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Abstract

Keywords: Numerical simulations · Non-incremental method · Brezis-Ekeland-Nayroles princi-
ple · Elastic plastic materials · Quasi-static and dynamic evolutions · Finite strains · Variational
principle · Constrained optimization

This thesis is devoted to the numerical application of a non-incremental method based on the

Symplectic Brezis-Ekeland-Nayroles (SBEN) principle for the quasi-static and dynamic elasto-

plastic problems. The principle is based on the dissipation potential and its Fenchel transform as

an alternative method to the standard step-by-step technique. It allows a consistent view of the

whole evolution by computing the nonlinear response along the whole time history as a solution

to a suitable minimization problem.

We show that the SBEN variational formulation yields a time-space minimization problem

under constraints. The cost function consists in a 2-field functional, depending on the stress and

displacement fields, which leads naturally to a mixed finite element discretization.

Numerical applications are performed by two mechanical models. For the thin- or thick-walled

tube model under internal pressure, the SBEN principle’s feasibility is confirmed in static and

dynamic cases. For another plate model, a circular axisymmetric thin or thick plate subjected

to a surface pressure is examined under the Love-Kirchhoff and Mindlin plate theories in statics.

Numerical results are compared to the analytical solution or the ones derived by the classical

step-by-step finite element procedure. Good accuracy of the SBEN principle is observed. At

last, the SBEN principle is theoretically extended in finite strains.
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Résumé

Mots-clés: Simulation numérique · Méthode non-incrémentielle · Principe de Brezis-Ekeland-

Nayroles · Matériaux élastique plastique · Statique · Dynamique · Grande déformation · Principe
variationnel · Optimisation sous contraintes

Cette thèse est consacrée à l’application numérique d’une méthode non incrémentale basée sur

le principe Symplectic Brezis-Ekeland-Nayroles (SBEN) pour les problèmes élastoplastiques quasi

statiques et dynamiques. Le principe est basé sur le potentiel de dissipation et sa transformation

de Fenchel comme méthode alternative à la technique standard pas-à-pas. Il permet une vision

cohérente de toute l’évolution en calculant la réponse non linéaire tout au long de l’historique

temporel comme solution à un problème de minimisation approprié.

Nous montrons que la formulation variationnelle SBEN génère un problème de minimisation

espace-temps sous contraintes. La fonction de coût consiste en une fonction à 2 champs, en

fonction des champs de contraintes et de déplacements, ce qui conduit naturellement à une

discrétisation par éléments finis mixtes.

Les applications numériques sont réalisées par deux modèles mécaniques. Pour le modèle de

tube à paroi mince ou épaisse sous pression interne, la faisabilité du principe SBEN est confirmée

dans des cas statiques et dynamiques. Pour un autre modèle de plaque, une plaque asymétrique

circulaire mince ou épaisse soumise à une pression de surface est examinée sous les théories de

plaques Love-Kirchhoff et Mindlin en statique. Les résultats numériques sont comparés à la

solution analytique ou à ceux dérivés par la procédure classique des éléments finis pas-à-pas.

On observe une bonne précision du principe SBEN. Enfin, le principe SBEN est théoriquement

étendu en grande déformation.
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General introduction

Numerical simulations become essential in engineering design involving mechanical sciences, civil

engineering, transportation, and energy. In computational sciences, the Finite Element Method

(FEM) is the most popular procedure used by researchers and engineers to obtain approximate

solutions of boundary values problems. During the last few decades, the FEM has accomplished

considerable progress and continues to arouse a renewed interest in order to design more efficient

and robust algorithms.

The natural and common solution strategy for nonlinear solids submitted to external loads is

the path-following incremental analysis, which computes in a step-by-step manner the mechan-

ical fields (stress, strains, displacement, internal variables rates, etc...) along the loading path

(Zienkiewicz et al., 1969; Zienkiewicz, 1971; Oden, 2006; Simo and Hughes, 2000; Belytschko and

Velebit, 1972; Cristfield, 1998; Ibrahimbegovic, 2009). Roughly speaking, in the nonlinear FEM,

the time interval of interest is divided in a sequence of small sub-intervals [0, T ] =
⋃N
n=1[tn−1, tn]

and one supposes that all the mechanical fields are known up to the time tn−1. The purpose is

then to compute the values of these fields at the time tn. The obtained problem over the time

sub-interval [tn−1, tn] is nonlinear and is solved by the Newton-Raphson-like algorithms.

It is worth noting that the choice of the time-integration schemes is crucial for the accuracy

and convergence of the numerical incremental procedures. Moreover, for many nonlinear prob-

lems, some simulations cannot be performed entirely by using cumbersome time stepping. The

convergence frequently fails before the end of the computation and is difficult to restart. The

only solution to overcome this pitfall often lies in reducing the step size but increasing computa-

tional time. Another difficulty arises because, in an iterative method, truncation error occurs at

each iteration. Therefore, the computation error of the usual step-by-step approach accumulates

and grows as the number of steps increases. This error cannot be avoided, and it may strongly

affect the whole accuracy of complex simulations.
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To overcome the pitfalls in traditional methods, direct methods or non-incremental ap-

proaches, enabling a consistent view on the entire evolution, have been proposed in the literature.

For quasi-static evolutions, we can mention the method of LArge Time INcrement (LATIN) pro-

posed by Ladevèze et al. (Ladevèze, 1985b, 1989, 1991, 2012). This iterative procedure is based

on the so-called "radial time-space approximations" to compute the global solution as a finite

sum of products of a time function by a space function. Basing upon the LATIN method, Comte

et al. (Comte et al., 2006) derived a direct cyclic method for computing the asymptotic behavior

of elastoplastic solids undergoing cyclic repetitive loadings. Peigney et al. (Peigney and Stolz,

2001, 2003) proposed an optimal control approach for characterizing the stabilized state of inelas-

tic structures under repetitive external loads. Mielke et al. (Mielke, 2005) proposed a variational

formulation characterizing the entire trajectories for quasi-static rate-dependent process resulting

in a minimization problem of weighted dissipation-energy functional with rapid decaying weights.

The Mielke’s approach is interesting since it can be reformulated in a dynamical context as in

Buliga (Buliga, 2008) to generalize the Hamiltonian inclusion formalism. Moreover, Davoli et al.

(Davoli and Stefanelli, 2019) extended the Mielke formulation in a purely mathematical manner

to perfect dynamic plasticity. They developed a variational approach that consists in minimizing

a Weighted-Inertia-Dissipation-Energy (WIDE) functional. In the same class on non-incremental

methods, Brezis and Ekeland (Brézis and Ekeland, 1976b,a) proposed a variational minimization

principle for a class of parabolic evolution equations. Independently, Nayroles (1976) (Nayroles

et al., 1976) developed a similar principle for nonlinear mechanics, which gives the existence

theorem of solutions for the Cauchy problem associated with the constitutive law of Maxwell

model.

Recently, Buliga and de Saxcé (Buliga and de Saxcé, 2017) proposed a symplectic Brezis-

Ekeland-Nayroles principle for dynamic irreversible dissipative systems that claims that the nat-

ural evolution curve in the phase space minimizes a functional dependent on the dissipation

potential, the Hamiltonian and a suitable symplectic form.

The objective of this thesis is to investigate the feasibility of the BEN principle to simulate

the quasi-static and dynamic elastoplastic evolution deformable solids with good accuracy. In the

present work, the principle has been efficiently used to address the elastoplastic and viscoplastic

responses of (i) a thick-walled tube under internal pressure in statics, (ii) a thin- or thick plate

under surface pressure in statics (iii) a thin- or thick-walled tube under internal pressure in

dynamics in small strains basing upon the Symplectic BEN (SBEN) principle. Moreover, the

extension of the principle in finite strains is another ambition.
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This thesis is composed of 5 chapters, as follows:

Chapter 1 This chapter is a review of the non-incremental formulations for dissipative systems.

Besides the BEN and SBEN principles, which are the main subjects in the thesis, two alternative

Mielke and WIDE formulations are presented. In the frame of dissipative systems, the elasto-

plasticity is detailed. We complete this review with the well-known incremental computation

technique, radial return algorithm, and the alternative iterative one, LATIN method.

Chapter 2 This chapter is concerned with the energy-dissipation BEN principle for the nu-

merical study of quasi-static elastoplastic and viscoplastic problems in small strains. The BEN

principle is applied to address the elastic perfectly plastic and viscoplastic thick hollow cylinder

subjected to internal pressure. We present the detailing of the discretization and the numerical

implementation of the minimization problem by using the mixed finite element method, which

is more efficient in enforcing the yield condition. Computational accuracy and efficiency of the

BEN principle are assessed by comparing the numerical results with the analytical ones and the

simulations derived by the classical step-by-step finite element procedure.

Chapter 3 In this chapter, the BEN principle is developed for the numerical simulation of

elastoplastic plates under the assumptions of small strains and quasi-static evolution. Love-

Kirchhoff and Mindlin plate models under flexural pressure are considered. The elastic and

elastic perfectly plastic clamped circular thin or thick plate is numerically solved by the BEN

principle within the mixed finite element method. Numerical results derived from the BEN prin-

ciple are compared to the approximations obtained by an incremental approach.

Chapter 4 This chapter is devoted to the numerical simulation of dynamic elastoplastic prob-

lems in small strain by using the non-incremental SBEN principle. The solution algorithm details

are illustrated through the numerical study of the elastoplastic response of the thin and thick

pressurized tubes, including inertia effects. Moreover, the balance of momentum equation is han-

dled by two approaches. It can be satisfied at Gauss points or in an exact way. The accuracy and

efficiency of the SBEN principle are assessed by comparing the SBEN numerical results with the

analytical solutions (for the thin tube) and the predictions derived by the classical incremental

finite element procedure.
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Chapter 5 In this chapter, we generalize the SBEN formalism to dissipative media in finite

strains. This aim is reached in three steps. Firstly, we develop a Lagrangian formalism for the

reversible media based on the calculus of variation by jet theory. Next, we propose a correspond-

ing Hamiltonian formalism for such media. Finally, we deduce from it a symplectic minimum

principle for dissipative media, and we show how to get a minimum principle for plasticity in

finite strains.

14



Chapter 1
Modeling of dissipative systems and

elastoplasticity : a review

1.1 Non-incremental variational formulation for dissipative systems . . . . . . . . 16

1.1.1 Mielke variational formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.2 Weighted-Inertia-Dissipation-Energy (WIDE) formulation for dynamic elastoplas-

tic problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.3 The Brezis-Ekeland-Nayroles (BEN) principle . . . . . . . . . . . . . . . . . . . . . 20

1.1.4 The symplectic Brezis-Ekeland-Nayroles (SBEN) principle . . . . . . . . . . . . . . 21

1.2 Basic notions of Elastoplasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.1 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.2 Energetic aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3 Numerical treatment of elastoplastic problems . . . . . . . . . . . . . . . . . . . 28

1.3.1 Radial return algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3.2 LATIN method in elastoplasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

15



This chapter reviews some variational formulations for quasi-static and dynamic dissipative

systems. First, we present the Mielke formulation, the Brezis-Ekeland-Nayroles (BEN) principle

for quasi-static evolutions, Davoli et al., and the symplectic Brezis-Ekeland-Nayroles (SBEN) for

a dynamic process. Then, attention is focused on elastoplasticity. We set out the fundamental

and basic concepts of this theory, and we address some numerical algorithms for approximation

of elastoplastic solutions.

1.1 Non-incremental variational formulation for dissipative sys-

tems

Non-smooth dissipation involving frictional contact, plasticity, collision, fracture and so on are

encountered in many engineering applications and natural environments.

In the last decades, much research has been devoted to simulating dynamically dissipative

models within the framework of non-smooth analysis and convexity/duality models. Many varia-

tional formulations and approaches for dissipative material models can be found in the literature.

The natural and common solution strategy for dissipative systems is the path-following incre-

mental analysis leading to a sequence of variational problems, which computes in a step-by-step

manner the trajectory. These incremental formulations are widely used and studied in the liter-

ature (Simo and Hughes, 2000; Hibbett et al., 1998; Cast3M, 2019). Moreover, some variational

formulations allowing one to work simultaneously on all time steps contrary to the step-by-step

procedure have been proposed. For instance, Mielke and co-workers (Mielke, 2005; Mielke and

Stefanelli, 2008) have developed a consistent minimization principle that characterizes the global

trajectory of the evolutionary system. Davoli et al. (Davoli and Stefanelli, 2019) have extended

the Mielke formulation to formulate the dynamic elastoplastic problems as a convex minimiza-

tion problem. Aubin et al. (Aubin et al., 1977; Aubin, 2003) and Rockafellar (Rockafellar,

1970a) considered various extensions of Hamiltonian and Lagrangian mechanics. Ghoussoub and

Moameni (Ghoussoub and Moameni, 2007) proposed self-dual variational principles to construct

solutions for Hamiltonians and other dynamical systems, which satisfy a variety of linear and

nonlinear boundary conditions. These principles lead to new variational proofs of the existence

of parabolic flows with prescribed initial conditions, as well as periodic, anti-periodic, and skew-

periodic orbits of Hamiltonian systems. Maso et al. (Dal Maso and Scala, 2014) have developed

mathematical tools to study nonlinear evolution problems, namely plasticity with hardening and

softening quasi-static crack growth, and dynamic fracture mechanics. A consistency theorem of

a discrete-to-continuum limit in the infinite dimensional case study of a cohesive fracture model
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is also presented. Another powerful alternative to bypass the nonlinear step-by-step approaches

in the sense that it works on the whole evolution of the system is the Brezis-Ekeland-Nayroles

variational principle (in short, the BEN principle) (Brézis and Ekeland, 1976b,a). The BEN

principle is based on the dissipation potential and its Fenchel transform over time integration.

Buliga and de Saxcé have generalized the BEN principle to the dynamics of dissipative systems

by linking two worlds together, the one of smooth functions in symplectic geometry systems and

the one of non-smooth functions for dissipative systems (Buliga and de Saxcé, 2017).

In this section, we review some non-incremental variational principles for characterizing the

entire trajectories of the evolutionary problem.

1.1.1 Mielke variational formulation

In the context of rate-independent dissipative systems, Mielke et al. (Mielke, 2005) proposed a

variational formulation characterizing the entire trajectories by minimizing a suitable weak form

of the equations. He considered an evolutionary problem modeling the quasi-static viscoelasticity

in small strains, finite-deformation viscoplasticity, heat conduction, viscous solid immersed in a

Stokes’ flow, etc. The strong form of equations is expressed thanks to differential inclusions as

follows:

In a Banach space X, find the trajectory t 7→ u(t), with the initial condition u(0) = u0, such

that

0 ∈ ∂ϕ(u̇(t)) +Dψ(t,u(t)) a.e. t ∈ [0, T ] (1.1)

where the function ϕ is a convex dissipation potential, ψ is an energy function, ∂ϕ is the sub-

differential of ψ (Rockafellar, 1970b; Krantz, 2015), Dψ denotes for the Fréchet derivative of

ψ.

It is worth noting that (1.1) represents the balance between dissipative forces and conservative

ones.

The Mielke weak formulation associated to (1.1) is derived in three steps. First, the evolution-

ary problem is discretized giving a sequence standard time-discretized incremental functionals.

To this main, the time interval is divided in sub-intervals [0, T ] =
⋃N
n=1[tn−1, tn] and the incre-

mental approximation of solution is:

Infun+1∈X Fn+1(un+1;un), n = 0, 1, ..., N − 1 (1.2)
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where

Fn+1(un+1;un) = ∆t ϕ
(un+1 − un

∆t

)
+ ψ(tn+1, un+1)− ψ(tn, un) (1.3)

Then, within the framework of the Pareto multi-objective optimization (Clarke, 1990), a

single objective functional is constructed as the sum a weighted sum of the individual functionals

built in the previous step:

I(u, λ) =

N−1∑
n=0

λn+1Fn+1(un+1;un) (1.4)

where λ1, .., λN are positive coefficients which are called Pareto weights (Clarke, 1990).

It is worth noting that the weights applied to a single incremental functional are ordered such

that the first incremental problem lays disproportionately higher priority over the second, the

second over the third, and so. Therefore λ1 >> λ2 >> .... According to Mielke (Mielke, 2005),

this ordering can be achieved by considering a parameterized sequence of weights λη,1 > λη,2 > ...

such that

limη→0
λη,n+1

λη,n
= 0

where η is a positive parameter.

Finally, the trajectory-wise functional is obtained formally by passing to the limit of con-

tinuous time. Thus the functional (1.4) appears as a discretization of the following continuous

function :

I(u, λη) =

∫ T

0
λη

{
ϕ(u̇) +

d

dt
ψ(t,u)

}
dt (1.5)

Moreover, it is shown in (Mielke, 2005) that an admissible possible choice of λη can be taken

under the form

λη = e
− t
η

For this particular choice and by operating an integration by parts, the functional (1.5) writes:

Iη(u) =

∫ T

0
e
− t
η

{
ϕ(u̇) +

1

η
ψ(t,u)

}
dt+ e

−T
η ψ(T,u(T )) (1.6)

This is the so-called weighted dissipation-energy (WDE) which is considered as a one-parameter

family of minimum problems. The trajectory u realizes the minimum of (1.6).

Mielke has shown that the corresponding Euler-Lagrange equations are given by:
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−ηD2 ϕ(u̇)ü+Dϕ(u̇) +Dψ(t, u) = 0 (1.7)

u(0) = u0 (1.8)

Dϕ(u̇(T )) +Dϕ(T, u(T )) = 0 (1.9)

which is an elliptic-in-time regularization of the original evolutionary problem (1.1).

The Γ-limit of these functionals for η → 0 is degenerate and provides limited information

regarding the limiting trajectories of the system (Mielke, 2005). However for rate-independent

dissipation problems, it is possible to derive bounds which are independent of the regularizing

parameter η. The mathematical details and proofs are provided in (Mielke, 2005).

1.1.2 Weighted-Inertia-Dissipation-Energy (WIDE) formulation for dynamic

elastoplastic problems

Davoli et al. (Davoli and Stefanelli, 2019) extended the Mielke formulation presented in subsec-

tion 1.1.1 in a pure mathematical manner to dynamic perfect plasticity. They developed a vari-

ational approach which consists in minimizing a Weighted-Inertia-Dissipation-Energy (WIDE)

functional.

The authors considered the following elastic perfect plastic problem involving inertia effects:

divσ = ρü (1.10)

σ = C : (ε− εp) (1.11)

σ ∈ ∂ϕ(εp) (1.12)

where σ is the Cauchy stress tensor, u is the displacement field, C is the fourth-order elastic

tensor, ε denotes for the linearized strain matrix, εp is the irreversible plastic strains and ϕ is

the dissipation potential. The energy potential reads ψ(ε, εp) = 1
2

(
ε− εp

)
: C :

(
ε− εp

)
.

It is important to underline that modeling of elastoplasticity will be detailed in the next

section of this chapter.

The variational formulation (WIDE) proposed in (Davoli and Stefanelli, 2019) writes:

Iη(u, ε
p) =

∫ T

0

∫
Ω
e
− t
η

(ρη2

2
|ü|2 + ηϕ(ε̇p) +

1

2
(ε− εp) : C : (ε− εp)

)
dΩ dt (1.13)
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The corresponding Euler-Lagrange are given by the following set of equations:

η2ρ
...
uη − 2η2ρ

...
uη + ρ üη − divση = 0 (1.14)

ση = C : (εη − εηp) (1.15)

ση ∈ −η(∂ϕ(ε̇ηp)) + ∂ϕ(ε̇ηp) (1.16)

Davoli et al. (Davoli and Stefanelli, 2019) have proved rigorously that the dynamic elasto-

plastic (1.10-1.12) is recovered by taking η → 0. Therefore, a numerical procedure for numerical

simulation of dynamic elastoplastic problems can be developed basing upon the Weighted-Inertia-

Dissipation-Energy (WIDE) formulation. To our knowledge, numerical investigations testing the

feasibility and the accuracy of the proposed variational formulation are not yet proposed in the

literature.

1.1.3 The Brezis-Ekeland-Nayroles (BEN) principle

In 1976, Brezis and Ekeland (Brézis and Ekeland, 1976b,a) proposed a variational minimization

principle for a class of parabolic evolution equations. Independently, Nayroles (1976) (Nayroles

et al., 1976) developed a similar principle for nonlinear mechanics, which gives the existence

theorem of solutions for the Cauchy problem associated with the constitutive law of Maxwell

model. It is worth noting that the Brezis-Ekeland-Nayroles (BEN) principle is similar to that of

De Giorgi (De Giorgi et al., 1980). Hereafter, we briefly recall the BEN variational formulation

and its extensions to dynamical dissipative systems derived by Buliga and de Saxcé (Buliga and

de Saxcé, 2017) within the framework of the symplectic convex analysis.

Consider a time interval [0, T ], a convex, proper and lower semicontinuous function (or po-

tential) ϕ in a Hilbert space V , and a function f ∈ L2(0, T ;V ). The purpose is to solve the

following parabolic evolution inclusion:

Find the trajectory t 7→ u(t) ∈ V such that:

du

dt
+ ∂ϕ(u) ∈ f a.e. t ∈ [0, T ] (1.17)

where ∂ϕ(u) is the subdifferential operator of ϕ. The problem (1.17) models many physical

problems such as the heat conduction, the Stefan problem, the Hele-Shaw cell, certain nonlinear

transport equations, etc.

Brezis et al. (Brézis and Ekeland, 1976b,a) demonstrated that the trajectory u(t), the unique
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solution of (1.17), achieves the minimum of the convex and non-negative functional j:

j(v) =

∫ T

0

{
ϕ(v) + ϕ∗(f − v′)− 〈f, v〉

}
dt+

1

2
|v(T )|2 (1.18)

where ϕ∗ is the conjugate function of ϕ (Rockafellar, 1970b; Krantz, 2015) and 〈·, ·〉 denotes
for the scalar product in V . More precisely, the solution function u(t) satisfies j(u) = 0. This

minimization problem is the so-called Brezis-Ekeland-Nayroles (BEN) principle.

