

According to the H20O> contents in table 2 of the submitted paper, an increase in GPX activity was
expected in Chardonnay and Sauvignon grapevine varieties especially in the leaves infected with B.
cinerea, pre-treated or not (Table 2 of submitted paper, Figure 48). Unexpectedly, no GPX increase
was observed for the Merlot infected leaf nor the pre-treated with TPPS, which may explain why this

background is less sensitive to the attack of B. cinerea (Figure 48, Figure 5 of submitted paper ).
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More investigations can be envisaged because the GPX enzyme is not the only enzyme capable of
scavenging H20.. It was possible that other enzymes, such as catalase or ascorbate peroxidase, are
involved. At least, we need to remark here that enzymatic activities in grapevine isolated organs were
very difficult to determine with robustness due to important heterogeneity of the plantlet growth under
both control and TPPS treatments. This was particularly true for the Chardonnay variety that was the
most heterogeneous. Thus, the enzymatic tests were repeated more than 10 times independently for
Chardonnay. Fortunately, this was not the case for Sauvignon and Merlot varieties, but, usually, 5

independent tests were performed anyway.

1V.3.2. Miscellaneous results from Chardonnay plantlets

It is important to state that various concentrations of TPPS were tested on the grapevine varieties.
The first concentration tested on Chardonnay was 50 uM, which almost inhibited the grapevine
growth (data not shown). 25 uM TPPS was then tested on the Chardonnay variety. This concentration
did not largely alter the phenotypical growth and development of this variety whereas it did for the

Merlot variety (Figure 49). Thus, 25 uM TPPS was not tested on Sauvignon.

2 month-old Chardonnay

2 month-old Merlot

Control TPPS Control 25 uM TPPS

Figure 49: Chardonnay and Merlot phenotype on 25 uM TPPS.

At this point, it was decided to reduce the concentration to 12.5 uM TPPS. As already discussed, this
concentration was better for the three variety. It is important to note that more experiments were
carried out on Chardonnay because it has been in the laboratory for a longer time (~3 years) while

the other two varieties (Sauvignon and Merlot) have been studied more recently.
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For Chardonnay, the roots and aerial part measurements were conducted in the control and the plant
treated with 12.5 uM TPPS (Figure 50).

-: | | : i ' i ‘
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Figure 50: Chardonnay plantlets with measure of organ length.
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Two- and three-month-old culture Chardonnay variety with measure of organ length; The black
boxes correspond to control roots (R) and aerial parts (A.P) and green boxes to the roots and
aerial parts isolated from TPPS treated plantlets. Results are the mean of ten independent

experiments + sd.

Measurements confirmed no real phenotypic effect of photoactivated TPPS tested at 12.5 pM on the
growth of the plant. However, in order to confirm this at a molecular level, biochemical tests were
conducted.
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I1V.3.2.1. Biochemical tests on two- and three-month-old Chardonnay plantlets

The following biochemical assays were performed: H20>, superoxide dismutase (SOD) and catalase

(Cat) on two- and three-month-old Chardonnay (roots and aerial parts separately) tested on 12.5 uM
TPPS under 16h photoperiod.
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Figure 51: Biochemical assays on 2-month-old Chardonnay plantlets.
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and aerial parts isolated from TPPS treated plantlets. a) H-O2 assay; b) SOD activity and c)

Catalase (Cat) activity. Results are the mean of five independent experiments + sd (ns: not
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Figure 52: Biochemical assays on 3-month-old Chardonnay plantlets.
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The black boxes correspond to control roots (R) and aerial parts (A.P) and green boxes to the roots
and aerial parts isolated from TPPS treated plantlets. a) H-O2 assay; b) SOD activity and c)
Catalase (Cat) activity. Results are the mean of five independent experiments + sd (ns: not

significant).

