

 et discipline ou spécialité

 Jury :

le

Institut Supérieur de l’Aéronautique et de l’Espace

Erwan LECARPENTIER

lundi 6 juillet 2020

Apprentissage par renforcement en environnement non stationnaire

Reinforcement learning in non-stationary environments

EDSYS : Robotique et Informatique

Équipe d'accueil ISAE-ONERA CSDV

M. Régis SABBADIN Directeur de Recherche INRA Toulouse - Président
M. Olivier BUFFET Chargé de Recherche INRIA Nancy - Rapporteur

M. Tristan CAZENAVE Professeur Université Paris-Dauphine
M. Aurélien GARIVIER Professeur ENS Lyon

M. Guillaume INFANTES Ingénieur JoliBrain Toulouse - Directeur de thèse
Mme Émilie KAUFMANN Chargé de Recherche INRIA Lille

M. Emmanuel RACHELSON Professeur ISAE-SUPAERO - Co-directeur de thèse
M. Bruno ZANUTTINI Professeur Université de Caen - Rapporteur

M. Guillaume INFANTES (directeur de thèse)
M. Emmanuel RACHELSON (co-directeur de thèse)

Acknowledgments

No words could describe how thankful I am to all the people who surrounded me during the
realization of this PhD thesis.

First of all, I would like to thank Guillaume Infantes, Charles Lesire, and Emmanuel
Rachelson , my thesis advisors. I was very lucky to be supervised by such a wonderful trio.
All the ingredients were there for me to have a great time doing my thesis. There were the
technical aspects, we sometimes spent evenings writing equations on a board because we were
so passionate about the subject. There were the hindsight aspects, the discussions together
really made me grow and I now have a totally different perspective on the field and on related
things such as what it is to be a researcher. There were the friendly aspects, as we are human
first of all and I am glad I can say we successfully mixed work, fun and friendship during
those four years. Overall I am very grateful to my advisors and really want to thank them
for the great times we have had together.

I would like to thank Marc Toussaint, Vien Ngo, Peter Englert, Matthew Bernstein,
Andrea Baisero, and Hung Ngo from the Machine Learning & Robotics Lab of the University
of Stuttgart. I had the chance to discover the field of reinforcement learning with them during
my Master’s thesis and today I think that it is largely thanks to them that I developed the
taste for research and that I decided to do a doctorate. Again, thank you all for welcoming
me in Stuttgart for a year and I cant wait to see you again in conferences or others.

I would like to thank all the people of ISAE-SUPAERO and ONERA who contributed
to make every day an over-great day, full of fun and productivity: Alexandre, Anass, An-
drea, Andrés, Anh-toan, Anne, Antoine, Aymeric, Bastien, Carlos, Caroline, Clement, David,
Dennis, Dmitry, Doriane, Eyal, Emmanuel, Florestan, Florian, Franco, François, Francesco,
Frédéric, Guillaume, Heinrich, Hugo, Ilia, Ilyass, Jasdeep, Jean-Alexis, Juan jose, Lea, Luca,
Mélody, Mina, Narjes, Paolo, Paul, Pierre-Antoine, Sana, Sandrine, Selma, Sophia, Thibault,
Tristan, Valentin, Vatsal, and Zoe. I feel frustrated to write only your name in this list, as
each one of you brought me so much and I would like to write so much about you. Hence I
save those personal acknowledgments in my head and I promise to tell each one of you when
I will meet you again, which doubles the appeal of this prospect.

I would like to thank Dave Abel, Kavosh Asadi, Yuu Jinnai, and Michael Littman from
Brown University who welcomed me as a visiting PhD student during winter 2019. They
largely contributed to the realization of the work reported in Chapter 5 and it was a real
pleasure to share with them, from a human, cultural and scientific perspective.

I would like to thank Olivier Buffet, Tristan Cazenave, Aurélien Garivier, Émilie Kauf-
mann, Régis Sabbadin, and Bruno Zanuttini who accepted to be the reviewers of this PhD
thesis and largely contributed to many improvements of this dissertation. Also, sharing with
them in conferences and meetings has always been a great source of inspiration and of very
pleasant moments.

i

ii

I have been fortunate to find many many friends during my life and I believe friendship
to be responsible for a good part of who we are at any given time. Thus, generally, I want to
thank all my friends, for everything they have given me. My long time friends: Alex, Arthur,
Aymeric, Charlo, Chloé, David, Éléonore, Gaëtan, Guillaume, Jérémy, Laura, Louis, Martha,
and Pierre.My friends from preparatory classes: Antoine, Aziliz, Camille, Charles, Clé-
mence, Coline, Coline, Edern, Étienne, Fabian, Fabian, Florent, Frédérik, Gabriel, Gabrielle,
Guillhem, Jeanne, Julia, Kévin, Kévin, Lénaïc, Mathieu, Matthieu, Matthieu, Mohammed,
Nadège, Nafie, Nicolas, Nicolas, Nolwenn, Romane, Ronan, Tangi, and Titouan.My friends
from engineering school: Alicia, Amélie, David, Florestan, Jean-Charles, Jimi, Maxime,
Murielle, Noémie, Quentin, Samuel, Thibault, Valentin, and Vivien.My friends from Stuttgart:
Anas, Eliza, Grigor, Jan, Lysander, Moritz, Petrus, Sara, Tarek, Thu, and Yasmine.And my
friends from other horizons: Arthur, Clémence, Éléonore, Guillaume, Heinrich, Huggo, Jojo,
Mathou, Patrick, and Vincent.

I would like to thank my family, for their love, their support, and their endorsement. I
have always had the chance of feeling loved and encouraged among you, and I think it makes a
huge difference in the way I developed in all aspects of life. I was fortunate to have wonderful
parents and equally wonderful siblings. They filled my life with plenty of kindness, affection,
devotion and even pets. Talking about pets, I take this opportunity to thank, in chronological
order, the amazing creatures we have shared our home with: Wisty, Réglisse, Walter, Câline,
Frimousse, Sweety, Thalia, Titus, Safran and all its family, Malibu, Actimel, and Papuche. I
forget Roberto and its huge family of hen, chicken and chicks, but, as birth control is difficult
in a household of gallinaceous, I am unable to remember their dates of birth. I think taking
care of pets also participates in a good personal development and I want to thank them all
for accepting living with us. I also want to extend this acknowledgment to my grandmothers,
my cousins, my aunts, my uncles and everyone in my family as I have always felt a benevolent
presence, coming from all of you, that definitely made me more confident and optimistic in
life. Last but not least, I want to thank Tata Isabelle, for the love she brought when she
raised me. Being part of a big, united, family as mine has always been an asset to me and I
want to thank you all for that.

I reserve my last acknowledgments to Emma, my new family here in Toulouse. She
supported me during three years and brought me love, along with an exquisite point of view
on life in general. I would be a whole different person if our paths hadn’t crossed and I want
to thank you for that. As I am talking about family, I also must thank Poun’s, the little ball
of fur and character that follows us and that fills us with happiness.

Generally, I want to thank everyone that I met during the thesis. I am sure I must be
forgetting some people and I apologies in advance. The good news is that life goes on and I
cant wait to have more great experiences with all of you and plenty of others so that I could
re-write (at least in my heart) pages of acknowledgments.

Contents

List of Acronyms ix

1 Preliminaries 1

2 Introduction 5

2.1 Model and optimization criterion . 5

2.2 Planning . 17

2.3 Learning . 26

3 The planning vs. re-planning trade-off in stationary Markov Decision Pro-
cesses 33

3.1 State of the art . 34

3.2 Open-loop control . 38

3.3 Open-loop search trees . 41

3.4 Open-Loop Tree search Algorithm . 44

3.5 Theoretical Analysis of the Open-Loop Tree search Algorithm 49

3.6 Empirical Analysis of the Open-Loop Tree search Algorithm 53

3.7 Conclusion . 58

4 Planning in gradually evolving Markov Decision Processes 61

4.1 State of the art . 62

4.2 Non-Stationary Markov Decision Process . 67

4.3 Worst case approach . 72

4.4 Risk Averse Tree Search algorithm . 76

4.5 Experiments . 85

4.6 Conclusion . 88

iii

iv Contents

5 Learning in abruptly evolving Markov Decision Processes 91

5.1 State of the art . 93

5.2 Framework . 95

5.3 Lipschitz continuity of Q-functions . 100

5.4 Transfer using Lipschitz continuity . 105

5.5 The Lipschitz RMAX algorithm . 111

5.6 Experiments . 117

5.7 Conclusion . 120

6 Conclusion 123

A Proofs of the dissertation 127

A.1 Proofs of Chapter 2 . 127

A.2 Proofs of Chapter 3 . 128

A.3 Proofs of Chapter 4 . 130

A.4 Proofs of Chapter 5 . 136

B Complete version of the MCTS algorithm 151

C Additional experimental results for the OLTA algorithm 155

D Additional information on the experiments of Chapter 4, Section 4.5 159

E Additional information on the experiments of Chapter 5, Section 5.6 161

Bibliography 171

List of Figures

2.1 Cart-pole MDP illustration . 10

2.2 An example of MCTS search tree . 21

2.3 Illustration of one step of the MCTS procedure 23

2.4 Illustration of the reinforcement learning principle 27

2.5 Common reinforcement learning schemes . 29

3.1 Reuse scheme of a closed-loop tree. 40

3.2 General representation of an open-loop tree. 43

3.3 Reuse scheme of an open-loop tree. 45

3.4 Upper bound on the probability of failure displayed for several depths 52

3.5 Illustration of the 1D track environment . 54

3.6 Experimental comparison of OLTA to OLUCT on the discrete 1D track envi-
ronment . 55

3.7 Illustration of the continuous Physical Traveling Salesman Problem 56

3.8 Experimental comparison of OLTA to OLUCT on the continuous PTSP envi-
ronment . 57

4.1 Tree developped by the RATS algorithm . 77

4.2 Illustration of the relaxed problem solved by the RATS algorithm 78

4.3 The non-stationary bridge environment . 85

4.4 Average results for the non-stationary bridge experiment for several values of
epsilon. 87

4.5 Distributional results for the non-stationary bridge experiment for three specific
values of epsilon. 87

5.1 The T-shaped MDP transfer task. 97

v

vi List of Figures

5.2 Comparison of the RMAX upper bound, the MaxQInit upper bound and the
LRMAX upper bound. 100

5.3 Illustration of the prior knowledge on the maximum pseudo-distance between
models . 115

5.4 The tight grid-world environment. 117

5.5 Experimental results of RMAX, LRMAX, MaxQInit and LRMaxQInit in the
“tight” lifelong Reinforcement Learning experiment. 118

C.1 Illustration of the continuous 1D track environment. 155

C.2 Experimental comparison of OLTA to OLUCT on the continuous 1D track
environment . 156

C.3 Illustration of the discrete Physical Traveling Salesman Problem 157

C.4 Comparison between OLUCT and OLTA on the discrete PTSP for varying
values of the misstep probability q. 158

List of Tables

2.1 Summary of the different policy classes. 13

4.1 Expected return E (∑ r) and CVaR at 5% for RATS, DP-snapshot and DP-
NSMDP for ε ∈ {0, 0.5, 1}. 88

D.1 Summary of the number of experiment repetition, number of sampled tasks,
number of episodes, maximum length of episodes and upper bounds on the
number of collected samples. 159

E.1 Summary of the number of experiment repetition, number of sampled tasks,
number of episodes, maximum length of episodes and number of collected sam-
ples. 161

vii

List of Acronyms

CMDP Contextual Markov Decision Process

CVaR Conditional Value at Risk

DP Dynamic Programming

GVGP General Video Game Playing

HMMDP Hidden Mode Markov Decision Process

HS3MDP Hidden-Semi-Markov-Mode Markov Decision Process

HOLOP Hierarchical Open-Loop Optimistic Planning

LC Lipschitz Continuous

LRMAX Lipschitz R-Max

MC Monte Carlo

MCTS Monte Carlo Tree Search

MDP Markov Decision Process

ML Machine Learning

MOMDP Mixed Observability Markov Decision Process

NSMDP Non-Stationary Markov Decision Process

OLETS Open-Loop Expectimax Tree Search

OLOP Open-Loop Optimistic Planning

OLTA Open-Loop Tree search Algorithm

OLUCT Open-Loop Upper Confidence bound applied to Trees

PAC-MDP Probably Approximately Correct in Markov Decision Processes

POMDP Partially Observable Markov Decision Process

POMCP Partially Observable Monte Carlo Planning

PTSP Physical Traveling Salesman Problem

RATS Risk Averse Tree Search

RDV Return Distribution Variance

ix

x List of Acronyms

RL Reinforcement Learning

SDM State Distribution Modality

SDSD State Distance to State Distribution

SDV State Distribution Variance

SMDP Semi Markov Decision Process

THTS Trial-based Heuristic Tree Search

TSP Travelling Salesman Problem

UAV Unmanned Aerial Vehicle

UCB Upper Confidence Bound

UCT Upper Confidence bound applied to Trees

Chapter 1

Preliminaries

Planning a navigation route from point A to point B with a boat on a calm sea is a stationary
problem. The conditions do not change over time. If we consider unstable currents that may
progressively deviate the trajectory of the boat, then the problem becomes non-stationary. Its
properties evolve smoothly with time as the water flow changes. If we add a violent wind to
this task with unpredictable gusts that may push the boat in any direction, then the problem
is still non-stationary but its properties evolve abruptly with time. One can characterize the
temporal evolution of a task in different ways. The three operation modes described in this
boat example may lead to different ways of addressing the problem. This dissertation is a
study of the possible resolutions of a task under different temporal evolution modes.

How to act in an environment that can change over time?

Before trying to answer this quite general question, we will define our terms and lay a
broad framework of this study in the next section. Then, we will describe the progression of
ideas and the contributions made during the realization of this work, in conjunction with the
organization of this thesis.

Problem statement and summary of contributions

We are asking the question of acting in an environment that can change over time. What
is acting in the first place? In this dissertation, acting is taking decisions or performing
actions at discrete temporal slices, that we will call decision epochs. Since we just wrote that
decisions were taken at discrete decision epochs, we restricted the topic of this dissertation
to a field best known as sequential decision making. Who is acting? An agent is acting. The
word agent, in our understanding, stands for any entity bound to take actions or decisions
and therefore endowed with some kind of decision rule for that purpose. We will only deal
with the case of a single agent. Where is the agent acting? Within an environment, which is
defined by its state and a set of rules characterizing how its state change between each decision
epoch. Intuitively, those rules take into account the actions taken by the agent. Thus, the
agent may have the possibility to influence the way things evolve through its actions. The
possibility for an environment to be non-stationary, as a central concern of this dissertation,
will be modeled by this set of rules which can potentially evolve through time. Consequently,
as an agent takes actions at different decision epochs, the reaction of the environment may
not be the same for each one of them. The study we undertake takes into account different

1

2 Preliminaries

sets of hypotheses on the way temporal evolution is characterized. These hypotheses give rise
to different contributions that we now present, along with the organization of the dissertation.

In the first chapter, we formally define the framework of our analysis. We start from the
conceptual definition of what an agent and an environment are. We introduce the formal
model of a Markov Decision Process (Puterman, 2014), used to represent those two entities
and define an optimality criterion for an agent’s decision rule. Finally, we recall the notions
of learning (Sutton and Barto, 2018) and planning (Puterman, 2014; Ghallab, Nau, and
Traverso, 2016), seen as mechanisms used by an agent to improve its decision rule with
respect to this criterion.

In the second chapter, we focus on the case of unchanging environments, i.e., characterized
by little to no temporal evolution. We will see this assumption of stationary environment as
a first step in our analysis. In such a case, one can leverage the fact that things do not evolve
over time to extend the predictions an agent makes at some point to future decision epochs.
In other words, what is valid now will always be valid. In this line of thought, we propose a
framework for a planning agent to stop planning once a plan has been conceived. The plan
is then followed without further refinement, reducing the computational complexity of the
algorithm. This kind of behavior can be seen as lazy planning, in reference to the general
programming principle of lazy evaluation. Subsequently, planning can be re-triggered if a de-
viation from the original plan is detected. We analyze our approach in terms of optimality and
show that strong guarantees can be obtained. Overall, this first contribution consists in a lazy
planning procedure, implementing a planning re-planning trade-off suited for slowly evolving
environments. This chapter stems from the work carried out in Lecarpentier, Infantes, Lesire,
and Rachelson (2018).

In the third chapter, we tackle non-stationary problems through the scope of continuous,
gradual, evolution. The environment is now allowed to change smoothly over time. We
formalize this assumption with a Lipschitz continuity hypothesis of the transition and reward
functions of the Markov Decision Process (MDP) with respect to time. In other words, we
put a mathematical constraint on the evolution rule of the environment, allowing it to evolve
between subsequent decision epochs but forcing it to remain similar to what it was before.
This makes sense from a physical point of view if we consider gradually changing conditions.
Given that things evolve quietly, it becomes possible to predict the worst case of future
outcomes from a planning perspective. To that end, our contribution here is the design of a
risk averse planning agent that tries to avoid the pitfalls allowed by the gradual evolution.
This agent is conservative and we demonstrate its decision rule to converge to the optimal one
of the worst case scenario. This can be related to a minimax strategy against an adversary,
given that the adversary is the environment itself. This chapter stems from the work carried
out in Lecarpentier and Rachelson (2019).

In the fourth chapter, we complete our analysis by looking at abruptly changing problems.
This comes as a complement to the previous chapter, where changes were constrained to be
small. Here, things can become chaotic as we allow for any evolution of the environment. We
show that this extreme non-stationary case can be addressed by reasoning on the similarity
between “before” and “after” the appearance of a change. Precisely, we develop a learning

Preliminaries 3

agent that learns everything from scratch every time a change occurs. During learning, if
the data appear to be similar to those gathered before the change, the algorithm re-uses the
previously harvested knowledge. This mechanism, commonly referred to as transfer, allows to
speed-up the convergence to the optimal behavior. This practical contributions comes from a
theoretical analysis that we also carry out in this fourth chapter. We study some properties
of the way two distinct environments can differ from one another. Precisely, we propose a
metric to measure the distance between environments and show that small distances allow
for a large amount of knowledge transfer. This chapter stems from the work carried out in
Lecarpentier, Abel, Asadi, Jinnai, Rachelson, and Littman (2020).

Finally, we conclude and open on future questions raised during the realization of this
work. Importantly, all the proofs of the original theoretical results of the dissertation, i.e.
Lemmas and Theorems, are reported in the Appendix, Chapter A. We thought that this
would allow the reader to keep a more focused reading flow and to better appreciate the
presented results.

Chapter 2

Introduction

Sommaire
2.1 Model and optimization criterion . 5

2.1.1 Model . 6
2.1.2 Policy . 12
2.1.3 Value function . 13
2.1.4 Optimality criterion . 15

2.2 Planning . 17
2.2.1 Definition . 17
2.2.2 Dynamic programming . 18
2.2.3 Monte Carlo Tree Search . 20

2.3 Learning . 26
2.3.1 Definition . 26
2.3.2 RMAX: an example of Reinforcement Learning algorithm 28

In this chapter, we formally define the framework of this thesis, which falls within the field
of study of sequential decision making. First, we define the concepts of agent and environment
along with the notions of action and state. By formalizing the ways these elements interact,
this leads us to the definition of the Markov Decision Process (Puterman, 2014) model, that
we use throughout this dissertation. Secondly, we introduce an optimality criterion for an
agent’s decision rule. Finally, we present the notions of learning (Sutton and Barto, 2018) and
planning (Puterman, 2014; Ghallab, Nau, and Traverso, 2016), allowing an agent to improve
its decision rule with respect to this criterion.

2.1 Model and optimization criterion

In this section, we lay the basic framework onto which we built our analysis. We start with
the conceptual descriptions of an agent and an environment with its components. Then
we define the formal framework of Markov Decision Processes that comprehends all those
elements. Finally we define a decision rule as an object we want to optimize, along with the
optimization criterion.

5

6 Introduction

2.1.1 Model

2.1.1.1 Agent

An agent is any entity able to sense, to decide and to act (Ghallab, Nau, and Traverso, 2016).
Sensing is done with respect to the environment. It is the acquisition of an observational input
by the agent. This observation can be more or less precise, depending on the construction of
the agent. Ability to sense is optional in the sense that an agent could have no senses at all.
This extreme case may never be encountered but we keep it in our description of an agent
for the sake of generality. Deciding is the application of any decision rule to select an action.
This supposes a set of actions and maybe a criterion on which the agent can base its decision.
Acting is simply the application of the selected action in the real world. Doing so may have
an effect on the state of the world and maybe on the state of the agent itself.

Example 2.1 (Random agent). The random agent is an agent whose decision rule is to select
actions uniformly at random among the set of available actions. It may have the ability to
sense but does not use the acquired observations.

Practically, we design agents for special tasks. Having a task means having a goal. There-
fore, the decision rule of the agent should be designed so that the correct actions are performed
at the correct moments to eventually reach this goal. The whole problem of sequential decision
making is to construct a decision rule that meets our needs. The random agent can be seen as
a baseline, representing a simple decision rule for which no design effort has been made. On
some practical examples, this random decision rule may even be optimal, for instance, playing
rock paper scissors against a second random policy. However, acting randomly is generally
sub-optimal and, for this reason, this decision rule is often seen as a baseline representing a
poor performance. We delay our answer to the question of the design of a decision rule to a
later section and detail now our conceptual view of an environment.

2.1.1.2 Environment

An agent evolves within an environment. Substantially, it encompasses everything that is not
the agent. Let us consider such a setting. If we add a second agent, an ambiguity appears in
that there are now two decision makers. In this dissertation, we will never consider multiple
agents and always center the analysis on a single entity. What could be viewed as an agent
but whose actions are not determined by the decision process will be referred to as external
agents. Although they fall in the definition of Section 2.1.1.1, we will see them as parts of
the environment. We will always consider the simplified dichotomy of a single agent acting
in an environment. Conversely, research on the topic of multi-agent systems aim at designing
the decision rules of multiple agents to reach particular objectives. Often, the necessity to
distinguish agents from their peers is due to the fact that they do not share the same set
of information. This constraint makes it impossible to take global decisions as each agent
will have to behave with respect to a subset of the total information. For instance, a fleet of

2.1. Model and optimization criterion 7

autonomous cars sharing non-perfect information (e.g., because of delayed communications),
must be considered as several agents for the sake of realism. In our case, if we were to control
several cars, all sharing their information perfectly as a single entity, then we would consider
a single-agent system. The selected action at each decision epoch would be the joint actions
performed by each car. Other cars, not controlled by us but by humans or autonomous robots
for instance, are viewed as parts of the environment.

2.1.1.3 State, action and transition function

The state is a set of information characterizing the agent and / or the environment. The
actions taken by the agent have the ability to modify the state. The way the state evolves
given an action of the agent constitutes a rule that we call transition function. Given a current
state and an action, the transition function outputs a resulting state from the application of
this action at the current state. For instance, the rules of the board game of chess define the
resulting state from the moving of a pawn given a state of the board.

It is important to make the distinction between the state and the whole set of information
necessary to describe the interaction process of agent and an environment. Take the example
of a maze where the state is the position of the agent. The information contained in the state
is not enough to describe the effect of an action as it does not contain, e.g., the information
of the position of the walls. As a result, solely relying on the state, one cannot tell if moving
forward would result in actually moving forward since one does not know if there is a wall
in front of the agent. The remainder of the information is encoded “inside” the transition
function which, in the example of a maze, “possesses” the information of the position of the
walls. However, it is important to remark that, given the transition function, the information
of the state is enough to describe any interaction between the agent and the environment.
This fact is important as we will later assume that an agent can observe the state and base its
decisions on this information. Thus, if the transition function is known, an agent can model
any interaction exactly, based on the information of the state. Removing a part of the total
information from the state allows to model problems where things are hidden and is thus
more general.

2.1.1.4 Reward function

Here we introduce the important concept of reward. In neuroscience, the reward system is
a set of mechanisms happening in our brain, responsible for the cognition, the sensing, of
pleasurable stimuli like happiness or euphoria. After lunch, the feeling of satiety is pleasant
and rewards us from having eaten. The same goes for drinking water, which creates a satisfy-
ing feeling. Sexual contact and parental investment are inherently pleasurable. Those three
mechanisms are known as primary reward cognition (Schultz, 2015). They allow species to
learn healthy behaviors for their survival, such as feeding, hydrating and copulating. Con-
versely, some natural mechanisms act as punishment. Pain is felt by any animal touching an
injuring object, such as fire, allowing it to immediately stop doing so with a mere reflex. The

8 Introduction

feeling of hunger is unpleasant and urges us to eat. It is caused by a temporary decrease of
the blood sugar level, a natural mechanism that triggers this feeling. Similarly to the way
reward encourages reproduction of rewarding events, punishment discourages the converse.

Reward and punishment are useful for learning, which is their primary function. The
agents considered in this dissertation will also follow this rule. We suppose the existence of a
reward function. This function encompasses the notions of reward and punishment presented
above in a single scalar signal. The higher this signal, the more rewarding for the agent.
Conversely, the lower the signal, the more punitive it is. Quite intuitively, the reward signal
depends on the state and the actions selected by the agent. This function is going to be the
core of the learning process and materializes the goal of a task: collecting more rewards!

2.1.1.5 Markov Decision Process

In Sections 2.1.1.1, 2.1.1.2, 2.1.1.3 and 2.1.1.4, we introduced the concepts of agent, environ-
ment, state, action, transition function and reward function that constitute the basis of our
framework. In this section, we define those elements formally, into a single object called a
Markov Decision Process (MDP) (Puterman, 2014). An MDP is an “idealized” model of the
world. Its mathematical simplicity made it the predilection tool for derivation of accurate
mathematical results in the field of sequential decision making. It allows to answer questions
like “What is an optimal behaviour?”, “When can I tell that my agent learned an accurate
representation of the world?”, “How long will it take to reach a certain performance?”, etc.
The formal definition of an MDP follows in Definition 2.1 after a quick notation introduction.
Notation 2.1 (Set of probability distributions). Let X be a measurable space. We will write
P(X) the set of probability distributions on the set X.
Notation 2.2 (Functional spaces and functions). For X and Y any two non-empty sets, we
denote by F (X,Y) the set of functions defined on the domain X with Y as a codomain. For
f ∈ F (X,Y), we employ the following notation with the understanding that “f is a function
in F (X,Y) mapping each element x ∈ X to f(x) ∈ Y ”:

f : X → Y

x 7→ f(x) .

Definition 2.1 (Markov Decision Process). A Markov Decision Process, is defined by a
4-tuple {S,A, T, r}, where:

• S is a set of states;

• A is a set of actions;

• T is a transition function mapping state-action pairs to the conditional probability
distribution on the resulting state:

T : S ×A → P(S)
(s, a) 7→ Pr (· | s, a) ;

2.1. Model and optimization criterion 9

• r is a reward function mapping state-action-state triples to the reward associated to the
transition from state s to state s′ by application of action a:

r : S ×A× S → R
(s, a, s′) 7→ r(s, a, s′) ;

For convenience, we will adopt the following notations in the remainder of the dissertation.
Notation 2.3. For all (s, a, s′) ∈ S ×A× S, we denote by T as· , T (s, a) the conditional prob-
ability distribution on the resulting state from the application of action a at state s. Further,
T ass′ = Pr (s′ | s, a) denotes the probability to reach state s′ when applying action a at state
s. Additionally, we denote by rass′ , r(s, a, s′) the scalar reward signal associated to the
transition from state s to state s′ by application of action a.

An important feature of an MDP is the Markov property. This property states that the
transition probability to s′ ∈ S while undertaking action a ∈ A in state s ∈ S is only
conditioned by the pair (s, a), and therefore independent from the previously encountered
state-action pairs. This is a non-trivial assumption that implies that the current state-action
pair contains all the information required for the environment to deduce the next state. The
decisions are taken by the agent among the set of actions A. Actions influence the evolution
of the system from a particular state, as seen in the conditioning of the transition function
T by the state-action pair. Collected rewards also depend on the current state-action pair,
as well as the resulting state from the transition. MDPs are objects to model discrete time
sequential decision making problems, where actions are taken at discrete decision epochs. We
denote by T = {0, . . . ,H} the set of decision epochs with H the horizon. It is either finite,
if H ∈ N is a finite number, or infinite, if H = ∞. The set of decision epochs is voluntarily
omitted in Definition 2.1. Its existence is implicit and — unless specified otherwise — we
will take T = N. As a result, an MDP is a description of the dynamics, i.e., the transitions
and rewards, of the interaction process between an agent and an environment. Note that
the transition and reward functions are stationary, i.e., they do not depend explicitly on the
decision epoch. We will sometimes refer to st, at ∈ S ×A as the state-action pair of decision
epoch t. Similarly, the collected reward corresponding to the transition (st, at, st+1) is denoted
by rt. We call trajectory a sequence of state-action-reward triples

{(st, at, rt)}t∈T

collected while interacting with the MDP by selecting actions at each decision epoch. As a
result, trajectories comply with the following rules:

si+1 ∼ T aisi·,
ri = raisisi+1 .

We also define the notion of terminal states as specific states that have the property to end the
realization of a trajectory before reaching the horizon H of the MDP. They could correspond
to the reaching of a goal, or a failure situation where the system is defective and no more
actions should be taken. For instance, a checkmate state in the game of chess is a terminal

10 Introduction

state. Overall, a trajectory ends either by reaching a terminal state or the horizon H of the
process in the finite horizon case.
Notation 2.4. By convention, we use the notation s′ to refer to the resulting state from the
application of an action in state s. This notation along with the indexing by decision epoch
si → si+1 indicate the notion of predecessor in the transition function. We may use them
interchangeably.

Example 2.2 (The cart-pole MDP example). Consider a pole rotating on a cart sliding along
a single axis. The goal of the task is to balance the pole while controlling the force applied
to the cart. We denote by x the position of the cart, ẋ its velocity, θ the angle between the
pole and the vertical, θ̇ the angular velocity, M the cart-mass, m the pole-mass and l the pole
length as illustrated in Figure 2.1. The state of the cart is defined by s ,

(
x ẋ θ θ̇

)
∈ S

θ

x

M

~F

l

m

Figure 2.1: Cart-pole illustration with M the cart mass, m the pole mass, l the pole length,
x the position of the cart on the horizontal axis, θ the angle between the pole and the vertical
axis and ~F the force applied to the cart.

where S ≡ R4. The action space is A , {−F, 0,+F} and corresponds to the magnitude and
direction of the force vector ~F applied to the cart. The force is applied periodically with
period τ , defining the set of decision epochs as T , [0, τ, 2τ, . . . ,∞). The dynamics of the
system is defined by a differential equation obtained by applying the laws of mechanics. As
a first order approximation, we use the Euler method to define the transition function of the
MDP, resulting in the following set of equations:

st+1 = st + τ
(
ẋt+1 ẍt+1 θ̇t+1 θ̈t+1

)>
,

with, in order of calculation, the following computations:

θ̈t+1 = 1
l

(
g sin(θt)− cos(θt)

at +mlθ̇2
t sin(θt)

m+M

)(
4
3 −m

cos(θt)2

m+M

)−1

,

θ̇t+1 = θ̇t + τ θ̈t+1,

ẍt+1 = at +mlθ̇t
2 sin(θt)

m+M
− mlθ̈t+1
m+M

,

ẋt+1 = ẋt + τ ẍt+1,

2.1. Model and optimization criterion 11

where we denote by st =
(
xt ẋt θt θ̇t

)
the state indexed by the decision epoch t ∈ T .

Notice that, in this case, the transition function is deterministic. The next state is analyt-
ically derived from the current state-action pair and no stochasticity is introduced in this
computation. The reward function is solely defined on the angle θ of the pole and is given by:

ratstst+1 =

1 if θt+1 ∈
[
−π

2 ,
π
2
]
,

0 else.

In Example 2.2, the Markov property is verified since the resulting state s′ depends only
on the current state s and the action a. If the velocity of the cart and the angular velocity of
the pole were non-observable to the agent, i.e., s =

(
x θ

)
, then the resulting state from a

transition would not be deducible from a single state. Two subsequent states would allow to
retrieve the velocity components which would in turn make this computation feasible. In such
a case, the transition function would depend on the two previous states which is totally fine
from a computational point of view but does not comply with the Markov property, hence,
is not a valid MDP model.

In Definition 2.1, page 8, the reward function r defines the reward associated to a full tran-
sition (s, a, s′) ∈ S×A×S. Additionally, we define the expected reward function, representing
the expected reward from applying an action in a state.
Definition 2.2 (Expected reward function). Consider an MDP {S,A, T, r}, the expected
reward function is defined as

R : S ×A → R
(s, a) 7→ Ras , Es′∼Tas· (rass′) .

This definition being sometimes more convenient to deal with, we may use it interchange-
ably with the definition of the reward function in the remainder of the dissertation, allowing
to define an MDP as {S,A, T,R}. Keep in mind that both co-exist, whatever the definition.
Note that, if the expected reward function can be deduced from the reward function, the
converse is not true.
Remark 2.1. No assumptions were made on the state-action space S × A of Definition 2.1,
page 8. The set of admissible spaces is relatively broad and encompasses the following (Put-
erman, 2014):

• arbitrary finite sets;

• arbitrary countably infinite sets;

• compact subsets of finite dimensional Euclidean space;

• non-empty Borel subsets of complete, separable metric spaces.

The most “simple” class of state-action space may be finite sets such as S×A = {s1, . . . , sn}×
{a1, . . . , am} where n,m ∈ N. This example actually constitutes a very important problem

12 Introduction

class where theoretical results can be derived thanks to those properties. Most of the examples
considered in this dissertation fall into that category for this particular reason.

Notation 2.5. In the case where S and A are finite sets, we respectively write S , |S| and
A , |A| their cardinality.

Remark 2.2. The action space A introduced in Definition 2.1, page 8, contains all the actions
the agent can take. In some problems, some actions may be illegal in some states, making
the set of available actions dependent on the current state. If this is the case, we will denote
by A(s) ⊂ A the set of available actions at s ∈ S.

2.1.2 Policy

A policy is a decision rule. In the most general case, we define a policy as in Definition 2.3.

Definition 2.3 (Non-stationary stochastic policy). A non-stationary stochastic policy is a
mapping,

π : S × T → P (A)
(s, t) 7→ πt (· | s) .

A non-stationary stochastic policy provides a probability distribution over actions given
a state s ∈ S and a decision epoch t ∈ T . Taking a decision with respect to π amounts to
sampling an action according to this probability distribution. Notice the conditioning of the
distribution on the decision epoch t. This implies that the rule may change over time, e.g., in
a learning setting. If there is no decision epoch dependency, the policy is said to be stationary.
Notice also the conditioning of the distribution on the state s. This accounts for the fact that
an agent takes decisions according to the state it observes. To be even more general than
Definition 2.3, one can also condition the decision rule on the whole history of sampled states
from the first decision of the agent to the current one. This class of policy, called history-based
policies, is discussed with more detail by Puterman (2014). Importantly, he shows that — for
the optimality criterion we will later define — there exist a state-based policy that achieves
the optimal performance. For this reason, we do not need to consider history-based policies
and will restrict the scope of the considered policies in this dissertation to Definition 2.3.
Additionally, the policy is said to be deterministic if the mapping is performed from S —
and possibly T — to A. A deterministic policy can be seen as stochastic, mapping each
state or state-decision epoch pair to a Dirac distribution centered on a particular action.
Without additional details, we will always refer to policies as stationary policies, only making
the distinction between the deterministic case and the stochastic case. The four classes of
policies introduced so far are summarized in Table 2.1.

Notation 2.6. We will denote by πrandom the policy corresponding to the random agent of
Example 2.1, page 6. Given a state s ∈ S, πrandom selects the action uniformly at random
among the set of available actions A(s).

2.1. Model and optimization criterion 13

Deterministic Stochastic

Stationary π : S → A
s 7→ π(s)

π : S → P (A)
s 7→ π (· | s)

Non-stationary π : S × T → A
(s, t) 7→ πt(s)

π : S × T → P (A)
(s, t) 7→ πt (· | s)

Table 2.1: Summary of the different policy classes.

2.1.3 Value function

Previously, we roughly stated that our objective was to maximize the sum of all the rewards
collected in trajectories. This brings us to the definition of the total return Z, as the sum-
mation of all the collected rewards along a single trajectory {(si, ai, ri)}i∈T of finite horizon
H <∞,

ZH ,
H−1∑
t=0

rt, H <∞.

Notice that a trajectory may end by reaching a terminal state, prior to the horizon H of the
process. We implicitly set the value of the rewards collected after such an event to 0, so that
the definition complies with this case. In the infinite horizon case, where H =∞, the return
is ill-defined because of the possible divergence of the series. To allow a definition in that
case, we introduce a discount factor γ ∈ [0, 1) and define the discounted return as

Z∞γ ,
∞∑
t=0

γtrt.

Notation 2.7. We denote by Z , Z∞γ the infinite horizon discounted return. Without addi-
tional details, we always refer to the infinite horizon case and will specifically mention if it is
the total or discounted case.

The discount factor γ acts as a weighting parameter in the discounted return. Weights
decrease with the decision epoch of the collected reward in the summation. In other words,
the further the reward is in the sequence of decisions, the less it contributes to the total sum.
The discounted return is thus a criterion putting more importance on immediate rewards.
Practically, this is a desirable feature, allowing to define the importance of long-term collected
rewards via the value of γ. Without loss of generality, we will assume the reward function to
be positive and bounded by a constant term Rmax ∈ R, i.e.

0 ≤ rass′ ≤ Rmax, ∀s, a, s′ ∈ S ×A× S.

From this hypothesis, one can easily show that the maximum achievable discounted return is
given by

Zmax ,
Rmax
1− γ .

14 Introduction

This quantity is not always reachable in any MDP. Zmax corresponds to collecting Rmax
from the first decision epoch to infinity and constitutes an upper bound on the maximum
achievable return. Our objective is to optimize a policy to maximize the value of the collected
return as we will now see in our optimality criterion definition.

Return and discounted return are defined for a particular trajectory. Quite naturally, we
define our objective as maximizing the expected return over multiple trajectories. In other
words, we would like the highest return on average. We define the value function of a policy
as the expected discounted return of this policy within an MDP.

Definition 2.4. Consider an MDPM = {S,A, T, r}, a set of decision epochs T = {0, . . . ,H},
H ≤ ∞, a discount factor γ ∈ [0, 1) and a non-stationary stochastic policy π. The value of π
in M is defined for all s ∈ S by the value function V π

M as

V π
M (s) , E

(∑
t∈T

γtratstst+1

∣∣∣∣s0 = s, at ∼ πt (· | st) , st+1 ∼ T atst· ∀t ≥ 0
)
.

Notation 2.8. If there is no ambiguity on the considered MDP M of Definition 2.4, we omit
M in the writing of the value function and write V π , V π

M .

The definition of the value function is written in the case of a non-stationary stochastic
policy for the sake of generality. Naturally, it extends to any class of policy defined in
Table 2.1, page 13. Intuitively, V π(s) is the expected discounted return given that we apply
policy π at state s ∈ S. In the finite horizon case, i.e., when H < ∞, Definition 2.4 can be
extended to the total sum of reward rather than discounted by choosing γ = 1. Additionally,
we define the expected return of applying an action a ∈ A and then a policy π at a particular
state s ∈ S as the Q-value function.

Definition 2.5. Consider an MDPM = {S,A, T, r}, a set of decision epochs T = {0, . . . ,H},
H ≤ ∞, a discount factor γ ∈ [0, 1) and a non-stationary stochastic policy π. The Q-value of
π is defined for all (s, a) ∈ S ×A by the Q-value function QπM as

QπM (s, a) , E
(∑
t∈T

γtratstst+1

∣∣∣∣s0 = s, a0 = a, at ∼ πt (· | st) ∀t ≥ 1, st+1 ∼ T atst· ∀t ≥ 0
)
.

Notation 2.9. Like the value function, if there is no ambiguity on the considered MDP M of
Definition 2.5, we omit M in the writing of the Q-value function and write Qπ , QπM .

Similarly to Definition 2.4, Definition 2.5 is written in the case of a non-stationary stochas-
tic policy and extends to any class of policy defined in Table 2.1, page 13.

So far, we defined the value and Q-value functions formally as the expectation of the
discounted return for a specific policy π. It turns out that V π and Qπ are also solutions of
two equations, namely, the Bellman evaluation equations.

Theorem 2.1 (Bellman evaluation equations, Puterman (2014)). Consider an MDP M =
{S,A, T,R} and a stationary deterministic policy π, the value function V π and Q-value func-

2.1. Model and optimization criterion 15

tion Qπ satisfy the following equations for all (s, a) ∈ S ×A:

V π(s) = Rπ(s)
s + γE

s′∼Tπ(s)
s·

(
V π(s′)

)
, (2.1)

Qπ(s, a) = Ras + γEs′∼Tas·
(
Qπ(s′, π(s′))

)
. (2.2)

By defining the Bellman operators for a policy π as follows:

T π
V (f)(s) = Rπ(s)

s + γE
s′∼Tπ(s)

s·

(
f(s′)

)
, for f : S → R,

T π
Q (f)(s, a) = Ras + γEs′∼Tas·

(
f(s′, π(s′))

)
, for f : S ×A → R,

Theorem 2.1 states that V π and Qπ respect the two following fixed-point Equations:

V π = T π
V (V π), (2.3)

Qπ = T π
Q (Qπ). (2.4)

Further, the following theorem establishes that the solutions to Equations 2.3 and 2.4 exist
and are unique. As a result, finding the solutions to these two equations amounts to finding
V π and Qπ.

Theorem 2.2 (Puterman (2014)). Consider an MDP M = {S,A, T,R} and a deterministic
stationary policy π. If the discount factor γ verifies 0 ≤ γ < 1, then the operators T π

V and
T π
Q are contractions in maximum norm. It follows, from application of Banach fixed-point

Theorem, that Equations 2.3 and 2.4 have unique solutions.

We introduced policies as objects we want to optimize along with the value of a policy.
This allows us to define our optimality criterion in the next section.

2.1.4 Optimality criterion

For an MDP M , we call optimal policy and denote by π∗ a policy maximizing the value
function uniformly on S, i.e.,

π∗(s)
4
∈ argmax

π
V π(s), ∀s ∈ S. (2.5)

Solving an MDP means finding such an optimal policy. Importantly, one can show that in
any MDP, there exist at least one deterministic, stationary, state-dependent policy satisfying
Equation 2.5 (Puterman, 2014). Also, as mentioned in Section 2.1.2, page 12, the state
dependency refers to the difference between history-based policies and state-based policies.
Let us now consider the value and Q-value function of an optimal policy π∗ by first introducing
their notation.
Notation 2.10. Considering an MDP M , we will write the value and Q-value functions of an
optimal policy defined by Equation 2.5, V ∗ , V π∗ and Q∗ , Qπ

∗ .

16 Introduction

Although V ∗ and Q∗ are also defined with Definitions 2.4 and 2.5, page 14, they share
different properties than the value and Q-value functions of a non-optimal policy. First,
resulting from the fact that an optimal policy maximizes the expected return, V ∗ and Q∗ are
linked with the following two equations:

V ∗(s) = max
a∈A

Q∗(s, a),

Q∗(s, a) = Ras + γEs′∼Tas·
(
V ∗(s′)

)
.

Remark 2.3. The fact that we used the maximum operator on A in the former equation rather
than the supremum operator comes from the fact that A is a compact set by hypothesis.

Secondly, V ∗ and Q∗ are solutions of a different version of the Bellman evaluation Equa-
tions 2.1 and 2.2, page 15, namely, the Bellman optimality equations, reported in the following
Theorem.

Theorem 2.3 (Bellman optimality equations). Consider an MDP M = {S,A, T,R}, the
optimal value function V ∗ and optimal Q-value function Q∗ satisfy the following equations
for all (s, a) ∈ S ×A:

V ∗(s) = max
a∈A

{
Ras + γEs′∼Tas·

(
V ∗(s′)

)}
,

Q∗(s, a) = Ras + γEs′∼Tas·
(

max
a′∈A

Q∗(s′, a′)
)
.

Again, if we define the Bellman optimality operators as follows:

T ∗V (f)(s) = max
a∈A

{
Ras + γEs′∼Tas·

(
f(s′)

)}
, for f : S → R,

T ∗Q(f)(s, a) = Ras + γEs′∼Tas·
(

max
a′∈A

f(s′, a′)
)
, for f : S ×A → R,

we have that V ∗ and Q∗ respect the two following fixed-point Equations:

V ∗ = T ∗V (V ∗), (2.6)
Q∗ = T ∗Q(Q∗). (2.7)

From those definitions, the same result as Theorem 2.2, page 15 applies for V ∗ and Q∗.

Theorem 2.4. Consider an MDP M = {S,A, T,R} and a deterministic stationary policy
π. If the discount factor γ verifies 0 ≤ γ < 1, then the operators T ∗V and T ∗Q are contrac-
tions in maximum norm. It follows, from application of Banach fixed-point Theorem, that
Equations 2.6, and 2.7 have unique solutions.

The existence and uniqueness of the optimal value and Q-value functions is a fundamental
result. In particular, it allows to search for Q∗ rather than directly an optimal policy π∗ to
solve an MDP, which can be more convenient in some cases. Let us now explain why finding

2.2. Planning 17

Q∗ is equivalent to finding π∗. The Q-value function of a policy π is a tool that defines the
advantage of taking an action a and then follow π, rather than following π from the start. It
allows to improve on a policy if, for a specific state s in an MDP, the following equation is
verified:

Qπ(s, a) > V π(s).

In such a case, the policy applying a at s and π otherwise improves on policy π since it
yields higher expected discounted return. Choosing the action maximizing Qπ uniformly on
S allows to derive a policy uniformly better than π. We call it the greedy policy with respect
to Qπ which, for any s ∈ S, selects the action

a = argmax
ã∈A

Qπ(s, ã).

From what we just wrote, if we know the optimal Q-value Q∗, we can deduce the optimal
policy π∗ by acting greedily with respect to Q∗. Indeed, since π∗ yields maximum expected
discounted return, the uniformly improving policy performs exactly the same since, by defi-
nition, it is not possible to do better. Hence, we have for any MDP,

π∗(s) ∈ argmax
a∈A

Q∗(s, a), ∀s ∈ S. (2.8)

As a result, π∗ can be deduced from Q∗. To solve an MDP, one can interchangeably compute
π∗ or Q∗. In the literature, many algorithms — that we call value-based — aim at deriving
the optimal Q-value function to solve an MDP. This dissertation focuses essentially on value-
based algorithms, spanning from planning algorithms to learning algorithms. In the remainder
of this introductory chapter, we explain the difference between those two different classes of
algorithms.

2.2 Planning

2.2.1 Definition

Planning refers to the popular idea of “figuring out things in one’s head” (Dennett, 1975;
Sutton, 1991). When acting within a maze, an agent can plan by “thinking” about the path
it experienced and reason on this path to deduce whether to explore rather one part of the
maze or another part. It could also deduce how far it is from the starting point. If the
agent had a map of the maze, it could use it to deduce a path to the exit through a planning
procedure. Planning is any reasoning related to a sequence of actions carried out in an agent’s
mind, based on the knowledge it has on its environment. In this dissertation, we will focus
on the case where an agent utilizes an MDP model of the environment for planning. For
instance, this model can be used to deduce an optimal action given the current state of the
agent. A model can be anything capturing the transition and reward functions of the MDP.
It can be more or less accurate, its quality often being linked to the optimality of the planning
procedure. Unlike learning methods, planning algorithms do not rely on data gathering. For

18 Introduction

the case where a model is available, we will suppose it to be already known. Of course, the
processes of first estimating a model and then using it for planning can be combined in a
single algorithm. This will be the case for the RMAX algorithm presented in Section 2.3.2,
page 28. However, in this dissertation we also focus on vanilla planning algorithms, which
justifies the distinction between planning and learning methods.

Among the models usable by a planning algorithm, we distinguish between generative and
complete models whose definitions follow.

Definition 2.6 (Model and generative model). Given a state-action space S ×A, a model is
a pair of functions

T̂ : S ×A → P(S),
r̂ : S ×A× S → R,

whose analytical expressions are known. If the functions T̂ and r̂ are black box functions, i.e.,
we can only sample their outputs given an input but have no information on their analytical
expressions, then the model is said to be a generative model.

Given an MDP M = {S,A, T, r}, a model T̂ , r̂ is said to be the true model of M if T̂ = T

and r̂ = r. Correspondingly, a true generative model associated toM is such that the outputs
of the functions T̂ and r̂ could have been generated with T and r.
Remark 2.4. Equivalently, when dealing with the expected reward function R rather than
the reward function r, we consider models and generative models of the form T̂ : S × A →
P(S), R̂ : S ×A → R. The same notion of correspondence with the true model applies.

Obviously, the assumption of having access to a generative model is less restrictive than
having a complete model. Therefore, methods using a generative model to compute an optimal
policy are more appealing practically although they face a more complex challenge. In the
next two sections, we successively present planning algorithms making use of a complete
model and a generative model.

2.2.2 Dynamic programming

Dynamic Programming (DP) (Bellman, 1957) refers to a collection of methods for mathe-
matical optimization and computer programming relying on the general principle of breaking
the complexity of a problem by solving several sub-problems in a recursive way. Among the
numerous applications of DP are methods to solve an MDP M = {S,A, T,R} given that we
know the true model (T,R). Value iteration and policy iteration both are DP algorithms that
compute Q∗ given T and R and deduce the optimal policy thanks to Equation 2.8, page 17.
In this section, we present the value iteration algorithm, first applied to the derivation of V ∗
and by extension Q∗. Value iteration relies on Theorem 2.4, page 16 which, in addition to
the existence and uniqueness of the optimal value and Q-value functions, provides a practical
methods to compute them. The algorithm relies on three hypotheses:

1. the true model (T,R) is known;

2.2. Planning 19

2. S and A are finite sets;

3. the discount factor γ verifies 0 ≤ γ < 1.

Banach fixed-point theorem provides a method to compute the fixed-point of T ∗V , which is
V ∗ in this case. By initializing a sequence of functions with V0 : S → R arbitrary and
Vn+1 = T ∗V (Vn), ∀n ∈ N, the sequence is guaranteed to converge to V ∗ in maximum norm.
Practically, the value iteration method consists in repeatedly applying T ∗V on the computed
function. Williams and Baird (1993) define the following stopping criterion:

‖Vn − Vn−1‖∞ ≤ ε,

with ε > 0 a precision parameter and the maximum norm is defined by ‖Vn − Vn−1‖∞ ,
maxs∈S |Vn(s)− Vn−1(s)|. Once this condition is fulfilled, they prove that the computed
value function differs from V ∗ by no more than 2γε

1−γ in maximum norm. This result also
extends to the calculation of the Q-value function, which allows to control the optimality of
the associated greedy policy by controlling the value of ε. In this dissertation, we will take
a different stopping criterion, namely, directly reaching a precision ε in maximum norm, i.e.,
when n ∈ N is such that:

‖Vn − V ∗‖∞ ≤ ε, (2.9)

To that end, the following theorem provides the number of iterations needed for Equation 2.9
to hold.

Theorem 2.5 (Strehl, Li, and Littman (2009)). Given an MDPM = {S,A, T,R}, a discount
factor γ ∈ [0, 1), a precision ε ∈

[
0, Rmax

1−γ

)
and the sequence of functions defined by V0 : S → R

arbitrary and Vn+1 = T ∗V (Vn),∀n ∈ N. If n ≥
⌈

1
ln(1/γ) ln

(
Rmax
ε(1−γ)

)⌉
,

‖Vn − V ∗‖∞ ≤ ε.

The proof of Theorem 2.5 is reported in the Appendix, Chapter A, Section A.1. The
number of operations

⌈
1

ln(1/γ) ln
(
Rmax
ε(1−γ)

)⌉
is smaller than the one reported by Strehl, Li, and

Littman (2009). Indeed, their analysis required this number to be expressed as a polynomial,
which slightly increases its magnitude. Since both results differ, we report the proof of
Theorem 2.5 in the Appendix, Chapter A, Section A.1, page 127.

Using Proposition 2.5, the value iteration algorithm is described in Algorithm 1.