Intriguingly, this variational principle is not very popular in the literature, even if it allows a

consistent view of the whole evolution of a dissipative system at once. From the numerical point

of view, instead of computing the trajectory in a step-by-step way and facing the convergence

problem, the BEN principle allows working simultaneously overall steps.

Consider now the evolution problem (1.17) under periodic conditions:

du

dt
+ ∂ϕ(u) ∈ f a.e. t ∈ [0, T ] such that u(0) = u(T ) (1.19)

As mentioned in (Brézis and Ekeland, 1976b), although the existence and uniqueness of solu-

tions of (1.19) are not guaranteed, the authors showed that a solution minimizes the following

functional :

j′(v) =

∫ T

0

{
ϕ(v) + ϕ∗(f − v′)− 〈f, v〉

}
dt+

1

2
|v(T )|2 (1.20)

Moreover, if a solution u exists then j′(u) = 0.

1.1.4 The symplectic Brezis-Ekeland-Nayroles (SBEN) principle

Recently, Buliga and de Saxcé (Buliga and de Saxcé, 2017) developed a symplectic version of the

BEN principle by extending the Hamiltonian formalism for dynamical dissipative systems.

Consider two topological, locally convex, real vector spaces X and Y and a lower semicon-

tinuous dissipation potential ϕ. A symplectic form is a bilinear and antisymmetric form defined

on (X × Y )2 → R. The natural symplectic form (or the Lagrange brackets) ω is defined for any

z = (x, y) and z′ = (x′, y′) in X × Y by:

ω(z, z′) =
〈
x, y′

〉
−
〈
x′, y

〉
(1.21)

where 〈·, ·〉 is a duality product.
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By definition, the symplectic subdifferential ∂ωϕ(z) of the dissipation potential is given by:

∂ωϕ(z) =
{
z′ ∈ X × Y such as ∀z′′ ∈ X × Y, ϕ(z + z′′) ≥ ϕ(z) + ω(z′, z′′)

}
(1.22)

Moreover, it is natural to introduce the symplectic Fenchel polar function ϕ∗ω as follows:

ϕ∗ω(żI) = sup
z
{ω(żI , ż)− ϕ(ż)} (1.23)

According to Buliga et al. (Buliga and de Saxcé, 2017), if the potential ϕ is lower semicon-

tinuous then, for any (z, z′) ∈ X × Y one has:

ϕ(z) + ϕ∗ω(z′) ≥ ω(z′, z) (1.24)

and the equality is obtained if and only if z′ ∈ ∂ω(z)

Let now F be a function defined on X × Y → R ∪ {+∞}. F has a symplectic gradient at a

given z = (x, y), if F (z) < +∞ and there exists XF (x, y) = (u, v) ∈ X×Y , called the symplectic

gradient of F , such that

• for all y′ ∈ Y we have

limδ→0
1

δ

[
F (x, y + δy′)− F (x, y)

]
=
〈
u, y′

〉
(1.25)

• item for all x′ ∈ X we have

limδ→0
1

δ

[
F (x+ δx′, y)− F (x, y)

]
=
〈
−x′, v

〉
(1.26)

The attention is focused now on the evolution curve t : [0, T ] 7→ z(t) ∈ X × Y satisfying the

following relation:

ż(t) = XH(t, z(t)) (1.27)

where the function H = H(t, x, y) = H(t, z) is called the Hamiltonian and defining the motion

and XH = (gradyH,−gradxH) is the symplectic gradient of the Hamiltonian (see Buliga and

de Saxcé (2017)), also called Hamiltonian vector field in the literature.

The extension of the BEN principle for the evolution curve t 7→ z(t) relies on the additive

decomposition of the time rate ż into a reversible part żR = XH(z) (the symplectic gradient,

see (Buliga and de Saxcé, 2017)) and a dissipative or irreversible one żI = ż − żR, and the use

of symplectic subdifferential ∂ωϕ(z) of the dissipation potential.
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According to the authors, an evolution curve z(t) satisfies the symplectic Brezis-Ekeland-

Nayroles principle for the Hamiltonian H and dissipation potential ϕ if for almost any t 7→ [0, T ]

has:

ϕ
(
ż(t)

)
+ ϕ∗ω

(
żI(t)

)
= ω(żI(t), ż(t)) (1.28)

Basing upon these assumptions, Buliga and de Saxcé (Buliga and de Saxcé, 2017) announced

and proved the following symplectic BEN principle:

An evolution curve t ∈ [0, T ] 7→ z(t) ∈ X × Y satisfies the symplectic BEN principle for the

Hamiltonian H and dissipation potential ϕ if and only if it satisfies one of the following :

• for almost every t ∈ [0, T ]

ż(t)−XH(t, z(t)) ∈ ∂wϕ(ż) (1.29)

• the evolution curve minimizes the functional

Π(z′) =

∫ T

0

{
ϕ
(
ż′
)

+ ϕ∗w
(
ż′ −XH

)
− ω(ż′ −XH, ż′)

}
dt (1.30)

among all curves z′(t) : [0, T ] 7→ X × Y such that z′(0) = z(0) and the minimum is zero.

One of the advantages of this symplectic Brezis-Ekeland-Nayroles principle of minimizing the

functional Π with the initial condition is to generate variational inequalities associated to any

function f(t, z):

∫ T

0
[ϕ(ż(t)−Xf(t, Z))− ϕ(ż)]

≥ f(T, z(T ))− f(0, z(0)) +

∫ T

0
[H, f(t, z(t))−Dtf(t, z(t))] dt (1.31)

where {·, ·} is Poisson’s bracket. These inequalities could be very helpful considering in par-

ticular the Hamiltonian and (exact or approximated) integrals of the motion. In this formalism,

the energy balance writes:

H(T, z(T )) +Diss(z, [0, T ]) = H(0, z0) +

∫ T

0
DtH(t, z)dt (1.32)

The BEN principle and its symplectic version are the core of this thesis.
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1.2 Basic notions of Elastoplasticity

Elastoplastic problems of deformable bodies are among the oldest ones in the field of nonlinear

mechanics. With the significant advances in mathematics and material sciences, elastoplasticity

has accomplished increasing progress and has reached a certain maturity. Since the pioneering

work of Hill (Hill, 1998), two dates related to the development of this theory deserve to be

mentioned. The first one dates back to Halphen and Son (Halphen and Nguyen, 1975), who

proposed a rigorous framework called the generalized standard materials, which allows the built

thermodynamic admissible models. This framework relies on a dissipation potential and an

energy function under the assumption of normal flow rule. The second date is related to the work

of Suquet (Suquet, 1981), who studied the existence of solutions for the quasi-static problems

within suitable spaces.

Without loss of generality and for seek of shortness, the present survey reviews some basic

concepts of the elastic perfect plastic problems at the macroscopic scale. Hardening plasticity

is easily formulated within the framework of standard plasticity (Halphen and Nguyen, 1975;

Nguyen, 2000). The reader can refer with great interest to the monographs (Nguyen, 2000;

Temam, 2018; Lubliner, 2008). Micromechanical aspects of elastoplasticity are out of the scope

of the present work.

1.2.1 Basic equations

Consider an elastic plastic solid occupying an open volume Ω with a sufficiently regular boundary

Γ = ∂Ω. The later is divided into two disjoint parts ΓT and Γu. The solid is subjected to body

forces fv, prescribed surface tractions T d on ΓT and imposed displacement ud on Γu. These

actions depend on the position x ∈ Ω and the time t ∈ [0, T ] and they define the so-called

history loading or path loading. In the sequel, space and time dependence of the loadings and

the mechanical fields are not mentioned explicitly.

We assume small strains, elastic linear under small loads, and rate-independent plasticity.

The quasi-static elastoplastic problem consists in finding the mechanical fields σ,u satisfying

the following boundary value problem:

divσ + fv = 0 inΩ (1.33)

elastoplastic constitutive law (1.34)

σ · n = T d onΓT (1.35)

u = ud on Γu (1.36)
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where n is normal outward vector to the surface Γ.

Let K be the elastic domain which is defined by:

k = {σ such that f(σ) ≤ 0)}

Experimental have shown that the set K is convex and non empty (Bui, 1969).

For isotropic metals, the Tresca and von Mises criteria are the most widely used (Tresca,

1864; von Mises, 1928). These models are dependent on the second invariant J2 of the deviatoric

part of the stress tensor. For compressible materials like geomaterials and polymers, yield criteria

must include the first invariant I1.

For instance, Tresca yield domain is defined as follows: σeq,T :

f(σ) = sup
(
|σI − σII |, |σII − σIII |, |σIII − σI |

)
− σY ≤ 0 (1.37)

where are σI ,σII ,σIII the principle stresses of the stress tensor and σY denotes the yield stress.

The von Mises plastic criterion is stated as:

f(σ) =

√
3

2
s : s− σY ≤ 0 (1.38)

with s is deviatoric part of the stress field stress σ.

Let us recall that a displacement field u∗ is said to be kinematically admissible (K.A.) if

u∗ = ud on Γu. A stress field σ∗ is statically admissible (S.A.) if div σ∗ + fv = 0 within Ω and

σ∗n = T d on ΓT . Furthermore, σ∗ is said to be plastically admissible (P.A.) if σ∗ is S.A and

σ∗ ∈ K.

The total strain tensor splits additively into its elastic part and its plastic one:

ε = εe + εp (1.39)

The elastic part is related to the stress field through the Hooke law:

εe = S : σ

in which S is the forth order stiffness tensor.

For the variation of the plastic strain tensor, we limit ourselves to the associated plasticity
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which means that the normal flow rule is adopted:

ε̇p = λ
∂f

∂σ
(σ) (1.40)

where λ > 0 is called the plastic multiplier. Moreover, the consistency equation λ · ḟ = 0 must

be considered also. This equation allows the determination of the plastic multiplier as follows

(Nguyen, 2000; Maitournam, 2013):

It is important to underline that the normality law is equivalent to the following inequality:

∀σ∗ ∈ K, (σ− σ∗) : ε̇p ≥ 0 (1.41)

This the so-called Hill’s maximum power principle (Nguyen, 2000; Maitournam, 2013).

Basing upon this principle (1.41), one introduces the dissipation potential:

ϕ(ε̇p) = Sup {σ∗ : ε̇p; σ∗ ∈ K} (1.42)

It has been shown that ϕ is convex, lower semi-continuous and a positively homogeneous of order

one (Halphen and Nguyen, 1975; Nguyen, 2000; Maitournam, 2013). Within the framework of

convex analysis, it can be easily established that

σ ∈ ∂ϕ(ε̇p) (1.43)

where ∂ϕ is the subdifferential of the dissipation function (Rockafellar, 1970b).

The Legendre-Fenchel transform allows to derive the converse constitutive law thanks to the

conjugate function χ of ϕ :

ϕ∗(σ) = Sup {σ : ε̇∗p − ϕ(ε̇∗p), ε̇p ∈ V } (1.44)

where V is a topological vector space of plastic strain rate field. The potentials ϕ and ϕ∗ satisfy

Fenchel’s inequality:

ϕ(ε̇∗p) + ϕ∗(σ) ≥ σ : ε̇p (1.45)

For the plasticity, ϕ∗ is the indicatory function of the convex elastic domain K and subsequently

ϕ∗ is convex. Thus

ε̇p ∈ ∂ϕ∗(σ) (1.46)
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Equivalently, the couple (ε̇p,σ) is extremal in the sense that the equality is reached in (1.45):

ϕ(ε̇p) + ϕ∗(σ) = σ : ε̇p (1.47)

if σ ∈ K, the stress potential ϕ∗ vanishes and we recover the meaning of ϕ as the dissipation:

ϕ(ε̇p) = σ : ε̇p

Eventually, it is interesting to underline that an incremental relationship between the strain and

stress rates can be written as follows (Son, 1977):

ε̇ ∈ Sσ̇ + ∂ϕ∗(σ) (1.48)

σ(0) = σ0 (1.49)

1.2.2 Energetic aspects

Similar to elasticity, two minimum principles of the potential energy and the complementary one

can be formulated for elastoplasticity.

Let us consider the elastic perfectly plastic boundary value problem (BVP) as described in

section 1.2. It can be proven that one has:

• The Greenberg minimum principle

The displacement rate u̇ minimizes the following functional:

F (u̇∗) =

∫
Ω
ϕ(ε̇∗) dΩ−

∫
Ω
ḟv u̇

∗ dΩ−
∫

ΓT

Ṫ d u̇∗ dΓ (1.50)

Among all kinematically admissible displacement rate, i.e. u̇∗ = u̇d on Γu.

The proof is provided in (Greenberg, 1949; Lubliner, 2008).

• The Hodge-Prager minimum principle

The stress tensor rate σ̇ minimizes the following functional:

G(σ̇∗) =

∫
Ω

1

2
σ̇∗ : S : σ̇∗ dΩ−

∫
Γu

σ̇∗ u̇ ndΓ (1.51)

Among all statically and plastically admissible stress rate field σ̇.

The reader can refer to (Prager and Hodge, 1968; Lubliner, 2008) for details of the proof.
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Furthermore, the existence ad uniqueness of the solution for perfect plasticity can be an-

nounced as follows (Nguyen, 2000; Lubliner, 2008):

Theorem

For quasi-static evolution, the stress solution is unique. The displacement solution is unique for

dynamic problems.

Proof

Following Son (Nguyen, 2000), let (σ,u) and (σ̂, û) be 2 solutions of (BVP) in terms of the

stress and displacement fields. The virtual work equation writes:

∫
Ω
σ : δε dΩ−

∫
Ω

(fv − ρü) · δu dΩ−
∫

ΓT

T d · δu dΓ = 0 (1.52)

for δu = 0 on Γu.

The virtual work equation (1.52) holds also for the couple (σ̂, û). It follows

∫
Ω

(σ − σ̂) : (ε̇− ˙̂ε) dΩ +

∫
Ω
ρ(ü− ¨̂u)(u̇− ˙̂u) dΩ = 0 (1.53)

By taking into account the relationship ε̇ = ε̇e + ε̇p in eq. (1.53), one gets:

∫
Ω

(σ − σ̂) : (ε̇p − ˙̂εp) dΩ +

∫
Ω

(σ − σ̂) : S : (σ̇ − ˙̂σ) dΩ +

∫
Ω
ρ(ü− ¨̂u)(u̇− ˙̂u) dΩ = 0 (1.54)

On the other hand (σ − σ̂) : (ε̇p − ˙̂εp) ≥ 0 which yields:

d

dt

1

2

(∫
V

(σ − σ̂) : S : (σ − σ̂) dV +

∫
V
ρ(u̇− ˙̂u)2 dV

)
≤ 0 (1.55)

Subsequently, the positive functional

I(t) =
1

2

(∫
V

(σ − σ̂) : S : (σ − σ̂) dV +

∫
V
ρ(u̇− ˙̂u)2 dV

)

is decreasing. Moreover, this function is vanishing initially, thus its remains equal to zero for all

time t, which leads to σ = σ̂ and u = û.

1.3 Numerical treatment of elastoplastic problems

The natural and common solution strategy for nonlinear problems is the path-following incremen-

tal analysis, which computes in a step-by-step manner the system response along the loading

history (Zienkiewicz et al., 1969; Zienkiewicz, 1971; Oden, 2006; Simo and Hughes, 2000; Be-
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lytschko and Velebit, 1972; Cristfield, 1998; Ibrahimbegovic, 2009).

Regarding the elastoplastic problems, undoubtedly, the radial return algorithm, initially pro-

posed by Nguyen (Son, 1977) is the most popular method. It belongs to the family of trial-and-

error algorithms and is widely implemented in many commercial codes such as Abaqus, Cast3m,

Adina, etc...

A different non-incremental numerical algorithm, namely the LArge Time INcrement method

(LATIN) (Ladevèze, 1985a,b) has been proposed in order to compute an approximation solution

for the whole time history.

1.3.1 Radial return algorithm

The radial return is a predictor-corrector scheme that allows to determine the stress at the end

of the increment from the strain increment and the stress at the beginning of the increment. To

this end, loading history into many successive small time increments and to solve the non linear

equilibrium equations at each end of the increment.

An initial equilibrium state at t and the variables at t+ ∆t are noted respectively as:

{
σ(t), ε(t), εe(t), εp(t), p(t)

}
=
{
σn, εn, εne , ε

n
p , p

n
}

{
σ(t+ ∆t), ε(t+ ∆t), εe(t+ ∆t), εp(t+ ∆t), p(t+ ∆t)

}
=
{
σn+1, εn+1, εn+1

e , εn+1
p , pn+1

}
For each time increment, the final state at t + ∆t is computed from the initial state at t by

applying the radial return algorithm (fig. 1.1). Hence in this incremental method, the increment

size determines computation precision. Within a complex loading history, one needs to impose

many tiny time increments to obtain an accurate simulation, that increases the computation

time. A flaw of the method is the accumulation of the computational error. In each step,

computation provides an approximation result with a small computational error. While in the

next time step, the integration is executed based on the error produced in the previous one, etc.

This accumulation of errors may lead to the failure of the whole simulation. The only possibility

is to start again from the beginning with a smaller time increment.

{σn, εn, εne , ε
n
p , p

n} Integration algorithm
{σn+1, εn+1, εn+1

e ,
εn+1
p , pn+1}

Increment of strain ∆ε

Figure 1.1: Function of elastoplastic return mapping algorithm enter variables at t and t+ ∆t
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In discretization form, the constitutive equations reads:

∆ε = ∆εe + ∆εp (1.56a)

∆σ = 2µ∆εe + λtr(∆εe)1 (1.56b)

fn+1
vm/T (σ) = σn+1

eq − σY ≤ 0 (1.56c)

∆εp = ∆λ
3sn+1

2σY
(1.56d)

∆λ ≥ 0 (1.56e)

There are two steps in the radial return algorithm: (i) Elastic prediction (ii) Elastoplastic

correction (if necessary).

(i) Elastic prediction Imposing a null plastic deformation, one has:

∆εp = 0 ⇒ ∆ε = ∆εe + ∆εp = ∆εe

thus the constitutive model in elastic prediction is:

εn+1
e,elas = εne + ∆ε (1.57a)

σn+1
elas = σn + 2µ∆εe + λtr(∆εe)1 (1.57b)

fvm/T,elas(σ
n+1) = σn+1

eq,elas − σY (1.57c)

εn+1
p,elas = εnp (1.57d)

The obtained predicted variables in the elastic prediction step may need to be corrected in the

next step.

(ii) Elastoplastic correction As the variables of first step is just a prediction, its admissibility

needs to be checked. By verifying the state of eq. (1.57c), one has two cases:

(ii.1) fvm/T,elas(σn+1) ≤ 0 yield condition satisfied, variables at t + ∆t are updated from the

ones of elastic prediction.

{
σn+1, εn+1, εn+1

e , εn+1
p , λn+1

}
=
{
σn+1
elas , ε

n+1
elas , ε

n+1
e,elas, ε

n+1
p,elas, λ

n+1
elas

}
(ii.2) fvm/T,elas(σn+1) > 0 yield condition not satisfied, the elastic prediction requires a correction

(fig. 1.2). Taking the discretization eq. (1.56b) and replacing elastic strain by its additive
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f(σn) = 0

f(σn+1) = 0

σn+1
elas

σn

σn+1

Figure 1.2: Radial return schema

decomposition, one has the elastoplastic correction:

σn+1 = σn + 2µ(∆ε−∆εp) + λtr(∆ε−∆εp)1

= σn + 2µ∆ε+ λtr(∆ε)1− 2µ∆εp

= σn+1
elas − 2µ∆εp

(1.58)

with 2µ∆εp the elastoplastic correction. As tr(∆εp) = 0, eq. (1.58) becomes:

sn+1 = sn+1
elas − 2µ∆εp (1.59)

For von Mises criterion, eq. (1.56d) gives:

∆εp = ∆λ
3sn+1

2σY
(1.60)

By combining eq. (1.59) and (1.60), one has:

sn+1
elas = sn+1

(
1 +

3µ∆λ

σY

)
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The equivalent tensile stress can be expressed as:

σn+1
eq,vm,elas = σn+1

eq,vm

(
1 +

3µ∆λ

σY

)
= σY + 3µ∆λ

which gives:

σn+1
vm,elas − σY − 3µ∆λ = 0

∆λ =
σn+1
vm,elas − σY

3µ

∆εp = ∆λ
3sn+1

2σY
= ∆λ

3sn+1
elas

2σY

Variables at t+ ∆t can be updated from the elastoplastic correction:

{
σn+1, εn+1

p , λn+1
}

= {σn+1
elas − 2µ∆εp, ε

n
p + ∆εp, λ

n + ∆λ}

1.3.2 LATIN method in elastoplasticity

The LArge Time INcrement method (LATIN) was introduced in (Ladevèze, 1985a,b). Comparing

to the incremental method presented in the previous section, the LATIN method is not based on

the consideration of small increments in the entire time interval [0, T ], but on a non-incremental

iterative technique. With one large increment of time, the LATIN method allows to solve a

complex loading history by employing some properties of the equations:

• (i) the constitutive law is non-linear but local in space,

• (ii) while the others equations such as equilibrium and boundary conditions are linear but

global.

Let s′ = (ε̇,σ) be a couple of strain rate and stress defined on [0, T ] × Ω. The couple s′

satisfying the constitutive equations belong to a manifold Γ. The admissible couple s′′ are living

in an affine space Ad. The exact solution of the problem belongs to the intersection of the two

manifold Γ and Ad.