From biochemical assays performed on 2 and 3-month-old plantlets, no significant difference was
pointed out between control or TPPS treated conditions (Figures 51 and 52). This strongly suggested
that the anionic porphyrin under illumination did not affect the Chardonnay growth and development
at phenotypical and biochemical levels (Figures 42, 43, 51 and 52). As it was also shown for
Sauvignon and Merlot, it was clear that the photoactivated TPPS is rather safe for grapevine varieties
and in a greater extent for several plant species.
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1V.4. Discussion

Grapevine (Vitis vinifera) is a fruit extensively grown worldwide and is of great economic
significance throughout the world (Laucou et al 2018). The French economy, concerning
vineyards, is world renown particularly for the exportation of wine. 17% of the total wine
available worldwide is produced in France (OlV 2016; LARVF 2017). The French wine and
spirits sector is essential to preserve and further develop, with respect to the environment.
Clearly, one way to achieve this is to manage the diseases that affect the grapevine plants with
safer practices. Furthermore, pathogens (virus, bacteria and especially fungi) that lead to these
diseases can reduce the overall yield of grapevine production (Armijo et al 2016). Among fungi,
B. cinerea is one of the most dangerous for grapevine. As already discussed, this fungus is able
to infect grapevine by direct penetration via pores, or injury present in the plant or through
conidia that can remain latent until berry maturity (Viret et al 2004).

The new strategy to fight against B. cinerea, proposed in this manuscript, is APDT based on
the use of an anionic porphyrin (TPPS) and sunlight. It has been shown and discussed in chapter
I11, the power of photoactivated TPPS against B. cinerea. Furthermore, in this chapter, the
harmlessness of TPPS has been demonstrated on three grapevine varieties: Sauvignon,
Chardonnay and Merlot. The choice of these varieties was made because of their differing
sensitivities to B. cinerea. However, before combining the pathogen and the plants to form a
pathosystem, it was important to test the plantlet’s responses to TPPS under a 16 h photoperiod.
Thus, Sauvignon, Chardonnay and Merlot plantlets, growing in the presence of 12.5 uM TPPS
for 3 months, were phenotypically very similar to the controls that grew without TPPS. One of
the hypotheses to explain the lack of phenotypic alterations in the grapevine varieties, was
linked to TPPS photodegradation. Guillaumot et al (2016) reported that only 8 % of TPPS
remained in the medium after 15 days under light. Thus, in 2-month and 3-month-old grapevine
varieties, TPPS was supposed to be completely photodegraded explaining why the phenotype
was similar to untreated plantlets.

However, the TPPS concentration used for grapevine (12.5 uM) was lower than that used in
experiments conducted on Arabidopsis and tomato plantlets, respectively (50 uM TPPS)
(Guillaumot et al 2016; Issawi et al 2018). The reason can be associated with the fact that the
model species were grown from seeds whereas the grapevine varieties were grown from clonal

explants. Furthermore, the in vitro culture of clonal explants grown under controlled conditions
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still show variations that we could not explain. However, the results obtained on the grapevine
varieties were very encouraging because of the MFC of B. cinerea (1.5 uM).

Therefore, the next step was to prove TPPS efficiency against B. cinerea in two-month-old
infected grapevine leaves in the hopes of mimicking a pathosystem. Three different biochemical
tests: H2Op, total thiols and GPX, were conducted on the two-month-old and three-month-old
leaves infected with B. cinerea mycelium. The first two tests were already discussed in the
submitted publication. However, the GPX activity in Sauvignon and Chardonnay increased
upon addition of the B. cinerea mycelium treated with TPPS whereas H.O> content decreased
in these conditions. More investigations are required to diagnose the reason for this result.
Finally, in the near future, the overall goal to confirm our preliminary data will be to conduct
spraying solutions on vegetative and reproductive developments of grapevine infected by B.

cinerea in greenhouse.

IVV.5. Conclusion

To conclude, TPPS did not cause any drastic biochemical nor phenotypical changes in the
grapevine varieties grown in vitro. Thus, it was decided to mimick a pathosystem with this
family of plants. Studying different varieties with different susceptibilities to the pathogen B.
cinerea allowed us to better understand the effect our treatment can have on large varieties of
grapevine. Moreover, the results obtained on the plants show the principle concepts of APDT:

selectively kill the pathogen and not harmuff the plant host.
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Chapter V. TPPS and Chl effects on potato plantlets

