Thèse soutenue

Flexibilisation et intégration des unités d’électrolyse à oxydes solides dans des installations de conversion d’électricité en gaz naturel de synthèse

FR  |  
EN
Auteur / Autrice : Régis Anghilante
Direction : Pascal FloquetAnnabelle Brisse
Type : Thèse de doctorat
Discipline(s) : Génie des Procédés et de l'Environnement
Date : Soutenance le 02/10/2020
Etablissement(s) : Toulouse, INPT
Ecole(s) doctorale(s) : École doctorale Mécanique, énergétique, génie civil et procédés (Toulouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire de génie chimique (Toulouse ; 1992-....)
Jury : Président / Présidente : Catherine Azzaro-Pantel
Examinateurs / Examinatrices : Pascal Floquet, Annabelle Brisse, Catherine Azzaro-Pantel, François Maréchal, Florence Lefebvre-Joud, David Frank Graf
Rapporteurs / Rapporteuses : Chakib Bouallou, Jan Van Herle

Résumé

FR  |  
EN

La technologie d’électrolyse à oxydes solides (SOE) pourrait permettre d’améliorer l’efficacité des installations de conversion d’électricité en gaz naturel de synthèse (SNG) et de réduire leur coût, grâce à une integration thermique performante, à l’industrialisation de la technologie et une flexibilisation des unités pour la pénétration de l’électricité renouvelable. Une analyse énergétique détaillée de trois concepts d’installations power-to-SNG innovants est d’abord réalisée avec une intégration thermique détailllée. Les installations intégrant des unités SOE et produisant du GNC ou du GNL présentent des rendements d’au moins 78,5% sur base PCS, bien plus élevés que pour les installations intégrant des unités d’électrolyse PEM qui produisent du GNC avec un rendement de 64,4%. La réponse thermique des unités SOE soumises à des variations de charge électrique est ensuite étudiée sur la base d’un modèle dynamique 1D à l’échelle d’une cellule (SOEC). Les cellules « électrolyte support » sont thermiquement plus stables que les « électrode support » et donc plus adaptées à des charges électriques variables. Le modèle est ensuite étendu à une unité entière de production et de stockage d’H2 et couplé à différents profils électriques. L’unité affiche une consommation énergétique de 3,4-3,8 kWh·Nm-3 H2 et un rendement élevé de l’électricité vers l’H2 (93-103%) par récupération de la vapeur de méthanation. Un dimensionnement du réservoir d’H2 et de l’unité de méthanation est réalisé avec un profil électrique éolien. Les charges électriques variables réduisent l’efficacité des installations power-to-SNG, en augmentent les coûts et en complexifient l’opération. Les installations multifuels semblent être l’option la plus prometteuse pour gérer l’intermittence de la production d’électricité. Etendre la gamme d’opération des SOECs aux modes exotherme et endotherme améliorerait les rendements de l’électricité vers l’H2 en comparaison au mode marche/arrêt. Pour une charge électrique constante, les SOECs doivent préférablement être opérées au thermoneutre ou en mode exotherme. Enfin, les coûts de production du SNG sont évalués, en commençant par une estimation ascendante des coûts d’investissement d’unités SOE. Les coûts de production du SNG des concepts étudiés vont de 82 à 89 €·MWh-1 CH4 (PCS) avec des unités SOE, valeurs plus faibles que pour des unités PEM, mais qui restent deux fois supérieures au prix moyen du gaz naturel en France.