The iterative strategy of the LATIN method is to find a new approximation sn+1 ∈ Ad from

a previous one sn ∈ Ad, each iteration consisting in two stages in each iteration:

(i)Direction of ascent : the local, non-linear step The intermediate approximation

ŝn+1/2 ∈ Γ verifying the constitutive equations anywhere in Ω and for all t ∈ [0, T ] is at the

intersection of Γ and the affine space sn +E+ where the direction is E+ is a linear space defined
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locally:

ŝn+1/2 − sn ∈ E+

Γ

Adsn

ŝn+1/2

s

E+

Figure 1.3: Non-linear and local step at iteration n

(ii)Direction of decent: the global, linear step The admissible point sn+1 ∈ Ad is at the

intersection between Ad and ŝn+1/2 + E−, the direction E− being a linear space:

sn+1 − ŝn+1/2 ∈ E−

Γ

Ad

sn+1

ŝn+1/2

s

E−

Figure 1.4: Linear and global step at iteration n

E+, E− are parameters of the LATIN method. There are various algorithms to determine

them, such as the Newton algorithm, the augmented Lagrangian method, etc. In the case of

elastoplasticity, the tangent stiffness tensor C gives:

˙̂σn+1/2 = C ˙̂εn+1/2 ∀t ∈ [0, T ]
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With Newton algorithm, there are two stages:

1. Build of ŝn+1/2 The direction E+ and Ad are orthogonal (fig. 1.5):

E+ = {s = (0,σ)}

The intermediate point ŝn+1/2 = ( ˙̂εn+1/2, σ̂n+1/2) is defined as:

˙̂εn+1/2 = ˙̂εn (1.61a)

˙̂σn+1/2 = C ˙̂εn+1/2 (1.61b)

Γ

Adsn

ŝn+1/2

s

E+

sn+1

E−

Figure 1.5: Frame the Newton algorithm

2. Build of sn+1 The direction E− is given by:

E− = {s = (ε̇,σ) | ε̇ = K−1dσ

dt
}

The new point sn+1 = (ε̇n+1,σn+1) gives:

ε̇n+1 kinematically admissible, (1.62a)

σn+1 statically admissible, (1.62b)

ε̇n+1 − ˙̂εn+1/2 = C−1 d

dt

(
σn+1 − σ̂n+1/2

)
(1.62c)

Eqs. 1.62 are reformulated in a weak form:
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Find a kinematically admissible u̇n+1 minimizing:

∫ T

0

∫
Ω
tr [Cε(u̇n+1 − u̇n)ε(u̇n+1 − u̇n)] dΩdt−

∫ T

0

∫
Ω
tr
[
d

dt
(σn − ˙̂σn+1/2)ε(u̇n+1 − u̇n)

]
dΩdt

(1.63)

Eq. (1.63) gives the new ε̇n+1, and σn+1 is computed from eq. (1.62c). A new point sn+1 is

build.
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This chapter is devoted to the numerical application of symplectic BEN principle for an

elastic perfectly plastic and viscoplastic thick wall tube model subjected to internal pressure in

statics. It turns out that the BEN variational formulation is based on a two-field functional, that

leads naturally to discretize the displacement and stress fields. We present the detailing of the

discretization and the numerical implementation of the minimization problem by using the mixed

finite element method, which is more efficient in enforcing the yield condition. Computational

accuracy and efficiency of the BEN principle are assessed by comparing the numerical results

with the analytical ones and the simulations derived by the classical step-by-step finite element

procedure.

2.1 Formulation of the elastoplastic problems within the frame-

work of the the Brezis-Ekeland-Nayroles principle

Formulation of the elastoplastic problems within the framework of the the Brezis-Ekeland-

Nayroles principle To illustrate the general formalism and to show how the BEN principle allows

developing powerful variational principles for dissipative systems within the framework of con-

tinuum mechanics, we consider the standard plasticity and viscoplasticity in small deformations.

Consider an elastic perfectly plastic solid occupying the volume Ω with a smooth boundary

∂Ω. It is loaded by given body forces fv on Ω, a prescribed displacement field ud on Γu and

surface tractions td exerted on the complementary part Γt = ∂Ω − Γu. Recall that Γu and Γt

are fixed and they satisfy Γu ∩ Γt = ∅. The data set
(
fv, td,ud

)
depends on the time t in the

time interval [0, T ] and characterizes the mechanical loading path at every point x ∈ Ω.

The strain field is decomposed into elastic and plastic strains parts:

ε = εe + εp = S σ + εp

where S is the elastic compliance tensor. Let Ω ⊂ Rn be a bounded, open set, with piecewise

smooth boundary ∂Ω. As usual, it is divided into disjoint parts, ∂Ω0 (called support) where the

displacements are imposed and ∂Ω1 where the surface forces are imposed. U and E are suitable

functional spaces of displacement and stress fields on Ω. The standard duality between stress

and strain fields is:

〈σ, ε〉 =

∫
Ω
σ : ε dΩ

Let ϕ be a convex lower semicontinuous dissipation potential and ϕ∗ be its Fenchel transform.

The symmetric gradient is denoted ∇. Applied to the quasi-static plasticity, the BEN principle
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claims that the evolution curves σ : [0, T ] → E and u : [0, T ] → U minimize (Buliga and

de Saxcé, 2017):

Π̄(σ, u̇) =

∫ T

0
{ϕ(σ) + ϕ∗(∇u̇− Sσ̇)− 〈σ,∇u̇− Sσ̇〉} dt (2.1)

among all curves satisfying:

• the equilibrium equations:

divσ + f = 0 in Ω, σ · n = t̄ on ∂Ω1 (2.2)

• the kinematical conditions on supports:

u = ū on ∂Ω0 (2.3)

• and the initial conditions:

σ(0) = σ0, u(0) = u0 (2.4)

Proof

Introducing densities φ and φ∗ such that:

ϕ(σ) =

∫
Ω
φ(σ) dΩ, ϕ∗(εp) =

∫
Ω
φ∗(εp) dΩ,

Equation (2.1) reads:

Π̄(σ, u̇) =

∫
Ω

∫ T

0
[φ(σ) + φ∗(∇u̇− Sσ̇)− σ : (∇u̇− Sσ̇)] dt dΩ (2.5)

Because of Fenchel’s inequality:

∀σ′, ε̇′p, φ(σ′) + φ∗(ε̇′p) ≥ σ′ : ε̇′p

we have the minimum principle:

∀σ′, u̇′, Π̄(σ′, u̇′) ≥ 0

The minimum is realized if almost everywhere the couple (σ,∇u̇− Sσ̇) is extremal:

φ(σ) + φ∗(∇u̇− Sσ̇) = σ : (∇u̇− Sσ̇)
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or, equivalently, the differential inclusion:

∇u̇ ∈ Sσ̇ + ∂φ(σ) (2.6)

that is the strain decomposition into the elastic part and the plastic one, combined with the flow

rule, and:

σ ∈ ∂φ∗(∇u̇− Sσ̇)

that is the inverse law. These differential inclusions must be satisfied together with the a priori

admissibility conditions (2.2) to (2.4).

For the particular case of plasticity, the potential φ being the indicatory function of the elastic

domain K, the differential inclusion (2.6) means:

∀σ′ ∈ K, (∇u̇− Sσ̇) : (σ′ − σ) ≤ 0

that is Hill’s maximum principle.

2.2 Application to the pressurized thick-walled tube

Thanks to the eqs. (2.1,2.2,2.3,2.4), the structural problem can be solved as a constrained

optimization problem. To start up, we choose a classical academic example, the thick-walled

tube subjected to an internal pressure. The internal and external radii of the tube are a and

b respectively. The material parameters are the Young modulus E, Poisson’s coefficient ν and

the yield stress σY . We suppose that the thick tube is in plane strain and the initial fields are

vanishing. If the internal pressure grows monotonically from zero to the limit load, the internal

surface of the tube r = a will come to yield first, next the plastic yielding will spread within the

tube up to reach the external surface r = b.

Three nonlinear constitutive laws are considered in the sequel: (i) an elastic perfectly plastic

behavior with von Mises criterion, (ii) an elastic perfectly plastic tube with Tresca model and

(iii) the Norton-Odqvist viscoplastic law. The Norton-Odqvist law will be discussed separately

due to its special character. In this section, we first specialize the functional (2.5) of the BEN

principle to the thick tube problem, then we present the mixed FEM discretization.
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2.2.1 Basic equations

As the BEN principle applies the dissipation potential and its Fenchel transform, their ana-

lytical expressions for the thick tube problem need to be deduced firstly. Taking into account

the hypotheses of axisymmetry and plane strain, 1D axisymmetric element along the radius is

employed. The displacement field u is radial and depends only on the radial coordinate :

u = ur(r) er

The stress and strain tensors are given in small deformations hypothesis by:

σ =

σr 0

0 σθ

 , ε =

dur
dr 0

0 ur
r

 (2.7)

Hooke’s law in plane strain is:

εr =
1

Ē
(σr − ν̄σθ) , εθ =

1

Ē
(σθ − ν̄σr)

with:

Ē =
E

1− ν2
, ν̄ =

ν

1− ν

Tresca criterion reads:

fT (σ) = |σθ − σr| − σY 6 0 (2.8)

Denoting the deviatoric stress by s, von Mises yield condition is:

fVM (σ) = σeq(s)− σY =

√
3

2
s : s− σY 6 0 with s = σ − 1

3
trσ 11 (2.9)

The convex elastic domain is:

K = {σ such that f(σ) ≤ 0}

where f is fT or fVM depending on the model. The dissipation power by unit volume is given

by:

D = σ : ε̇p

where σ and ε̇p are associated by the normality law. As we impose an internal pressure, we can

suppose that σθ > σr. For Tresca criterion, the normality rule gives ε̇pθ = −ε̇pr = λ (λ > 0 is the
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plastic multiplier) and the dissipation power is:

D = σθε̇
p
θ + σrε̇

p
r = (σθ − σr) ε̇pθ = σY λ (2.10)

With von Mises criterion, the normality rule is ε̇p = λ
3s

2σeq
. The dissipation power has the same

expression as the one of Tresca criterion:

D = λ
3s : s

2σeq
= λ

σeq
2

σeq
= λσeq = σY λ (2.11)

The dissipation potential for both criteria is:

ϕ(σ) =

∫
Ω
χK dΩ

where χK is the indicator function of the elastic domain K. The Fenchel transform is:

ϕ∗(ε̇p) =

∫
Ω
DdΩ

Applying the BEN principle, we minimize the functional (2.5) that reads:

Π̄(σ,u) =

∫ T

0

∫
Ω

(D − 〈σ,∇u̇− Sσ̇〉) dΩ dt (2.12)

among all the curves (σ,u) : [0, T ]→ U × E such that σ(0) = 0, u(0) = 0, satisfying Tresca or

von Mises yield condition, the normality rule and the equilibrium equations.

2.2.2 The mixed finite element method for thick tube problem

To implement the BEN principle numerically, we need to discretize the functional (2.12). As

discussed in the introduction, the standard or displacement finite elements are widely used in

FEM software. Although easy to implement, this kind of element exhibits a displacement field

convergence faster than the one of the stress field, a weak quantity satisfying the equilibrium

only in an average sense. For this reason, local stress values are deemed to be not very accurate.

This is particularly harmful in plasticity because the yield criterion is expressed directly in terms

of the stresses.

The BEN principle is based on a 2-field functional, that leads naturally to discretize the

displacement and stress fields, which is especially welcome in plasticity to satisfy more accurately

the yield criterion. For this reason, we opt for a mixed finite element. It is worth noting that the

choice of the mixed formulation is not mandatory, and it is also possible to combine the BEN
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principle with standard displacement elements. In fact, in the minimum principle, the stress field

can be replaced by the relation σ = S−1 : (ε− εp) .

For the thick tube problem, there are three unknown fields: the stress tensor, the radial

displacement and the plastic multiplier. These fields are not independent one of each other

because the constraints of the optimization problem must be satisfied a priori.

1. The stress field We consider a reference axisymmetric element of thick tube with α 6 r 6

β. There are two stress connectors (radial σr and hoop σθ stresses) per extremity, gathered in

the elementary vector:

ge =


g1

g2

g3

g4

 =


σr |r=α
σθ |r=α
σr |r=β
σθ |r=β

 (2.13)

We choose a polynomial elementary stress field σe which depends on the stress parameters h

of the element. The expression of the hoop stress is derived from the equilibrium equation

σθ = d
dr (rσr), that gives in matrix form:

σe(r) = Re(r)h (2.14)

 σr

σθ

 =

 1 r r2 r3

1 2 r 3 r2 4 r3



h1

h2

h3

h4

 (2.15)

Owing to (2.13,2.15), we obtain the elementary stress connectors ge in terms of the stress pa-

rameters h:

ge = Ceh (2.16)
g1

g2

g3

g4

 =


1 α α2 α3

1 2α 3α2 4α3

1 β β2 β3

1 2β 3β2 4β3




h1

h2

h3

h4


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By eliminating the stress parameters between (2.14,2.16), the elementary stress field σe is ex-

pressed in terms of stress connector ge of the element:

σe(r) = Re(r)C
−1
e ge = Te(r)ge (2.17)

2. The displacement field For the same element occupying α 6 r 6 β, there is one displace-

ment degree of freedom qe at each extremity:

q1 = ur |r=α q2 = ur |r=β

In order to provide a strain field which has the same number of parameters as the one of the

stress field, we add two intermediate equidistant nodes inside the element:

r = γ =
2α+ β

3
r = δ =

α+ 2β

3

and two extra degrees of freedom associated to bubble modes:

q3 = ur |r=γ q4 = ur |r=δ

The four displacement degrees of freedom are gathered in the vector:

qe =


q1

q2

q3

q4

 =


ur |r=α
ur |r=β
ur |r=γ
ur |r=δ

 (2.18)

For a cubic Lagrange interpolation, the displacement field ur depends on the displacement degree

of freedom qe through:

ur(r) = Ne(r) qe (2.19)

with:

NT
e (r) =

1

16


−(1− η) (1− 9 η2)

−(1 + η) (1− 9 η2)

9 (1− η2) (1− 3 η)

9 (1− η2) (1 + 3 η)

 η =
2 r − (β + α)

β − α
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Taking into account (2.7), the strain field reads:

εe(r) = Be(r) qe (2.20)

with:

BT
e (r) =

1

16


J (1 + 18 η − 27 η2) −1

r (1− η) (1− 9 η2)

J (−1 + 18 η + 27 η2) −1
r (1 + η) (1− 9 η2)

J (−27− 18 η + 81 η2) 9
r (1− η2) (1− 3 η)

J (27− 18 η − 81 η2) 9
r (1− η2) (1 + 3 η)

 J =
dη

dr
=

2

β − α

3. The plastic multiplier field The plastic criterion is enforced only at the four Gauss points

g, running from 1 to 4, of position rg (Seitz et al., 2015), that is sufficient to compute the integral

of the dissipation. Introducing the local value λg of the plastic multipliers at the Gauss points

of the elements, the flow rule reads:

ε̇pe(rg) = λg
∂f

∂σ
|r=rg (2.21)

The values λg of the plastic multipliers at the integration points are gathered in the vector λe.

For the thick tube problem, we have three discretized fields for one element α 6 r 6 β, stress

σe, displacement ur and plastic strain rate ε̇pe which depend on each degrees of freedom, stress

ge, displacement qe and plastic multipliers λe :

σe(r) = Te(r)ge ur(r) = Ne(r) qe ε̇pe(rg) = λg
∂f

∂σ
|r=rg

2.2.3 Discretization of the BEN functional

As the BEN functional (2.12) is a space-time integral dependent, two kinds of discretization

methods are applied.

Space integral discretization The space integral is approximated by the usual Gaussian

quadrature numerical integration method on every elementary axisymmetric element:

∫ β

α
A(r) 2π r dr ∼=

4∑
g=1

wgA(rg) 2π rg
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Thanks to the localization matrices Me,Le,Pe for each unknown field, we can carry out the

assembling:

ge = Meg, qe = Leq, λe = Peλ

The spatial discretized form of the functional (2.12) is:

Π̄(g, q,λ) =

∫ T

0

(
ΛTλ(t)− q̇T (t)Gg(t) + ġT (t)F g(t)

)
dt (2.22)

with:

Λ =
ne∑
e=1

P T
e Λe,

G =
ne∑
e=1

∫ β

α
LTeB

T
e (r)Te(r)Me 2π r dr

F =

ne∑
e=1

∫ β

α
MT

e T
T
e (r)S Te(r)Me 2π r dr

and:

Λe = 2π σY


w1 r1

w2 r2

w3 r3

w4 r4


under the constraints of:

• equilibrium (on the boundary, the internal equilibrium being satisfied a priori):

g (t) |r=a = −p (t), g (t) |r=b = 0 (2.23)

• plastic criterion (at every Gauss point g of every element e):

fe(rg)− σY ≤ 0, λg ≥ 0, λg
∂f

∂σ
|r=rg= Be(rg) q̇e − S Te(rg) ġe (2.24)

• initial conditions:

g(0) = 0, q(0) = 0, λ(0) = 0 (2.25)

with ne the total element number, and fe(rg) linear for Tresca criterion and quadratic for von

Mises one. Eqs. (2.23) means that the internal surface is subjected to the pressure and the

external one is free force. Eqs. (2.24) are the plasticity conditions discretized at every Gauss
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point, the first one being the plastic criterion, the last one being the decomposition of the total

strains rate. Eqs. (2.25) are the initial conditions.

Time integral discretization We impose tj as the temporal points with j = [0, ...,m−1,m].

There are m time steps with m + 1 temporal points. For any physical quantity a at temporal

point tj , we note:

aj = a(tj) ∆aj = aj − aj−1 ∆tj = tj − tj−1 j = 1, · · · ,m

On each step, we approximate the time rate by:

ȧj =
∆aj
∆tj

As the plasticity is independent of the time parameterization in quasi-static situation, we use

fictive time for convenience sake:

∆tj = 1 (2.26)

The time integral is simply approximated by using the rectangular:

∫ T

0
f(t) dt =

m∑
j=1

f(tj) ∆tj

This rule can appear rather rough but the numerical experience for the problem under consid-

eration showed that changing of this quadrature rule by another one, for instance the midpoint

rule, does not provide significant improvements.

Consideringm time step from t0 to tm and enforcing the yield condition only at the beginning

and the end of the step, we have to minimize the objective function:

Π̄(g0, · · · , gm, q0, · · · , qm,λ0, · · · ,λm) =

m∑
j=1

(ΛTλj −∆qTj Ggj + ∆gTj Fgj) (2.27)

under the constraints of:

• equilibrium (on the boundary, at each end of the time step):

gj |r=a = −p(tj), gj |r=b = 0 (2.28)

• plastic criterion (at every Gauss point g of every element e and at every end of the time
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step):

fe,j(rg)− σY ≤ 0, λg,j ≥ 0 λg,j
∂f

∂σ
|r=rg ,j= Be(rg)Le∆qj − S Te(rg)Me∆gj

(2.29)

• initial conditions:

g0 = 0, q0 = 0, λ0 = 0 (2.30)

After the discretization of spatial and temporal integrals, all constraints are verified at each

Gauss point for all temporal points at once.

We have transformed an evolution problem into a constrained optimization problem as shown

in eqs. (2.27,2.28,2.29,2.30). Its solution provides the values of every field at each spatially

discretized point and each temporal point. Instead of solving the problem step-by-step, we

simultaneously determine the mechanical quantities for all steps. On the one hand, we are no

longer concerned by the choice of the time integrators, which are very sensitive to convergence and

stability troubles. On the other hand, because the variational principle is on the space-time, our

strategy could lead to larger size problems to a time-consuming resolution if we do not optimize

the solving algorithm. For the moment, our aim is only to verify the feasibility of the numerical

method based on the BEN principle, postponing to a subsequent work the optimization task.

2.3 Results and discussion

The algorithm presented in the previous sections is implemented in MATLAB code and the

solver fmincon which provides a local minimum of a linear or quadratic constrained nonlinear

multivariable function is used. The functional (2.27) is a quadrature non-linear function under

linear constraints for Tresca criterion or quadratic ones for von Mises model.

The spacial integrals are computed numerically by using the Gaussian quadrature method

while the time integrals are approximated by the rectangular rule. Moreover, basing upon numer-

ical experiences, it is preferred to impose a tiny tolerance for the equality optimization constraint

(2.29). The tolerance is selected such that the numerical minimum of the cost functional (2.27)

is closest to zero because the theoretical minimum of the objective function is vanishing.

For all fields and at any time t, the optimization ’starting points’ values are 0.1 aiming to

reduce computation time as the analytical minimum of the functional is zero .

In the sequel, the following cases are studied :

• elastoplastic regime with von Mises model,
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• elastoplastic response with Tresca criterion,

• viscoplastic response with Norton-Odqvist model.

The geometric parameters and the material coefficients used are a = 100 mm, b = 200 mm,

E = 210 GPa, ν = 0.3 and σY = 360 MPa. For all numerical examples, starting from an initial

stress free state, the internal pressure is increasing linearly with the time from 0 to desired value

p.

Figure 2.1 displays the numbering system with two elements and two temporal points for the

thick-walled tube problem. The total number of degrees of freedom (dof) for different numbers

of temporal points (nt) and number of elements (ne) are shown in table 2.1:

r = a r = b

first
temporal

point
t = 0

second
temporal

point
t = 1

1 3 5

2 4 6

7 9 10 8 12 13 11

14 15 16 17 18 19 20 21

22 24 26

23 25 27

28 30 31 29 33 34 32

35 36 37 38 39 40 41 42

Figure 2.1: Numbering system for the 1D axisymmetric thick-walled tube (solid black line) with two elements
(ne = 2) and two temporal points (nt = 2) the stresses g (red), displacement q (green) and plastic multiplier λ
(blue) fields.

