Thèse soutenue

Développement d'emballages antimicrobiens et intelligents

FR  |  
EN
Auteur / Autrice : Hugo Spieser
Direction : Julien BrasDavid GethinAurore Denneulin
Type : Thèse de doctorat
Discipline(s) : Matériaux, Mécanique, Génie civil, Electrochimie
Date : Soutenance le 20/11/2020
Etablissement(s) : Université Grenoble Alpes en cotutelle avec University of Swansea (Swansea (GB))
Ecole(s) doctorale(s) : École doctorale Ingénierie - matériaux mécanique énergétique environnement procédés production (Grenoble ; 2008-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de génie des procédés pour la bioraffinerie, les matériaux bio-sourcés et l’impression fonctionnelle (Grenoble ; 1995-....)
Jury : Président / Présidente : Kar Seng Teng
Examinateurs / Examinatrices : Davide Beneventi
Rapporteurs / Rapporteuses : Éliane Espuche, Long Lin

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

En lien avec les dernières innovations dans le domaine des emballages, ce projet collaboratif a pour but d’implémenter de nouveaux micro- et nanomatériaux innovants pour le développement d’emballages actifs et intelligents dans le domaine alimentaire et médical. Il se focalise en particulier sur deux stratégies : le développement d’emballages antibactériens d’un côté et de capteurs de gaz de l’autre. La première stratégie est donc dédiée à l’utilisation combinée de nanofils d’argent et de nanofibrilles de cellulose pour la production de surfaces antibactériennes. La formulation d’encres ainsi que les paramètres de dépôt ont été optimisés pour différent procédés tels que l’enduction ou l’impression sérigraphique. Une forte activité antibactérienne contre des souches bactériennes Gram-positive mais aussi Gram-négative a été prouvée pour toutes les surfaces préparées. Des propriétés intéressantes relatives au domaine des emballage actifs ont aussi été démontrées telles que la conservation d’une haute transparence et l’amélioration des propriétés barrières. Dans la seconde stratégie, des capteurs de gaz ont été préparés en utilisant un mélange actif composé de Cuivre benzène-1,3,5-tricarboxylate Metal Organic Framework et de carbone-graphène, déposé sur des électrodes flexibles produites par sérigraphie. Les capteurs sont faciles à produire et ont été optimisés pour présenter de bonnes performances à la fois pour détecter et quantifier l’ammoniac gazeux mais aussi servir de capteurs d’humidité, ce qui prouve leur versatilité et leur important potentiel industriel. Ce projet a donc conduit à différentes solutions innovantes qui peuvent relever les défis de l’industrie des emballages.