In the same way, the result of Theorem 2.5 can be extended to Q∗. The corresponding
value iteration algorithm computing Q∗ with accuracy ε in maximum norm is the same as
Algorithm 1 with the following update rule:

Q(s, a)← Ras + γ
∑
s′∈S

T ass′ max
a′∈A

Q(s′, a′) (2.10)

20 Introduction

Algorithm 1 Value Iteration

Input: MDP model T,R; discount factor γ ∈ [0, 1); precision ε ∈
[
0, Rmax

1−γ

)
Initialize V randomly
m =

⌈
1

ln(1/γ) ln
(
Rmax
ε(1−γ)

)⌉
Compute the required number of iterations to reach precision ε.

for i ∈ {1, . . . ,m} do
for s ∈ S do
V (s)← maxa∈A {Ras + γ

∑
s′∈S T

a
ss′V (s′)} # Update V for every state.

end for
end for
return V

Value iteration allows to solve an MDP given its transition and reward function. It is a
planning algorithm in that it does not rely on an online interaction with the MDP, as opposed
to learning algorithms that we will present later. Value iteration can be applied offline to
compute Q∗ which can be used to derive the optimal policy using Equation 2.8, page 17.
The cost of applying value iteration can be evaluated with its computational complexity that
we define as an upper bound on the number of operations needed by a computer to run
an algorithm until completion. The computational complexity of value iteration is given in
Theorem 2.6.

Theorem 2.6 (Computational complexity of value iteration). The value iteration algorithm
(Algorithm 1) requires

O
(
S2A

⌈ 1
ln(1/γ) ln

(
Rmax
ε(1− γ)

)⌉)
computing operations to reach completion.

The proof of Theorem 2.6 is reported in the Appendix, Chapter A, Section A.1. It can be
shown with a similar reasoning that computing the optimal Q-function of an MDP has the
same complexity. Value iteration requires the knowledge of the complete model (T,R) of the
MDP. This assumption can be unrealistic in some cases. For instance, any problem with some
uncertainty on the available model is unsolvable with value iteration as it requires the an exact
analytical formulation of the reward and transition functions. Further, from Theorem 2.6, the
computational complexity of value iteration may be too high for problems with large state-
action spaces. In the following section, we present planning algorithms designed to alleviate
those two bottlenecks.

2.2.3 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a tree search algorithm using a tree structure to carry
out a search in the trajectory space of an MDP M = {S,A, T,R}. The general idea is to
build an estimate Q̂(s, a) of the optimal Q-value function Q∗(s, a) for all actions a ∈ A and
in the current state s. Then, it becomes possible to act greedily with respect to this estimate.

2.2. Planning 21

s0

s0 a1

s11

s11 a1

s12

s11 a2

s22

s22 a1

s13

s22 a2

s23 s33

s21

s21 a1

s32

s0 a2

s31

Decision
node

Leaf
node

s0 a2
Chance
node

Figure 2.2: An example of MCTS search tree with A = {a1, a2}. The current state is denoted
by s0. States are denoted by sji where i is the decision epoch inside the trajectory initiated
from s0 and j an index to differentiate states corresponding to the same decision epoch.

If it turns out that argmaxa∈A Q̂(s, a) = argmaxa∈AQ∗(s, a), the derived policy is optimal.
MCTS uses a generative model M̂ = (T̂ , R̂) to incrementally build a tree of the possible
trajectories from the current state of the agent. If M̂ = (T,R), then the search happens in
the true trajectories space of the MDP, in the sense that the simulated trajectories match
those that would be generated in the real MDP. Once the tree built, an — hopefully optimal
— action is selected by acting greedily with the Q-value function estimate Q̂ and applied
in the real MDP. The transition happens and a new state is reached. The tree building
procedure is then repeated from this new state.

Let s0 denote the current state. Executing an exhaustive search among all the possible
trajectories starting from s0 is a very costly process, if not unfeasible. Indeed, in the worst
case, the number of possible trajectories is (SA)H with H the horizon, which is too large for
most of the practical cases. If H = ∞, then the search is simply impossible to carry out.
Given this constraint, the basic idea of MCTS is to prune the search, only exploring some
trajectories by incrementally constructing a search tree. Those trajectories are called Monte
Carlo (MC) simulations. Before explaining the building process, we explain the structure of a
search tree. An MCTS search tree is represented in Figure 2.2. It is composed of trajectories
initiated from s0. Following the nomenclature of Trial-based Heuristic Tree Search (THTS)

22 Introduction

(Keller and Helmert, 2013), the root node of the tree is what we will call a decision node,
solely labeled by a state, which is naturally s0. Its direct children are called chance nodes,
labeled by state-action pairs. Chance nodes necessarily are labeled with the same state as
their parent decision node as they only correspond to the selection of an action at that state.
The children of a chance node are decision nodes corresponding to the states reached after
application of the parent’s action at the parent’s state. We will respectively denote by νs and
νas the decision and chance nodes.

During the MC-simulations, if the same state s′ ∈ S is sampled twice from the state-action
pair (s, a) ∈ S ×A labeling a chance node νas , then one single child νs′ is created. This means
that, once a state is sampled, an equality operator is used to test whether it corresponds to
the labeling state of each child node or not. From what we have defined so far, one can deduce
the facts that each chance nodes has a unique decision node parent and conversely that each
decision node has a unique chance node parent. This is always true except for the root node
which has no parent. Quite naturally, a decision-chance-decision node sequence corresponds
to a (s, a, r, s′) ∈ S ×A×R×S transition generated with M̂ and the tree is solely built with
such sequences. A fully expanded node is a decision node νs having all of its chance nodes
children constructed, i.e., one per available action at s. In the case of an MCTS tree, we will
call leaf nodes the partially expanded nodes, lacking at least one chance node child.

Importantly, such a planning method is called closed-loop planning because the search
happens in the trajectories space, of the form {si, ai}Hi=0 (Bubeck and Munos, 2010; Wein-
stein and Littman, 2012). The states along the trajectory are identified and distinguished.
The search branches according to the selected actions and the different sampled states. This
has the immediate advantage of allowing reasoning at the state level, i.e., evaluating the
optimality of a actions at specific states. Conversely, open-loop planning is a search in the
action sequences or plans space, of the form {ai}Hi=0 (Bubeck and Munos, 2010; Weinstein and
Littman, 2012). The states generated with M̂ along the action sequence are not identified and
the search only branches according to the selected actions in the plans. The consequence of
this is that optimality is not considered with respect to a single state but to the distribution of
states after application of a certain sequence of actions. Notice that for deterministic MDPs,
closed-loop and open-loop planning are equivalent. We briefly introduced the difference be-
tween closed and open-loop planning for the sake of Chapter 3 where the latter is discussed
more thoroughly.

The initial purpose of MCTS is identify the optimal action π∗(s) at the current state s ∈ S
by finding the action with the highest Q-value. Therefore, we define the values of decision
and chance nodes, respectively mirroring V ∗ and Q∗. Intuitively, we use the notations V (νs)
and Q(νas) to denote those values. Since V ∗(s) = maxa∈AQ∗(s, a) for all s ∈ S, we naturally
define the value of a decision node with the maximum value of its children chance nodes:

V (νs) , max
ν′∈{children of νs}

Q
(
ν ′
)
.

To define the value of a chance node, we use the statistics of the search tree. During the
construction, complete trajectories are sampled, starting from s0. For each chance node νas , a

2.2. Planning 23

Selection Expansion Simulation Back-propagation

Z

Z

Z

Z

Z

︸ ︷︷ ︸
Tree Policy

︸ ︷︷ ︸
Default Policy

Figure 2.3: Illustration of one step of the MCTS procedure. For clarity, only decision nodes are
represented and chance nodes are symbolized by the branches of the tree between subsequent
decision nodes. Notice that — according to the tree building process — chance nodes never
exist without at least one decision node child, which motivates this simplified illustration.

subset of those trajectories went through the parent decision node νs by sampling s; and then
selected the action a, leading them to νas . Let us consider the end of those trajectories, starting
from the moment where s is sampled and a selected. This allows us to define a collection
of returns by the discounted sum of the collected rewards along those sub-trajectories. If we
denote by {Zi}ki=1 the set of sampled returns with k the number of trajectories going through
νas , we define the value of the chance node by the empirical mean of the collected returns,
i.e.,

Q(νas) , 1
k

k∑
i=1

Zi. (2.11)

Obviously, if the trajectories are generated with an optimal policy and the true model, then
we have that

Q(νas) −→
k→∞

Q∗(s, a). (2.12)

We now detail the different steps of the tree building. This construction is the sequential
realization of a four steps process illustrated in Figure 2.3. Each time the process is realized,
a full trajectory starting from s0 is generated. We call budget and denote by B ∈ N the total
number of trajectories used to create the tree. We now detail each one of the four steps:

1) Selection. This first step aims at selecting one of the leaf nodes of the existing tree.
If the tree is only composed of νs0 , then this node is selected. Else, we recursively apply
a tree policy πtree — which can select actions based on the values of the nodes — from s0
and use the generative model M̂ to reach a leaf node. From a decision node νs, the chance
node corresponding to the action πtree(s) is selected. From a chance node νas , a state s′ ∼ T̂ as·,
resulting from the application of action a in state s, is sampled. If s′ corresponds to an existing
decision node, the selection step continues from this decision node. Else, a new decision node,
labeled with s′, is created. In such a case, there is no need to apply the second step and the
procedure jumps to the third step.

24 Introduction

2) Expansion. Once a leaf node νs is reached, a new action a is randomly selected among
the non-explored actions of νs and the corresponding chance node νas is created. A call to
the generative model is performed, sampling a state s′ ∼ T̂ as·, resulting from the application
of action a in state s. The decision node νs′ is immediately created as a child of νas .

3) Simulation. The expansion step always ends with the creation of a decision node νs′ .
From s′, a full trajectory is drawn using M̂ and a default policy πdefault until termination,
i.e., reaching of a terminal state or the horizon H. This yields a realization of the discounted
return Z that will be back-propagated to update the values of the nodes in the fourth step.
Remark 2.5. In the case where there are no terminal states and H = ∞, there could be no
termination. One can introduce an artificial horizon H̃ < ∞ and stop the trajectory when
reaching H̃ to prevent this case.

4) Back-propagation. During the selection, expansion and simulation steps, a full
trajectory of length H has been simulated with the generative model M̂ and the subsequent
applications of πtree and πdefault. The back-propagation step consists in updating the values
of all the traversed chance nodes during the selection and expansion steps, according to their
definition in Equation 2.11, page 23.

The MCTS algorithm is summarized in Algorithm 2. A more detailed version, including
the sub-method’s exact definitions is available in the Appendix, Chapter B.

Algorithm 2 MCTS
Set: MDP {S,A, T, r}; initial state distribution P0; horizon H.
Input: generative model M̂ = (T̂ , R̂); budget B; tree policy πtree; default policy πdefault.
s ∼ P0 # Set the initial state.

for t ∈ {1, . . . ,H} do
νs ← decisionNode(s) # Initialize the search tree with the current state s.

for i ∈ {1, . . . , B} do
νs̃ ← selection(νs, M̂ , πtree) # Apply πtree to select a leaf node.

νs̃′ ← expansion(νs̃, M̂) # Expand the tree with a new decision node.

Z ← simulation(s̃′, πdefault, M̂ ,H) # Apply πdefault to generate a trajectory and record

the return.

backPropagation(νs̃′) # Update the values of the nodes with the collected return.

end for
s′ ∼ T as· # Sample the next state.

s← s′

end for

To complete the definition of the MCTS algorithm, the specification of πtree and πdefault
remains. As hinted by Equation 2.12, page 23, a policy as close to optimal as possible should
be used for the values of the nodes to correspond to optimal values. In the literature, many
different policies have been designed for that purpose (Browne, Powley, Whitehouse, Lucas,
Cowling, Rohlfshagen, Tavener, Perez, Samothrakis, and Colton, 2012). The famous variation
of MCTS called Upper Confidence bound applied to Trees (UCT) proposed by Kocsis and

2.2. Planning 25

Szepesvári (2006) focuses the search in more promising areas of the sampled trajectories. To
that purpose, they see the problem of deciding which action to select in a decision node as
a multi-armed bandit problem (Katehakis and Veinott Jr., 1987). They consider using the
Upper Confidence Bound (UCB) (Auer, Cesa-Bianchi, and Fischer, 2002) utility function
defined for every chance node νas as

UCB(νas) = Q(νas) + 2Cp

√
ln(n)
n(s, a) , (2.13)

where Q(νas) is the value of the chance node defined in Equation 2.11, page 23, Cp > 0 is
a constant exploration term, n ∈ {0, . . . , B} is the total number of complete trajectories
generated and n(s, a) is the number of trajectories going through (s, a). The first term,
Q(νas), is an exploitation term, favoring actions that yield high returns. The second term,
2Cp

√
ln(n)
n(s,a) , is an exploration term, favoring less visited nodes. The UCT tree policy πUCT

is the greedy policy with respect to the UCB utility function, i.e., for a decision node νs, the
selected chance node is

πUCT(s) = action of argmax
ν∈νs.children

UCB(ν). (2.14)

Intuitively, Equation 2.13 realizes a trade-off between exploration and exploitation. Every
chance node of the tree is visited infinitely often as its utility increases logarithmically with
the total number n of trajectories. Given a finite budget B ∈ N, UCT often features improved
performances compared to flat MCTS. As B tends to infinity, UCT is proven to converge
to the optimal action. Before stating this important result, let us introduce a few notations.
They may seem cumbersome for the presentation of MCTS we make here but we will re-use
them in Chapter 3.

Suppose we are running UCT from the current state s0 ∈ S. We denote by Ẑa,t the
estimated value of node νas0 after t simulations starting from (s0, a) with a ∈ A and t ∈
{1, . . . , B}. We denote by Ta,t the total number of visits to node νas0 after t simulations. Hence,
Ẑa,Ta,B

represents the final estimate of the value of νas0 after a total of B MC-simulations. We
denote by aB = argmaxa∈A Ẑa,Ta,B the recommended action by UCT after B MC-simulations.
Recall that our objective is to select the optimal action that we will write a∗ at s0. We denote
by Za,t = E

(
Ẑa,t

)
the expected value of Ẑa,t, seen as a random variable subject to the

randomness induced by the generative model M̂ combined with the policies used by UCT.
Asymptotically, this value converges to Za = limt→∞ Za,t. Finally, we introduce ∆a = Za∗−Za
for all a ∈ A. It corresponds to the expected (discounted) return difference between a sub-
optimal action and an optimal one.

26 Introduction

Theorem 2.7 (Convergence of Failure Probability of UCT (Kocsis and Szepesvári, 2006)).
Consider Algorithm 2 executed with a budget B ∈ N and the UCT tree policy of Equation 2.14.
Then, there exists some positive constant ρ such that

Pr (aB 6= a∗) ≤
(1
B

) ρ
2

(
mina6=a∗ ∆a

36

)2

.

In particular, it holds that lim
B→∞

Pr (aB 6= a∗) = 0.

This results implies the convergence of UCT to an optimal policy of the solved MDP. This
algorithm scales to larger classes of problem than the value iteration algorithm presented in
Section 2.2.2, page 18. It relies on weaker hypotheses which makes it convenient for many
practical uses. Particularly, MCTS and UCT both use a generative model which is often more
convenient than the full model required by value iteration. However, there can be problems
where even a generative model is not available. In this case, solving approaches generally
consist in learning a model, or learning the optimal Q-value function, or directly learning an
optimal policy. We focus on learning algorithms in the next section.

2.3 Learning

Commonly speaking, learning refers to all the processes of memorization used by animals or
humans to conceive or modify their behavioral patterns under the influence of their environ-
ment and their experience. In the context of sequential decision making, the definition is
not really different. Instead of the general concept of “learning”, we will narrow down our
study to the specific framework of Reinforcement Learning, because it focuses on learning
methods designed for the purpose of sequential decision making. In the next two sections,
we successively detail our definition of the concept and introduce an important instance of
Reinforcement Learning algorithm.

2.3.1 Definition

Reinforcement Learning (RL) (Sutton and Barto, 2018) is the systematization of the trial
and error process in sequential decision making. An agent takes an action in an environment
given the current state, it receives a reward signal and observes the state resulting from the
transition. This process, illustrated in Figure 2.4, page 27, is repeated until completion.
In this dissertation, the mathematical model of the Reinforcement Learning problem is an
MDP {S,A, T, r} (Definition 2.1, page 8) and we use T and r to generate the transitions.
The goal of an agent in such a context is unchanged: we seek to maximize the expected
(discounted) return. To that end, we also optimize a policy. To do so, interactions with the
environment allow an agent to collect data from which it can learn what actions are good
to take in what states. According to the RL interaction process, data points are of the form
(s, a, r, s′) ∈ S × A × R × S where s is a state, a the selected action at s, and (r, s′) the

2.3. Learning 27

Agent

Environment

Start

Goal

a

s, r

Figure 2.4: Illustration of the Reinforcement Learning principle: an agent interacts with an
environment by taking actions. After each action, it receives a reward feedback and ob-
serves the state resulting from the application of the action. In the figure, a, s, r respectively
represent the action, the state and the reward. Credit: inserted robot picture from Kryp-
ton / Doragon (licensed under the Creative Commons Attribution-Share Alike 3.0 Unported
license).

resulting reward-state pair from the transition. The intuition is that if a particular action in
a particular state yields high reward, it could be a good thing to repeat this action at that
state. However, the overall goal is more complex as we are interested in the sum of all the
collected rewards. Hence, a myopic approach such as the one described before may be too
greedy and perhaps the preferable action to maximize the long term sum of rewards is not
the one yielding higher reward.

Learning necessarily implies repetition of the experienced task. We define episodic tasks as
the sequential repetition of multiple trajectories within the same MDP run until completion,
i.e., when reaching the horizon H or a terminal state. To suggest the idea of sequential
realization, we will call episode the realization of one single trajectory run until completion.
The starting state of each episode is sampled according to a distribution that we write P0 ∈
P(S). Learning data do not need to be originated from the same episode as they correspond
to the same MDP, hence, are still valid. At the end of an episode, the state is reset to an
initial state sampled with P0. Each time a data point (s, a, r, s′) is collected, it can be used by
the agent within a learning procedure. Hence, additionally to the capability to act explained
in the definition of an agent in Section 2.1.1.1, page 6, a Reinforcement Learning agent has a
capability to learn. The general Reinforcement Learning procedure is detailed in Algorithm 3,
page 28.

What does an agent learn? The ultimate goal of Reinforcement Learning is to learn an
optimal policy of the MDP. The learning procedure consists in using the collected data to
learn the shape of certain function(s) to that purpose. There are no rules defining which
function should be learned, but many methods — with their own assets and disadvantages —
have been derived to learn different objects, keeping in sight the eventual goal of computing

http://kryptonite-bot.ml
http://kryptonite-bot.ml
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en

28 Introduction

Algorithm 3 General Reinforcement Learning procedure
Input: agent with methods act and learn; MDP {S,A, T, r}; initial state distribution P0;
number of episodes p ∈ N; horizon H ∈ {1, . . . ,∞}.
for each episode 1 to p do
s ∼ P0 # Set the initial state.

for t ∈ {1, . . . ,H} do
a← agent.act(s) # Apply the current policy.

s′ ∼ T as· # Sample the next state.

r ← rass′ # Sample the reward signal based on the transition.

agent.learn(s, a, r, s′) # Process the collected transition in the learning method.

s← s′

if s is terminal then
break the for loop # Jump to the next episode.

end if
end for

end for

an optimal policy. Commonly, RL methods comply with the three schemes illustrated in
Figure 2.5, page 29. First, one could straightforwardly seek to learn an optimal policy π∗.
We will call those methods direct policy search (Sigaud and Stulp, 2019). Some methods
interleave the learning of the optimal value function V ∗ or the optimal Q-value function Q∗
in the process. As seen before in Equation 2.8, page 17, the knowledge of Q∗ is sufficient to
deduce π∗. We call those methods value-based learning algorithms. Finally, some methods,
first seek to learn the transition and reward functions of the MDP, use them to learn V ∗ or Q∗
and in turn deduce the optimal policy from those functions. We call those methods model-
based learning algorithms or indirect Reinforcement Learning. In this dissertation, we will
mostly be dealing with model-based methods. In the following section, we give the example
of an important model-based RL algorithm, called RMAX.

2.3.2 RMAX: an example of Reinforcement Learning algorithm

RMAX is a conceptually simple RL algorithm. First, a model of the environment is learned.
Secondly, the optimal Q-value function associated to the learned model is computed. Lastly,
the greedy policy with respect to the computed Q-value function is followed. The only hy-
pothesis RMAX does is that S and A are finite spaces.

Consider an MDP {S,A, T,R} and a discount factor γ ∈ [0, 1). In RMAX, we keep track
of a learned model

(
T̂ , R̂

)
that respects the principle of optimism in the face of uncertainty.

This principle can be stated as follows: when the expected (discounted) return of an action is
unknown, we assume it to yield the maximum value. This heuristic allows in turn to force the
exploration of unknown state-action pairs since they are believed to yield maximum return.
If it turns out that it is not true, then the real reward and transition function of those state-
action pairs is learned and the belief is updated accordingly. Practically in RMAX, this is

2.3. Learning 29

Data
D = {(si, ai, ri, s′i)}i

Model
T ass′ , r

a
ss′

Value
V π(s) or Qπ(s, a)

Policy
π(s)

Value
V π(s) or Qπ(s, a)

Policy
π(s)

Model-based Value-based Direct policy search

Policy
π(s)

Figure 2.5: Common reinforcement learning schemes

expressed by the optimistic initialization of
(
T̂ , R̂

)
. Prior to any learning, the transitions are

assumed to be self transitions and rewards to yield Rmax, hence the name of the algorithm.
Formally, we have the following initialization for all (s, a) ∈ S ×A and for all s′ ∈ S, s′ 6= s:

T̂
a
ss = 1, T̂ ass′ = 0, R̂as = Rmax. (2.15)

Notation 2.11. If A is a set included in another set X containing all the elements under study,
we denote by Ac the complement of A in X. Ac contains all the elements of X not in A, i.e.,
Ac , {x ∈ X | x /∈ A}.

As the MDP is explored, the real value of the transition and reward functions is assessed.
Let us consider a particular state-action pair (s, a) ∈ S×A. We denote by n(s, a) the number
of times (s, a) was encountered during learning. We denote by {ri}n(s,a)

i=1 the reward samples
collected at (s, a). We denote by n(s, a, s′) the number of times state s′ ∈ S was sampled after
taking action a in s. In RMAX, the learned model at (s, a) is the empirical model defined by

T̂
a
ss′ = n(s, a, s′)

n(s, a) , ∀s′ ∈ S, (2.16)

R̂
a
s = 1

n(s, a)

n(s,a)∑
i=1

ri. (2.17)

The empirical model of Equations 2.16 and 2.17 is used instead of the optimistic model of
Equation 2.15 once we have high statistical confidence in the empirical estimates. To that
end, we introduce nknown ∈ N the minimum number of samples required for each state-action
pair to be considered known. This allows us to define the set of known state-action pairs by

K , {(s, a) ∈ S ×A | n(s, a) ≥ nknown} .

30 Introduction

As a result, if we write Q the optimal value function associated to
(
T̂ , R̂

)
, its value can be

defined as the solution to:

Q(s, a) =

R̂
a
s + γ

∑
s′∈S T̂

a
ss′ maxa′∈AQ(s′, a′) if (s, a) ∈ K,

Rmax
1−γ else.

(2.18)

We introduce the variables δ ∈ [0, 1) and εM ∈ R and consider a state-action pair to be known
once its empirical model is εM -accurate in L1-norm with probability at least 1− δ. The value
of nknown must be chosen in compliance with this fact and can be deduced from the following
theorem.

Theorem 2.8 (Strehl, Li, and Littman (2009)). Consider (s, a) ∈ S×A. Suppose m successor
states and rewards were independently drawn from T as· and Ras respectively. Let δ ∈ [0, 1)
and εM ∈ R be positive constants. Let

(
T̂ , R̂

)
be the empirical model estimate defined in

Equations 2.16 and 2.17, page 29. If

m ≥
⌈2
(
ln(2S − 2)− ln(δ/2)

)
ε2M

⌉
,

then
∥∥∥T as· − T̂ as·∥∥∥1

≤ εM and
∣∣∣Ras − R̂as ∣∣∣ ≤ εM with probability at least 1− δ.

The proof of Theorem 2.8 is reported in the Appendix, Chapter A, Section A.1. To
complete the definition of RMAX, one should specify an algorithm for computing the Q-
value function Q defined in Equation 2.18. This equation is a fixed-point equation and can be
solved by the value iteration algorithm presented in Section 2.2.2, page 18. From Theorem 2.5,
page 19, the required number of iterations of the algorithm can be deduced to obtain an ε-
accurate Q-value function in maximum norm with ε > 0 a precision parameter. The RMAX
procedure is detailed in Algorithm 4, page 31.

Several analyses of RMAX exist in the literature. We here briefly summarize the results
reported by Strehl, Li, and Littman (2009) about the computational, space, and sample
complexity of the algorithm. The computational complexity was already defined with the
value iteration algorithm in Section 2.2.2, page 18. The space complexity refers to the amount
of memory used by an algorithm. The sample complexity refers to the number of samples an
algorithm requires to solve an MDP. It can be shown that RMAX is Probably Approximately
Correct in Markov Decision Processes (PAC-MDP), with the understanding that all those
complexities are bounded by a polynomial in the size of the problem. Formally, the definition
follows.

Definition 2.7 (PAC-MDP algorithm). An algorithm A yielding a policy whose value is ε-
close in maximum norm to V ∗ is said to be an efficient PAC-MDP algorithm if, for any ε > 0
and 0 < δ < 1, the per-timestep, computational complexity, space complexity, and the sample
complexity of A are less than some polynomial in the relevant quantities

(
S,A, 1

ε ,
1
δ ,

Rmax
1−γ

)
with probability at least 1 − δ. It is simply PAC-MDP if we relax the definition to have no
computational complexity requirement.

2.3. Learning 31

Algorithm 4 RMAX
Set: MDP {S,A, T, r}; initial state distribution P0; horizon H.
Input: nknown; discount factor γ; Rmax.
for (s, a) ∈ S ×A do
Initialize Q(s, a)← Rmax

1−γ
Initialize n(s, a)← 0
Initialize R̂as ← 0
for s′ ∈ S do
Initialize T̂ ass′ ← 0

end for
end for
for each episode do
s ∼ P0 # Set the initial state.

for t ∈ {1, . . . ,H} do
a ← argmaxã∈AQ(s, ã) # Act greedily with respect to the current Q-function upper

bound.

s′ ∼ T as· # Sample the next state.

r ← rass′ # Sample the reward signal based on the transition.

if n(s, a) < nknown then
n(s, a)← n(s, a) + 1 # Increment the counter of current pair s, a.

R̂
a
s ← R̂

a
s + r−R̂as

n(s,a) # Update the reward model with the collected reward r.

T̂
a
ss′ ← T̂

a
ss′ +

1−T̂ass′
n(s,a) # Update the transition model with the outcome state s′.

for s̃ ∈ S\{s′} do
T̂ ass̃ ← T̂ ass̃

(
1− 1

n(s,a)

)
Update the transition model for the other states.

end for
if n(s, a) = nknown then

A new (s, a) pair is known, update the upper bound Q with value iteration.

for i ∈
{

1, . . . ,
⌈

1
ln(1/γ) ln

(
Rmax
ε(1−γ)

)⌉}
do

for (s, a) ∈ S ×A do
if n(s, a) ≥ nknown then
Q(s, a) ← R̂

a
s + γ

∑
s′∈S T̂

a
ss′ maxa′∈A {Q(s′, a′)} # Q-value iteration

update.

end if
end for

end for
end if

end if
s← s′

end for
end for

32 Introduction

First, the total computational complexity of RMAX using the value iteration algorithm
as depicted earlier is

Õ
(
τ + S2A2 (S + ln(A))

1− γ ln
(

Rmax
ε(1− γ)

))

when logarithmic factors are ignored, where τ is the total number of time steps. Secondly,
the space complexity of RMAX is straightforwardly

O
(
S2A

)
,

as it needs memory capacity for the empirical transition and reward model estimates as well
as the Q-function estimate. Thirdly, the sample complexity result of RMAX follows.

Theorem 2.9 (RMAX sample complexity (Strehl, Li, and Littman, 2009)). With probability
1 − δ, the greedy policy with respect to Q computed by Algorithm 4, page 31, achieves an
ε-optimal return in MDP M for all but (when logarithmic factors are ignored)

Õ
(
S |{(s, a) ∈ S ×A | U(s, a) ≥ V ∗M (s)− ε}|

ε3(1− γ)3

)
time steps, with U an upper bound on Q∗, the optimal Q-value function of M .

In this result is included the possibility to benefit from a tighter upper bound U on Q∗
than Rmax

1−γ . Importantly, this accounts for the fact that the sample complexity of RMAX can
be decreased thanks to the precision of U . We will see in Chapter 5 how to leverage this fact
in a non-stationary environment.

Chapter 3

The planning vs. re-planning
trade-off in stationary Markov

Decision Processes

Sommaire
3.1 State of the art . 34
3.2 Open-loop control . 38

3.2.1 The case of closed-loop search trees . 38
3.3 Open-loop search trees . 41

3.3.1 The Open-Loop Upper Confidence bound applied to Trees algorithm . . . 43
3.4 Open-Loop Tree search Algorithm . 44

3.4.1 Description . 45
3.4.2 Distributional optimality criterion and decision criterion 46

3.5 Theoretical Analysis of the Open-Loop Tree search Algorithm 49
3.6 Empirical Analysis of the Open-Loop Tree search Algorithm 53

3.6.1 Heuristic decision criteria . 53
3.6.2 1D Track Environment . 54
3.6.3 Physical Traveling Salesman Problem . 56

3.7 Conclusion . 58

Before tackling the possible ways for an environment to evolve over time, we focus on the
stationary case, featuring no evolution. In this setting, we consider a planning agent building
a plan, or sequence of actions, to be applied in an MDP. We ask ourselves the following
question:

How long can an agent follow a plan without further re-planning in a stationary MDP?

Blindly following a plan, without analyzing if its realization corresponds to the prediction,
consists in an open-loop control that presents a considerable advantage, namely, it spares
potential future re-planning steps that often result in a costly process. A major use case is
the one of tree search algorithms that often do not rely on persistent information. For instance,
the MCTS algorithm presented in Chapter 2 repeats a complete tree construction procedure
at each decision epoch, based on the current state. In this chapter, we propose to leverage the

33

34 Chapter 3. The planning vs. re-planning trade-off in stationary MDPs

fact that the MDP is stationary to avoid re-planning at subsequent decision epochs. Instead,
an open-loop plan is followed as long as it is valid, with a particular understanding of validity.
Therefore, the resulting control is open-loop .

The approach we propose is a general framework, suitable to any planning algorithms
performing tree search either in the trajectories space or the plans space of an MDP. Partic-
ularly, we will apply the method to an open-loop variant of the UCT algorithm introduced
in Chapter 2. We assess the optimality guarantees of the resulting Open-Loop Tree search
Algorithm (OLTA) algorithm.

This chapter is organized as follows. First, in Section 3.1, we review the state of the art
of tree search algorithms and motivate the use of such a planning strategy. Then we report
what has been done in terms of using persistent information in that field. Secondly, we define
open-loop control with search trees in Section 3.2, page 38. We distinguish between closed
and open-loop search trees, yielding two different ways of considering open-loop control with
trees. Thirdly, we define our framework to avoid re-planning in Section 3.4, page 44. We
introduce the OLTA algorithm, an open-loop control tree search algorithm allowing reduced
computational complexity compared to its closed-loop counterpart. In Section 3.5, page 49,
we assess theoretically the optimality guarantees of OLTA. In Section 3.6, page 53, we demon-
strate empirically the performances of OLTA and show that it achieves a compromise between
computational complexity and optimality. Finally, we conclude in Section 3.7, page 58.

3.1 State of the art

Solving a Markov Decision Process can be a computationally intensive process, depending on
the size of its state-action space. The size of such a problem grows exponentially with the
number of dimensions of S×A, which makes the search for an optimal policy difficult. Richard
E. Bellman coined the expression “curse of dimensionality” to refer to this phenomenon in his
work on Dynamic Programming. Let us illustrate this with an example to have a better grasp
on how hard could solving an MDP be. Consider an agent evolving within M = {S,A, T,R}.
As we have seen it in Chapter 2, computing an optimal policy can be achieved by computing
the optimal Q-value function. If a true model (Definition 2.6, page 18) of M is available,
one could use the value iteration algorithm (Algorithm 1, page 20) to deduce an ε-accurate
estimate of Q∗ in maximum norm. However, with a discount factor γ ∈ [0, 1), we saw in
Theorem 2.6, page 20 that the computational complexity of value iteration is

O
(
S2A

1
ln(1/γ) ln

(
Rmax
ε(1− γ)

))
,

which scales with O
(
S2A

)
. Let us now take the example of the game of Go and figure out

how much computation we should apply to solve it. This game is famous for its combinatorial
nature, it features a board game with a grid pattern of size 19× 19 = 361. At each turn, one
of the two players can put a stone in one of the cells of the grid, resulting in a number of
actions A = 361. The cells are either free or occupied by a single stone, hence all the actions

3.1. State of the art 35

are not always available. To be completely fair in our calculation, let us take A = C ≥ 1,
a positive constant, which is enough to serve our purpose of showing the tremendous effort
needed to solve the game of Go by value iteration. The problem becomes combinatorial when
it comes to enumerating all the possible states. The state of the game is described by 361
variables, each taking a value among three possibilities, hence S = 3361 = 1.7× 10172. From
Theorem 2.6, page 20, applying value iteration to the game of Go results in a number of
operations upper bounded by CS2 = C × 10344. Let us now assume that we have a super
computer with a clock rate of 10 GHz, which, surpasses any commercial computer’s clock
rate in 2020. Solving the game of Go using such a super computer would take more than
10334 seconds, which is 10317 times the age of the universe (≈ 1017 seconds). If we were able
to make a perfect parallel computation in this case, it would require more than 10327 parallel
processes to solve the game in one year. Even further, if — instead of a true model — we
would use a true generative model, the analogous resolution method would first run into the
problem of estimating the true model and then applying the Q-value iteration algorithm,
similarly to the RMAX algorithm (Algorithm 4, page 31). No need to say that the problem
becomes overly unfeasible in this case.

Despite all these inconveniences, the game of Go has been “solved” already (Coulom, 2006;
Gelly and Silver, 2008; Enzenberger, Muller, Arneson, and Segal, 2010; Silver, Huang, Mad-
dison, Guez, Sifre, Van Den Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot,
et al., 2016), in the sense of finding a close to optimal policy. The use of quotation marks in
this last sentence is not trivial as the employed methods are not exact and approximate an
optimal policy. Still, those approximations were able to outperform the best human players,
seen as an unreachable baseline among the community a few years before. This achievement
is mainly due to the progresses related to both the MCTS planning algorithm and the deep
Reinforcement Learning methods.

MCTS has many appealing features that made it a first choice algorithm for planning
within an MDP. First, it scales better to the size of the problem than exact methods such as
value iteration. Secondly, it is any-time, meaning that the algorithm can be stopped at any
time of the computation. The quality of the provided solution depending of course on the
amount of time the algorithm is run. As seen in Chapter 2, an MCTS procedure is defined
with a budget B ∈ N, corresponding to the number of complete Monte Carlo simulations
performed. It can be proved that the resulting policy converges to the optimal policy when B
tends to infinity. Thirdly, MCTS only requires a generative model of the environment (Defi-
nition 2.6, page 18) which is less restrictive than a complete model. For all those reasons, the
MCTS algorithm received a lot of interest from the scientific community over the past decades.
Browne, Powley, Whitehouse, Lucas, Cowling, Rohlfshagen, Tavener, Perez, Samothrakis, and
Colton (2012) realized a quite complete survey of the enhancements brought to the algorithm
from the first time it was proposed until 2011. Contributions encompass tree policy enhance-
ments (Gelly and Silver, 2007; Keller and Eyerich, 2012; Keller and Helmert, 2013); default
policy enhancements (Gelly and Silver, 2007; Silver and Tesauro, 2009; Rimmel and Teytaud,
2010; Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser, Antonoglou,
Panneershelvam, Lanctot, et al., 2016); pruning for large, possibly continuous, state-action
spaces (Mansley, Weinstein, and Littman, 2011; Couëtoux, Hoock, Sokolovska, Teytaud, and

36 Chapter 3. The planning vs. re-planning trade-off in stationary MDPs

Bonnard, 2011; Gelly and Silver, 2011; Keller and Eyerich, 2012; Auger, Couëtoux, and Tey-
taud, 2013; Hostetler, Fern, and Dietterich, 2014); back-propagation enhancements (Xie and
Liu, 2009; Keller and Helmert, 2013; Feldman and Domshlak, 2014); and other enhancements
linked to specific domains (Silver and Veness, 2010; Bouzy, Métivier, and Pellier, 2011; Perez,
Rohlfshagen, and Lucas, 2012a; Baker, Ramchurn, Teacy, and Jennings, 2016). Overall, more
than four hundred papers published in ten years illustrate this scientific enthusiasm. We will
see MCTS as a canonical model-based planning algorithm and greatly inspire ourselves from
its structure to derive our open-loop control framework. As we will see in Section 3.2.1,
page 38, the application of this framework is straightforward in the case of closed-loop search
such as preformed by MCTS. Therefore, we extend to the case of open-loop search. Notice
here that the terminology may be ambiguous: open-loop search refers to a search carried
in the plan space of an MDP whereas open-loop control refers to the sequential application
of actions independently from the reached states in-between actions. Let us now review the
state of the art in terms of open-loop tree search.

As introduced in Chapter 2, Section 2.2.3, page 20, open-loop planning is a search in the
action sequences or plan space of an MDP. The tree structure associated to such a search
method is solely composed with action sequences and the optimality of an action within a
node is considered with respect to the distribution of states at this node. This distribution
depends on the initial state at the root of the tree and the course of actions leading to this
node. Of course, such a method is generally sub-optimal compared to closed-loop planning
such as vanilla MCTS. Despite the sub-optimality, open-loop planning is useful for stochastic
environments, especially with a high branching factor. We will develop the reasons why
this approach is attractive in Section 3.2.1, page 38. On this line of thought, Bubeck and
Munos (2010) proposed the Open-Loop Optimistic Planning (OLOP) algorithm, an open-
loop planning algorithm applying the principle of optimism in the face of uncertainty, as
seen with the UCT and RMAX algorithms in Chapter 2, Sections 2.2.3, page 20 and 2.3.2,
page 28. The search is carried in the plans space and focuses on the most promising plan.
They provide an analysis of the performance of OLOP, with respect to a measure of the
proportion of near-optimal plans. Similarly, Weinstein and Littman (2012) proposed the
Hierarchical Open-Loop Optimistic Planning (HOLOP) algorithm, also planning in the space
of trajectories. They demonstrate strong empirical performances, close to optimal, despite the
sub-optimal nature of open-loop planning. Perez Liebana, Dieskau, Hunermund, Mostaghim,
and Lucas (2015) propose an experimental study of several open-loop planning algorithms
in General Video Game Playing (GVGP) (Levine, Bates Congdon, Ebner, Kendall, Lucas,
Miikkulainen, Schaul, and Thompson, 2013), including MCTS. Although their analysis does
not focus on the benefit of open-loop planning, which is seen as a necessity to deal with
stochastic games, the tested algorithms demonstrated state of the art results. The Open-
Loop Expectimax Tree Search (OLETS) algorithm (Perez Liebana, Samothrakis, Togelius,
Schaul, Lucas, Couëtoux, Lee, Lim, and Thompson, 2015) proposed to the 2014 General Video
Game Playing competition is a variant of the HOLOP algorithm (Weinstein and Littman,
2012) in the context of GVGP. It conserves the open-loop planning strategy and is specifically
designed for the competition with the use of a dedicated evaluation function and a finite set
of actions. In this case, it was proven to outperform every competitors, especially closed-loop
planners.

3.1. State of the art 37

The framework we derive in this chapter is based on the following observation: tree search
algorithms discard the computed tree at each decision epoch and never reuse it thereafter.
Precisely, at each decision epoch, all the aforementioned planning algorithms compute a com-
plex tree of the possible trajectories starting from the current state, apply the recommended
action at the root node and start this cumbersome process once again after transitioning to
the next state. From this observation and the fact that the environment does not change
between decision epochs, we ask the following question:

Can a search tree be reused between subsequent decision epochs?

On this line of thought, Perez, Rohlfshagen, and Lucas (2012a) considered keeping the
tree constructed with MCTS after applying the selected action a ∈ A at the root node. At the
next decision epoch, the MCTS procedure is repeated with the same budget B but starting
from a non-empty tree corresponding to the sub-tree whose root node is the decision node
reached with a. This results in a new tree initialization for each decision epoch. However,
they reported no empirical gain in their experiments and concluded to the unsuitability of
this method in the environments they showcase. Heusner (2011) also applied a systematic
reuse of the tree in the game of Ms. Pac-Man where the only source of uncertainty was the
change of direction of the ghosts. He considered discarding the whole tree if one of these
changes occurred, hence reducing the problem to a deterministic version. The AlphaGo Zero
algorithm, developed for the game of Go, also retains the information of sub-trees between
decision epochs (Silver, Schrittwieser, Simonyan, Antonoglou, Huang, Guez, Hubert, Baker,
Lai, Bolton, et al., 2017). Like Heusner (2011), they keep the sub-tree reached by the ap-
plication of the selected action only if its root node corresponds to the reached state in the
real game. Powley, Cowling, and Whitehouse (2017) proposed a method that they called
tree flattening for low computational resources ensemble MCTS (Fern and Lewis, 2011). The
latter refers to the sequential application of MCTS procedures to produce an ensemble of
decision makers and decide with respect to a vote between them. The approach proposed
by Powley, Cowling, and Whitehouse (2017) consists in keeping statistics of the root node of
subsequently constructed tree in ensemble MCTS. They keep track of the back-propagated
rewards and the visit counts and show the positive effect of this method in experiments.
Soemers, Sironi, Schuster, and Winands (2016) studied several enhancements to the MCTS
algorithm in the context of GVGP. Among them, the possibility to reuse the sub-tree whose
root node corresponds to the reached state after application of the recommended action in
the initial tree. The developed idea, already suggested by Perez Liebana, Dieskau, Huner-
mund, Mostaghim, and Lucas (2015), was proven to yield successful experimental results in
the context of GVGP. Although applied to a different domain, this corresponds to the same
approach as the one used by Perez, Rohlfshagen, and Lucas (2012a), Heusner (2011), and
Silver, Schrittwieser, Simonyan, Antonoglou, Huang, Guez, Hubert, Baker, Lai, Bolton, et al.
(2017).

Overall, all the aforementioned methods in terms of tree reuse have been empirically
tested. Vanilla MCTS-like algorithms are generally proven to converge to an optimal policy
as B tends to infinity. Such a guarantee may disappear when keeping track of a previously
constructed tree. For instance, the state reached by application of an action at the current

38 Chapter 3. The planning vs. re-planning trade-off in stationary MDPs

state may not correspond to the root state of the corresponding sub-tree. In this chapter, we
propose a theoretical analysis of the optimality guarantees in that setting, grounded on the
hypothesis that the environment does not change over time. More than re-using a tree, we
propose to avoid re-planning to decrease the computational complexity of an algorithm. We
study the application of open-loop control in both cases of closed and open-loop search.

3.2 Open-loop control

Usually, an agent determines the action it takes based on the current state as illustrated
in the RL principle of Figure 2.4, page 27. When the decision depends on the state, we
say the control is closed-loop. This is the case for planning algorithms such as MCTS: a
lookahead search is performed starting from the current state at each decision epoch. This
is also the case for learning algorithms that select actions based on a policy — generally
among those described in Table 2.1, page 13 — whose action selection is conditioned on the
current state. Conversely, we say that the control is open-loop when the decision rule is
not dependent on the current state. For instance, if we consider an initial state s0 and a
sequence of actions α ∈ Ak, k ∈ N, applying subsequently the actions in α, starting at s0,
without taking into account the states reached along the trajectory, consists in an open-loop
control. Such a decision rule is generally sub-optimal as it is blind to the state reached by the
agent. Particularly, in stochastic MDPs, i.e., with a non-deterministic transition function, the
reached state after a transition may vary across executions, which could create unpredictable
outcomes. Despite its sub-optimal nature, open-loop control generally presents the advantage
of having a minimum computational complexity. For instance, applying a sequence of actions
requires a constant number of computing operations O(1) at each decision epoch, which is
appealing.

Our objective is to design a generic method for open-loop control with tree search algo-
rithms. We propose to investigate methods achieving this by means of search tree reuse, as
reviewed in Section 3.1, page 34. We already defined a certain type of search trees created by
the MCTS algorithm in Section 2.2.3, page 20, namely closed-loop search trees. The scope of
our study will extend to the case of open-loop search trees. Hence, in the next two sections,
we will view open-loop control in both cases.

3.2.1 The case of closed-loop search trees

We defined closed-loop planning in Section 2.2.3, page 20 as a search happening in the trajec-
tories space of an MDP where we sample trajectories of the form {(si, ai)}Hi=0. Particularly,
this means that we keep track of the states reached along the trajectory and distinguish
between them. If we were to represent this search with a tree, this would amount to the
MCTS search tree represented in Figure 2.2, page 21. This type of search tree is composed
of decision nodes, labeled by a state, alternating with chance nodes, labeled by a state-action
pair. The fact that this search is closed-loop, i.e., that we distinguish reached states along

3.2. Open-loop control 39

the path, allows to define the value of decision and chance nodes with respect to their unique
labeling states or state action pairs. Indeed, for the MCTS algorithm, we defined those values
in Section 2.2.3, page 20 as follows:

V (νs) = max
ν′∈νs.children

V
(
ν ′
)
,

Q(νas) = 1
k

k∑
i=1

Zi,

where νs and νas are the decision and chance nodes corresponding to (s, a) ∈ S × A and
{Zi}ki=1, k ∈ N is the collection of the discounted returns collected during Monte-Carlo simu-
lations starting from (s, a). From there, let us formulate a simple way to perform open-loop
control with a closed-loop search tree by means of tree reuse.

In Section 3.1, page 34, we reported contributions performing closed-loop search tree
reuse to improve the quality of an algorithm (Heusner, 2011; Perez, Rohlfshagen, and Lucas,
2012a; Perez Liebana, Dieskau, Hunermund, Mostaghim, and Lucas, 2015; Soemers, Sironi,
Schuster, and Winands, 2016; Silver, Schrittwieser, Simonyan, Antonoglou, Huang, Guez,
Hubert, Baker, Lai, Bolton, et al., 2017). Unlike what we present, they do not take advantage
of the tree reuse to perform open-loop control, but with the hope to increase the quality of the
solution provided by the planning procedure. They have in common the method of re-using
a search tree, plus the fact that this one is closed-loop. To perform open-loop control, we
build on this reuse method, defined as follows: once a tree is built and the recommended
action at the root applied in the real world, the sub-tree corresponding to the reached state
at the following decision epoch is used as the new tree. If this sub-tree does not exist, mainly
because the reached state was not sampled during the search, the whole tree is discarded.
Let us explain this method in detail with an example. We put ourselves in the case where
we want to build a tree at decision epoch t0 ∈ T and reuse it at subsequent decision epoch
t1 ∈ T . The root node of the tree is a decision node corresponding to the current state s0 ∈ S.
Its subsequent child nodes are the chance nodes corresponding to the available actions at s0.
Those chance nodes themselves have one or several decision node children corresponding to
the states sampled from the applications of the actions at s0. Let us denote by

{
si1
}k
i=1 this

population of k ∈ N sampled states, corresponding to the decision epoch t1. The search
is performed in the memory of a computer, but once the tree is built, an action a0 ∈ A
is selected and a transition occurs in the real environment, yielding a new state s1. The
closed-loop search tree reuse method is then applied: if s1 ∈ {si1}ki=1, then the search sub-tree
whose root node is νs1 serves as a new tree for decision epoch t1, the remainder of the tree
is discarded; else, s1 is a new state, never sampled before, the whole tree is discarded and a
new one is built with s1 as the labeling state of the root node. This process is illustrated in
Figure 3.1, page 40.

Given this method for closed-loop search tree reuse, we now conceive a simple algorithm
for open-loop control in this setting. We develop on the simple idea that after reaching a
sub-tree with the procedure illustrated in Figure 3.1, page 40, one can directly rely on this
sub-tree without developing it further. The process can then be repeated as long as there

40 Chapter 3. The planning vs. re-planning trade-off in stationary MDPs

t0

s0

s0 a1

s11 s21

s0 a2

s31 s41

t1

s0

s0 a1

s11 s21

s0 a2

s31 s41

Root decision node Decision node s0 a2 Chance node

Figure 3.1: Reuse scheme of a closed-loop tree. On the left is represented the search tree at
decision epoch t0 with the root decision node labeled with state s0. In red, the chance node
corresponding to the maximum estimated Q-value is selected, action a1 is taken. We suppose
state s2

1 was reached after applying a1 at s0. On the right, at decision epoch t1, is represented
the reused tree in black and the discarded part of the tree in gray. The new tree is the one
whose root node is s2

1.

exist a sub-tree corresponding to the reached states of the trajectory. Algorithm 5, page 41
describes this procedure in an online context.

Notice that this algorithm is not strictly open-loop — hence the name pseudo open-loop
control — since the action selection is conditioned on the current state. However, the only
operation is a state-wise comparison and no computational resources are dedicated to the
estimation of the optimal action, which contrasts with closed-loop control algorithms such as
MCTS. This can allow a considerable saving in computational complexity. The counterpart
of this benefit is a loss of guarantees concerning the optimality of the selected action in a sub-
tree. We saw in Theorem 2.7, page 26 that one can provide an upper bound on the probability
of selecting a sub-optimal optimal action with the UCT algorithm. Applying Algorithm 5,
page 41 with A = UCT allows to extend this upper bound to open-loop control and, by
extending Theorem 2.7, page 26, we have the following upper bound on the probability of
selecting a sub-optimal action in any reused sub-tree:

Pr (ab 6= a∗) ≤
(1
b

) ρ
2

(
mina6=a∗ ∆a

36

)2

, (3.1)

with b ∈ {1, . . . , B} the budget with which the sub-tree has been developed, i.e., the number
of times MC-simulations sampled the root node of the sub-tree following the UCT procedure.

Notice that the decision criterion to select and reuse a sub-tree only based on the fact
that the sampled state corresponds to an existing sub-tree could be improved. Indeed, thanks
to Equation 3.1, one could argue that with a small budget b ∈ {1, . . . , B}, the sub-tree
may provide poor guarantees regarding the optimality of the proposed action at the root

3.3. Open-loop search trees 41

Algorithm 5 Pseudo open-loop control with a closed-loop tree search algorithm
Set: MDP {S,A, T, r}; initial state distribution P0; horizon H.
Input: closed-loop tree search algorithm A .
s ∼ P0 # Set the initial state.

Γ← A (s) # Initialize a tree with the initial state labeling the root node.

for t ∈ {1, . . . ,H} do
Select action a with respect to Γ
s′ ∼ T as· # Sample the next state.

if s′ corresponds to a decision node of depth 1 in Γ then
Γ← sub-tree of Γ corresponding to s′

else
Γ← A (s′) # Re-build a new tree starting from s′.

end if
s← s′

end for

node. Straightforwardly, the condition that the budget is “large enough” to provide sufficient
optimality guarantees with respect to Equation 3.1 can be added to Algorithm 5, page 41 to
improve the decision of re-planning or not. Other decision criterion based on other statistics
of the tree such as depth, width, etc. could also be used, depending on the application.

In this section, we presented a simple method for open-loop control re-using closed-loop
search trees for which we provided optimality guarantees. Developing the equivalent method
for open-loop trees is not straightforward as we will now see. The remainder of this chapter
is dedicated to the formal description of this methodology and its analysis both theoretically
and empirically. First, let us describe open-loop search trees in the next section.

