Towards system-level prognostics : modeling, uncertainty propagation and system remaining useful life prediction

par Ferhat Tamssaouet

Thèse de doctorat en Génie Industriel

Sous la direction de Kamal Medjaher et de Thi Phuong Khanh Nguyen.

Soutenue le 09-09-2020

à Toulouse, INPT , dans le cadre de École doctorale Systèmes (Toulouse) , en partenariat avec Laboratoire Génie de Production (Tarbes ; 1989-....) (laboratoire) .

Le président du jury était Louise Travé-Massuyès.

Le jury était composé de Kamal Medjaher, Thi Phuong Khanh Nguyen, Enrico Zio, Anne Barros, Mustapha Ouladsine.

Les rapporteurs étaient Enrico Zio, Anne Barros.

  • Titre traduit

    Vers un pronostic orienté système : modélisation, propagation de l’incertitude et prédiction de la durée de vie résiduelle au niveau système


  • Résumé

    Le pronostic est le processus de prédiction de la durée de vie résiduelle utile (RUL) des composants, sous-systèmes ou systèmes. Cependant, jusqu'à présent, le pronostic a souvent été abordé au niveau composant sans tenir compte des interactions entre les composants et l'impact de l'environnement, ce qui peut conduire à une mauvaise prédiction du temps de défaillance dans des systèmes complexes. Dans ce travail, une approche de pronostic au niveau du système est proposée. Cette approche est basée sur un nouveau cadre de modélisation : le modèle d'inopérabilité entrée-sortie (IIM), qui permet de prendre en compte les interactions entre les composants et les effets du profil de mission et peut être appliqué pour des systèmes hétérogènes. Ensuite, une nouvelle méthodologie en ligne pour l'estimation des paramètres (basée sur l'algorithme de la descente du gradient) et la prédiction du RUL au niveau système (SRUL) en utilisant les filtres particulaires (PF), a été proposée. En détail, l'état de santé des composants du système est estimé et prédit d'une manière probabiliste en utilisant les PF. En cas de divergence consécutive entre les estimations a priori et a posteriori de l'état de santé du système, la méthode d'estimation proposée est utilisée pour corriger et adapter les paramètres de l'IIM. Finalement, la méthodologie développée, a été appliquée sur un système industriel réaliste : le Tennessee Eastman Process, et a permis une prédiction du SRUL dans un temps de calcul raisonnable.


  • Résumé

    Prognostics is the process of predicting the remaining useful life (RUL) of components, subsystems, or systems. However, until now, the prognostics has often been approached from a component view without considering interactions between components and effects of the environment, leading to a misprediction of the complex systems failure time. In this work, a prognostics approach to system-level is proposed. This approach is based on a new modeling framework: the inoperability input-output model (IIM), which allows tackling the issue related to the interactions between components and the mission profile effects and can be applied for heterogeneous systems. Then, a new methodology for online joint system RUL (SRUL) prediction and model parameter estimation is developed based on particle filtering (PF) and gradient descent (GD). In detail, the state of health of system components is estimated and predicted in a probabilistic manner using PF. In the case of consecutive discrepancy between the prior and posterior estimates of the system health state, the proposed estimation method is used to correct and to adapt the IIM parameters. Finally, the developed methodology is verified on a realistic industrial system: The Tennessee Eastman Process. The obtained results highlighted its effectiveness in predicting the SRUL in reasonable computing time.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Institut national polytechnique. Service commun de la documentation.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.