Ingénierie aux échelles nanométriques de matériaux chalcogénures à changement de phase pour les mémoires à changement de phase du futur - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2020

Nano-engineering of chalcogenide phase-change materials for ultimate phase-change memories

Ingénierie aux échelles nanométriques de matériaux chalcogénures à changement de phase pour les mémoires à changement de phase du futur

Résumé

In terms of performance, cost and functional speed, phase-change memories are playing a key role in data storage technologies. Leveraging the properties of some chalcogenide materials, phase-change materials (PCMs) present unique features, mainly: fast and reversible switching between amorphous and crystalline states with significant optical and electrical contrasts between the both states. However, for an improved performance, the elevated power consumption due to the high programming current must be reduced, and the crystallization temperature also has to be increased. In this context, we have developed new multilayer systems of [GeTe/C]n and [Ge2Sb2Te5/C]n. The aim is to obtain, in a controlled and reproducible manner, a thin layer of nanostructured PCM with dimensions less than 10 nm. The multilayers were produced by the magnetron sputtering deposition technique in a 200 mm industrial equipment with a multi-cathode chamber. The multilayers are amorphous after deposition. Ion beam techniques permitted to check periodicity and composition of the multilayers. The sheet resistance and reflectivity as a function of temperature were measured in situ. The crystallization temperature of PCM in the multilayer structure increases and is dependent on the thickness of the PCM layer and that of the carbon films. The kinetics and magnitude of the amorphous-crystal transition of PCM in the multilayers are also significantly affected. The impact of the multilayer structure on the crystallization of GeTe versus Ge2Sb2Te5 is then compared and discussed with respect to their crystallization mechanism. We show that the initially amorphous multilayer structure is retained even after PCM crystallization during an annealing that is identical to the one used for the manufacture of memory devices (300 °C for 15 min). Thus, it is possible to obtain nanocrystalline grains of PCM in amorphous C on the order of 4 nm vertically and 20-30 nm in the layer plane. These results are compared with the microstructure of C-doped GeTe and Ge2Sb2Te5 films. Finally, by using X-ray diffraction measurements in the laboratory and by in situ experiments at the SOLEIL synchrotron, we were able to follow the evolution of the structure of these multilayers during annealing. For example, we reported that a local percolation effect of the GeTe grains between the layers of C occurs above a certain temperature.
En terme de performance, de coût et de vitesse de fonctionnement, les mémoires à changement de phase occupent une place importante dans les technologies de stockage de données. Elles utilisent les propriétés de certains matériaux à changement de phase (PCM), principalement des alliages de matériaux chalcogénures, qui présentent des caractéristiques uniques : commutation rapide et réversible entre un état amorphe et un état cristallin avec un contraste optique et électrique important entre les deux états. Cependant, pour de meilleures performances, la consommation d’énergie due aux courants de programmation élevés doit être réduite et la température de cristallisation augmentée. Dans ce contexte, nous avons élaboré de nouveaux systèmes de multicouches de [GeTe/C]n et [Ge2Sb2Te5/C]n. Le but est d’obtenir de manière contrôlée et reproductible une couche mince de PCM nanostructuré avec une ou des dimensions caractéristiques inférieures à 10 nm. Les multicouches ont été élaborées par la technique de dépôt par pulvérisation cathodique magnétron dans un bâti de dépôt industriel 200 mm équipé d’une chambre multi-cathodes. Les multicouches sont amorphes après dépôt. Des analyses par faisceaux d’ions ont permis de contrôler la périodicité et la composition des multicouches ainsi élaborées. Des mesures de résistivité et de réflectivité en température montrent que la température de cristallisation du PCM dans la structure multicouche augmente et dépend de l’épaisseur du PCM et des films de carbone. Aussi, la cinétique et l’amplitude de la transition amorphe-cristal du PCM dans la multicouche est aussi largement affectée. L’impact de la structure multicouche sur la cristallisation du GeTe et du Ge2Sb2Te5 est alors comparée et discutée au regard de la nature de leur mécanisme de cristallisation. Nous montrons que la structure multicouche initialement amorphe est conservée même après cristallisation du PCM lors d’un recuit identique à celui utilisé pour la fabrication des dispositifs mémoires (300 °C pendant 15 min). Ainsi, il est possible d’obtenir des grains nanocristallins de PCM dans du C amorphe de l’ordre de 4 nm verticalement et de 20-30 nm dans le plan des couches. Ces résultats sont comparés à la microstructure de films de GeTe et Ge2Sb2Te5 dopés avec du C. Enfin, l’analyse de l’évolution de la structure de ces multicouches par des mesures de diffraction de rayons X en laboratoire et par des mesures in situ au cours d’un recuit au synchrotron SOLEIL a été réalisée. Ceci a permis par exemple de mettre en évidence au-delà d’une certaine température la percolation locale des grains de GeTe entre les couches de C.
Fichier principal
Vignette du fichier
CHAHINE_2020_diffusion.pdf (10.22 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03192966 , version 1 (08-04-2021)

Identifiants

  • HAL Id : tel-03192966 , version 1

Citer

Rebecca Chahine. Ingénierie aux échelles nanométriques de matériaux chalcogénures à changement de phase pour les mémoires à changement de phase du futur. Science des matériaux [cond-mat.mtrl-sci]. Université Grenoble Alpes [2020-..], 2020. Français. ⟨NNT : 2020GRALY058⟩. ⟨tel-03192966⟩
155 Consultations
89 Téléchargements

Partager

Gmail Facebook X LinkedIn More