3.3 Open-loop search trees

What motivates the use of open-loop search trees is the fact that closed-loop search becomes
unfeasible in MDPs with a large or continuous state spaces. This fact is accentuated when
many different states can result from a single transition. To better understand this, let us take
the example of an MDPM = {S,A, T,R} with S continuous and T as· a continuous probability
distribution for all s, a ∈ S ×A (for instance Gaussian). Building an MCTS tree from a root
state s0 ∈ S according to Algorithm 2, page 24 results in the following phenomenon: every
time an action a is performed from s0, a new, never encountered before, state s′ ∈ S is
sampled. Indeed, since T as0· is continuous, the probability to sample twice the resulting state
s′ is zero. This is why the MCTS algorithm is generally modified to cope with this case in the
context of closed-loop search trees, for instance with progressive strategies (Chaslot, Winands,
Uiterwijk, Van Den Herik, and Bouzy, 2007; Coulom, 2007; Couëtoux, Hoock, Sokolovska,
Teytaud, and Bonnard, 2011).

Open-loop search trees prevent such a phenomenon from occurring. Before detailing their

42 Chapter 3. The planning vs. re-planning trade-off in stationary MDPs

structure, we enumerate the hypotheses that we make for the remainder of this chapter.

1. We assume a true generative model (T,R) to be available.

2. We assume the number of actions to be finite, i.e., A < ∞. We make no particular
hypothesis on S.

3. For simplicity, we assume that the available actions are independent of the state the
agent lies in, i.e., A(s) = A for all s ∈ S.

Notation 3.1. We consider A ∈ N actions and write A =
{
ai
}A
i=1 the set of actions.

Open-loop search trees consist in a look-ahead search of the possible outcomes while following
some action plans {ai}Hi=0 starting from the current state s0 ∈ S. Thus, the root node of the
tree is labeled by the unique state s0. The edges correspond to the actions, hence A is the
branching factor of the tree. The tree itself conforms to an ensemble of action sequences, or
plans, originating from its root node.

We emphasize the fact that this tree structure implies that we search for a state-independent
optimal sequence of actions (open-loop plan) which is in general sub-optimal compared to a
state-dependent search, performed for instance by MCTS. The THTS family of algorithms in
particular (Keller and Helmert, 2013) defines trees with chance and decision nodes while the
open-loop structure does not apply an equality operator on the sampled states. Bubeck and
Munos (2010) and Weinstein and Littman (2012) argue that closed-loop application of the
first action in open-loop plans, although theoretically sub-optimal, can be competitive with
these methods in practice, while being more sample-efficient.

Since the transition model is stochastic, the non-root nodes are not labeled by unique
states. Instead, every such node is associated to a state distribution resulting from the
application of the action plan leading to the considered node and starting from s0. During
the exploration, we consider saving all sampled states at each non-root node. In open-loop
search trees, the leaf nodes correspond to nodes where the A actions have not all been tested.
A comprehensive illustration of such a tree can be found in Figure 3.2, page 43. Within an
open-loop search tree, the depth of a node is defined by the length of the action sequence
required to reach this node.

For future needs, we here introduce the notion of recommended sub-trees. Let us consider
an open-loop search tree built by an algorithm with a recommendation function. Generally,
this function is to select the action leading to the node of maximum value. We will write Γd
and call recommended sub-tree at depth d ∈ N the sub-tree resulting from the application of
the d first recommended actions. Hence Γ0 denotes the whole tree, Γ1 the tree starting from
the node reached by the application of the first recommended action and so on.

As seen in Section 3.1, page 34, several algorithms using open-loop search trees have been
designed for different purposes. The framework we propose in this chapter for open-loop
control builds on a new open-loop search tree algorithm that we introduce in the following
section.

3.3. Open-loop search trees 43

Root node

Non-root node

s0

a1 ai

s11 sl1

aA

d = 0

d = 1
∀j ∈ {1, . . . , l} ,
sj1 ∼ T ai

s0·

a1 aA

· · ·

· · · · · ·

· · ·

Figure 3.2: General representation of an open-loop tree, where l ∈ N is the number of times
the sub-tree reached by action ai has been developed. Two nodes are represented in this tree
with their respective depths on the left.

3.3.1 The Open-Loop Upper Confidence bound applied to Trees algorithm

Open-Loop Upper Confidence bound applied to Trees (OLUCT) is an open-loop version of
the UCT algorithm. The fundamental difference between both is that OLUCT is not provided
with an equality operator over states. In other words, we do not distinguish between reached
states during the search but only between sequences of actions, as illustrated in Figure 3.2,
page 43. With the closed-loop search terminology, this means that decision and chance nodes
do not correspond to unique states but to the state distribution reachable by the action plan
leading to the node. Hence, decision and chance nodes are associated to the state distribution
which makes OLUCT an open-loop planning algorithm. The fundamental consequence is that
an action value within our tree is computed with respect to the parent node’s state distribution
rather than a single state. Apart from this, OLUCT uses the same exploration procedure as
UCT. We now explain in detail the OLUCT procedure.

Let us consider planning with a finite budget B ∈ N. Within a node, we denote by Ẑi,u
the estimated expected (discounted) return of action i ∈ {1, . . . , A} after u ∈ N samples of
this action. We also denote by Ti(t) the number of trials of action i ∈ {1, . . . , A} up to time
t ∈ {1, . . . , B}. This number of trials is the total number of MC-simulations taking action i
after applying the plan leading to the considered node. The value of the nodes are different
from the definition we had with closed-loop trees. First, the value of an action at time t
within a node ν is defined by the estimated expected (discounted) return Ẑi,Ti(t). In turn, the
value of ν at time t is defined by its maximizing action:

V (ν) = max
i∈{1,...,A}

{
Ẑi,Ti(t)

}
(3.2)

A node being labeled by a set of states instead of a unique state, its value reflects the expected
(discounted) weighted by the state distribution. Like UCT, a UCB strategy (Auer, Cesa-
Bianchi, and Fischer, 2002) is applied at each node where each action is seen as an arm of a

44 Chapter 3. The planning vs. re-planning trade-off in stationary MDPs

bandit problem. At time t ∈ {1, . . . , B}, the tree policy selects the action It with the highest
UCB, defined as follows:

It = argmax
i∈{1,...,A}

{
Ẑi,Ti(t−1) + ct−1,Ti(t−1)

}
,

where, similarly to Equation 2.13, page 25 defining the UCT tree policy,

ct,u = 2Cp

√
ln(t)
u

(3.3)

is an exploration term ensuring that all actions will be sampled infinitely often. The Cp
parameter is a positive constant that drives the exploration vs. exploitation trade-off. We do
not specify the default policy used by the algorithm. Unless given a better one, the random
policy can be used. The OLUCT procedure is detailed in Algorithm 6.

Algorithm 6 OLUCT
Set: MDP {S,A, T,R}; initial state distribution P0; horizon H.
Input: generative model M = (T,R); budget B; default policy πdefault.
s ∼ P0 # Set the initial state.

for t ∈ {1, . . . ,H} do
Create root node νroot(s) # Initialize the search tree with the current state s.

for i ∈ {1, . . . , B} do
νleaf ← select(νroot,M); # Select a leaf node following the OLUCT tree policy strategy

and sample a new state for each encountered node.

Expand(νleaf ,M); # Expand the node using the generative model.

Z ← simulation(νleaf , πdefault,M,H); # Simulate a roll-out using πdefault, starting

from the last sampled state in νleaf.

backPropagation(νleaf , Z); # Update the values of the encountered nodes with the

collected return (see Equation 3.2).

end for
s′ ∼ T as· # Sample the next state.

s← s′

end for

3.4 Open-Loop Tree search Algorithm

In this section, we elaborate on the open-loop control methodology using open-loop search
trees. This is the counterpart of Section 3.2.1, page 38 with open-loop trees. We first describe
the OLTA algorithm, practically implementing the proposed framework. Then we discuss
implementation details related to the algorithm.

3.4. Open-Loop Tree search Algorithm 45

t0

s0
a1 a2

a1, a1 a1, a2 a2, a1 a2, a2

t1

s0

a1 a2

a1, a1 a1, a2 a2, a1 a2, a2

Root node Non-root node

Figure 3.3: Reuse scheme of an open-loop tree. At decision epoch t0, action a1 is recommended
by the algorithm and applied in the real world. The non-root node reached with a1 is the
new root node. The remainder of the tree is discarded.

3.4.1 Description

The OLTA algorithm achieves open-loop control with open-loop search trees of the form
described in Figure 3.2, page 43. It relies on a generic open-loop planning algorithm to
generate a tree, rooting from the current state. This algorithm could be the OLUCT procedure
described in Algorithm 6 for instance. The OLTA procedure is described below.

1. A tree is created with the generic open-loop tree search algorithm.

2. The recommended action at the root of the whole tree Γ0 is selected and applied.

3. Γ1 is proposed to be reused as the new tree to a decision criterion that we will detail
further. If the tree is selected, the procedure goes back to step 2, else, to step 1.

This open-loop search tree reuse scheme is illustrated in Figure 3.3. For subsequent execution
time steps, OLTA decides either to use the sub-tree reached by the recommended action
or to trigger a re-planning by building a new tree. If no re-planning is triggered, then the
recommended action of the sub-tree is applied without using the additional information of
the new state observed by the agent after the transition. This results in an open-loop control
process and spares the cost of developing a new tree starting at this state. Overall, the
intuition behind OLTA is that several consecutive recommended actions in an optimal branch
of the tree can be reliable, despite the randomness of the environment. A major example is
low-level control, where consecutive sampled states are close to each other. Even more, the
planning rate in such a case is generally intense, which motivates the use of low computational
complexity algorithms. OLTA is summarized in Algorithm 7, page 46.

46 Chapter 3. The planning vs. re-planning trade-off in stationary MDPs

One important feature of OLTA is the so-called “decisionCriterion”, based on which the
agent decides to either use the first recommended sub-tree, or to re-build a new tree from the
current state. The decision is based on a comparison with the characteristics of the resulting
sub-tree and the current state. In the next section, we discuss different decision criteria,
leading to the consideration of a family of different algorithms.

Notice that — similarly to Algorithm 5, page 41, its closed-loop counterpart — OLTA
does not achieve strict open-loop control. Indeed, the action selection is conditioned on the
current state since it is used by the decision criterion. However, the only operation is a
state analysis and no computational resources are dedicated to the estimation of the optimal
action, which contrasts with closed-loop control algorithms such as MCTS. We argue that,
like Algorithm 5, page 41, this analysis has comparatively low computational complexity
compared to re-planning strategies. This fact will be demonstrated empirically in a latter
section.

Algorithm 7 OLTA
Set: MDP {S,A, T,R}; initial state distribution P0; horizon H.
Input: Open-loop planning algorithm A ; re-planning criterion decisionCriterion; action
selection procedure recommendedAction.
s ∼ P0 # Set the initial state.

Γ← A (s) # Initialize a complete open-loop search tree.

for t ∈ {1, . . . ,H} do
if decisionCriterion(s,Γ) recommends re-planning then

Γ← A (s) # Create a new open-loop search tree from the current state.

end if
a← recommendedAction(Γ) # Select the recommended action at the root node.

Γ ← subTree(Γ, a); # Set the sub-tree reached from the application of a as the main

tree.

s′ ∼ T as· # Sample the next state.

s← s′

end for

The OLTA procedure starts by using a root node labeled by a unique state and then
solely relies on sub-trees whose root nodes are labeled by distribution of states. This echoes
to the Partially Observable Markov Decision Process (POMDP) (Kaelbling, Littman, and
Cassandra, 1998) literature where uncertainty on the current state implies the creation of a
belief state which is a probability distribution on S (Silver and Veness, 2010). Since OLTA
can operate without certainty on the root state as seen in the tree reuse phase, it should be
noted that the extension to the POMDP case is straightforward.

3.4.2 Distributional optimality criterion and decision criterion

The simplest implementation of the decision criterion is to keep the sub-tree only if its root
node is fully expanded. This means that each action has been sampled at least once and the
action values estimates updated with at least one roll-out with respect to πdefault. This is

3.4. Open-Loop Tree search Algorithm 47

the minimum requirement to recommend an action. We call the resulting algorithm Plain
OLTA. It naively trusts the value estimates of the sub-tree, thus applies the whole plan of
recommended actions until it reaches a partially expanded node. Therefore, Plain OLTA is
expected to perform better in deterministic environments. In stochastic cases however, those
estimates may be biased because of the different sources of uncertainty within the MDP. For
this reason, we seek more robust criteria to base the decision on.

An ideal way to decide whether to keep the sub-tree or not is to track if the recommended
action is optimal with respect to the new state s. Here we make an important distinction
between a state-wise optimal action and a distribution-wise optimal action. The first one is the
action selected by the optimal policy at a specific state. We write it a∗ = argmaxa∈AQ∗(s, a),
with Q∗ : S × A → R the optimal Q-value function. In order to define the second one, we
introduce Sd, the state random variable at the root node of Γd. Its distribution results
from the application of the d first recommended actions starting from s0. Let us denote
by a0, . . . , ad−1 ∈ Ad the d first recommended actions. We denote by PSd the probability
distribution associated to the random variable Sd. Formally, PSd is defined by

PSd : S → R
s 7→ Pr(Sd = s) =

∫
Sd−1 T

ad−1
sd−1sd

∏d−1
i=1

(
T
ai−1
si−1sidsi

)
,

where we used the integral instead of a discrete summation over S for the sake of generality.
The distribution-wise optimal action maximizes the expected return given the state distribu-
tion of the node. To better explain the differences between state-wise and distribution-wise
optimality, we introduce more notions. Following Bellemare, Dabney, and Munos (2017),
given a policy π, a distributional Bellman equation can be expressed in terms of three sources
of randomness that are:

• R : S ×A → R the stochastic reward function;

• P π : F (S,A) → F (S,A) the transition operator associating to each element f ∈
F (S,A)

P πf : S ×A → R
(s, a) 7→ f(S′, A′)

with

S′ ∼ T as·A′ ∼ π(·|S′)

• and Z the random return associated to a state-action pair and defined by

Z : S ×A → R
(s, a) 7→ Ras + γP πZ(s, a) .

Additionally to those three sources of randomness, we introduced Sd, the random variable
of the state resulting from the application of the d first recommended actions. Mathemati-
cally, we have the following distributional Bellman equations, classically defining the Q value

48 Chapter 3. The planning vs. re-planning trade-off in stationary MDPs

function for any policy π:
Qπ(s, a) = Eπ,T,R (Z(s, a)) .

We now define the Q-value function with respect to the state distribution PSd by

Qπd (a) , Es∼PSd (Qπ(s, a)) .

where Qπ is the expected return given the three aforementioned sources of randomness and
Qπd includes the fourth source of randomness caused by the introduction of Sd. In terms of
optimality, we shall define the optimal Q-value function with respect to PSd as

Q∗d(a) , max
π

Qπd (a) .

This allows to introduce a∗d , argmaxa∈AQ∗d(a) the distribution-wise optimal action at the
root node of Γd. Overall, we made the distinction between Q∗ and Q∗d. The first function
represents the optimal expected return given the interaction of R and T . The second function
represents the optimal expected return given the interaction of R, T and the fact that the
initial state is distributed along PSd . In turn, those two functions allowed us to distinguish
between the state-wise optimal action a∗ and the distribution-wise optimal action a∗d.

Unfortunately, at the root node of Γd for d > 0, open-loop tree search algorithms do not
estimate Q∗ but Q∗d. The bias introduced by the state distribution implies that, in the general
case, we have no guarantee that a∗ = a∗d. The risk is that the set ΩSd of possible realizations of
Sd may include states where a∗ is sub-optimal, in which case the resulting return evaluations
would weight in favor of a different action than a∗. In other words — by introducing the
notion of domination domain for an action a ∈ A as Da , {s ∈ S|π∗(s) = a} ⊂ S — if
ΩSd is not included in Da∗ , then the risk of the recommended action to be state-wise sub-
optimal is increased. Conversely, if ΩSd is included in the domination domain of a∗, then
the optimal action will be selected given that the budget is “large enough” with respect
to the chosen tree search algorithm’s performance. This fact comes from the asymptotic
convergence of OLTA implemented with the OLUCT algorithm, studied later in Section 3.5.
Consequently, one should base the decision criterion on the analysis of PSd and the action
domination domains. For instance, Rachelson and Lagoudakis (2010) use the properties of
Lipschitz-MDPs to compute these domains. Although the following discussion is inspired by
this work, the consideration of Lipschitz-MDPs is out of the scope of this chapter. Instead,
we describe below three intuitive axis of analysis onto which an empirical decision criterion
can be implemented. Those criteria will be illustrated on real experiments in Section 3.6.

Current state and state distribution analysis. The current state s can be compared
to the empirical state distribution P̂Sd at the root node of the sub-tree, where P̂Sd is the
collection of sampled states at this root node. If the estimated probability P̂Sd(s) of sampling
s is large, then the return estimators are related to the locality of the state space the agent
lies in. If not, then the distribution-wise optimal action may not be state-wise optimal. This
consideration supposes to identify a state-metric for which two close states have a high chance
to be in the same action domination domain. Alternatively, in the case of a POMDP, a belief
distribution on the current state is available instead of the current state itself (Kaelbling,

3.5. Theoretical Analysis of the Open-Loop Tree search Algorithm 49

Littman, and Cassandra, 1998). In such a case, a direct comparison between this distribution
and P̂Sd can be performed (for instance with a Wasserstein metric).

State distribution analysis. The dispersion and multi-modality of P̂Sd could motivate
not to reuse a sub-tree. A high dispersion involves the possibility that Ω̂Sd does not belong
to a single action domination domain and a re-planning should be triggered. The same
consideration applies in terms of multi-modality. Conversely, a narrow, mono-modal, state
distribution is a good hint for ΩSd to be comprised into a single action domination domain.
Of course, those considerations are problem dependent and the concepts of spread vs. narrow
or multi-modal vs. mono-modal should be refined accordingly.

Return distribution analysis. A widespread or a multi-modal return distribution for
the recommended action in a node may indicate a strong dependency on the region of the state
space we lie in. If ΩSd covers different action domination domains, each of these domains may
contribute a different return distribution to the node’s return estimates, thus inducing a high
variance on this distribution or even a multi-modality. In this case, it is intuitively beneficial
to trigger re-planning. Conversely, a narrow or mono-modal return distribution ensures the
fact that, no matter the shape of P̂Sd , the return will always be the same. In other words, the
optimal Q-value is not dependent on the state. Naturally, even after re-planning, widespread
or multi-modal return distributions can naturally arise as a result of the MDP’s reward and
transition models.

We do not provide a unique generic method to base the decision criterion on. Indeed, we
believe that it is a strongly problem-dependent issue and that efficient heuristics can be built
accordingly. However, the analysis of the state and return distributions constitute promising
indicators and we exemplify their use in the experiments of the last section. Studying theo-
retically the design of a decision criterion that could bring quantifiable optimality guarantees
is an interesting perspective. Notice however that such a criterion might be too conservative
and therefore trigger re-planning too often.

3.5 Theoretical Analysis of the Open-Loop Tree search Algo-
rithm

In this section, we demonstrate that OLTA asymptotically provides distribution-wise optimal
actions for any sub-tree Γd of depth d. For its performance and simplicity, we chose to
implement OLUCT as the open-loop planning algorithm utilized by OLTA. However, any
other algorithm generating trees as described in Section 3.1, page 34 could be used in the
same way, for instance, the OLOP algorithm (Bubeck and Munos, 2010) or the HOLOP
algorithm (Weinstein and Littman, 2012). We first derive an upper bound on the failure
probability that converges towards zero when the initial budget B of the algorithm goes
to infinity. Then, we characterize the loss of performance guarantees between subsequent
depths and show a logarithmic decay of the upper bound. Intuitively, this means that deeper
sub-trees provide less guarantees. The demonstration unfolds as follows: first we calculate a

50 Chapter 3. The planning vs. re-planning trade-off in stationary MDPs

lower bound for the number of trials of the actions at the root of Γd in Lemma 3.1, page 51;
then we derive an upper bound on the failure probability given a known budget at depth d
in Lemma 3.2, page 51; finally we derive a recursive relation between the upper bounds of
subsequent trees that leads to our result in Theorem 3.1, page 52.

We denote by b(d) ∈ N the total budget used to develop Γd, i.e., the number of times the d
first recommended actions have been selected by the tree policy during MC-simulations. This
budget is known after the construction of the total tree Γ0 by OLUCT. We denote by T di,t the
number of times the ith action at the root node of Γd has been selected by the OLUCT tree
policy after t ∈ N expansions of Γd. Necessarily, after completion, 0 ≤ T di,b(d) ≤ b(d). Similarly,
Ẑd
i,T di,t

denotes the estimate of the return of the ith action at depth d after t expansions
of the sub-tree Γd. This estimate is the average of the discounted return collected during
MC-simulations starting from one of the states sampled at the root node of Γd followed by
application of ai. For notation convenience, we write

Ẑdi,t , Ẑd
i,T di,t

.

We write Idt the index of the action chosen by the tree policy at depth d after t expansions of
Γd. By definition of the tree policy, we have:

Idt = argmax
i∈{1,...,A}

{
Ẑdi,t−1 + ct−1,T di,t−1

}
.

The index of the recommended action at depth d given a budget b(d) is

Îd = argmax
i∈{1,...,A}

Ẑdi,b(d) .

Hence, aÎ0
, . . . , aÎ

d ∈ Ad+1 denotes the whole recommended plan. From this, deciding to
perform open-loop control amounts to apply these actions subsequently, regardless of the
reached states. We recall that the objective of OLTA is to allow this open plan application
in a conservative way. Following Kocsis and Szepesvári (2006), we assume that the empirical
estimates Ẑdi,t converge and write Zdi,t = E

(
Ẑdi,t

)
and Zdi = limt→∞ Z

d
i,t. Then, we define the

return difference between a sub-optimal action and the distribution-wise optimal one by

∆d
i , Zdi∗

d
− Zdi

for i ∈ {1, . . . , A}\{i∗d}, where we write i∗d the index of the distribution-wise optimal action at
the root node of Γd. For simplicity, we make the assumption that only one action is optimal in
a given node. The minimum return difference between a sub-optimal action and the optimal
one at depth d is

δd = min
i∈{1,...,A}\{i∗d}

∆d
i .

We now state our results. The first lemma provides a lower bound on the number of trials of
the recommended action for any sub-tree Γd. This quantity being dependent on the budget
used to develop the parent tree, we establish a recurrence relation on a lower bound between

3.5. Theoretical Analysis of the Open-Loop Tree search Algorithm 51

the budgets of subsequent sub-trees. The result guarantees that the budget of a child sub-tree
will be bigger than a quantity proportional to the natural logarithm of the parent’s budget.

Lemma 3.1 (Lower bound for the number of trials). For any sub-tree Γd developed with
a budget b(d) > A, there exist a constant ρ ≥ 0 such that T di,b(d) ≥ dρ ln(b(d))e for all
i ∈ {1, . . . , A}. Furthermore, we have the following sequence of lower bounds for the budget
with d·e the ceiling function: b(d = 0) = B

b(d) ≥ dρ ln (b(d− 1))e
.

The proof of Lemma 3.1 is reported in the Appendix, Chapter A, Section A.2. The
second lemma is an upper bound on the failure probability, i.e., the probability to select a
distribution-wise sub-optimal action at the root node of a sub-tree. The results implies that
this failure probability tends to zero as b(d) tends to infinity. Lemma 3.2 shares many links
with Theorem 2.7, page 26 stating the convergence of the failure probability for the UCT
algorithm. Indeed, the lemma is its extension for any sub-tree of the recommended actions
of Γ0 developed with OLUCT.

Lemma 3.2 (Convergence of the failure probability at depth d conditioned on b(d)). For any
sub-tree Γd developed with a budget b(d) > A, there exists a constant ρ > 0 such that we have
the following upper bound on the failure probability, conditioned by the value of b(d):

Pr
(
Îd 6= i∗d

∣∣∣ b(d)
)
≤ 2b(d)−

ρ
2 (δd)2

.

Particularly, we have that Pr
(
Îd 6= i∗d

∣∣∣ b(d)
)
tends to zero as b(d) tends to infinity.

The proof of Lemma 3.2 is reported in the Appendix, Chapter A, Section A.2. This result
provides that the probability of failure at the root node of Γd conditioned on the budget
b(d) tends to zero. Now we prove in Theorem 3.1, page 52 that this will also be the case
conditioned on the total budget B used to develop the tree Γ0. Indeed, conditioning on b(d)
is not enough as we need the guarantee that b(d) will actually increase given that we increase
B. This last result proves this, which concludes our analysis of OLTA by the fact that the
probability to select the distribution-wise optimal action at any sub-tree Γd tends to 1 as B
tends to infinity.

52 Chapter 3. The planning vs. re-planning trade-off in stationary MDPs

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

Initial budget B

U
p
p
er

b
ou

n
d
on

th
e

p
ro
b
ab

il
it
y
o
f
fa
il
u
re

d = 0 d = 1 d = 2 d = 3

Figure 3.4: Upper bound on the probability of failure at depths d ∈ {0, 1, 2, 3} for Cp = 0.7
and δd = 0.27 for any depth d.

Theorem 3.1 (Convergence of the failure probability at depth d conditioned on the total
budget B). For a total budget of B and for any sub-tree Γd developed with a budget b(d) > A,
there exists a constant ρ > 0 such that we have the following recursive relation for the upper
bound on the failure probability, conditioned by B:

Pr
(
Îd 6= i∗d

∣∣∣ B) ≤ 2dρ ln (b(d− 1))e−
ρ
2 (δd)2

.

Additionally, for any depth d ≥ 1 given the total budget B:

Pr
(
Îd 6= i∗d

∣∣∣ B) ≤ fd(B)−
ρ
2 (δd)2

,

with the function f defined by

f : R → R
x 7→ 2dρ ln(x)e ,

and the function composition defined by f1 = f and ∀d > 1, fd = f ◦ fd−1.

The proof of Theorem 3.1 is reported in the Appendix, Chapter A, Section A.2. As
mentioned earlier, Theorem 3.1 provides that the failure probability converges towards zero
as the total budget B increases. The speed at which this failure probability decreases is
driven by the provided upper bound. The result shows a logarithmic growth between the
upper bounds on the failure probability of two subsequent trees. An illustration of the upper
bound as a function of the total budget can be found in Figure 3.4 for several different
depths. This highlights the fact that the deeper the sub-tree is, the less reliable is the
recommended action at the root node, which motivates the introduction of the decision criteria
in Section 3.4.2, page 46. We should note that these upper bounds are derived without making
further hypotheses on the MDP and express a worst case value. Practically, depending on the
problem, subsequent sub-trees could be highly relevant with respect to the current state. We
show in the next section that equal performances to OLUCT can be reached with a smaller
computational budget and number of calls to the generative model.

3.6. Empirical Analysis of the Open-Loop Tree search Algorithm 53

3.6 Empirical Analysis of the Open-Loop Tree search Algo-
rithm

We compared OLTA with OLUCT on a discrete 1D track environment1 and a continuous
version of the Physical Traveling Salesman Problem2 (PTSP) (Perez, Rohlfshagen, and Lucas,
2012b). We implemented five decision criteria, leading to five variations of OLTA. We first
define those variants and then we describe the environment and discuss the obtained results.

3.6.1 Heuristic decision criteria

A relevant decision criterion with respect to the treated problem allows OLUCT to discard a
sub-tree when its first recommended action may not be state-wise optimal given the current
state. Such a practice leads to re-planning. The key idea developed in OLTA is to trigger this
re-planning as rarely as possible while maintaining a conservative behavior. We implemented
five different tests to base the decision on, and evaluated them independently, which led to
the following variations of OLTA.

Plain OLUCT. The simplest decision criterion that discards a sub-tree only if its root-
node is not fully expanded.

State Distribution Modality (SDM-OLTA). We test whether the empirical state
distribution is multi-modal or not. We implemented this test for countable state spaces only,
which allows to maintain a count vector in NS containing the number of times each state has
been sampled in each node. If there are several modes, i.e., several values of the count vector
are non-zero, the tree is discarded only if the current state does not belong to a majority
mode. We define a majority mode by a mode comprising more than τSDM % of the sampled
states, τSDM being a chosen parameter. The extension of this decision criterion to uncountable
state spaces, for instance Rn with n ∈ N, requires a notion of metric between states and a
notion of mode dispersion which is problem-dependent.

State Distribution Variance (SDV-OLTA). We test whether the empirical state
distribution variance is above a certain threshold τSDV. The tree is discarded if it is the
case. For multi-dimensional state spaces such as in the Physical Traveling Salesman Problem
(PTSP) problem, the variance-to-mean ratio is considered for the different orders of magnitude
to be comparable.

State Distance to State Distribution (SDSD-OLUCT). We compute the Maha-
lanobis distance (De Maesschalck, Jouan-Rimbaud, and Massart, 2000) of the current state
from the empirical state distribution. Intuitively, it reflects how far is the current state from
the states of the empirical distribution with respect to a certain metric. The tree is discarded
if the distance is above a selected threshold τSDSD.

Code available at:
1https://github.com/SuReLI/1dtrack.git
2https://github.com/SuReLI/flatland.git

54 Chapter 3. The planning vs. re-planning trade-off in stationary MDPs

s0

r = 1

s1

r = 0

s2

r = 0

s3

r = 0

s4

r = 1

Figure 3.5: Illustration of the 1D track environment. On top of each cell, representing a state,
is the immediate reward of the transition to this state.

Return Distribution Variance (RDV-OLUCT). Similarly as the state distribution
variance, we test whether the empirical return distribution variance is above a certain thresh-
old τRDV. The tree is discarded if it is the case.

A more selective decision criterion can easily be derived by combining the previously
described decision criteria and discarding the tree if one of them recommends to do so. This
would result in a more conservative re-planning strategy.

3.6.2 1D Track Environment

The 1D track environment, illustrated in Figure 3.5, is a 1D discrete environment where
an agent can either go to the right cell or the left cell. Hence, the action space is A =
{Right, Left}. The initial state is the cell in the middle of the grid, i.e., following the notation
of Figure 3.5, s0 = s2. The reward is 0 everywhere except for the transition to one of the
two terminal states s0 and s4 for which it is equal to 1. We introduce a transition misstep
probability q ∈ [0, 1] which is the probability to end up in the opposite state after taking an
action. Formally, the transition function is defined asT

right
sisi−1 = q

T right
sisi+1 = 1− q

, ∀i ∈ {1, 2, 3} .

The same applies for the left action. For the states s0 and s4, the transition function is
equivalent to a transition to an absorbing extra state — meaning that any transition from
this extra state would yield the same state — with zero reward. If q < 0.5, the optimal policy
πoptimal is to go left at s1, to act randomly at s2 and to go right at s3.

The simulation settings are the following: the tree development budget is B = 20; the de-
fault policy is πdefault = πoptimal; the simulation horizon for πdefault during the MC-simulations
is H = 10; the exploration term defined in Equation 3.3, page 44 is set to Cp = 0.7; we test
eleven misstep probabilities q ∈ {0.0, 0.05, . . . , 0.5}; finally the discount factor is γ = 0.9. The
different decision criteria parameters were selected empirically and set as follows: τSDM = 80,
τSDV = 0.4, τSDSD = 1, and τRDV = 0.9. We generated 1000 episodes for each value of q and
recorded 3 performance measures:

1. the performance loss, which is equal to the number of time steps to termination;

2. the computational cost, which is equal to the time needed for the computer used in

3.6. Empirical Analysis of the Open-Loop Tree search Algorithm 55

Transition misstep probability

100

101

Lo
ss

 (t
im

e
st

ep
s

to
 th

e
go

al
)

Transition misstep probability

0%

10%

20%

30%

M
ea

n
lo

ss
 r

el
at

iv
el

y
to

 O
LU

C
T

lo
ss

Transition misstep probability

100

101

C
om

pu
ta

tio
na

l
co

st
 (m

s)

0.0 0.1 0.2 0.3 0.4 0.5
Transition misstep probability

103

104

N
um

be
r

of
 c

al
ls

OLUCT
Plain OLTA

SDM-OLTA
SDV-OLTA

SDSD-OLTA
RDV-OLTA

Figure 3.6: Comparison between OLTA and OLUCT on the discrete 1D track environment
for varying values of the misstep probability q.

experiments to run each algorithm;

3. and the number of calls to the generative model.

The results are presented in Figure 3.6. We display two different graphs of the loss.
The first one is the raw mean values displayed with 90% standard deviation. The second
one highlights the relative performance between OLTA and OLUCT where only the mean is
displayed.

The motivation behind the use of the 1D track environment is to test open-loop control
in a highly stochastic environment where feedback of the current state is highly informative
about the optimal action. First, notice that the parameters are tuned so that the OLTA
algorithm can easily find the optimal action and that the derived plan at the root node of Γ0
is optimal. In case of misstep for the first action, OLTA has to guess that a re-planning should
be triggered while OLUCT re-plans systematically. As seen on Figure 3.6, the non-plain OLTA

56 Chapter 3. The planning vs. re-planning trade-off in stationary MDPs

0 1 2 3 4 5
0

1

2

3

4

5

0
0

1

1

2

2

3

3

4

4

Figure 3.7: Illustration of the continuous Physical Traveling Salesman Problem. A trajectory
derived by an OLUCT algorithm is displayed in green. The starting point is displayed in red,
the waypoints in green and the walls in black.

and OLUCT achieved a very comparable loss. Plain-OLUCT had a weaker performance due
to its systematic reuse of the sub-trees. Notice that some variations of OLTA such as SDV-
OLTA achieved a better mean loss than OLUCT for some values of q. Due to the high
variance, this observation cannot lead to the conclusion that OLTA can outperform OLUCT.
However, this emphasizes the fact that the performance are very similar. In terms of both
computational cost and number of calls to the generative model, OLTA widely outperforms
OLUCT. As q increases, this computational gain vanishes and catches up with OLUCT for
SDM-OLTA and SDV-OLTA. This accounts for the discriminating power of their decision
criteria that discard more trees. RDV-OLTA and SDSD-OLTA kept a lower computational
cost while reasonably matching the performance of OLUCT. Obviously, the computational
cost of Plain-OLTA stays low. The apparent similarity between the number of calls to the
generative model and the computational cost proves that computing our decision criteria is
less expensive than re-planning. This result demonstrates the benefit of the approach since
calls to the generative model induce most of the computational cost of tree search algorithms.

3.6.3 Physical Traveling Salesman Problem

The PTSP, illustrated in Figure 3.7, is a continuous navigation problem in which an agent
must reach all the waypoints within a maze. The state is s = (x, y, θ, v) ∈ R4 where (x, y)
is the 2D position of the agent, θ its orientation and v its velocity. The action space is
A = {+dθ, 0,−dθ}, the actions respectively consist in increasing, conserving or decreasing
the orientation. The reward is +1 when a waypoint is reached for the first time; −1 when
a wall is attained, which corresponds to a crash; and 0 otherwise. The setting differs from

3.6. Empirical Analysis of the Open-Loop Tree search Algorithm 57

Transition misstep probability
0

200
400
600
800

1000

Lo
ss

 (t
im

e
st

ep
s

to
 r

ea
ch

 a
ll

th
e

w
ay

po
in

ts
)

Transition misstep probability
0%

50%

100%

150%

M
ea

n
lo

ss
re

la
tiv

el
y

to
O

LU
C

T
lo

ss

Transition misstep probability
0

10000

20000

30000

40000

50000

C
om

pu
ta

tio
na

l
co

st
 (m

s)

0.0 0.1 0.2 0.3 0.4 0.5
Transition misstep probability

0.00
0.25
0.50
0.75
1.00
1.25

N
um

be
r

of
ca

lls

1e7

OLUCT
Plain OLTA

SDV-OLTA
SDSD-OLTA

RDV-OLTA

Figure 3.8: Comparison between OLTA and OLUCT on the continuous PTSP for varying
values of the misstep probability q.

the hypothesis made in Section 2.1.3, page 13 because the reward function of the PTSP can
be negative. However, a reward signal can still be scaled into [0, Rmax] and negative values
have no consequences on the theoretical results. The episodes of the PTSP terminate when
the agent reaches all the waypoints or the horizon H. The walls cannot be crossed and the
orientation is flipped when a crash occurs. Similarly, as in the 1D track environment, we
introduce a misstep probability q ∈ [0, 1] which is the probability for another action to be
undertaken instead of the current one. A Gaussian noise of standard deviation σnoise is added
to each component of the resulting state from a transition.

The simulation settings are the following: the initial state is s0 = (1.1, 1.1, 0, 0.1); the
standard deviation of the transition Gaussian noise is σnoise = 0.02; the tree development
budget is B = 300; the default policy is πdefault = πgo-straight which maintains the orientation
constant; the simulation horizon for πdefault during the MC-simulations is H = 50; the ex-
ploration term defined in Equation 3.3, page 44 is set to Cp = 0.7; we test the same eleven
misstep probabilities q ∈ {0.0, 0.05, . . . , 0.5} as in the 1D track environment; finally, the dis-

58 Chapter 3. The planning vs. re-planning trade-off in stationary MDPs

count factor is γ = 0.99. The map of the PTSP used in the experiments is the one depicted
in Figure 3.7, page 56 with three waypoints. The different decision criteria parameters were
tuned to: τSDV = 0.02; τSDSD = 1; τRDV = 0.1. We reserve the development of SDM-OLTA
in the continuous case for future work. We generated 100 episodes for each transition misstep
probability and recorded the same performance measures as in the 1D track case.

The results are presented in Figure 3.8, page 57. OLUCT, SDSD-OLTA and RDV-OLTA
achieved a comparable loss for all the values of q, which shows that our method is applicable
to larger problems than the 1D track environment. It shows that open-loop control with a
careful analysis of the reached states can yield performance equal to closed-loop control. SDV-
OLTA reached a lower level of performance. Plain OLTA still achieved the highest loss since
it is highly sensitive to the stochasticity of the environment. It shows that open-loop control
without a careful analysis of the reached states can yield poor performance. In terms of both
computational cost and number of calls to the generative model, the same trade-off between
performance and computational cost is observed. Plain OLTA and SDV-OLTA considerably
lowered the number of calls at the cost of the performance while SDSD-OLTA and RDV-
OLTA reached a better compromise. The number of calls to the generative model and the
computational cost are quite similar, meaning that — even with the higher dimensionality of
the PTSP compared to the 1D track — the cost incurred by the computation of the decision
criteria is negligible in comparison to the one incurred by the re-planning procedure. Again,
reducing the cost of calls to the generative model being one of the main concerns when dealing
with tree search algorithms, this demonstrates the benefits of the OLTA approach. Notice
that SDV-OLTA achieved a good cost-performance trade-off in the 1D track environment
while not in the PTSP relatively to the other algorithms. This is explained by the sensitivity
of the decision criteria to parameter tuning and by the problem-dependent relevance of such
a criterion. Indeed, the use of such a heuristic rather than a systematic criterion implies
to empirically set the parameters for each problem. For the sake of completeness, we also
generated experiments on the continuous 1D track and the discrete PTSP. The results are
available in the Appendix, Chapter C. We chose to only illustrate the discrete 1D track and
the continuous PTSP for the theoretical interest of the first one and the complexity of the
second one.

3.7 Conclusion

We introduced OLTA, a new class of tree search algorithms performing open-loop control by
re-using subsequent sub-trees of a main tree built with the OLUCT algorithm. A decision
criterion based on the analysis of the current state and the current sub-tree allows the agent
to efficiently determine if the latter can be exploited. Practically, OLTA can achieve the
same level of performance as OLUCT, given that the decision criterion is well designed.
Furthermore, the computational cost is strongly lowered by decreasing the number of calls to
the generative model. This saving is the main interest of the approach and can be exploited in
two ways: it decreases the energy consumption which is relevant for critical systems with low
resources such as Robots, Unmanned Vehicles or Satellites; it allows a system to re-allocate

3.7. Conclusion 59

the computational effort to other tasks rather than controlling the robot. We emphasize the
fact that this method is generic and can be combined with any other tree search algorithm
than OLUCT. Open questions include building non problem-dependent decision criteria, for
instance by making more restrictive hypothesis on the considered class of MDPs, but also
applying the method to other benchmarks and other open-loop planners.

The content of this chapter suggests a few perspectives. As mentioned in Section 3.4.1,
page 45, the OLTA algorithm could straightforwardly be extended to the POMDP setting.
Indeed, in such a case, states are non-observable which implies reasoning with belief states
which are probabilistic distributions on S. The same reasoning is applied within the non-root
nodes of OLTA, giving rise to the notion of distribution-wise optimality. Therefore, studying
the theoretical guarantees brought by OLTA within a POMDP is a natural extension as well
as studying its empirical performance. The decision criterion introduced in Section 3.4.2,
page 46 formalizes a rule to trigger re-planning or not, given the statistics of the tree. The
proposed criteria were based on a qualitative interpretation of the decision problem’s nature
which yielded convincing empirical performances. An interesting perspective would be to
study theoretically the formalization of a decision criterion. For instance, one could define
an optimality measure of the decision from which a criterion can be derived. We can expect
the resulting algorithm to be less effective than the proposed approaches in this chapter —
as theoretical considerations may be too conservative — but it would produce a more robust
algorithm.

Overall, the approach developed in this chapter is a practical method to address the
planning vs. re-planning trade-off problem in tree search algorithms. Noticeably, a formal
analysis allows to quantify the optimality of not re-planning which contrasts with the existing
literature. The proposed algorithm relies on the standard assumption that the environment
does not change over time. This allows to have high confidence on past predictions and to
follow an open-loop plan without further refinements. In the following chapters, we change
the set of hypotheses, first to “slowly” evolving MDPs in Chapter 4, then to rapid evolution
allowing abrupt changes in Chapter 5.

Chapter 4

Planning in gradually evolving
Markov Decision Processes

Sommaire
4.1 State of the art . 62

4.1.1 Temporal evolution as a robust MDP problem 62
4.1.2 Temporal evolution as a multi-MDP model 64

4.2 Non-Stationary Markov Decision Process 67
4.2.1 Definition . 67
4.2.2 Optimality criterion . 68
4.2.3 Lipschitz Continuous NSMDP . 69

4.3 Worst case approach . 72
4.3.1 Snapshot of an NSMDP . 72
4.3.2 Planning with a snapshot model . 74

4.4 Risk Averse Tree Search algorithm . 76
4.4.1 Presentation of the algorithm . 76
4.4.2 Theoretical analysis of the RATS algorithm 81
4.4.3 Heuristic function . 83

4.5 Experiments . 85
4.6 Conclusion . 88

This chapter is dedicated to the study of environments whose properties evolve gradually
over time. This is, for instance, a problem that an autonomous car meets in practice. The
traffic conditions change slowly, sometimes a road becomes increasingly busy or, conversely,
less and less crowded. To model this class of tasks, we introduce in this chapter the notion
of temporal evolution in our definition of an MDP, yielding the definition of Non-Stationary
Markov Decision Process (NSMDP). We will use this model as a generic way of characterizing
evolving MDPs. We make an additional hypothesis to describe a specific class of NSMDPs,
namely gradually changing NSMDPs. The resulting model captures tasks whose properties
evolve gradually over time such as the autonomous car depicted earlier. The first idea that
comes to mind in such an environment is probably that non-predicted changes can lead to
poor performance. This brings us to the following question:

How to conservatively behave in a gradually evolving environment?

61

62 Chapter 4. Planning in gradually evolving Markov Decision Processes

In this chapter, we answer this question through the scope of planning agents. We assume
that evolution in this setting is not chaotic. It has regularity properties and the environment
cannot change completely from one decision epoch to the following one. The idea we try to
develop is to exploit this regularity property to reason on the set of possible futures. In that
context, we propose a planning agent, producing a conservative choice of action given the
non-stationarity hypothesis, and the constraint of gradual temporal evolution.

This chapter is organized as follows. First, in Section 4.1, we review the state of the art
in terms of temporal evolution in MDPs. Secondly, in Section 4.2, page 67, we describe the
NSMDP setting and the regularity assumption. Thirdly, in Section 4.3, page 72, we describe
the worst case approach proposed in this chapter. In Section 4.4, page 76, we design the Risk
Averse Tree Search (RATS) algorithm, practically implementing the worst case approach; In
Section 4.5, page 85, we illustrate experimentally the behavior of RATS in NSMDPs. Finally,
we conclude in Section 4.6, page 88.

4.1 State of the art

Solving Non-Stationary Markov Decision Processes can be considered from at least two differ-
ent point of views. First, it can be treated as a specific case of MDP model with uncertainty,
which is the topic of the robust MDP literature. Secondly, it can be viewed as a multi-MDP
model where an agent interacts sequentially with multiple environments. We review related
contributions from those two points of view.

4.1.1 Temporal evolution as a robust MDP problem

Iyengar (2005) introduce the framework of robust MDPs, where the transition function is al-
lowed to evolve within a set of possible functions due to uncertainty. Formally, the transition
function associated to a state - action - decision epoch triple (s, a, t) ∈ S×A×T , belongs a set
of possibilities that also depends on (s, a, t). The reward function is the same, regardless of the
decision epoch. The set of possibilities is constrained by a rectangularity assumption, which
is equivalent to an independence relation between the models of different decision epochs.
In that setting, Dynamic Programming algorithms are developed to find the optimal policy
for the worst case evolution of the transition function, similar to a minimax approach. This
differs from the approach we present in this chapter in two fundamental aspects: first we
consider uncertainty in the reward model as well; secondly we use a stronger Lipschitz formu-
lation on the set of possible transition and reward functions, this last point being motivated
by its relevance to the non-stationary setting with gradual temporal evolution. The latter is
an alternative to the rectangularity assumption in Robust MDPs. Further, we propose an
online tree search planning algorithm, differing from DP in terms of applicability. Notice that
the robust MDP setting introduced by Iyengar (2005) consider uncertainty on the underlying
transition model in general. In our study, we focus on the uncertainty brought by the possi-
bility for the model to evolve gradually over time, which is more specific. The contributions of

4.1. State of the art 63

the robust MDP literature discussed in Section 4.1.1 mostly consider uncertainty in general,
without specifying a temporal evolution. Kalmár, Szepesvári, and Lőrincz (1998) introduce
the framework of ε-stationary MDPs that can be seen as robust MDPs with a different con-
straint on the set of possible transition functions than the rectangularity hypothesis. More
precisely, they make the assumption that, considering a reference transition function T ∗, the
distance between the transition functions corresponding to different decision epochs and T ∗
is bounded by a scalar ε > 0. In other words, the model is non-stationary and cannot evolve
“too far” from T ∗. The notion of distance between transition functions in their paper is not
formally discussed as the contribution of the paper is a qualitative analysis of a method to
bridge the gap between MDP model and real-life. On that matter, they develop the notion
of ε-stationary MDP to account for the uncertainty on the model and show experimentally
that traditional RL approaches achieve good performances in such a setting. Szita, Takács,
and Lőrincz (2002) extend the ε-stationary MDP setting presented by Kalmár, Szepesvári,
and Lőrincz (1998) using the generalized MDP framework of Szepesvári and Littman (1996).
The resulting model is called ε-MDP. They show in such a setting that an RL algorithm
able to find the optimal policy of an MDP can find a near optimal policy in the associated
ε-MDP. In this case, near optimal is defined by an upper bound on the distance between
the estimated value function and the optimal one. Interestingly, they prove this upper bound
to be proportional to ε. Lim, Xu, and Mannor (2013) consider learning in robust MDPs
where the transition function evolves in an adversarial manner for a subset of S ×A. In that
setting, they propose to learn to distinguish between state-action pairs featuring adversarial
evolution and those whose temporal discrepancy of the transition function is only due to the
stochasticity. The derived approach is shown to achieve similar regret to a minimax approach
that would know which pairs have adversarial evolution.

Unlike the robust MDP framework, some contributions focus on the case of MDPs with
non-stationary reward functions with fixed transition models. Even-Dar, Kakade, and Man-
sour (2009) studied such a case, allowing for any temporal evolution of the reward function,
possibly adversarial. They propose an algorithm achieving sub-linear regret with respect to
the best stationary policy. Dick, Gyorgy, and Szepesvari (2014) viewed a similar setting from
the perspective of online linear optimization. They distinguish two cases: first, when perfect
information is available to the agent, meaning that the full reward function is available at
each decision epoch; secondly, when bandit information is available, meaning that only the
sampled reward is available. They provide two methods to solve these problems, yielding
near-optimal regret bounds in the case of perfect information. In the bandit information
case, they show their method to improve on existing results on a specific class of MDP.

Finally, some contributions focus on the general case — that we consider in this chapter
— of both non-stationary transition and reward functions. Csáji and Monostori (2008) gen-
eralized the model of ε-MDP mentioned earlier to this more general setting by introducing
the (ε, δ)-MDP. Considering a base MDP M = {S,A, T, r}, an (ε, δ)-MDP is a MDP whose
transition and reward functions depend on the decision epoch and are respectively ε-close
and δ-close to T and r. In other words, an (ε, δ)-MDP is a time varying MDP that cannot
evolve too far from the base MDP. In this setting, they study theoretically the convergence
of general stochastic iterative RL algorithms. More specifically, they extend the study to

64 Chapter 4. Planning in gradually evolving Markov Decision Processes

the classical cases of asynchronous DP, Q-learning and temporal difference learning. Abbasi,
Bartlett, Kanade, Seldin, and Szepesvári (2013) consider the same setting extended to the
adversarial case, i.e., where the evolution of the transition and reward functions is poten-
tially determined by an adversary. Instead of the (ε, δ) constraint on the evolution of the
model, they make a mixing assumption that roughly translates to the fact that the transition
function must be sufficiently stochastic. Precisely, that the transition probability must not
be concentrated on a single state as in deterministic MDPs. In this setting, they develop an
algorithm achieving sublinear regret with respect to a set of comparison policies.

Despite not falling in the scope of robust RL, there exist some model-free RL methods that
have been studied in the case of gradually evolving environments. We here review some of
them for the sake of completeness. In the context of online learning of NSMDPs, Lecarpentier,
Rapp, Melo, and Rachelson (2017) come with the proof of concept that an algorithm designed
to learn stationary tasks such as the Q-Learning algorithm can be extended to this setting
by disabling the convergence properties with adequate hyperparameters. They empirically
show that a good performance can be achieved on the task of updraft exploitation for a
gliding Unmanned Aerial Vehicle (UAV). Abdallah and Kaisers (2016) introduced Repeated
Update Q-learning, a variant of the Q-Learning algorithm where updates are repeated for
actions with a low probability of being sampled. Their approach is intended to mitigate the
policy-dependency of the update rule and proven to converge. Additionally, Repeated Update
Q-learning is showed to yield better performance than standard Q-Learning on non-stationary
MDPs.

4.1.2 Temporal evolution as a multi-MDP model

We reviewed non-stationary environments seen as MDPs with uncertain transition and reward
functions. Temporal evolution has also been extensively studied by assuming the existence of
a collection of latent MDP models and the possibility to switch from one latent model to the
other during the interaction process. Those approaches generally have the common feature
that the switching occurrence between models is relatively infrequent. In other words, the
evolution of the environment is assumed to be scarce. This contrasts from the point of view
we take in this chapter, where we consider potential evolution between each decision epoch.

In that matter, the framework of Hidden Mode Markov Decision Process (HMMDP)
introduced by Choi, Yeung, and Zhang (1999) is one of the first developed settings. An
HMMDP model encompasses a collection of MDPs called modes sharing the same state-
action space, along with a mode transition function. Between decision epochs, the current
mode’s transition function is applied to execute a state transition and select the next state.
Additionally, the mode transition function is applied to select the next mode. Consequently,
the current mode (or MDP, the agent is interacting with) may change between decision
epochs, making the overall process non-stationary. The variable corresponding to the index
of the current mode is a hidden value, making the process partially observable. Apart from
this hidden value, the state of the current MDP is fully observable. In this setting, Choi,
Yeung, and Zhang (1999) and Choi, Yeung, and Zhang (2000) proposed to extend the Baum-

4.1. State of the art 65

Welch algorithm to the learning of an HMMDP modeled as a POMDP (Kaelbling, Littman,
and Cassandra, 1998). They derive both a direct method assuming the knowledge that the
environment is an HMMDP and an indirect method derived from general POMDP solving
algorithms. The direct method was further refined by Choi, Zhang, and Yeung (2001) by
introducing a decomposed value function taking into account the specificity of each latent
MDP. Based on this, they re-implement a value iteration algorithm for HMMDPs. It should
be noticed that the HMMDP model is a particular case of Mixed Observability Markov
Decision Process (MOMDP) (Ong, Png, Hsu, and Lee, 2009; Araya-López, Thomas, Buffet,
and Charpillet, 2010; Chanel, 2013), which are POMDPs featuring a partly hidden state space.
Precisely, a subset of the state variables is fully observable while the remaining variables are
hidden, which is the case of the value of the current mode in HMMDPs.

