Thèse soutenue

Sonder les cellules vivantes par Réflexion Totale Atténuée térahertz : dynamique de perméabilisation de la membrane cellulaire

FR  |  
EN
Auteur / Autrice : Xiujun Zheng
Direction : Guilhem Gallot
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 26/11/2020
Etablissement(s) : Institut polytechnique de Paris
Ecole(s) doctorale(s) : École doctorale de l'Institut polytechnique de Paris
Partenaire(s) de recherche : établissement opérateur d'inscription : École polytechnique (Palaiseau, Essonne ; 1795-....)
Laboratoire : Laboratoire d'Optique et Biosciences (Palaiseau, Essonne)
Jury : Président / Présidente : Juliette Mangeney
Examinateurs / Examinatrices : Guilhem Gallot, Bruno Le Pioufle, Mary Poupot, Anne Françoise Mingotaud, Angelo Pierangelo
Rapporteurs / Rapporteuses : Bruno Le Pioufle

Résumé

FR  |  
EN

Le rayonnement térahertz se situe dans la gamme électromagnétique entre l'infrarouge lointain et les micro-ondes, correspondant à des fréquences comprises entre 0.1 et 10 THz. Cette zone spectrale est à l'heure actuelle très largement sous-exploitée, mais son application à l’étude d’objets biologiques a déjà montré un fort potentiel, dans la détection de cancers de la peau, le suivi de flux ioniques ou les biosenseurs. Dans le domaine de la biologie, qui nous intéresse particulièrement ici, la gamme des térahertz permet de quantifier et de discriminer des solutés d'intérêt biologique grâce à l'interaction avec les modes basse fréquence de l'eau liquide, et donc d'étudier les biomolécules, les microorganismes et les cellules dans leur environnement physiologique. La première partie de ce travail de thèse a consisté à étudier la dynamique de perméabilisation membranaire de cellules vivantes par réflexion totale atténuée (ATR) avec notre dispositif basé sur un laser femtoseconde et la génération d’impulsions térahertz ultracourtes. Des monocouches de cellules épithéliales MDCK ont été soumises à des concentrations variables de saponine, un détergent creusant des trous dans la membrane cellulaire. Les dynamiques obtenus ont ensuite été comparées à un modèle théorique décrivant le comportement physique de la couche cellulaire, et prenant en compte la diffusion des molécules de détergent ainsi que les caractéristiques physiques de la membrane. Le bon accord entre expérience et théorie nous indique que la perméabilisation membranaire est limitée principalement par la diffusion des molécules de détergent et leur fixation dur la membrane.Dans un second temps, nous avons développé un système totalement nouveau, basé sur une source QCL continue térahertz à 2,5 THz. Ce nouvel instrument est basé sur une conception très simplifiée, avec un seul prisme ATR et un seul détecteur, et sur une double modulation du faisceau térahertz à l'aide d'un hacheur mécanique. Ce hacheur synchronise la double modulation et définis les zones de mesure et de référence. La stabilité à long terme de cet appareil a été grandement améliorée grâce au contrôle précis de la température et de l'humidité à l'intérieur de l'appareil. Les performances sont excellentes tant à court terme qu'à long terme. Un rapport signal/bruit de 30 dB est obtenu sur 300ms, et il reste supérieur à 30 dB pendant plusieurs heures. En outre, une étude théorique et expérimentale a permis de calibrer l'instrument. Ainsi, les coefficients de réflexion ATR de plusieurs solutions d'intérêt biologique (ions, sucres et protéines) ont été obtenus sur une large gamme de concentrations. Une sensibilité au moins 20 fois supérieure à celle de la littérature existante a ainsi été obtenue. Grâce à ce nouveau système très performant, nous avons étudié la dynamique de la perméabilisation des membranes suite à l'action de la thérapie photodynamique (PDT). Les premiers résultats ont montré que l'encapsulation des photosensibilisateurs par des vecteurs micellaires améliore significativement l'efficacité de la PDT.