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Thesis overview

The first chapter is dedicated to the literature review. Because of the innovating direction
taken by this thesis, the domains covered by the literature review are not limited to the
dynamic inflow methods.

The second chapter presents in details the model developed by Huang and Peters in [1,
2]. From this thorough analysis results a number of remarks and possible improvements
that could be added to the model. Most notably, the fact that the model is developed in
the frequential domain pushed the author to develop it in the temporal domain, in order
to be able to couple it with a blade element model.

Chapter 4 is composed of three main parts, all concerned with the improvements of some
aspects of Huang and Peters model. The first part presents the development of the Huang
and Peters model in the temporal domain, once again revealing possible improvements.
Then, section 4.2 presents two improvements of the Huang and Peters model, that were
implemented and tested. They show satisfying results when compared with the existing
method, but several potential improvements still remain. Finally section 4.3 presents the
exploration of some of the failed or abandoned paths that were tried. This section is
mostly optional but is still deemed valuable as providing examples of dead ends which
were explored during this research.

Chapter 5 is the heart of this thesis. A new model, inspired both by Huang and Peters
model and by Lopez, Marques and Shen treatment of the incompressible Naviers-Stokes
equations in [3, 4], is developed and implemented. Comparisons with other models, such
as free wake, are made in order to evaluate the new model.
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Nomenclature

δt Non dimensional time step. (∆tΩ, or ∆t RV∞ )

β Parameter of the remapping

χ Wake skew angle

Γ Streamline curves

L̂q Non dimensional lift generated by blade q

Λ Scale factor of the cylindrical domain (Λ = H
Rc

)

λ Total inflow velocity

λf Axial free stream velocity

Λrj Test functions

λm Axial induced velocity

µ Advance ratio

ν∞ Non dimensional free stream velocity (V∞RΩ )

Ω Rotor rotational speed (rad/s)

−→
δν Small variation of induced velocity (m/s)

−→γ Curvilinear direction of the streamline

−→ν Non dimensional velocity. (
−→
V
V∞

or
−→
V

ΩR)

−→
ξ Direction of the straight streamline
−→
G Vector potential

−→n Normal direction to the boundaries

−→u Real part of the induced velocity in the exact solution formulation
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−→
V Induced velocity (m/s)

−→w Imaginary part of the induced velocity in the exact solution formulation

φ Velocity potential

Φm
n Potential function solution of the Laplace equation in ellipsoidal coordinates

Ψm
n Potential function describing the velocity

ρ Air density

σ Filter function

τ Non dimensional time. (tΩ, or t RV∞ )

τmn Coefficients describing the non dimensional pressure, also called pressure states

FN Filtered interpolation operator, up to order N

ξ Curvilinear coordinate of the streamline

amn Coefficients describing the non dimensional induced velocity, also called velocity
states

bβ Remapping function

CT Thrust coefficient

Dc Cylindrical domain

H Height of the cylindrical domain

Ln nth Legendre polynomial

Nθ Maximum order of the azimuthal approximation

Nr Number of coefficients for the radial approximation

Nz Number of coefficients for the axial approximation

P Pressure (Pa)

p Non dimensional pressure ( P
ρV 2
∞

or P
ρ(ΩR)2

)

p Order of a filter

PN Interpolation operator, up to order N

Pmn Associated Legendre function of the first kind

Q Number of blades of a rotor

qβ Inverse of the remapping function

QN Quadrature interpolation operator, up to order N

Qmn Associated Legendre function of the second kind

R Rotor radius
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Rc Radius of the cylindrical domain

t Time

V∞ Free stream velocity

VT =
√
µ2 + λ2

VMFP Mass flow parameter

w Weight function
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CHAPTER 1. INTRODUCTION

1
Introduction

Résumé en français: Introduction Une courte introduction sur les vitesses induites
et la mécanique du vol hélicoptère. Différentes méthodes de calcul des vitesses induites
sont présentées.