Table 2.1: Degrees of freedom (dof) for different numbers of temporal points (nt) and elements (ne)

dof ne = 1 ne =2 ne =4 ne = 6
nt = 2 24 42 78 114
nt = 3 36 63 117 171

The numerical results obtained by the BEN principle are compared to the incremental numer-

ical predictions performed with the finite element code Cast3M (Cast3M, 2019) (an open-source

incremental software developed by French Alternative Energies and Atomic Energy Commission

(CEA)).

The loading path is plotted in figure 2.2.

2.3.1 Elastic response

Let us consider two temporal points, t = 0 and t = 1. Without loss of generality, we suppose

that the initial values (t = 0) of all mechanical fields are vanishing and for t = 1, the imposed
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Figure 2.2: The loading path with 6 temporal points.

pressure is p = 100 MPa (p > pe). Simulation results are shown in 2.3 and 2.4. It can be

observed that with only one element (ne = 1), the convergence of the radial stress is better than

the one of the hoop stress because the pressure is imposed on the internal surface (2.3). A good

accuracy is reached in practice with 4 elements (Fig. 2.4) for the stresses and the displacement.

As the plastic multipliers are equal to zero in the elastic regime, they are not displayed here.

By increasing the number of element to 3, the BEN principle result already converges to the

analytical solution.

To conclude for the elastic regime, as expected the BEN principle solution converges quickly

to the analytical solution while refining the mesh even though this principle has been developed

for dissipative media. Moreover, for one element, the convergence of the stress field is faster than

the one of the displacement.

2.3.2 Elastoplastic response with von Mises criterion

It is worth to observe that in classical step-by-step methods, a prediction-corrector scheme as

the radial return algorithm is required to integrate the non-linear elastoplastic constitutive law.

With the BEN principle, it is not so.

The elastoplastic solution is computed by the BEN method simultaneously at the 6 temporal

points while Cast3M’s predictions are computed causally step-by-step. Figures 2.5 and 2.6 display

the stress and displacement fields respectively as function of radius at the instant t = 3, that is

the elastic regime under an internal pressure p = 92 MPa. Therefore, the BEN principle which
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Figure 2.4: Comparison between the BEN principle solution (symbols) and analytical solution (solid line) in the
elastic regime: the radial displacement ur with 1, 2, 4 and 6 elements (ne) for p = 100 MPa when t = 1.

is devoted to dissipative systems works also for elasticity. Here, the elastic case has been tested

to verify that the method allows also to detect and to solve the elastic problem in the event that

the yield limit is not reached everywhere. Of course, if we know a priori that the problem is

elastic, it is more efficient to use a solver of linear problems.

For the temporal points t = 5 and t = 6, the applied internal pressure is greater than pe and

the thick-walled tube experiences elastoplastic behavior such that irreversible plastic deformation
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Figure 2.6: Comparison between the BEN principle solution (symbols) and analytical solution (solid line) in the
elastic regime: the radial displacement ur for t = 3 and with 6 elements under an internal pressure p = 92 MPa.

develops on a part of the tube. Figures 2.7 and 2.8 illustrate the comparison between the

radial and hoop stress components obtained by the BEN method and the step-by-step numerical

results provided by Cast3M. In figure 2.9 the radial displacement component computed by both

procedures is plotted. Figure 2.10 depicts the field of plastic multiplier computed by BEN’s

Method and by Cast3M. The numerical results prove the good accuracy of the non-incremental

BEN method.
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solution (solid line) in the elastoplastic regime with von Mises criterion: the radial σr (red) and hoop σθ (blue)
stresses for t = 6 and and with 6 elements under an internal pressure p = 230 MPa.

2.3.3 Elastoplastic response with Tresca criterion

The only difference between Tresca and von Mises criterion is the optimization constraint (2.29)

involving to the plastic criterion. Numerical computations are conducted with 2 temporal times,

and in order to shorten the paper, we present only elastoplastic results for the final temporal

point correspondent to the applied pressure p = 200 MPa.
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In figure 2.11 the stress components computed by the BEN variational principle are plotted

together with the analytical solution provided in (Prager and Hodge, 1968; Save et al., 1997)

and incremental numerical predictions performed by Cast3M. Figures 2.12 and 2.13 depict re-

spectively the comparison between the radial displacement and the estimations of the the plastic

multipliers obtained by the BEN method and by Cast3M. An excellent agreement is observed

and, as expected, convergence of the BEN method is better with the increase of elements number.
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Figure 2.12: Comparison between the BEN principle solution (symbols) and numerical reference solution (solid
line) in the elastoplastic regime with Tresca criterion: the radial displacement ur with 1, 2, 4 and 6 elements
(ne) for p = 200 MPa.

2.3.4 Computation cost

Matlab does not require implementation of the gradient of the functional (2.27) to perform the

minimization process under constraints (2.28, 2.29, 2.30). However, its implementation should

accelerate the computation process. Therefore computations by providing the functional gradient

are also conducted and the corresponding results are refereed "with gradient". Results obtained
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by the Mtalab’s blackbox solver fmincon are noted "without gradient".

The numerical simulations were performed on an Intel Core i7-6820HQ (Quad Core 2.70GHz,

3.60GHz Turbo) processor with a memory of 16Go 2400MHz DDR4 (2x8Go). The computation

costs as well as the equality tolerances for the case of the elastoplastic response with von Mises

criterion are presented in tables 2.2 and 2.3.

Table 2.2: Computation costs for different implementations without implementation of gradients (nt = 2), start-
ing points are 0.01

ne 1 2 4 6 8 10 12
dof 24 42 78 114 150 186 222

optimization iterations 1096 292 120 105 282 102 132
dof×iter. 26304 13986 9360 11970 42300 18972 28638
tolerances 3.0e-5 1.1e-5 2.8e-6 6.6e-7 2.9e-7 1.6e-7 5.9e-8

functional values -35.49 -10.54 -24.62 -0.32 -0.68 -0.79 -0.10
CPU time, s 26.39 10.75 7.11 10.73 37.91 19.96 32.93

Analyzing and comparing these two tables, the following remarks can be drawn:

• the imposed equality tolerances decreases while refining the mesh,

• the local minimums of the functional converge to zero,

• the computation cost is related both with number of dof and iterations,

• a significant reduction of the computing time is observed by providing and implementing

the gradient of the cost functional.
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Table 2.3: Computation costs for different implementations with implementation of gradient (nt = 2), starting
points are 0.01

ne 1 2 4 6 8 10 12
dof 24 42 78 114 150 186 222

optimization iterations 125 221 555 189 462 361 565
dof×iter. 3000 9282 43290 21546 69300 67146 125430
tolerances 2.99e-5 1.10e-5 2.60e-6 6.60e-7 2.90e-7 1.54e-7 1.24e-7

functional values -29.59 -10.96 -4.06 -0.32 -0.68 -0.11 -7.24
CPU time, s 2.80 4.61 18.00 7.24 15.76 14.85 24.36

From the numeral point of view, the BEN principle transforms a nonlinear mechanical prob-

lem into a minimization problem for all time steps instead of the incremental method. The

computing time not only depends on the total dof as the one of step-by-step, but also on the

number of optimization iterations. Each optimization iteration takes more time with a refined

mesh, i.e. more dof or optimization variables.

Figure 2.14 displays the relation of computation time in function of the product of the

numbers of dof and iterations in bilogarithmic scale. It can be observed that there is a linear

relation for the case without furnishing the gradient of the objective functional.
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Figure 2.14: Log-log plot of the computation time in function of the product of numbers of dof and iterations.
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2.3.5 Viscoplastic response with Norton-Odqvist law

Unlike the elastoplastic behavior, the Norton-Odqvist law is a rate-dependent constitutive law

for which the dissipation potential density φ writes:

φ(σ) =
K

n+ 1

(〈〈σeq(σ)− σY 〉〉
K

)n+1
(2.31)

where K, n are two material parameters and 〈〈x〉〉 is the positive part of x defined by:

〈〈x〉〉 =

 x if x > 0

0 if x ≤ 0

The viscoplastic strain rate is given by:

ε̇vp =
(〈〈σeq(σ)− σY 〉〉

K

)n ∂σeq
∂σ

(σ) =
(〈〈σeq(σ)− σY 〉〉

K

)n 3

2

s

σeq
(2.32)

From the relation (2.32), it is obvious that the viscous strain depends only on the stress field.

Therefore, there is no need to consider the plastic multiplier field and there are only two unknown

fields in the numerical procedure, the stress g and the displacement q fields.

The Fenchel transform of φ is given by:

φ∗(ε̇vp) = sup
σ

[σ : ε̇vp − φ(σ) ] = σY ε̇eq +
nK

n+ 1
(εeq(ε̇

vp))
n+1
n (2.33)

where εeq(ε̇vp) =
√

2
3 ε̇

vp : ε̇vp is the comparison strain rate. Hence the BEN functional to

minimize reads:

Π̄(σ,u) =

∫ T

0

{∫
Ω

K

n+ 1

(〈〈σeq(σ〉〉)− σY
K

)n+1

+ σY ε̇eq +
nK

n+ 1
(εeq(∇u̇− Sσ̇))

n+1
n − 〈σ,∇u̇− Sσ̇〉dΩ

}
dt

(2.34)

In order to compare BEN’s numerical predictions with analytic solutions, we start by studying the

simple model of perfect viscoplastic constitutive law with a vanishing elastic yield. Numerically,

this can be achieved by imposing a very large value of Young’s modulus.

In this case, the dissipation potential density (2.31) reduces to:

φ(σ) =
K

n+ 1

(
σeq(σ)

K

)n+1

(2.35)
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and the correspondent functional to minimize is given by:

Π̄(σ,u) =

∫ T

0

{∫
Ω

K

n+ 1

(
σeq(σ)

K

)n+1

+
nK

n+ 1
(εeq(∇u̇− Sσ̇))

n+1
n − 〈σ,∇u̇− Sσ̇〉dΩ

}
dt

(2.36)

Neglecting the elastic strains, the analytical solution of the pressurized thick tube with the

Norton-Odqvist law is available and the stress distribution reads:

σr(r) = −p
(
b
r

) 2
n − 1(

b
a

) 2
n − 1

, σθ(r) = p

(
2
n − 1

) (
b
r

) 2
n + 1(

b
a

) 2
n − 1

(2.37)

The material parameters are n = 4.39 and K = 253.55 MPa with Young’s modulus E = 1000

GPa and Poisson’s ratio equals ν = 0.3 so that the elastic strain is negligible compared to the

viscoplastic one.

Two computational examples are carried out. The first one considers 10 time-increments and

the second one with 2 temporal points, the beginning and the end points of the loading history.

The applied pressure increases linearly with respect to time from 0 to 100 MPa as shown in figure

2.15.
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Figure 2.15: Loading history with 11 or 2 temporal points.

Figure 2.16 plots the comparison between the exact stress solution and the numerical results

(σr and σθ) at the last temporal point (t = 10 s). A good agreement is observed even with one

element and with the simplest temporal discretization method (rectangular rule).

Let us come back to the nonlinear creep of the thick-walled tube with Norton-Odqvist law
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with an elastic domain defined by (2.31) and (2.32). We use the set of parameters n = 4.39,

K = 253.55 MPa and σY = 360 MPa and the internal pressure increases linearly with respect to

time from 0 to 20 MPa. Computations are carried out by considering 2 and 11 temporal points

and one spatial finite element.

Figures 2.17 and 2.18 show the comparison between BEN’s numerical predictions and the

simulations derived out by Cast3M for the radial and hoop stress respectively. Again a good

agreement is observed.

2.4 Conclusion

This chapter aims to investigate the feasibility of the BEN principle for the numerical analysis

of dissipative media. This principle has been efficiently applied to the numerical simulations of

the nonlinear responses of an elastoplastic and a viscoplastic thick-walled tube under internal

pressure. A good agreement is observed when the BEN’s numerical results are compared with

the analytical ones and computations obtained by the classical incremental process. The main

advantage of the BEN formulation is its ability to work simultaneously on all time steps contrary

to the step-by-step procedure. Moreover, it has been found that the BEN principle has a fast

convergence to the reference solution, especially for the stress field, which is crucial for ensuring

the plastic yielding condition. Regarding numerical implementation, considering sophisticated

and complex nonlinear constitutive laws does not involve additional numerical efforts contrary
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to the nonlinear incremental procedure. Remarkably, we do not need with BEN to use numerical

integration as radial return scheme in elastoplasticity or similar ones. This issue is irrelevant.
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The present work is a part of the international cooperation project Dissipative Dynamical

Systems by Geometrical and Variational Methods and Application to Viscoplastic Structures Sub-

jected to Shock Waves (DDGV). Subsequently, this chapter is devoted to the numerical study of

the Love-Kirchhoff and Reissner-Mindlin circular plates undergoing uniform pressure by using

the non-incremental BEN principle. The numerical results are compared to analytical solutions

provided in the literature and simulations computed by the standard step-by-step procedure.

3.1 The problem statement

Let us consider an elastoplastic circular plate occupying the domain

Ω = {M(r, θ, z) such that 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π, −H/2 ≤ z ≤ H/2}

where (r, θ, z) are the coordinates of the material point in the cylindrical frame. R and H are

called the radius and the thickness of the plate respectively. The middle plane is defined by

z = 0.

In this work, the BEN principle is applied to solve numerically the bending of the solid Ω

undergoing a uniformly distributed pez as shown in Fig.3.1. Moreover, the plate edge is clamped

and body forces are neglected.

er

ez

r
z

Figure 3.1: The clamped circular plate under a uniform pressure.

Under the plane stress hypothesis, the normal stress component σzz through the thickness

is zero. Moreover, the shear stresses σrθ and σθz are cancelled because of the axisymmetric

symmetry. Therefore, the stress σ(r, z) and strain ε(r, z) tensors are given by:

σ =


σrr 0 σrz

0 σθθ 0

σrz 0 0

 ε =


εrr 0 εrz

0 εθθ 0

εrz 0 εzz


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According to the general theory of plates, the expansions of the stress and strain fields are given

in the following power series of the coordinate z:

σ(r, z) = σ̄(r) + zσ̃(r) + z2σ̂(r) + ... (3.1)

ε(r, z) = ε̄(r) + zε̃(r) + ... (3.2)

where σ̄(r), ε̄(r) are the membrane stress and strain, zσ̃(r), zε̃(r) denote the linear parts with

respect to z, z2σ̂(r) and z2ε̂(r) are the quadratic terms, etc. Under small deformation hypothesis,

membrane stress and strain are neglected. Finally, we have the simplified expressions:

σ(r, z) = zσ̃(r) + z2σ̂(r) + ... (3.3)

ε(r, z) = zε̃(r) + ... (3.4)

Furthermore, in the sequel, we assume that within the elastic and elastoplastic ranges, the strain

field is linear with respect to z and writes:

ε(r, z) = zε̃(r)

3.1.1 Love-Kirchhoff plate model

Love-Kirchhoff plate theory (Love, 1887) was firstly developed by Love in 1888 by extending the

Euler-Bernoulli beam theory to flat and thin solids. The Love-Kirchhoff plate theory assumes

that:

• straight and orthogonal lines to the undeformed middle plane remain straight and normal

to the deformed neutral plane, that is shear deformations are neglected,

• the variation of the thickness of the plate during deformation is neglected.

Basing upon these assumptions, it is easy to show that the displacement field of any material

point of the plate is given by (Oñate, 2013):

u(r, z) =


U(r, z)

0

W (r)

 =


−z dwdr
0

w(r)

 (3.5)
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It entails that the strain and stress tensors are given by:

σ =

σrr 0

0 σθθ

 , ε =

∂U
dr 0

0 U
r

 (3.6)

Moreover, the normal stresses σrr and σθθ are linear with respect to the coordinate z:

σrr(r, z) ≈ zσ̃rr(r)

σθθ(r, z) ≈ zσ̃θθ(r)

In elasticity theory, Hooke’s law in plane stress writes:

 εrr

εθθ

 =

 1
E − ν

E

− ν
E

1
E

 σrr

σθθ


In the plate theory, expressions of generalized stress and moments are given as:

Frr =

∫ H/2

−H/2
σrr dz Fθθ =

∫ H/2

−H/2
σθθ dz Frz =

∫ H/2

−H/2
σrz dz (3.7)

Mrr =

∫ H/2

−H/2
z σrr dz Mθθ =

∫ H/2

−H/2
z σθθ dz (3.8)

By using the Love-Kirchhoff hypothesis, we have :

Frr =

∫ H/2

−H/2
zσ̃rr dz = 0 Fθθ =

∫ H/2

−H/2
zσ̃θθ dz = 0 (3.9)

Frz =

∫ H/2

−H/2
σ̄rz + zσ̃rz dz = Hσ̄ (3.10)

Mrr =

∫ H/2

−H/2
z2 σ̃rr dz =

H3

12
σ̃rr Mθθ =

∫ H/2

−H/2
z2 σ̃θθ dz =

H3

12
σ̃θθ (3.11)
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The plate equilibrium equations in the cylinder coordinates frame read:

∑
Frr = 0 :

Fr − Fθ
r

+
dFr
dr

= 0 (3.12)∑
Fzz = 0 :

∂Frz
∂r

+
Frz
r

+ p = 0 (3.13)∑
Mθθ = 0 :

∂Mrr

∂r
+
Mrr −Mθθ

r
= Frz (3.14)∑

Mzz = 0 : Frθ − Frθ = 0 (3.15)

Eq. (3.12) is satisfied by means of small deflection hypothesis. Furthermore, eliminating Frz

from equations (3.14) and (3.13) yields:

∂2Mrr

∂r2
+

2

r

∂Mrr

∂r
− 1

r

∂Mθθ

∂r
+ p = 0 (3.16)

By injecting the expressions of the moments given in (3.11) into the equation (3.16), on

obtains: (
d2σ̃rr
dr2

+
2

r

dσ̃rr
dr
− 1

r

dσ̃θθ
dr

)
+

12

H3
p = 0 (3.17)

Let us eliminate the hoop stress σ̃θθ from (3.17). To this end, the solution of this differential

equation (3.17) is obtained as the sum of the homogeneous solution and a particular one. Simple

computations allow one to get the homogeneous solution as follows:

σθθ,h =
d (rσrr)

dr

In order to built a particular solution, we choose to consider σrr = 0 in eq. (3.17). Therefore, a

corresponding particular solution is given by:

σθθ,p =
12

H3

pr2

2

Thus one of the general solution of eq. (3.17) is:

σ̃θθ = σθθ,h + σθθ,p =
d(rσ̃rr)

dr
+

12

H3

pr2

2
(3.18)

It is important to notice that the equilibrium equation (3.18) is independent of z. Thus the

radius-thickness 2D axisymmetric circular plate model is simplified into a 1D problem along the

radius.
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3.1.2 The Reissner-Mindlin plate model

The Love-Kirchhoff plate theory presented in the previous subsection applies to thin plates.

Moreover, the C1 continuity requirement for Kirchhoff elements poses some difficulties for de-

riving a conforming deflection field (Oñate, 2013). For the study of thick plates, the Reissner-

Mindlin plate theory (Mindlin, 1951) has been proposed. This model relies on the following

hypotheses:

• Straight lines normal to the undeformed middle plane remains straight but no longer per-

pendicular to the neutral plane. This assumption is similar to the one adopted for rotation

of the cross section in Timoshenko beams.

• The shear strain (εrz) through the thickness is no more negligible.

• The thickness of the plate does not change during the deformation.

Objective in this subsection is to implement the BEN principle for Mindlin plate theory in

elastic and elastoplastic cases. The same plate model in fig. (3.1) is exterminated with a thicker

thickness.

As a normal line remains not necessarily perpendicular to the middle surface in the Mindlin

theory, the rotation angle ζ is not linked derivative of the transverse displacement as in the

Love-Kirchhoff plate model. Thus, the rotation angle field ζ is appended and the expression of

the displacement of a material point of the plate writes:

u(r, z) =


U(r, z)

0

W (r)

 =


u(r) + z ζ(r)

0

w(r)

 ≈

z ζ(r)

0

w(r)

 (3.19)

By using Kelvin’s notation, the strain tensor reads in the cylindrical coordinates frame :

ε(r, z) =


εrr

εθθ
√

2 εrz

 =


∂U
∂r

U
r
√

2
2

(
∂U
∂z + ∂W

∂r

)
 (3.20)

Moreover, the Reissner-Mindlin plate theory assumes that normal stresses (σrr, σθθ) are linear

with respect to z while the shear stress (σrz) is quadratic. Under plane stress hypothesis, the
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expression of stress field with the Voigt notation is given by :

σ(r, z) =


σrr

σθθ
√

2σrz

 =


0

0
√

2 σ̄rz(r)

+ z


σ̃rr(r)

σ̃θθ(r)

0

+ z2


0

0
√

2 σ̂rz(r)


In elasticity theory, Hooke’s law in plane stress writes :


εrr

εθθ
√

2 εrz

 =


1
E − ν

E 0

− ν
E

1
E 0

0 0 (1+ν)
E



σrr

σθθ
√

2σrz


Within the framework of Reissner-Mindlin plate theory, the following expressions of forces and

moments can be obtained :

Frr = 0 Fθθ = 0 Frz = Hσ̄rz +
H3

12
σ̂rz (3.21)

Mrr =
H3

12
σ̃rr Mθθ =

H3

12
σ̃θθ (3.22)

Simple computations similar to the ones conducted for the Love-Kirchhoff plates permits one to

derive the two following equilibrium equations:

H

[
dσ̄rz
dr

+
σ̄rz
r

]
+
H3

12

[
dσ̂rz
dr

+
σ̂rz
r

]
+ p = 0 (3.23)

H3

12

[
dσ̃rr
dr

+
σ̃rr − σ̃θθ

r

]
= Hσ̄rz(r) +

H3

12
σ̂rz(r) (3.24)

Similar computations to the those carried out for the Love-Kirchhoff plates permits one to

obtain the homogeneous solution of eq. (3.23) as follows:

Hσ̄rz +
H3

12
σ̂rz = 0

Then, by considering σ̄rz = 0 in eq. (3.23), a particular solution can be built:

σ̂rz =
12

H3

pr

2
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Consequently, eq.(3.23) is reduced to:

d(rσ̃rr)

dr
− σ̃θθ +

12

H3

pr2

2
= 0

Finally, for the Mindlin theory plate, there are two equilibrium equations to be satisfied:

Hσ̄rz +
H3

12
σ̂rz +

pr

2
= 0 (3.25)

d(rσ̃rr)

dr
− σ̃θθ +

12

H3

pr2

2
= 0 (3.26)

3.2 Numerical implementation

The mixed finite element method (FEM) is applied to implement the BEN principle. It is

important to underline that mixed finite element method is not mandatory and the standard

displacement method can be combined with the BEN principle. However, we recall that in the

displacement-based FEM, the stress field is deduced from the displacement one and thus is not

statically admissible which may be less accurate for plasticity.