This chapter constitutes a continuation of the work on the PS and their effects on new plant species
to gain insight into future APDT applications. With that idea in mind, potato plant species and some
of its varieties were investigated. As already mentioned, one of the aims of this PhD work relative to
the plant side was to focus on the notion of variety and their response to the same PS treatment.
Moreover, the susceptibility to a pathogen is rather linked to the notion of varieties rather than species.
In this chapter, the four varieties investigated were: Bintje and Laurette (both commercial varieties),
Grenadine and Hinga. As already mentioned, potato is a minor target of B. cinerea, However, as
discussed in the third chapter, APDT works against B. cinerea. Therefore, it will be envisaged to use
this treatment also against other Ascomycota fungi, like Alternaria solani, that is the principal
pathogens of potatoes (Table 6, page 20).

In this last chapter, the growth and development of potato plantlets from the four varieties will be
analysed under normal in vitro multiplication medium and in medium that contains photoactivated
TPPS or Chl. As concluded, the effects of Chl was very promising in inhibiting B. cinerea mycelium
growth (Chapter 111), and thus this PS will be studied as a preliminary plant step on the four potato
varieties. We must confess that a similar study is currently being conducted for grapevine, but we

estimated that it was to preliminary to be presented in chapter 1V.

V.1. Bintje, Grenadine, Laurette and Hinga phenotypical analysis

At the beginning of this PhD work, only the Bintje variety was available in the laboratory. One and a
half years ago, our potato clone library grew with Laurette, Hinga and Grenadine varieties that were
a gift from Grocep. These potato plantlets grew quite rapidly from internode dissections and cultures
(see mat and meth). Thus, the results concerning the phenotype study and biochemical assays were
performed on 14-day and 1-month-old cultures from the four varieties either with TPPS or Chl.

The first step of this study was to monitor the growth and development of the 14-day-old and 1-
month-old four potato plantlets varieties without PS. The plantlets seemed to support the in vitro
multiplication well and they looked healthy (Figure 53). No growth or development alterations were
observed either after a 14 day or a 1-month culture for the four varieties suggesting an absence of
stress (Figure 53). However, the Hinga variety grew slower than the three other backgrounds with

very short internodes.
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Bintje Grenadine Laurette Hinga

14-day-old
culture

1-month-old
culture

Figure 53: Phenotype of potato plantlets generated in vitro.
14-day-old plantlets grown in vitro conditions and generated from internode explant. 2 plantlets
per variety were photographed except for Grenadine, (Bottom panel): 1- month-old Bintje,

Grenadine, Laurette and Hinga (from left to right) control grown in in vitro conditions.

As the phenotypical evidence was not sufficient to investigate whether plantlets were stressed or not,
a total thiols assay on the roots (R) and aerial parts (A.P) of each variety was conducted (Figure 54).
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Figure 54: Total thiol assay of the roots and aerial parts of 14-day-old and 1-month-old culture
potato variety of Bintje, Grenadine, Laurette and Hinga.

B., G., L. and H. represent the four potato varieties, respectively. The filled boxes on the left
represent the roots and the dotted boxes on the right represent the aerial parts. Results are the

mean of three independent experiments + sd (*: p<0.05; **: p<0.01; ***: p<0.001).

The result that arose from Figure 54, was that the four varieties could be characterized by their own
total thiol contents in regard to both their roots or aerial parts. For example, Bintje roots showed the
lowest thiol content in roots compared to the three other backgrounds (< 50 nmol g* FW; Figure 54).
In the roots of the three other varieties taken after 14-day or 1-month culture, thiol contents remained
basically constant (approximately 100 nmol g* FW) with the exception of Grenadine roots after 1-
month that doubled (Figure 54).
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However, in the aerial parts of Bintje and Grenadine, the thiols slightly increased between the 14-day
to 1-month culture. For Laurette aerial parts, the thiol content decreased between the 14-day and 1-
month culture whereas for Hinga, it remained very high (up to 800 nmol mg* FW). This suggests a
situation of stress due to the culture for Hinga (Figures 53-54). According to this assay and phenotype,
care was taken concerning the PS effects on Hinga plantlets that were already disturbed by the culture

itself.

