Thèse soutenue

Circuits de traitement de signal numérique en temps continu ultra-faible consommation en technologie 28nm FDSOI pour applications audio

FR  |  
EN
Auteur / Autrice : Ángel de Dios González Santos
Direction : Andreas KaiserAntoine FrappéPhilippe Cathelin
Type : Thèse de doctorat
Discipline(s) : Electronique, microélectronique, nanoélectronique et micro-ondes
Date : Soutenance le 29/09/2020
Etablissement(s) : Université de Lille (2018-2021)
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)
Partenaire(s) de recherche : Laboratoire : STMicroelectronics - Institut d'Electronique, de Microélectronique et de Nanotechnologie

Résumé

FR  |  
EN

L’objectif de ce travail c’est l’étude et développement d’un système d’extraction des caractéristiques en utilisant techniques de traitement de signal en temps continu, afin de mitiger les inconvénients des implémentations existants basées en techniques analogiques et numériques conventionnelles, d’un système toujours en veille pour l’Internet des Objets. La cible est l’extraction du contenu spectral d’un signal audio en utilisant une nouvelle architecture basée en une cascade configurable de filtres à réponse impulsionnelle fini en temps continu. Un schéma efficace pour cascader des filtres est obtenu grâce aux techniques proposées pour l’élimination des glitches et du codage delta. Par ailleurs, ce travail introduit une fonction en temps continu pour estimer la puissance instantanée dans des bandes de fréquences sélectionnées et construire un spectrogramme à la sortie. Le système proposé à 12-bandes fréquentielles a été validée par des simulations comportementales. L’élément clé pour l’implémentation de ce système est un élément de délai numérique. Un nouveau élément de retard a été conçu et fabriquée en technologie 28 nm FDSOI et atteints une plage de délai record entre 30 ns et 97 µs avec une consommation de puissance de 15fJ/événement. En extrapolant ce résultat, le système proposé atteints une consommation approximée de 2.85 µW lors du traitement d’un signal vocal produit par une femme, tandis que la consommation statique est autours de 100 nW dans les périodes où il n’y a pas d’activité. Donc, la performance en termes de consommation moyenne d’énergie de ce système surpasse celle des implémentations dans l’état de l’art.