10



1.1. INDUCED VELOCITY

1.1 Induced Velocity

The induced velocities are the flow generated by the rotor due to its action on the air.
The need to model them emerges from their impact on the flight mechanics of rotary wing
aircraft. Indeed the induced velocities have a strong impact on the blades. They modify
the local angle of attack seen by the blades and are to be reckoned with in order to model
their behaviour. In most flight conditions, they tend to add a downward wind component,
which reduces the lift provided by the blades. They are therefore an essential part in
various models of helicopters: for the computation of the performance of an aircraft, to
the representation of its handling qualities.

Furthermore, they also have an impact on the other parts of the aircraft. An eye opening
example of this impact can be seen in the pitch up effect that a helicopter experience with
increasing forward velocity. This effect consists in an unintuitive behaviour of the helicopter
pitch angle when the wake of the main rotor hits the rear elements of the aircraft. The
wake implies a force on the horizontal tailplane which modifies the pitch of the aircraft.
Without a good model of the wake of the main rotor, this behaviour is hard to represent
physically.

A lot of other behaviours of rotary wing aircraft demand to represent the induced
velocity. For example, modelling the off axis response was only captured recently through
a better model of induced velocity in an offline simulation [5].

1.2 Various methods for modelling the induced velocites

Due to their importance, several models exist for the induced velocities generated by rotary
wings. They all have specificities and various degree of fidelity. The aim here is not to be
exhaustive but simply to give a better view of what exists.

The most precise models are surely obtained thanks to Computational Fluid Dynamics
(CFD). This method is one of the most advanced way of modelling fluid flows, and can be
applied to a a rotary wing. It can use methods such as finite element or finite volume, and
attain a level of detail in the representation of the flow without equal. This underlines the
fact that the space treated by the method has to be meshed, and that the performance of
the method will highly depend on the mesh. It is however a time consuming, computational
heavy method, which is used in specific applications that do not require any time efficiency.
Examples of this method applied to rotor wake can be found in [6].

Another family of models is represented by the prescribed wake model and the free
wake model. Both of those methods rely on the representation of fluid discontinuities with
singularities of various strengths. The induced velocity is then computed at any point in
space using the Biot-Savart induction law. The difference between prescribed and free wake
lies in the fact that the free wake is auto induced, meaning that the vortices in the wake
also influence each other, while the prescribed wake does not see the impact of the vortices
on its wake. This makes the free wake model a good method for representing the wake of a
rotary wing aircraft, while the prescribed wake model is much more efficient, but can lack
of precision on some details of the wake. Both methods can be quite computational heavy
since a lot of singularities are required to represent the complete wake of a helicopter. An
example of a free wake model applied to the wake of a helicopter is found in [7].

The last family of models presented here is the one of interest in this thesis. They are
based on a finite state formulation and answer the need for an efficient induced velocity
model. The finite state formulation means that the model relies on a basis of functions to
describe the flow rather than on a discretisation of space. A second peculiarity of those
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CHAPTER 1. INTRODUCTION

methods is their adaptability to the required fidelity of representation of the flow. Indeed,
the basis of representation can be expanded or restrained depending on the application,
and of its required fidelity. A great effort has been made during the years to improve the
domain of validity of those models to a better representation of all the flight conditions of
the helicopter. The main example of those methods is the He and Peters model, described
in [8].

There are of course other models that have not been presented in this introduction
(particle method, basic momentum theory,...) for the sake of brevity.
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2
Literature Review

Résumé en français: état de l’art Dans ce chapitre, un résumé de l’état de l’art en
matière de modèle de vitesses induites à nombre d’états finis est proposés. De plus, d’autres
domaines sont explorés, notamment les méthodes spectrales, qui sont les fondations des
méthodes à nombre d’états finis, ainsi que leurs applications aux équations hyperboliques.
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CHAPTER 2. LITERATURE REVIEW

2.1 Finite State Inflow model

Finite state inflow models have been around for quite a long time and are still actively
developed nowadays. They aim for a real time solution of the induced flow field by a rotor.
This need is due to the strong influence of the induced flow on the flight dynamics of
helicopters, and was noticed, for example, by Amer [9] in 1950. This thesis paper focuses
on the latest advance of the theory made by Huang, which is both the result of 50 years
of work on the subject by Professor D. Peters and of recent progress on the subject.