V.2. TPPS effect on phenotypical development of potato plantlets

As seen under a 16 h photoperiod, 12.5 uM TPPS, the same concentration used for grapevine clones,
strongly slowed down Bintje growth (Figure 55). Therefore, this concentration was decreased to 10
UM which appeared to be more suitable for the Bintje growth even if the plants still presented a

significant delay in global growth (Figure 55).

Figure 55: 14-day-old Bintje variety treated with (Left): 12.5 uM TPPS and (Right): 10 uM
TPPS.

In each picture, the control was on the left and the treated plant, on the right side.

The same situation was also noticed in the Hinga and Laurette varieties. The growth delay was still
visible but less pronounced after 1-month culture for the four tested varieties (Figure 56). Whereas,
at a concentration of 10 uM TPPS, the potato varieties were still quite sensitive to photoactivated
TPPS, it was decided to keep this limit concentration for further investigations on the four potato

varieties.
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Figure 56: 14 day-old or 1-month-old Laurette and Hinga varieties treated with 10 uM TPPS.

The photos shown constitute. Upper panel: 14-day culture and lower panel: 1-month on the right.

In each picture, the control was on the left and the treated plant, on the right side.

V.2.1. Total thiols content assay

To investigate whether there was stress present in the three varieties, due to the addition of TPPS in

the artificial growth, the thiol contents were measured (Figure 57).
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Figure 57: Total thiol content in roots and aerial parts of 14-day-old and 1-month-old potato
varieties treated with 10 uM TPPS.

The graph on the left represents the 14-day-old potato plants and the graph on the right represents

1-month-old potato plants. The black boxes correspond to control roots (R) and aerial parts (A.P)
and green boxes to the roots (R) and aerial parts (A.P) isolated from TPPS treated plantlets.
Results are the mean of three independent results £ sd (*: p<0.05, **: p<0.01, ***: p<0.001; ns:

not significant).
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In the 14-day-old potato varieties, there was a significant difference in the production of thiols due to
TPPS photoactivation in the roots and aerial parts of every potato variety, except the aerial parts of
Grenadine and Hinga (Figure 57). For both varieties, the thiol content was already high in their control
aerial parts, suggesting that it could no longer increase after a 10 uM TPPS treatment. After a 1-
month culture, there was a difference in the total thiol content in the roots and aerial parts of almost
every potato variety studied. However, two exceptions were pointed out with Laurette roots and
Hinga aerial parts where no significant difference between the control and treated parts with 10 uM

TPPS was detected.
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V.2.2. GPX and Cat enzymatic activities as H.O> scavengers

GPX and catalase activities were measured as scavengers of H.O that is generated by TPPS
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Figure 58: GPX assay of roots and aerial parts of 14-day-old and 1-month-old potato varieties
treated with 10 uM TPPS.

The black boxes correspond to control roots (R) and aerial parts (A.P) and green boxes to the roots

(R) and aerial parts (A.P) isolated from TPPS treated plantlets. Results are the mean of three

independent results + sd (*: p<0.05, **
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In the 14-day-old potato varieties, there was a statistically significant difference between all organs
in the four varieties, with exception to the aerial parts of both Bintje and Hinga. After a 1-month
culture, no difference in GPX activity was noticed except three cases: roots of Bintje and both the
roots and aerial parts of Hinga (Figure 58).

For the catalase activity, Bintje showed the most various profile after 14-day or 1-month culture with
an increase in Cat activity either in treated roots or aerial parts, suggesting this enzyme could help the
plantlets to resist to photoactivated TPPS (Figure 59). For the other treated plantlets, the catalase
activity was more constant with the exception of 14-day-old Grenadine and Hinga aerial parts that
showed a significant increase from 10 (control) to approximately 30 pmol.mg™ prot.min™ (treated).

From these enzymatic assays (GPX and Cat) and thiol content determination, plantlets defended
themselves to oxidative burst generated by photoactivated TPPS that came over the basic stress

generated by tissue culture.
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Figure 59: Cat assay of roots and aerial parts of 14-day-old and 1-month-old potato varieties

treated with 10 uM TPPS.

