Thèse soutenue

Optimisation multicritères des performances de réseau d’objets communicants par méta-heuristiques hybrides et apprentissage par renforcement

FR  |  
EN
Auteur / Autrice : Salah Eddine Bouzid
Direction : Kosai RaoofMohamed Nazih OmriYoussef SerrestouChérif Dridi
Type : Thèse de doctorat
Discipline(s) : Acoustique. Sciences de l'informatique
Date : Soutenance le 13/11/2020
Etablissement(s) : Le Mans en cotutelle avec Université de Sousse (Tunisie)
Ecole(s) doctorale(s) : Sciences de l'ingénierie et des systèmes (Centrale Nantes)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'acoustique de l'Université du Mans - Laboratoire d'Acoustique de l'Université du Mans / LAUM

Résumé

FR  |  
EN

Le déploiement des réseaux d’objets communicants «ROCs», dont les densités augmentent sans cesse, conditionne à la fois l’optimalité de leur qualité de service, leur consommation énergétique et par conséquent leur durée de vie. Il s’avère que le problème de déterminer le placement optimal, relativement aux différents critères de qualité, des nœuds de ces réseaux est un problème Np-Complet. Face à cette Np-complétude, et en particulier pour des environnements intérieurs, les approches existantes focalisent sur l’optimisation d’un seul objectif en négligeant les autres critères, ou optent pour une solution manuelle fastidieuse et coûteuse. Des nouvelles approches pour résoudre ce problème sont donc nécessaires. Cette thèse propose une nouvelle approche qui permet de générer automatiquement, dès la phase de conception des réseaux d’objets communicants, le déploiement qui garantit à la fois l’optimalité en termes de performances et de robustesse face aux éventuelles défaillances et instabilités topologiques. Cette approche proposée est basée d’une part sur la modélisation du problème de déploiement sous forme d’un problème d’optimisation combinatoire multi-objectifs sous contraintes, et sa résolution par un algorithme génétique hybride combinant l’optimisation multi-objectifs avec l’optimisation à somme pondérée, et d’autre part sur l’intégration de l’apprentissage par renforcement pour garantir l’optimisation de la consommation énergétique et la prolongation de la durée de vie. Elle est concrétisée par le développement de deux outils. Un premier appelé MOONGA (pour Multi-Objective Optimization of Wireless Network Approach Based on Genetic Algorithm) qui permet de générer automatiquement le placement des nœuds, qui optimise la connectivité, la m-connectivité, la couverture, la k-couverture, la redondance de couverture et le coût. Cette optimisation prend en considération les contraintes liées à l'architecture de l’espace de déploiement, à la topologie du réseau, aux spécificités de l'application pour laquelle le réseau est conçu et aux préférences du concepteur. Après optimisation de déploiement l’outil R2LTO (Pour Reinforcement Learning for Life-Time Optimization), permet d’intégrer un protocole de routage, basé sur l'apprentissage par renforcement, pour garantir l’optimisation de la consommation énergétique et de la durée de vie du ROC après son déploiement tout en conservant la QoS requise.