Thèse soutenue

Microscopie par génération de troisième harmonique résolue en polarisation pour l'imagerie de la myéline et des biocristaux
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Joséphine Morizet
Direction : Emmanuel BeaurepaireChiara Stringari
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 24/02/2020
Etablissement(s) : Institut polytechnique de Paris
Ecole(s) doctorale(s) : École doctorale de l'Institut polytechnique de Paris
Partenaire(s) de recherche : établissement opérateur d'inscription : École polytechnique (Palaiseau, Essonne ; 1795-....)
Laboratoire : Laboratoire d'Optique et Biosciences (Palaiseau, Essonne)
Jury : Président / Présidente : Agnès Maître
Examinateurs / Examinatrices : Emmanuel Beaurepaire, Chiara Stringari, Laurent Bourdieu, Alexandra Fragola, Bruno Stankoff
Rapporteurs / Rapporteuses : Laurent Bourdieu, Alexandra Fragola

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Cette thèse s’intéresse à l'imagerie multiphotonique par génération de troisième harmonique (THG) combinée à des mesures résolues en polarisation (PTHG) sur des systèmes biologiques pour accéder à des informations complémentaires sur la morphologie et la microstructure de structures anisotropes. Une première application vise à extraire des informations de la gaine de myéline qui est la gaine lipidique entourant les axones du système nerveux central (CNS) des vertébrés, et dont la destruction dans des pathologies comme la sclérose en plaques est a l’origine de perturbations dans la propagation des influx nerveux. Une seconde application concerne les biocristaux, dont nous traiterons ici l’exemple de l’otolithe situe dans l’oreille interne du poisson-zèbre. Grâce à sa forte sensibilité aux discontinuités des propriétés optiques et à l’anisotropie des matériaux, la microscopie THG apparaît comme un outil de choix pour visualiser ces deux structures biologiques non-marquées avec une résolution submicrométrique.Dans ce manuscrit, nous présentons d’abord un travail fondamental de caractérisation analytique, numérique (modèle FDTD) et expérimentale de la réponse PTHG sur des structures modèles. Nous avons notamment mis en évidence la présence d'aberrations de la réponse PTHG au voisinage d’interfaces parallèles à l’axe de propagation du faisceau d’excitation induites par des désaccords d’indices. L'évaluation de la modulation artefactuelle induite par ces aberrations a permis d’interpréter la composante de modulation PTHG sur ces interfaces associée à l’ordre moléculaire dans des structures lipidiques modèles. Ensuite, nous décrivons la mise en place d’un dispositif d’acquisition PTHG rapide dédié à l’imagerie in vivo de structures biologiques. Nous présentons de nouvelles applications biologiques de la microscopie PTHG en utilisant une méthode d’analyse des signaux THG polarimétriques par transformée de Fourier. Enfin, nous présentons une étude systématique de caractérisation des contrastes THG/PTHG sur les fibres myélinisées du CNS de poissons-zèbres et de souris.