The black boxes correspond to control roots (R) and aerial parts (A.P) and green boxes to the roots

(R) and aerial parts (A.P) isolated from TPPS treated plantlets. Results are the mean of three

independent results £ sd (*: p<0.05; **: p<0.01; ns : not significant).
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V.3 Chlorophyllin induced phenotype

As TPPS did not seem to be the ideal PS for potato plantlets generated from the four chosen varieties,
Chlorophyllin (Chl) was investigated as a natural PS from the chlorin category. In this section, the
same experiments were performed as were performed for TPPS, as shown above. Surprisingly, even
at concentrations as high as 50 uM Chl, there were no harmful phenotypic effects on the 14-day-old
and 1-month-old Bintje potato variety (Figure 60).

Figure 60: Chlorophyllin effect on the four potato clones.

Chl was tested at 50uM. (a) Bintje variety (left) 14-day-old control and treated with Chl, (right) 1-
month-old control and treated plantlets (b) First panel corresponded to 14-day-old plantlets from
left to right: Grenadine, Laurette and Hinga. (c) Second panel corresponded to 1-month-old
plantlets from left to right: Grenadine, Laurette and Hinga. For each picture, the control was on

the left and the treated plant on the right side.
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V.3.1. Total thiol contents in Chl treated plantlets

To confirm that Chl had no harmful effects on the potato varieties, a total thiols assay was conducted

on 14-day-old and 1-month-old plantlets.
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Figure 61: Total thiol content in roots and aerial parts of 14-day-old and 1-month-old potato
varieties treated with 50 uM Chl.

The black boxes correspond to control roots (R) and aerial parts (A.P) and green boxes to the roots

(R) and aerial parts (A.P) isolated from Chl treated plantlets. Results are the mean of three

independent results £ sd (ns: not significant; *: p<0.05, **: p<0.01, ***: p<0.001)
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The total thiol contents measured in 14-day-old or 1-month-old Bintje and Laurette varieties did not
show any significant differences either in the aerial parts nor the roots nor between the control and
treated thus, suggesting no Chl-induced stress (Figure 61). By contrast, the 14-day-old Grenadine
aerial parts and roots treated with photoactivated Chl produced a larger amount of thiols than the
control, suggesting a potential abiotic stress for the variety. Surprisingly, after 1-month, Grenadine-
treated organs showed less thiol contents than the control ones, also noticed for Hinga aerial organs

suggesting a beneficial effect induced by Chl.
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V.3.2. GPX and Cat activities in response to Chl

To continue the investigation at the biochemical level, GPX and Cat activity assays were monitored.
Interestingly, the GPX activity in each variety was always significantly higher in the control organs
than in the treated samples (Figure 62).
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Figure 62: GPX assay of the roots and aerial parts of 14-day-old and 1-month-old potato
varieties treated with 50 uM Chl.

The black boxes correspond to control roots (R) and aerial parts (A.P) and green boxes to the roots
(R) and aerial parts (A.P) isolated from Chl treated plantlets. Results are the mean of three

independent results £ sd (*: p<0.05, **: p<0.01, ns: not significant).
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Grenadine and Hinga showed the most variable GPX and Cat activities from 14-day or 1-month

culture (Figures 62-63).
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Figure 63: Catalase assay from roots and aerial parts of 14-day-old and 1-month-old potato

varieties treated with 50 uM Chl.

AP

The black boxes correspond to control roots (R) and aerial parts (A.P) and green boxes to the roots

(R) and aerial parts (A.P) isolated from Chl treated plantlets. Results are the mean of three

independent results = sd (*: p<0.05, **: p<0.01, ns : not significant).
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V.4. Discussion

The potato plant species is a member of Solanaceae family as is the tomato plant used in the
previous study by Guillaumot et al 2016. The reasons why this work on the potato was
conducted are derived from the interest to know whether plants from the same family: potato
and tomato (Solanaceae) respond in the same way to an exogenous supply of PS. Furthermore,
potato plants are the fourth most important food crop in the world and numerous potato diseases,
in particular caused by fungi, can cause significant losses in its production (Fiers et al 2012).
The idea to develop a pathosystem including potato/fungus with an efficient PS against fungi
would be very interesting and useful.