Wiering (2001) studied a specific case of non-stationary environment where some objects
may move over time, altering the transition function in a specific way. In this setting, they
consider a planning agent and propose to track the movement of those objects. If changes
occur, a re-planning is triggered. No assumption is made on the evolution rate of the envi-
ronment, only on the knowledge of the position of the moving objects.

Doya, Samejima, Katagiri, and Kawato (2002) tackle a non-stationary problem similar to
the HMMDP framework. They propose to decompose a task in multiple domains in space
and time. For each domain, they postulate that a simple (learned) controller can achieve a
reasonable performance. A responsibility signal is introduced to determine with which domain
is the agent interacting and therefore which controller should be learned based on those data.
Along with the modeling of a scarce model switch occurrence, their approach shares the fact
with the HMMDP literature that the current task domain is hidden.

Jaulmes, Pineau, and Precup (2005) tackle the case of non-stationary POMDPs with an
algorithm that represents the model uncertainty with a parameterized Dirichlet distribution.
During execution, a number of models are sampled according to this distribution, their optimal
policies are computed and one of them is followed with a probability corresponding to the
model’s weight in the Dirichlet distribution. The Dirichlet parameters are learned with the
data from the current trajectory of the agent. To cope with non-stationarity, past experience
is weighted less than recent experience in the learning process.

Da Silva, Basso, Bazzan, and Engel (2006) propose a context detection RL algorithm.
They consider a similar setting to HMMDP where a collection of latent MDP models exists
and the information of the current interaction MDP is hidden. Like the RMAX algorithm
(Chapter 2, Section 2.3.2, page 28), they learn an empirical model of each latent MDP.
To deduce which latent MDP is the current one, they compare the ability to predict the
environment of each learned model with a quality signal. This signal reflects both the quality
of transition and reward predictions, in the same way as the responsibility signal introduced
by Doya, Samejima, Katagiri, and Kawato (2002).

Hadoux, Beynier, and Weng (2014b) extend the HMMDP framework to the Hidden-Semi-
Markov-Mode Markov Decision Process (HS3MDP) model. The extension consists in the
introduction of a new hidden random variable corresponding to the duration of the interaction

66 Chapter 4. Planning in gradually evolving Markov Decision Processes

process with each mode. The estimation of this duration can in turn be used to increase the
quality of the actions performed by a planning agent. In that setting, they adapt the Partially
Observable Monte Carlo Planning (POMCP) algorithm (Silver and Veness, 2010) designed to
solve large POMDP instances to the HS3MDP framework. The adaptation is performed by
exploiting the structure of HS3MDPs during tree search and by replacing the particle filters
used in the POMCP algorithm by an exact representation of beliefs to solve larger problem
instances. An application of this framework to argumentative debates can be found in Hadoux
(2015).

Hadoux, Beynier, and Weng (2014a) build on the approach developed by Da Silva, Basso,
Bazzan, and Engel (2006) and propose another approach to detect environment changes.
They use tools developed in statistics to detect those changes, resulting in a more principled
method that, importantly, does not assume the knowledge of the number of latent MDPs.

Banerjee, Liu, and How (2017) also propose a change detection method in this context.
Unlike Hadoux, Beynier, and Weng (2014a) who use the optimal policy of the currently
identified MDP to direct the search, they propose to first actively explore with a sub-optimal
exploration policy before exploiting the identified MDP. Despite the loss of reward caused
by the application of the exploration policy, they prove their method to yield faster change
detection. Noticeably, they assume knowledge of the models of the latent MDPs which reduces
the applicability of the approach. This information is used to define the exploration policy
that seeks to maximize the information gain with respect to the latent MDP models.

Sindhu, J., and Shalabh (2019) consider another change point detection method borrowed
form Prabuchandran, Singh, Dayama, and Pandit (2019) and use it in a variant of the Q-
Learning algorithm (Watkins and Dayan, 1992). The change point detection method is based
on a transformation of the data by fitting a parameterized Dirichlet family of distributions.
Change points are detected by testing the maximum likelihood estimates of Dirichlet param-
eters on a sliding window of the sampled time series. The resulting algorithm is proven to
be competitive with the context detection RL algorithm developed by Da Silva, Basso, Baz-
zan, and Engel (2006). However, the approach is limited in applicability since the evolution
pattern, i.e., “which MDP comes after this one”, is assumed to be known.

Lifelong Reinforcement Learning (Silver, Yang, and Li, 2013; Brunskill and Li, 2014; Abel,
Jinnai, Guo, Konidaris, and Littman, 2018) is an important class of problems featuring non-
stationarity. It consists in experiencing a series of tasks drawn sequentially. At stake, an
agent should be able to transfer some form of knowledge between tasks in order to accel-
erate learning. Lifelong Reinforcement Learning features a very similar temporal evolution
mechanism to the HMMDP framework. The main difference between both settings is the
fact that the information of the occurrence of a change is hidden in HMMDPs and related
literature whereas it is revealed to the agent in lifelong RL. Therefore, the former focuses on
the change detection mechanism and the latter focuses on the knowledge transfer mechanism.
We postpone the review of the lifelong RL framework to the next chapter which is about
transfer methods in lifelong RL.

4.2. Non-Stationary Markov Decision Process 67

4.2 Non-Stationary Markov Decision Process

In this section, we first define formally a Non-Stationary Markov Decision Process (NSMDP),
extending the definition of an MDP introduced in Chapter 2, Section 2.1.1.5, page 8. Secondly,
we define the corresponding optimality criterion, mirroring those introduced for an MDP in
Chapter 2, Section 2.1.4, page 15. Thirdly, we introduce the Lipschitz Continuous NSMDP
framework, modeling gradually evolving environments.

4.2.1 Definition

To define a Non-Stationary Markov Decision Process, we revert to the initial MDP model in-
troduced by Puterman (2014) (Chapter 2), where the transition and reward functions depend
on the decision epoch. An NSMDP is formally defined as follows.

Definition 4.1 (Non-Stationary Markov Decision Process). A Non-Stationary Markov De-
cision Process (NSMDP) is an MDP whose transition and reward functions depend on the
decision epoch. It is defined by a 5-tuple {S, T ,A, T, r}, where:

• S is a set of states;

• T = {0, . . . ,H} is a set of decision epochs with H ≤ +∞;

• A is a set of actions;

• T is a transition function mapping state - decision epoch - action triples to the condi-
tional probability distribution on the resulting state:

T : S × T ×A → P (S)
(s, t, a) 7→ Pr (· | s, t, a) .

• r is a reward function mapping state - decision epoch - action - state quadruples to the
reward associated to the transition from state s to state s′ by application of action a at
decision epoch t:

r : S × T ×A× S → R
(s, t, a, s′) 7→ r(s, t, a, s′) .

For convenience, we will adopt the following notations, specific to NSMDPs, in the re-
mainder of the dissertation.
Notation 4.1. For all (s, t, a, s′) ∈ S × T ×A× S, we write T t (· | s, a) , T (s, t, a) the con-
ditional probability distribution on the resulting state from the application of action a at
decision epoch t and state s. Further, T t (s′ | s, a) = Pr (s′ | s, t, a) denotes the probability
to reach state s′ when applying action a at decision epoch t and state s. Additionally, we
denote by rt (s, a, s′) , r(s, t, a, s′) the scalar reward signal associated to the transition from
state s to state s′ by application of action a at decision epoch t.

68 Chapter 4. Planning in gradually evolving Markov Decision Processes

This definition of an NSMDP can be viewed as that of a stationary MDP (Definition 2.1,
page 8) whose state space has been enhanced with the decision epoch. While this addition is
trivial in episodic tasks, i.e., where an agent is given the opportunity to interact several times
with the same MDP, it is different when the experience is unique. In non-episodic tasks, no
exploration is allowed along the temporal axis since one cannot “go back in time”. This fact
justifies the distinction made between state and decision epoch in Definition 4.1.
Viewing NSMDPs as MDPs including the decision epoch in the state echoes back to the
definition of Semi Markov Decision Process (SMDP) (Howard, 1963; Sutton, Precup, and
Singh, 1999; Puterman, 2014), where the duration of a state transition is a continuous random
variable. However, in Definition 4.1, there is no idea of decision epoch “resulting from a
transition”. In this dissertation, we consider discrete time decision processes with constant
transition durations, which imply deterministic decision times in our definition of an NSMDP.
In other words, the same amount of time elapses between any two subsequent decision epochs.
Conversely, in an SMDP, the duration of an action — i.e., the duration of a transition — is a
random variable in the general case. Considering fixed action durations, as it is done in this
Chapter, is a mild assumption since many discrete time sequential decision problems can be
described with such a model.
The value of H distinguishes the finite horizon case H ∈ N from the infinite case H = +∞.
Similarly to the expected reward function of an MDP (Definition 2.2, page 11), we define the
non-stationary expected reward function, representing the expected reward from applying an
action in a state at a specific decision epoch.

Definition 4.2 (Non-stationary expected reward function). The non-stationary expected re-
ward function of an NSMDP {S, T ,A, T, r} is defined as

R : S × T ×A → R
(s, t, a) 7→ Rt (s, a) , Es′∼T t(· | s,a) (rt (s, a, s′)) .

Without loss of generality, we assume in this chapter that the reward function is bounded
between −Rmax and Rmax.

4.2.2 Optimality criterion

In Chapter 2, Section 2.1.4, page 15, we defined an optimal policy associated to an MDP as
the one maximizing the value function uniformly on S. We recall that a non-stationary policy
is a mapping from S × T to A in the case of a deterministic policy and to P (A)) in the case
of a stochastic policy (See Chapter 2, Table 2.1, page 13 for a summary of the different policy
classes considered in this dissertation). Similarly to the value function of a policy in an MDP
introduced in Chapter 2, Definition 2.4, page 14, the value function of a policy can be defined
in the case of an NSMDP.

Definition 4.3 (Non-stationary value function). Consider an NSMDP M = {S, T ,A, T, r},
a discount factor γ ∈ [0, 1) and a non-stationary stochastic policy π. The value of π in M is

4.2. Non-Stationary Markov Decision Process 69

defined for all (s, t) ∈ S × T by the non-stationary value function V π
t,M as

V π
t,M (s) , E

(∞∑
i=t

γi−tri (si, ai, si+1)
∣∣∣∣∣ st = s, ai ∼ πi (· | si) , si+1 ∼ T i (· | si, ai) , ∀i ≥ t

)
.

Notation 4.2. If there is no ambiguity on the considered NSMDPM of Definition 4.3, page 68,
we omit M in the writing of the non-stationary value function and write V π

t , V π
t,M .

Mathematically, the non-stationary value function is not different from its stationary
counterpart given that the decision epoch can be included in the state. From this point of view,
the only difference is practical as the temporal axis cannot be explored at will in non-episodic
tasks. In this chapter, although the generalization to the finite horizon is straightforward, we
will focus on the discounted criterion and consider infinite horizon NSMDPs. The definition of
the non-stationary Q-value function Qπt for any policy π within an NSMDP is straightforward
and we have the following relation between the value and Q-value functions:

Qπt (s, a) = Rt (s, a) + γEs′∼T t(· | s,a)
(
V π
t+1(s′)

)
. (4.1)

We define an optimal policy associated to an NSMDP as a non-stationary deterministic policy
maximizing the value function uniformly on S × T .

π∗t (s)
4
∈ argmax

π
V π
t (s), ∀ (s, t) ∈ S × T . (4.2)

Puterman (2014) showed that, for a stationary MDP (Definition 2.1, page 8), in the infinite
horizon case with a discount factor γ < 1, there exists a Markovian deterministic stationary
policy that is optimal. This is not the case within an NSMDPs. By viewing the decision
epoch as a component of the state, one can show that an optimal policy of an NSMDP is
non-stationary in the most general case. Intuitively, as the environment changes over time,
the decision rule should adapt to these changes. In both cases, there exist a deterministic
optimal policy.

4.2.3 Lipschitz Continuous NSMDP

Many real-world problems can be modeled as NSMDPs. For instance, the problem of path
planning for a glider immersed in a non-stationary atmosphere (Chung, Lawrance, and
Sukkarieh, 2015; Lecarpentier, Rapp, Melo, and Rachelson, 2017), or that of vehicle routing
in dynamic traffic congestion (Van Woensel, Kerbache, Peremans, and Vandaele, 2008; Kok,
Hans, and Schutten, 2012). Realistically, we consider that the expected reward and transition
functions do not evolve arbitrarily fast over time. Conversely, if such an assumption was not
made, any arbitrary evolution of the NSMDP would be allowed which is both unrealistic and
hard to solve. Hence, we assume that changes occur gradually over time. Mathematically,
we formalize this hypothesis by bounding the evolution rate of the transition and expected
reward functions, using the notion of Lipschitz Continuous (LC) functions. Generally, tak-
ing advantage of Lipschitz continuity to infer bounds on the value of a function within a

70 Chapter 4. Planning in gradually evolving Markov Decision Processes

certain neighborhood is a widely used tool in the RL, bandit and optimization communities
(Kleinberg, Slivkins, and Upfal, 2008; Rachelson and Lagoudakis, 2010; Pirotta, Restelli, and
Bascetta, 2015; Pazis and Parr, 2013; Munos, 2014). Formally, Lipschitz continuity is defined
as follows.

Definition 4.4 (Lipschitz Continuity). Let (X, dX) and (Y, dY) be two metric spaces and
consider the function f : X → Y . f is said to be L-Lipschitz Continuous (L-LC) with L ∈ R+

a positive constant if and only if

dY (f(x), f(x̂)) ≤ LdX(x, x̂), ∀(x, x̂) ∈ X2.

L is called a Lipschitz constant of the function f .

Intuitively, an LC function is limited in how fast it can change on its definition set. We
apply this hypothesis to the transition and reward functions of an NSMDP so that those func-
tions are LC with respect to time. For the transition function, this leads to the consideration
of a metric between probability density functions. For that purpose, we use the 1-Wasserstein
distance (Villani, 2008) whose definition follows.

Definition 4.5 (1-Wasserstein distance). Let (X, dX) be a Polish metric space1, µ, ν any
probability measures on X and Π(µ, ν) the set of joint distributions on X×X with marginals
µ and ν. The 1-Wasserstein distance between µ and ν is defined by

W1 (µ, ν) = inf
π∈Π(µ,ν)

∫
X×X

dX(x, y)dπ(x, y).

The choice of the Wasserstein distance is motivated by the fact that it quantifies the
distance between two distributions in a physical manner, respectful of the topology of the
measured space (Dabney, Rowland, Bellemare, and Munos, 2018; Asadi, Misra, and Littman,
2018). Intuitively, we would like close transition probability functions to yield close states
when sampled. To better understand this, let us consider an agent riding a rocket to the
moon and three different transition probability distributions of the resulting position of this
agent:

1. the first one has its support in the northern hemisphere of the moon;

2. the second one has its support in the southern hemisphere of the moon;

3. the third one has its support on the planet Jupiter.

Physically, we would like the first and second probability distributions to have a small distance
compared to their distance to the third probability distributions since Jupiter is far away from
the moon. This can be done by taking into account the distance between the elements of the
supports of the different probability distributions, which is what the 1-Wasserstein distance

1A Polish space is a topological space that is separable and completely metrizable.

4.2. Non-Stationary Markov Decision Process 71

achieves. Formally, the 1-Wasserstein distance has two appealing properties. First, it admits
distributions of disjoint supports. Comparatively, the Kullback-Leibler divergence is infinite
for distributions with different supports, regardless of the magnitude of the discrepancies.
Secondly, it is sensitive to the metric of the measured space. If we consider two regions of the
support where two distributions differ, the Wasserstein distance is sensitive to the distance
between the elements of those regions. Comparatively, the total-variation metric is the same
regardless of this distance. We now introduce the notion of LC-NSMDP seen as gradually
evolving NSMDPs.

Definition 4.6 ((LT , Lr)-LC-NSMDP). An (LT , Lr)-LC-NSMDP is an NSMDP whose tran-
sition and reward functions are respectively LT -LC and Lr-LC with respect to time, i.e.,
∀(s, s′, t, t̂, a) ∈ S2 × T 2 ×A,

W1 (T t (· | s, a) , T t̂ (· | s, a)) ≤ LT
∣∣∣t− t̂∣∣∣ ,∣∣rt (s, a, s′)− rt̂ (s, a, s′)∣∣ ≤ Lr ∣∣∣t− t̂∣∣∣ .

One should remark that the LC property should be defined with respect to actual decision
times and not decision epoch indexes for the sake of realism. In the present case, both have
the same value, and we choose to keep this convention for clarity. Our results however
extend easily to the case where indexes and times do not coincide. In the remainder of
this chapter, we consider (LT , Lr)-LC-NSMDPs, making Lipschitz Continuity our regularity
property. Intuitively, an LC-NSMDP is an NSMDP whose transition and reward functions
cannot vary too much (with respect to the introduced metrics) between decision epochs.
Notice that, along with the Lipschitz constraint we just introduced, the reward function
cannot vary indefinitely as we assume it to be upper bounded by Rmax. Notice also that
the expected reward function R is defined as a convex combination of r by the transition
probability measure T . As a result, the notion of Lipschitz Continuity of R is strongly related
to that of r and T as showed in Theorem 4.1, page 72. Before stating the result, we introduce
another formulation of the 1-Wasserstein distance known as the dual formulation for the need
of the mathematical proof.

Definition 4.7 (Dual formulation of the 1-Wasserstein distance). Let (X, dX) be a Polish
metric space and µ, ν any two probability measures on X. The dual formulation of the
1-Wasserstein distance between µ and ν is defined by

W1 (µ, ν) = sup
f∈Lip1(X)

∫
X
f(x)d(µ− ν)(x)

where Lip1 (X) denotes the set of the continuous mappings X → R with a minimal Lipschitz
constant bounded by 1, i.e.,

Lip1 (X) ,
{
f : X → R

∣∣∣ ∃L ∈ R, 0 ≤ L ≤ 1, |f(x)− f(x̂)| ≤ LdX(x, x̂), ∀ (x, x̂) ∈ X2
}
.

72 Chapter 4. Planning in gradually evolving Markov Decision Processes

Theorem 4.1. Given an (LT , Lr)-LC-NSMDP, the expected reward function R introduced in
Definition 4.2, page 68 is LR-LC with

LR = Lr + LT .

The proof of Theorem 4.1 is reported in the Appendix, Chapter A, Section A.3. This
result shows that the evolution rate of the expected reward function R is conditioned by the
evolution rates of r and T . Practically, it allows to work with both functions interchangeably,
benefiting from the same LC property under the hypothesis that r is Lipschitz Continuous.
Generally, the information contained in a reward function defined on S × A along with the
information contained in the transition function is enough to act optimally under most of
the optimality criteria (Puterman, 2014). For this reason, some results of this chapter will
be provided in the setting where the reward function is defined on S × A. In such a case,
R : S × A → R will be considered independent from the transition function. All the results
extend straightforwardly to the classical case of reward functions defined on S × A × S and
its expected reward function.

4.3 Worst case approach

We consider the problem of planning within an NSMDP. As said earlier, the introduction
of such a model compared to MDPs is motivated by the fact that one cannot explore at will
along the temporal axis in non-episodic tasks. Therefore, knowing a model of the NSMDP
itself would break this difficulty as it could be called as well in the future as in the past.
Thus, in this section, we first introduce the notion of snapshot of an NSMDP seen as an
instantaneous capture of the current model at planning time. Then, we formalize a robust
planning method to the — unknown — evolution of the environment taking advantage of the
knowledge of both the snapshot model and the Lipschitz continuity assumption.

4.3.1 Snapshot of an NSMDP

We consider finding an optimal policy within an LC-NSMDP under the non-episodic task
hypothesis. The non-stationarity assumption discourages learning from previous experience
since the data (interaction samples) may become unrelated to the current transition and
reward functions over time, because of the evolution of those two functions. An alternative is
to use model-based approaches, such as planning methods described in Chapter 2, Section 2.2,
page 17. This class of algorithms requires access to either a true model or a generative model
of the environment. However, we consider that using the true NSMDP model for this purpose
is an unrealistic hypothesis. This would amount to know the exact future evolution of the
environment and would break the interest of the distinction between state and time that
motivated the introduction of the NSMDP model. Therefore, we assume the agent does
not have access to the true NSMDP model. Instead, we introduce the notion of snapshot

4.3. Worst case approach 73

model. Intuitively, the snapshot associated to the decision epoch t0 is a temporal slice of the
NSMDP at t0. This means that we consider its transition and reward functions as if they
were “frozen” and could only be evaluated at t0. One can see this as taking a photograph and
performing planning within the resulting stationary MDP. Assuming a snapshot to be known
is a much more realistic assumption than assuming the complete model to be known. Indeed,
in many practical cases, one can easily gather information about the current transition and
reward functions of the environment but hardly infer on their future evolution. For instance,
in the thermal soaring problem of a glider, the current position of updrafts can be deduced
with respect to the position of the clouds but their future position is hard to guess as it
depends on complex mechanisms. Similarly, in the problem of vehicle routing in dynamic
traffic congestion, the knowledge of the current traffic density is easy to acquire, but the way
it will evolve through time is a complex process. A snapshot MDP is formally defined as
follows.

Definition 4.8 (Snapshot of an NSMDP). The snapshot of an NSMDP {S, T ,A, T, r}
at decision epoch t0, denoted by MDPt0 , is the stationary MDP defined by the 4-tuple
{S,A, Tt0 , rt0} where S, A are shared with the NSMDP and

Tt0 : S ×A → P (S)
(s, a) 7→ T (s, t0, a) ,

rt0 : S ×A× S → R
(s, a, s′) 7→ r(s, t0, a, s′)

are the transition and reward functions of the NSMDP at t0.

Notation 4.3. Following Notation 4.1, page 67, for a snapshot MDPt0 of an NSMDP {S, T ,A, T, r}
with t0 ∈ T , we write, for all (s, a, s′) ∈ S ×A× S, T t0 (· | s, a) , Tt0(s, a) the conditional
probability distribution on the resulting state from the application of action a at state s in
MDPt0 ; and T t0 (s′ | s, a) = Pr (s′ | s, t0, a) the probability to reach state s′ when applying
action a at state s in MDPt0 .

Similarly to the MDP and NSMDP cases, this definition induces the existence of the
snapshot expected reward function Rt0 defined by

Rt0 : S ×A → R
(s, a) 7→ Es′∼T t0 (· | s,a) (rt0 (s, a, s′)) .

Remarkably, the snapshot MDPt0 is a stationary MDP and coincides with the NSMDP
only at t0 in the most general case. Particularly, one can generate a trajectory {(st, at, rt)}t∈T
corresponding to an NSMDP using the sequence of snapshots {MDPt}t∈T as a model. Overall,
the assumption of knowledge of snapshot models amounts to considering a planning agent
only able to get the current stationary model of the environment.

74 Chapter 4. Planning in gradually evolving Markov Decision Processes

4.3.2 Planning with a snapshot model

We consider a planning agent interacting with an NSMDP at state - decision epoch (s0, t0) ∈
S × T , using the snapshot model MDPt0 . By planning, we mean conducting a look-ahead
search within the possible trajectories starting from (s0, t0). The search allows in turn to
identify an optimal action with respect to the model by estimating the optimal Q-values
of the actions at (s0, t0). This action is then undertaken and the agent transitions to the
next state where the operation is repeated. This general procedure is the one of the MCTS
algorithm. However, the consequence of planning with MDPt0 is that the estimated optimal
Q-values of the actions at (s0, t0) correspond to the optimal Q-values of the snapshot, not
the true NSMDP model. In the general case, the true optimal Q-values at (s0, t0) within the
NSMDP do not match these estimates because of the non-stationarity. Indeed, trajectories
starting at (s0, t0) would require the knowledge of future snapshots MDPt>t0 to match real
trajectories of the NSMDP, which is out of our assumptions.

In this section, we propose a risk averse alternative to this issue. The intuition we develop
is that, given the gradual evolution rate of the environment, for a state s, seen at a future
decision epoch t > t0 during the search, we can predict the set into which the transition and
reward functions of the future snapshot MDPt lie. Given that set, we consider its element
yielding the poorest performance to compute an action robust to the worst case evolution. Let
us first define the set of admissible future snapshots and then detail the risk averse method.
Formally, the Lipschitz continuity property of the transition and reward functions allows us
to define such a domain in Theorem 4.2.

Theorem 4.2 (Set of admissible snapshot models). Consider an (LT , Lr)-LC-NSMDP, (s, t, a) ∈
S × T × A. The transition and expected reward functions (Tt, Rt) of the snapshot MDPt at
(s, a) belong to the set ∆t(s, a) defined as follows:

∆t(s, a) , BW1 (T t−1 (· | s, a) , LT)× B|·| (Rt−1(s, a), LR)

where LR = LT + Lr and Bd (c, r) denotes the ball of center c, defined with metric d and
radius r.

The proof of Theorem 4.2 is reported in the Appendix, Chapter A, Section A.3. Borrowing
the same notations, the same applies for the reward function. For all (s, t, a, s′) ∈ S×T ×A×S,

rt
(
s, a, s′

)
∈ B|·|

(
rt−1

(
s, a, s′

)
, Lr

)
.

Recall that we choose to work with the expected reward as independent from the transi-
tion function rather than the reward function, keeping in mind that the LC property of the
expected reward function can be deduced from the LC property of the reward function, as
shown in Theorem 4.1, page 72. Intuitively, those results establish that the transition and
reward models of subsequent decision epochs cannot differ “too much”, the evolution rate
being controlled by the magnitude of the Lipschitz constants. This conforms to the gradually
evolving NSMDP framework developed in this chapter.

4.3. Worst case approach 75

For a future prediction at (s, t) ∈ S × T , t > t0, what model should be used for planning?
Using Tt0 , Rt0 would result in planning in MDPt0 which yields no theoretical guarantees.
The underlying evolution of the NSMDP being unknown, a desirable feature would be to
use a model leading to a policy that is robust to every possible evolution. To that end, we
propose to use the snapshots corresponding to the worst possible evolution scenario under the
constraints of Theorem 4.2. Such a practice — commonly used in the robust MDP literature
mentioned in Section 4.1, page 62 — is a way to minimize the maximum regret of applying a
policy in the NSMDP given any possible evolution, including adversarial. In other words, this
is a way to minimize the maximum loss that could result from an unfavorable evolution of
the environment. Notably, in NSMDPs presenting catastrophic terminal states corresponding
to, for instance, crashes or a failures, the risk averse behavior minimizes the risk of reaching
those states. Compared to using MDPt0 , this boils down to using a different value estimate
for s at t than the target V ∗MDPt0

(s) which provides no robustness guarantees.

We now define formally the worst possible evolution. Consider an NSMDP {S, T ,A, T,R}
and a policy π. We put ourselves in the case of a general reward function R : S × A → R,
independent from the transition function T . A worst case NSMDP complying with the snap-
shot MDPt0 , t0 ∈ T , corresponds to a sequence of transition and reward models minimizing
the expected value of applying π in any pair (s, t) ∈ S × T , t ≥ t0, while remaining within
the bounds of Theorem 4.2, page 74. Given the snapshot at t0, we write V̄ π

t0,t(s) the value of
a policy π in a worst case NSMDP at (s, t) ∈ S × T , t ≥ t0 defined as

V̄ π
t0,t(s) , min

{(T̃i,R̃i)}i∈{t0,t0+1,... }

E
(∞∑
i=t

γi−tR̃i (si, ai)
∣∣∣∣∣ st = s, ai ∼ πi(· | si)
si+1 ∼ T̃ i (· | si, ai)

)
(4.3)

such that

(
T̃t0 , R̃t0

)
= (T0, R0)(

T̃ i (· | s, a) , R̃i (s, a)
)
∈ ∆i(s, a), ∀ (s, i, a) ∈ S × {t0, t0 + 1, . . . } × A

Remark 4.1. It should be noticed that there may exist no valid Bellman equation (Bellman,
1957) for Definition 4.3. In fact, Iyengar (2005) proved in the general case that there exists
such an equation if we assume the snapshots of different decision epochs to be independent
from each other. This assumption is called the rectangularity hypothesis. However, in our
case, the snapshots are interdependent, as detailed in Theorem 4.2, page 74. The motiva-
tion behind the introduction of Definition 4.3 is essentially the physical sense of the worst
achievable value of a policy, rather than the theoretical existence of a Bellman equation.

76 Chapter 4. Planning in gradually evolving Markov Decision Processes

Intuitively, the worst case NSMDP is a model of a non-stationary environment leading
to the poorest possible performance for π, while being an admissible evolution of MDPt0 .
It reflects a worst case scenario and magnifies the possible pitfalls of the environment, for
instance π leading to catastrophic terminal states. Additionally, we define Q̄πt0,t(s, a) as the
worst case Q-value for the pair (s, a) ∈ S ×A at decision epoch t ∈ T , t ≥ t0:

Q̄πt0,t(s, a) ,

Rt0 (s, a) + γEs′∼T t0 (· | s,a)

(
V̄ π
t0,t+1(s′)

)
if t = t0,

min
(T̃ ,R̃)

R̃ (s, a) + γEs′∼T̃ (· | s,a)

(
V̄ π
t0,t+1(s′)

)
else,

such that
(
T̃ , R̃

)
∈ ∆t(s, a), ∀ (s, a) ∈ S ×A .

(4.4)

Similarly as the way an NSMDP can be described with a sequence of snapshot models, the
worst case NSMDP can be described with a sequence of worst case snapshot models. A pair
(pt, Rt) that participates in the minimization of Equation 4.4 defines a worst case snapshot
at decision epoch t. Such a snapshot is recursively defined as, for all (s, a) ∈ S ×A as(

T̄t, R̄t
) 4
∈ argmin

(T̃ ,R̃)∈∆t(s,a), ∀(s,a)∈S×A
Es′∼T̃ (· | s,a)

(
R̃ (s, a) + γV̄ π

t0,t+1(s′)
)

Identifying the worst case snapshots would allow the planning agent to derive a cautious,
minimax behavior that provides a worst case performance guarantee given only MDPt0 .

4.4 Risk Averse Tree Search algorithm

In this section, we present a planning algorithm, practically implementing the risk averse
approach presented in Section 4.3.2, page 74. We first describe the algorithm, seen as a tree
search planning method. Then, we perform a theoretical analysis of the guarantees brought
by the algorithm along with its computational complexity. Finally, we develop possible im-
provements to the algorithm through the use of heuristic functions.

4.4.1 Presentation of the algorithm

Tree search algorithms have been described in Chapter 2, Section 2.2.3, page 20. Following
(Keller and Helmert, 2013), we consider closed-loop search trees, composed of decision nodes
alternating with chance nodes. We adapt their formulation to take time into account, resulting
in the following definitions. A decision node at depth t, denoted by νs,t, is labeled by a state
- decision epoch pair (s, t). The edges leading to its children chance nodes correspond to the
available actions at (s, t). A chance node, denoted by νs,t,a, is labeled by a state - decision
epoch - action triple (s, t, a). The edges leading to its children decision nodes correspond
to the reachable state - decision epoch pairs (s′, t′) after performing action a at (s, t) as
illustrated in Figure 4.1, page 77. Notice that in this type of tree, from the perspective of a
node, the notion of depth is equivalent to the notion of decision epoch.

4.4. Risk Averse Tree Search algorithm 77

s1

s1 a1

s1

s1 a1

s1 s2

s1 a2

s1 s2

s2

s2 a1

s1 s2

s2 a2

s1 s2

s1 a2

s1

s1 a1

s1 s2

s1 a2

s1 s2

s2

s2 a1

s1 s2

s2 a2

s1 s2

d = 0

d = 1

dmax = 2

Decision node s11 a11 Chance node Leaf node

Figure 4.1: Tree structure illustration for a maximum depth of dmax = 2 with state space
S = {s1, s2} and action space A = {a1, a2}. The current state s1 of the agent when the tree
is built labels the root node. Each depth, shown on the left side, corresponds to the decision
epoch associated with the nodes.

We consider the problem of estimating the optimal action a∗0 at (s0, t0) within a worst case
NSMDP complying with the known snapshot MDPt0 . This problem is twofold. It requires
1) to estimate the worst case NSMDP model given MDPt0 and 2) to explore the latter in
order to identify a∗0. We propose to tackle both problems with an algorithm inspired by the
minimax algorithm (Fudenberg and Tirole, 1991) where the max operator corresponds to the
agent’s policy, seeking to maximize the return; and the min operator corresponds to the worst
case model, seeking to minimize the return. By analogy with the minimax literature, this
approach amounts to see the environment as an adversarial agent. Estimating the worst case
NSMDP requires to estimate the sequence of subsequent worst case snapshots minimizing
Equation 4.4. The interdependence of those snapshots between subsequent decision epochs
(Equation 4.3, page 75) makes the problem hard to solve (Iyengar, 2005), particularly be-
cause of the combinatorial nature of the adversary’s action space. Especially, as the latter
consists in modifying the properties of the model, it is continuous and thus infinite. For
instance, for (s, t, a) ∈ S × T × A, there is an infinite number of scalars Rt(s, a) belonging
to B|·| (Rt−1(s, a), LR), and choosing any of those scalars can be viewed as an action of the
environment, seen as an adversary. Instead, we propose to solve a relaxation of this problem,
by considering snapshots only constrained by MDPt0 . Making this approximation leaves a
possibility to invalidate Theorem 4.2, page 74 but allows for an efficient search within the
developed tree and — as will be shown experimentally — leads to robust policies. Figure 4.2,
page 78 illustrates the effect of considering the relaxed problem compared to the original con-
straints depicted in Equation 4.3, page 75. For that purpose, we define the set of admissible
snapshot models at (s, t, a) ∈ S × T ×A with respect to MDPt0 by

∆t
t0 (s, a) , BW1 (T t0 (· | s, a) , LT |t− t0|)× B|·| (Rt0(s, a), LR |t− t0|) .

The relaxed analogues of Equations 4.3, page 75 and 4.4, page 76 for (s, t, a) ∈ S × T × A

78 Chapter 4. Planning in gradually evolving Markov Decision Processes

Decision
epochst0 t0 + 1 t0 + 2

Snapshots

MDPt0 •
•

MDPt0+1
• MDPt0+2

• MDPt0+2

Admissible solution for Equation 3.3, page 75

Admissible for RATS, breaches Equation 3.3, page 75

Figure 4.2: Illustration of the relaxed problem solved by the RATS algorithm. The horizontal
axis represents time with the decision epochs and the vertical axis represents the space of
snapshot MDPs, allowing to illustrate the Lipschitz constraint between models as if they were
scalar values. Equation 4.3, page 75 constrains subsequent snapshots to respect the Lipschitz
constraint while the relaxed version only constrains them with respect to the “origin” snapshot
MDPt0 .

are defined as follows:

V̂ π
t0,t(s) , min

{(T̃i,R̃i)}i∈{t0,t0+1,... }

E
(∞∑
i=t

γi−tR̃i (si, ai)
∣∣∣∣∣ st = s, ai ∼ πi(· | si)
si+1 ∼ T̃ i (· | si, ai)

)
(4.5)

such that

(
T̃t0 , R̃t0

)
= (T0, R0)(

T̃ i (· | s, a) , R̃i (s, a)
)
∈ ∆i

t0(s, a),
∀ (s, i, a) ∈ S × {t0, t0 + 1, . . . } × A

Q̂πt0,t(s, a) , min
(T,R)∈∆t

t0
(s,a), ∀(s,a)∈S×A

R(s, a) + γEs′∼p
(
V̂ π
t0,t+1(s′)

)
. (4.6)

For an optimal policy with respect to the criterion so defined, we get the following value and
Q-value functions:

V̂ ∗t0,t(s) , max
a∈A

Q̂∗t0,t(s, a), (4.7)

Q̂∗t0,t(s, a) , min
(T̃t,R̃t)∈∆t

t0
(s,a), ∀(s,a)∈S×A

R̃t (s, a) + γEs′∼T̃ t(· | s,a)

(
V̂ ∗t0,t+1(s′)

)
. (4.8)

Remark 4.2. In Remark 4.1, we stated that there may exist no valid Bellman equations (Bell-
man, 1957) for the worst case value and Q-value functions. In contrast, it can be shown for
the relaxed problem (Definitions 4.5, 4.6, 4.7 and 4.8) that such a Bellman equation exists.
This straightforwardly stems from the results presented by Iyengar (2005), proving the case
when the snapshot models are supposed to be independent from each other (rectangularity
assumption). Indeed, in the definition of the relaxed problem, the rectangularity assumption
is verified while it is not true in the full problem of Equations 4.3, page 75 and 4.4, page 76.

4.4. Risk Averse Tree Search algorithm 79

Let us now provide a method to calculate the value of state - decision epoch pairs and
state - decision epoch - action triples within the nodes of the tree search algorithm.

Max nodes. A decision node νs,t corresponds to a max node due to the greediness of the
agent with respect to the subsequent values of the children. We aim at maximizing the return
while retaining a risk averse behavior. As a result, the value of νs,t follows Equation 4.7,
page 78 and is defined as:

V (νs,t) = max
a∈A

V
(
νs,t,a

)
. (4.9)

Min nodes. A chance node νs,t,a corresponds to a min node due to the use of a worst case
NSMDP as a model which minimizes the value of νs,t,a with respect to the reward and the
subsequent values of its children. Writing the value of νs,t,a as the value of s, t, a, within the
worst case snapshot minimizing Equation 4.8, page 78, and using the values of the children
as values for the next reachable states, leads to Equation 4.10.

Q
(
νs,t,a

)
= min

(T,R)∈∆t
t0

R(s, a) + γEs′∼T
(
V
(
νs
′,t+1

))
(4.10)

Given that the values of the subsequent children estimate the optimal value V̄ ∗t0,t+1 (s′), this
equation reflects the optimal Q-value of Equation 4.8, page 78.

Our approach considers the environment as an adversarial agent, as in an asymmetric two-
player game, in order to search for a robust plan. Note that this game is asymmetric, since the
agents have different action sets: the actions the environment can take are modifications to
the model itself. The resulting algorithm, called Risk Averse Tree Search (RATS), is described
in Algorithm 8, page 80. Given an initial state - decision epoch pair, a minimax tree is built
using the snapshot MDPt0 and the operators corresponding to Equations 4.9 and 4.10 to
estimate the worst case snapshots at each depth. The tree is built, the action leading to the
best possible value from the root node is selected and a real transition is performed. The
next state is then reached, the new snapshot model MDPt0+1 is acquired and the process
re-starts from the beginning. Notice the use of T (ν ′ | ν) and R (ν) in the pseudo-code: they
are light notations respectively standing for the probability T t (s′ | s, a) to transition to a
decision node ν ′ ≡ νs

′,t+1 given a chance node ν ≡ νs,t,a and Rt (s, a) corresponding to a
chance node ν ≡ νs,t,a. The tree built by RATS is entirely developed until the maximum
depth dmax. A heuristic function is used to evaluate the value of the states labeling the leaf
nodes of the tree, this aspect of the algorithm being discussed later in Section 4.4.3, page 83.

For Algorithm 8, page 80 to be practically executable, the computation of the min operator
should be detailed. We provide a closed-form expression of this minimization problem in
Theorem 4.3, page 81. The resulting expression should be used to set the value of any chance
node of the tree. To compute it, a formula giving the worst case snapshot model is evaluated
and the latter is used to compute the value. Recall that this worst case snapshot model
consists in the “optimal action” selected by the environment seen as an adversary in our
risk averse approach. Notice that the information of the value of the Lipschitz constant, or
at least a pessimistic estimate, should be made available to the agent for the computation

80 Chapter 4. Planning in gradually evolving Markov Decision Processes

Algorithm 8 RATS
Set: NSMDP {S, T ,A, T, r}; initial state distribution P0; horizon H.
Input: maximum search depth dmax; heuristic function H.
s ∼ P0 # Set the initial state.

for t ∈ {1, . . . ,H} do
M ← MDPt # Acquire the current snapshot model.

ν0 ←create a root node labeled with (s, t)
Minimax(ν0,M, dmax,H) # Apply the minimax procedure described below.

ν∗ ← argmaxν′∈{children of ν0} {value of ν ′}
a← labeling action of ν∗ # Select the action maximizing the value.

s′ ∼ T t (· | s, a) # Sample the next state.

s← s′

end for

Function Minimax:
Input: node ν; snapshot M ; maximum search depth dmax; heuristic function H.
if ν is a decision node then
s← labeling state of ν
if s is terminal or depth of ν is dmax then
Set the value of ν to H(s, dmax) # Use the heuristic function as an estimator for the

values of the leaf nodes.

else
Set the value of ν to maxν′∈{children of ν}Minimax(ν ′,M, dmax,H) # Max operator.

end if
else
Set the value of ν to
min(T,R)∈∆t

t0
R(ν)+γ

∑
ν′∈{children of ν} T (ν ′ | ν)Minimax(ν ′,M, dmax,H) # Min operator.

end if
return Value of ν

4.4. Risk Averse Tree Search algorithm 81

to be feasible. We are interested in characterizing Algorithm 8, page 80 without function
approximation and therefore will consider finite S × A sets for the computation of the min
operator and the theoretical analysis of the algorithm in Section 4.4.2, page 81. Before stating
the result, we should demonstrate the convexity of the 1-Wasserstein distance in Lemma 4.1,
page 81.

Lemma 4.1 (Convexity of the 1-Wasserstein distance). The 1-Wasserstein distance is convex,
i.e., for λ ∈ [0, 1], (X, dX) a Polish space and any three probability measures w0, w1, w2 on X,
the following holds:

W1(w0, λw1 + (1− λ)w2) ≤ λW1(w0, w1) + (1− λ)W1(w0, w2) .

Theorem 4.3 (Closed-form expression of the worst case snapshot of a chance node). Consider
a finite state-action space S×A. Following Algorithm 8, page 80, a solution to Equation 4.10,
page 79 using the snapshot model MDPt0 is given by:

T̃ (· | s, a) = (1− λ)T t0 (· | s, a) + λT sat (· | s, a) ,
R̃(s, a) = Rt0 (s, a)− LR |t− t0| ,

with T sat (· | s, a) = (0, · · · , 0, 1, 0, · · · , 0) with 1 at position argmins′ V (νs′,t+1) and

λ =

1 if W1 (Tt0 , Tsat) ≤ LT |t− t0|
LT |t− t0| /W1 (Tt0 , Tsat) otherwise.

The proofs of Lemma 4.1 and Theorem 4.3 are reported in the Appendix, Chapter A,
Section A.3.

4.4.2 Theoretical analysis of the RATS algorithm

In this section, we perform a theoretical analysis of the RATS algorithm. We are interested
in characterizing two things: first, how well is RATS approximating the value and Q-value
functions of Equations 4.7, page 78 and 4.8, page 78; secondly, what computational complexity
does the algorithm have.

As in vanilla minimax algorithms, Algorithm 8, page 80 bootstraps the values of the leaf
nodes with a heuristic function if these leaves do not correspond to terminal states. Given
such a leaf node νs,t, a heuristic aims at estimating the value of the optimal policy at (s, t)
within the worst case NSMDP, i.e., V̂ ∗t0,t(s). Let H(s, t) be such a heuristic function. We
call heuristic error in (s, t) the difference between H(s, t) and V̂ ∗t0,t(s). Assuming that the
heuristic error is uniformly bounded, the following result provides an upper bound on the
propagated error due to the choice of H.

82 Chapter 4. Planning in gradually evolving Markov Decision Processes

Theorem 4.4 (Upper bound on the propagated heuristic error within RATS). Consider an
agent executing Algorithm 8, page 80 at (s0, t0) ∈ S×T with a heuristic function H. We write
L the set of all leaf nodes and we assume the state-action space S × A to be finite. Suppose
that the heuristic error is uniformly bounded, i.e.,

∃δH > 0, ∀νs,t ∈ L,
∣∣∣H(s, t)− V̂ ∗t0,t(s)

∣∣∣ ≤ δH . (4.11)

Then we have for every decision and chance nodes νs,t and νs,t,a, at any depth d ∈ {0, . . . , dmax}:∣∣∣V (νs,t)− V̂ ∗t0,t(s)
∣∣∣ ≤ γ(dmax−d)δH , (4.12)∣∣∣Q(νs,t,a)− Q̂∗t0,t(s, a)

∣∣∣≤ γ(dmax−d)δH , (4.13)

where dmax is the maximum depth of the tree.

The proof of Theorem 4.4 is reported in the Appendix, Chapter A, Section A.3. Given the
parameter of the maximum depth of the tree dmax and the heuristic error δH, Theorem 4.4
quantifies the approximation error in terms of those parameters. The approximation error
converges to zero given that dmax increases, regardless of the heuristic function H. Impor-
tantly, for every chance node child νs,t,a of the root node of the tree,∣∣∣Q(νs,t,a)− Q̂∗t0,t(s, a)

∣∣∣ ≤ γdmaxδH ,

which quantifies the approximation error of the applied action in the real NSMDP after
execution of the complete procedure. It should be noticed that Theorem 4.4 reports the error
made by RATS for the approximation of the optimal worst case value and Q-value functions
of the relaxed problem (Equations 4.7, page 78 and 4.7, page 78). In this dissertation, we
do not quantify the error made for the approximation of the value and Q-value of the full
problem (Equations 4.3, page 75 and 4.4, page 76). We believe such study to yield vacuous
approximation bounds in the general case. Bridging the gap between both the relaxed and
the full problem is however an especially interesting question, out of the scope of this chapter.
We now state the computational complexity result of the RATS algorithm.

Theorem 4.5 (Computational complexity). Consider a heuristic function H with evaluation
complexity O(1). The total computational complexity of Algorithm 8 executed with H is

O
(
τS1.5A (SA)dmax

)
,

with τ the total number of time steps and dmax the maximum depth of the tree.

The proof of Theorem 4.5 is reported in the Appendix, Chapter A, Section A.3. Notice
that the result is expressed as a function of the total number of time steps — or decision
epochs — denoted by τ . This is to be understood as any number of decision epochs for which
the RATS tree search process would be used to select an action. For instance, in the case of
Algorithm 8, page 80, the horizon H would be used in place of τ if H would be finite.

4.4. Risk Averse Tree Search algorithm 83

4.4.3 Heuristic function

In this section, we discuss possible heuristic functions that could be used within the RATS
algorithm. Such a function is used to evaluate the leaf nodes of the tree built by the RATS
algorithm, illustrated in Figure 4.1, page 77, when the labeling state of those nodes is not
terminal. If the state is terminal, the true value of the nodes can be used by taking the worst
case reward associated with the relaxed problem described by Equations 4.7, page 78 and 4.8,
page 78. Namely, for a leaf node labeled with (s, t) ∈ S × T , given the snapshot MDPt0 with
t0 ∈ T corresponding to the decision epoch of the root node of the tree,

V (νs,t) = max
{
−Rmax,max

a∈A
Rt0 (s, a)− LR |t− t0|

}
,

where the minimum reward −Rmax is assigned in case of overshooting. If the state labeling
a leaf decision node is not terminal, then a heuristic function of the form

H : S × T → R
(s, t) 7→ H (s, t)

is used. Ideally, setting this heuristic to H : (s, t) 7→ V̂ ∗t0,t(s) would result in a perfect
estimation of the value of the node and reduce the heuristic error to zero. However, this is
an intractable problem since V̂ ∗t0,t is precisely the function RATS aims at estimating. Let us
now discuss feasible alternatives.

Theorem 4.4, page 82 implies that with any heuristic function H inducing a uniform
heuristic error, the propagated error at the root of the tree is guaranteed to be upper bounded
by γdmaxδH. In particular, since the reward function is bounded by hypothesis, we have that

−Rmax
1− γ ≤ V̂

∗
t0,t(s) ≤

Rmax
1− γ

Thus, selecting the zero function defined by

H : (s, t) 7→ 0 , (4.14)

ensures the following error at the root node of the tree, labeled by (s0, t0) ∈ S × T :

∣∣∣V (νs0,t0)− V̂ ∗t0,t(s)
∣∣∣ ≤ γdmaxRmax

1− γ , (4.15)

and for any action a ∈ A, the corresponding child node verifies

∣∣∣Q(νs,t0,a)− Q̂∗t0,t(s, a)
∣∣∣ ≤ γdmaxRmax

1− γ . (4.16)

Such a choice of a heuristic function has the advantage of being simple. The control of the
error made at the root node provided by Theorem 4.4, page 82 allows to quantify the impact
of choosing the zero function. Of course, this choice is problem-dependent and without further

84 Chapter 4. Planning in gradually evolving Markov Decision Processes

details, we can only provide the guarantees of Equations 4.15 and 4.16.

In order to improve the precision of the algorithm, we propose to guide the heuristic by
using a function reflecting better the value of (s, t) ∈ S × T at leaf node νs,t. As said earlier,
the ideal function H : (s, t) 7→ V̂ ∗t0,t(s) reduces the heuristic error to zero, but is impossible
to compute. Instead, we suggest to use the value of s within the snapshot MDPt, using an
evaluation policy π, i.e., H(s, t) = V π

MDPt(s). This snapshot is also not available as we do not
know the evolution of the underlying NSMDP. However, one can provide a range wherein
this value lies, given the value of V π

MDPt0
(s). Following the worst case approach presented

in Section 4.3, page 72, we propose to use the minimum achievable value within this range
as a heuristic function. Before stating the result, we should present a preliminary lemma
on the distance between the finite horizon values of a policy at a particular state within the
snapshots MDPt and MDPt0 .

Lemma 4.2. Consider an (LT , LR)-LC-NSMDP with a finite state-action space S ×A. For
(s, t, t0) ∈ S×T 2 and n ∈ N, the finite horizon values of any policy π at s within the snapshots
MDPt and MDPt0 verify: ∣∣∣V π,n

MDPt0
(s)− V π,n

MDPt(s)
∣∣∣ ≤ LVn |t− t0| ,

with LVn = ∑n
i=0 γ

iLR, n ∈ N and the finite horizon value is defined as follows:

V π,n
MDPt0

(s) = E

 n∑
i=0

γirt0(si, ai, si+i)

∣∣∣∣∣∣∣∣
s0 = s,

si+1 ∼ T t0 (· | si, ai) , i ≥ 0
ai ∼ π(·), i ≥ 0

 .

Theorem 4.6. Consider s ∈ S, π a stationary policy, MDPt0 and MDPt two snapshot MDPs
with t, t0 ∈ T 2. The following bound holds:∣∣∣V π

MDPt0 (s)− V π
MDPt(s)

∣∣∣ ≤ |t− t0| LR1− γ ,

with LR = LT + Lr.

The proofs of Lemma 4.2 and Theorem 4.6 are reported in the Appendix, Chapter A,
Section A.3. Since MDPt0 is available, V π

MDPt0
(s) can be estimated, for instance through

Monte Carlo simulations such as performed by the MCTS algorithm. Let V̂ π
MDPt0

(s) denote
such an estimate. Following Theorem 4.6, we have the following:

V π
MDPt0 (s)− LR

1− γ |t− t0| ≤ V
π

MDPt(s) ≤ V
π

MDPt0 (s) + LR
1− γ |t− t0| .

Hence, a computable worst case heuristic function on V π
MDPt(s) is given by

H : (s, t) 7→ V̂ π
MDPt0 (s)− LR

1− γ |t− t0| . (4.17)

One should remark that the uncertainty brought by this heuristic increases with |t− t0|, i.e.,

4.5. Experiments 85

SG G

Figure 4.3: The non-stationary bridge environment

with dmax, since t denotes the decision epoch of a leaf node. This is contrasted by Theorem 4.4,
page 82 that shows that the overall accuracy of the algorithm increases with dmax. Indeed,
the bounds provided by Theorem 4.4, page 82 decrease quickly with dmax, as the uncertainty
of the heuristic function increases.

One should recall that neither the heuristic defined by Equation 4.14, page 83 nor the one
defined by Equation 4.17, page 84 is better than the other. Indeed, no theoretical guarantee
can be provided without additional hypotheses on the underlying NSMDP. The only result in
the general case is the bound provided by Theorem 4.4, page 82 that holds for both presented
heuristics.