The work of Huang [2] can be decomposed through various main events during the
development of this theory.

One of the predecessor of the current model, and probably one of the most widely
used around the world, is the Pitt-Peters model [10], [11]. It is a linear, unsteady model
that link three inflow states (one collective and two cyclic) to the aerodynamic thrust, roll
moment and pitch moment. It is developed thanks to the actuator disc theory of Loewy
and Joglekar [12], and gives the following form of the perturbed inflow:

λ = λ0 + rλs sin(ψ) + rλc cos(ψ) (2.1.1)

Those states are linked through the following differential equation:

[M ]

˙


λ0

λs
λc


+ [L]−1




λ0

λs
λc


 =




CT
−CL
−CM


 (2.1.2)

where [M ] and [L] are:

[M ] =




128
75π 0 0
0 16

45π 0
0 0 16

45π


 (2.1.3)

[L] =
1

V




1
2 0 −15π

64

√
1−sin(α)
1+sin(α)

0 4
1+sin(α) 0

15π
64

√
1−sin(α)
1+sin(α) 0 4 sin(α)

1+sin(α)


 (2.1.4)

and where α is the incidence of the rotor at the disc and V is the mass flow param-
eter. V is defined as twice the mean axial induced velocity in hover and as µ = V∞

ΩR , the
advance ratio, in forward flight. The various elements of the matrices are obtained either
through derivation of the momentum or actuator disc theory, or thanks to experimental
comparisons.

Although it is useful and widely used, this model is limited to a crude description of the
induced flow because it only uses three states and because of its linear radial description.

In 1989, He and Peters [13], were able to include higher harmonics, and higher order
radial shape functions, giving a better description of the axial inflow velocity on the disc.
This model is known as the generalized dynamic wake model, or Peters-He model. The
form of the pressure distribution was taken as follow:

P =
∞∑

m=0

∞∑

n>m
n+m odd

Pmn (ν)Qmn (iη)(τm,cn cos(ψ) + τm,sn sin(ψ)) (2.1.5)
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2.1. FINITE STATE INFLOW MODEL

And the axial component of the inflow was rewritten as:

vz =

∞∑

m=0

∞∑

n>m
n+m odd

Pmn (ν)

ν
Qmn (iη)(am,cn cos(ψ) + am,sn sin(ψ)) (2.1.6)

where the Pmn and the Qmn are the associated Legendre polynomials respectively of first
and second kind, and ν, η and ψ are the ellipsoidal coordinates. In this coordinates system,
the associated Legendre polynomials can form general solutions to the Laplace equation.
The model can be put under a form similar to the Pitt-Peters model, that is to say as a
first order differential equation coming from the momentum equation:

[M ] ˙(am,cn ) + V [Lc]−1 (am,cn ) =
1

2
(τm,cn ) (2.1.7)

[M ] ˙(am,sn ) + V [Ls]−1 (am,sn ) =
1

2
(τm,sn ) (2.1.8)

Where the apparent mass matrix [M ] is known in closed form, and [Lc], [Ls] are the
influence coefficient matrices for the cosine or sine part, and only depends on the wake
skew parameter X = tan

(χ
2

)
, and χ = π

2 − α.
Their model was validated by various studies [14], [15], [16] and is now used in numer-

ous real-time simulation codes, such has FLIGHTLAB in the USA (Advanced Rotorcraft
Technology), COPTER (Bell Helicopter), RCAS (Us-Army) and in Europe where it has
been implemented by ONERA into the HOST code (Airbus Helicopters "Helicopter Overall
Simulation Tool") [17] [18].

This model has however a few drawbacks. It only considers odd terms of the Legendre
polynomials thus preventing the representation of the mass source terms (representatives
of blade tip-jet rotors). Furthermore it only gives the axial inflow velocity on the disc.