Firstly, we clearly demonstrated that TPPS even tested at low concentration (10 uM) was not
suitable for a normal growth and development of the four potato varieties tested in this work.
This result was also very similar to grapevine varieties: therefore, the suitable concentration for
all grapevine varieties was 12.5 uM TPPS under illumination. Therefore, at this point, we were
able to state that different plant models support different concentrations of TPPS. We
hypothesized that this wide range of responses was due to the starting plant material.

The tomato plant and Arabidopsis models were generated from seeds (Guillaumot et al 2016;
Issawi et al 2018). However, potatoes and grapevine varieties come from clonal explants that,
by definition, are genetically very similar or close together. Grapevine or potato internodes
constituted of fragment of stem, leaf and bud, are a sum of differentiated tissues that could loss
a part of their adaptation ability to TPPS presence. By contrast, seedlings are able to keep the
full capacity to response to TPPS even at high concentration. Nevertheless, we can assume that
TPPS could be a good candidate because we can bet that grapevine or potato in greenhouse or
field could, without any problem, support photoactivated TPPS at higher concentration.
Secondly, the fungus pathogen study in this thesis work is B. cinerea which does not commonly
induce a disease or mold in potato (Kirk and Merlington, 2012). However, fungi that belong to
the same division of B. cinerea (Ascomycota) are common and dangerous potato pests.
Therefore, it was considered that the experiments conducted on B. cinerea could be enlarged to
other Ascomycota fungi such as Alternaria solani in the future.

As just discussed above, TPPS did not seem to be the good PS for potato plants, making an
APDT application difficult to develop. Nevertheless, and in contrary to TPPS, it was shown

that 50 uM Chl did not interfere with growth and development of potato varieties.
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Photoactivation of Chl led to ROS production that did not disturb plants meaning that they
could defend themselves from Chl induced oxidative burst.

Moreover, 50 uM Chl under a 16 h photoperiod inhibited B. cinerea mycelium growth (Chapter
[11). Thus, the hypothesis was that Chl could be the good candidate for APDT. It will be
interesting to test the potential of the Chl against a pathosystem such as: potato / Alternaria
solani. Chl remains an intriguing compound largely used as a food additive E140 (magnesium
metaled form) and E141 (copper metaled form). Moreover, it is harmful for pathogens like
fungi (Luksiene et al., 2004; Luksiene, 2005; Luksiene et al 2010; Luksiene and Brovko, 2013;
Luksiene, 2014; Glueck et al 2019; Luksiene and Buchovec, 2019; Lukseviciute and Luksiene
2020).

Zhang et al (2019) demonstrated that Cu-Chl can be a radical quencher that can protect plants
against ROS. The only difference between the two Chl is that the Mg trapped in the tetrapyrrolic
core of E140 led to less stability. This could explain why no effect in potato was observed after
Chl (E140) treatment under 16 h photoperiod because it was rapidly degraded in the culture
medium. Moreover, still from Zhang observations on tomato plants and Chl antioxidant
activity, it could also explain the beneficial effect on the growth of Hinga and Grenadine

varieties.

V.5. Conclusion

Our work on potato clones is thought as a preliminary study to fix a new pathosystem: potato
/Alternaria solani. For the moment, we have not started to work on Alternaria however, this
work on potato was very informative. TPPS was indicated as a “harmful” PS for the four tested
varieties of potato, grown in vitro: Bintje, Grenadine, Laurette and Hinga. Thus, it decided to
open our field of investigations to a natural water-soluble PS: Chl that induced an inhibitory
effect on B. cinerea mycelium growth. Surprisingly, whereas Chl did not alter potato growth,
it can even stimulate it.

In summary, we are confident that future APDT applications will depend on the use of a natural
PS and Chl belongs to this category. Bearing this in mind, we are confident that Chl presents

lot of advantages that could largely contribute to its development in future.
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General conclusion and perspectives

In the PEIRENE Laboratory, we are researching a new strategy called antimicrobial
photodynamic treatment based (APDT) on improving agriculture. Our hypothesis is that this
approach will not present deleterious effects on the environment nor human health.

