Thèse soutenue

Développement d’un propulseur stable et efficace à résonance cyclotron électronique et muni d’une tuyère magnétique

FR  |  
EN
Auteur / Autrice : Simon Peterschmitt
Direction : Jean-Marcel Rax
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 01/10/2020
Etablissement(s) : Institut polytechnique de Paris
Ecole(s) doctorale(s) : École doctorale de l'Institut polytechnique de Paris
Partenaire(s) de recherche : établissement opérateur d'inscription : École polytechnique (Palaiseau, Essonne ; 1795-....)
Laboratoire : Laboratoire d'Optique Appliquée (Palaiseau)
Jury : Président / Présidente : Sophie Kazamias
Examinateurs / Examinatrices : Jean-Marcel Rax, Jean-Pierre Boeuf, Daniele Pavarin, Benjamin Jorns, Yevgeny Raitses, Sedina Tsikata, Amnon Fruchtman
Rapporteur / Rapporteuse : Jean-Pierre Boeuf, Daniele Pavarin

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les propulseurs plasmas sont le sujet d’un intérêt grandissant pour équiper de petits satellites. Des miniaturisations de technologies matures ont été proposées ainsi que des concepts innovants, tels le propulseur à résonance cyclotron électronique muni d’une tuyère magnétique (ECRT). Ce propulseur pourrait réaliser une rupture technologique car il est sans grilles, sans neutraliseur et n’a besoin que d’un seul générateur. Le présent travail consiste à développer un ECRT accompagné du dispositif expérimental nécessaire, capable de démontrer avec précision une grande efficacité durant un fonctionnement prolongé en régime permanent. Les précédentes études sur l’ECRT étaient limitées par un manque de précision sur des mesures clés, en raison du dispositif et des technologies nécessaires à l’étude de ce propulseur. La procédure et le dispositif expérimentaux sont donc largement améliorés pour augmenter la précision des mesures. Toutefois, des spécificités dues à la tuyère magnétique compliquent l’interprétation des mesures de densité de courant d’ion. Notre analyse s’appuie donc principalement sur des mesures de poussées obtenues avec une balance. Par ailleurs, nous montrons que les performances du propulseur augmentent significativement quand on diminue la pression dans le caisson de test jusqu’à 10-7 mbar Xénon. En outre, d’éventuels effets de caisson sont explorés en testant le propulseur à l’ONERA (Palaiseau, France) et à JLU (Giessen, Allemagne). En prenant en considération ces difficultés expérimentales, nous étudions l’efficacité du propulseur en fonction de la géométrie de l’injection de gaz neutre, de la topologie du champ magnétique, et des conditions aux limites de la tuyère magnétique. De plus, nous abordons la question de l’érosion du propulseur, de deux manières : premièrement par une modification des matériaux et deuxièmement par une modification de la structure de couplage (coaxiale, ou guide d’onde circulaire). Le couplage de type guide d’onde produit des ions à des énergies trop faibles pour les exigences de la propulsion spatiale ; en revanche, une structure de couplage coaxiale usinée en graphite semble diminuer substantiellement l’érosion sans compromettre l’efficacité. Ces résultats permettent de concevoir et de tester un propulseur ~ 30 W et un propulseur ~ 200 W dont les performances sont répétables dans le temps. L’efficacité et la durée de vie sont considérablement augmentées : une première campagne de test indique une efficacité allant jusqu’à ~ 50% et une durée de vie estimée de un à quelques milliers d’heures. Pour éclairer les résultats expérimentaux, nous proposons une nouvelle démarche de modélisation, fondée sur l’étude des trajectoires des électrons et sur une approche du chauffage électronique au moyen d’une équation de Fokker-Planck. Cette démarche débouche sur le calcul de la fonction de distribution en énergie des électrons dans le propulseur ; celle-ci détermine le courant d’ions extrait et l’énergie des ions.