3.2.1 Numerical implementation for the circular Love-Kirchhoff plate

For the Love-Kirchhoff plates, there three unknown fields, namely the radial and hoop stresses,

the transverse displacement and plastic multiplier.

The displacement field

Thanks to the axisymmetry of the considered problem, we consider a 1D element (α ≤ r ≤ β,

z∗) with −H/2 ≤ z∗ ≤ H/2. Expression of the displacement field u(r, z∗) of any material point

of the plate is provided in relation (3.5).

We use 4 degrees of freedom for w(r):

q1 = w |r=α,z=z∗ q2 = w |r=β,z=z∗ q3 = w |r=γ,z=z∗ q4 = w |r=δ,z=z∗

with γ and δ two intermediary points:

γ =
2α+ β

3
δ =

α+ 2β

3

that defines a Lagrange interpolation. By gathering the four displacement degrees of freedom in
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a vector qe, we obtain :

w(r) = Ne(r) qe (3.27)

with:

qe =


q1

q2

q3

q4

 =


w |r=α,z=z∗
w |r=β,z=z∗
w |r=γ,z=z∗
w |r=δ,z=z∗

 (3.28)

NT
e (r) =

1

16


−(1− ρ) (1− 9 ρ2)

−(1 + ρ) (1− 9 ρ2)

+9 (1− ρ2) (1− 3 ρ)

+9 (1− ρ2) (1 + 3 ρ)


where:

ρ =
2 r − (β + α)

β − α

Therefore, the displacement can be written as follows:

u(r, z∗) =


−z∗Ne,r(r)

0

Ne(r)

 qe (3.29)

Taking into consideration eqs.(3.6) and (3.27), expression of strain is given by :

ε(r, z∗) =

 εrr

εθθ

 = z∗

 −Ne,rr

−1
r Ne,r

 qe = z∗B(r) qe

where:

NT
e,r =

1

16


J (1 + 18 ρ− 27 ρ2)

J (−1 + 18 ρ+ 27 ρ2)

J (−27− 18 ρ+ 81 ρ2)

J (27− 18 ρ− 81 ρ2)



NT
e,rr =

1

16


J2 (18− 54 ρ)

J2 (18 + 54 ρ)

J2 (−18 + 162 ρ)

J2 (−18− 162 ρ)


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with:

J =
dρ

dr
=

2

β − α

The stress field

With the same finite element, we consider 8 degrees of freedom ge for linear terms along z of the

radial σ̃rr and hoop σ̃θθ stresses :

g1 = σ̃rr |r=α,z=z∗ g2 = σ̃rr |r=β,z=z∗ g3 = σ̃rr |r=γ,z=z∗ g4 = σ̃rr |r=δ,z=z∗

g5 = σ̃θθ |r=α,z=z∗ g6 = σ̃θθ |r=β,z=z∗ g7 = σ̃θθ |r=γ,z=z∗ g8 = σ̃θθ |r=δ,z=z∗

with:

gTe =
[
σ̃rr |r=α,z=z∗ σ̃rr |r=β,z=z∗ σ̃rr |r=γ,z=z∗ σ̃rr |r=δ,z=z∗

σ̃θθ |r=α,z=z∗ σ̃θθ |r=β,z=z∗ σ̃θθ |r=γ,z=z∗ σ̃θθ |r=δ,z=z∗
] (3.30)

Similarly the displacement field, a cubic Lagrange interpolation is considered :

σ(r, z∗) =

 σrr

σθθ

 = z∗Re(r) ge = z∗

 Ne(r) 0

0 Ne(r)

 ge

The plastic multiplier rate field

Introducing the plastic multiplier rate λ which is located in four Gauss point for each element

(α 6 r 6 β, z∗) at rg |g=1,2,3,4, the flow rule reads:

ε̇pe(r, z
∗) = λe(r, z

∗)
∂f

∂σ
(r, z∗) (3.31)

and the dissipation power becomes:

D = σY λ

In particular, the total dissipation power in the element reads:

∫ β

α
D(r) 2π r dr = ΛTe λe
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where:

Λe = σY


w1 2π r1

· · ·
wne 2π rne

 , λe =


λ1

· · ·
λne


For the circular Love-Kirchhoff plate problem, there are three types degrees of freedom, stress

ge, displacement qe and plastic multiplier rate λe:

u(r, z∗) =


−z∗Ne,r(r)

0

Ne(r)

 qe

σ(r, z∗) =

 σrr

σθθ

 = z∗Re(r) ge = z∗

 Ne(r) 0

0 Ne(r)

 ge
ε̇pe(r, z

∗) = λe(r, z
∗)
∂f

∂σ
(r, z∗) (3.32)

Discretization of the BEN principle

The BEN functional involves time and space integrations. The classical Gaussian quadrature

method for the spatial integration and the simple rectangular rule for the temporal one are

adopted. It is worth noting that the rectangular rule may be rather rough but numerical experi-

ences showed that it yields to sufficient accurate results. Of course, employing more sophisticated

integration rule should improve the numerical predictions.

Spatial discretization

The spatial integration over the plate finite element (α ≤ r ≤ β, z∗) is carried out as follows:

∫ H/2

−H/2

∫ β

α
A(r) 2π r drdz ∼= H

4∑
g=1

wgA(rg) 2π rg

∫ H/2

−H/2

∫ β

α
z2A(r) 2π r drdz ∼= H3

12

4∑
g=1

wgA(rg) 2π rg

Performing the assembling thanks to the localization matrices Le,Me,Pe such that:

ge = Meg, qe = Leq, λe = Peλ
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yields to the following discretized form of the BEN functional :

Π̄(g, q,λ) =

∫ t1

t0

(ΛTλ(t)− q̇T (t)Gg(t) + ġT (t)F g(t)) dt (3.33)

with:

Λ =

∫ H/2

−H/2

n∑
e=1

P T
e Λe dz,

G =

n∑
e=1

∫ H/2

−H/2

∫ β

α
LTe zB

T
e (r) zRe(r)Me 2π r dr dz

F =

n∑
e=1

∫ H/2

−H/2

∫ β

α
MT

e zR
T
e (r)S zRe(r)Me 2π r dr dz

The Brezis-Ekeland-Nayroles variational principle claims that the solution minimizes the func-

tional (3.33) under the some constraints which will be listed hereafter.

Temporal discretization

We impose tj as the temporal points with j = [0, ...,m − 1,m]. There are m time steps with

m+ 1 temporal points. For any physical quantity a at temporal point tj , we note:

aj = a(tj) ∆aj = aj − aj−1 ∆tj = tj − tj−1 j = 1, · · · ,m

On each step, we approximate the time rate by:

ȧj =
∆aj
∆tj

As the plasticity is independent of the time parameterization in quasi-static situation, we use

fictive time for convenience sake:

∆tj = 1

Moreover, the rectangular rule is applied for the temporal integration.

∫ T

0
f(t)dt =

m∑
j=1

f(tj)∆tj

Subsequently, the final expression of the discretized BEN functional reads:

Π̄(g, q,λ) =

m∑
j=1

(ΛTλj −∆qTj Ggj + ∆gTj F gj) (3.34)
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under the following constrains :

• The boundary and symmetry conditions :

w(r = R, tj) = 0

dw

dr
(r = 0, tj) = 0

dw

dr
(r = R, tj) = 0

−σY ≤ z∗ σ̃rr(r = 0, tj) = z∗ σ̃θθ(r = 0, tj) ≤ σY (symmetry)

• The C0 continuity of the rotation angle on the boundary of two adjacent finite elements

ei−1 and ei at each time step :

dw

dr
(r = α, tj)

∣∣∣∣
ei−1

=
dw

dr
(r = α, tj)

∣∣∣∣
ei

dw

dr
(r = β, tj)

∣∣∣∣
ei

=
dw

dr
(r = β, tj)

∣∣∣∣
ei+1

(3.35)

• The equilibrium equation at every integration points (rg) of each finite element at each

time step :
d(rgσ̃rr)

dr
(rg, tj)− σ̃θθ(rg, tj) +

12

H3

pr2
g

2
= 0

• Enforcing plasticity (at every integration point g of every element e, at each time step):

fj(g(rg, zg))− σY ≤ 0, λg,j ≥ 0

λg,j
∂fj(rg, z

∗)
∂σ

= z∗Be(rg) ∆qj − S z∗Re(rg) ∆gj

• The initial conditions:

g(0) = 0, q(0) = 0, λ(0) = 0

At this stage, it is worth to notice that in almost FEM codes, the Hermite interpolation is ap-

plied in order to ensure the C1 continuity of displacement filed. In the present work, the rotation

angle is the derivative of displacement and Lagrange interpolation is applied for displacement

field. The C0 continuity of the rotation angle is enforced as an optimization constraint in (3.35).

Figure (3.2) displays the numbering system for the axisymmetric Love-Kirchhoff plate element

for two elements along radius (ne = 2) and two fictive temporal points (nt = 2) in statics t = 0, 1.
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r = a

z = −H/2
r = b
z = −H/2

r = b
z = H/2

r = a

z = H/2
r = (a + b)/2
z = H/2

r = (a + b)/2
z = −H/2

z = z∗

1 23 4σ̄rr(t = 0)

5 67 8σ̃θθ(t = 0)

9 1011 12w(t = 0)

13 14 15 16λ(t = 0)

1718 19

2021 22

2324 25

26 27 28 29

30 3132 33σ̄rr(t = 1)

34 3536 37σ̃θθ(t = 1)

38 3940 41w(t = 1)

42 43 44 45λ(t = 1)

4647 48

4950 51

5253 54

55 56 57 58

Figure 3.2: Numbering system of Love-Kirchhoff plate model for the axisymmetric plate element with 2 elements
along radius

3.2.2 Numerical implementation for the circular Reissner-Mindlin plates

The mixed finite element method is applied to implement the BEN principle for the Reissner-

Mindlin plate model as done in the previous subsection. For this plate model, there are four

unknown fields, namely the radial and hoop stresses, the transverse displacement, the rotation

angle and the plastic multiplier.

The displacement and rotation angle fields

Consider an axisymmetric 1D element (α ≤ r ≤ β, z∗) with −H
2 ≤ z ≤ H

2 . The 4 degrees of

freedom for w and ζ are :

q̃1 = w |r=α q̃2 = w |r=β q̃3 = w |r=γ q̃4 = w |r=δ

q̂1 = ζ |r=α q̂2 = ζ |r=β q̂3 = ζ |r=γ q̂4 = ζ |r=δ

By assembling the four degrees of freedom of displacement and rotation angle as a vector q̃e and

q̂e respectively we can write :

w(r) = Ne(r) q̃e ζ(r) = Ne(r) q̂e
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with:

q̃e =


q̃1

q̃2

q̃3

q̃4

 =


w |r=α,z=z∗
w |r=β,z=z∗
w |r=γ,z=z∗
w |r=δ,z=z∗

 q̂e =


q̂1

q̂2

q̂3

q̂4

 =


ζ |r=α,z=z∗
ζ |r=β,z=z∗
ζ |r=γ,z=z∗
ζ |r=δ,z=z∗

 (3.36)

The displacement field can be written as follows :

u(r, z∗) =


z∗Ne(r) q̃e

0

Ne(r) q̂e

 (3.37)

But using Kelvin’s notation, the strain field can be written under the form :

ε(r, z∗) =


εrr

εθθ
√

2 εrz

 =


0

0
√

2
2 Ne,r

 q̃e +


z∗Ne,r

z∗

r Ne
√

2
2 Ne

 q̂e = B1(r) q̃e +B2(r, z∗) q̂e

By gathering the two vectors q̃e and q̂e together, one has :

ε(r, z) = B(r, z) qe =
[
B1 B2

] q̃e
q̂e



The stress field

Similarly to the displacement interpolation, we consider 4 degrees of freedom for each field σ̄rz,

σ̃rr, σ̃θθ and σ̂rz:

ḡ1 = σ̄rz |r=α,z=z∗ ḡ2 = σ̄rz |r=β,z=z∗ ḡ3 = σ̄rz |r=γ,z=z∗ ḡ4 = σ̄rz |r=δ,z=z∗

g̃1 = σ̃rr |r=α,z=z∗ g̃2 = σ̃rr |r=β,z=z∗ g̃3 = σ̃rr |r=γ,z=z∗ g̃4 = σ̃rr |r=δ,z=z∗

g̃5 = σ̃θθ |r=α,z=z∗ g̃6 = σ̃θθ |r=β,z=z∗ g̃7 = σ̃θθ |r=γ,z=z∗ g̃8 = σ̃θθ |r=δ,z=z∗

ĝ1 = σ̂rz |r=α,z=z∗ ĝ2 = σ̂rz |r=β,z=z∗ ĝ3 = σ̂rz |r=γ,z=z∗ ĝ4 = σ̂rz |r=δ,z=z∗
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A cubic Lagrange interpolation is addressed for each field:

σ̄ =


0

0
√

2 σ̄rz

 = R̄e(r) ḡe =


0

0
√

2Ne

 ḡrz (3.38)

σ̃ =


σ̃rr

σ̃θθ

0

 = R̃e(r) g̃e =


Ne 0

0 Ne

0 0


 g̃rr
g̃θθ

 (3.39)

σ̂ =


0

0
√

2 σ̂rz

 = R̂e(r) ĝe =


0

0
√

2Ne

 ĝrz (3.40)

By gathering these four fields together, the stress tensor is expressed as follows :

σ(r, z∗) =


σrr

σθθ
√

2σrz

 = Re(r, z
∗) ge =

[
R̄e(r) z∗ R̃e(r) z∗2 R̂e(r)

]
ḡe

g̃e

ĝe


with:

σ(r, z∗) = Re(r, z
∗) ge =


0 z∗Ne 0 0

0 0 z∗Ne 0
√

2Ne 0 0
√

2z∗2Ne



ḡrz

g̃rr

g̃θθ

ĝrz



The plastic multiplier field

With an axisymmetric 2D element, α ≤ r ≤ β, m ≤ z ≤ n, 16 Gauss points are considered where

the plastic multiplier rate is calculated. The flow rule is:

ε̇pe(r, z) = λe(r, z)
∂f

∂σ
(r, z) (3.41)

and the expression of the dissipation power is identical the one of Love-Kirchhoff plates.

Discretization of the BEN functional

In order to minimize the BEN functional, the two integrals in eq. (2.5) need to be numerically

computed.
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Similarly to the Love-Kirchhoff plates, the spatial and time discretization are carried out

basing upon the Gauss quadrature and the rectangular rule respectively.

Same as the temporal discretization in Love-Kirchhoff plate theory, we have the temporal

discretized BEN functional in statics for Mindlin plate:

The discretized BEN principle for the clamped circular Reissner-Mindlin plate writes:

Π̄(g, q,λ) =

m∑
j=1

(ΛTλ−∆qTGg + ∆gTF g) (3.42)

where

Λ =
n∑
e=1

P T
e Λe,

G =
n∑
e=1

∫ n

m

∫ β

α
LTeB

T
e (r)Re(r)Me 2π r drdz

F =

n∑
e=1

∫ n

m

∫ β

α
MT

e R
T
e (r)ST Re(r)Me 2π r drdz

and Le,Me,Pe are the localization matrices.

The BEN principle consists in minimizing the functional (3.42) under the following con-

straints:

• The boundary and symmetry conditions :

ζ(r = 0, tj) = 0 ζ(r = R, tj) = 0 w(r = R, tj) = 0

−σY ≤ z∗ σ̃rr(r = 0, tj) = z∗ σ̃θθ(r = 0, tj) ≤ σY

σrz(r, z = ±H
2
, tj) = 0

• The equilibrium equations :

Hσ̄rz(rg, tj) +
H3

12
σ̂rz(rg, tj) +

prg
2

= 0 (3.43)

d(rgσ̃rr)

dr
(rg, tj)− σ̃θθ(rg, tj) +

12

H3

pr2
g

2
= 0 (3.44)

• Enforcing the plastic criterion :

fj(g(rg, zg))− σY ≤ 0, λg,j ≥ 0
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λg,j
∂fj(rg, zg)

∂σ
= Be(rg) ∆qe − S Te(rg) ∆ge

• the initial conditions:

g(0) = 0, q(0) = 0, λ(0) = 0

The numbering system of the circular Reissner-Mindlin plate element principle is displayed in

fig.(3.3) with two elements and two temporal points. The displacement, the rotation angle and

the stress fields are located in a 1D axisymmetric element on the straight and lines at z = z∗.

The plastic multiplier rate fields are calculated in Gauss points in a 2D axisymmetric element.

r = a

z = −H/2
r = b
z = −H/2

r = b
z = H/2

r = a

z = H/2
r = (a + b)/2
z = H/2

r = (a + b)/2
z = −H/2

z

1 23 4σ̄rz(t = 0)

5 67 8σ̃rr(t = 0)

9 1011 12σ̃θθ(t = 0)

13 1415 16σ̂rz(t = 0)

17 1819 20w(t = 0)

21 2223 24ζ(t = 0)

37 38 39 40

λ(t = 0)
33 34 35 36

29 30 31 32

25 26 27 28

4142 43

4445 46

4748 49

5051 52

5354 55

5657 58

71 72 73 74

67 68 69 70

63 64 65 66

59 60 61 62

75 7677 78σ̄rz(t = 1)

79 8081 82σ̃rr(t = 1)

83 8485 86σ̃θθ(t = 1)

87 8889 90σ̂rz(t = 1)

91 9293 94w(t = 1)

95 9697 98ζ(t = 1)

111 112 113 114

λ(t = 1)
107 108 109 110

103 104 105 106

99 100 101 102

115116 117

118119 120

121122 123

124125 126

127128 129

130131 132

145 146 147 148

141 142 143 144

137 138 139 140

133 134 135 136

Figure 3.3: Numbering system of Mindlin plate model for the 2D axisymmetric element with 2 elements along
radius

3.3 Results and discussion

In this section, we present the numerical results delivered by the BEN variational principle

and we compare them to the analytical solution within the elastic regime end the elastoplastic

predictions obtained by the step-by-step procedure by using the software Abaqus. von Mises

plasticity criterion is employed in the implements.
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The algorithm presented in the previous sections is implemented with Python language and

the scipy.optimize.minimize numerical tool is applied so as to find the minimum of the discretized

BEN functional. The loading history is displayed in fig. (3.4).

0

p

1

s
u
rf

a
c
e
 p

re
s
s
u
re

 (
M

P
a
)

time 

Figure 3.4: The loading path

3.3.1 The Love-Kirchhoff plates

The numerical simulations are carried out with the following data set: the radius R = 100 mm,

the thickness H = 4 mm, Young’s modulus E = 210 GPa, Poisson’s coefficient ν = 0.3 and the

plastic yield stress σY = 360 MPa.

The analytical solution of the studied plate problem in elastic regime exists in the literature

(Donnell, 1976). The closed form expression of the transverse displacement w reads:

w(r) = −PR
4

64D

[
1−

(
r2

R2

)]2

(3.45)

where

D =
EH3

12 (1− ν2)

The radial moment is given by :

Mr(r) =
p

16
[(1 + ν)R2 − (3 + ν)r2]

Moreover, the radial stress expression at z = H/2 is equal to :

σr|z=H/2 =
12Mrz

H3
=

12H

2H3

p

16
[(1 + ν)R2 − (3 + ν)r2]
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From the equilibrium equation, we get expression of hoop stress in z = H/2 :

σθ|z=H/2 =
12Mrz

H3
=

12H

2H3

p

16
[(1 + ν)R2 − 3(3 + ν)r2] +

12H

2H3

pr2

2

Figure (3.5) displays the transverse displacement along radius in elastic regime with p = 0.4

MPa when t = 1. Simulation results of radial and hoop stresses are shown in fig. (3.6 and 3.7).

From these figures, a good agreement between the BEN predictions and the analytical solution

is observed with 2 finite elements.
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Figure 3.5: Elastic regime / Love-Kirchhoff plate / Comparison of transverse displacement along the radius between
the analytical solution (solid black line) and the BEN principle predictions (colored symbols) with different number
of elements (ne) under the pressure p = 0.4 MPa.

For the elastoplastic response of the plate, analytical solutions are not available. Hence, the

BEN principle predictions are compared to the incremental results obtained by the finite element

software Abaqus. It is important to notice that there are various types of finite elements for plate

models in Abaqus. We chose S4R5 element which is a 4-node doubly curved thin shell, reduced

integration, hourglass control, using five degrees of freedom per node. The S4R5 element is

suitable to thin plate under Love-Kirchhoff theory.