4.5 Experiments

We compare the RATS algorithm with two other policies2. The first one, named DP-snapshot,
uses Dynamic Programming to compute the optimal actions with respect to the snapshot
models at each decision epoch. It corresponds to following a recommended action with respect
to the current state of the NSMDP, regardless of its potential evolution. The second one,
named DP-NSMDP, uses the real NSMDP as a model to provide its optimal action. It
corresponds to an omniscient agent and should be seen as an upper bound on the performance.

We choose a particular grid-world domain coined “non-stationary bridge” illustrated in
Figure 4.3. An agent starts at the “S” labeled state in the center and the goal is to reach one of
the two terminal “G” labeled states where a reward of +1 is received. The gray cells represent
holes that are terminal states where a reward of -1 is received. Reaching the goal on the right
leads to the highest payoff since it is closest to the initial state and a discount factor γ = 0.9 is
applied. The actions are A = {Right, Up, Left, Down}. The transition function is stochastic
and non-stationary. At decision epoch t = 0, any action yields the expected outcome in a
deterministic way. With time, when applying the actions Left or Right, the probability to
reach the positions usually stemming from either Up or Down increases symmetrically until
reaching a maximum value of 0.45. We call this probability the misstep probability. For
instance, after a large enough amount of decision epochs, the probability to reach the left cell
while applying action Left is 0.55, the probability to reach the upper cell is 0.225 and the
probability to reach the lower cell is 0.225. We set the Lipschitz constant LT = 1. Aside, we

2The code of the experiments is available at https://github.com/SuReLI/rats-experiments – For information
about the Machine Learning reproducibility checklist, see Appendix, Section D, page 159.

86 Chapter 4. Planning in gradually evolving Markov Decision Processes

introduce a parameter ε ∈ [0, 1] controlling the behavior of the environment. If ε = 0, only the
left-hand side bridge becomes slippery with time. It reflects a close to worst case evolution for
a policy aiming to the left-hand side goal. If ε = 1, only the right-hand side bridge becomes
slippery with time. It reflects a close to worst case evolution for a policy aiming to the
right-hand side goal. In between, the misstep probability is proportionally balanced between
left and right, i.e., both sides become slippery. One should note that changing ε from 0 to
1 does not cover all the possible evolutions from MDPt0 but provides a concrete, graphical
illustration of RATS’s behavior for various possible evolutions of the NSMDP.

We tested RATS with dmax = 6 so that leaf nodes in the search tree all are terminal states.
Hence, the optimal risk averse policy is applied and no heuristic approximation is made. Our
goal is to demonstrate that planning in this worst case NSMDP allows to minimize the loss
given any possible evolution of the environment. To illustrate this, we report results reflecting
different evolutions of the same NSMDP using the ε factor. It should be noted that, at t = 0,
RATS always moves to the left, even if it takes longer to reach the goal, since going to the
right may be risky if the probabilities to go Up and Down increase. This corresponds to the
careful, risk averse, behavior. Conversely, DP-snapshot always moves to the right since the
first acquired snapshot MDP0 does not capture this risk. As a result, the ε = 0 case reflects
a favorable evolution for DP-snapshot and a bad one for RATS. The opposite occurs with
ε = 1 where the cautious behavior dominates over the risky one, and the in-between cases
mitigate this effect.

In Figure 4.4, page 87, we display the achieved expected return for each algorithm as a
function of ε, i.e., as a function of the possible evolutions of the NSMDP. As expected, the
performance of DP-snapshot strongly depends on this evolution. It achieves high return for
ε = 0 and low return for ε = 1. Conversely, the performance of RATS varies less across the
different values of ε. The effect illustrated here is that RATS maximizes the minimal possible
return given any evolution of the NSMDP. It provides the guarantee to achieve the best
return in the worst case. This allows the agent to avoid catastrophic outcomes such as the
performance reached by DP-snapshot in the case ε = 1. This behavior is highly desirable
when one requires robust performance guarantees as, for instance, in critical certification
processes.

Figure 4.5, page 87 displays the return distributions of the three algorithms for ε ∈
{0, 0.5, 1}. The effect seen here is the tendency for RATS to diminish the left tail of the
distribution corresponding to low returns for each evolution. It corresponds to the opti-
mized criteria, i.e., robustly maximizing the worst case value. A common risk measure is
the Conditional Value at Risk (CVaR) defined as the expected return in the worst q% cases.
We illustrate the CVaR at 5% achieved by each algorithm in Table 4.1, page 88. Notice that
RATS always maximizes the CVaR compared to both DP-snapshot and DP-NSMDP. Indeed,
even if the latter uses the true model, the optimized criteria in DP is the expected return.

4.5. Experiments 87

0.0 0.2 0.4 0.6 0.8 1.0

ε

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

D
is

co
u

n
te

d
re

tu
rn

DP-NSMDP DP-snapshot RATS

Figure 4.4: The discounted return is represented with 50% of the standard deviation for each
algorithm.

−1.0 −0.5 0.0 0.5 1.0

Discounted return

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
en

si
ty

ε = 0

−1.0 −0.5 0.0 0.5 1.0

Discounted return

ε = 0.5

DP-snapshot RATS DP-NSMDP

−1.0 −0.5 0.0 0.5 1.0

Discounted return

ε = 1

Figure 4.5: The distribution of the discounted return achieved by the three algorithms is
represented for ε ∈ {0, 0.5, 1}.

88 Chapter 4. Planning in gradually evolving Markov Decision Processes

ε RATS DP-snapshot DP-NSMDP

0 E (∑ r) -0.026 0.48 0.47

CVaR -0.81 -0.90 -0.9

0.5
E (∑ r) -0.032 -0.46 -0.077

CVaR -0.81 -0.90 -0.81

1
E (∑ r) 0.67 -0.78 0.66

CVaR 0.095 -0.90 -0.033

Table 4.1: Expected return E (∑ r) and CVaR at 5% for RATS, DP-snapshot and DP-NSMDP
for ε ∈ {0, 0.5, 1}.

4.6 Conclusion

We proposed an approach for robust planning in non-stationary stochastic environments. We
introduced the framework of Lipschitz Continuous NSMDPs and derived the RATS algorithm,
to predict the worst case evolution and to plan accordingly. We analyzed RATS theoretically
and showed that it approximates a worst case NSMDP with a control parameter that is
the depth of the search tree. The analysis also includes the study of the computational
complexity of the algorithm. We showed empirically the benefit of the approach that searches
for the highest lower bound on the worst achievable score. RATS is robust to every possible
evolution of the environment, i.e., maximizes the expected worst case outcome on the whole
set of possible NSMDPs. Our method was applied to the uncertainty on the evolution of a
model. Generally, it could be extended to any uncertainty on the model used for planning,
given bounds on the set of the feasible models.

The content of this chapter suggests a few perspectives. The purpose of the proposed ap-
proach is to lay a basis of worst case analysis for robust solutions to NSMDPs. As is, RATS is
computationally intensive and scaling the algorithm to larger problems is an exciting future
challenge. On that matter, an interesting direction would be to adapt the planning vs. re-
planning trade-off method presented in Chapter 3 to the RATS framework. Such a practice
would result in a decrease of the computational requirements of RATS due to tree re-use.
Another perspective arises from the fact that the RATS policy could be overly conservative.
Indeed, we saw in experiments (not reported in this dissertation) that — as the algorithm aims
at computing the optimal policy of the worst case evolution — the resulting behavior could
perform poorly in environments that do not evolve in an adversarial manner. Constraining
the model to stay close to a reference model as in the ε-stationary MDP literature (Kalmár,
Szepesvári, and Lőrincz, 1998) would alleviate this effect by restricting the set of possible
future models. On this line of thought, Lim, Xu, and Mannor (2013) proposed an approach
to learn the portion of S × A featuring adversarial evolution of the model. Including such a
practice in RATS would also make the algorithm less conservative. An interesting aspect of
this chapter is the introduction of the relaxed min-max problem in Equations 4.7, page 78

4.6. Conclusion 89

and 4.8, page 78 to replace the true problem of Equations 4.3, page 75 and 4.4, page 76.
Theoretically, it could be beneficial to study the impact of the relaxation on the computed
Q-function. The question would be to quantify the difference between this Q-function and
the one that is solution to the true problem. Obviously, an interesting perspective is to de-
sign an algorithm computing the solution of the true problem instead of the relaxation. As
reported by Iyengar (2005), such a practice breaks an assumption they make when study-
ing theoretically the robust MDP formulation, namely, the rectangularity assumption. The
latter consists roughly in considering models corresponding to subsequent decision epochs as
independent. Particularly, proving the contraction properties of the Bellman operator can be
problematic without the rectangularity assumption. Therefore, studying the impact of break-
ing this assumption in the LC-NSMDP setting rises both an interesting theoretical question
and an algorithmic challenge.

Overall, the approach developed in this chapter is a risk averse planning algorithm for
gradually evolving environments. This assumption is used to constrain the set of future
possible outcomes, making a worst case approach feasible. In the following chapter, we study
the case of abruptly changing environments, potentially breaking any regularity assumption
in the evolution.

Chapter 5

Learning in abruptly evolving
Markov Decision Processes

Sommaire
5.1 State of the art . 93
5.2 Framework . 95

5.2.1 Lifelong Reinforcement Learning . 95
5.2.2 Negative transfer . 97
5.2.3 Proposed approach . 98

5.3 Lipschitz continuity of Q-functions . 100
5.3.1 Main result . 100
5.3.2 Similar Lipschitz continuity results . 102

5.4 Transfer using Lipschitz continuity . 105
5.4.1 A transferable upper bound on the optimal Q-function 105
5.4.2 A computable upper bound on the optimal Q-function 107

5.5 The Lipschitz RMAX algorithm . 111
5.5.1 Definition of LRMAX . 111
5.5.2 Refining the LRMAX bound with the maximum model distance 114

5.6 Experiments . 117
5.7 Conclusion . 120

In Chapter 4, we studied a method to derive a risk averse behavior in MDPs evolving
gradually over time. The gradual evolution was modeled with a Lipschitz continuity assump-
tion of the MDP model with respect to time. In this chapter, we remove this assumption and
consider the general case of MDPs evolving through time in an unconstrained way. Therefore,
we ask the following question:

How to learn a policy in an environment that may change abruptly over time?

Abrupt changes over time mean that, at any point, the current MDP can change arbitrar-
ily. Consequently, we will consider the case where an agent faces a series of tasks, possibly
very different from one another. We will assume that the agent is informed when a change
has occurred. In the literature, this setting is often referred to as lifelong RL as it includes

91

92 Chapter 5. Learning in abruptly evolving Markov Decision Processes

the idea of learning different tasks over a long period of time, similarly to what human-beings
do along their lives.

In lifelong RL, a reasonable idea is that once a task has been learned, it may be possible
to use the acquired knowledge to accelerate the learning of new tasks. This key question
is known as transfer and we will refer to learned tasks as source tasks and to new tasks as
target tasks. Hence, in lifelong RL, we aim at transferring knowledge from source to target
tasks in order to learn them more quickly. The transferred knowledge between tasks can be of
various nature. Common practices in the literature often suggest to transfer learned policies,
collected samples, learned models, or even learned value functions. In this chapter, we will
deal with this latter case of value transfer.

We elaborate on the intuitive idea that similar tasks should allow a large amount of
transfer. An agent able to compute online a similarity measure between source tasks and the
current target task should be able to perform transfer accordingly. By measuring the amount
of inter-task similarity, we design a method for value transfer, practically applicable in the
online lifelong RL setting.

Specifically, we introduce a metric between MDPs and prove that the optimal Q-function
is Lipschitz continuous with respect to the MDP space. This property allows to compute
a provable upper bound on the optimal Q-function of an unknown target task, given the
learned optimal Q-function of a source task. Knowing this upper bound allows to accelerate
the convergence of an RMAX-like algorithm, relying on an optimistic estimate of the optimal
Q-function as described in Chapter 2, Section 2.3.2, page 28. Importantly, this method
performs non-negative transfer (it cannot cause performance degradation) as the computed
upper bound provably does not underestimate the optimal Q-function.

This chapter is organized as follows. First, in Section 5.1, page 93, we review the state of
the art in terms of transfer methods in the lifelong RL setting. We focus on the approaches
related to the quantification of the distance between MDPs, for instance with respect to a
metric. Secondly, in Section 5.2, page 95, we define formally the lifelong RL framework,
then we introduce the notion of negative transfer, and we describe the approach proposed in
this chapter. Thirdly, in Section 5.3, page 100, we introduce a pseudometric between MDPs
and show that the optimal Q-function — seen as a function of the MDPs — is Lipschitz
Continuous with respect to this pseudometric. Intuitively, this result establishes that MDPs
that are close from each other necessarily have close Q-functions. In Section 5.4, page 105, we
use this continuity property to propose a value transfer method based on the calculation of
this local pseudo distance between MDPs. Naturally, if the computed distance is small, the
Q-function of the target task can practically be deduced from the one of the source task. Full
knowledge of both MDPs is not required by the method and the transfer is non-negative, which
makes the method both practical and safe in an online setting. In Section 5.5, page 111, we
build a PAC-MDP algorithm called Lipschitz R-Max (LRMAX), applying the transfer method
in the online lifelong RL setting. We theoretically study the algorithm by providing sample
and computational complexity bounds. In Section 5.6, page 117, we showcase the LRMAX
algorithm in lifelong RL experiments and demonstrate its advantages for accelerating the
learning of new target tasks. Finally, we conclude in Section 5.7, page 120.

5.1. State of the art 93

5.1 State of the art

Transfer in the context of lifelong RL has been extensively studied in the past decades (Taylor
and Stone, 2009; Lazaric, 2012). The general idea is to transfer some knowledge under any
form from source tasks to target tasks to accelerate the learning of the latter. Transfer can be
applied to the RL field but also in supervised or unsupervised tasks. In this literature review,
we focus on transfer methods relying on any similarity measure between source and a target
task. Using such a similarity measure between MDPs or related features has the appealing
characteristic of quantifying the degree of analogy between tasks, which, intuitively, should be
linked to the amount of transfer achievable. Therefore, the availability of a similarity measure
can be useful to determine from which source task should transfer be performed or even how
much transfer should be applied.

Carroll and Seppi (2005) define four task similarity measures, respectively quantifying:
the “advantage”, seen for instance as the reward gain or convergence speed, of applying
any transfer method between two tasks; the number of states with identical optimal policy;
the mean squared error between the optimal Q-functions of the source and target task; the
mean squared error between the expected reward function of the source and target task.
Regardless of the employed task similarity measure, direct transfer (Carroll, 2005) is used as
the transfer method in the experiments. More precisely, direct transfer corresponds to the
direct initialization of the learned Q-function of a target task with the learned Q-function of
a source task. Notice that such a method may allow for negative transfer, a notion that we
will precisely define in Section 5.2.2, page 97 but that roughly corresponds to a degradation
of the learning speed compared to an algorithm learning from scratch. With those four
similarity measures, they show that different measures can be helpful to capture different
similarity aspects of two MDPs. However, no metric dominates the others uniformly in terms
of transfer performance. Despite the fact that the measures require both source and target
tasks to be completely learned, the authors propose to start applying the method prematurely
after reaching a certain number of decision epochs for the framework to be applicable in the
online lifelong RL setting. Additionally, to limit the number of inter-task comparisons that
grows linearly with the number of source tasks, a clustering technique to group the data
issued from similar source tasks is proposed.

Fernández and Veloso (2006) introduce a policy re-use method based on a similarity mea-
sure between policies. The degree of similarity is assessed in terms of the value of a policy
in the current task. Given a library of policies, they propose an algorithm that selectively
re-uses the most valuable policy with respect to this criterion. The method can be applied to
the lifelong RL framework as a policy transfer approach.

Lazaric, Restelli, and Bonarini (2008) provide a practical method for sample transfer,
computing a similarity metric reflecting the probability that the models of the source and
target tasks are identical. This similarity metric is used to identify the most suited source task
from which samples can be transferred. The selection being based on a similarity measure, the
approach allows for more robustness to negative transfer. Additionally, a relevance score is
computed for each sample to select those providing more advantage to speed-up the learning

94 Chapter 5. Learning in abruptly evolving Markov Decision Processes

of the target task. The proposed approach is applicable in a batch RL setting as opposed to
the online setting considered in this chapter.

Sorg and Singh (2009) study the problem of transfer learning in the case where there exist
a soft homomorphism between the state spaces of the tasks. Formally, this can be interpreted
as the existence of a mapping from each state of the target MDP to a probability distribution
on the state space of the source task. They define a soft MDP homomorphism such that the
reward and transition functions of the source MDP weighted by the soft homomorphism match
the reward and transition functions of the target MDP. The existence of such a function allows
to bound the optimal Q-value function of a target MDP. Similarly to the approach developed
in this chapter, the bound can in turn be used to initialize the Q-function of the source MDP,
resulting in a value transfer method. Noticeably, the soft homomorphism mapping described
above can be learned during interaction with the target MDP.

Konidaris, Scheidwasser, and Barto (2012) introduce a notion of shared feature between
tasks. They propose a value transfer method based on the learning of a portable — i.e.,
defined for any task — value function mapping features to values. This function allows to
initialize the learned value function of a target MDP by capturing the similar features with a
source task.

Mahmud, Hawasly, Rosman, and Ramamoorthy (2013) propose a clustering technique to
prune the set of source tasks and rather represent them by a subset of tasks. They introduce
a similarity measure between MDPs by quantifying the regret of running the optimal policy
of one MDP in the other MDP. This similarity measure is in turn used to cluster source
tasks and form an ε-net over the MDP space, with the following understanding of an ε-net:
once a new target task is sampled, there exist a source task in the resulting subset from the
clustering process whose computed optimal policy has a value function that is ε-close to the
optimal value function of the source task. Therefore, the transfer method is a policy transfer
method where the learned optimal policy of a selected target task is selected.

Brunskill and Li (2013) also introduce a clustering method using the L1 norm between
learned source MDP models. The data used to learn close models during interactions with
those MDPs are grouped, forming pools of data issued from similar source tasks. In turn,
during learning of a new target task, if the collected data provide sufficient evidence that
the target task belongs to a single cluster, the data from this cluster are merged with the
collected data to accelerate learning. The approach is proven to yield non-negative transfer
and can be applied in the multi-task RL setting.

Ammar, Eaton, Taylor, Mocanu, Driessens, Weiss, and Tuyls (2014) propose to learn the
model of a source MDP and to view the prediction error on a target MDP as a dissimilarity
measure in the task space. The method makes use of samples collected from both source and
target tasks. It allows to identify which target task would be best suited for transfer which
is performed in different ways, namely, by respectively initializing the Q-function values, the
Q-function parameters or the policy of an explored target task with the optimal Q-function
values, the optimal Q-function parameters and the optimal policy of a learned source task.
The method is studied in an offline setting where both target and source tasks have been

5.2. Framework 95

explored. The extension to the online lifelong RL setting is seen as a future contribution.

Song, Gao, Wang, and An (2016) define a metric based on the bi-simulation metric intro-
duced by Ferns, Panangaden, and Precup (2004) and the Wasserstein metric (Villani, 2008).
The developed idea is to perform Value transfer between states with low bi-simulation dis-
tances. This metric requires knowing both MDPs completely and is thus unusable in the
lifelong RL setting where we expect to perform transfer before having learned the target
MDP.

Lastly, Abel, Jinnai, Guo, Konidaris, and Littman (2018) present the MaxQInit algorithm
featuring many similarities to the approach proposed in this chapter. Although the method is
not a transfer method based on a similarity measure — contrarily to the other contributions
presented in this section — the way transfer is performed and the provided guarantees are
exactly the same. MaxQInit is a generic method to compute with high probability the maxi-
mum over the Q-values of a finite set of MDPs in the lifelong RL setting. Using this maximum
value for the initialization of the Q-value of a new source task potentially accelerates learning
in a provably non-negative transfer method. Importantly, the presented algorithm is built
on the RMAX algorithm (Chapter 2, Section 2.3.2, page 28) and preserves the PAC-MDP
guarantees of this algorithm. Practically, the method consists in sequentially learning tasks
among the finite set of MDPs to assess the maximum Q-value for each state-action pair over
the set of sampled tasks. Once enough samples have been gathered, this maximum value is
used as the initialization Q-value for all the visited state-action pairs, resulting in a tighter
upper bound on the Q-function than the one used by RMAX, namely,

Rmax
1− γ . (5.1)

Critically, the sample complexity of the latter algorithm is decreased by providing a tighter
upper bound than Rmax

1−γ , making MaxQInit faster at learning new tasks.

5.2 Framework

In this section, we first describe formally the lifelong RL framework. Then, we outline the
problem of negative transfer that can be met in lifelong RL. Finally, we qualitatively describe
the approach developed in this chapter.

5.2.1 Lifelong Reinforcement Learning

Lifelong Reinforcement Learning (Silver, Yang, and Li, 2013; Brunskill and Li, 2014) is the
problem of experiencing online a series of MDPs drawn from an unknown distribution. Each
time an MDP is sampled, a classical RL problem takes place — as depicted in Chapter 2,
Algorithm 3, page 28 — where the agent is able to interact with the environment to maximize
its expected return. Additionally, each experience with a new MDP can be specified by

96 Chapter 5. Learning in abruptly evolving Markov Decision Processes

sampling an horizon H and an initial state distribution P0, respectively defining the length of
interaction between the agent and the current MDP and the distribution of the initial state
of any episode.

As commonly done (Wilson, Fern, Ray, and Tadepalli, 2007; Lazaric, Restelli, and Bonar-
ini, 2008; Ammar, Eaton, Taylor, Mocanu, Driessens, Weiss, and Tuyls, 2014; Brunskill and
Li, 2014; Abel, Jinnai, Guo, Konidaris, and Littman, 2018) we restrict the scope of the
study to the case where sampled MDPs share the same state-action space S × A. These
restricted sets of MDPs give a relevant insight on the question we try to answer and are of
great importance in the RL literature. Similarly to the expected reward function (Chapter 2,
Definition 2.2, page 11), we consider reward functions depending on state-action pairs, i.e.,

R : S ×A → [0, Rmax]
(s, a) 7→ Ras .

Without loss of generality, we will assume Rmax = 1 in this chapter, keeping in mind that
scaling a reward signal between 0 and 1 has no effect on learning. Overall, in this chapter,
we refer indifferently to MDPs, models or tasks, and write them M ≡ (T,R) with the un-
derstanding that they share the same state-action space S × A. Consequently, instead of
sampling complete MDPs in the lifelong RL procedure described above, only models are sam-
pled. We will write M the space of MDPs. The general lifelong RL procedure is described
in Algorithm 9.

Algorithm 9 General lifelong RL procedure
Input: state-action space S ×A; distribution D over (T,R,H,P0); learning agent N.
Repeat:

(T,R,H,P0) ∼ D # Sample a model, an horizon and an initial state distribution.

Apply Algorithm 3, page 28, with arguments {N,S,A, T,R,P0, H} # Classical RL

procedure.

Noticeably, Hallak, Di Castro, and Mannor (2015) introduce the setting of Contextual
Markov Decision Process (CMDP) presenting similarities with the lifelong RL framework. A
CMDP consists of a fixed set of MDPs from which models are sampled and experienced during
episodes of fixed durations. The sampling strategy could be random or adversarial. In this
setting, they provide an algorithm achieving bounded regret with respect to the optimal policy.
The proposed method consists in first clustering the experienced trajectories to differentiate
between the MDPs; secondly classifying the current trajectory to identify if it belongs to
one of the computed clusters (exploration); finally set the policy to the one learned from the
trajectories of the identified cluster (exploitation).

Similarities can also be found between lifelong RL and the setting of HMMDPs described in
Chapter 4, Section 4.1, page 62. Both frameworks have in common the sequential interaction
with several different MDPs. The major difference is that the variable indicating that a new
MDP has been sampled is hidden in the context of an HMMDP and revealed to the agent in
lifelong RL.

5.2. Framework 97

Source task

I · · · A

B

C

R = +1

k states

Target task

I’ · · · A’

B’

C’

R = +1

k states

Figure 5.1: The T-shaped MDP transfer task.

5.2.2 Negative transfer

In the lifelong RL setting, it is reasonable to think that knowledge gained on previous MDPs
could be re-used to improve the performance in new MDPs. Such a practice, known as
knowledge transfer, sometimes does cause the opposite effect, i.e., decreases the performance.
In such a case, we talk about negative transfer. Several attempt to formally define negative
transfer have been done, but researchers hardly agree on a single definition, as performance can
be defined in various ways. For instance, it can be characterized by the speed of convergence,
the area under the learning curve, the final score of the learned policy or classifier, and many
other things. Defining negative transfer is out of the scope of this chapter, but let us give an
example of why this phenomenon can be problematic.

In their paper, Song, Gao, Wang, and An (2016) propose a transfer methods based on the
metric between MDPs they introduce, stemming from the bi-simulation metric introduced by
Ferns, Panangaden, and Precup (2004). In their method, a bi-simulation metric is computed
between each pair of states belonging respectively to the source and target MDPs. Roughly,
this metric tells how different are the transition and reward models corresponding to the
states pairs, for the action maximizing th distance. More precisely, if we write (T,R) and
(T̄ , R̄) the models of two MDPs, and (s, s′) ∈ S a state pair, the distance d between s and s′
is defined by

d(s, s′) = max
a∈A

{∣∣∣Ras − R̄as′ ∣∣∣+ c W1
(
T as·, T̄

a
s′·

)}
, (5.2)

where c ∈ R is a positive constant and W1 is the 1-Wasserstein metric defined in Chapter 4,
Definition 4.5, page 70. For each state of the target model, the closest counterpart state (with
the smallest bi-simulation distance) of the source MDP is identified and its learned Q-values
are used to initialize the Q-function of the target MDP. In their experiments, Song, Gao,
Wang, and An (2016) run a standard Q-Learning algorithm (Watkins and Dayan, 1992) with
an ε-greedy exploration strategy thereafter.

Let us now consider applying this method to a similar task to the T-shaped MDP transfer
task proposed by Taylor and Stone (2009). The source and target tasks are respectively
described on the left and right sides of Figure 5.1. In each task, the states are represented

98 Chapter 5. Learning in abruptly evolving Markov Decision Processes

by the circles and the arrows between them correspond to the available actions that allow
to move from one state to the other. Notice that the letters representing the states of both
tasks are differentiated by the presence of a “prime” (for instance I’) in the target task and
the absence of a “prime” (for instance I) in the source task. This should be understood as
the same states seen either in the source or in the target task. As a result, the two tasks
effectively share the same state-action space. The initial state of both tasks is the left state
I for the source task and I′ for the target task. Between the states I and A in the source
task (respectively I′ to A′ in the target task) are k states, k being a parameter increasing the
distance to travel from I to A (respectively I′ to A′). The tasks are deterministic and the
reward is zero everywhere except for the state B in the source task and C′ in the target task
where a reward of +1 is received. Consequently, the optimal policy in the source task is to
go to the state A and then to the state B. In the target task, the same applies except that a
transition to state C should be applied in place of state B′ when the agent is in state A′.

Regardless of the parameters used in the bi-simulation metric of Equation 5.2, page 97,
the direct state transfer method from Song, Gao, Wang, and An (2016) maps the following
states together as they share the exact same model:

I ←→ I′
k states ←→ k states

A ←→ A′ .

Hence, during learning, the Q-function of the target task is initialized with the values of the
Q-function of the source task. Therefore, the behavior derived with the Q-Learning algorithm
is the optimal policy of the source task, but in the target task. Depending on the value of the
learning rate of the algorithm, the time to favor action DOWN in state A′ instead of action
UP can be arbitrarily long. Also, depending on the value of ε, the exploration of state C′ due
to the ε-greedy strategy can be arbitrarily unlikely. Finally, the time needed for one of those
two events to occur increases proportionally to the value of k, which can be arbitrarily large.

This case illustrates the difficulty facing any transfer method in the general context of
lifelong RL. The method proposed by Song, Gao, Wang, and An (2016) can be highly
efficient in some cases as they show in experiments, but the lack of theoretical guarantees
makes negative transfer possible. Generally, using a similarity measure such that the bi-
simulation metric helps to discourage using some source tasks when the computed similarity
is too low. However, as we saw in the T-shaped MDP example, this rule is not absolute
and the choice of the metric is important. The approach we develop in this chapter aims at
avoiding negative transfer by providing a conservative transferred knowledge that is simply
of no use when the similarity between source and target tasks is too low. This is intuitive as
we do not expect any task to provide transferable knowledge to any other task.

5.2.3 Proposed approach

The transfer method we propose is based on the following observation: the RMAX Algorithm,
presented in Chapter 2, Section 2.3.2, page 28, is a PAC-MDP algorithm whose sample

5.2. Framework 99

complexity scales with the number of state-action pairs for which the upper bound on the
Q-value of a sub-optimal action overestimates the upper bound on the Q-value of an optimal
action (see Theorem 2.9, page 32). Recall that RMAX applies the principle of optimism
in the face of uncertainty and therefore drives its exploration vs. exploitation trade-off by
using an upper bound on the optimal Q-function. The standard approach consists in taking
the maximum achievable value 1

1−γ as an initialization for the upper bound. Hence, for any
state, all the sub-optimal actions have overestimated Q-values, and the sample complexity of
RMAX is maximized. In the context of lifelong RL, we propose to refine this upper bound
for the exploration of new target tasks by measuring their similarity to source tasks.

In this chapter, we will use a local pseudometric between MDPs as a similarity measure.
We will show in Section 5.3, page 100 that the optimal Q-function is Lipschitz Continuous
(LC) with respect to the space of MDPs. Recall that LC functions are defined in Chapter 4,
Definition 4.4, page 70. Written intuitively, we aim at having the following inequality, for two
MDPs M,M̄ ∈M, and a pair (s, a) ∈ S ×A:∣∣∣Q∗M (s, a)−Q∗

M̄
(s, a)

∣∣∣ ≤ d (M, M̄
)
, (5.3)

with d the aforementioned local pseudometric. In turn, if M̄ is a learned source MDP and M
a new target MDP, Equation 5.3 yields

Q∗M (s, a) ≤ Q∗
M̄

(s, a) + d
(
M,M̄

)
. (5.4)

Our main goal is to establish a result of the form of Equation 5.3 and to use the upper bound
of Equation 5.4 to decrease the sample complexity of an RMAX-like algorithm in new target
tasks. Overall, the proposed transfer method consists in using the upper bound described in
Equation 5.4.

The method developed by Abel, Jinnai, Guo, Konidaris, and Littman (2018) is similar to
ours in two fundamental points: first, a theoretical upper bound on optimal Q-functions across
the MDP space is built; secondly, this provable upper bound is used to transfer knowledge
between MDPs by replacing the maximum 1

1−γ bound in an RMAX-like algorithm, providing
PAC guarantees. The difference between the two approaches is illustrated in Figure 5.2,
page 100 where the MaxQInit bound is the one developed by Abel, Jinnai, Guo, Konidaris,
and Littman (2018) and the LRMAX bound is the one we present in this chapter. On this
figure, the essence of the LRMAX bound is noticeable. It stems from the fact that the optimal
Q-value function is locally LC in the MDP space with respect to a specific metric. Confirming
the intuition, close MDPs with respect to this metric have close optimal Q-values. It should be
noticed that no bound is uniformly better than the other as intuited by Figure 5.2, page 100.
Hence, combining all the bounds results in a tighter upper bound as we will later illustrate
in experiments (Section 5.6, page 117). We first carry out the theoretical characterization of
the Lipschitz continuity properties in the following section. Then, we build on this result to
propose a practical transfer method for the online lifelong RL setting.

100 Chapter 5. Learning in abruptly evolving Markov Decision Processes

Q∗
M (s, a)

1
1−γ

M
Rmax bound

MaxQInit bound

Lipschitz Rmax bound

Figure 5.2: Comparison of the RMAX upper bound, the MaxQInit upper bound and the
LRMAX upper bound. The optimal Q-function is represented for a particular s, a pair as a
function of the MDP spaceM. The RMAX, MaxQInit and LRMAX bounds are represented
for three sampled target MDPs.

5.3 Lipschitz continuity of Q-functions

In this section, we first present the main result of Lipschitz continuity of the optimal Q-
function with respect to the task space. Then, we will outline similar results that are in-
teresting from a theoretical point of view but that we will not use in the remainder of the
dissertation.

5.3.1 Main result

The intuition we build on is that similar MDPs should have similar optimal Q-functions.
Formally, this insight can be translated into a continuity property of the optimal Q-functions
over the MDP spaceM. To that end, we introduce a local pseudometric characterizing the
distance between the models of two MDPs at a particular state-action pair.

Definition 5.1. Given two tasksM = (R, T) and M̄ = (R̄, T̄), and any function f : S → R+,
we define the pseudometric between models at (s, a) ∈ S ×A with respect to f as:

Df
sa(M, M̄) ,

∣∣∣Ras − R̄as ∣∣∣+ ∑
s′∈S

f(s′)
∣∣∣T ass′ − T̄ ass′∣∣∣ . (5.5)

5.3. Lipschitz continuity of Q-functions 101

Recall that a metric on a set X is a function m : X × X → R which has the following
properties for any x, y, z ∈ X:

P1. m(x, y) ≥ 0 (positivity),

P2. m(x, y) = 0⇔ x = y (positive definiteness),

P3. m(x, y) = m(y, x) (symmetry),

P4. m(x, z) ≤ m(x, y) +m(y, z) (triangle inequality).

If property P2 is not verified by m, but instead we have that m(x, x) = 0 for any x ∈ X, then
m is called a pseudometric. If m only verifies P1, P2 and P4 then m is called a quasimetric.
If m only verifies P1 and P2 and if X is a set of probability measures, then m is called a
divergence.

From this, the pseudometric between models that we introduced in Definition 5.1, page 100
is indeed a pseudometric as it is relative to a positive function f that could be equal to zero and
break property P2 while the other properties are verified. We implicitly cast this definition
in the context of discrete state spaces. The extension to continuous spaces is straightforward
but beyond the scope of this chapter. For the sake of clarity in the remainder of this study,
we introduce the following notation for any two MDPs M,M̄ ∈M and (s, a) ∈ S ×A:

Dsa(M‖M̄) , D
γV ∗
M̄

sa (M, M̄) ,

corresponding to the pseudometric between models with the particular choice of f = γV ∗
M̄
.

We now state the main result of the local pseudo-Lipschitz continuity.

Theorem 5.1 (Local pseudo-Lipschitz continuity). For two MDPs M,M̄ ∈M, for all state
action pairs (s, a) ∈ S ×A, ∣∣∣Q∗M (s, a)−Q∗

M̄
(s, a)

∣∣∣ ≤ ∆sa(M,M̄) , (5.6)

with the local MDP pseudometric defined by ∆sa(M, M̄) , min
{
dsa(M‖M̄), dsa(M̄‖M)

}
,

and the local MDP dissimilarity dsa(M‖M̄) defined as the unique solution to the following
fixed-point equation for dsa ∈ F (S ×A,R):

dsa = Dsa(M‖M̄) + γ
∑
s′∈S

T ass′ max
a′∈A

ds′a′ , ∀ (s, a) ∈ S ×A . (5.7)

The local MDP dissimilarity between MDPs dsa(M‖M̄) of Theorem 5.1 does not respect
the metric properties P2 and P3, hence the name dissimilarity. Notice that, since this dis-
similarity is asymmetric, it yields two valid upper bounds. Taking the minimum of both still
produces a valid upper bound, hence the min operator in the definition of the local MDP
pseudometric. The latter, ∆sa(M,M̄) = min

{
dsa(M‖M̄), dsa(M̄‖M)

}
, however, regains

property P3 and is hence a pseudometric. A noticeable consequence is that Theorem 5.1 is

102 Chapter 5. Learning in abruptly evolving Markov Decision Processes

“in the spirit” of a Lipschitz continuity result but cannot be called as such, hence the name
pseudo-Lipschitz continuity. To prove Theorem 5.1, we shall introduce a Lemma on the ex-
istence and uniqueness of the solution to the fixed-point equation. The proofs of Lemma 5.1
and Theorem 5.1 are reported in the Appendix, Chapter A, Section A.4.

Lemma 5.1. Given two MDPs M, M̄ ∈M, the following equation on d ∈ F (S ×A,R) is a
fixed-point equation admitting a unique solution for any (s, a) ∈ S ×A:

dsa = Dsa(M‖M̄) + γ
∑
s′∈S

T ass′ max
a′

ds′a′ .

We refer to this unique solution as dsa(M‖M̄).

Lemma 5.1 guarantees the existence of dsa(M‖M̄). Theorem 5.1, page 101 establishes that
the distance between the optimal Q-functions of two MDPs at (s, a) ∈ S ×A is controlled by
a local dissimilarity between the MDPs. The latter follows a fixed-point equation (Equation
5.7, page 101), which can be solved by DP, for instance, in a value iteration procedure (See
Chapter 2, Section 2.2.2, page 18). Notice that, for the result to hold, the function

f : S → R+

s 7→ V ∗
M̄

(s)

was selected in the definition of the model’s pseudometric (Equation 5.5, page 100). Notice
also that the policies in Equation 5.6, page 101 are the optimal ones for the two MDPs
respectively and thus are generally different policies.

The approach we presented in Section 5.2.3, page 98 relies on an upper bound on the
optimal Q-function of a target task in the lifelong RL setting. Let us derive such an upper
bound based on the local pseudo-Lipschitz continuity results presented so far. Consider the
case where M̄ ∈M is a learned source task and M ∈M is a new target task. Borrowing the
notations of Theorem 5.1, page 101, given that Q∗

M̄
is known, the function

S ×A → R
(s, a) 7→ Q∗

M̄
(s, a) + ∆sa(M,M̄) (5.8)

can be used as an upper bound on Q∗M . Still the question of how to compute this function
remains. Indeed, in the context of lifelong RL where M̄ is a source task and M a target task,
M̄ may be partially known and little to no experience of M has been acquired. Hence, the
function of Equation 5.8 cannot be computed as it contains unknown quantities. Despite this
difficulty, this function is the basis on which we will construct a computable and transferable
upper bound in Section 5.4, page 105.

5.3.2 Similar Lipschitz continuity results

Similar results to Theorem 5.1, page 101 can be derived, namely for the optimal value function,
and the value and Q-value functions of any policy. We state those results in this section for

5.3. Lipschitz continuity of Q-functions 103

the sake of completeness, and for their theoretical interest. However, one should know that
they will not be used further in this dissertation. Therefore, the reader only interested in
the transfer method derived from the local pseudo-Lipschitz continuity result of Theorem 5.1,
page 101 may skip this section and directly proceed to Section 5.4, page 105.

The first result is the equivalent local pseudo-Lipschitz continuity result of the optimal
Q-function for the optimal value function, stated below.

Theorem 5.2 (Local pseudo-Lipschitz continuity of the optimal value function). For any
two MDPs M, M̄ ∈M, for all s ∈ S,∣∣∣V ∗M (s)− V ∗

M̄
(s)
∣∣∣ ≤ max

a∈A
∆sa(M, M̄)

where the local MDP pseudometric ∆sa(M,M̄) has the same definition as in Theorem 5.1,
page 101.

The proof of Theorem 5.2 is reported in the Appendix, Chapter A, Section A.4. Another
result can be derived for any policy π that one wishes to evaluate in both MDPs. For the
sake of generality, we state the results for any stochastic stationary policy mapping states to
distributions over actions. Recall that a deterministic policy is a stochastic policy choosing
a particular action with probability 1 and the others with probability 0. First, we state
the result for the value function in Theorem 5.3 and then for the Q-function in Theorem 5.4,
page 104. Each theorem relies on the existence and uniqueness of the solution to a fixed-point
equation. Therefore, they both are preceded by a lemma, stating the result. The proofs of
Lemma 5.2, Theorem 5.3, Lemma 5.3, page 104, and Theorem 5.4, page 104 are reported in
the Appendix, Chapter A, Section A.4.

Lemma 5.2. Given two MDPs M,M̄ ∈M, any stochastic stationary policy π, the following
equation on d ∈ F (S,R) is a fixed-point equation admitting a unique solution for any s ∈ S:

ds =
∑
a∈A

π(a | s)

DγV π
M̄

sa (M, M̄) + γ
∑
s′∈S

T ass′ds′

 .

We refer to this unique solution as dπs (M‖M̄).

Theorem 5.3 (Local pseudo-Lipschitz continuity of the value function of any policy). For
any two MDPs M,M̄ ∈M, for any stochastic stationary policy π, for all s ∈ S,∣∣∣V π

M (s)− V π
M̄

(s)
∣∣∣ ≤ ∆π

s (M,M̄)

where ∆π
s (M,M̄) , min

{
dπs (M‖M̄), dπs (M̄‖M)

}
and dπs (M‖M̄) is defined as the fixed-point

of the following fixed-point equation on d ∈ F (S,R):

ds =
∑
a∈A

π(a | s)

DγV π
M̄

sa (M, M̄) + γ
∑
s′∈S

T ass′ds′

 .

104 Chapter 5. Learning in abruptly evolving Markov Decision Processes

Lemma 5.3. Given two MDPs M,M̄ ∈M, any stochastic stationary policy π, the following
equation on d ∈ F (S ×A,R) is a fixed-point equation admitting a unique solution for any
(s, a) ∈ S ×A:

dsa = D
γV π
M̄

sa (M, M̄) + γ
∑

(s′,a′)∈S×A
T ass′π(a′ | s′)ds′a′ .

We refer to this unique solution as dπsa(M‖M̄).

Theorem 5.4 (Local pseudo-Lipschitz continuity of the Q-function of any policy). For any
two MDPs M,M̄ ∈M, for any stochastic stationary policy π, for all (s, a) ∈ S ×A,∣∣∣QπM (s, a)−Qπ

M̄
(s, a)

∣∣∣ ≤ ∆π
sa(M,M̄)

where ∆π
sa(M,M̄) , min

{
dπsa(M‖M̄), dπsa(M̄‖M)

}
and dπsa(M‖M̄) is defined as the fixed-

point of the following fixed-point equation on d ∈ F (S ×A,R):

dsa = D
γV π
M̄

sa (M, M̄) + γ
∑

(s′,a′)∈S×A
T ass′π(a′ | s′)ds′a′ .

A consequence of Theorem 5.1, page 101 is a global pseudo-Lipschitz continuity result.

Theorem 5.5 (Global pseudo-Lipschitz continuity). For two MDPs M,M̄ ∈ M, for all
(s, a) ∈ S ×A, ∣∣∣Q∗M (s, a)−Q∗

M̄
(s, a)

∣∣∣ ≤ ∆(M,M̄) , (5.9)

with ∆(M,M̄) , min
{
d(M‖M̄), d(M̄‖M)

}
and

d(M‖M̄) , 1
1− γ max

(s,a)∈S×A

{
Dsa(M‖M̄)

}
.

The proof of Theorem 5.5 is reported in the Appendix, Chapter A, Section A.4. Simi-
larly to the local MDP dissimilarity between MDPs of Theorem 5.1, page 101, the quantity
d(M‖M̄) does not respect the metric properties P2 and P3, which makes it a dissimilarity
measure between MDPs. However, the quantity ∆(M,M̄) allows to regain property P3 and
results in a pseudometric between MDPs. Like Theorem 5.1, page 101, this fact justifies the
name global pseudo-Lipschitz continuity of Theorem 5.5.

From a pure transfer perspective, Equation 5.9 is interesting since the right hand side
does not depend on a state action pair (s, a) ∈ S × A. Hence, the counterpart of the upper
bound of Equation 5.8, page 102, namely,

S ×A → R
(s, a) 7→ Q∗

M̄
(s, a) + ∆(M,M̄)

is easier to compute. Indeed, ∆(M, M̄) can be computed once and for all, contrarily to

5.4. Transfer using Lipschitz continuity 105

∆sa(M,M̄) that needs to be evaluated for all (s, a) ∈ S × A. However, we do not use
this result for transfer because it is impractical to compute online. Indeed, estimating the
maximum in the definition of d(M‖M̄) might be as hard as solving both MDPs, which, when
it happens, is too late for transfer to be useful. On the other hand, the result of the local
Lipschitz continuity can yield a practical, computable upper bound in the online lifelong RL
setting. In the next section, we detail the calculation and use of such a bound.

5.4 Transfer using Lipschitz continuity

We derived a local pseudo-Lipschitz continuity result in Section 5.3.1, page 100, Theorem 5.1,
page 101. Given an MDP M ∈M, this result allowed us to propose an upper bound on Q∗M
via Equation 5.8, page 102. As such an upper bound can accelerate learning, it can be a useful
information to transfer from one MDP to the other. In Section 5.4.1, we formally define this
transferable upper bound. Then, we will see the limits of this approach as some quantities are
unknown in the definition of this transferable upper bound, making it impractical to compute.
Therefore, in Section 5.4.2, page 107, we propose a way to compute this quantity. Precisely,
we introduce a surrogate upper bound that can be calculated online in the lifelong RL setting,
without having completely explored the source and target tasks. Finally, we implement the
method in an algorithm described in Section 5.5, page 111.

5.4.1 A transferable upper bound on the optimal Q-function

A purpose of value transfer, when interacting online with a new MDP, is to initialize the value
function and drive the exploration to accelerate learning. We aim to exploit value transfer in
a method guaranteeing three conditions:

C1. the resulting algorithm is PAC-MDP (Strehl, Li, and Littman, 2009);

C2. the transfer accelerates learning;

C3. the transfer is non-negative.

From Theorem 5.1, page 101, one can naturally define a local upper bound on the optimal
Q-function of an MDP given the optimal Q-function of another MDP.

Definition 5.2. Given two tasksM,M̄ ∈M, for all (s, a) ∈ S×A, the Lipschitz upper bound
on Q∗M induced by Q∗

M̄
is defined as

UM̄ (s, a) , Q∗
M̄

(s, a) + ∆sa(M,M̄) , (5.10)

and verifies UM̄ (s, a) ≥ Q∗M (s, a).

106 Chapter 5. Learning in abruptly evolving Markov Decision Processes

The principle of optimism in the face of uncertainty, introduced in Chapter 2, Section 2.3.2,
page 28, leads to consider that the long-term expected return from any state-action pair is
the maximum return 1

1−γ , unless proven otherwise. The RMAX algorithm in particular
explores an MDP so as to shrink this upper bound that drives its exploration vs. exploitation
trade-off. RMAX, introduced in Chapter 2 Section 2.3.2, page 28, is a model-based, online RL
algorithm with PAC-MDP guarantees which means that convergence to a near-optimal policy
is guaranteed in a polynomial number of steps with high probability. It relies on an optimistic
model initialization that yields an optimistic upper bound U on the optimal Q-function, then
acts greedily with respect to U . By default, it takes the maximum value

U(s, a) = 1
1− γ ,

but any tighter upper bound is admissible. Thus, shrinking U with Equation 5.10, page 105
is expected to improve the learning speed or sample complexity for new tasks in lifelong RL.
In RMAX, during the resolution of a task M ∈ M, the state-action space S × A is split
into a subset of known state-action pairs K and its complement Kc of unknown pairs. A
state-action pair is known if the number of collected reward and transition samples allows
estimating an ε-accurate model in L1-norm with probability higher than 1 − δ. We refer to
ε and δ as the RMAX precision parameters. This translates into a threshold nknown on the
number of visits n(s, a) to a pair (s, a) ∈ S × A that are necessary to reach this precision.
Consider executing RMAX in the context of lifelong RL, given the experience of a set of m
MDPs M̄ = {M̄1, . . . , M̄m}, we define the total bound as the minimum over all the Lipschitz
bounds induced by each previous MDP.

Theorem 5.6 (Lipschitz upper bound on the optimal Q-function). Given a partially known
task M = (T,R) ∈ M with the set of state-action pairs K for which the model M̂ = (T̂ , R̂)
of M is an ε-accurate estimate of (T,R) in L1-norm with probability at least 1− δ, δ ∈ (0, 1].
Given the set of Lipschitz bounds on Q∗M induced by previous tasks

{
UM̄1

, . . . , UM̄m

}
, the

function Q defined below is an upper bound on Q∗M for all (s, a) ∈ S × A with probability at
least 1− δ.

Q(s, a) ,

R̂
a
s + γ

∑
s′∈S

T̂
a
ss′ max

a′∈A
Q(s′, a′) + ε

(1−γ)2 if (s, a) ∈ K,

U(s, a) otherwise,
(5.11)

with U(s, a) = min
{

1
1−γ , UM̄1

(s, a), . . . , UM̄m
(s, a)

}
.

The proof of Theorem 5.6 is reported in the Appendix, Chapter A, Section A.4. Tra-
ditionally in RMAX, Equation 5.11 is solved to a precision εQ using an algorithm such as
value iteration (see Algorithm 1, page 20). This yields a function Q that is a valid heuris-
tic, i.e., a provable upper bound on Q∗M , for the exploration of the MDP M . We defined
the Lipschitz upper bound on the optimal Q-function in Theorem 5.6 to accelerate learning.
However, it is not directly computable using value iteration as the Lipschitz bounds induced
by source MDPs require some knowledge about models of the source and target task that
may be unavailable. We provide a solution to this issue in the next section.

5.4. Transfer using Lipschitz continuity 107

5.4.2 A computable upper bound on the optimal Q-function

The key issue addressed in this section is how to practically compute the value of the upper
bound U(s, a) presented in Theorem 5.6. More precisely: how to compute the values of the
induced Lipschitz bounds? Consider two tasks M = (T,R) and M̄ = (ˆ̄T, ˆ̄R), on which vanilla
RMAX has been applied, yielding the respective sets of known state-action pairs K and K̄,
along with the learned models M̂ = (T̂ , R̂) and ˆ̄M = (ˆ̄T, ˆ̄R), and the upper bounds Q and Q̄
respectively on Q∗M and Q∗

M̄
.

Remark 5.1. Notice that, if K = ∅, i.e., no state-action pair is known, then Q(s, a) = 1
1−γ for

all (s, a) ∈ S ×A. Conversely, if Kc = ∅, i.e., all the state-action pairs are known, then Q is
an ε-accurate estimate of Q∗M in L1-norm with high probability.

Equation 5.11 of Theorem 5.6 allows the transfer of knowledge from M̄ to M if the
induced Lipschitz bound UM̄ (s, a) can be computed for all (s, a) ∈ S ×A. Unfortunately, the
true optimal value functions, transition and reward models, necessary to compute UM̄ , are
unknown (see Equation 5.10, page 105). Thus, we propose to compute a looser upper bound
based on the learned models and value functions. The proposed idea is to make use of the
available knowledge on the optimal value function and the model, and to use upper bounding
quantities whenever no knowledge is available. This allows not to underestimate the resulting
upper bound, which is a necessary requirement to avoid negative transfer.

First, we provide an upper bound D̂sa(M‖M̄) for all (s, a) ∈ S × A on the pseudometric
between models M and M̄ in Theorem 5.7. Secondly, we provide an upper bound d̂sa(M‖M̄)
on the local MDP dissimilarity dsa(M‖M̄) for all (s, a) ∈ S×A in Theorem 5.8. In turn, using
the two results yields a closed-form expression of an upper bound on the induced Lipschitz
bound of Equation 5.10, page 105.

Theorem 5.7. Given two tasksM,M̄ ∈M, K and K̄ the respective sets of state-action pairs
where their models are known with accuracy ε in L1-norm with probability at least 1−δ, where
δ ∈ (0, 1]. We define the upper bound on the pseudometric between models D̂sa(M‖M̄) for
all (s, a) ∈ S ×A by

D̂sa(M‖M̄) ,

DγV̄
sa (M̂, ˆ̄M) + 2B if (s, a) ∈ K ∩ K̄

max
m̄∈M

DγV̄
sa (M̂, m̄) +B if (s, a) ∈ K ∩ K̄c

max
m∈M

DγV̄
sa (m, ˆ̄M) +B if (s, a) ∈ Kc ∩ K̄

max
(m,m̄)∈M2

DγV̄
sa (m, m̄) if (s, a) ∈ Kc ∩ K̄c

(5.12)

where B = ε
(
1 + γmaxs′∈S V̄ (s′)

)
. For all (s, a) ∈ S ×A, D̂sa(M‖M̄) is an upper bound on

D
γV ∗
M̄

sa (M, M̄) with high probability, i.e.,

Pr
(
D̂sa(M‖M̄) ≥ D

γV ∗
M̄

sa (M, M̄)
)
≥ 1− δ .

