Thèse soutenue

Etude des propriétés des nuages de points 3D pour reconnaissance de forme

FR  |  
EN
Auteur / Autrice : Hoang Justin Lev
Direction : Mounir MokhtariJoo-Hwee Lim
Type : Thèse de doctorat
Discipline(s) : Mathématiques et informatique
Date : Soutenance le 11/05/2020
Etablissement(s) : Université Grenoble Alpes
Ecole(s) doctorale(s) : École doctorale Mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 1995-....)
Partenaire(s) de recherche : Laboratoire : Image & pervasive access lab (Singapour ; 2006-....)
Jury : Président / Présidente : Jean-Marie Bonnin
Examinateurs / Examinatrices : Nizar Ouarti
Rapporteurs / Rapporteuses : Vincent Charvillat, Nicolas Loménie

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Grâce à l’amélioration et la multiplication des capteurs 3D, la diminution des prix et l’augmentation des puissances de calculs, l’utilisation de donnée3D s’est intensifiée ces dernières années. Les nuages de points 3D (3D pointcloud) sont une des représentations possibles pour de telles données. Elleà l’avantage d’être simple et précise, ainsi que le résultat immédiat de la capture. En tant que structure non-régulière sous forme de liste de points,l’analyse des nuages de points est complexe d’où leur récente utilisation. Cette thèse se concentre sur l’utilisation de nuages de points 3D pourune analyse tridimensionnelle de leur forme. La géométrie des nuages est plus particulièrement étudiée via les courbures des objets. Des descripteursreprésentant la distribution des courbures principales sont proposés: Semantic Point Cloud (SPC) et Multi-Scale Principal Curvature Point Cloud (MPC2).Global Local Point Cloud (GLPC) est un autre descripteur basé sur les courbures mais en combinaison d’autres propriétés. Ces trois descripteurs sontrobustes aux erreurs communes lors d’une capture 3D comme par exemple le bruit ou bien les occlusions. Leurs performances sont supérieures à ceuxde l’état de l’art en ce qui concerne la reconnaissance d’instance avec plus de 90% de précision. La thèse étudie également les récents algorithmes de deep learning qui concernent les nuages de points 3D qui sont apparus au cours de ces trois ans de thèse. Une première approche utilise des descripteurs basé sur les courbures en tant que données d’entrée pour un réseau de perceptron multicouche (MLP). Les résultats ne sont cependant pas au niveau de l’état de l’art mais cette étude montre que ModelNet, la base de données de référence pour laclassification d’objet 3D, n’est pas optimale. En effet, la base de donnéesn’est pas une bonne représentation de la réalité en ne reflétant pas la richesse de courbures des objets réels. Enfin, l’architecture d’un réseau neuronal artificiel est présenté. Inspiré par l’état de l’art en deep learning, Multi-scale PointNet détermine les propriétés d’un objet à différente échelle et les combine afin de le décrire. Encore en développement, le modèle requiert encore des ajustements pour obtenir des résultats concluants. Pour résumer, en s’attaquant au problème complexe de l’utilisation des nuages de points 3D mais aussi à l’évolution rapide du domaine, la thèse contribue à l’état de l’art sur trois aspects majeurs: (i) L’élaboration de nouveaux algorithmes se basant sur les courbures géométrique des objets pour la reconnaissance d’instance. (ii) L’étude qui montre que la construction d’une nouvelle base de données plus réaliste est nécessaire pour correctement poursuivre les études dans le domaine. (iii) La proposition d’une nouvelle architecture de réseau de neurones artificiels pour l’analyse de nuage de points3D.