Figure (3.8) displays the transverse displacement along radius when the plate comes to yield.

A good agreement between the BEN solution and the reference Abaqus one is observed. The

comparisons of radial and hoop stresses plotted in fig.(3.9 and 3.10). An small difference between

the BEN simulations and the Abaqus predictions is observed. However, it can be seen that BEN’s

numerical results converge to the same solution with increasing the number of elements.
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Figure 3.6: Elastic regime / Love-Kirchhoff plate / Comparison of radial stress along the radius between the
analytical solution (solid black line) and the BEN principle solution (colored symbols) with different number of
elements (ne) under the pressure p = 0.4 MPa.
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Figure 3.7: Elastic regime / Love-Kirchhoff plate / Comparison of hoop stress along the radius between the
analytical solution (solid black line) and the BEN principle solution (colored symbols) with different number of
elements (ne) under the pressure p = 0.4 MPa.

3.3.2 The Reissner-Mindlin plates

We use the same numerical values as the Love-Kirchhoff plate unless the thickness which is now

taken to be H = 16 mm.

For Mindlin plate, We chose S4R element which is a 4-node doubly curved thin or thick shell,

reduced integration, hourglass control, finite membrane strains. The S4R5 element is suitable
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Figure 3.9: Elastoplastic regime / Love-Kirchhoff plate / Comparison of radial stress along the radius between
the analytical solution (solid black line) and the BEN principle solution (colored symbols) with different number
of elements (ne) under the pressure p = 1 MPa.

to thin and thick plate under Mindlin theory.

Under the applied pressure p = 10 MPa, the Reissner-Mindlin is in an elastic state. The

transverse displacement in elastic regime is displayed in fig. (3.11). Comparisons of radial and

hoop stresses obtained by the BEN principle with the Abaqus results solution are displayed in

figs.(3.12, 3.12). A good agreement is observed.
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Figure 3.10: Elastoplastic regime / Love-Kirchhoff plate / Comparison of hoop stress along the radius between
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Figure 3.11: Elastic regime / Reissner-Mindlin plate / The comparison between the analytical solution and the
numerical results along the radius under the pressure p = 10 MPa.

When the exerted uniform pressure increases, the plate comes to yield. For instance, under

the pressure p = 16 MPa, Fig.(3.14, 3.15 and 3.16) compare the transverse displacement, the

radial and the hoop stress along radius obtained by the BEN principle and Abaqus incremental

results. Again a good agreement between the predictions is observed.
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Figure 3.13: Elastic regime/ Reissner-Mindlin plate / comparison of the analytical solution giving the hoop stress
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3.4 Conclusion

In this chapter, numerical implementation of the BEN method in two types of plate models is

achieved. An axisymmetric circular thin or thick plate under a surface pressure is examined. The

BEN principle has transformed a circular plate mechanical problem into a constrained optimiza-

tion mathematical one. Comparing to the last chapter, the BEN principle is now implemented
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Figure 3.14: Elastoplastic response / Reissner-Mindlin plate / Comparison of the BEN results and Abaqus pre-
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Figure 3.15: Elastoplastic response / Reissner-Mindlin plate / Comparison of the BEN results and Abaqus pre-
dictions for the radial stress along the radius under the pressure p = 16 MPa.

in Python language which is more and more applied in programming.

The classical step-by-step incremental method is able to provide good simulation results.

The peculiarity of BEN method for solving all time steps simultaneously is not necessary in

statics, our object is to test the feasibility of BEN method in a numerical point of view for

solving a plate problem. For Love-Kirchhoff plate, interpolation of displacement is managed by

Lagrange polynomial. Its continuity C1 is ensured in optimization constraint in place of Hermite
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Figure 3.16: Elastoplastic response / Reissner-Mindlin plate / Comparison of the BEN results and Abaqus pre-
dictions for the hoop stress along the radius under the pressure p = 16 MPa.

interpolation used in incremental code. The BEN method provides an excellent result compared

to the analytical or step-by-step software solution.
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This chapter is devoted to the numerical application of symplectic BEN principle for an

elastic perfectly plastic and viscoplastic thick and thin wall tube model subjected to internal

pressure in dynamics. The mixed finite element method is applied to the discretization and the

numerical implementation of the minimization problem as previously. Two methods to satisfy

the equilibrium equation are presented in detail. Good accuracy is observed compared to the

analytical solution and step-by-step numerical one.

4.1 Application to dynamic plasticity

Consider an elastic perfectly plastic solid occupying the volume Ω with a smooth boundary ∂Ω.

It is loaded by given body forces fv on Ω, a prescribed displacement field ud on Γu and surface

tractions td exerted on the complementary part Γt = ∂Ω− Γu. Recall that Γu and Γt are fixed

and they satisfy Γu∩Γt = ∅. The data set
(
fv, td,ud

)
depends on the time t in the time interval

[0, T ] and characterizes the mechanical loading path at every point x ∈ Ω.

Let
(
σ, ε,u

)
denote the dynamic elastic-plastic response to the given loading path. Within

the framework of the infinitesimal transformation, the strain field is additively split into its elastic

and plastic parts:

ε = εe + εp (4.1)

The elastic strains are related to the stresses through Hooke’s law:

εe = S : σ (4.2)

where S is the fourth order elastic compliance tensor with the classical major and minor sym-

metry properties.

Moreover, for generalized standard materials (Halphen and Nguyen, 1975), the associated

flow rule ensures that plastic strain rate obeys to the normality law:

ε̇p = λ
∂f

∂σ
(σ), f(σ) ≤ 0, λ ≥ 0, λf(σ) = 0 (4.3)

where f stands for the yield criterion and λ denotes the plastic multiplier.

Within the Buliga and de Saxcé formalism, the spaceX is composed of the vectors x = (u, εp)

while the element of the space Y are y = (p,π) where p is the linear momentum and π̇ = σ

(Buliga and de Saxcé, 2017). The element z of the phase space is defined by z = (x, y) and the
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duality between the spaces X and Y writes:

〈x, y〉 =

∫
Ω

(
u · p+ εp : π

)
(4.4)

To recover the standard plasticity, we suppose φ depends explicitly only on π̇ = σ:

φ(ż) =

∫
Ω
ϕ(π̇) =

∫
Ω
ϕ(σ) (4.5)

According to Buliga and de Saxcé, the SBEN principle for dynamic plasticity writes:

Proposition 4.1.1. The SBEN principle claims that the evolution curves σ and u minimizes

the functional

Φ(σ, u̇) =

∫
Ω

∫ T

0
{φ(σ) + φ∗(∇su̇− S : σ̇)− σ : (∇su̇− S : σ̇)} (4.6)

among all curves satisfying:

• the balance of linear momentum:

∇ · σ + fv = ρü on Ω (4.7)

• the compatibility of the displacement

ε = ∇su (4.8)

• the boundary conditions

u = ud on Γu, and σ · n = td on Γt (4.9)

• the initial conditions

u(x, 0) = u0(x), u̇(x, 0) = v0(x) and σ(x, 0) = σ0(x) (4.10)

For the proof, the reader is referred to (Buliga and de Saxcé, 2017).
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4.2 Computational procedure for the pressurized tube

4.2.1 Problem statement

In order to show the ability of the SBEN to compute at once the dynamical response of elastic-

perfectly plastic solids, we consider an infinitely long tube subjected to an internal pressure

under plane strain conditions. Tresca yield criterion with the associated flow rule is used. The

fundamental difference with the quasi-static problems worked out in (Cao et al., 2020b) is that

now the inertial effects are involved which makes the problem much more complex.

The displacement field depends on the time and, due to the symmetry of the structure, it is

axisymmetric:

u(r, t) = ur(r, t)er (4.11)

Subsequently, the strain field ε writes:

ε(r, t) =

dur
dr 0

0 ur
r

 (4.12)

Moreover the stress tensor is given by

σ(r, t) =

σr 0

0 σθ

 (4.13)

Application of Hooke’s law in plane strains elasticity yields following relations:

εr =
1

Ē
(σr − ν̄σθ) , εθ =

1

Ē
(σθ − ν̄σr)

where

Ē =
E

1− ν2
, ν̄ =

ν

1− ν

Under the applied internal pressure, the hollow cylinder experiences elastic behavior as long

as the stress states are strictly inside the elastic domain K defined by the convex yield function

f :

K = {σ; f(σ) ≤ 0} (4.14)

The equation f(σ) = 0 is the yielding condition for which irreversible plastic deformations

develop. The Tresca criterion is expressed by the principle stresses in the form:

f(σ) = Supi 6=j(|σi − σj |)− σY = |σθ − σr| − σY 6 0 (4.15)
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where σY is the traction yield stress.

The dissipation potential of the solid is the indicator function of the elastic set k:

ϕ(σ) = χK(σ) =

 0 if f(σ) < 0,

∞ otherwise
(4.16)

Its Fenchel transformation, called the support function of K, is given by

ϕ∗(ε̇p) = supσ∈K
(
σ : ε̇p

)
(4.17)

4.2.2 Discretization of the problem

Due to the axisymmetric property and the plane strain conditions, the tube is discretized us-

ing 1D axisymmetric elements along the radius. Moreover, the objective function of the SBEN

formulation is a 2-fields functional, depending on both the stress and displacement fields, that

leads naturally to use the mixed finite element method which is more suitable for enforcing the

yield condition in elastoplastic computations. However, it is important to underline that mixed

finite element method is not mandatory and the standard displacement method can be combined

with the SBEN principle because the stress field can be expressed in term of the displacement

gradient through σ = S−1 : (∇su− εp).

Approximation of the displacement field

Let us consider the 1D axisymmetric reference element with α ≤ r ≤ β. The displacement field

is approximated using the following polynomial interpolation:

ur = v1 + v2r + v3r
2 + v4r

3 (4.18)

leading to the following approximation of the strain components:

εr =
dur
dr

= v2 + 2 v3r + 3 v4r
2, εθ =

ur
r

=
v1

r
+ v2 + v3r + v4r

2 (4.19)

Notice that there are two connectors:

q1 = ur |r=α, q2 = ur |r=β, (4.20)
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Considering two intermediate equidistant nodes of position:

γ =
2α+ β

3
, δ =

α+ 2β

3

we introduce two extra degrees of freedom internal to the element (not connected with the other

ones):

q3 = ur |r=γ , q4 = ur |r=δ

that defines a cubic Lagrange interpolation:

ur(r) =
1

16
[−(1− r̄) (1−9 r̄2), −(1+ r̄) (1−9 r̄2), 9 (1− r̄2) (1−3 r̄), 9 (1− r̄2) (1+3 r̄) ]


q1

q2

q3

q4


(4.21)

where:

r̄ =
2 r − (β + α)

β − α

In terms of shape function matrix Ne, we have:

ur(r) = Ne(r) qe (4.22)

The corresponding strain field is expressed in terms of the nodal displacements as follows:

ε(r) =

 εr

εθ

 =

 dNe

dr̄

dr̄

dr
Ne

r

 qe = Be(r) qe

where Be is the strain or gradient matrix. Straightforward calculations lead to:

Be(r) =

1

16

 J(1 + 18r̄ − 27r̄2) J(−1 + 18r̄ + 27r̄2) J(−27− 18r̄ + 81r̄2) J(27− 18r̄ − 81r̄2)

−1

r
(1− r̄)(1− 9r̄2) −1

r
(1 + r̄)(1− 9r̄2)

9

r
(1− r̄2)(1− 3r̄)

9

r
(1− r̄2)(1 + 3r̄)


with:

J =
dr̄

dr
=

2

β − α
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Approximation of the stress field

In the present work, two different methods are considered for handling the stress field:

1. Method A which considers the balance of momentum equation as a constraint in the opti-

mization procedure. It is satisfied only at Gauss points.

2. Method B which enforces the balance of momentum equation exactly.

Method A: the balance of momentum is satisfied only at Gauss points

The radial and hoop stress components are approximated within the finite element by the fol-

lowing stress fields:

σr = h1 + h2 r + h3 r
2 + h4 r

3 (4.23)

σθ = h5 + h6 r + h7 r
2 + h8 r

3 (4.24)

depending on eight stress parameters h1, · · · , h8 that are expressed in terms of nodal values:

g1 = σr |r=α, g2 = σr |r=β, g3 = σr |r=γ , g4 = σr |r=δ (4.25)

s1 = σθ |r=α, s2 = σθ |r=β, s3 = σθ |r=γ , s4 = σθ |r=δ (4.26)

by means of shape function matrices:

σr(r) = Ne(r) ge σθ(r) = Ne(r) se

or in compact form:

σe(r) =

 σr

σθ

 =

 Ne(r) 0

0 Ne(r)

 ge
se

 = Te(r) te

Method B

With the 1D axisymmetric element occupying the segment α ≤ r ≤ β, we consider four stress

connectors:

g1 = σr |r=α, g2 = σθ |r=α, g3 = σr |r=β, g4 = σθ |r=β (4.27)
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The choice of the polynomial stress field is guided by the aim to satisfy exactly the local dynamic

equation. To this end, the general solution of the balance of momentum equation:

∇ · σ = ṗ = ρ ü (4.28)

is the sum of the general solution σh of the homogeneous equation and a particular solution σd

of the non homogeneous equation. Following Schaefer ((Schaefer, 1953), (Gurtin, 1972)), the

homogeneous solution is sought under the form:

σh = 2∇sw − (∇ ·w) I (4.29)

where the vector potential w is solution of

∇2w = ṗ (4.30)

For the displacement field, we seek a radial vector potential. The previous equation reduces to:

d2wr
dr2

+
1

r

dwr
dr
− wr
r2

= ρ (v̇1 + v̇2r + v̇3r
2 + v̇4r

3)

Clearly, a solution is given by a homogeneous polynomial in r of degree five. Introducing it in

the previous equation, we obtain by identification:

wr = ρ

(
v̇1

3
r2 +

v̇2

8
r3 +

v̇3

15
r4 +

v̇4

24
r5

)

The relation (4.29) reads in polar coordinates:

σr = 2
dwr
dr
− 1

r

d

dr
(r wr), σθ = 2

wr
r
− 1

r

d

dr
(r wr)

and leads to the expression of the solution σd of the non homogeneous equation:

σr = −σθ = ρ

(
v̇1

3
r +

v̇2

4
r2 +

v̇3

5
r3 +

v̇4

6
r4

)

Besides, the stress field being defined by four connectors, we choose for the solution σh of the

homogeneous equation:

σr = h1 + h2r + h3r
2 + h4r

3
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Using the internal equilibrium equation, the hoop stress is:

σθ = h1 + 2h2r + 3h3r
2 + 4h4r

3

In matrix form, the total stress field in terms of stress and displacement parameters reads:

 σr

σθ

 = σe(r) = Re(r)he+Se(r) v̇e

=

 1 r r2 r3

1 2 r 3 r2 4 r3



h1

h2

h3

h4

+ρ

 r
3

r2

4
r3

5
r4

6

− r
3 − r2

4 − r3

5 − r4

6



v̇1

v̇2

v̇3

v̇4


The stress connectors (4.27) are linearly depending on the stress and displacement parameters:

ge = Cehe+Dev̇e

with the connection matrix:

Ce =


1 α α2 α3

1 2α 3α2 4α3

1 β β2 β3

1 2β 3β2 4β3

 De = ρ


α
3

α2

4
α3

5
α4

6

−α
3 −α2

4 −α3

5 −α4

6

β
3

β2

4
β3

5
β4

6

−β
3 −β2

4 −β3

5 − 4

6


Hence, one has: he = C−1

e (ge −Dev̇e).

By identification of (4.18) with (4.21), we obtain the relation between displacement parame-

ters and connectors:

ve = Aeq̇e

AT
e =

1
16

(
9[ α̂
β̂

]3 + 9[ α̂
β̂

]2 − α̂
β̂
− 1
)

1
8

(
−27 α̂

2

β̂3
− 18 α̂

β̂2
+ 1

β̂

)
1
4

(
27 α̂

β̂3
+ 9 1

β̂2

)
−9
2β̂3

1
16

(
−9[ α̂

β̂
]3 + 9[ α̂

β̂
]2 + α̂

β̂
− 1
)

1
8

(
27 α̂

2

β̂3
− 18 α̂

β̂2
− 1

β̂

)
1
4

(
−27 α̂

β̂3
+ 9 1

β̂2

)
9

2β̂3

1
16

(
−27[ α̂

β̂
]3 − 9[ α̂

β̂
]2 + 27 α̂

β̂
+ 9
)

1
8

(
81 α̂

2

β̂3
+ 18 α̂

β̂2
− 27

β̂

)
1
4

(
−81 α̂

β̂3
− 9 1

β̂2

)
27

2β̂3

1
16

(
27[ α̂

β̂
]3 − 9[ α̂

β̂
]2 − 27 α̂

β̂
+ 9
)

1
8

(
−81 α̂

2

β̂3
+ 18 α̂

β̂2
+ 27

β̂

)
1
4

(
81 α̂

β̂3
− 9 1

β̂2

)
−27
2β̂3


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where: α̂ = α + β, β̂ = β − α. Eliminating the stress parameters provides the stress field in

terms of stress and displacement connectors:

σe(r) = Te(r)ge+Ue(r)q̈e

where:

Te(r) = Re(r)C
−1
e , Ue(r) = (Se(r)−Re(r)C

−1
e De)Ae

The plastic multiplier field

The yield condition f(σ) ≤ 0 is performed at each of the four Gauss points of position rg

within the reference element. Let the value of the plastic multiplier at the Gauss point be λg.

Subsequently, if at each Gauss point f(σ) < 0 then the behavior is elastic (λg = 0) otherwise

(f(σ) = 0) the plastic yielding may occur. For the later case, the normal flow rule writes:

ε̇pe(rg) = λg
∂f

∂σ
|r=rg (4.31)

The values λg of the plastic multipliers at the Gauss points are gathered in the elementary vector

λe.

4.2.3 Discretization of the SBEN principle

The SBEN variational formulation (4.6) involves space and time integration which would be

carried out numerically. The Gaussian quadrature method which replaces the integral of a

function by a bounded sum of its values at integration points multiplied by corresponding weight

coefficients, is the most used method in space integrations for computing elementary matrices

and vectors. For 1D axisymmetric element we have:

∫ β

α
A(r) 2π r dr ∼=

ne∑
g=1

wgA(rg) 2π rg

In particular, the total dissipation power in the element reads:

∫ β

α
D(r) 2π r dr = ΛTe λe
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where:

Λe = σY


w1 2π r1

· · ·
wne 2π rne

 , λe =


λ̇1

· · ·
λ̇ne


On the other hand, the time integral is simply approximated by using the rectangular rule:

∫ T

0
f(t) dt =

m∑
j=1

f(tj) ∆tj

This approximation can appear rather rough but numerical experiences for the problem under

consideration showed that changing of this quadrature rule by another one, for instance the

midpoint rule, does not provide significant improvements.