108 Chapter 5. Learning in abruptly evolving Markov Decision Processes

The proof of Theorem 5.7 is reported in the Appendix, Chapter A, Section A.4.
Remark 5.2. The assumption of Theorem 5.7 that the models are known with probability at
least 1− δ with accuracy ε in L1-norm can be translated mathematically as

Pr

∣∣∣Ras − R̂as ∣∣∣ ≤ ε, ∀ (s, a) ∈ K and∥∥∥T ass′ − T̂ ass′∥∥∥1
≤ ε, ∀ (s, a) ∈ K and∣∣∣R̄as − ˆ̄Ras

∣∣∣ ≤ ε, ∀ (s, a) ∈ K̄ and∥∥∥T̄ ass′ − ˆ̄T ass′
∥∥∥

1
≤ ε, ∀ (s, a) ∈ K̄

 ≤ 1− δ. (5.13)

Importantly, the probabilistic event of Inequality 5.13 is the intersection of at most 4SA
individual events of estimating either Ras , T ass′ , R̄

a
s or T̄ ass′ with precision ε. Each one of

those individual events is itself true with probability at least 1 − δ′, where δ′ ∈ (0, 1] is a
parameter, as described in Theorem 2.8, page 30. For all the individual events to be true at
the same time, i.e. for Inequality 5.13 to be verified, one must apply Boole’s inequality and
set δ′ = δ/(4SA) to ensure a total probability — i.e., probability of the intersection of all the
individual events — of at least 1− δ.

The magnitude of the B term is controlled by ε. In the case where no information is
available on the maximum value of V̄ , we have that B = ε

1−γ . ε measures the accuracy
with which the tasks are known: the smaller ε, the smaller B. Note that V̄ is used as an
upper bound on the true optimal value function V ∗

M̄
. In many cases, maxs′∈S V ∗M̄ (s′) ≤ 1

1−γ ;
for instance for stochastic shortest path problems, which feature rewards only upon reaching
terminal states, we have that maxs′∈S V ∗M̄ (s′) = 1 and thus one can take B = ε(1 + γ) that
provides a tighter bound for transfer.

Importantly, the upper bound on the pseudometric between models introduced in Theo-
rem 5.7 can be computed analytically. We here propose a closed-form expression to compute
this upper bound. Consider two tasks M = (T,R) and M̄ = (T̄ , R̄), with K and K̄ the
respective sets of state-action pairs where their learned models M̂ = (T̂ , R̂) and ˆ̄M = (ˆ̄T, ˆ̄R)
are known with accuracy ε in L1-norm with probability at least 1− δ. We denote by Vmax, a
known upper bound on the maximum achievable value. In the worst case where one does not
have any information on the value of Vmax, setting Vmax = 1

1−γ is a valid upper bound. We
detail the computation of D̂sa(M‖M̄) for each cases: 1) (s, a) ∈ K ∩ K̄, 2) (s, a) ∈ K ∩ K̄c,
and 3) (s, a) ∈ Kc ∩ K̄c. The case (s, a) ∈ Kc ∩ K̄ being the symmetric of case 2), the same
calculations apply.

1) If (s, a) ∈ K ∩ K̄, we have

D̂sa(M‖M̄) = DγV̄
sa (M̂, ˆ̄M) + 2B

=
∣∣∣R̂as − ˆ̄Ras

∣∣∣+ γ
∑
s′∈S

V̄ (s′)
∣∣∣T̂ ass′ − ˆ̄T ass′

∣∣∣+ 2ε
(

1 + γmax
s′∈S

V̄ (s′)
)
.

Since (s, a) is a known state-action pair, everything is known and computable in this last
equation. Note that maxs′∈S V̄ (s′) can be tracked along the updates of V̄ and thus its

5.4. Transfer using Lipschitz continuity 109

computation does not induce any additional computational complexity.

2) If (s, a) ∈ K ∩ K̄c, we have

D̂sa(M‖M̄) = max
m̄∈M

DγV̄
sa (M̂, m̄) +B

= max
R̄
a
s ,T̄

a
ss′

∣∣∣R̂as − R̄as ∣∣∣+ γ
∑
s′∈S

V̄ (s′)
∣∣∣T̂ ass′ − T̄ ass′∣∣∣

+ ε

(
1 + γmax

s′∈S
V̄ (s′)

)
,

= max
r∈[0,1]

∣∣∣R̂as − r∣∣∣+ γ max
t∈[0,1]S

s.t.
∑

s′∈S ts′=1

∑
s′∈S

V̄ (s′)
∣∣∣T̂ ass′ − ts′ ∣∣∣

+ ε

(
1 + γmax

s′∈S
V̄ (s′)

)
.

First, we have
max
r∈[0,1]

∣∣∣R̂as − r∣∣∣ = max
{
R̂
a
s , 1− R̂

a
s

}
.

Maximizing over the variable t ∈ [0, 1]S such that ∑s′∈S ts′ = 1 is equivalent to maximizing a
convex combination of the positive vector V̄ whose terms are not independent as they must
sum to one. This is easily solvable as a linear programming problem. A straightforward
(simplex-like) resolution procedure consists in progressively adding mass on the terms that
will maximize the convex combination as follows:

• ts′ = 0, ∀s′ ∈ S

• l = Sort states by decreasing values of V̄

• While ∑s∈S ts < 1

– s′ = pop first state in l
– Assign ts′ ← arg maxt∈[0,1]

∣∣∣T̂ ass′ − t∣∣∣ to s′ (note that ts′ ∈ {0, 1})
– If ∑s∈S ts > 1, then ts′ ← 1−∑s∈S\s′ t(s)

This allows calculating the maximum over transition models.

Notice that there is a simpler computation that almost always yields the same result
(when it does not, it provides an upper bound) and does not require the burden of the
previous procedure. Consider the subset of states for which V̄ (s′) = maxs∈S V̄ (s) (often
these are states in K̄c). Among those states, let us suppose there exists s+, unreachable
from (s, a), according to T̂ , i.e., T̂ ass+ = 0. If M̄ has not been fully explored, as is often the
case in RMAX, there may be many such states. Then the distribution t with all its mass
on s+ maximizes the maxt∈[0,1]S term. Conversely, if such a state does not exist (that is, if
for all such states T̂ ass+ > 0), then maxs∈S V̄ (s) is an upper bound on the maxt∈[0,1]S term.
Therefore:

max
t∈[0,1]S

∑
s′∈S

V̄ (s′)
∣∣∣T̂ ass′ − ts′ ∣∣∣

 ≤ max
s∈S

V̄ (s) ,

with equality in many cases.

110 Chapter 5. Learning in abruptly evolving Markov Decision Processes

3) If (s, a) ∈ Kc ∩ K̄c, the resolution is trivial and we have

D̂sa(M‖M̄) = max
m,m̄∈M2

DγV̄
sa (m, m̄)

= max
Ras ,T

a
ss′ ,R̄

a
s ,T̄

a
ss′

∣∣∣Ras − R̄as ∣∣∣+ γ
∑
s′∈S

V̄ (s′)
∣∣∣T ass′ − T̄ ass′ ∣∣∣

= max

r,r̄∈[0,1]
|r − r̄|+ γ max

t,t̄∈[0,1]S
s.t.

∑
s∈S ts=1

and
∑

s∈S t̄s=1

∑
s′∈S

V̄ (s′)
∣∣ts′ − t̄s′∣∣

= 1 + 2γmax
s∈S

V̄ (s) .

Overall, computing the value of the provided upper bound in the three cases allows to compute
D̂sa(M‖M̄) for all (s, a) ∈ S ×A.

We derived a way to compute an upper bound on the pseudometric between models. Using
D̂sa(M‖M̄) in Equation 5.7, page 101, we now provide an upper bound d̂sa(M‖M̄) on the
local MDPs pseudometric dsa(M‖M̄) for any two MDPs M, M̄ ∈ M and any state-action
pair (s, a) ∈ S ×A in the following theorem.

Theorem 5.8. Given two tasks M, M̄ ∈M, K the set of state-action pairs for which (R, T)
is known with accuracy ε in L1-norm with probability at least 1−δ. If the condition γ(1+ε) < 1
is met, the solution d̂sa(M‖M̄) of the following fixed-point equation on d̂ ∈ F (S ×A,R) is
an upper bound on dsa(M‖M̄) for all (s, a) ∈ S ×A with probability at least 1− δ:

d̂sa =

D̂sa(M‖M̄) + γ

(∑
s′∈S

T̂
a
ss′ max

a′∈A
d̂s′a′ + ε max

(s′,a′)∈S×A
d̂s′a′

)
if (s, a) ∈ K,

D̂sa(M‖M̄) + γ max
(s′,a′)∈S×A

d̂s′a′ otherwise.
(5.14)

Similarly as Theorem 5.7, page 107, Theorem 5.8 requires the knowledge of an ε-accurate
estimate in L1-norm for both MDP models with high probability on a subset of S × A. In
other words, Inequality 5.13, page 108 must be verified, which implies learning an ε-accurate
estimate of each reward or transition function with probability at least 1− δ/(4SA) to ensure
a total probability of at least 1− δ. See Remark 5.2, page 108, for more details. Theorem 5.8
requires a fixed-point equation to admit a unique solution. This result is stated in the following
lemma.

Lemma 5.4. Given two tasks M,M̄ ∈ M, K the set of state-action pairs for which (R, T)
is known with accuracy ε in L1-norm with probability at least 1 − δ. If γ(1 + ε) < 1, this
equation on d̂ ∈ F (S ×A,R) is a fixed-point equation admitting a unique solution:

d̂sa =

D̂sa(M‖M̄) + γ

(∑
s′∈S

T̂
a
ss′ max

a′∈A
d̂s′a′ + ε max

(s′,a′)∈S×A
d̂s′a′

)
if (s, a) ∈ K,

D̂sa(M‖M̄) + γ max
(s′,a′)∈S×A

d̂s′a′ otherwise.

5.5. The Lipschitz RMAX algorithm 111

We refer to this unique solution as d̂sa(M‖M̄).

The proofs of Lemma 5.4 and Theorem 5.8 are reported in the Appendix, Chapter A,
Section A.4. Similarly as in Theorem 5.7, page 107, the condition γ(1 + ε) < 1 illustrates
the fact that for a large return horizon (i.e., a large value of γ) a high accuracy (i.e., a small
value of ε) is needed for the bound to be computable.

Finally, a computable Lipschitz upper bound on Q∗M induced by Q∗
M̄

with high probability
is given by

ÛM̄ (s, a) = Q̄(s, a) + min
{
d̂sa(M‖M̄), d̂sa(M̄‖M)

}
. (5.15)

And the associated upper bound on U(s, a) (Equation 5.11, page 106) given the source tasks
M̄ = {M̄i}mi=1 is given for all (s, a) ∈ S ×A by

Û(s, a) = min
{

1
1−γ , ÛM̄1

(s, a), . . . , ÛM̄m
(s, a)

}
. (5.16)

Remark 5.3. In Remark 5.2, page 108, we noticed the requirement to estimate each individual
reward or transition function with precision ε in L1-norm with probability at least 1−δ′, with
δ′ = δ/(4SA). This ensures a total probability of estimating all the individual models correctly
at the same time of at least 1 − δ. This fact is true for two tasks, i.e., in the case m = 1,
where only one source task has been sampled and learned. For the general case of m source
tasks, one should set δ′ = δ

2(m+1)SA for Equation 5.16 to be an upper bound on U(s, a) with
probability at least 1− δ for all (s, a) ∈ S ×A.

We now have a way to practically compute a surrogate upper bound on the induced
Lipschitz bounds by the optimal Q-function of source MDPs. By combining this surrogate
with Theorem 5.6, page 106, we can deduce the upper bound on the optimal Q-function
of a partially known target task induced by all the source tasks. In turn, is the resulting
bound is smaller than 1

1−γ , the performance of an RMAX-like algorithm should be increases
by benefiting from a tighter heuristic function. In the next section, we propose an algorithm
employing this method in the online lifelong RL setting.

5.5 The Lipschitz RMAX algorithm

In this section, we define an algorithm for lifelong RL applying the transfer method described
in Section 5.4, page 105. First we describe the algorithm, then we detail potential improve-
ments.

5.5.1 Definition of LRMAX

In lifelong RL, MDPs are encountered sequentially. Applying RMAX to task M yields the
set of known state-action pairs K, the learned models (T̂ , R̂), and the upper bound Q on
Q∗M . Saving this information when the task changes allows to compute the upper bound of

112 Chapter 5. Learning in abruptly evolving Markov Decision Processes

Equation 5.16 for a new target task, and to use it to shrink the optimistic heuristic of RMAX.
This effectively transfers value functions between tasks based on task similarity. As the new
target task is explored, the task similarity is assessed with better confidence, refining the
values of D̂sa(M‖M̄), d̂sa(M‖M̂) and finally Û(s, a) for all (s, a) ∈ S ×A, allowing for more
efficient transfer where the task similarity is appraised. The resulting algorithm, Lipschitz
R-Max (LRMAX), is presented in Algorithm 10, page 113. To avoid ambiguities with M̄, we
use the notation M̂, denoting the learned features (T̂ , R̂, K and Q) about previously seen
MDPs.

LRMAX requires a few parameters to control the precision on various estimated quantities.
First, the parameter δ corresponds to the probability for the PAC-MDP results to hold. More
precisely, Theorem 5.6, page 106, 5.7, page 107, and 5.8, page 110, onto which LRMAX is
based, are true with probability 1 − δ. Consequently, this is an additional input parameter
that quantifies the degree of uncertainty one can have on the policy of LRMAX. Secondly,
similarly to RMAX, εM indicates the precision with which the empirical model estimates the
true model of the current MDP. In Chapter 2, Section 2.3.2, page 28, we saw in Theorem 2.8,
page 30 that a precision εM is reached if the minimum number of samples nknown to estimate
a model is larger than ⌈2

(
ln(2S − 2)− ln(δ)]

)
ε2M

⌉
.

Consequently, nknown should be deduced from the input parameter εM . Lastly, the parameter
εQ quantifies the error made by the value iteration algorithm — presented in Chapter 2,
Section 2.2.2, page 18 — on the estimated Q-function. Indeed, we choose to use the value
iteration algorithm as the DP method to solve Equations 5.14, page 110 and 5.11, page 106
in the LRMAX procedure. This choice is motivated by the simplicity of value iteration and
the control over the approximated optimal Q-function it provides. Any other algorithm could
be used in place. The εQ parameter combined with the εM parameter should be taken into
account to estimate the total quality of the learned policy — i.e., how close is its value
function to the true optimal value function — after convergence of Algorithm 10, page 113.

Overall, the behavior of LRMAX on a given task M ∈M is precisely that of RMAX, but
with a tighter admissible heuristic Û that becomes better as the new task is explored (while
this heuristic remains constant, equal to 1

1−γ , in vanilla RMAX). LRMAXmeets Condition C1,
i.e., is PAC-MDP, as stated in Theorems 5.9 and 5.10, page 114. The sample complexity of
vanilla RMAX is

Õ
(

S2A

ε3(1− γ)3

)
,

as stated in Chapter 2, Theorem 2.9, page 32. This sample complexity is improved by LRMAX
in Theorem 5.9, page 114 which meets Condition C2. The upper bound Û used by LRMAX is
provably overestimating Q∗M with high probability as stated in Theorem 5.6, page 106, which
avoids negative transfer and meets Condition C3. As shown in Theorem 5.9, page 114, the
sample complexity of LRMAX is no worse than that of RMAX, meaning that in the worst
case, LRMAX achieves the same level of performance as RMAX. As discussed in Section 5.2.2,
page 97, this last fact is equivalent to a provably non-negative transfer method.

5.5. The Lipschitz RMAX algorithm 113

Algorithm 10 Lipschitz RMAX algorithm
Context: state-action space S ×A; distribution D over (T,R,H,P0).
Input: δ parameter for the high probability results; precision εM with which the models
are learned allowing to deduce nknown; precision εQ of value iteration on the estimated
Q-function; discount factor γ.
Initialize M̂ ← ∅.
for each sampled MDP (T,R,H,P0) ∼ D do
Initialize Q(s, a)← 1

1−γ ,∀ (s, a) ∈ S ×A, and K ← ∅
Initialize T̂ and R̂ # RMAX optimistic model (see Chapter 2, Section 2.3.2, page 28).

Q← UpdateQ(M̂, T̂ , R̂)
s ∼ P0 # Set the initial state.

for t ∈ {1, . . . ,H} do
a ← argmaxa′∈AQ(s, a′) # Act greedily with respect to the current Q-function upper

bound.

s′ ∼ T as· # Sample the next state.

r ← Ras # Sample the reward.

n(s, a)← n(s, a) + 1 # Increment the visitations counter for (s, a).
if n(s, a) < nknown then
Store (s, a, r, s′) # Memorize the transition sample for a future model update.

end if
if n(s, a) = nknown then
Update K, T̂ ass′ and R̂

a
s # Override the optimistic model with the learned model.

Q← UpdateQ(M̂, T̂ , R̂) # Update the upper bound with the new learned model.

end if
end for
Save M̂ ← (T̂ , R̂,K,Q) in M̂ # Save the target task as a source task.

end for

Function UpdateQ:
Input: learned model of the current target MDP (T̂ , R̂); set of source MDPs M̂.
for M̄ ∈ M̂ do

Compute the induced Lipschitz upper bound for each source MDP.

Compute D̂sa(M‖M̄) and D̂sa(M̄‖M) for all (s, a) ∈ S ×A (Equation 5.12, page 107)
Compute d̂sa(M‖M̄) and d̂sa(M̄‖M) for all (s, a) ∈ S × A (DP on Equation 5.14,
page 110)
Compute ÛM̄ (Equation 5.15, page 111)

end for
Compute the total upper bound.

Compute Û (Equation 5.16, page 111)
Compute and return Q (DP on Equation 5.11, page 106 using Û)

114 Chapter 5. Learning in abruptly evolving Markov Decision Processes

Theorem 5.9 (Sample complexity of Lipschitz RMAX (Strehl, Li, and Littman, 2009)).
With probability 1 − δ, δ ∈ (0, 1], the greedy policy with respect to Q computed by LRMAX
achieves an ε-optimal return in MDP M for all but (when logarithmic factors are ignored)

Õ

S
∣∣∣{(s, a) ∈ S ×A | Û(s, a) ≥ V ∗M (s)− ε

}∣∣∣
ε3(1− γ)3

time steps, with Û defined in Equation 5.16, page 111 a non-static, decreasing quantity, upper
bounded by 1

1−γ .

Theorem 5.10 (Computational complexity of Lipschitz RMAX). The total computational
complexity of Lipschitz RMAX is

Õ
(
τ + S3A2N

(1− γ) ln
(

1
εQ(1− γ)

))

with τ the number of time steps or decision epochs, εQ the precision of value iteration and N
the number of source tasks.

The proof of Theorem 5.10 is reported in the Appendix, Chapter A, Section A.4.

5.5.2 Refining the LRMAX bound with the maximum model distance

LRMAX relies on upper bounds on the local distances between tasks defined in Equation 5.14,
page 110. The quality of the Lipschitz bound on the optimal Q-function Q∗M of a target task
M ∈ M greatly depends on the quality of those estimates and can be improved accordingly.
We discuss two methods to provide finer estimates.

Refining with prior knowledge. First, from Definition 5.1, page 100, the pseudometric
between models can be shown to be a bounded quantity as stated in the following result.

Theorem 5.11 (Upper bound on the pseudometric between models). For any two MDPs(
M,M̄

)
∈ M2, at any state-action pair (s, a) ∈ S × A, we have the following upper bound

on the pseudometric between models:

Dsa(M‖M̄) ≤ 1 + γ

1− γ .

The proof of Theorem 5.11 is reported in the Appendix, Chapter A, Section A.4. The
quantity 1+γ

1−γ consists in a upper bound on the pseudo-distance between any two MDPs.
However, in practice, the tasks experienced in lifelong RL might not cover the full span of
possible MDPs and therefore may be systematically closer to each other than 1+γ

1−γ . For in-
stance, the pseudo-distances between variations of the Breakout video game are much smaller.

5.5. The Lipschitz RMAX algorithm 115

M

1+
γ

1−
γ

M̃
Dm

ax

Set of all the
MDPs M

Set M̃ of possible
MDPs in a lifelong
RL experiment

Sampled MDPs

Figure 5.3: Illustration of the prior knowledge on the maximum pseudo-distance between
models. The sets of MDPs are represented in 2D for the sake of illustration. The sampled
MDPs denote tasks sampled in the lifelong RL experiment. The maximum pseudo-distance
1−γ
1+γ between two MDPs of the complete set of MDPsM is potentially larger than the maxi-
mum pseudo-distance Dmax between two MDPs of the lifelong RL experiment M̃.

In the same way, the pseudo-distance between two games in the Arcade Learning Environ-
ment (ALE) (Bellemare, Naddaf, Veness, and Bowling, 2013) — which is a common reference
benchmark in the RL community — is also smaller than the maximum distance 1+γ

1−γ between
any two MDPs defined on the common state-action space of the ALE. Let us denote by
M̃ ⊂ M the set of possible MDPs for a particular lifelong RL experiment. We define the
maximum model distance at (s, a) ∈ S ×A by

Dmax(s, a) , max
M,M̄∈M̃2

Dsa(M‖M̄) .

This quantity is the maximum possible pseudo-distance between models for the same state-
action pair in the complete set M̃ of the possible tasks. Obviously, Dmax(s, a) is also upper
bounded by 1+γ

1−γ . However, prior knowledge might indicate a smaller upper bound. We will
write such an upper bound Dmax, considered valid for all (s, a) ∈ S ×A pairs, i.e., such that

Dmax ≥ max
s,a,M,M̄∈S×A×M̃2

(
Dsa(M‖M̄)

)
.

In a lifelong RL experiment, Dmax should be seen as a rough estimate of the maximum model
discrepancy an agent may encounter, regardless of the state-action pair. Figure 5.3 illustrates
the relative importance of Dmax vs. 1+γ

1−γ .

We saw that the transfer method used by LRMAX requires computing the upper bound
described in Equation 5.14, page 110 on the local MDP dissimilarity. Solving this equa-
tion boils down to accumulating D̂sa(M‖M̄) values in d̂sa(M‖M̄). Reducing an estimate
of D̂sa(M‖M̄) in a single state-action pair actually tightens the upper bound d̂sa(M‖M̄)
in all the state-action pairs. Thus, replacing D̂sa(M‖M̄) in Equation 5.14, page 110 by
min{Dmax, D̂sa(M‖M̄)}, provides a smaller upper bound D̂sa(M‖M̄) on Dsa(M‖M̄), and
thus a smaller induced Lipschitz bound Û . Importantly, this last bound allows an efficient

116 Chapter 5. Learning in abruptly evolving Markov Decision Processes

transfer only if it is lesser than 1
1−γ . Consequently, such an upper bound Dmax can make a

difference between successful and unsuccessful transfer, even if its value is of little importance.

Conversely, setting a value for Dmax quantifies the distance between the models of the
MDPs of the task space. As this value can be linked to the efficiency of transfer, knowing it
in advance given a task space M is a useful way to appraise if the transfer method will be
efficient or not.

Refining by learning the maximum distances. Furthermore, one can estimate online
the value of Dmax(s, a) for each pair (s, a) ∈ S×A, lifting the previous hypothesis of available
prior knowledge. Particularly, one can build an empirical estimate of the maximum model
distance Dmax(s, a) at (s, a) ∈ S ×A with the following quantity:

D̂max(s, a) , max
M,M̄∈M̂2

D̂sa(M‖M̄) ,

where M̂ ⊂ M̃ is the finite set of sampled tasks, i.e., already explored. In Figure 5.3, page 115,
M̂ is the set of the MDPs represented by blue dots. The pitfall being that, with few explored
tasks, D̂max(s, a) could underestimate Dmax(s, a) in the case where the maximizing tasks have
not been picked. In Theorem 5.12 we provide a lower bound on the probability that D̂max(s, a)
does not underestimate Dmax(s, a), depending on the number of sampled tasks. In turn this
indicates when D̂max(s, a) is an upper bound on Dmax(s, a) with high probability, which can
be combined with Algorithm 10, page 113 to improve the performance by tightening the
bound.

Theorem 5.12. Consider an algorithm producing ε-accurate model estimates D̂sa(M‖M̄) for
a subset K of S × A after interacting with any two MDPs M,M̄ ∈ M. Assume D̂sa(M‖M̄)
to be an upper bound of Dsa(M‖M̄) for any (s, a) /∈ K. Consider δ ∈ (0, 1]. For all (s, a) ∈
S × A, after sampling m tasks in the lifelong RL setting, if m is large enough to verify
2(1− pmin)m − (1− 2pmin)m ≤ δ, then,

Pr
(
D̂max(s, a) + ε ≥ Dmax(s, a)

)
≥ 1− δ .

The proof of Theorem 5.12 is reported in the Appendix, Chapter A, Section A.4. Notice
that, similarly to the setting of the MaxQInit algorithm (Abel, Jinnai, Guo, Konidaris, and
Littman, 2018), it is assumed in Theorem 5.12 thatM is a finite set and that each task has
a minimum sampling probability pmin. This can also be interpreted as a non-adversarial task
sampling strategy. Notice also that the result provided in Theorem 5.12 holds for an algorithm
producing ε-accurate model estimates with probability 1. One should pay attention to the
fact that the Lipschitz RMAX algorithm presented in Algorithm 10, page 113, only produces
ε-accurate model estimates with probability at least 1− δ, δ ∈ (0, 1] being a parameter of the
algorithm. Hence, to apply the result of Theorem 5.12 to Algorithm 10, one should consider
the joint probability of both having ε-accurate model estimates on a subset K of S × A and
over-estimating Dmax(s, a) with D̂max(s, a) + ε. This result can be achieved by applying a
union bound to both probabilities.

5.6. Experiments 117

S

Figure 5.4: The tight grid-world environment.

5.6 Experiments

The experiments reported here1 illustrate how 1) LRMAX allows for early performance in-
crease in lifelong RL by efficiently transferring knowledge between tasks; 2) the Lipschitz
bound of Equation 5.15, page 111 improves the sample complexity compared to RMAX by
providing a tighter upper bound on Q∗. Graphs are displayed with 95% confidence intervals.

We evaluate different variants of LRMAX in a lifelong RL experiment. The RMAX
algorithm will be used as a baseline performing no transfer. It achieves the performance
of a model-based PAC-MDP algorithm learning any new task from scratch. LRMAX(x)
denotes Algorithm 10, page 113 with prior Dmax = x. MaxQInit denotes the MaxQInit
algorithm from Abel, Jinnai, Guo, Konidaris, and Littman (2018), consisting in a state-of-the
art PAC-MDP algorithm achieving transfer in a non adversarial setting with PAC guarantees.
Both LRMAX and MaxQInit algorithms achieve value transfer by providing a tighter upper
bound on Q∗ than 1

1−γ . Taking the minimum over both upper bounds results in combining
the two approaches. We include such a combination in our study with the LRMaxQInit
algorithm. Similarly, LRMaxQInit(x) consists in the latter algorithm, benefiting from prior
knowledge Dmax = x.

The environment we used in all experiments is a variant of the “tight” environment used
by Abel, Jinnai, Guo, Konidaris, and Littman (2018). The tight environment is a 11×11 grid-
world illustrated in Figure 5.4. The initial state of the agent is the central cell displayed with
an “S”. The actions are to move to the adjacent cell in one of the four cardinal directions, i.e.,
A = {Right, Up, Left, Down}. The reward is 0 everywhere, except for executing an action in
one of the three teal cells in the upper-right corner. Each time a task is sampled, a slipping
probability of executing another action as the one selected is drawn in [0, 1] and the reward
received in each one of the teal cells is picked in [0.8, 1.0]. Hence, tasks have different reward

1Code available at https://github.com/SuReLI/llrl – For information about the Machine Learning repro-
ducibility checklist, see Appendix, Section E, page 161.

118 Chapter 5. Learning in abruptly evolving Markov Decision Processes

2 4 6 8 10 12 14
Task number

1.0

1.5

2.0

2.5

3.0

A
ve

ra
ge

R
el

at
iv

e
D

is
co

u
n
te

d
R

et
u

rn

RMax

LRMax

LRMax(0.2)

LRMax(0.1)

MaxQInit

LRMaxQInit

LRMaxQInit(0.1)

(a) Average discounted return vs. tasks

0 250 500 750 1000 1250 1500 1750 2000
Episode number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
ve

ra
ge

R
el

at
iv

e
D

is
co

u
n
te

d
R

et
u

rn

(b) Average discounted return vs. episodes

0 250 500 750 1000 1250 1500 1750 2000
Episode number

0.0

0.5

1.0

R
el

at
iv

e
d

is
co

u
nt

ed
re

tu
rn

RMax Task = 1

LRMax(0.1) Task = 1

LRMax(0.1) Task = 2

MaxQInit Task = 11

MaxQInit Task = 12

(c) Discounted return for specific tasks

0.00.20.40.60.81.0
Prior knowledge (known upper-bound on maxs,a = DMM̄

γV ∗
M̄

(s, a))

0

20

40

60

80

100

120

140

160

%
% use Lipschitz bound

% convergence speed-up

% total return gain

(d) Algorithmic properties vs. Dmax

Figure 5.5: Experimental results of RMAX, LRMAX, MaxQInit and LRMaxQInit in the
“tight” lifelong Reinforcement Learning experiment.

and transition functions.

To comply with the requirements of MaxQInit and Theorem 5.12, page 116, a finite set
of tasks is pre-sampled and tasks are drawn with the same probability during the lifelong RL
experiment. Precisely, we sample 15 tasks in sequence among a pool of 5 possible different
sampled tasks. Note, however, that LRMAX does not require the set of MDPs to be finite,
which is a noticeable advantage in applicability. Each is run for 2000 episodes of length 10.
The complete operation is repeated 10 times to provide narrow confidence intervals. We
used nknown = 10, δ = 0.05, εM = 0.01 and εQ = 0.01. Theoretically, nknown should be a
lot larger (≈ 105) in order to reach an accuracy of εM = 0.01 according to Theorem 2.8,
page 30 (Chapter 2). However, it is a common practice to assume such small values of nknown
are sufficient to reach an acceptable model accuracy εM (Abel, Jinnai, Guo, Konidaris, and
Littman, 2018). Interestingly, empirical validation did not confirm this assumption for any
RMAX-based algorithm. We keep these values nonetheless for the sake of comparability
between algorithms and consistency with the literature. Despite such absence of accuracy
guarantees, RMAX-based algorithms still perform surprisingly well and are robust to model

5.6. Experiments 119

estimation uncertainties. This raises the interesting question of the robustness of RMAX to
wrong models.

The results are reported in Figure 5.5, page 118. Figure 5.5a, page 118 displays the
discounted return for each task, averaged across episodes. Similarly, Figure 5.5b, page 118
displays the discounted return for each episode, averaged across tasks and follows the same
color code as Figure 5.5a, page 118. Figure 5.5c, page 118 displays the discounted return for
five specific instances, detailed below. To avoid inter-task disparities, all the aforementioned
discounted returns are displayed relatively to an estimator of the optimal expected return
for each task. For readability purposes, Figures 5.5b, page 118 and 5.5c, page 118 display a
moving average over 100 episodes. Figure 5.5d, page 118 reports the benefits of various values
of Dmax on the properties of Algorithm 10, page 113.

In Figure 5.5a, page 118, we first observe that LRMAX benefits from the transfer method,
as the average discounted return increases as more tasks are experienced. Moreover, this ad-
vantage appears as early as the second task. Conversely, the MaxQInit algorithm needs to
wait for task 12 before benefiting from transfer. As suggested in Section 5.5.2, page 114,
various amounts of prior allow the LRMAX transfer method to be more or less efficient: a
smaller known upper bound Dmax on D̂sa(M‖M̄) for all (s, a) ∈ S × A implies a larger dis-
counted return gain. As expected, combining both approaches in the LRMaxQInit algorithm
outperforms all other methods. Indeed, this is explained by the fact that taking the minimum
of the two upper bound provides the tightest bound.

Episode-wise, we observe in Figure 5.5b, page 118 that the LRMAX transfer method
allows for faster convergence, hence decreases the sample complexity. Interestingly, LRMAX
features three stages in the learning process.

1. The first episodes are characterized by a direct exploitation of the transferred knowledge,
causing these episodes to yield high payoff. This is due to the combined facts that the
Lipschitz bound of Equation 5.15, page 111 is larger on promising regions of S × A
seen on previous tasks and the fact that LRMAX acts greedily with respect to that
bound. Qualitatively, this can be translated by the fact that, given the information
of the prior Dmax characterizing the similarity between the tasks of the pool, LRMAX
effectively exploits this information by first exploring the states that yielded high payoff
in previous tasks.

2. This high performance regime is followed by the exploration of unknown regions of
S × A, in our case yielding low returns. Indeed, as promising regions are explored
first, the bound becomes tighter for the corresponding state-action pairs, enough for
the Lipschitz bound of unknown pairs to become larger, thus driving the exploration
towards low payoff regions in our case. Such regions are quickly identified and never
revisited thereafter. This behavior is sound in that it accounts for the fact that LRMAX
follows the optimism in the face of uncertainty principle.

3. Eventually, LRMAX stops exploring and converges to the optimal policy.

120 Chapter 5. Learning in abruptly evolving Markov Decision Processes

Importantly, in all experiments, LRMAX never features negative transfer as supported by the
provability of the Lipschitz upper bound with high probability. This is indeed demonstrated
by the fact that it is at least as efficient in learning as the no-transfer RMAX baseline.

Figure 5.5c, page 118 displays the collected returns of RMAX, LRMAX(0.1), and MaxQInit
for specific tasks. We observe that LRMAX benefits from the transfer as early as task 2,
where the aforementioned 3-stages behavior is visible. Again, we observe that MaxQInit
needs to wait for task 12 to leverage the transfer method. However, the bound it provides
are tight enough to allow for almost zero exploration of the task. This supports the fact that
LRMaxQInit reaches the best performance by taking the “best of two worlds”, i.e., the best
bound between the LRMAX transfer method and the MaxQInit transfer method. This echoes
back to the discussion of Section 5.2, page 95 where we see in Figure 5.2, page 100 that the
two bounds are of different nature and thus not comparable.

In Figure 5.5d, page 118, we display the following quantities for various values of the prior
Dmax:

• ρLip, is the ratio of the number of decision epochs where the Lipschitz bound was tighter
than the RMAX bound 1

1−γ ;

• ρSpeed−up, is the relative gain of decision epochs before convergence when comparing
LRMAX to RMAX. This quantity is estimated based on the decision epoch of the last
updates of the empirical model M̄ ;

• ρReturn, is the relative total return gain on 2000 episodes of LRMAX compared to
RMAX.

First, we observe an increase of ρLip as Dmax becomes tighter. This means that the Lipschitz
bound of Equation 5.15, page 111 becomes effectively smaller than 1

1−γ as the prior increases.
This phenomenon leads to faster convergence, indicated by ρSpeed−up. Finally, this increased
convergence rate allows for a net total return gain, illustrated by the increase of ρReturn.

Overall, in this analysis, we have showed that LRMAX benefits from an enhanced sample
complexity thanks to the used value transfer method. The knowledge of a prior Dmax further
increases this benefit. The method is comparable to the MaxQInit method and has some
advantages such as the early fitness for use and the applicability to infinite sets of tasks.
No computed upper bound by LRMAX or MaxQInit is uniformly better than the other,
making the use of the combination of the two an even better heuristic for an RMAX algo-
rithm. Importantly, the transfer is non-negative while preserving the PAC-MDP guarantees
of LRMAX.

5.7 Conclusion

We have studied theoretically the Lipschitz continuity property of the optimal Q-function
in the MDP space. This led to a local Lipschitz continuity result, establishing that the dis-

5.7. Conclusion 121

tance between the optimal Q-functions of two MDPs at the same state-action pair is upper
bounded by a local (state-action dependent) distance between MDPs. This local distance
can be computed by dynamic programming. A consequence of this result is a global Lip-
schitz continuity property of the optimal Q-function in the MDP space, with respect to a
pseudometric between MDPs. We then proposed a value transfer method using the local con-
tinuity property with the Lipschitz RMAX algorithm, practically implementing this approach
in the lifelong RL setting. The algorithm preserves PAC-MDP guarantees, accelerates the
learning in subsequent tasks and performs non-negative transfer. Potential improvements of
the algorithm were discussed in the form of prior knowledge introduction on the maximum
distance between models and online estimation with high probability of this distance. We
showcased the algorithm in lifelong RL experiments and demonstrated empirically its ability
to accelerate learning. The results also confirm that no negative transfer occurs, regardless
of the parameter settings. It should be noted that our approach can directly extend other
PAC-MDP algorithms (Szita and Szepesvári, 2010; Rao and Whiteson, 2012; Pazis, Parr, and
How, 2016; Dann, Lattimore, and Brunskill, 2017) to the lifelong RL setting.

The content of this chapter suggests a few perspectives. The upper bound computed
by the LRMAX algorithm has the advantage to be a true upper bound on the optimal Q-
function of any MDP with high probability. In turn, this allows us to claim that the transfer
method is provably non-negative with high probability. However, we did not restrict the
study to any sub-class of MDPs, making the set of hypotheses relatively wide. In turn,
this makes the computed upper bound very conservative and, possibly, there could exist
tighter upper bounds with respect to the particular set of MDPs that can be sampled in
particular lifelong RL experiments. Therefore, an interesting perspective would be to learn
problem-dependent metrics that could be used for transfer, in the same way as the general
MDPs local pseudometric we introduced in Theorem 5.1, page 101. Conversely, widening
the set of hypotheses is also possible. Precisely, we restricted the study to lifelong RL tasks
sharing the same state-action space S × A. To what extent is transfer possible or efficient if
tasks have different state-action spaces? An answer is partly provided in the study carried
out in this chapter, since the LRMAX algorithm can be applied to partially explored tasks.
Therefore, the case of a state never encountered before arises in our study. In such a case,
a conservative upper bound on the Q-function is provided by LRMAX. However, the case
where the state-action spaces do not share the same structure — for instance S ≡ R2 for a
task and S ≡ R3 for another task — remains an open question. The derivation of a Lipschitz
upper bound on Q-functions in such a case would be an interesting perspective. A limitation
of the LRMAX algorithm is its linear growth in terms of computational complexity with
the number of source tasks. To prune such a phenomenon, Mahmud, Hawasly, Rosman, and
Ramamoorthy (2013) and Brunskill and Li (2013) proposed clustering techniques to compress
the information gathered in the pool of source tasks. Naturally, such a practice could benefit
LRMAX as it could help retaining selected information. Indeed, as seen in the experiments of
Section 5.6, page 117, LRMAX is able to perform efficient transfer as soon as a single source
task has been learned. This suggests that additional knowledge about the same kind of tasks
could be of little use to the algorithm and motivates pruning the gathered information.

Overall, the approach developed in this chapter is a similarity-based transfer method

122 Chapter 5. Learning in abruptly evolving Markov Decision Processes

for abruptly evolving environments. It should be considered as a different setting from the
previous chapter where temporal evolution was assumed to be gradual. Consequently, the
approaches resulting from those two different settings feature different characteristics.

Chapter 6

Conclusion

At the beginning of this dissertation, we asked the following question:

How to act in an environment that can change over time?

We proposed an answer through the scope of Reinforcement Learning and considered
planning and learning agents acting in Markov Decision Processes (MDP) under different
temporal evolution hypotheses. In this conclusion chapter, we first summarize the three axes
of contributions of the study, corresponding to Chapters 3, 4 and 5. Then, we conclude on
the answer we provided to the initial question and the general perspectives it offers.

Chapter 3 is dedicated to the study of the planning vs. re-planning trade-off within
stationary MDPs. A method designed to reuse the search tree constructed by a planning
agent to prevent re-planning is proposed. The method is suited for both closed-loop and
open-loop tree search algorithms. A theoretical study shows the provided guarantees in
terms of optimality in both cases. Importantly, related work in the literature lack such a
performance guarantees study, which makes the interest of the contribution. As a key feature
of the derived algorithms, a so called decision criterion is introduced to balance the trade-off
between optimality loss and computational complexity gain. The benefits of the method are
demonstrated experimentally. As a perspective, the extension to the Partially Observable
Markov Decision Process framework was considered as — similarly to the proposed approach
— it comprehends reasoning on state distributions rather than particular states. Also, a
formal analysis of the decision criterion was proposed as a way to extend the applicability of
the proposed algorithms.

Chapter 4 is dedicated to the study of a planning strategy in the case of gradually evolving
MDPs. First, a novel Lipschitz continuity hypothesis of the transition and reward functions
with respect to time is introduced to model the assumption of gradual evolution. Secondly,
the hypothesis that an instant snapshot of the complete model is available at each decision
epoch is introduced. Intuitively, this assumption should be understood as the knowledge
of the current transition and reward functions but not their evolutions, which has practical
applications. On this basis, the proposed approach is a worst case planning method to
derive the optimal policy of the worst case evolution. This results in a risk averse strategy
corresponding to the Minimax behavior. The resulting algorithm, called RATS, was formally
shown to estimate the optimal policy of the worst case scenario. Finally, the performances
of RATS were demonstrated experimentally. As a perspective, we suggested a method to
scale the algorithm to larger problems. We also proposed the idea of making the resulting

123

124 Chapter 6. Conclusion

policy less conservative by restricting the set of possible temporal evolutions or learning the
set of state-action pairs evolving in an adversarial manner. Finally, we suggested an exact
resolution of the risk averse problem as RATS practically computes the solution of a relaxed
problem. Quantifying the impact of such a relaxation is also of interest.

Chapter 5 is dedicated to the study of a value transfer method in the lifelong Reinforcement
Learning setting. This framework can be seen as a case of abruptly evolving MDPs, as
opposed to the setting studied in Chapter 4. The proposed idea is to quantify the distance of
the current transition and reward models to already experienced environments. In turn, the
knowledge of such a distance allows to derive an upper bound on the optimal Q-function of the
current MDP which accelerates learning in an RMAX-like algorithm. Such a transfer method,
using similarity measures between tasks, have the appealing feature to quantify the amount
of achievable transfer. Further, the transfer method is non-negative as the used upper bound
is provably valid with high probability. Noticeably, the presented algorithm, called LRMAX,
features PAC-MDP guarantees, which ensures the convergence to the optimal policy in a
polynomial number of decision epochs with high probability. As a non-negative, similarity-
based, PAC-MDP transfer method, the LRMAX algorithm is the first method of the literature
combining those three appealing features. Finally, we studied LRMAX theoretically and
experimentally and showed in both cases that it benefits from an improved sample complexity
thanks to the transfer method. As a perspective, we proposed to integrate domain-specific
knowledge in the form of a learned metric. Such practice could improve the performance of
the LRMAX algorithm by providing a tighter upper bound. Then, we asked the question of
transfer between tasks featuring different state-action spaces and the derivation of a Lipchitz
upper bound in such a case. Lastly, the perspective of pruning the set of source tasks from
which to perform transfer was proposed by using clustering methods.

Overall, our study comprehends three parts. First, a study of the planning vs. re-planning
trade-off in stationary MDPs. Secondly, a study of the risk averse strategy in gradually
evolving MDPs. Thirdly, a study of a transfer method in abruptly evolving MDPs. These
three sets of hypotheses cover important cases of MDP models featuring different temporal
evolutions. Each one of the three aspects was treated by designing a control algorithm adapted
to the setting. Systematically, a theoretical analysis was carried out, demonstrating the
theoretical guarantees. Additionally, the results were supported with empirical evidences.

Our answer to the question of acting in non-stationary environments starts by categorizing
the types of non-stationarities. As shown, different evolution modes imply different solutions
to the problem, relying on different assumptions and providing different guarantees. Con-
sidering the most general framework that comprehends everything is particularly interesting
theoretically but often lacks practical applications. Nonetheless, in this dissertation, we tried
to make a compromise by considering less general settings — by studying particular cases of
non-stationarity — that still encompass many applications. Hence, our answers in each case
do not allow to close the question, but they constitute contributions to the field that we hope
to be important. One could argue that the initial question is very general, which motivated
the variety of the presented results. Indeed, it is true that each one of the three settings
presented in Chapters 3, 4 and 5 corresponds to a sub-field of the Reinforcement Learning

125

problem, to which decades of scientific research are associated. This dissertation allows to put
them in perspective from each other and to appreciate better their particularities. Precisely,
this allows to highlight what differences make one framework particularly harder than the
other and how to address these particular difficulties. In the remainder of this conclusion, we
develop on general perspectives.

A recurrent assumption of the dissertation is the consideration of discrete, finite, state-
action spaces S×A. In most of the applications, particularly in Chapters 4 and 5, this resulted
in a bottleneck in the applicability of the algorithms, having a computational complexity at
least O

(
S2A2). The same problem arises regarding their sample complexity. Therefore, a

natural direction for the research carried out in this dissertation is to make use of some sort
of approximations to prune the complexity of our algorithms. For instance, using function
approximation for the derived optimal Q-function — as widely done in the literature — could
achieve this. Another example would be to make use of state or action abstractions, which
amounts to realize a mapping from a “large” MDP to a smaller one in terms of dimensions.
On the other hand, working on the exact state-action space with tabular functions allows to
conserve theoretical guarantees about the performance of the algorithms. Such guarantees
are systematically lost when dealing with function approximations. Achieving to mix approx-
imations and theoretical guarantees would probably constitute a major advance in the field.
To that end, the answer could be the introduction of a new framework, into which guarantees
are seen in a different way than sample or computational complexity. To cope with approxi-
mations, one should probably consider relaxed guarantees, maybe probabilistic as done in the
PAC-MDP framework. An answer could even be to adopt a different formulation than the
original MDP framework.

A more precise perspective that would benefit all the approaches presented in the disser-
tation is to learn emerging patterns in the observed state-action pairs and their associated
models. In Chapter 3, learning what state distribution could motivate a decision criterion
to trigger re-planning would allow domain-specific knowledge to improve the planning vs.
re-planning trade-off. In Chapter 4, learning that some state-action pairs evolve in an adver-
sarial manner or not would be useful to a risk averse planning agent. In Chapter 5, learning
that some state-action pairs have invariant models across lifelong RL tasks or conversely that
it constantly changes would drastically prune the search thanks to domain-specific knowledge.
More generally, those ideas are on the same line of thought as the perspective presented in
the last paragraph as it would consist in learning state-action abstractions or representations
to allow for more efficient algorithms. Particularly, incorporating learned, domain-specific,
knowledge, is a way to improve the range of applicability of an algorithm.

On the same idea of pruning the complexity of an algorithm, an interesting perspective
coming from the Neuroscience and the Natural Language Processing fields is the use of features
representing real-life concepts to build an abstract state space. More precisely, encoding
states in a semantic space yields a simplified representation of an MDP composed of elements
relative to known or learned features of a problem. For instance, an agent interacting with
a maze could learn the concept of walls and in turn identify them online. This supposes
the maintenance of an internal representation of the world that could be used for planning.

126 Chapter 6. Conclusion

Necessarily, this representation would need corrections as it is learned over time and adapted
to a specific domain, which raises the question of planning vs. acting (Ghallab, Nau, and
Traverso, 2014). For instance, predictive coding is a theory from the Neuroscience field,
stating that the biological brain generates an abstract model of its sensory input. When this
model does not reflect accurately the reality, a prediction error is back-propagated through
the network and the model is revised. Such a mechanism has recently proven to represent
meaningful features able to capture the structural properties of a problem (Lotter, Kreiman,
and Cox, 2016; Spratling, 2017; Boutin, Franciosini, Ruffier, and Perrinet, 2019).

Overall, allowing to scale the approaches presented in this dissertation to a wider range of
real life problems is an exciting prospect. The proposed perspectives mainly highlight the need
for abstract representations of a problem in order to reach good performances. Future studies
should however retain theoretical insights to gain a formal quantification of the capabilities
of a learning algorithm.

Appendix A

Proofs of the dissertation

A.1 Proofs of Chapter 2

Proof of Theorem 2.5, page 19. Consider the sequence of distances defined by ∆n = ‖Vn − V ∗‖∞.
We have the following inequality between subsequent elements of this sequence:

∆n+1 = max
s∈S
|Vn+1(s)− V ∗(s)|

= max
s∈S

∣∣∣∣∣∣max
a∈A

Ras + γ
∑
s′∈S

T ass′Vn(s′)

−max
a∈A

Ras + γ
∑
s′∈S

T ass′V
∗(s′)

∣∣∣∣∣∣

≤ max
(s,a)∈S×A

∣∣∣∣∣∣Ras + γ
∑
s′∈S

T ass′Vn(s′)−Ras + γ
∑
s′∈S

T ass′V
∗(s′)

∣∣∣∣∣∣
≤ γ max

(s,a)∈S×A

∑
s′∈S

T ass′
∣∣Vn(s′)− V ∗(s′)

∣∣
≤ γ∆n.

Since ∆0 ≤ Rmax
1−γ , we have that ∆n ≤ γnRmax

1−γ . Thus, if n is such that γnRmax
1−γ ≤ ε, then ∆n ≤ ε.

Equivalently, if n ≥ ln
(
ε(1−γ)
Rmax

)
(ln (γ))−1, then ∆n ≤ ε, which concludes the proof.

Proof of Theorem 2.6, page 20. As seen in Theorem 2.5, page 19, value iteration requires⌈
1

ln(γ) ln
(
ε(1−γ)
Rmax

)⌉
full updates of the value function, which is randomly initialized. Each full

update requires updating the current value of V for each states, resulting in S operations.
Each one of those operations requires computing A values among which the maximum is
picked for the update. Each one of those A values requires computing the value of O (S)
possible successor states. As a result, a full update of V (for every states) requires O

(
S2A

)
operations.

Proof of Theorem 2.8, page 30. This result stems directly from Lemma 13 and 14 from Strehl,
Li, and Littman (2009) that provide the minimal value of m for the two different events of:

A estimating T as· with precision εM in 1-norm with probability at least 1− δ′,

127

128 Appendix A. Proofs of the dissertation

B estimating Ras with precision εM in absolute value with probability at least 1− δ′,

where δ′ ∈ [0, 1). For both events to be verified at the same time, we apply the union bound
for independent events and have that

Pr (A ∩ B) = 1−Pr(A ∩ B)
= 1−Pr(Ā ∪ B̄)

≥ 1−
(
Pr(Ā) + Pr(B̄)

)
,

where the negation of the probability event X is denoted by X̄. Setting δ′ = δ/2 for each
event A and B yields Pr(Ā) ≤ δ/2 and Pr(B̄) ≤ δ/2, which concludes the proof by implying

Pr (A ∩ B) ≥ 1− δ .

A.2 Proofs of Chapter 3

Proof of Lemma 3.1, page 51. The first result is borrowed from Kocsis and Szepesvári (2006)
where they show it for a generic bandit problem. The extension to our case with a given
budget is straightforward. The sequence of lower bounds can be derived by observing that
b(d) = T d−1

Îd−1,b(d−1)
and applying the previous lower bound.

Proof of Lemma 3.2, page 51. Let us first bound the failure probability with the probability
of overestimating a sub-optimal action and underestimating the optimal one up to ∆d

Îd
/2.

Pr
(
Îd 6= i∗d

∣∣∣ b(d)
)

= Pr
(
Ẑd
Îd,b(d) ≥ Ẑ

d
i∗
d
,b(d)

∣∣∣∣ b(d)
)

≤ Pr

Ẑd
Îd,b(d) ≥ Z

d
Îd,b(d) +

∆d
Îd

2 ∪ Ẑdi∗
d
,b(d) ≤ Z

d
i∗
d
,b(d) −

∆d
Îd

2

∣∣∣∣∣∣ b(d)

≤ Pr

Ẑd
Îd,b(d) ≥ Z

d
Îd,b(d) +

∆d
Îd

2

∣∣∣∣∣∣ b(d)

+ Pr

Ẑdi∗
d
,b(d) ≤ Z

d
i∗
d
,b(d) −

∆d
Îd

2

∣∣∣∣∣∣ b(d)

From now on, the proof breaks to the analysis of one of the two terms on the right of the last

A.2. Proofs of Chapter 3 129

inequality since both can be considered the same way. Let us consider the first term:

Pr

Ẑd
Îd,b(d) ≥ Z

d
Îd,b(d) +

∆d
Îd

2

∣∣∣∣∣∣ b(d)

=

b(d)∑
t=1

Pr

Ẑd
Îd,b(d) ≥ Z

d
Îd,b(d) +

∆d
Îd

2

∣∣∣∣∣∣ T dÎd,b(d) = t

Pr
(
T d
Îd,b(d) = t

∣∣∣∣ b(d)
)

≤
b(d)∑
t=1

exp
(
−1

2
(
∆d
Îd

)2
t

)
Pr
(
T d
Îd,b(d) = t

∣∣∣∣ b(d)
)

≤
b(d)∑

t=dρ ln(b(d))e
exp

(
−1

2
(
∆d
Îd

)2
t

)
Pr
(
T d
Îd,b(d) = t

∣∣∣∣ b(d)
)

≤ exp
(
−1

2
(
∆d
Îd

)2
dρ ln(b(d))e

)
≤ b(d)−

ρ
2 (∆d

Îd
)2

≤ b(d)−
ρ
2 (δd)2

Where we first write the joint probability, then apply Hoeffding’s inequality, followed by
Lemma 3.1, page 51 and the fact that a convex combination is upper bounded by its higher
element. Similarly to Kocsis and Szepesvári (2006), we shall assume that the UCT constant
Cp is appropriately chosen for the tail inequalities to be verified.