One of the major problems in agriculture remains the struggle against pathogens, especially
fungi. Based on previous work and with the intention of developing this approach on new living
systems, the potential of a different PS was investigated. Moreover, an exogenous supply of PS
was supplied on two new plant species that are targets of B. cinerea: grapevine and potato. The
main PS chosen in this thesis is TPPS and it was chosen because encouraging results were
already obtained on Arabidopsis and tomato plantlets (Guillaumot et al 2016; Issawi et al 2018).
It was confirmed that TPPS remains a good candidate, inhibiting B. cinerea mycelium growth
without drastically altering plantlet growth. Nevertheless, because TPPS is a synthetic
molecule, we tested a natural PS: a chlorin called Chlorohyllin (Chl). Here, a surprising result
was obtained, Chl, like TPPS, was able to inhibit mycelium growth without disturbing potato
plantlet growth. It was even noted that Chl was able to stimulate plant growth. This work was
completed for the potato plant and presented in this manuscript. A similar study is also on the
road for grapevine varieties and seems to give similar results (not shown). Therefore, according
to our study on the potato plant and four of its varieties: Bintje, Laurette, Grenadine and Hinga
and the B. cinerea response to photoactivated Chl, we claim that this PS is a better candidate

than TPPS, full of promises for future agricultural applications.

All results presented in this manuscript constitute the beginning, or the first step of the APDT
story. Some specific, numerous and complementary experiments must be carried out to validate
the possibility to use APDT in agronomic practices. However, this strategy is very difficult to
develop or to coordinate because three factors that interact together must be considered. Two
factors are dependent on the living: the pathogen and its plant host and the third factor: the PS,
that must “kill” the pathogen without interfering with the plants whilst being eco-friendly.

More experiments should be also monitored on B. cinerea. It was the first time, with the
exception of Imada et al 2014, that the potential of a PS was studied on this fungus. This is the
reason why basic, fundamental tests were conducted on the fungus after the PS treatment.
Therefore, to complete this analysis at a fundamental level, it would be very interesting to

monitor the B. cinerea response to PS treatment by studying the other kind of ROS scavengers
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such as tocopherol, which should also be monitored for plants. This tocopherol assay is on the
road for both B. cinerea and plantlets by LC-MS/MS analysis at the “Service Commun de
Recherche et d’Analyse de Biomolécules de Limoges.”

Nevertheless, our attention will be focused on the photoactivation phenomenon but also on the
dark effect that was observed in Chapter IlI. In the dark, it was shown in this study that the
mycelium plugs secreted some products than were able to change the pH of the medium. In the
literature, it has been shown that B. cinerea, in particular, uses a defence strategy based on the
acidification of its environment with the production of organic acids, such as oxalic acid or
citric acid (Manteau et al 2003; Vylkova, 2017). However, in our case, acidification was not
always observed for the 4- and 14-day-old fungus. It would be very interesting to understand
the kind of compounds secreted from the fungus and the mechanism of this secretion.
Moreover, it will be important to determine the cell wall composition of this pathogen to
understand fully how drugs can interact with the pathogen. Moreover, the Chl work on B.
cinerea is far from finished. It would be interesting to observe whether Chl has an effect on the
spore germination. Additionally, it would be beneficial to observe, via ESEM, the possible
changes in the fungal structure that is caused by this PS under light and under dark.
Furthermore, as seen previously, a minor delay in the mycelium growth was observed when
treated with Chl under dark conditions.

Finally from the B. cinerea study and its responses to PS treatment that we described in this
PhD work, we thought it will be of great interest and very informative to compare the fungus
response to PS treatments under light or dark conditions at a global molecular level by a
proteomic approach. This will give us a general picture of the response and may be help to
discover new pathways.

