Thèse soutenue

Protection rapide en régime extrême de court-circuit des transistors MOSFET SiC par fonctions intégrées en technologie ASIC CMOS

FR  |  
EN
Auteur / Autrice : Yazan Barazi
Direction : Nicolas RougerFrédéric Richardeau
Type : Thèse de doctorat
Discipline(s) : Génie Électrique
Date : Soutenance le 01/10/2020
Etablissement(s) : Toulouse, INPT
Ecole(s) doctorale(s) : École doctorale Génie électrique, électronique, télécommunications et santé : du système au nanosystème (Toulouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire Plasma et Conversion d'Energie (Toulouse ; 2007-....)
Jury : Président / Présidente : Jean-Christophe Crebier
Examinateurs / Examinatrices : Nicolas Rouger, Frédéric Richardeau, Stéphane Azzopardi, Mounira Bouarroudj-Berkani, Marc Cousineau, Hassan Maher
Rapporteurs / Rapporteuses : Nicolas Ginot

Résumé

FR  |  
EN

Les transistors de puissance grands gaps tels que les MOSFETs SiC et HEMT GaN repoussent les compromis classiques en électronique de puissance. Brièvement, des gains significatifs ont été démontrés par les transistors SiC et GaN: meilleurs rendements, couplés à une augmentation des densités de puissance offertes par la montée en fréquence de découpage. Les MOSFET SiC à haute tension présentent des spécificités telles qu'une faible tenue en court-circuit (SC) par rapport aux IGBT Si et un oxyde de grille aminci, et une tension de commande rapprochée grillesource élevée. La polarisation négative sur la grille à l'état bloqué crée un stress supplémentaire qui réduit la fiabilité du MOSFET SiC. La forte polarisation positive de la grille provoque un courant de saturation de drain important en cas de SC. Ainsi, cette technologie fait émerger des besoins spécifiques de surveillance et de protection ultra-rapides. Pour cela, le travail de cette thèse se focalise sur deux études pour surmonter ces contraintes toute en gardant un bon compromis de performances entre « niveau d’intégration technologique ‘CMS/ASIC-CMOS’–rapidité–robustesse ». La première, regroupe un ensemble de solutions nouvelles permettant une détection du courtcircuit sur le cycle de commutation, sur la base d'une architecture conventionnelle de commande rapprochée dite à 2 niveaux de tension. La deuxième étude est plus exploratoire et basée sur une nouvelle architecture de gate–driver, dite multi-niveaux, à faible niveau de stress pour le MOSFET SiC tout en maintenant les performances dynamiques. Les travaux portent tout d’abord sur l’environnement du SiC MOSFET, (caractérisation et propriétés de comportement en SC par simulations orientées "circuit" de type PLECS™ et LTSpice™), puis présentent une étude bibliographique sur les commandes rapprochées dites Gate Driver, une étude approfondie a été réalisée sur les court-circuits type I & II (Hard switch fault) (Fault under Load) ; regroupés dans un premier chapitre du manuscrit. Un banc de test réalisé antérieurement au sein du laboratoire, a permis de compléter et de valider l’étude d'analyse-simulation et de préparer des stimuli test pour l'étape de conception des nouvelles solutions. Inspirée par la méthode de Gate charge apparue pour les IGBTs en silicium et évoquée pour les MOSFETs SiC, cette première approche fait l'objet d'un travail de conception, de dimensionnement et de prototypage. Cette méthode de référence permet une détection de type HSF en moins de 200ns sous 0-600V avec des composants 1,2kV allant de 80 mOhm à 120mOhm. S'agissant des nouvelles méthodes de détection rapides et intégrées, les travaux de cette thèse se focalisent particulièrement sur la conception d’un circuit ASIC CMOS. Pour cela, la conception d’un gate driver adapté est essentiel. Un ASIC est conçu en technologie X-Fab XT-0,18μm SOICMOS sous Cadence™, et puis mis en boitier et assemblé sur PCB conçu pour les besoins de tests et adaptable au banc principal. La conception du gate driver a considéré de nombreuses fonctions (détection du SC, SSD Soft shut down, buffer segmenté, AMC Active Miller Clamp", …). Du point de vue de la détection du SC, les fonctions nouvelles de surveillance intégrées concernent la méthode de dérivation temporelle de VGS qui est basée sur une détection par un circuit dérivateur analogique RC sur la séquence de plateau avec deux variantes. Une deuxième méthode nouvelle partiellement intégrée dans l'ASIC a été conçu, non développé dans ce mémoire dans le but d’une valorisation. En marge de cette étude principale, une étude exploratoire a porté sur une nouvelle architecture modulaire de commande rapprochée à plusieurs niveaux de tension de polarisation tirant profit de l'isolation SOI et des transistors CMOS à basse tension pour piloter le MOSFETs SiC et améliorer leur fiabilité grâce à une sélection active et dynamique à plusieurs niveaux sur les séquences de commutation et les états marche/arrêt.