Thèse soutenue

Simulations quantiques de l’interaction entre molécules atmosphériques et particules de suies modèle

FR  |  
EN
Auteur / Autrice : Ramón Lorenzo Panadés-Barrueta
Direction : Daniel Peláez Ruiz
Type : Thèse de doctorat
Discipline(s) : Milieux dilués et optique fondamentale
Date : Soutenance le 23/10/2020
Etablissement(s) : Université de Lille (2018-2021)
Ecole(s) doctorale(s) : École doctorale Sciences de la matière, du rayonnement et de l'environnement (Villeneuve d'Ascq, Nord)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM)

Résumé

FR  |  
EN

Nous visons à simuler avec des arguments purement quantiques (noyaux et électrons) les processus d’adsorption et de photoréactivité du NO2 adsorbé sur des particules de suie (modélisées comme de grands hydrocarbures aromatiques polycycliques, HAP) dans les conditions atmosphériques. Une description détaillée de ces processus est nécessaire pour comprendre le comportement différentiel (jour-nuit) de la production de HONO, qui est un précurseur du radical hydroxyle (OH). En particulier, le mécanisme spécifique de l’interconversion entre NO2 et HONO par la suie n’est pas encore totalement compris. En raison de sa pertinence particulière dans ce contexte, nous avons choisi le systèmePyrène-NO2.La première étape de cette étude a consisté à déterminer les configurations stables (états de transition et minima) du système Pyrène-NO2 . À cette fin, nous avons utilisé la méthode van der Waals Transition State Search using Chemical Dynamics Simulations (vdW-TSSCDS), la généralisation de l’algorithme TSSCDS récemment développée dans notre groupe. Ainsi, le présent travail représente la première application devdW-TSSCDS à un grand système (81D). Partant d’un ensemble de géométries d’entrée judicieusement choisies, la méthode susmentionnée permet de caractériser la topographie d’une surface d’énergie potentielle intermoléculaire (SEP), ou en d’autres termes, de déterminer les conformations les plus stables du système, de manière entièrement automatisée et efficace.Les informations topographiques recueillies ont été utilisées pour obtenir une description globale (fit) du potentiel d’interaction, nécessaire à l’élucidation dynamique de l’interaction intermoléculaire (physisorption), des propriétés spectroscopiques et de la réactivité des espèces adsorbées. Pour atteindre ce dernier objectif, nous avons développé deux méthodologies différentes ainsi que les progiciels correspondants. La première d’entre elles est l’algorithme SRP-MGPF (Specific Reaction Parameter Multigrid POTFIT), qui est implémenté dans le progiciel SRPTucker. Cette méthode calcule des SEPs (intermoléculaires) chimiquement précis par reparamétrage de méthodes semiempiriques, qui sont ensuite tenseur-décomposées sous forme Tucker à l’aide de MGPF.Ce logiciel a été interfacé avec succès avec la version Heidelberg du paquet MCTDH (Multi-configuration Time-Dependent Hartree). La seconde méthode permet d’obtenir la SEP directement sous la forme mathématique requise par MCTDH, d’où son nom de Sum-Of-Products Finite-Basis-Representation (SOP-FBR). La SOP-FBR constitue une approche alternative aux méthododes d’ajustement NN. L’idée la sous-tend est simple : à partir d’une expansion Tucker low rank sur la grille, nous remplaçons les fonctions de base basées sur la grille par une expansion en termes de polynômes orthogonaux. Comme dans la méthode précédente, l’intégration avec la MCTDH a été assurée.Les deux méthodes ont été testées avec succès à un certain nombre de problèmes de référence, à savoir : le Hamiltonian Hénon-Heiles, la SEP global du H2O, et la SEP d’isomérisation HONO (6D).