Proof of Theorem 3.1, page 52. We write the joint probability distribution:

Pr
(
Îd 6= i∗d

∣∣∣ B) =
B∑
t=1

Pr
(
Îd 6= i∗d

∣∣∣ B, b(d) = t
)
Pr (b(d) = t | B)

≤
B∑
t=1

2t−
ρ
2 (δd)2Pr (b(d) = t | B)

≤ 2
B∑

t=dρ ln(b(d−1))e
t−

ρ
2 (δd)2Pr (b(d) = t | B)

≤ 2dρ ln(b(d− 1))e−
ρ
2 (δd)2

Where we first applied Lemma 3.2, page 51 and then used the fact that b(d) = T d−1
Îd−1,b(d−1)

onto which we apply Lemma 3.1, page 51. Finally, we use the fact that a convex combination
is upper bounded by its higher element. The last result comes from the sequence of lower
bounds in Lemma 3.1, page 51.

130 Appendix A. Proofs of the dissertation

A.3 Proofs of Chapter 4

Proof of Theorem 4.1, page 72. Consider an (LT , Lr)-LC-NSMDP, a state-action pair (s, a) ∈
S ×A and two decision epochs (t, t̂) ∈ T 2. By definition of the expected reward function, the
following holds:

Rt (s, a)−Rt̂ (s, a) =
∫
S

(
T t
(
s′
∣∣ s, a) rt (s, a, s′)− T t̂ (s′ ∣∣ s, a) rt̂ (s, a, s′)) ds′

=
∫
S
rt
(
s, a, s′

) (
T t
(
s′
∣∣ s, a)− T t̂ (s′ ∣∣ s, a)) ds′

+
∫
S
T t̂
(
s′
∣∣ s, a) (rt (s, a, s′)− rt̂ (s, a, s′)) ds′

≤ sup
f∈Lip1(S)

∫
S
f(s′)

(
T t
(
s′
∣∣ s, a)− T t̂ (s′ ∣∣ s, a)) ds′

+
∫
S
T t̂
(
s′
∣∣ s, a)Lr ∣∣∣t− t̂∣∣∣ ds′

≤W1(p(· | s, t, a), p(· | s, t̂, a)) + Lr
∣∣∣t− t̂∣∣∣

≤ (LT + Lr)
∣∣∣t− t̂∣∣∣

Where, similarly to the proof of Lemma 2 in Rachelson and Lagoudakis (2010), we used the
triangle inequality, the fact that r is a bounded function — which makes it upper bounded
by a function of Lip1 (S) — and the dual formulation of the 1-Wasserstein distance (see
Definition 4.7, page 71). The same inequality can be derived with the opposite terms which
concludes the proof by taking the absolute value.

Proof of Theorem 4.2, page 74. Straightforwardly, using the Lipschitz property of Definition 4.6,
page 71 and Theorem 4.1, page 72, we have the following result for all (s, t, a) ∈ S × T ×A:

W1 (T t (· | s, a) , T t−1 (· | s, a)) ≤ LT ,
|Rt (s, a)−Rt−1 (s, a)| ≤ LT + Lr ,

which concludes the proof.

Proof of Lemma 4.1, page 81. We use the dual representation of the 1-Wasserstein distance

A.3. Proofs of Chapter 4 131

of Definition 4.7, page 71.

W1(w0, λw1 + (1− λ)w2) = sup
f∈Lip1(X)

∫
X
f(x)(w0(x)− λw1(x)− (1− λ)w2(x))dx

= sup
f∈Lip1(X)

∫
X

(λf(x)(w0(x)− w1(x)) + (1− λ)f(x)(w0(x)− w2(x))) dx

≤ λ sup
f∈Lip1(X)

∫
X
f(x)(w0(x)− w1(x))dx

+ (1− λ) sup
f∈Lip1(X)

∫
X
f(x)(w0(x)− w2(x))dx

≤ λW1(w0, w1) + (1− λ)W1(w0, w2)

Where we used the linearity of the integral and the triangle inequality on the sup operator.

Proof of Theorem 4.3, page 81. We are looking for a closed-form expression of the value of
a chance node νs,t,a as defined in Equation 4.10, page 79. We look for a snapshot model
minimizing the equation, i.e.,(

T̃ , R̃
)

= argmin
(T,R)∈∆t0,t

R (s, a) + γEs′∼T (· | s,a)
(
V (νs′,t+1)

)
.

Obviously, we have that R̃(s, a) = Rt0 (s, a)−LR |t− t0| , ∀ (s, a) ∈ S ×A and T̃ is given by:

T̃ = argmin
T∈BW1(T t0 (· | s,a),LT |t−t0|)

∑
s′∈S

T
(
s′
∣∣ s, a)V (νs′,t+1)

Since we are in the discrete case, we enumerate through the elements of S and write the
vectors T ≡ (T (s′ | s, a))s′ , T0 ≡ (T t0 (s′ | s, a))s′ and v ≡ (V (νs′,t+1))s′ . The problem can
then be re-written as follows:

T̃ = argmin
T

T>v, (A.1)

such that T>1 = 1, (A.2)
T ≥ 0, (A.3)
W1(T, T0) ≤ C , (A.4)

where we have 1 ∈ RS a vector of ones of size S, C = LT |t− t0|. Additionally, we wrote the
1-Wasserstein metric between two discrete distributions in dual form following Lemma 4.7,
page 71 as:

W1 (u, v) = max
f

f>(u− v), (A.5)

such that Af ≤ b ,

where the matrix A and vector b are defined such that for any indexes i, j we have |fi − fj | ≤
di,j with di,j the metric defined over the measured space, in our case the state space S. Hence,

132 Appendix A. Proofs of the dissertation

we propose to solve the program A.1 under constraints A.2, A.3 and A.4.

Let us first show that this problem is convex. Clearly, the objective function in Equa-
tion A.1, page 131 is linear, hence convex, and the constraints A.2, page 131 and A.3, page 131
define a convex set. We prove that the 1-Wasserstein distance is convex in Lemma 4.1, page 81.
The program A.1, page 131 is thus convex.

One can observe that the gradient of the objective function is constant, equal to +v.
Furthermore, T0 is an admissible initial point that we could use for a gradient descent method.
However, given T0, following the descent direction −v may break the constraints A.2, page 131
and A.3, page 131. One would have to project this gradient onto a certain, unknown, set of
hyperplanes in order to apply the gradient method descent. Let us write proj(v) the resulting
projected gradient, that is unknown.

We remark that the vector Tsat = (0, · · · , 0, 1, 0, · · · , 0) with 1 at the index argmini vi
where vi denotes the ith coefficient of v, is the optimal solution of the program A.1, page 131
when we remove the Wasserstein constraint A.4, page 131. One can observe that the optimal
solution with the constraint A.4, page 131 would as well be Tsat if the constant C is large
enough. As a result, the descent direction ∇ = Tsat − T0 is the one to be followed in this
setting when applying the gradient descent method. Furthermore, following ∇ from T0 until
Tsat never breaks the constraints A.2, page 131 and A.3, page 131. Since the gradient of the
objective function is constant, there can exist only one proj(v). ∇ fulfills the requirements,
hence we have proj(v) = ∇.

We can thus apply the gradient method descent with the following 1-shot rule since the
gradient is constant:

T̃ := T0 + λ∇ with,

λ = 1 if W1 (Tt0 , Tsat) ≤ C
λ = C/W1 (Tt0 , Tsat) otherwise.

Indeed, in the first case, we can follow ∇ until the extreme distribution Tsat without breaking
the constraint A.4, page 131. Going further is trivially unfeasible. In the second case, we
have to stop in between so that the constraint A.4, page 131 is saturated. In such a case, we
cannot go further without breaking this constraint. Hence we have the following:

W1 (T0 + λ∇, T0) = C

max
Af≤b

f>(T0 + λ∇− T0) = C

λmax
Af≤b

f>∇ = C

λ = C/W1 (T0, Tsat)

Where we used the fact that ∇ = Tsat − T0. The latter result concludes the proof.

Proof of Theorem 4.4, page 82. The proof is made by induction, starting at depth dmax and
reversely ending at depth 0. At dmax, the nodes are leaf nodes, their values is estimated with

A.3. Proofs of Chapter 4 133

the heuristic function, i.e., V (νs,t) = H(s, t). Hence the result is directly proven by hypothesis
in Equation 4.11, page 82. We will now start by proving the result for the chance nodes which
come as the first parents of the decision node for which we initialized the induction proof.
Then we extend it to the parents decision nodes which will complete the proof.

Chance nodes case. Consider any chance node νs,t,a at depth d ∈ [0, dmax). We suppose
that the property is true for depth d+1, thus, if we write νs′,t′ a decision node at depth d+1,
we have the following: ∣∣∣V (νs′,t′)− V̂ ∗t0,t′(s

′)
∣∣∣ ≤ γ(dmax−(d+1))δH

Following Equation 4.10, page 79, we have by construction:

Q(νs,t,a) = R̃t (s, a) + γ
∑
s′

T̃ t
(
s′
∣∣ s, a)V (νs′,t′) ,

with T̃ and R̃ computed with Theorem 4.3, page 81. By definition, the true Q-value function
defined by the Bellman Equation 4.1, page 69 gives the true target value:

Q̂∗t0,t(s, a) = R̃t (s, a) + γ
∑
s′

T̃ t
(
s′
∣∣ s, a) V̂ ∗t0,t′(s′)

Hence, using the induction hypothesis, we have the following inequalities proving the result
of Equation 4.13, page 82:

∣∣∣Q(νs,t,a)− Q̂∗t0,t(s, a)
∣∣∣ = γ

∣∣∣∣∣∑
s′

T̃ t
(
s′
∣∣ s, a)V (νs′,t′)−

∑
s′

T̃ t
(
s′
∣∣ s, a) V̂ ∗t0,t′(s′)

∣∣∣∣∣
≤ γ

∑
s′

T̃ t
(
s′
∣∣ s, a) ∣∣∣V (νs′)− V̂ ∗t0,t′(s

′)
∣∣∣

≤ γ
∑
s′

T̃ t
(
s′
∣∣ s, a) γ(dmax−(d+1))δH

≤ γ(dmax−d)δH

Decision nodes case. Consider now any decision node νs,t at depth d ∈ {0, . . . , dmax − 1}.
The value of such a node is given by Equation 4.9, page 79 and the following holds:

V (νs,t) = V (νs,t,ā), with, ā = argmax
a∈A

V (νs,t,a) .

Similarly, we define a∗ ∈ A as follows:

V̂ ∗t0,t(s) = Q̂∗t0,t(s, a
∗), with, a∗ = argmax

a∈A
Q̂∗t0,t(s, a)

We distinguish two cases: (i) if ā = a∗ and (ii) if ā 6= a∗. In case (i), the result is trivial by
writing the value of the decision node as the value of the chance node with the action a∗ and

134 Appendix A. Proofs of the dissertation

using the — already proven for depth d — result of Equation 4.13, page 82.∣∣∣V (νs,t)− V̂ ∗t0,t(s)
∣∣∣ =

∣∣∣V (νs,t,a∗)− Q̂∗t0,t(s, a
∗)
∣∣∣

≤ γ(dmax−d)δH

In case (ii), page 133, the maximizing actions are different. Still following Equation 4.13,
page 82, we have that Q

(
νs,t,a

∗
)
≥ Q̂∗t0,t(s, a

∗)− γ(dmax−d)δH. Yet, since ā is the maximizing
action in the tree, we have that Q

(
νs,t,ā

)
≥ Q

(
νs,t,a

∗
)
. By transitivity, we can thus write

the following:

Q
(
νs,t,ā

)
≥ Q̂∗t0,t(s, a

∗)− γ(dmax−d)δH

⇒ Q̂∗t0,t(s, a
∗)−Q(νs,t,ā) ≤ γ(dmax−d)δH (A.6)

Furthermore, still following Equation 4.13, page 82, we have that Q̂∗t0,t(s, ā) ≥ Q
(
νs,t,ā

)
−

γ(dmax−d)δH. Yet, since a∗ is the maximizing action in the worst case snapshot MDPt, we
have that Q̂∗t0,t(s, a

∗) ≥ Q̂∗t0,t(s, ā). By transitivity, we can thus write the following:

Q̂∗t0,t(s, a
∗) ≥ Q

(
νs,t,ā

)
− γ(dmax−d)δH

⇒ Q
(
νs,t,ā

)
− Q̂∗t0,t(s, a

∗) ≤ γ(dmax−d)δH (A.7)

By assembling equations A.6 and A.7, we prove equation 4.12, page 82 and the proof by
induction is complete.

Proof of Theorem 4.5, page 82. Let us first calculate the cost of constructing a tree with the
minimax procedure. Following Algorithm 8, page 80, a tree is composed of at most nl leaf
nodes, nd non-leaf decision nodes and nc chance nodes, with the following values for the
integers nl, nd and nc:

nl = (SA)dmax , nd =
dmax−1∑
i=0

(SA)i , and nc = And .

As a result, we have that nl is O((SA)dmax), nd is O((SA)dmax) and nc is O(A (SA)dmax). We
write respectively cl, cd and cc the number of operations required to compute the values of a
leaf node, a non-leaf decision node and a chance node. To compute the whole tree we need
to build and evaluate all the nodes, resulting in at most the following number of operations:

nlcl + ndcd + nccc . (A.8)

We will assume that cl is O(1) without further details on the nature of the heuristic function.
As the value of a non-leaf decision node is computed by finding the maximum value among
the A children, we have that cd is O(A). From Theorem 4.3, page 81, the evaluation of a
chance node is equivalent to computing a 1-Wasserstein distance, which is a linear program.
Following Vaidya’s algorithm (Vaidya, 1989), the cost in the worst case is O(S2.5) where S is

A.3. Proofs of Chapter 4 135

the dimension of the problem in our case. As a result, cc is O(S2.5). Replacing all the values
in Equation A.8, we deduce that the total number of operations of computing a tree is

O
(
S1.5 (SA)dmax

)
.

After computing a tree, the action maximizing the value should be selected which has complex-
ity O(A). The operation being repeated for every time steps, one should multiply everything
by τ , the total number of time steps for which the algorithm is run. As a result, the total
computational complexity of RATS is

O
(
τS1.5A (SA)dmax

)
.

Proof of Lemma 4.2, page 84. The proof is made by induction. Let us first consider n = 0.
By definition, we have:∣∣∣V π,0

MDPt0
(s)− V π,0

MDPt(s)
∣∣∣ =

∣∣∣∣∫
A
π(a | s) (Rt0 (s, a)−Rt (s, a)) da

∣∣∣∣
≤
∫
A
π(a | s)LR |t− t0| da

≤ LR |t− t0|

Which verifies the property for n = 0 with LV0 = LR. Let us now consider n ∈ N and suppose
the property true for rank n−1. By writing the Bellman equation for the two value functions,
we obtain the following:

V π,n
MDPt0

(s)− V π,n
MDPt(s) =

∫
S×A

π(a|s)
[
T t0

(
s′
∣∣ s, a) (rt0(s, a, s′) + γV π,n−1

MDPt0
(s′))

− T t
(
s′
∣∣ s, a) (rt

(
s, a, s′

)
+ γV π,n−1

MDPt (s′))
]
ds′da ,

which yields
V π,n

MDPt0
(s)− V π,n

MDPt(s) =
∫
A
π(a|s)

[
A(s, a) +B(s, a)

]
da . (A.9)

With the following values for A(s, a) and B(s, a):

A(s, a) =
∫
S

(rt0(s, a, s′) + γV π,n−1
MDPt0

(s′))
[
T t0

(
s′
∣∣ s, a)− T t (s′ ∣∣ s, a)]ds′

B(s, a) =
∫
S
T t
(
s′
∣∣ s, a) [rt0(s, a, s′)− rt

(
s, a, s′

)
+ γ(V π,n−1

MDPt0
(s′)− V π,n−1

MDPt (s′))
]
ds′

Let us first bound A(s, a) by noticing that s′ 7→ rt0(s, a, s′)+γV π,n−1
MDPt0

(s′) is bounded by Rmax
1−γ .

136 Appendix A. Proofs of the dissertation

Since the function s′ 7→ 1
1−γ belongs to Lip1 (S), we can write the following:

A(s, a) ≤ sup
f∈Lip1(S)

∫
S
f(s′)

[
T t0

(
s′
∣∣ s, a)− T t (s′ ∣∣ s, a)]ds′

≤W1 (Tt0 , Tt)
≤ LT |t− t0| .

B is straightforwardly bounded using the induction hypothesis:

B(s, a) ≤
∫
S
T t
(
s′
∣∣ s, a) [Lr |t− t0|+ γ

n−1∑
i=0

γiLR |t− t0|
]
ds′

≤Lr |t− t0|+
n∑
i=1

γiLR |t− t0|

We inject the result in Equation A.9, page 135:

V π,n
MDPt0

(s)− V π,n
MDPt(s) ≤

∫
A
π(a|s)

[
LT |t− t0|+ Lr |t− t0|+

n∑
i=1

γiLR |t− t0|
]
da

= (LT + Lr) |t− t0|+
n∑
i=1

γiLR |t− t0|

≤LR |t− t0|+
n∑
i=1

γiLR |t− t0|

≤
n∑
i=0

γiLR |t− t0|

The same result can be derived with the opposite expression. Hence, taking the absolute
value, we prove the property at rank n, i.e.

∣∣∣V π,n
MDPt0

(s)− V π,n
MDPt(s)

∣∣∣ ≤ n∑
i=0

γiLR |t− t0| (A.10)

which concludes the proof by induction.

Proof of Theorem 4.6, page 84. Consider (s, t0, t, n) ∈ S × T 2 × N. We examine the two
snapshots MDPt0 and MDPt and are interested in the values of the policy π at s within those
two snapshots. The result follows easily by remarking that the sequence LVn of Lemma 4.2,
page 84 is geometric and converges towards LR

1−γ when n goes to infinity.

A.4 Proofs of Chapter 5

Notation A.1. Given two sets X and Y , we write F (X,Y) the set of functions defined on the
domain X with codomain Y .

A.4. Proofs of Chapter 5 137

Notation A.2. We denote by Vn the set of probability vectors of size n ∈ N, defined by

Vn ,

{
v = {v1 . . . vn} ∈ Rn

∣∣∣∣∣ vi ≥ 0, ∀i ∈ [1, n],
n∑
i=1

vi = 1
}
.

Proof of Lemma 5.1, page 102. The proof follows closely that in Puterman, 2014 that proves
that the Bellman operator over value functions is a contraction mapping. Let L be the
functional operator that maps any function d ∈ F (S ×A,R) to

Ld : S ×A → R
s, a 7→ Dsa(M‖M̄) + γ

∑
s′∈S T

a
ss′ maxa′∈A ds′a′ .

Then for f and g, two functions from S ×A to R and (s, a) ∈ S ×A, we have that

Lfsa − Lgsa = γ
∑
s′∈S

T ass′

(
max
a′∈A

fs′a′ −max
a′∈A

gs′a′

)
≤ γ

∑
s′∈S

T ass′ max
a′∈A

(fs′a′ − gs′a′)

≤ γ ‖f − g‖∞ .

Since this is true for any pair (s, a) ∈ S ×A, we have that

‖Lf − Lg‖∞ ≤ γ ‖f − g‖∞ .

Since γ < 1, L is a contraction mapping in the metric space (F (S ×A,R) , ‖·‖∞). This metric
space being complete and non-empty, it follows by direct application of Banach fixed-point
theorem that the equation d = Ld admits a unique solution.

Proof of Theorem 5.1, page 101. The proof is by induction. The value iteration sequence of
iterates (QnM)n∈N of the optimal Q-function of any MDP M ∈ M is defined for all (s, a) ∈
S ×A by:

Q0
M (s, a) = 0 ,

Qn+1
M (s, a) = Ras + γ

∑
s′∈S

T ass′ max
a′∈A

QnM (s′, a′), ∀n ∈ N .

Consider two MDPs M, M̄ ∈ M. It is obvious that
∣∣∣Q0

M (s, a)−Q0
M̄

(s, a)
∣∣∣ ≤ dsa(M‖M̄) for

all (s, a) ∈ S × A. Suppose the property
∣∣∣QnM (s, a)−Qn

M̄
(s, a)

∣∣∣ ≤ dsa(M‖M̄) true at rank

138 Appendix A. Proofs of the dissertation

n ∈ N for all (s, a) ∈ S ×A. Consider now the rank n+ 1 and a pair (s, a) ∈ S ×A:

∣∣∣Qn+1
M (s, a)−Qn+1

M̄
(s, a)

∣∣∣ =

∣∣∣∣∣∣Ras − R̄as + γ
∑
s′∈S

[
T ass′ max

a′∈A
QnM (s′, a′)− T̄ ass′ max

a′∈A
Qn
M̄

(s′, a′)
]∣∣∣∣∣∣

≤
∣∣∣Ras − R̄as ∣∣∣+ γ

∑
s′∈S

∣∣∣∣T ass′ max
a′∈A

QnM (s′, a′)− T̄ ass′ max
a′∈A

Qn
M̄

(s′, a′)
∣∣∣∣

≤
∣∣∣Ras − R̄as ∣∣∣+ γ

∑
s′∈S

max
a′∈A

Qn
M̄

(s′, a′)
∣∣∣T ass′ − T̄ ass′ ∣∣∣

+ γ
∑
s′∈S

T ass′

∣∣∣∣max
a′∈A

QnM (s′, a′)−max
a′∈A

Qn
M̄

(s′, a′)
∣∣∣∣

≤
∣∣∣Ras − R̄as ∣∣∣+ ∑

s′∈S
γV ∗

M̄
(s′)

∣∣∣T ass′ − T̄ ass′ ∣∣∣+ γ
∑
s′∈S

T ass′ max
a′∈A

∣∣∣QnM (s′, a′)−Qn
M̄

(s′, a′)
∣∣∣

≤ Dsa(M‖M̄) + γ
∑
s′∈S

T ass′ max
a′

ds′a′(M‖M̄)

= dsa(M‖M̄) ,

where we used Lemma 5.1, page 102 in the last inequality. Since Q∗M and Q∗
M̄

are respectively
the limits of the sequences (QnM)n∈N and

(
Qn
M̄

)
n∈N

, it results from passage to the limit that

∣∣∣Q∗M (s, a)−Q∗
M̄

(s, a)
∣∣∣ ≤ dsa(M‖M̄) .

By symmetry, we also have
∣∣∣Q∗M (s, a)−Q∗

M̄
(s, a)

∣∣∣ ≤ dsa(M‖M̄) and we can take the minimum
of the two valid upper bounds, yielding:∣∣∣Q∗M (s, a)−Q∗

M̄
(s, a)

∣∣∣ ≤ min
{
dsa(M‖M̄), dsa(M̄‖M)

}
,

which concludes the proof.

Proof of Theorem 5.2, page 103. The proof follows exactly the same steps as the proof of
Theorem 5.1, page 101, i.e., by first constructing the value iteration sequence of iterates
of the optimal value function, showing the result by induction for rank n ∈ N and then
concluding with a passage to the limit.

Proof of Lemma 5.2, page 103. Let L be the functional operator that maps any function d ∈
F (S,R) to

Ld : S → R

s 7→
∑
a∈A π(a | s)

(
D
γV π
M̄

sa (M,M̄) + γ
∑
s′∈S T

a
ss′ds′

)
.

A.4. Proofs of Chapter 5 139

Then for f and g, two functions from S to R, we have that

Lfs − Lgs = γ
∑
a∈A

π(a | s)
∑
s′∈S

T ass′ (fs′ − gs′)

≤ γ ‖f − g‖∞ .

Hence we have that ‖Lf − Lg‖∞ ≤ γ ‖f − g‖∞. Since γ < 1, L is a contraction mapping
in the metric space (F (S,R) , ‖·‖∞). This metric space being complete and non-empty, it
follows by direct application of Banach fixed-point theorem that the equation d = Ld admits
a unique solution.

Proof of Theorem 5.3, page 103. Consider a stochastic stationary policy π. The value itera-
tion sequence of iterates (V π,n

M)n∈N of the value function of any MDP M ∈ M is defined for
all s ∈ S by:

V π,0
M (s) = 0 ,

V π,n+1
M (s) =

∑
a∈A

π(a | s)

Ras + γ
∑
s′∈S

T ass′V
π,n
M (s′)

Consider two MDPs M,M̄ ∈ M. It is obvious that

∣∣∣V π,0
M (s)− V π,0

M̄
(s)
∣∣∣ ≤ dπs (M‖M̄) for all

s ∈ S. Suppose the property
∣∣∣V π,n
M (s)− V π,n

M̄
(s)
∣∣∣ ≤ dπs (M‖M̄) true at rank n ∈ N for all

s ∈ S. Consider now the rank n+ 1 and the state s ∈ S:

∣∣∣V π,n+1
M (s)− V π,n+1

M̄
(s)
∣∣∣ ≤∑

a∈A
π(a | s)

∣∣∣∣∣∣Ras − R̄as + γ
∑
s′∈S

(
T ass′V

π,n
M (s′)− T̄ ass′V

π,n

M̄
(s′)

)∣∣∣∣∣∣
≤
∑
a∈A

π(a | s)
(∣∣∣Ras − R̄as ∣∣∣+ γ

∑
s′∈S

V π,n

M̄
(s′)

∣∣∣T ass′ − T̄ ass′ ∣∣∣
+ γ

∑
s′∈S

T ass′
∣∣∣V π,n
M (s′)− V π,n

M̄
(s′)

∣∣∣)

≤
∑
a∈A

π(a | s)

DγV π
M̄

sa (M, M̄) + γ
∑
s′∈S

T ass′d
π
s′(M‖M̄)

≤ dπs (M‖M̄) ,

where we used Lemma 5.2, page 103 in the last inequality. Since V π
M and V π

M̄
are respectively

the limits of the sequences (V π,n
M)n∈N and

(
V π,n

M̄

)
n∈N

, it results from passage to the limit that

∣∣∣V π
M (s)− V π

M̄
(s)
∣∣∣ ≤ dπs (M‖M̄) .

By symmetry, we also have
∣∣∣V π
M (s)− V π

M̄
(s)
∣∣∣ ≤ dπs (M̄‖M) and we can take the minimum of

140 Appendix A. Proofs of the dissertation

the two valid upper bounds, yielding:∣∣∣V π
M (s)− V π

M̄
(s)
∣∣∣ ≤ min

{
dπs (M‖M̄), dπs (M̄‖M)

}
,

which concludes the proof.

Proof of Lemma 5.3, page 104. Let L be the functional operator that maps any function d ∈
F (S ×A,R) to

Ld : S ×A → R
(s, a) 7→ D

γV π
M̄

sa (M,M̄) + γ
∑

(s′,a′)∈S×A T
a
ss′π(a′ | s′)ds′,a′ .

Then for f and g, two functions from S ×A to R, we have for all (s, a) ∈ S ×A that

Lfsa − Lgsa = γ
∑

(s′,a′)∈S×A
T ass′π(a′ | s′) (Lfs′a′ − Lgs′a′)

≤ γ ‖f − g‖∞ .

Hence we have that ‖Lf − Lg‖∞ ≤ γ ‖f − g‖∞. Since γ < 1, L is a contraction mapping in
the metric space (F (S ×A,R) , ‖·‖∞). This metric space being complete and non-empty, it
follows by direct application of Banach fixed-point theorem that the equation d = Ld admits
a unique solution.

Proof of Theorem 5.4, page 104. Consider a stochastic stationary policy π. The value itera-
tion sequence of iterates (Qπ,nM)n∈N of the Q function for the policy π and MDP M ∈ M is
defined for all (s, a) ∈ S ×A by:

Qπ,0M (s, a) = 0 ,
Qπ,n+1
M (s, a) = Ras + γ

∑
(s′,a′)∈S×A

T ass′π(a′ | s′)Qπ,nM (s′, a′)

Consider two MDPs M, M̄ ∈ M. It is obvious that
∣∣∣Qπ,0M (s, a)−Qπ,0

M̄
(s, a)

∣∣∣ ≤ dπsa(M‖M̄)
for all (s, a) ∈ S × A. Suppose the property

∣∣∣Qπ,nM (s, a)−Qπ,n
M̄

(s, a)
∣∣∣ ≤ dπsa(M‖M̄) true at

rank n ∈ N for all (s, a) ∈ S × A. Consider now the rank n + 1 and the state-action pair

A.4. Proofs of Chapter 5 141

(s, a) ∈ S ×A:∣∣∣Qπ,n+1
M (s, a)−Qπ,n+1

M̄
(s, a)

∣∣∣ ≤ ∣∣∣Ras − R̄as ∣∣∣
+ γ

∑
(s′,a′)∈S×A

π(a′ | s′)
∣∣∣T ass′Qπ,nM (s′, a′)− T̄ ass′Q

π,n

M̄
(s′, a′)

∣∣∣
≤
∣∣∣Ras − R̄as ∣∣∣+ γ

∑
(s′,a′)∈S×A

π(a′ | s′)Qπ,n
M̄

(s′, a′)
∣∣∣T ass′ − T̄ ass′ ∣∣∣

+ γ
∑

(s′,a′)∈S×A
π(a′ | s′)T ass′

∣∣∣Qπ,nM (s′, a′)−Qπ,n
M̄

(s′, a′)
∣∣∣

≤
∣∣∣Ras − R̄as ∣∣∣+ ∑

s′∈S
γV π

M̄
(s′)

∣∣∣T ass′ − T̄ ass′ ∣∣∣
+ γ

∑
(s′,a′)∈S×A

π(a′ | s′)T ass′dM,M̄
π (s′, a′)

≤ D
γV π
M̄

sa (M, M̄) + γ
∑

(s′,a′)∈S×A
T ass′π(a′ | s′)dπs′a′(M‖M̄)

= dπsa(M‖M̄) ,

where we used Lemma 5.3, page 104 in the last inequality. Since QπM and Qπ
M̄

are respectively
the limits of the sequences (Qπ,nM)n∈N and

(
Qπ,n
M̄

)
n∈N

, it results from passage to the limit that

∣∣∣QπM (s, a)−Qπ
M̄

(s, a)
∣∣∣ ≤ dπsa(M‖M̄) .

By symmetry, we also have
∣∣∣QπM (s, a)−Qπ

M̄
(s, a)

∣∣∣ ≤ dπsa(M̄‖M) and we can take the minimum
of the two valid upper bounds, yielding for all (s, a) ∈ S ×A:∣∣∣QπM (s, a)−Qπ

M̄
(s, a)

∣∣∣ ≤ min
{
dπsa(M‖M̄), dπsa(M̄‖M)

}
,

which concludes the proof.

Proof of Theorem 5.5, page 104. The proof is by induction. We consider the sequence of
value iteration iterates defined for any MDP M ∈M for (s, a) ∈ S ×A by

Q0
M (s, a) = 0 ,

Qn+1
M (s, a) = Ras + γ

∑
s′∈S

T ass′ max
a′∈A

QnM (s′, a′), ∀n ∈ N .

Consider two MDPs M,M̄ ∈M. It is immediate for any (s, a) ∈ S ×A that∣∣∣Q0
M (s, a)−Q0

M̄
(s, a)

∣∣∣ ≤ d(M‖M̄) ,

and, by symmetry, the result holds as well for d(M̄‖M). Suppose that it is true at rank

142 Appendix A. Proofs of the dissertation

n ∈ N. Consider rank n+ 1 and (s, a) ∈ S ×A, we have that:∣∣∣Qn+1
M (s, a)−Qn+1

M̄
(s, a)

∣∣∣ ≤ Dsa(M‖M̄) + γ
∑
s′∈S

T ass′ max
a′∈A

∣∣∣QnM (s′, a′)−Qn
M̄

(s′, a′)
∣∣∣

≤ max
(s,a)∈S×A

Dsa(M‖M̄) + γ
∑
s′∈S

T ass′
1

1− γ max
(s,a)∈S×A

Dsa(M‖M̄)

≤ max
(s,a)∈S×A

Dsa(M‖M̄)
(

1 + γ

1− γ

)
= d(M‖M̄) .

By symmetry, the results holds as well for d(M̄‖M) which concludes the proof by induction.

Proof of Theorem 5.6, page 106. The result is clear for all (s, a) /∈ K since the induced
Lipschitz upper bounds are provably greater than Q∗M (see Definition 5.2, page 105). For
(s, a) ∈ K, the result is shown by induction. Let us consider the DP sequences of iterates
(QnM)n∈N and (Qn)n∈N, respectively converging to Q∗M and Q, whose definitions follow for all
(s, a) ∈ K and for n ∈ N:Q

0
M (s, a) = 0

Qn+1
M (s, a) = Ras + γ

∑
s′∈S T

a
ss′ max

a′∈A
QnM (s′, a′) ,

Q
0(s, a) = 0

Qn+1(s, a) = R̂
a
s + γ

∑
s′∈S T̂

a
ss′ max

a′∈A
Qn(s′, a′) + ε

1−γ
.

Obviously, we have at rank n = 0 that Q0
M (s, a) ≤ Q0(s, a) for all (s, a) ∈ K. Suppose the

property true at rank n ∈ N and consider rank n+ 1. For (s, a) ∈ K, we have that

Qn+1
M (s, a)−Qn+1(s, a)

= Ras − R̂
a
s + γ

∑
s′∈S

(
T ass′ max

a′∈A
QnM (s′, a′)− T̂ ass′ max

a′∈A
Qn(s′, a′)

)
− ε

1− γ

≤ ε+ γ
∑
s′∈S

max
a′∈A

QnM (s′, a′)
(
T ass′ − T̂

a
ss′

)
+ γ

∑
s′∈S

T̂
a
ss′

(
max
a′∈A

QnM (s′, a′)−max
a′∈A

Qn(s′, a′)
)
− ε

1− γ

≤ ε+ γ

1− γ ε+ γ
∑
s′∈S

T̂
a
ss′

(
max
a′∈A

QnM (s′, a′)−max
a′∈A

Qn(s′, a′)
)
− ε

1− γ

≤ ε+ γ

1− γ ε−
ε

1− γ
= 0 .

Which concludes the proof by induction. The result holds by passage to the limit since the
considered DP sequences converge to the true functions.

A.4. Proofs of Chapter 5 143

Proof of Theorem 5.7, page 107. Consider two tasks M = (T,R) and M̄ = (T̄ , R̄), with K

and K̄ the respective sets of state-action pairs where their learned models M̂ = (T̂ , R̂) and
ˆ̄M = (ˆ̄T, ˆ̄R) are known with accuracy ε in L1-norm with probability at least 1 − δ, i.e., we
have that,

Pr

∣∣∣Ras − R̂as ∣∣∣ ≤ ε, ∀ (s, a) ∈ K and∥∥∥T ass′ − T̂ ass′∥∥∥1
≤ ε, ∀ (s, a) ∈ K and∣∣∣R̄as − ˆ̄Ras

∣∣∣ ≤ ε, ∀ (s, a) ∈ K̄ and∥∥∥T̄ ass′ − ˆ̄T ass′
∥∥∥

1
≤ ε, ∀ (s, a) ∈ K̄

 ≤ 1− δ. (A.11)

Importantly, notice that the probabilistic event of Inequality A.11 is the intersection of at
most 4SA individual events of estimating either Ras , T ass′ , R̄

a
s or T̄ ass′ with precision ε. Each

one of those individual events is itself true with probability at least 1− δ′, where δ′ ∈ (0, 1] is
a parameter, as described in Theorem 2.8, page 30. For all the individual events to be true
at the same time, i.e. for Inequality A.11 to be verified, one must apply Boole’s inequality
and set δ′ = δ/(4SA) to ensure a total probability — i.e., probability of the intersection of
all the individual events — of at least 1− δ.

We demonstrate now the result for each one of the three cases (i) (s, a) ∈ K ∩ K̄,
(ii) (s, a) ∈ K ∩ K̄c and (iii) (s, a) ∈ Kc∩ K̄c , the case (s, a) ∈ Kc∩ K̄ being the symmetric
of case (ii).

(i) If (s, a) ∈ K ∩ K̄, then we have ε-close estimates of both models with high probability,
as described by Inequality A.11. By definition:

D
γV ∗
M̄

sa (M, M̄) =
∣∣∣Ras − R̄as ∣∣∣+ γ

∑
s′∈S

V ∗
M̄

(s′)
∣∣∣T ass′ − T̄ ass′∣∣∣ . (A.12)

The first term of the right hand side of Equation A.12 respects the following sequence of
inequalities with probability at least 1− δ:∣∣∣Ras − R̄as ∣∣∣ ≤ ∣∣∣Ras − R̂as ∣∣∣+ ∣∣∣R̂as − ˆ̄Ras

∣∣∣+ ∣∣∣R̄as − ˆ̄Ras
∣∣∣

≤
∣∣∣R̂as − ˆ̄Ras

∣∣∣+ 2ε . (A.13)

The second term of the right hand side of Equation A.12 respects the following sequence of

144 Appendix A. Proofs of the dissertation

inequalities with probability at least 1− δ:

γ
∑
s′∈S

V ∗
M̄

(s′)
∣∣∣T ass′ − T̄ ass′ ∣∣∣ ≤ γ ∑

s′∈S
V̄ (s′)

(∣∣∣T ass′ − T̂ ass′ ∣∣∣+ ∣∣∣T̂ ass′ − ˆ̄T ass′
∣∣∣+ ∣∣∣T̄ ass′ − ˆ̄T ass′

∣∣∣)
≤ γmax

s′
V̄ (s′)

∑
s′∈S

∣∣∣T ass′ − T̂ ass′ ∣∣∣+ γ
∑
s′∈S

V̄ (s′)
∣∣∣T̂ ass′ − ˆ̄T ass′

∣∣∣+
γmax

s′
V̄ (s′)

∑
s′∈S

∣∣∣T̄ ass′ − ˆ̄T ass′
∣∣∣

≤ γ
∑
s′∈S

V̄ (s′)
∣∣∣T̂ ass′ − ˆ̄T ass′

∣∣∣+ 2εγmax
s′∈S

V̄ (s′). (A.14)

Replacing the Inequalities A.13 and A.14 in Equation A.12 yields

Dsa(M‖M̄) ≤
∣∣∣R̂as − ˆ̄Ras

∣∣∣+ γ
∑
s′∈S

V̄ (s′)
∣∣∣T̂ ass′ − ˆ̄T ass′

∣∣∣+ 2ε+ 2εγmax
s′∈S

V̄ (s′)

≤ DγV̄
sa (M̂, ˆ̄M) + 2ε

(
1 + γmax

s′∈S
V̄ (s′)

)
,

which holds with probability at least 1− δ and proves the Theorem for case (i).

(ii) If (s, a) ∈ K ∩ K̄c, then we do not have an ε-close estimate of T̄ as· and R̄
a
s . Similarly

to the proof of case (i), we upper bound sequentially the two terms of the right hand side of
Equation A.12. With probability at least 1− δ, we have the following:∣∣∣Ras − R̄as ∣∣∣ ≤ ∣∣∣Ras − R̂as ∣∣∣+ ∣∣∣R̂as − R̄as ∣∣∣

≤ ε+ max
R̄∈[0,1]

∣∣∣R̂as − R̄∣∣∣ . (A.15)

Similarly, with probability at least 1− δ, we have:

γ
∑
s′∈S

V ∗
M̄

(s′)
∣∣∣T ass′ − T̄ ass′ ∣∣∣ ≤ γ ∑

s′∈S
V̄ (s′)

(∣∣∣T ass′ − T̂ ass′∣∣∣+ ∣∣∣T̂ ass′ − T̄ ass′∣∣∣)
≤ γmax

s′∈S
V̄ (s′)ε+ γ max

T̄∈VS

∑
s′∈S

V̄ (s′)
∣∣∣T̂ ass′ − T̄s′∣∣∣ , (A.16)

where VS is the set of probability vectors of size S, see Notation A.2, page 137. Combining
inequalities A.15 and A.16, we get the following with probability at least 1 − δ, by noticing
D
γV ∗
M̄

sa (M,M̄) on the left hand side:

Dsa(M‖M̄) ≤ max
m̄∈M

DγV̄
sa (M̂, m̄) + ε

(
1 + γmax

s′
V̄ (s′)

)
,

which is the expected result for case (ii).

(iii) If (s, a) ∈ Kc ∩ K̄c, then we do not have ε-close estimates of both tasks. In such a
case, the result

Dsa(M‖M̄) ≤ max
m,m̄∈M2

DγV̄
sa (m, m̄)

A.4. Proofs of Chapter 5 145

is straightforward by remarking that, as a consequence of Inequality A.11, we have that
V ∗
M̄

(s) ≤ V̄ (s) with probability at least 1− δ.

Proof of Lemma 5.4, page 110. Let L be the functional operator that maps any function d ∈
F (S ×A,R) to

Ld : S ×A → R

(s, a) 7→

D̂sa(M‖M̄) + γ

(∑
s′∈S

T̂
a
ss′ max

a′∈A
d(s′, a′) + ε max

(s′,a′)∈S×A
d(s′, a′)

)
if (s, a) ∈ K,

D̂sa(M‖M̄) + γ max
(s′,a′)∈S×A

d(s′, a′) otherwise.

Let f and g be two functions from S ×A to R. If (s, a) ∈ K, we have

Lfsa − Lgsa = γ
∑
s′∈S

T ass′

(
max
a′∈A

fs′a′ −max
a′∈A

gs′a′

)
+ γε

(
max

(s′,a′)∈S×A
fs′a′ − max

(s′,a′)∈S×A
gs′a′

)

≤ (γ + γε)
(

max
(s′,a′)∈S×A

fs′a′ − max
(s′,a′)∈S×A

gs′a′

)
≤ γ(1 + ε) max

(s′,a′)∈S×A
(fs′a′ − gs′a′)

≤ γ(1 + ε) ‖f − g‖∞ .

If (s, a) /∈ K, we have

Lfsa − Lgsa = γ

(
max

(s′,a′)∈S×A
fs′a′ − max

(s′,a′)∈S×A
gs′a′

)
≤ γ max

(s′,a′)∈S×A
(fs′a′ − gs′a′)

= γ(1 + ε) ‖f − g‖∞ .

In both cases, ‖Lf − Lg‖∞ ≤ γ(1 + ε) ‖f − g‖∞. If γ(1 + ε) < 1, L is a contraction mapping
in the metric space (F (S ×A,R) , ‖·‖∞). This metric space being complete and non-empty,
it follows from Banach fixed-point theorem that d = Ld admits a single solution.

Proof of Theorem 5.8, page 110. Consider two MDPs M,M̄ ∈M. Before proving the result,
notice that we shall put ourselves in the case of Theorem 5.7, page 107, for the upper bound
on the pseudometric between models D̂sa(M‖M̄) to be true upper bounds with probability
at least 1 − δ for all (s, a) ∈ S × A. As seen in the proof of Theorem 5.7, this implies
learning any reward or transition function with precision ε in L1-norm with probability at
least 1− δ/(4SA).

The proof is done by induction, by calculating the values of dsa(M‖M̄) and d̂sa(M‖M̄)
following the value iteration algorithm. Those values can respectively be computed via the

146 Appendix A. Proofs of the dissertation

sequences of iterates (dn)n∈N and (d̂n)n∈N defined as follows for all (s, a) ∈ S ×A:

d0
sa(M‖M̄) = 0

dn+1
sa (M‖M̄) = Dsa(M‖M̄) + γ

∑
s′∈S

T ass′ max
a′∈A

dns′a′(M‖M̄) ,

and,

d̂0
sa(M‖M̄) = 0,

d̂n+1
sa (M‖M̄) =

D̂sa(M‖M̄) + γ

(∑
s′∈S

T̂
a
ss′ max

a′∈A
d̂ns′a′(M‖M̄) + ε max

(s′,a′)∈S×A
d̂ns′a′(M‖M̄)

)
if (s, a) ∈ K,

D̂sa(M‖M̄) + γ max
(s′,a′)∈S×A

d̂ns′a′(M‖M̄) otherwise.

The proof at rank n = 0 is trivial. Let us assume the proposition dnsa(M‖M̄) ≤ d̂nsa(M‖M̄)
true at rank n ∈ N for all (s, a) ∈ S × A and consider rank n + 1. There are two cases,
depending on the fact that (s, a) is in K or not.

If (s, a) ∈ K, we have

dn+1
sa (M‖M̄)− d̂n+1

sa (M‖M̄) = Dsa(M‖M̄)− D̂sa(M‖M̄)

+ γ
∑
s′∈S

(
T ass′ max

a′∈A
dns′a′(M‖M̄)− T̂ ass′ max

a′∈A
d̂ns′a′(M‖M̄)

)
− γε max

(s′,a′)∈S×A
d̂ns′a′(M‖M̄) .

Using Theorem 5.7, page 107, we have that D̂sa(M‖M̄) is an upper bound on Dsa(M‖M̄)
with probability at least 1− δ. Hence

Pr
(
Dsa(M‖M̄)− D̂sa(M‖M̄) ≤ 0

)
≥ 1− δ.

This plus the fact that dnsa(M‖M̄) ≤ d̂nsa(M‖M̄), ∀ (s, a) ∈ S × A by induction hypothesis,
we have with probability at least 1− δ,

dn+1
sa (M‖M̄)− d̂n+1

sa (M‖M̄) ≤ γ
∑
s′∈S

max
a′∈A

d̂ns′a′(M‖M̄)
(
T ass′ − T̂

a
ss′

)
− γε max

(s′,a′)∈S×A
d̂ns′a′(M‖M̄)

≤ γ max
(s′,a′)∈S×A

d̂ns′a′(M‖M̄)
∑
s′∈S

(
T ass′ − T̂

a
ss′

)
− γε max

(s′,a′)∈S×A
d̂ns′a′(M‖M̄)

≤ γ max
(s′,a′)∈S×A

d̂ns′a′(M‖M̄)
(∥∥∥T − T̂∥∥∥

1
− ε
)
.

A.4. Proofs of Chapter 5 147

Since Pr
(∥∥∥T − T̂∥∥∥

1
≤ ε

)
≥ 1− δ, we have with probability at least 1− δ,

dn+1
sa (M‖M̄)− d̂n+1

sa (M‖M̄) ≤ γ max
(s′,a′)∈S×A

d̂ns′a′(M‖M̄) (ε− ε) = 0,

which concludes the proof in the first case case.

Conversely, if (s, a) /∈ K, we have

dn+1
sa (M‖M̄)− d̂n+1

sa (M‖M̄) = Dsa(M‖M̄)− D̂sa(M‖M̄) + γ
∑
s′∈S

T ass′ max
a′∈A

dns′a′(M‖M̄)

− γ max
(s′,a′)∈S×A

d̂ns′a′(M‖M̄) .

Using the same reasoning than in case (s, a) ∈ K, we have with probability higher than 1− δ,

dn+1
sa (M‖M̄)− d̂n+1

sa (M‖M̄) ≤ γ
∑
s′∈S

T ass′ max
a′∈A

d̂ns′a′(M‖M̄)− γ max
(s′,a′)∈S×A

d̂ns′a′(M‖M̄)

≤ γ max
(s′,a′)∈S×A

d̂ns′a′(M‖M̄)− γ max
(s′,a′)∈S×A

d̂ns′a′(M‖M̄)

= 0,

which concludes the proof in the second case.

Proof of Theorem 5.10, page 114. The cost of LRMAX is constant on most time steps since
the action is greedily chosen with respect to the upper bound on the optimal Q-function, which
is a lookup table. LetN ∈ N be the number of source tasks that have been learned by LRMAX
during a lifelong RL experiment. When updating a new state-action pair, i.e., labeling it as a
known pair, the algorithm performs 2N DP (Dynamic Programming) computations to update
the induced Lipschitz bounds (Equation 5.14, page 110) plus one DP computation to update
the total-bound (Equation 5.11, page 106). In total, we apply (2N + 1) DP computations
for each state-action pair update. As at most SA state-action pairs are updated during the
exploration of the current MDP, the total number of DP computations is at most SA(2N+1),
for which we use the value iteration algorithm.

In Theorem 2.5, page 19, we reported the minimum number of iterations needed by the
value iteration algorithm to estimate a value function (or Q-function in our case) that is
εQ-close to the optimum in maximum norm. This minimum number is given by⌈ 1

ln(γ) ln
(
εQ(1− γ)
Rmax

)⌉
.

As the complexity should be expressed as a polynomial in relevant quantities for the result
to be PAC-MDP, we will consider a slightly larger number of iterations that verifies this
constraint, namely, ⌈ 1

1− γ ln
(

1
εQ(1− γ)

)⌉
.

148 Appendix A. Proofs of the dissertation

As stated in Theorem 2.6, page 20, each iteration has a cost S2A. Overall, the cost of all the
DP computations in a complete run of LRMAX is

Õ
(
S3A2N

1− γ ln
(

1
εQ(1− γ)

))
.

This, plus the constant cost O(1) applied on each one of the τ decision epochs concludes the
proof.

Proof of Theorem 5.11, page 114. Consider
(
M,M̄, s, a

)
∈M2×S ×A. By definition of the

pseudometric between models, we have that:

Dsa(M‖M̄) = D
γV ∗
M̄

sa (M, M̄)

=
∣∣∣Ras − R̄as ∣∣∣+ γ

∑
s′∈S

V ∗
M̄

(s′)
∣∣∣T ass′ − T̄ ass′ ∣∣∣ .

The remainder of the proof consists in upper bounding the two terms of the right hand side
of the previous definition, by considering the MDPs maximizing those quantities. For the
reward model, we obviously have that ∣∣∣Ras − R̄as ∣∣∣ ≤ 1 . (A.17)

For the transition model, we have that
∑
s′∈S

V ∗
M̄

(s′)
∣∣∣T ass′ − T̄ ass′ ∣∣∣ ≤ 1

1− γ
∑
s′∈S

∣∣∣T ass′ − T̄ ass′∣∣∣
≤ 1

1− γ · 2 , (A.18)

given that the maximum L1-norm between any two probability distributions is equal to 2.
By combining Equations A.17 and A.18, we get the following inequalities:

Dsa(M‖M̄) ≤ 1 + γ
2

1− γ

≤ 1 + γ

1− γ ,

which concludes the proof.

Proof of Theorem 5.12, page 116. Consider an algorithm producing ε-accurate model esti-
mates D̂sa(M‖M̄) for a subset K of S ×A after interacting with any two MDPs M,M̄ ∈M.
Assume D̂sa(M‖M̄) to be an upper bound of Dsa(M‖M̄) for any (s, a) /∈ K. These as-
sumptions are guaranteed with high probability by Theorem 5.7, page 107 while running
Algorithm 10, page 113 in the lifelong RL setting. Then, for any (s, a) ∈ S ×A and any two

A.4. Proofs of Chapter 5 149

MDPs M,M̄ ∈M, we have that

D̂sa(M‖M̄) = Dsa(M‖M̄)± ε if (s, a) ∈ K
D̂sa(M‖M̄) ≥ Dsa(M‖M̄) else.

