Thèse soutenue

Synthèse verte de polymères dans un système en flux

FR  |  
EN
Auteur / Autrice : Wissal Adhami
Direction : Christian RolandoYoussef Bakkour
Type : Thèse de doctorat
Discipline(s) : Chimie organique, minérale, industrielle
Date : Soutenance le 17/12/2020
Etablissement(s) : Université de Lille (2018-2021) en cotutelle avec Université Libanaise
Ecole(s) doctorale(s) : École doctorale Sciences de la matière, du rayonnement et de l'environnement (Villeneuve d'Ascq, Nord)
Partenaire(s) de recherche : Laboratoire : Miniaturisation pour la synthèse, l'analyse et la protéomique (MSAP)

Résumé

FR  |  
EN

La chimie verte est un domaine attractif qui s’est développé depuis une vingtaine d’année et qui vise à la mise au point de produits ne nuisant pas à l'environnement à l’aide de synthèses écoresponsables. Ce travail est centré sur la synthèse verte de polyesters qui sont des polymères synthétiques importants en raison de leur biocompatibilité et de leur biodégradabilité. Les polyesters sont obtenus par deux voies principales de synthèse : la polymérisation par polycondensation de diacides avec des diols constituant est la voie la plus couramment utilisée, et la polymérisation par ouverture de cycle de lactones, lactides ou carbonate cyclique (Ring Opening Polymerisation, ROP). Les polycondensations exigent des conditions réactionnelles dures pour favoriser la réaction de condensation en éliminant une molécule d’eau entre acide et alcool afin d'atteindre des conversions élevées. Récemment les techniques de synthèse en flux ont permis un meilleur contrôle des réactions de synthèse organique et de polymerisation. Nous avons étudié la polymérisation enzymatique par ouverture de cycle (e-ROP) de lactones en utilisant comme catalyseur la lipase Novozym® 435 immobilisée sur des billes poreuses en flux pour développer des polymérisations contrôlées et respectueuses des principes de la chimie verte. Les billes poreuses ont été introduites dans un réacteur tubulaire en éthylène propylène fluoré (FEP) de diamètre interne = 1,55 mm. Nous avons pu polymériser la ε-caprolactone (ε-CL) avec une conversion de 100% et une dispersité de Đ = 1,3 et et la δ-valérolactone (δ-VL) (conv = 93%, Đ = 1,27 respectivement). Des copolymères ont également été synthétisés. Nous avons également étudié la catalyse de la polymérisation par ouverture de cycle par les phosphazènes qui sont des superbases organiques. La basicité du phosphazène gouverne la réaction : les plus basiques conduisent au rendement le plus élevé mais au dépit de ladispersité. Les meilleurs rendements ont été obtenus en utilisant le P4-t-Bu (pK = 41,9) comme catalyseur pour polymériser les ε-CL et δ-VL à température ambiante, avec des rendements de 96% et 93% respectivement. Avec le P2-t-Bu (pK = 33,5), une conversion plus faible de 45% a été obtenue mais avec une très bonne dispersité Đ = 1,08. Nous avons également travaillé sur la polycondensation en utilisant de nouveaux catalyseurs organiques qui présentent dans leurs structures des parties hydrophobes permettant de favoriser l’élimination des coproduits eau ou alcool qui limitent l’avancement de la réaction. Ainsi nous avons étudié la polycondensation entre les diols et les diacides ou les diesters catalysée par le triflate de diphénylammonium (DPAT) ou le triflate de pentafluorophénylammonium (PFPAT) en batch. Nous avons obtenu des oligomères par polyesterification entre l'acide succinique et le butanediol en utilisant DPAT ou PFPAT comme catalyseurs avec des conversions de 76% et 67% respectivement. Enfin, nous avons étudié la polymérisation radicalaire par transfert atomique (ATRP) photo-induite dans un système en flux en utilisant l'Eosine Y, un composé organique peu coûteux absorbant dans le vert (530 nm) pour catalyser la polymérisation du méthacrylate de méthyle (MMA) qui peut être synthétisé avec une conversion de 91% et une dispersité Đ de 1,42. L’aspect vivant de ces polymères a été démontré par le succès des copolymérisations ultérieures. En conclusion, nous avons montré que la chimie en flux permet une synthèse de polymères avec un meilleur contrôle de la polymérisation comparée à la synthèse en ballon. Ce meilleur contrôle permet d’obtenir des polymères avec un rendement élevé, une faible dispersité et une masse molaire proche de la valeur théorique.