Une alternative aux modèles neuronaux séquence-à-séquence pour la traduction automatique

par Maha Elbayad

Thèse de doctorat en Mathématiques et Informatique

Sous la direction de Laurent Besacier et de Jakob Verbeek.

Le président du jury était François Yvon.

Le jury était composé de Marine Carpuat.

Les rapporteurs étaient Holger Schwenk, Hermann Ney.


  • Résumé

    L'apprentissage profond a permis des avancées significatives dans le domaine de la traduction automatique.La traduction automatique neuronale (NMT) s'appuie sur l'entrainement de réseaux de neurones avec un grand nombre de paramètres sur une grand quantité de données parallèles pour apprendre à traduire d'une langue à une autre.Un facteur primordial dans le succès des systèmes NMT est la capacité de concevoir des architectures puissantes et efficaces. Les systèmes de pointe sont des modèles encodeur-décodeurs qui, d'abord, encodent une séquence source sous forme de vecteurs de caractéristiques, puis décodent de façon conditionne la séquence cible.Dans cette thèse, nous remettons en question le paradigme encodeur-décodeur et préconisons de conjointement encoder la source et la cible afin que les deux séquences interagissent à des niveaux d'abstraction croissants. À cette fin, nous introduisons Pervasive Attention, un modèle basé sur des convolutions bidimensionnelles qui encodent conjointement les séquences source et cible avec des interactions qui sont omniprésentes dans le réseau neuronal.Pour améliorer l'efficacité des systèmes NMT, nous étudions la traduction automatique simultanée où la source est lue de manière incrémentielle et le décodeur est alimenté en contextes partiels afin que le modèle puisse alterner entre lecture et écriture. Nous améliorons les agents déterministes qui guident l'alternance lecture / écriture à travers un chemin de décodage rigide et introduisons de nouveaux agents dynamiques pour estimer un chemin de décodage adapté au cas-par-cas.Nous abordons également l'efficacité computationnelle des modèles NMT et affirmons qu'ajouter plus de couches à un réseau de neurones n'est pas requis pour tous les cas.Nous concevons des décodeurs Transformer qui peuvent émettre des prédictions à tout moment dotés de mécanismes d'arrêt adaptatifs pour allouer des ressources en fonction de la complexité de l'instance.

  • Titre traduit

    Rethinking the Design of Sequence-to-Sequence Models for Efficient Machine Translation


  • Résumé

    In recent years, deep learning has enabled impressive achievements in Machine Translation.Neural Machine Translation (NMT) relies on training deep neural networks with large number of parameters on vast amounts of parallel data to learn how to translate from one language to another.One crucial factor to the success of NMT is the design of new powerful and efficient architectures. State-of-the-art systems are encoder-decoder models that first encode a source sequence into a set of feature vectors and then decode the target sequence conditioning on the source features.In this thesis we question the encoder-decoder paradigm and advocate for an intertwined encoding of the source and target so that the two sequences interact at increasing levels of abstraction. For this purpose, we introduce Pervasive Attention, a model based on two-dimensional convolutions that jointly encode the source and target sequences with interactions that are pervasive throughout the network.To improve the efficiency of NMT systems, we explore online machine translation where the source is read incrementally and the decoder is fed partial contexts so that the model can alternate between reading and writing. We investigate deterministic agents that guide the read/write alternation through a rigid decoding path, and introduce new dynamic agents to estimate a decoding path for each sample.We also address the resource-efficiency of encoder-decoder models and posit that going deeper in a neural network is not required for all instances.We design depth-adaptive Transformer decoders that allow for anytime prediction and sample-adaptive halting mechanisms to favor low cost predictions for low complexity instances and save deeper predictions for complex scenarios.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Grenoble Alpes. Bibliothèque et Appui à la Science Ouverte. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.