Until now, all experiments on plants were performed in the laboratory with very young plantlets
grown in vitro from clones. This type of study shows its limits in terms of plant physiology,
growth and development, PS treatment (supply in the medium instead of spraying) and finally,
in terms of inoculation and treatment. We are aware that the experiment showed in the
submitted paper was very artificial and only tried to mimic the reality. Indeed, the next step
relative to plant work and their response to PS needs to be monitored in a greenhouse. The
plants and their response to PS treatment must be studied at the vegetative and reproductive
levels. It will be achieved after PS treatment alone, after pathogen inoculation and after
pathogen inoculation plus PS spraying. For the PS spraying, PS concentration and formulation

must be considered.
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From the plant side and especially potato species, its pathosystem has to be developed. B.
cinerea is not interesting for this species and therefore, it will be of importance to look at a new
fungus pathogen such as Alternaria solani and to further study its response to chlorophyllin.
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Etude des effets de TPPS et Chlorophylline sur Botrytis cinerea et sur deux
plantes modeles : vigne et pomme de terre

Un des problémes majeurs de I'agriculture reste la lutte contre les agents pathogenes, en particulier les
champignons. Depuis les années 60, I'utilisation de quantités phénoménales de pesticides, pour garantir
les rendements des cultures, a provoqué une pollution désastreuse de I'environnement, une perte de la
biodiversité et le développement de pathogenes multi-résistants. Les pratiques agricoles doivent donc
devenir plus respectueuses de I'environnement tout en restant optimales. Le traitement photodynamique
antimicrobien (APDT) est un traitement alternatif envisagé dans la lutte contre les microorganismes
pathogénes, sans effet sur les plantes de culture et sur I'environnement voir la santé humaine. Dans
Iintention de développer cette approche, deux photosensibilisateurs (PS) : une porphyrine anionique
(TPPS) et une chlorine (la Chlorophylline) ont été testés sur un champignon pathogéne (Botrytis
cinerea) et deux de ses cibles : la vigne (Vitis vinifera) et la pomme de terre (Solanum tuberosum). Nous
avons montré que TPPS méme a tres faible concentration inhibait la croissance du mycélium de B.
cinerea sans pour autant altérer le développement des jeunes plants de vigne cultivés in vitro. Des
résultats trés similaires ont aussi été obtenus avec la Chlorophylline (Chl), molécule naturelle. TPPS et
Chl semblent donc de trés bons candidats pour une approche APDT. Cependant, dans le buz d’une
approche éco-responsable, nous privilégions plutét Chl molécule naturelle contre TPPS, molécule de
synthése. En conclusion, les résultats obtenus tout au long de ces travaux de thése sont réellement
encourageants et nous permettent de défendre I’APDT comme stratégie agricole d’avenir et surtout éco-
friendly.

Mots-clés : APDT, photosensibilisateurs,Botrytis cinerea, TPPS, Chlorophyllin, vigne, pomme de terre

Study of the effects of photoactivated TPPS and Chlorophyllin on Botrytis

cinerea, and on two plant models: grapevine and potato

Nowadays, one of the major problems in agriculture remains the struggle against pathogens, especially
fungi. In the last 60 years, the use of large amounts of pesticides to increase crop yield caused
environmental pollution, loss of biodiversity, and the development of multi-resistant plant pathogens.
Now, more than ever, agriculture practises must become environmentally friendly and thus, new
strategies to improve agriculture, without side effects for the environment and human health, need to be
developed. Antimicrobial photodynamic treatment (APDT) has emerged as an alternative treatment that
can be envisaged in agronomic practices to fight against microorganisms, without harming plants.

To develop this approach on complex living systems such as grapevine and potato, hosts of the fungus
pathogen Botrytis cinerea and two photosensitizers were taken into consideration: an anionic porphyrin
(TPPS) and a natural chlorin Chlorophyllin (Chl). More specifically, an extensive work was conducted
using photoactivated TPPS. TPPS was very effectively inhibit Botrytis cinerea development and it did
not cause any phenotypical or biochemical alterations of the grapevine varieties (Merlot, Chardonnay
and Sauvignon). In the potato varieties, while there were alterations in its growth and development, the
plants were able to defend themselves.

Furthermore, in order to find a new eco-friendly solution that is more suitable for a large range of
plants we tested a natural PS: the chlorophyllin (Chl). Surprisingly, Chl was able to inhibit Botrytis
cinerea mycelium growth without disturbing neither potato nor grapevine plantlet growth. In
conclusion, these preliminary studies based on the use of Chl suggest that the development of a safe but
efficient APDT approach in agriculture may no longer be a dream

Keywords : APDT, photosensitizers, Botrytis cinerea, TPPS, Chlorophyllin, grapevine, potato.