Particularly, D̂sa(M‖M̄) + ε ≥ Dsa(M‖M̄) for all (s, a) ∈ S × A and any M, M̄ ∈ M. By
definition of Dmax(s, a), this implies that, for all (s, a) ∈ S ×A,

max
M,M̄∈M̃

D̂sa(M‖M̄) + ε ≥ Dmax(s, a) , (A.19)

where M̃ is the set of possible tasks in the considered lifelong RL experiment. Consider M̂,
the set of sampled MDPs which allows to define D̂max(s, a) = maxM,M̄∈M̂ D̂sa(M‖M̄) as the
maximum model distance for all the experienced MDPs at (s, a) ∈ S ×A. We have that

D̂max(s, a) = max
M,M̄∈M̃

D̂sa(M‖M̄) ,

only if two MDPs maximizing the right hand side of this equation belong to M̂ . If it is the
case, then Equation A.19 imply that

D̂max(s, a) + ε ≥ Dmax(s, a) . (A.20)

Overall, we require the two MDPs maximizing maxM,M̄∈M̃ D̂sa(M‖M̄) to be sampled for
Equation A.20 to hold. Let us now derive the probability that those two MDPs have been
sampled. We note them M1 and M2. There may exist more candidates for the maximization
but, for the sake of generality, we put ourselves in the case where only two MDPs achieve
the maximization. Let us consider drawing m ∈ N tasks. We note p1 (respectively p2) the
probability of sampling M1 (respectively M2) each time a task is sampled. We note X1
(respectively X2) the random variable of the first occurrence of the task M1 (respectively
M2) among the m trials. Hence, the probability of sampling M1 for the first time at trial
k ∈ {1, . . . ,m} is given by the geometric law and is equal to

Pr (X1 = k) = p1 (1− p1)k−1 .

Additionally, the probability of sampling M1 at least once in the first m trials is given by the
cumulative distribution function:

Pr (X1 ≤ m) = 1− (1− p1)m . (A.21)

We are interested in the probability of the event that M1 and M2 have been sampled in the
m first trials, i.e. Pr (X1 ≤ m ∩X2 ≤ m). Following the rule of addition for probabilities,
we have that,

Pr (X1 ≤ m ∩X2 ≤ m) = Pr (X1 ≤ m) + Pr (X2 ≤ m)−Pr (X1 ≤ m ∪X2 ≤ m) .

Given that the event of sampling either M1 or M2 during a single trial happens with prob-
ability p1 + p2, we have by analogy with Equation A.21 that Pr (X1 ≤ m ∪X2 ≤ m) =

150 Appendix A. Proofs of the dissertation

1− (1− (p1 + p2))m. As a result, the following holds:

Pr (X1 ≤ m ∩X2 ≤ m) = 1− (1− p1)m + 1− (1− p2)m − (1− (1− (p1 + p2))m)
= 1− (1− p1)m − (1− p2)m + (1− (p1 + p2))m

≥ 1− 2(1− pmin)m + (1− 2pmin)m .

As said earlier, Equation A.20 holds if M1 and M2 have been sampled during the first m
trials, which imply that the probability for Equation A.20 to hold is at least equal to the
probability of sampling both tasks. Formally,

Pr
(
D̂max(s, a) + ε ≥ Dmax(s, a)

)
≥ Pr (X1 ≤ m ∩X2 ≤ m)

≥ 1− 2(1− pmin)m + (1− 2pmin)m .

In turn, ifm verifies 2(1−pmin)m−(1−2pmin)m ≤ δ, then 1−2(1−pmin)m+(1−2pmin)m ≥ 1−δ
and Pr

(
D̂max(s, a) + ε ≥ Dmax(s, a)

)
≥ 1− δ, which concludes the proof.

Appendix B

Complete version of the MCTS
algorithm

The MCTS procedure, presented in Algorithm 2, page 24, is a high level description and
lacks implementation details. In this chapter, we provide a more thorough description of the
algorithm. The main core of the procedure, mimicking Algorithm 2, page 24, is described
in Algorithm 11. The remaining sub-processes, introduced in Section 2.2.3, page 20, are
described in Algorithms 12, page 152, 13, page 152, 14, page 153 and 15, page 153, which
respectively detail the selection, expansion, simulation and back-propagation steps.

Algorithm 11 MCTS (detailed procedure)
Set: MDP {S,A, T, r}; initial state distribution T0.
Input: generative model M̂ = (T̂ , r̂); budget B; tree policy πtree; default policy πdefault;
discount factor γ; horizon H.
s ∼ T0 # Set the initial state.

for t ∈ {1, . . . ,H} do
νs ← decisionNode(s) # Initialize the search tree with the current state s.

for i ∈ {1, . . . , B} do
initialize an empty list of collected rewards R
νs̃, a, s

′,R ← selection(νs, M̂ , πtree,R) # Apply πtree to select a leaf node.

νs̃′ ← expansion(νs, νs̃, a, s′) # Expand the tree with a new decision node.

Z ← simulation(s̃′, πdefault, M̂ , γ,H) # Apply πdefault to generate a trajectory and

record the collected return.

backPropagation(νs̃′ ,R, Z, γ) # Update the values of the chance nodes encountered

along the trajectory with the collected rewards and simulation return.

end for
s′ ∼ T as· # Sample the next state.

if s′ is terminal then
break the for loop # Stop the episode.

end if
s← s′

end for

Selection. The selection method is recursively exploring the tree until it finds a leaf node
(a node where every actions have not been sampled). It applies the tree policy πtree and uses
the generative model M̂ to perform this exploration. The procedure ends once a decision

151

152 Appendix B. Complete version of the MCTS algorithm

Algorithm 12 selection
Input: decision node νs; generative model M̂ ; tree policy πtree; list of collected rewards
R.
if νs is a leaf node then
a← non-sampled action at νs
s′ ∼ T̂ as·
r ← r̂ass′
return (νs, a, s′,R) # Candidate found, no need to extend the selection process.

else
a = πtree(s)
s′ ∼ T̂ as·
r ← r̂ass′
add r to R
if νs′ in children of νas then
return selection(νs′ , M̂ , πtree,R) # Explore further by recursive call.

else
return (νs, a, s′,R) # Candidate found, no need to extend the selection process.

end if
end if

node yields a new state, either because it had an unexplored action or because a new state
was sampled with M̂ by applying an already explored action.

Algorithm 13 expansion
Input: root node νs0 ; leaf node νs; sampled action a; sampled state s′.
Create node νas in children of νs if non-existent
Create node νs′ in children of νas
return νs′

Expansion. The expansion method creates a new chance-decision node pair given the
selected leaf node. The selected leaf node, action and resulting state returned by the selection
method are given as input.

Simulation. The simulation method uses the generative model to generate a trajectory
of length H and return the collected discounted return Z. Special attention should be brought
in case of a finite MDP horizon where the length of the simulation should be reduced from
the depth of the node in the tree. Additionally, if the decision node from which the simula-
tion begins has multiple parents with multiple depth, several discounted returns should be
returned, each corresponding to a different simulation length.

Back-propagation. The back-propagation method updates the list of collected dis-
counted returns of all the chance node encountered along the whole simulation (starting from
the root node of the tree).

153

Algorithm 14 simulation
Input: initial state s; default policy πdefault; generative model M̂ ; discount factor γ; horizon
H.
Z = 0
for t ∈ {0, . . . ,H} do
a = πdefault(s)
s′ ∼ T̂ as·
r = r̂ass′
Z ← Z + γtr
if s′ is terminal then
break the for loop # Stop the simulation if a terminal state is reached.

end if
s← s′

end for
return Z

Algorithm 15 backPropagation
Input: leaf decision node νs; collected rewards R to reach νs; simulation return Z; dis-
counted return γ.
for νas̃ in parents of νs do

R′ ← R
r ← last element of R′ (remove that element from R′)
Z ← r + γZ
Append Z to the list of sampled returns of νas̃
backPropagation(νs̃,R′, Z, γ) # Recursive call to the parent of the current chance node

end for

Appendix C

Additional experimental results for
the OLTA algorithm

We provide the readers with several additional experiments in similar settings as presented
in Chapter 3, page 33, Section 3.6, page 53. The distinction is essentially based on the
transition from discrete to continuous state spaces and vice-versa. In Chapter 3, page 33, we
chose to mainly present the two extreme cases of the 1D track and the continuous PTSP for
the theoretical interest of the first one and the complexity of the second one.

Continuous 1D track

In order to test the algorithm on a more complex setting than the discrete 1D track, we
extended the latter to the continuous case. A comprehensive illustration of the environment
is provided in Figure C.1. The width of the track is 50 and the state of the agent is its position

r = 1

0

s0

︷ ︸︸ ︷
r = 0

25

r = 1

50

Figure C.1: Illustration of the continuous 1D track environment.

along that track, hence S ≡ [0, 50]. The action space is kept unchanged, A = {Left, Right}.
Each action increases or decreases the position of the agent along the track with a magnitude of
1. The agent starts at the middle state s0 = 25. The reward is zero everywhere except for the
two terminal states 0 and 50 where it is +1. To the transition misstep probability presented in
Chapter 3, page 33, we added a Gaussian noise ε ∼ N (0, σnoise) to the resulting state after each
transition. The simulations are performed with the following settings: q ∈ {0.0, 0.05, · · · , 0.5};
σnoise = 0.1; B = 100 (initial tree budget); πdefault = πoptimal; H = 50 (simulation horizon for
πdefault); Cp = .7; γ = 0.9; and the generative model is the true model. The different decision
criteria parameters were selected empirically and set to the following values: τSDV = 0.4;
τSDSD = 1; τRDV = 5 · 10−4. As in the continuous PTSP case, we reserve the development
of SDM-OLTA in the continuous case for future work. We generated 1000 episodes for each
transition misstep probability.

155

156 Appendix C. Additional experimental results for the OLTA algorithm

Transition misstep probability

102

103

Lo
ss

 (t
im

e
st

ep
s

to
 th

e
go

al
)

Transition misstep probability

0%

20%

40%

60%

M
ea

n
lo

ss
 r

el
at

iv
el

y
to

 O
LU

C
T

lo
ss

Transition misstep probability
101

102

103

C
om

pu
ta

tio
na

l
co

st
 (m

s)

0.0 0.1 0.2 0.3 0.4 0.5
Transition misstep probability

104

105

106

N
um

be
r

of
 c

al
ls

OLUCT
Plain OLTA

SDV-OLTA
SDSD-OLTA

RDV-OLTA

Figure C.2: Comparison between OLUCT and OLTA on the continuous 1D track environment
for varying values of the misstep probability q.

The results are presented in Figure C.2, page 156. Logarithmic scales are used for display
purposes. As in the discrete case, OLTA achieves comparable loss as OLUCT. Particularly,
SDV-OLTA performs as well as OLUCT on the whole range of misstep probabilities. In this
setting, SDSD-OLTA and RDV-OLTA achieved an intermediate loss between Plain OLTA
and OLUCT. In terms of computational cost, two behaviors are observed. In the case of
SDV-OLTA, the computational gain is relevant for low transition misstep probabilities and
catches up with OLUCT as the latter increases. This allows the algorithm to achieve the
same score as OLUCT. In the case of SDSD-OLTA and RDV-OLTA, the computational gain
seems to be constant on the whole range of transition misstep probabilities. However, the
reached lower performance accounts for the fact that, as for Plain OLTA, the decision criteria
do not adapt well to the stochasticity increase, causing the algorithms to discard less trees
than needed. Notice that the computational cost achieved by the SDSD-OLTA algorithm is
greater for the transition misstep probability q = 0 than for q = 0.05. This is due to the
fact that its criterion computes the distance between the current state of the agent and the
empirical mean of the state distribution normalized by the variance. This difference comes

157

0 5 10 15 20
0

5

10

15

20

Figure C.3: Illustration of the discrete Physical Traveling Salesman Problem. A trajectory
derived by an OLUCT algorithm is displayed in green. The starting point is displayed in red,
the waypoints in green and the walls in gray.

from the fact that the distribution is mono-modal for q = 0 and bi-modal otherwise. Indeed,
in the latter case, the variance increases, causing the normalization to decrease the value of
the computed distance. Additionally, the empirical mean does not correspond to the mean
of a mode but a point between the two mode means, which interacts in the opposite way:
increasing the computed distance. In this setting, the interaction of the two mechanisms
results in less sub-trees approvals for q = 0. In the discrete case, it does not occur since the
current state lies exactly on the mean for q = 0 because no Gaussian noise is added to the
state transition. As a result, the distance is always zero.

Discrete Physical Traveling Salesman Problem

We restricted the PTSP environment to the discrete case. The resulting problem is a grid-
world navigation problem as illustrated in Figure C.3. As in the continuous case, the state
of the agent is characterized by s = (x, y, θ, v) ∈ R4, respectively the position in the 2D grid-
world, the orientation and the velocity. In our case, we set the velocity to 1 so that the agent
only has access to adjacent cells. The action space is A = {Right, Up, Left, Down}, each
action being the direction of the next adjacent cell reached by the agent. The reward is set to
+1 when a waypoint is reached for the first time and to 0 elsewhere. We introduce the same
misstep probability q ∈ [0, 1] as in the continuous PTSP which is the probability for another
action to be undertaken instead of the current one. The simulations are performed with the
following settings: s0 = (3, 3, 0, 1); q ∈ {0.0, 0.05, · · · , 0.5}; B = 200 (initial tree budget);
πdefault = πgo-straight that applies no orientation variation; H = 20 (simulation horizon for

158 Appendix C. Additional experimental results for the OLTA algorithm

Transition misstep probability
0

200

400

600

800

Lo
ss

 (t
im

e
st

ep
s

to
 r

ea
ch

 a
ll

th
e

w
ay

po
in

ts
)

Transition misstep probability
0%

20%

40%

60%

M
ea

n
lo

ss
re

la
tiv

el
y

to
O

LU
C

T
lo

ss

Transition misstep probability

0
2500
5000
7500

10000

C
om

pu
ta

tio
na

l
co

st
 (m

s)

0.0 0.1 0.2 0.3 0.4 0.5
Transition misstep probability

0

500000

1000000

1500000

2000000

N
um

be
r

of
ca

lls

OLUCT
Plain OLTA

SDM-OLTA
SDV-OLTA

SDSD-OLTA
RDV-OLTA

Figure C.4: Comparison between OLUCT and OLTA on the discrete PTSP for varying values
of the misstep probability q.

πdefault); Cp = 0.7; γ = 0.99. The provided map is the one depicted in Figure C.3 with six
waypoints. The different decision criteria parameters were selected empirically and set as
follows: τSDM = 0.7, τSDV = 0.2, τSDSD = 1.5, and τRDV = 0.1. Additionally, we provided
Plain OLTA with the ability to discard a sub-tree if the recommended action was not available,
i.e., leading to a wall. We generated 1000 episodes for each transition misstep probability.

The results are presented in Figure C.4. As in the continuous case, OLTA achieves
comparable loss as OLUCT. Particularly, SDV-OLTA and SDSD-OLTA had a very simi-
lar performance on most of the range of misstep probabilities. SDM-OLTA, Plain OLTA and
RDV-OLTA achieved poorer performance but still comparable given the high variance of the
losses. In terms of computational cost, all the variations of OLTA outperform OLUCT with
an approximately constant gain. For each one of them, the consequence of this gain was
the increasing of the achieved loss, so that each algorithm attained a different compromise
between performance and computational cost gain.

Appendix D

Additional information on the
experiments of Chapter 4,

Section 4.5

We here provide additional technical information about the experiments run for the RATS
algorithm in Section 4.5, page 85. The computing infrastructure used was a laptop using four
64-bit CPU (model: Intel(R) Core(TM) i7-4810MQ CPU @ 2.80GHz). The collected samples
sizes and number of evaluation runs for each experiment is summarized in Table D.1.

Experiment
Number of
experiment
repetitions

Number of
episodes

Maximum
length

of an episode

Upper bound on
the number of

computed transition
samples (s, a, r, s′)

Non-stationary
Bridge

Figure 4.3, page 85

3
(one per agent) 96 10 89,579,520

Table D.1: Summary of the number of experiment repetition, number of sampled tasks,
number of episodes, maximum length of episodes and upper bounds on the number of collected
samples.

The displayed confidence intervals in Figure 4.4, page 87 is 50% of the estimated confidence
interval σ̄ computed with respect to the following formula:

σ̄ =

√√√√ 1
N − 1

N∑
i=1

(xi − x̄)2 where, x̄ = 1
N

N∑
i=1

xi,

with D = {xi}Ni=1 the set of the collected data (discounted return in this case). No data
were excluded neither pre-computed. Hyper-parameters were determined to our appreciation,
they may be sub-optimal but we found the results convincing enough to display interesting
behaviors.

159

Appendix E

Additional information on the
experiments of Chapter 5,

Section 5.6

For the experiments run in Chapter 5, page 91, Section 5.6, page 117, the computing infras-
tructure used was a laptop using a single 64-bit CPU (model: Intel(R) Core(TM) i7-4810MQ
CPU @ 2.80GHz). The collected samples sizes and number of evaluation runs for each exper-
iment is summarized in Table E.1.

Task
Number of
experiment
repetitions

Number of
sampled tasks

Number of
episodes

Maximum
length

of episodes

Total number
of samples
(s, a, r, s′)

“Tight” task of
Figures, 5.5a,
5.5b, and 5.5c,

page 118

10 15 2000 10 3,000,000

“Tight” task of
Figure 5.5d,
page 118

100 2 2000 10 4,000,000

Table E.1: Summary of the number of experiment repetition, number of sampled tasks,
number of episodes, maximum length of episodes and number of collected samples.

The displayed confidence intervals for any curve presented in the paper is the 95% confi-
dence interval (Neyman, 1937) on the displayed mean. No data were excluded neither pre-
computed. Hyper-parameters were determined to our appreciation, they may be sub-optimal
but we found the results convincing enough to display interesting behaviors.

161

Bibliography

Abbasi, Yasin, Peter L. Bartlett, Varun Kanade, Yevgeny Seldin, and Csaba Szepesvári (2013).
“Online Learning in Markov Decision Processes with Adversarially Chosen Transition
Probability Distributions”. In: Advances in Neural Information Processing Systems 27
(NeurIPS 2013), pp. 2508–2516 (cit. on p. 64).

Abdallah, Sherief and Michael Kaisers (2016). “Addressing Environment Non-stationarity by
Repeating Q-learning Updates”. In: Journal of Machine Learning Research 17.1, pp. 1582–
1612 (cit. on p. 64).

Abel, David, Yuu Jinnai, Sophie Yue Guo, George Konidaris, and Michael L. Littman (2018).
“Policy and Value Transfer in Lifelong Reinforcement Learning”. In: Proceedings of the
35th International Conference on Machine Learning (ICML 2018), pp. 20–29 (cit. on
pp. 66, 95, 96, 99, 116–118).

Ammar, Haitham Bou, Eric Eaton, Matthew E Taylor, Decebal Constantin Mocanu, Kurt
Driessens, Gerhard Weiss, and Karl Tuyls (2014). “An Automated Measure of MDP Sim-
ilarity for Transfer in Reinforcement Learning”. In: Workshops at the 28th AAAI Confer-
ence on Artificial Intelligence (AAAI 2014) (cit. on pp. 94, 96).

Araya-López, Mauricio, Vincent Thomas, Olivier Buffet, and François Charpillet (2010). “A
Closer Look at MOMDPs”. In: Proceedings of the 22nd International Conference on Tools
with Artificial Intelligence (ICTAI 2010). Vol. 2. IEEE, pp. 197–204 (cit. on p. 65).

Asadi, Kavosh, Dipendra Misra, and Michael L. Littman (2018). “Lipschitz Continuity in
Model-Based Reinforcement Learning”. In: Proceedings of the 35th International Confer-
ence on Machine Learning (ICML 2018) (cit. on p. 70).

Auer, Peter, Nicolo Cesa-Bianchi, and Paul Fischer (2002). “Finite-time Analysis of the Mul-
tiarmed Bandit Problem”. In: Machine Learning 47.2-3, pp. 235–256 (cit. on pp. 25, 43).

Auger, David, Adrien Couëtoux, and Olivier Teytaud (2013). “Continuous Upper Confidence
Trees with Polynomial Exploration – Consistency”. In: European Conference on Ma-
chine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML
PKDD 2013). Springer, pp. 194–209 (cit. on p. 36).

Baker, Chris, Gopal Ramchurn, Luke Teacy, and Nicholas Jennings (2016). “Factored Monte-
Carlo Tree Search for Coordinating UAVs in Disaster Response”. In: (cit. on p. 36).

Banerjee, Taposh, Miao Liu, and Jonathan P. How (2017). “Quickest Change Detection Ap-
proach to Optimal Control in Markov Decision Processes with Model Changes”. In: 2017
American Control Conference (ACC). IEEE, pp. 399–405 (cit. on p. 66).

Bellemare, Marc G., Will Dabney, and Rémi Munos (2017). “A Distributional Perspective on
Reinforcement Learning”. In: Proceedings of the 34th International Conference on Machine
Learning (ICML 2017) (cit. on p. 47).

Bellemare, Marc G., Yavar Naddaf, Joel Veness, and Michael Bowling (2013). “The Arcade
Learning Environment: An Evaluation Platform for General Agents”. In: Journal of Ar-
tificial Intelligence Research 47, pp. 253–279 (cit. on p. 115).

Bellman, Richard (1957). Dynamic Programming. Princeton, USA: Princeton University Press
(cit. on pp. 18, 75, 78).

163

164 Bibliography

Boutin, Victor, Angelo Franciosini, Franck Ruffier, and Laurent Perrinet (2019). Meaningful
representations emerge from Sparse Deep Predictive Coding. Tech. rep. (cit. on p. 126).

Bouzy, Bruno, Marc Métivier, and Damien Pellier (2011). “MCTS Experiments on the Voronoi
Game”. In: Advances in Computer Games: 13th International Conference (ACG 2011).
Springer, pp. 96–107 (cit. on p. 36).

Browne, Cameron B., Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon
Colton (2012). “A survey of Monte Carlo Tree Search methods”. In: IEEE Transactions
on Computational Intelligence and AI in Games (T-CIAIG) 4.1, pp. 1–43 (cit. on pp. 24,
35).

Brunskill, Emma and Lihong Li (2013). “Sample Complexity of Multi-task Reinforcement
Learning”. In: Proceedings of the 29th conference on Uncertainty in Artificial Intelligence
(UAI 2013) (cit. on pp. 94, 121).

— (2014). “PAC-inspired Option Discovery in Lifelong Reinforcement Learning”. In: Proceed-
ings of the 31st International Conference on Machine Learning (ICML 2014), pp. 316–324
(cit. on pp. 66, 95, 96).

Bubeck, Sébastien and Rémi Munos (2010). “Open Loop Optimistic Planning”. In: Proceed-
ings of the 23rd Conference on Learning Theory (COLT 2010) (cit. on pp. 22, 36, 42,
49).

Carroll, James L. (2005). “Task Localization, Similarity, and Transfer; Towards a Reinforce-
ment Learning Task Library System”. MA thesis (cit. on p. 93).

Carroll, James L. and Kevin Seppi (2005). “Task Similarity Measures for Transfer in Reinforce-
ment Learning Task Libraries”. In: Proceedings of the 5th International Joint Conference
on Neural Networks (IJCNN 2005). Vol. 2. IEEE, pp. 803–808 (cit. on p. 93).

Chanel, Caroline Ponzoni Carvalho (2013). “Planification de perception et de mission en
environnement incertain: Application à la détection et à la reconnaissance de cibles par
un hélicoptère autonome”. PhD thesis. Université de Toulouse (cit. on p. 65).

Chaslot, G., M. Winands, J. Uiterwijk, H. Van Den Herik, and B. Bouzy (2007). “Progressive
Strategies for Monte-Carlo Tree Search”. In: Proceedings of the 10th Joint Conference on
Information Sciences (JCIS 2007), pp. 655–661 (cit. on p. 41).

Choi, Samuel P. M., Dit-yan Yeung, and Nevin L. Zhang (1999). “Hidden-Mode Markov De-
cision Processes”. In: IJCAI Workshop on Neural, Symbolic, and Reinforcement Methods
for Sequence Learning (cit. on p. 64).

Choi, Samuel P. M., Dit-Yan Yeung, and Nevin L. Zhang (2000). “Hidden-Mode Markov
Decision Processes for Nonstationary Sequential Decision Making”. In: Sequence Learning.
Springer, pp. 264–287 (cit. on p. 64).

Choi, Samuel Ping-Man, Nevin Lianwen Zhang, and Dit-Yan Yeung (2001). “Solving Hidden-
Mode Markov Decision Problems”. In: Proceedings of the 8th International Conference on
Artificial Intelligence and Statistics (AISTATS 2001). Citeseer (cit. on p. 65).

Chung, Jen Jen, Nicholas R. J. Lawrance, and Salah Sukkarieh (2015). “Learning to soar:
Resource-constrained exploration in reinforcement learning”. In: International Journal of
Robotics Research 34.2, pp. 158–172 (cit. on p. 69).

Couëtoux, Adrien, Jean-Baptiste Hoock, Nataliya Sokolovska, Olivier Teytaud, and Nicolas
Bonnard (2011). “Continuous Upper Confidence Trees”. In: Proceedings of the 4th In-

Bibliography 165

ternational Conference on Learning and Intelligent Optimization (LION 2011). Springer,
pp. 433–445 (cit. on pp. 35, 41).

Coulom, Rémi (2006). “Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search”. In: Proceedings of the 5th International Conference on Computer and Games
(ICCG 2006). Springer, pp. 72–83 (cit. on p. 35).

— (2007). “Computing Elo Ratings of Move Patterns in the Game of Go”. In: Computer
Games Workshop (CGW 2007) (cit. on p. 41).

Csáji, Balázs Csanád and László Monostori (2008). “Value Function Based Reinforcement
Learning in Changing Markovian Environments”. In: Journal of Machine Learning Re-
search 9.Aug, pp. 1679–1709 (cit. on p. 63).

Da Silva, Bruno C., Eduardo W. Basso, Ana L. C. Bazzan, and Paulo M. Engel (2006).
“Dealing with Non-Stationary Environments using Context Detection”. In: Proceedings of
the 23rd International Conference on Machine Learning (ICML 2006). ACM, pp. 217–224
(cit. on pp. 65, 66).

Dabney, Will, Mark Rowland, Marc G. Bellemare, and Rémi Munos (2018). “Distributional
Reinforcement Learning with Quantile Regression”. In: Proceedings of the 32nd AAAI
Conference on Artificial Intelligence (AAAI 2018) (cit. on p. 70).

Dann, Christoph, Tor Lattimore, and Emma Brunskill (2017). “Unifying PAC and Regret:
Uniform PAC Bounds for Episodic Reinforcement Learning”. In: Advances in Neural In-
formation Processing Systems 30 (NeurIPS 2017), pp. 5713–5723 (cit. on p. 121).

De Maesschalck, Roy, Delphine Jouan-Rimbaud, and Désiré L. Massart (2000). “The Ma-
halanobis distance”. In: Chemometrics and Intelligent Laboratory Systems 50.1, pp. 1–18
(cit. on p. 53).

Dennett, Daniel C. (1975). “Why the Law of Effect will not Go Away”. In: Journal for the
Theory of Social Behaviour 5.2, pp. 169–188 (cit. on p. 17).

Dick, Travis, Andras Gyorgy, and Csaba Szepesvari (2014). “Online Learning in Markov De-
cision Processes with Changing Cost Sequences”. In: Proceedings of the 31st International
Conference on Machine Learning (ICML 2014), pp. 512–520 (cit. on p. 63).

Doya, Kenji, Kazuyuki Samejima, Ken-ichi Katagiri, and Mitsuo Kawato (2002). “Multiple
Model-based Reinforcement Learning”. In: Neural Computation 14.6, pp. 1347–1369 (cit.
on p. 65).

Enzenberger, Markus, Martin Muller, Broderick Arneson, and Richard Segal (2010). “Fuego
- an Open-Source Framework for Board Games and Go Engine Based on Monte Carlo
Tree Search”. In: IEEE Transactions on Computational Intelligence and AI in Games
(T-CIAIG) 2.4, pp. 259–270 (cit. on p. 35).

Even-Dar, Eyal, Sham M. Kakade, and Yishay Mansour (2009). “Online Markov Decision
Processes”. In: Mathematics of Operations Research 34.3, pp. 726–736 (cit. on p. 63).

Feldman, Zohar and Carmel Domshlak (2014). “Monte-Carlo Tree Search: To MC or to DP?”
In: Proceedings of the 21st European Conference on Artificial Intelligence (ECAI 2014),
pp. 321–326 (cit. on p. 36).

Fern, Alan and Paul Lewis (2011). “Ensemble Monte-Carlo Planning: An Empirical Study”.
In: Proceedings of the 21st International Conference on Automated Planning and Schedul-
ing (ICAPS 2011) (cit. on p. 37).

166 Bibliography

Fernández, Fernando and Manuela Veloso (2006). “Probabilistic Policy Reuse in a Reinforce-
ment Learning Agent”. In: Proceedings of the 5th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2006). ACM, pp. 720–727 (cit. on p. 93).

Ferns, Norm, Prakash Panangaden, and Doina Precup (2004). “Metrics for Finite Markov
Decision Processes”. In: Proceedings of the 20th conference on Uncertainty in Artificial
Intelligence (UAI 2004). AUAI Press, pp. 162–169 (cit. on pp. 95, 97).

Fudenberg, Drew and Jean Tirole (1991). “Game Theory”. In: Cambridge, Massachusetts
393.12, p. 80 (cit. on p. 77).

Gelly, Sylvain and David Silver (2007). “Combining Online and Offline Knowledge in UCT”.
In: Proceedings of the 24th International Conference on Machine Learning (ICML 2007).
ACM, pp. 273–280 (cit. on p. 35).

— (2008). “Achieving Master Level Play in 9 x 9 Computer Go”. In: Proceedings of the 23rd
AAAI Conference on Artificial Intelligence (AAAI 2008). Vol. 8, pp. 1537–1540 (cit. on
p. 35).

— (2011). “Monte-Carlo Tree Search and Rapid Action Value Estimation in Computer Go”.
In: Artificial Intelligence 175.11, pp. 1856–1875 (cit. on p. 36).

Ghallab, Malik, Dana Nau, and Paolo Traverso (2014). “The Actor’s View of Automated
Planning and Acting: A Position Paper”. In: Artificial Intelligence 208, pp. 1–17 (cit. on
p. 126).

— (2016). Automated Planning and Acting. Cambridge University Press (cit. on pp. 2, 5, 6).
Hadoux, Emmanuel (2015). “Markovian sequential decision-making in non-stationary environ-

ments: application to argumentative debates”. PhD thesis. UPMC, Sorbonne Universités
CNRS (cit. on p. 66).

Hadoux, Emmanuel, Aurélie Beynier, and Paul Weng (2014a). “Sequential Decision-Making
under Non-stationary Environments via Sequential Change-point Detection”. In: Learn-
ing over Multiple Contexts (LMCE): workshop at the the 13th European Conference on
Machine Learning (ECML 2014) (cit. on p. 66).

— (2014b). “Solving Hidden-Semi-Markov-Mode Markov Decision Problems”. In: Proceedings
of the 8th International Conference on Scalable Uncertainty Management (SUM 2014).
Springer, pp. 176–189 (cit. on p. 65).

Hallak, Assaf, Dotan Di Castro, and Shie Mannor (2015). “Contextual Markov Decision
Processes”. In: Proceedings of the 12th European Workshop on Reinforcement Learning
(EWRL 2015) (cit. on p. 96).

Heusner, Manuel (2011). “UCT for Pac-Man”. Bachelor thesis. University of Basel (cit. on
pp. 37, 39).

Hostetler, Jesse, Alan Fern, and Tom Dietterich (2014). “State Aggregation in Monte Carlo
Tree Search”. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence
(AAAI 2014) (cit. on p. 36).

Howard, R. A. (1963). “Semi-Markovian Decision Processes”. In: Proceedings of International
Statistical Institute, Ottawa, Canada (cit. on p. 68).

Iyengar, Garud N. (2005). “Robust Dynamic Programming”. In: Mathematics of Operations
Research 30.2, pp. 257–280 (cit. on pp. 62, 75, 77, 78, 89).

Bibliography 167

Jaulmes, Robin, Joelle Pineau, and Doina Precup (2005). “Learning in non-stationary Par-
tially Observable Markov Decision Processes”. In: ECML Workshop on Reinforcement
Learning in non-stationary environments. Vol. 25, pp. 26–32 (cit. on p. 65).

Kaelbling, Leslie Pack, Michael L. Littman, and Anthony R. Cassandra (1998). “Planning
and acting in partially observable stochastic domains”. In: Artificial Intelligence 101.1,
pp. 99–134 (cit. on pp. 46, 48, 65).

Kalmár, Zsolt, Csaba Szepesvári, and András Lőrincz (1998). “Module-Based Reinforcement
Learning: Experiments with a Real Robot”. In: Autonomous Robots 5.3-4, pp. 273–295
(cit. on pp. 63, 88).

Katehakis, Michael N. and Arthur F. Veinott Jr. (1987). “The Multi-Armed Bandit Problem:
Decomposition and Computation”. In: Mathematics of Operations Research 12.2, pp. 262–
268 (cit. on p. 25).

Keller, Thomas and Patrick Eyerich (2012). “PROST: Probabilistic planning based on UCT”.
In: Proceedings of the 22nd International Conference on Automated Planning and Schedul-
ing (ICAPS 2012) (cit. on pp. 35, 36).

Keller, Thomas and Malte Helmert (2013). “Trial-Based Heuristic Tree Search for Finite Hori-
zon MDPs”. In: Proceedings of the 23rd International Conference on Automated Planning
and Scheduling (ICAPS 2013) (cit. on pp. 22, 35, 36, 42, 76).

Kleinberg, Robert, Aleksandrs Slivkins, and Eli Upfal (2008). “Multi-Armed Bandits in Metric
Spaces”. In: Proceedings of the 40th annual ACM symposium on Theory of computing.
ACM, pp. 681–690 (cit. on p. 70).

Kocsis, Levente and Csaba Szepesvári (2006). “Bandit Based Monte Carlo Planning”. In:
European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD 2006). Vol. 6. Springer, pp. 282–293 (cit. on pp. 24,
26, 50, 128, 129).

Kok, Adrianus Leendert, Erwin W. Hans, and Johannes M.J. Schutten (2012). “Vehicle rout-
ing under time-dependent travel times: The impact of congestion avoidance”. In: Com-
puters & Operations Research 39.5, pp. 910–918 (cit. on p. 69).

Konidaris, George, Ilya Scheidwasser, and Andrew Barto (2012). “Transfer in Reinforce-
ment Learning via Shared Features”. In: Journal of Machine Learning Research 13.May,
pp. 1333–1371 (cit. on p. 94).

Lazaric, Alessandro (2012). “Transfer in Reinforcement Learning: a Framework and a Survey”.
In: Reinforcement Learning. Springer, pp. 143–173 (cit. on p. 93).

Lazaric, Alessandro, Marcello Restelli, and Andrea Bonarini (2008). “Transfer of Samples in
Batch Reinforcement Learning”. In: Proceedings of the 25th International Conference on
Machine Learning (ICML 2008), pp. 544–551 (cit. on pp. 93, 96).

Lecarpentier, Erwan, David Abel, Kavosh Asadi, Yuu Jinnai, Emmanuel Rachelson, and
Michael L Littman (2020). Lipschitz Lifelong Reinforcement Learning. Tech. rep. (cit.
on p. 3).

Lecarpentier, Erwan, Guillaume Infantes, Charles Lesire, and Emmanuel Rachelson (2018).
“Open Loop Execution of Tree Search Algorithms”. In: Proceedings of the 27th Interna-
tional Joint Conferences on Artificial Intelligence (IJCAI 2018) (cit. on p. 2).

Lecarpentier, Erwan and Emmanuel Rachelson (2019). “Non-Stationary Markov Decision
Processes, a Worst-Case Approach using Model-Based Reinforcement Learning”. In: Ad-

168 Bibliography

vances in Neural Information Processing Systems 32 (NeurIPS 2019), pp. 7214–7223 (cit.
on p. 2).

Lecarpentier, Erwan, Sebastian Rapp, Marc Melo, and Emmanuel Rachelson (2017). “Em-
pirical evaluation of a Q-Learning Algorithm for Model-free Autonomous Soaring”. In:
12èmes Journées Francophones sur la Planification, la Décision et l’Apprentissage pour la
conduite de systèmes (JFPDA 2017) (cit. on pp. 64, 69).

Levine, John, Clare Bates Congdon, Marc Ebner, Graham Kendall, Simon M. Lucas, Risto
Miikkulainen, Tom Schaul, and Tommy Thompson (2013). “General Video Game Play-
ing”. In: Artificial and Computational Intelligence in Games 6, pp. 77–83 (cit. on p. 36).

Lim, Shiau Hong, Huan Xu, and Shie Mannor (2013). “Reinforcement Learning in Robust
Markov Decision Processes”. In: Advances in Neural Information Processing Systems 27
(NeurIPS 2013), pp. 701–709 (cit. on pp. 63, 88).

Lotter, William, Gabriel Kreiman, and David Cox (2016). Deep Predictive Coding Networks
for Video Prediction and Unsupervised Learning. Tech. rep. (cit. on p. 126).

Mahmud, M. M., Majd Hawasly, Benjamin Rosman, and Subramanian Ramamoorthy (2013).
Clustering Markov Decision Processes for Continual Transfer. Tech. rep. (cit. on pp. 94,
121).

Mansley, Chris, Ari Weinstein, and Michael L. Littman (2011). “Sample-Based Planning for
Continuous Action Markov Decision Processes”. In: Proceedings of the 21st International
Conference on Automated Planning and Scheduling (ICAPS 2011) (cit. on p. 35).

Munos, Rémi (2014). “From Bandits to Monte-Carlo Tree Search: The Optimistic Principle
Applied to Optimization and Planning”. In: Foundations and Trends in Machine Learning
7.1, pp. 1–129 (cit. on p. 70).

Neyman, Jerzy (1937). “X—outline of a Theory of Statistical Estimation Based on the Classi-
cal Theory of Probability”. In: Philosophical Transactions of the Royal Society of London.
Series A, Mathematical and Physical Sciences 236.767, pp. 333–380 (cit. on p. 161).

Ong, Sylvie C.W., Shao Wei Png, David Hsu, and Wee Sun Lee (2009). “POMDPs for Robotic
Tasks with Mixed Observability”. In: Proceedings of the 5th Robotics: Science and Systems
(RSS 2009). Vol. 5, p. 4 (cit. on p. 65).

Pazis, Jason and Ronald Parr (2013). “PAC Optimal Exploration in Continuous Space Markov
Decision Processes”. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence
(AAAI 2013) (cit. on p. 70).

Pazis, Jason, Ronald E. Parr, and Jonathan P. How (2016). “Improving PAC Exploration
using the Median of Means”. In: Advances in Neural Information Processing Systems 29
(NeurIPS 2016), pp. 3898–3906 (cit. on p. 121).

Perez, Diego, Philipp Rohlfshagen, and Simon M. Lucas (2012a). “Monte Carlo Tree Search:
Long-term Versus Short-term Planning”. In: Proceedings of the 8th Computational Intel-
ligence and Games conference (CIG 2012). IEEE, pp. 219–226 (cit. on pp. 36, 37, 39).

— (2012b). “The Physical Travelling Salesman Problem: WCCI 2012 Competition”. In: Pro-
ceedings of the 14th Congress on Evolutionary Computation (CEC 2012). IEEE, pp. 1–8
(cit. on p. 53).

Perez Liebana, Diego, Jens Dieskau, Martin Hunermund, Sanaz Mostaghim, and Simon Lucas
(2015). “Open Loop Search for General Video Game Playing”. In: Proceedings of the 17th

Bibliography 169

Genetic and Evolutionary Computation Conference (GECCO 2015). ACM, pp. 337–344
(cit. on pp. 36, 37, 39).

Perez Liebana, Diego, Spyridon Samothrakis, Julian Togelius, Tom Schaul, Simon M. Lucas,
Adrien Couëtoux, Jerry Lee, Chong-U Lim, and Tommy Thompson (2015). “The 2014
General Video Game Playing Competition”. In: IEEE Transactions on Computational
Intelligence and AI in Games (T-CIAIG) 8.3, pp. 229–243 (cit. on p. 36).

Pirotta, Matteo, Marcello Restelli, and Luca Bascetta (2015). “Policy gradient in Lipschitz
Markov Decision Processes”. In: Machine Learning 100.2-3, pp. 255–283 (cit. on p. 70).

Powley, Edward J., Peter I. Cowling, and Daniel Whitehouse (2017). “Memory Bounded
Monte-Carlo Tree Search”. In: Proceedings of the 13th Artificial Intelligence and Interac-
tive Digital Entertainment Conference (AIIDE 2017) (cit. on p. 37).

Prabuchandran, K. J., Nitin Singh, Pankaj Dayama, and Vinayaka Pandit (2019). Change
Point Detection for Compositional Multivariate Data. Tech. rep. (cit. on p. 66).

Puterman, Martin L. (2014). Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons (cit. on pp. 2, 5, 8, 11, 12, 14, 15, 67–69, 72, 137).

Rachelson, Emmanuel and Michail G. Lagoudakis (2010). “On the Locality of Action Domina-
tion in Sequential Decision Making”. In: Proceedings of the 11th International Symposium
on Artificial Intelligence and Mathematics (ISAIM 2010) (cit. on pp. 48, 70, 130).

Rao, Karun and Shimon Whiteson (2012). “V-MAX: Tempered Optimism for Better PAC
Reinforcement Learning”. In: Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2012), pp. 375–382 (cit. on p. 121).

Rimmel, Arpad and Fabien Teytaud (2010). “Multiple overlapping tiles for contextual Monte
Carlo tree search”. In: Proceedings of the 1st International Conference on the Applica-
tions of Evolutionary Computation (EvoApplications 2010). Springer, pp. 201–210 (cit. on
p. 35).

Schultz, Wolfram (2015). “Neuronal Reward and Decision Signals: from Theories to Data”.
In: Physiological Reviews 95.3, pp. 853–951 (cit. on p. 7).

Sigaud, Olivier and Freek Stulp (2019). “Policy search in continuous action domains: An
overview”. In: Neural Networks (cit. on p. 28).

Silver, Daniel L., Qiang Yang, and Lianghao Li (2013). “Lifelong Machine Learning Systems:
Beyond Learning Algorithms”. In: AAAI Spring Symposium: Lifelong Machine Learning.
Vol. 13, p. 05 (cit. on pp. 66, 95).

Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van Den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
et al. (2016). “Mastering the Game of Go with Deep Neural Networks and Tree Search”.
In: Nature 529.7587, p. 484 (cit. on p. 35).

Silver, David, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. (2017). “Mas-
tering the Game of Go without Human Knowledge”. In: Nature 550.7676, p. 354 (cit. on
pp. 37, 39).

Silver, David and Gerald Tesauro (2009). “Monte-Carlo Simulation Balancing”. In: Proceed-
ings of the 26th International Conference on Machine Learning (ICML 2009). ACM,
pp. 945–952 (cit. on p. 35).

170 Bibliography

Silver, David and Joel Veness (2010). “Monte Carlo Planning in Large POMDPs”. In: Ad-
vances in Neural Information Processing Systems 24 (NeurIPS 2010), pp. 2164–2172 (cit.
on pp. 36, 46, 66).

Sindhu, Padakandla, Prabuchandran K. J., and Bhatnagar Shalabh (2019). Reinforcement
Learning for Non-Stationary Environments. Tech. rep. (cit. on p. 66).

Soemers, Dennis J.N.J., Chiara F. Sironi, Torsten Schuster, and Mark H.M. Winands (2016).
“Enhancements for Real-Time Monte-Carlo Tree Search in General Video Game Playing”.
In: Proceedings of the 12th Computational Intelligence and Games conference (CIG 2016).
IEEE, pp. 1–8 (cit. on pp. 37, 39).

Song, Jinhua, Yang Gao, Hao Wang, and Bo An (2016). “Measuring the Distance Between
Finite Markov Decision Processes”. In: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016), pp. 468–476 (cit. on
pp. 95, 97, 98).

Sorg, Jonathan and Satinder Singh (2009). “Transfer via Soft Homomorphisms”. In: Proceed-
ings of the 8th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2009). International Foundation for Autonomous Agents and Multiagent Sys-
tems, pp. 741–748 (cit. on p. 94).

Spratling, Michael W. (2017). “A Hierarchical Predictive Coding Model of Object Recognition
in Natural Images”. In: Cognitive Computation 9.2, pp. 151–167 (cit. on p. 126).

Strehl, Alexander L., Lihong Li, and Michael L. Littman (2009). “Reinforcement Learning in
Finite MDPs: PAC Analysis”. In: Journal of Machine Learning Research 10.Nov, pp. 2413–
2444 (cit. on pp. 19, 30, 32, 105, 114, 127).

Sutton, Richard S. (1991). “Dyna, an Integrated Architecture for Learning, Planning, and
Reacting”. In: ACM SIGART Bulletin 2.4, pp. 160–163 (cit. on p. 17).

Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement Learning: An Introduction.
MIT press, Cambridge (cit. on pp. 2, 5, 26).

Sutton, Richard S., Doina Precup, and Satinder Singh (1999). “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning”. In: Artificial
Intelligence 112.1-2, pp. 181–211 (cit. on p. 68).

Szepesvári, Csaba and Michael L. Littman (1996). “Generalized Markov Decision Processes:
Dynamic-Programming and Reinforcement Learning Algorithms”. In: Proceedings of the
13th International Conference on Machine Learning (ICML 1996). Vol. 96 (cit. on p. 63).

Szita, István and Csaba Szepesvári (2010). “Model-Based Reinforcement Learning with Nearly
Tight Exploration Complexity Bounds”. In: Proceedings of the 27th International Confer-
ence on Machine Learning (ICML 2010), pp. 1031–1038 (cit. on p. 121).

Szita, István, Bálint Takács, and András Lőrincz (2002). “ε-MDPs: Learning in Varying Envi-
ronments”. In: Journal of Machine Learning Research 3.Aug, pp. 145–174 (cit. on p. 63).

Taylor, Matthew E. and Peter Stone (2009). “Transfer Learning for Reinforcement Learning
Domains: A Survey”. In: Journal of Machine Learning Research 10.Jul, pp. 1633–1685
(cit. on pp. 93, 97).

Vaidya, Pravin M. (1989). “Speeding-up linear programming using fast matrix multiplica-
tion”. In: Proceedings of the 30th Annual Symposium on Foundations of Computer Science
(FOCS 1989). IEEE, pp. 332–337 (cit. on p. 134).

Bibliography 171

Van Woensel, Tom, Laoucine Kerbache, Herbert Peremans, and Nico Vandaele (2008). “Ve-
hicle routing with dynamic travel times: A queueing approach”. In: European Journal of
Operational Research 186.3, pp. 990–1007 (cit. on p. 69).

Villani, Cédric (2008). Optimal Transport: Old and New. Vol. 338. Springer Science & Business
Media (cit. on pp. 70, 95).

Watkins, Christopher J. C. H. and Peter Dayan (1992). “Q-learning”. In: Machine Learning
8.3-4, pp. 279–292 (cit. on pp. 66, 97).

Weinstein, Ari and Michael L. Littman (2012). “Bandit-Based Planning and Learning in
Continuous-Action Markov Decision Processes”. In: Proceedings of the 22nd International
Conference on Automated Planning and Scheduling (ICAPS 2012) (cit. on pp. 22, 36, 42,
49).

Wiering, Marco A. (2001). “Reinforcement Learning in Dynamic Environments using Instan-
tiated Information”. In: Proceedings of the 18th International Conference on Machine
Learning (ICML 2001), pp. 585–592 (cit. on p. 65).

Williams, Ronald J. and Leemon C. Baird (1993). Tight Performance Bounds on Greedy
Policies Based on Imperfect Value Functions. Tech. rep. Northeastern University, College
of Computer Science, Boston (cit. on p. 19).

Wilson, Aaron, Alan Fern, Soumya Ray, and Prasad Tadepalli (2007). “Multi-Task Reinforce-
ment Learning: A Hierarchical Bayesian Approach”. In: Proceedings of the 24th Interna-
tional Conference on Machine Learning (ICML 2007), pp. 1015–1022 (cit. on p. 96).

Xie, Fan and Zhiqing Liu (2009). “Backpropagation Modification in Monte-Carlo Game Tree
Search”. In: Proceedings of the 3rd International Symposium on Intelligent Information
Technology Application (IITA 2009). Vol. 2. IEEE, pp. 125–128 (cit. on p. 36).

Abstract —

How should an agent act in the face of uncertainty on the evolution of its environment?
In this dissertation, we give a Reinforcement Learning perspective on the resolution of non-
stationary problems. The question is seen from three different aspects. First, we study the
planning vs. re-planning trade-off of tree search algorithms in stationary Markov Decision
Processes. We propose a method to lower the computational requirements of such an al-
gorithm while keeping theoretical guarantees on the performance. Secondly, we study the
case of environments evolving gradually over time. This hypothesis is expressed through a
mathematical framework called Lipschitz Non-Stationary Markov Decision Processes. We
derive a risk averse planning algorithm provably converging to the minimax policy in this
setting. Thirdly, we consider abrupt temporal evolution in the setting of lifelong Reinforce-
ment Learning. We propose a non-negative transfer method based on the theoretical study of
the optimal Q-function’s Lipschitz continuity with respect to the task space. The approach
allows to accelerate learning in new tasks. Overall, this dissertation proposes answers to the
question of solving Non-Stationary Markov Decision Processes under three different settings.

Keywords: Reinforcement Learning; Planning; Markov Decision Process; Non-Stationary
Markov Decision Process; Lifelong Learning.

Résumé —

Comment un agent doit-il agir étant donné que son environnement évolue de manière
incertaine ? Dans cette thèse, nous fournissons une réponse à cette question du point de
vue de l’apprentissage par renforcement. Le problème est vu sous trois aspects différents.
Premièrement, nous étudions le compromis planification vs. re-planification des algorithmes
de recherche arborescente dans les Processus Décisionnels Markoviens. Nous proposons une
méthode pour réduire la complexité de calcul d’un tel algorithme, tout en conservant des
guaranties théoriques sur la performance. Deuxièmement, nous étudions le cas des envi-
ronnements évoluant graduellement au cours du temps. Cette hypothèse est formulée dans
un cadre mathématique appelé Processus de Décision Markoviens Non-Stationnaires Lips-
chitziens. Dans ce cadre, nous proposons un algorithme de planification robuste aux évolu-
tions possibles, dont nous montrons qu’il converge vers la politique minmax. Troisièmement,
nous considérons le cas de l’évolution temporelle abrupte dans le cadre du “lifelong learning”
(apprentissage tout au long de la vie). Nous proposons une méthode de transfert non-négatif
basée sur l’étude théorique de la continuité de Lipschitz de la Q-fonction optimale par rapport
à l’espace des tâches. L’approche permet d’accélérer l’apprentissage dans de nouvelles tâches.
Dans l’ensemble, cette dissertation propose des réponses à la question de la résolution des
Processus de Décision Markoviens Non-Stationnaires dans trois cadres d’hypothèses.

Mots clés : planification ; apprentissage par renforcement ; Processus Décisionnel de
Markov ; Processus Décisionnel de Markov Non-Stationnaire ; apprentissage tout au long
de la vie.

	List of Acronyms
	Preliminaries
	Introduction
	Model and optimization criterion
	Planning
	Learning

	The planning vs. re-planning trade-off in stationary Markov Decision Processes
	State of the art
	Open-loop control
	Open-loop search trees
	Open-Loop Tree search Algorithm
	Theoretical Analysis of the Open-Loop Tree search Algorithm
	Empirical Analysis of the Open-Loop Tree search Algorithm
	Conclusion

	Planning in gradually evolving Markov Decision Processes
	State of the art
	Non-Stationary Markov Decision Process
	Worst case approach
	Risk Averse Tree Search algorithm
	Experiments
	Conclusion

	Learning in abruptly evolving Markov Decision Processes
	State of the art
	Framework
	Lipschitz continuity of Q-functions
	Transfer using Lipschitz continuity
	The Lipschitz RMAX algorithm
	Experiments
	Conclusion

	Conclusion
	Proofs of the dissertation
	Proofs of Chapter 2
	Proofs of Chapter 3
	Proofs of Chapter 4
	Proofs of Chapter 5

	Complete version of the MCTS algorithm
	Additional experimental results for the OLTA algorithm
	Additional information on the experiments of Chapter 4, Section 4.5
	Additional information on the experiments of Chapter 5, Section 5.6
	Bibliography