We describe now the two variants of the optimization procedure proposed before:

Method A The assembly of elementary matrices and vectors is carried out by means of

the localization matrices Le,Me,Pe:

te = Met, qe = Leq, λe = Peλ

It follows that the discretized form of the functional (4.6) writes:

Π̄(t, q,λ) =

∫ t1

t0

(ΛTλ(t)− q̇T (t)Gt(t) + ṫT (t)F t(t)) dt (4.32)

with:

Λ =

n∑
e=1

P T
e Λe,

G =
n∑
e=1

∫ β

α
LTeB

T
e (r)Te(r)Me 2π r dr F =

n∑
e=1

∫ β

α
MT

e T
T
e (r)S Te(r)Me 2π r dr

The SBEN claims that the minimum of (4.32) is sought under the following constrains:

• balance of momentum at each Gauss point g of every element e:

d

dr
σr(rg) +

1

rg
[σr(rg)− σθ(rg)] = ρür(rg)

• boundary conditions:

tr=a(t) = −p(t), tr=b(t) = 0
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• plastic flow rule at every integration point g of every element e:

fg(t)− σY ≤ 0, λg ≥ 0, NY λg = Be(rg) q̇e − S Te(rg) ṫe

• initial conditions:

t(t0) = 0, q(t0) = 0, λ(t0) = 0, ṫ(t0) = 0, q̇(t0) = 0, q̈(t0) = 0

Concerning the time discretization, we consider m time step from t0 to tm. Enforcing the yield

condition only at the beginning and the end of the step, we minimize the objective function:

Π̄(t0, · · · , tm, q0, · · · , qm,λ0, · · · ,λm) =

j=m∑
j=1

(ΛTλj − q̇Tj Gtj + ṫTj F tj) (4.33)

under the following constrains:

• balance of momentum equation at every integration point g of every element e and at every

time step:

tr=a,j = −p(tj), tr=b,j = 0,
d

dr
σr(rg,j) +

1

rg,j
[σr(rg,j)− σθ(rg,j)] = ρür(rg,j)

• plastic flow rule (at every integration point g of every element e and at every time step):

fg,j(t)− σY ≤ 0, λg,j ≥ 0, NY (rg)λg,j = Be(rg)Leq̇j − S Te(rg)Meṫj

• initial conditions:

t0 = 0, q0 = 0, λ0 = 0, ṫ0 = 0, q̇0 = 0, q̈0 = 0

Method B Performing the assembling thanks to the localization matrices Le,Me,Pe such

that:

ge = Meg, qe = Leq, λe = Peλ

the discretized form of the functional is:

Π̄(g, q,λ) =

∫ T

0

[
ΛTλ(t)− q̇T (t) (Gg(t) + G̃ q̈(t))

+ gT (t)F1 ġ(t) + q̈T (t)F2 ġ(t) + gT (t)F3
...
q (t) + q̈T (t)F4

...
q (t)

]
dt

(4.34)
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with:

Λ =
n∑
e=1

P T
e Λe,

G =
n∑
e=1

∫ β

α
LTeB

T
e (r)Te(r)Me 2π r dr, G̃ =

n∑
e=1

∫ β

α
LTeB

T
e (r)Ue(r)Le 2π r dr,

F1 =
n∑
e=1

∫ β

α
MT

e T
T
e (r)S Te(r)Me 2π r dr F2 =

n∑
e=1

∫ β

α
LTe U

T
e (r)S Te(r)Me 2π r dr

F3 =

n∑
e=1

∫ β

α
MT

e T
T
e (r)SUe(r)Le 2π r dr F4 =

n∑
e=1

∫ β

α
LTe U

T
e (r)SUe(r)Le 2π r dr

The SBEN principle claims that we have to find the minimum of (4.34) with respect to the path

t 7→ (g(t), q(t),λ(t)) under the constrains of:

• equilibrium (on the boundary, the balance of momentum within the body being satisfies a

priori):

gr=a(t) = −p(t), gr=b(t) = 0

• plastic flow rule (at every integration point g of every element e):

fg(g, q̈)− σY ≤ 0, λg ≥ 0

NY λg = Be(rg) q̇e − S (Te(rg) ġe +Ue(r)
...
q e)

• initial conditions:

g(t0) = 0, q(t0) = 0, λ(t0) = 0

ġ(t0) = 0, q̇(t0) = 0, q̈(t0) = 0,
...
q (t0) = 0

Concerning time-discretization, the interval of interest [0, T ] divided into time-steps 0 < t1 <

t2 < · · · < tj < · · · < T . For any physical quantity a, we define

aj = a(tj), ȧj = ȧ(tj), · · ·

and on each step, we approximate the time rates at t = tj by:

ȧj =
aj − aj−1

tj − tj−1
, äj =

ȧj − ȧj−1

tj − tj−1
,

...
a j =

äj − äj−1

tj − tj−1
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Considering m time step from 0 to T and enforcing the yield condition only at the beginning

and the end of the step, we have to minimize the objective function:

Π̄(g0, · · · , gm,q0, · · · , qm,λ0, · · · ,λm) =

j=m∑
j=1

[
ΛTλj − q̇Tj

(
Ggj + G̃ q̈j

)
+ gj

T (t)F1 ġj(t)

+ q̈j
T (t)F2 ġj(t) + gj

T (t)F3
...
qj(t) + q̈j

T (t)F4
...
qj(t)

](
tj − tj−1

)
(4.35)

under the constrains:

• equilibrium (on the boundary, at each time step):

gr=a,j(tj) = −p(t), gr=b,j(tj) = 0

• plastic flow rule (at every integration point g of every element e and at every time step):

fg,j(g, q̈)− σY ≤ 0, λg,j ≥ 0,

NY λg,j = Be(rg)Leq̇
T
j − S [Te(rg)Meġj +Ue(rg)Le

...
q j ]

• initial conditions:

g0 = 0, q0 = 0, λ0 = 0, ġ0 = 0, q̇0 = 0, q̈0 = 0,
...
q 0 = 0

It worthy noting that, in this method, a non classical term
...
q , called the jerk, appears in the

time discretization.

The numbering system of both methods A and B are displayed in figs.4.1 and 4.2 respectively.

For two elements and eleven temporal points, method A and B provide 319 and 231 degrees of

freedom. It means that in the minimization process, there are 319 multivariables for method A

in the functional (4.33).

4.3 Results and discussion

The numerical procedure described in the previous section is applied to address the pressurized

elastoplastic thin and thick hollow cylinders including inertia effects. The material obeys to

Tresca criterion with Young modulus E = 210 GPa, Poisson’s ratio ν = 0.3, yield stress σY = 360
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r = a r = b

· · ·

first
temporal

point

second
temporal

point

11th
temporal

point

1 3 4 2 6 7 5

8 10 11 9 13 14 12

15 17 18 16 20 21 19

22 23 24 25 26 27 28 29

30 32 33 31 35 36 34

37 39 40 38 42 43 41

44 46 47 45 49 50 48

51 52 53 54 55 56 57 58

291 293 294 292 296 297 295

298 300 301 299 303 304 302

305 307 308 306 310 311 309

312 313 314 315 316 317 318 319

Figure 4.1: Numbering system of method A for the 1D axisymmetric tube (solid black line) with two elements (ne
= 2) and 11 temporal points (nt = 11) the stresses g (red), displacement q (green) and plastic multiplier λ (blue)
fields. (Color figure online)

r = a r = b

· · ·

first
temporal

point

second
temporal

point

11th
temporal

point

1 3 5

2 4 6

7 9 10 8 12 13 11

14 15 16 17 18 19 20 21

22 24 26

23 25 27

28 30 31 29 33 34 32

35 36 37 38 39 40 41 42

211

214

215

212

213

216

217 219 220 218 222 223 221

224 225 226 227 228 229 230 231

Figure 4.2: Numbering system of method B for the 1D axisymmetric tube (solid black line) with two elements (ne
= 2) and 11 temporal points (nt = 11) the stresses g (red), displacement q (green) and plastic multiplier λ (blue)
fields. (Color figure online)

MPa and density ρ = 7800 kg/m3. The internal pressure evolution is defined by :

p(t) =

 p0
t
t0

if 0 ≤ t ≤ t0
p0 if t0 ≤ t

(4.36)

where p0 and t0 are given pressure and time respectively as shown in Fig.4.3.

The algorithm is implemented in Matlab and the minimization solver fmincon is used to find

the local minimum of the constrained minimization problem (4.33, 4.35). Basing upon numerical

experiences, it is preferred to impose a tiny tolerance for the equality optimization constraints.
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Figure 4.3: The internal applied pressure

It is selected so that the numerical minimum of the cost function is closest to zero, that is the

theoretical value.

It is important to underline that the Schaefer superposition technique (method B) for which

the balance of momentum equation is exactly satisfied has been privileged in this work. Of

course, comparison with the method A is also provided hereafter. The results obtained by the

BEN principle are compared with the incremental predictions performed with the finite element

code Cast3M (Cast3M, 2019).

4.3.1 The thin tube

Let a thin tube of mean radius r, thickness h, in plane strain state, subjected to internal pres-

sure (4.36). The closed form expression of the elastoplastic response can be derived within the

framework of the thin cylindrical shell theory (Cao et al., 2020a) for which the hoop stress is

constant through the tube thickness and the radial stress is neglected as usual. In the sequel,

this Thin Cylindrical Shell solution will be referred as the TCS analytical solution.

The balance of momentum writes:

ρ h ü+
N

r
= p(t) (4.37)

where N = hσθθ is the circumferential force (by unit length). Introducing the plane strain

modulus:

E∗ =
E

1− ν2
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the force is given in elasticity by:

N = E∗h εθθ = E∗h
u

r
(4.38)

and for the plastic regime, it writes N = NY = h σY .

The elastoplastic law writes:

if N < NY or (N = NY and Ṅ < 0) then

ε̇pθθ = 0 ! elastic loading/unloading

else (N = NY and Ṅ = 0)

ε̇pθθ ≥ 0 ! plastic yielding

Taking into account the pressure loading (4.36), the tube responds elastically until the plastic

yield limit is reached. The closed form expression of the elastic displacement reads:

u(t) =
a0p0

t0ω3
[H(t− t0)

(
ω(t0 − tH(t)) +H(t) sin(ω(t− t0))

+ωt0
(
H(t)− 1

)
cos(ω(t− t0))

)
+H(t)

(
ωt− sin(ωt)

)
] (4.39)

where a0 =
1

ρh
, ω =

1

r

√
E∗
ρ

is the pulsation and H is the Heaviside step defined by:

H(x− x0) =

 0 if x < x0

1 if x ≥ x0

(4.40)

The hoop strain and stress are easily deduced by the Hooke law :

εθθ(t) =
u(t)

r
and σθθ = E∗

u(t)

r

First, we are interested to the elastic response of the thin tube. Figure 4.4 compares time-

evolution of the radial displacement and hoop stress of the internal wall computed by the SBEN

principle with the TCS analytical results and numerical predictions carried out by the step-by-

step procedure at r = a. The data are r = 100mm, h = 1mm, p0 = 1MPa, t0 = 10−4s. An

excellent agreement is observed: although SBEN principle is devoted to dynamical dissipative

systems, it works also for the elastodynamics. It is worthy to notice that elastic regime has been
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Figure 4.4: Thin tube / Elastic solution - Comparison between TCS analytical and numerical results under the
internal pressure p0 = 1 MPa with ne = 1, nt = 600

tested to verify that the method allows also to detect and to solve the elastic problem in the

event that the yield limit is not reached. Of course, if we know a priori that the problem is

elastic, it is more efficient to use a solver of linear problems.

If the displacement reaches a maximum without plastic yielding and then decreases, the

tube is said to rebound and the response becomes purely elastic. Otherwise, beyond the time

of incipient plastic yielding tY , plastic deformations develops. For t > tu, the tube cannot be

plastified any more. After a transient period (tY ≤ t ≤ tu) of plastic yielding, its response

becomes again elastic and the plastic dissipation is bounded. Such a behavior is similar to the

so-called shakedown of elastoplastic structures under cyclic loads, initially designed for static

loadings (Melan, 1938; Koiter, 1960; Hasbroucq et al., 2010, 2012). Our simulation shows that

shakedown may occur also in dynamics as predicted by Polizzotto et al. (Polizzotto, 1984b,a)

and Comi et al. (Comi and Corigliano, 1991).

The displacement response for the plastic state is given by:

u(t) = −1

2
ay(t− tY )2 + vY (t− tY ) + uY

+
a0p0

6t0

[(
3t2t0 − 3t

(
t20 + t2Y

)
+ t30 + 2t3Y

)
H(t− t0)− (t− tY )2(t+ 2tY )(H(t− t0)− 1)H(t− tY )

]
(4.41)

where uY and vY are the displacement and the velocity at the time of incipient plastic yielding

tY .

When the ductility limit is not reached, irreversible plastic strains increase until the displace-

ment reaches its maximum value uu at the time tu, and then the response becomes purely elastic.
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The closed-form solution of the displacement during the elastic discharge phase writes:

u(t) =
1

ω2

(
a0p0 + b0 −

(
a0p0 + b0 − uuω2

)
cos(ω(t− tu))

)
(4.42)

where b0 =
uuE∗
ρr2

− σY
ρr

.
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Figure 4.5: Thin tube / TCS analytical solution of
the radial displacement for p0 = 3.2 MPa.
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Figure 4.6: Thin tube / Comparison between TCS
analytical and numerical results for p0 = 3.2 MPa
with ne = 1, nt = 270.
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Figure 4.7: Thin tube / TCS analytical evolution of
the hoop stress for p0 = 3.2 MPa.
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Figure 4.8: Thin tube / Comparison between TCS
analytical and numerical results for p0 = 3.2 MPa
with ne = 1, nt = 270.

Figures 4.5 to 4.8 depict the thin shell analytical evolution of the radial displacement and

the hoop stress versus time and compare them with the numerical results obtained by the SBEN

principle and incremental procedure for an internal pressure p0 = 3.2 MPa. It can be seen that

the ductility limit is not reached and a shakedown-like response occurs. It is noted in the figures

that the SBEN solution agrees very well with predictions provided by the incremental procedure.

Moreover, a good concordance between the numerical simulations and the analytical thin shell

solution is observed. A slight difference for the displacement field within the range of the plastic

and elastic discharge phases is observed. Noticeable difference appears for a higher internal

pressure p0 = 3.4 MPa as shown in Figs.4.9 and 4.10. This can be explained by that in the
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Figure 4.9: Thin tube / TCS analytical solution of
the radial displacement for p0 = 3.4 MPa.
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Figure 4.10: Thin tube / Comparison between TCS
analytical and numerical results for p0 = 3.4 MPa
with ne = 1, nt = 90.
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Figure 4.11: Thin tube / TCS analytical evolution
of the hoop stress theory for p0 = 3.4 MPa.
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Figure 4.12: Thin tube / Comparison between TCS
analytical and numerical results for p0 = 3.4 MPa
with ne = 1, nt = 90.

thin theory cylindrical shell, the radial stress σr is neglected. However, numerical experiences

show that the contribution of σr in Tresca criterion is not negligible even if its value is very

small compared to the stress component σθ. Regarding, the hoop stress time-evolution, a good

agreement is illustrated in Figs. 4.11 and 4.12.

Eventually, in Figs. 4.13 to 4.16, the stress components computed by the SBEN variational

principle are plotted together with the thin shell analytical solution when the displacement is

unbounded and the ductility limit is reached. This response is obtained for the prescribed

pressure p0 = 3.6 MPa. Again, a very good agreement is observed.

4.3.2 The thick-walled tube

In this subsection, the SBEN variational principle is applied to address the dynamic response of

the pressurized thick-walled tube with inner radius a = 100 mm and outer radius b = 120 mm.

The material parameters are chosen like in section 4.3.1: E = 210 MPa, ν = 0.3, σY = 360 MPa

and ρ = 7800 kg/m3. The prescribed internal pressure is given by equation (4.36) and plotted
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Figure 4.13: Thin tube / TCS analytical solution of
the radial displacement for p0 = 3.6 MPa.
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Figure 4.14: Thin tube / Comparison between TCS
analytical and numerical results for p0 = 3.6 MPa
with ne = 1, nt = 60.
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Figure 4.15: Thin tube / TCS analytical evolution
of the hoop stress for p0 = 3.6 MPa.
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Figure 4.16: Thin tube / Comparison between TCS
analytical and numerical results for p0 = 3.6 MPa
with ne = 1, nt = 60.

in Fig. 4.3.

Unfortunately, the analytical solution of the considered problem is not available neither for

elastic nor elastoplastic ranges.

First, consider the elastic response under an internal pressure p0 = 40 MPa. In Figs. 4.17(a)

and 4.17(b), we plot the time evolution of the radial displacement and the hoop stress at the

inner surface (r = a) computed by the SBEN method and the incremental procedure. The results

relating to the external wall (r = b) are depicted in Figs. 4.18(a) and 4.18(b). By inspection of

these figures we conclude that prediction of both procedures are very close which confirms that

the SBEN principle works in elasticity.

Consider now the response of the tube under a given pressure p0 = 60 MPa. The comparison

between the SBEN and Cast3M predictions are depicted in Fig. 4.19(a) and 4.19(b) which show

the radial displacement and the hoop stress for the node located on the internal wall (r = a)

and in Figs. 4.20(a) and 4.20(b) for the external boundary (r = b). These figures are similar to
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Figure 4.17: Thick tube / Elastic solution - Comparison of (a) displacement (b) hoop stress field between SBEN’s
results and step-by-step numerical predictions for p0 = 40 MPa on the internal wall r = a with ne = 1, nt =
240.
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Figure 4.18: Thick tube / Elastic solution - Comparison of (a) displacement (b) hoop stress field between SBEN’s
results and step-by-step numerical predictions for p0 = 40 MPa on the external wall r = b with ne = 1, nt =
240.

the ones for the thin tube under p = 3.2 MPa and confirm that the response is first elastic then

plastic strains develop until the displacement reaches a maximum and then the response becomes

elastic again. In other words, under this pressure, the ductility limit is not reached. A difference

between the numerical procedures is observed for the radial displacement simulations within the

plastic range. Because the dynamic problem has not a closed-form solution, one cannot conclude

on the relevance of the SBEN method or the step-by-step procedure.

Attention is focused now on the elastoplastic behavior under a higher pressure p0 for which

the ductility limit is reached and a mechanism is observed. For example, under the pressure

p0 = 65 MPA, Figs. 4.21(a) and 4.21(b) present the variation of the radial displacement and

the hoop stress versus time on the inner boundary (r = a). The numerical comparison between

SBEN’s predictions and incremental simulations for the external surface (r = b) is presented in

Figs. 4.22(a) and 4.22(b). It is worth noting that theses figures are similar to the ones 4.13

and 4.16 related to the thin tube in the sense that the radial displacement is unbounded for the

110



SBEN Cast3m

0.00005 0.00010 0.00015 0.00020 0.00025 0.00030
time (s)

0.05

0.10

0.15

0.20

ur(mm)

(a) Displacement field

SBEN Cast3m

0.00005 0.00010 0.00015 0.00020
time (s)

50

100

150

200

250

σθθ(MPa)

(b) Hoop stress field

Figure 4.19: Thick tube - Comparison of (a) displacement (b) hoop stress field between SBEN’s results and step-
by-step numerical predictions for p0 = 60 MPa on the internal wall r = a with ne = 1, nt = 180.
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Figure 4.20: Thick tube - Comparison of (a) displacement (b) hoop stress field between SBEN’s results and step-
by-step numerical predictions for p0 = 60 MPa on the external wall r = b with ne = 1, nt = 180.

plastic regime. Moreover, a good agreement between the SBEN predictions and Cast3M results

is observed.
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Figure 4.21: Thick tube - Comparison of (a) displacement (b) hoop stress field between SBEN’s results and step-
by-step numerical predictions for p0 = 65 MPa on the internal wall r = a with ne = 1, nt = 40.
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Figure 4.22: Thick tube - Comparison of (a) displacement (b) hoop stress field between SBEN’s results and step-
by-step numerical predictions for p0 = 65 MPa on the external wall r = b with ne = 1, nt = 40.

4.3.3 Comparison between the methods A and B

For completeness, as regards to the comparison between the methods A and B for treating the

balance of momentum equation, we display in Figs. 4.23 and 4.24 the SBEN results for the

thin tube subjected to the prescribed pressures p = 3.4 MPa and p = 3.6 MPa respectively

(elastoplastic response). Furthermore, figures 4.25 and 4.26 showed the comparison for the

pressurized thick tube. The presented results concern the radial displacement and the hoop

stresses for the internal and external walls. From these figures, it is shown that, for the considered

problems, there is no noticeable difference between the two methods. This observation is also

valid for the tubes in the elastic range. However, from a numerical point of view, method A is

more expensive since it requires more degrees of freedom to deliver accurate results. Furthermore,

it is reasonable to thin that method B is more accurate than the one A for elastoplastic simulations

because the balance of momentum equation is satisfied exactly, which is more efficient to enforce

the plastic criterion. On the other hand, method B benefits from the linear feature of the balance

of linear momentum equation and it is not workable in large strains.
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Figure 4.23: Thin tube - Comparison of numerical results provided by the methods A and B for an internal pressure
p0 = 3.4 MPa.
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Figure 4.24: Thin tube - Comparison of numerical results provided by the methods A and B for an internal pressure
p0 = 3.6 MPa.
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Figure 4.25: Thick tube - Comparison of numerical results provided by the methods A and B for an internal
pressure p0 = 60 MPa.
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Figure 4.26: Thick tube - Comparison of numerical results provided by the methods A and B for an internal
pressure p0 = 65 MPa.
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4.4 Conclusion and outlook

A new procedure based on the SBEN principle for the computation of the entire dynamic elasto-

plastic response of deformable solids at once is presented in this work. This principle relies on

the energy dissipation and leads to a constrained minimization problem for which the objec-

tive function depends on the stress and displacement fields. As illustration, the thin and thick

elastic-perfectly plastic tubes subjected to an internal pressure are successfully studied numer-

ically by using the SBEN principle. The analysis has been performed within the framework of

the mixed finite element method, which is quite natural given the mathematical structure of the

problem. A very good agreement between the SBEN numerical results compared with analyt-

ical solutions for the thin cylindrical shell and step-by-step FEM predictions is observed. It is

relevant to mention that, unlike the traditional incremental procedures, the SBEN formulation

offers the advantage to tackle easily complex nonlinear constitutive laws (hardening plasticity,

non-local models, damage under shock-waves,etc.) involving inertia effects without additional

computational efforts.
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In the previous chapters, we applied the BEN principle to simulate the quasi-static or the

dynamic elastoplastic problems in small deformations. In this chapter, we generalize the previous

formalism to dissipative media in finite strains. This aim is reached in three steps. Firstly, we

develop a Lagrangian formalism for the reversible media based on the calculus of variation. Next,

we propose a corresponding Hamiltonian formalism for such media. Finally, we deduce from it a

symplectic minimum principle for dissipative media and we show how to get a minimum principle

for plasticity in finite strains.

5.1 Notations and definitions

For any convex and closed subset A of a topological real vector space V , the indicatory function

χA is defined by

χA(x) =

 0 if x ∈ A
+∞ otherwise

 .

The characteristic function is convex and lower semi continuous. If the set A contains only one

element A = {a} then we shall use the notation χa for the characteristic function of A.

Besides, if V is equipped with a symplectic form ω, the symplectic subdifferential of a convex

lower semi continuous function F : V → R∪{+∞} is the function which associates to any z ∈ V
such that F (z) < +∞ the set:

∂ωF (z) =
{
z′ ∈ V : ∀ z” ∈ V F (z + z”) ≥ F (z) + ω(z′, z”)

}
.

If F is also differentiable, the subdifferential is reduced to a unique element, its symplectic

gradient (or Hamiltonian vector field). The symplectic polar or symplectic Fenchel transform of

F is the function:

F ∗ω(z′) = sup
{
ω(z′, z)− F (z) : z ∈ V

}
.

The derivative of a scalar field defined on an open domain of Rn is the n-row :

∂f

∂x
=

(
∂f

∂x1

∂f

∂x2
· · · ∂f

∂xn

)
.

Its gradient is the n-column:

gradx f =

(
∂f

∂x

)T
.
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Let v ∈ Rp be a vector field. Its derivative is the p× n matrix:

∂v

∂x
=

(
∂v

∂x1

∂v

∂x2
· · · ∂v

∂xn

)
.

Let A be an n × p matrix field. Its divergence is the field divxA of p-columns such that for

every constant vector k of Rp:

(divxA) · k = divx (Ak) .

