Thèse soutenue

Réseaux avec contraintes de latence mixtes

FR  |  
EN
Auteur / Autrice : Homa Nikbakht
Direction : Michèle WiggerSarah Kamel
Type : Thèse de doctorat
Discipline(s) : Réseaux, information et communications
Date : Soutenance le 15/12/2020
Etablissement(s) : Institut polytechnique de Paris
Ecole(s) doctorale(s) : École doctorale de l'Institut polytechnique de Paris
Partenaire(s) de recherche : Etablissement opérateur d'inscription : Télécom Paris (Palaiseau, Essonne ; 1878-....)
Laboratoire : Laboratoire Traitement et communication de l'information (Paris ; 2003-....)
Jury : Président / Présidente : Walid Hachem
Examinateurs / Examinatrices : Michèle Wigger, Sarah Kamel, Osvaldo Simeone, Jean-Marie Gorce, Shlomo Shamai, Malcolm Egan, Mari Kobayashi
Rapporteurs / Rapporteuses : Osvaldo Simeone, Jean-Marie Gorce

Résumé

FR  |  
EN

Les réseaux de communication sans fil modernes doivent s'adapter à différents types de trafic de données avec des contraintes de latence différentes. Les applications vidéo sensibles à la latence, en particulier, représentent une part croissante du trafic de données. En outre, les réseaux modernes doivent accepter des débits de données élevés, ce qu'ils peuvent faire par exemple avec des terminaux coopératifs ou avec l'assistance de relais tels que les drones. Cependant, la coopération introduit généralement des retards de communication supplémentaires et n'est donc pas applicable au trafic de données sensibles à la latence.Cette thèse porte sur les réseaux d'interférence avec des contraintes de latence mixtes et sur les architectures de systèmes où des émetteurs et/ou des récepteurs voisins peuvent coopérer. Dans de tels systèmes, les messages sensibles à la latence doivent être encodés et décodés sans délai et ainsi ne peuvent pas bénéficier des liens de coopération disponibles. Nous proposons différents schémas de codage pour permettre la transmission simultanée de messages sensibles et insensibles à la latence. Pour les schémas proposés, nous analysons les gains de multiplexage (MG) qu'ils réalisent sur le réseau de transfert intercellulaire souple de Wyner, le réseau symétrique de Wyner, le réseau hexagonal et le réseau hexagonal sectorisé. Pour le réseau de transfert souple de Wyner et le réseau symétrique de Wyner, nous identifions aussi des résultats étroits s'agissant de leurs limites en théorie de l'information et nous définissons ainsi l'ensemble exact de paires MG qui peuvent être obtenus simultanément pour les données sensibles et insensibles à la latence. Ces résultats montrent que lorsque les émetteurs et les récepteurs peuvent coopérer et que les taux de coopération sont suffisamment élevés, il est possible d'obtenir le plus grand MG possible pour les messages sensibles à la latence sans pénaliser la somme maximale des MG pour l'ensemble des messages sensibles et insensibles à la latence. Cependant, la somme des MG des systèmes que nous proposons pour le modèle hexagonal est diminuée en présence de données sensibles à la latence. Cette pénalité disparaît dans le cas du réseau hexagonal sectorisé quand chaque cellule est divisée en trois secteurs non interférents en équipant les stations de base d'antennes directionnelles.Nous proposons, de surcroît, des schémas de codage similaires en fonction de différents types d'activité aléatoire de la part des usagers du réseau. Nous considérons plus particulièrement deux configurations. Dans la première configuration, l'augmentation du taux de MG correspondant aux données sensibles à la latence diminue toujours la somme des MG. En revanche, dans la seconde configuration, pour certains paramètres, la plus grande somme des MG est obtenue au maximum du taux de MG correspondant aux données sensibles à la latence et donc l'augmentation des MG sensibles à la latence améliore la somme des MG.Nous étudions aussi un réseau d'accès radio "cloud" avec des contraintes de latence mixtes, c'est-à-dire où chaque utilisateur mobile peut simultanément envoyer un flux sensible à la latence et un flux qui la tolère et où seules les données sensibles sont décodées conjointement au sein du cloud. Pour ce réseau, nous dérivons les limites intérieures et extérieures de la région de capacité sous des contraintes de latence mixtes, et nous caractérisons précisément la région MG optimale. Lorsque le rapport signal/bruit (SNR) est élevé, nos résultats démontrent que, pour des capacités frontales modérées, le MG maximal pour les messages sensibles à la latence reste inchangé sur une large gamme de petits et moyens MG de messages sensibles à la latence. Pour un SNR modéré, les résultats montrent que lorsque le débit de messages sensibles à la latence est faible ou modéré, nous obtenons une somme de débit de données constante.