Alternatively, A1, · · · ,Ap being the columns of A, we have:

divx (A1, · · · ,Ap) =


divxA1

...

divxAp

 .

For any vector fields v ∈ Rp, and any n× p matrix field A, it holds:

divx (Av) = (divxA) · v + Tr

(
A
∂v

∂x

)
(5.1)

where Tr is the trace operator.

For any open domain V of Rn with suitable regularity assumptions and any C1 square matrix

field A, we have the divergence formula:

∫
V
divxA dV =

∫
∂V
ATn dS (5.2)

the column n representing the outward unit normal vector to ∂V, pointing away from V.
The derivative of a scalar f function of an n × p matrix M is a p × n matrix ∂f/∂M such

that its directional derivative in the direction dM is:

Tr

(
dM

∂f

∂M

)
.

5.2 Lagrangian formalism

To begin with, we consider in this Section and the next one only reversible continuous system.

For the target applications, we shall be working in the material representation. Let V0 be the

initial (or undeformed) configuration, that is an open domain of R3 occupied by a solid at the
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initial time t0. Its motion is described by a smooth map:

ϕ : Ω0 = [t0, t1]× V0 → R3 : X0 = (t,x0) 7→ x = ϕ(t,x0)

where x is the current position at time t of the material particle x0 , then ϕ(t0, ·) is the identity.
Its space-time gradient is the 3× 4 matrix:

∂x

∂X0
=

(
∂x

∂t
,
∂x

∂x0

)
= (v,F ) (5.3)

where v is the velocity at time t of the particle x0, tangent to the trajectory t 7→ ϕ(t,x0), and

F is the deformation gradient, whose determinant (Jacobian) is denoted by J = detF .

Our goal now is deducing the balance of linear momentum from a variational action principle

of the form:

α [x] =

∫
Ω0

L0

(
X0,x,

∂x

∂X0

)
d4X0 (5.4)

where the Lagrangian L0 depends on the field x0 and its first derivative. As we are only interested

in what follows by the variational equations in the interior of Ω0, we consider simple boundary

conditions with the value of x imposed on ∂Ω0. For sake of easiness, we introduce the 3-column:

f0 = gradx L0

and the 4× 3 matrix:

P0 =
∂L0

∂
(
∂x
∂X0

) .

The variation of the action reads:

δα =

∫
Ω0

[
Tr

(
P0

∂

∂X0
(δx)

)
+ f0 · δx

]
d4X0 = 0 .

Owing to (5.1) and (5.2) and taking into account the fact that the values of x are imposed on

the boundary, the integration by part gives:

δα = −
∫

Ω0

(divX0P0 − f0) · δx d4X0 = 0

where the divergence is calculated with respect to the coordinates X0. The variation of x being

arbitrary, we obtain Euler-Lagrange equations of variation:

divX0 P0 − f0 = 0 . (5.5)
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According to the principle of material indifference, the Lagrangian is depending on the de-

formation gradient through the Green-Lagrange strain measure:

E =
1

2
(F TF − 1R3) (5.6)

then, owing to (5.3):

L0

(
X0,x,

∂x

∂X0

)
= L0 (X0,x,v,E) .

Its differential with respect to v and F is:

δL0 = Tr

(
∂L0

∂E
δE

)
+
∂L0

∂v
δv = Tr

(
∂L0

∂E
F T δF

)
+ gradv L0 δv .

Hence:

divX0P0 − f0 =
∂

∂t
(gradv L0) + divx0

(
∂L0

∂E
F T

)
− f0 = 0 .

The initial value ρ0 of the mass density is a function of x0. Its current value at the date t:

ρ =
ρ0

J
(5.7)

satisfies the balance of mass (de Saxce and Vallée, 2016):

∂ρ

∂t
+ divx (ρv) = 0 .

From now on, we consider a standard Lagrangian of the form:

L0 (X0,x,v,E) = ρ0

(
1

2
‖ v ‖2 −ψ(x0,E)

)
+ f0(t) · x (5.8)

where ψ is the specific free energy, responsable of the reversible elastic behaviour. Introducing

the second Piola-Kirchhoff stresses:

S = ρ0
∂ψ

∂E
(5.9)

the variation equation (5.5) reads:

ρ0
∂v

∂t
= divx0(S F T ) + f0 (5.10)

which can be interpreted as the balance of linear momentum in the Lagrangian specification.
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Indeed, transforming the former term as in (de Saxcé, 2001), it holds:

ρ0
∂v

∂t
= J (divx σ + f)

where :

σ =
1

J
F S F T

are Cauchy stresses and f = f0/J are the volume forces in the spatial representation. Then,

taking into account of (5.7), one obtains the balance of linear momentum in the Eulerian speci-

fication:

ρ
∂v

∂t
= divx σ + f .

5.3 Hamiltonian formalism

In (Buliga and de Saxcé, 2017), the last author proposed with Buliga a generalisation of the

Brezis-Ekeland-Nayroles principle in a symplectic version called SBEN, able to treat the dynam-

ical dissipative systems.

In the material representation, let us introduce the linear momentum:

p0 = gradvL0 = ρ0v (5.11)

and the Hamiltonian density:

H0 = gradvL0 · v − L0 . (5.12)

Eliminating the velocity v between (5.11) and (5.12) gives the Hamiltonian density as function

of the linear momentum :

H0 =
1

2 ρ0
‖ p0 ‖2 +ρ0 ψ − f0 · x (5.13)

we recover (5.11) by:

v = gradp0H0 =
p0

ρ0
. (5.14)

The total energy at time t is represented by the Hamiltonian:

Ht =

∫
V0
H0 (X0,x,E,p0) d3x0 ,

Then the value of the Hamiltonian density depends on F thanks to 5.6:

H0 (X0,x,E,p0) = H0 (X0,x,F ,p0) .
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For sake of easiness, we introduce the 3-columns:

V = gradp0H0 , f∗0 = gradxH0

and the 3× 3 matrix:

P ∗0 =
∂H0

∂F
. (5.15)

The variation of the Hamiltonian with respect to the canonical variables x and p0 reads:

δHt =

∫
V0

[
Tr

(
P ∗0

∂

∂x0
(δx)

)
+ f∗0 · δx+ V · δp0

]
d3x0 .

Taking into account the fact that the values of x are imposed on the boundary, the integration

by part gives:

δHt =

∫
V0

[−(divx0 P
∗
0 − f∗0 ) · δx+ V · δp0] d3x0 . (5.16)

Let Vt be the deformed configuration at date t, that is the image of V0 by x0 7→ ϕ(t,x0).

The phase space is the cotangent bundle T ∗ Vt of which the elements are represented in a local

chart by a couple z = (x,p0). It is equipped with a symplectic structure by giving a field of non

degenerated 2-forms z 7→ $z ∈
∧2(T ∗ Vt). The value of the symplectic form for two tangent

vectors Z = (dx, dp0) and Z ′ = (dx′, dp′0) is defined in a local chart by:

$(Z,Z′) = dx · dp′0 − dp0 · dx′ . (5.17)

The evolution of the matter is modeled by a map t 7→ z(t) where z(t) is a smooth section of the

vector bundle:

z(t) : V0 → T ∗ Vt : x0 7→ (z(t))(x0)

of which the value is represented in a local chart by (z(t))(x0) = (x,p0).

Remark 5.3.1. Before going further, it is worth to observe that in (Buliga and de Saxcé, 2017),

dedicated to a simpler theory for discrete systems, z(t) is an element of a manifold and ż(t) is

perfectly defined as the tangent vector to the evolution curve t 7→ z(t). In the present approach

for continua, z(t) is replaced by a section of a vector bundle but there is no canonical way to

define ż(t). The most natural choice is to replace it by:

x0 7→
(
∂x

∂t
(t,x0),

∂p0

∂t
(t,x0)

)
(5.18)

that we shall denote by ∂z/∂t.
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Hence z(t) belongs to a manifold of infinite dimension Γ(T ∗ Vt) which is equipped with a

2-form:

ω(Z,Z ′) =

∫
V0
$(Z(t,x0),Z ′(t,x0))d3x0 . (5.19)

Definition 5.3.2. The symplectic gradient of the Hamiltonian ∂z
∂t = XH is the section of

T ∗ Vt such that for all variation δz:

ω

(
∂z

∂t
, δz

)
= δHt . (5.20)

Combining (5.17), (5.18) and (5.19), one has:

ω

(
∂z

∂t
, δz

)
=

∫
V0

[
∂x

∂t
· δp0 −

∂p0

∂t
· δx

]
d3x0

and, owing to (5.16), (5.20) leads to the canonical equations:

∂x

∂t
= V ,

∂p0

∂t
= −f∗0 + divx0 P

∗
0 (5.21)

or, explicitly with respect to the Hamiltonian density:

∂x

∂t
= gradp0H0,

∂p0

∂t
= −gradxH0 − divx0

 ∂H0

∂
(
∂x
∂x0

)
 . (5.22)

For the particular form (5.13) of the Hamilltonian, one has:

V =
p0

ρ0
, P ∗0 =

∂H0

∂F
= ρ0

∂ψ

∂E
F T

which allows to recover the balance of linear momentum (5.10). Taking into account (5.9), P ∗0

can be interpreted as the nominal stresses (transpose of the first Piola-Kirchhoff stresses):

P ∗0 = S F T .

5.4 Symplectic BEN principle for dynamic plasticity

Having set on the backdrop of the Hamiltonian formalism for continuous media, we tackle now

the modeling of the dissipative systems. To make it more concrete, we develop our approach

in the framework of plasticity but the ideas are general and can be adapted easily to other
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constitutive laws deriving of a free energy and a convex potential characteristic of the so-called

Generalized Standard Materials (Halphen and Nguyen, 1975).

From there, we assume that V0 has a piecewise smooth boundary ∂V0. As usual, it is divided

into two disjoint parts, Sx (called support) where the positions are imposed and Sf where the

surface forces are imposed. The elements of the space X are couples (x,Ein) ∈ U × E where

Ein is the inelastic strain field and x is an initial position field on the initial configuration V0

with trace γx on ∂V0. The elements of the corresponding dual space Y are of the form (p0,π0).

Unlike p0 which is clearly the linear momentum, we do not know at this stage the physical

meaning of π0. Our phase space is now the set of elements z = ((x,Ein), (p0,π0)).

To build a minimum principle, we adapt the scheme proposed in (Buliga and de Saxcé, 2017)

to continuous media. We start with the decomposition of ∂z
∂t into reversible and irreversible

parts:
∂z

∂t
= ζR + ζI , ζR = XH, ζI =

∂z

∂t
−XH . (5.23)

We claim the dissipative process is governed by the phenomenological law:

ζI ∈ ∂ωΦ

(
∂z

∂t

)

where Φ is a convex semi lowercontinuous function called dissipation potential and ∂ω is

the symplectic subdifferential operator (Buliga and de Saxcé, 2017). From there, we consider

problems in which the fields satisfy a priori the initial conditions:

z(0) = z0 (5.24)

and boundary conditions on supports:

x = x̄ on Sx (5.25)

where x̄ are imposed positions. Next, we generalize the symplectic BEN principle of ((Buliga

and de Saxcé, 2017), Definition 4.1):

Definition 5.4.1. An evolution curve t 7→ z(t) satisfies the symplectic BEN principle for the

Hamiltonian Ht and dissipation potential Φ if for almost any t ∈ [t0, t1] we have:

Φ

(
∂z

∂t

)
+ Φ∗ω

(
∂z

∂t
−XH

)
− ω

(
∂z

∂t
−XH,

∂z

∂t

)
= 0 . (5.26)
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In integral form, this becomes a variational principle which claims that:

Definition 5.4.2. An evolution curve t 7→ z(t) satisfies the symplectic BEN principle for the

Hamiltonian Ht and dissipation potential Φ, the initial conditions (5.24) and the boundary

conditions (5.25) if and only if it minimizes the functional:

Π[z] =

∫ t1

t0

{Φ
(
∂z

∂t

)
+ Φ∗ω

(
∂z

∂t
−X H

)
−ω

(
∂z

∂t
−X H,

∂z

∂t

)
} dt , (5.27)

and the minimum is zero.

Integrating by part as in (Buliga and de Saxcé, 2017), we have also:

Π[z] =

∫ t1

t0

{
Φ

(
∂z

∂t

)
+ Φ∗ω

(
∂z

∂t
−X H

)
− ∂Ht

∂t

}
dt

+Ht1 −Ht0 (5.28)

but we shall not continue any longer with this unnecessary more complicated version. In the

new phase space, the symplectic form reads:

ω

(
∂z

∂t
, δz

)
=

∫
V0

[
∂x

∂t
· δp0 −

∂p0

∂t
· δx+ Tr

(
∂Ein

∂t
δπ0 −

∂π0

∂t
δEin

)]
d3x0 . (5.29)

The Hamiltonian is taken of the form:

Ht =

∫
V0

{
1

2 ρ0
‖ p0 ‖2 +ρ0 ψ(E −Ein)− f0(t) · x

}
d3x0 −

∫
Sf

f̄0(t) · x dSf (5.30)

where f̄0 is the imposed surface force on the part Sf of the boundary. Its variation is:

δHt =

∫
V0

{
p0

ρ0
· δp0 + Tr

(
S

(
F T ∂

∂x0
(δx)− δEin

))
− f0 · δx

}
d3x0

−
∫
Sf

f̄0(t) · δx dSf (5.31)

(5.32)

where the second Piola-Kirchhoff stresses S is given by (5.9). Integrating by part and taking
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into account (5.2) and the boundary conditions (5.25), we obtain:

δHt =

∫
V0

{
p0

ρ0
· δp0 − (divx0 (S F T ) + f0) · δx− Tr

(
S δEin

) }
d3x0

+

∫
Sf

(F S n0 − f̄0) · δx dSf , (5.33)

(5.34)

where n0 is the outward unit normal vector to ∂V0. Denoting the symplectic gradient by:

XH = ((Dp0H,Dπ0H), (−DxH,DEinH))

where the variational gradients are denoted by D. Owing to (5.29) and (5.34), (5.20) leads to:

Dp0H =
p0

ρ0
, Dπ0H = 0, −DxH = divx0 (S F T ) + f0, −DEinH = S .

On the boundary, the variational gradient with respect to the position is:

DγxH = F S n0 − f̄0 . (5.35)

Taking into account the decomposition (5.23), the irreversible part is:

ζI =

((
∂x

∂t
− p0

ρ0
,
∂Ein

∂t

)
,

(
∂p0

∂t
− (divx0 (S F T ) + f0),

∂π0

∂t
− S

))
. (5.36)

We shall use a dissipation potential which has an integral form:

Φ

(
∂z

∂t

)
=

∫
V0
φ

(
∂x

∂t
,
∂Ein

∂t
,
∂p0

∂t
,
∂π0

∂t

)
d3x0

and we shall assume that the symplectic Fenchel transform of Φ expresses as the integral of the

symplectic Fenchel transform of the dissipation potential density φ.

The symplectic Fenchel transform of the function φ reads

φ∗ω(δz) = sup{δx · δ′p0 − δp0 · δ′x + Tr
(
δEin δ′π0 − δπ0 δ

′Ein
)

−φ(ż′) : δ′z ∈ X × Y }

(5.37)

where δ and δ′ are arbitrary variations, independent one of each other. To recover the standard
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plasticity, we suppose that φ is depending explicitly only on ∂π0/∂t

φ

(
∂z

∂t

)
= φ̄

(
∂π0

∂t

)
(5.38)

then we obtain

φ∗ω(δz) = χ0(δx) + χ0(δp0) + χ0(δπ0) + φ̄∗(δEin)

where φ̄∗ is the usual Fenchel transform of φ̄. In other words, owing to (5.35) and (5.36), the

quantity φ∗ω(ζI) is finite if and only if all of the following are true:

(a) φ∗ω(ζI) = φ̄∗
(
∂Ein

∂t

)
,

(b) p is the linear momentum in the material representation

p0 = ρ0
∂x

∂t
(5.39)

(c) the balance of linear momentum is satisfied

divx0 (S F T ) + f0 =
∂p0

∂t
on V0, F S n0 = f̄0 on Sf (5.40)

(d) and an equality which reveals the meaning of the variable π0:

∂π0

∂t
= S . (5.41)

In integral form, we put:

Φ̄

(
∂π0

∂t

)
=

∫
V0
φ̄

(
∂π0

∂t

)
d3x0, Φ̄∗

(
∂Ein

∂t

)
=

∫
V0
φ̄∗
(
∂Ein

∂t

)
d3x0 .

Definition 5.4.3. The symplectic BEN principle applied to standard plasticity in finite strain

states that the evolution curve minimizes:

Π[z] =

∫ t1

t0

{Φ̄ (S) + Φ̄∗
(
∂Ein

∂t

)
−ω

(
∂z

∂t
−X H,

∂z

∂t

)
} dt (5.42)

among all curves z such that (5.24), (5.25), (5.39) and (5.40) are satisfied and the minimum

is zero.
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5.5 Conclusion

In this chapter, we extended to the finite strains in the Lagrangian specification the symplectic

BEN principle proposed in (Buliga and de Saxcé, 2017) to the dynamic plasticity in small strains,

using tools of differential geometry. The phase space is the cotangent bundle to the deformed

configuration, equipped with a symplectic structure. The crux of the matter is to replace ż by

the partial derivative ∂z
∂t with respect to the time at constant x0.

The aim is reached in three steps. Firstly, a Lagrangian formalism is developed for the

reversible media based on the calculus of variation. Next, a corresponding Hamiltonian formalism

is proposed for such media. Finally, a symplectic minimum principle is deduced from it for

dissipative media and we show how to get a minimum principle for plasticity and viscoplasticity

in finite strains.
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General conclusion and perspectives

The main objective of this thesis was to investigate the numerical feasibility of the Symplectic

Brezis-Ekeland-Nayroles (SBEN) variational principle. By transforming an elastoplastic evolu-

tion problem into a constrained minimization procedure, the SBEN principle avoids the accu-

mulation of computation errors in each iteration. It provides more accurate solutions comparing

to a classical step-by-step method.

Although the SBEN principle was designed for the dynamics of dissipative systems, we started

with the limit case of the statics, considering first a simple structure, the axisymmetric tube.

The linear and nonlinear behaviors of a thick wall tube under internal pressure are examined.

A perfect agreement is provided by the SBEN principle comparing to the analytical solution or

classical incremental ones for elastic perfectly plastic and viscoplastic materials.

Besides, another mechanical model is investigated numerically by the SBEN principle in

statics. For circular axisymmetric plates under distributed loads, the elastic and elastoplastic

behaviors were analyzed. Two plate hypotheses are implemented. The Love-Kirchhoff plate

theory is applied for thin plate and Mindlin hypothesis is designed for thick one. Comparing to

reference analytical or numerical solutions, the SBEN principle provides a good agreement both

in elastic and elastoplastic regimes.

Furthermore, the SBEN principle was applied to the dissipative system in dynamics. For thin

and thick tubes subjected to internal pressure, two methods have been implemented to treat the

balance of momentum equation. It can be satisfied a priori, as in statics, or be enforced only

at Gauss points, which leads to additional constraints in the optimization problem. The SBEN

principle provides satisfactory numerical results.

The numerical experiences with different kinds of structures and constitutive laws show that

the SBEN principle allows obtaining a global view for all time steps simultaneously within a

loading history problem. Moreover, we find that the SBEN principle provides a better conver-
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gence of the stress field values thanks to a mixed finite element method. Unlike the classical

displacement finite element method for which the stress field is deduced from the displacement

one, the SBEN principle results have an important advantage in plasticity because the plastic

yield condition is directly expressed in terms of stresses.

The results of these implementations are promising and suggest that the SBEN variational

formulation provides a rigorous framework for modeling dynamic dissipative, leading to powerful

non-incremental numerical methods.

In the last chapter, the SBEN principle applied in previous chapters is generalized to finite

strains in the Lagrangian specification, using differential geometry tools. The phase space is the

cotangent bundle to the deformed configuration, equipped with a symplectic structure.

Several interesting and challenging research directions are worthy of further exploration in

future works:

• In the near term, particular attention and interest should be focused on the choice of an

appropriate optimization procedure in the case of large and complex problems, especially

regarding the management of the (many) non-linear inequality constraints arising from the

formulation. In such cases, an efficient optimization solver is crucial for the performance

of the SBEN principle. Numerical simulations of realistic and industrial structures with

complex geometry involving more sophisticated models are being considered.

• For continuous systems, the SBEN principle is a variational space-time principle. Consid-

ering the techniques of model order reduction, a possible numerical strategy is to combine

it with the Proper Generalized Decomposition (PGD) (Chinesta et al., 2011), based on

the method of separation of variables coupled to successive enrichment strategy. For more

details, one can refer to (Chinesta and Ladevèze, 2014; Chinesta et al., 2013) and the

references therein.

• Another interesting aspect of the SBEN principle lies in its strong link with the symplectic

form that encodes the structure of the canonical equations. In the recent literature, another

model order reduction is the so-called Proper Symplectic Decomposition (PSD), a variant

of the Proper Orthogonal Decomposition (POD) adapted to the dynamics that could also

be naturally combined with the SBEN principle.

• In the footsteps of the last chapter, it would be worth to perform the numerical implemen-

tation of the extended SBEN principle in finite strains. This is an interesting feature of the
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SBEN principle that it can be naturally generalized to the large deformation framework.

• Another important and natural extension of the SBEN principle concerns atypical consti-

tutive laws such as Coulomb’s friction law or numerous flow rules of geomaterials for which

the normality rule fails. Indeed, it is worth knowing that many realistic dissipative laws,

called non-associated, cannot be cast in the mold of the standard ones deriving of a dissi-

pation potential. To skirt this pitfall, the theoretical framework of the bipotential allows

extending the classical calculus of variation and building robust numerical algorithms.
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