The following researches thus focused on the extension of the Peters-He model out of
the disc, and in 2001, Morillo [19], [20], developed a model based on a Galerkin approach
of the linearized Euler’s equations. He was able to derive rigorously an expression of the
three components of the velocity above the rotor disc by assuming a velocity potential. He
also included both odd and even terms in the representation of both the pressure and the
velocity:

P = −
∞∑

m=0

∞∑

n>m

Pmn (ν)Qmn (iη)(τm,cn cos(ψ) + τm,sn sin(ψ)) (2.1.9)

And the induced velocity was rewritten as:

−→v =
−−→
grad

( ∞∑

m=0

∞∑

n>m

am,cn Ψm,c
n + am,sn Ψm,s

n

)
(2.1.10)

where the Ψm
n are the velocity potentials.

Although giving good agreement with an integral exact solution, this model had slow
convergence and was not including the m = n terms that are significant for the mass
sources terms.

In 2006, Hsieh [21] was able to find an expression for the m = n terms, and even for
the m = n = 0 terms although it involves a singularity. This allowed Duffy and Peters [22]
to later update the dynamic inflow model and give it a better convergence.
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This lead to a model having good convergence for all three components of the velocity,
but only above the rotor disc, the model still having some convergence issues on the
disc. The induced flow below the disc is however of a crucial importance for numerous
phenomena in helicopter flight dynamics (interaction, ground effect, etc.) but also for
multi-rotor systems and wind turbines.

In 2012, Fei and Peters [23][24] managed to extend the model of Morillo, to compute the
velocities below the disc. This was accomplished thanks to the adjoint method and derived
from an integral form of the exact solution for the momentum conservation equation of the
linearized Euler’s equations. It mainly uses a number of spatial and temporal symmetries
in the assumed form of the pressure, and the adjoint equation, which is the momentum
conservation equation for which the time sign has been inverted. This method thus requires
to compute the adjoint states variables but gives the velocities below the disc.

Finally in 2015, Huang and Peters [2], [1], solved the remaining problems of the theory.
First the convergence on the disc was improved by using the odd terms used in the Peters-
He model coupled with the even terms used by Morillo’s model, giving the form of the
velocity on the disc as follow, for example for the axial component of the velocity:

vz =
∞∑

m=0

∞∑

n>m
n+m odd

Pmn (ν)

ν
Qmn (iη)

(
αm,cn,z cos(ψ) + αm,sn,z sin(ψ)

)

+
∂

∂z



∞∑

m=0

∞∑

n>m
n+m even

am,cn Ψm,c
n + am,sn Ψm,s

n




where the αmn,z are called the Huang-He variables, and can be obtained with a projection
of the basis of the amn . Furthermore, the formula is viable for the other components of the
velocity.

This velocity was then incorporated into Morillo’s model through the use of a blending
function to transition from the solution on the disc to the solution off the disc. Moreover,
a solution for perfectly edgewise flow (α = 0◦) was obtained through the use of the adjoint
method. This case corresponds to high speed flights for which the rotor wake spreads
downstream in or closed to the rotor disc plane. It was then incorporated to the general
solution with another blending function. The blending functions were obtained through
curve fitting. This model will later be referred to as the Huang and Peters model.

2.2 Nonlinear extensions

The finite state inflow models mentioned above, that have been developed throughout 40-
50 years, being by principles linear models, are not able to render some nonlinear effects.
Those various effects are however of a vital importance for time simulation of manoeuvring
flights. They have thus been adapted with various nonlinear extensions which will be
described hereafter.

In the Peters-Huang model, a number of non linear extensions are considered. The
most widely used extensions is probably the one accounting for mass flow nonlinearity,
which is lost when a linear version of the Euler’s equations are used. It was first developed
in 1953 when Carpenter and Fridovich [25] characterised the induced velocity with a simple
momentum theory. The Pitt-Peters model included a crude mass flow parameter having
only two discrete values depending on the flight conditions, that had been introduced by
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Ormiston and Peters in 1972 [26]. This was found to greatly improve the results of the
theory when compared to experimental data.

The mass flow parameter expression was later expanded in order to cover all the range
of flight conditions. It is usually incorporated to the model by multiplying the [L] matrix
by it. Peters summarized the attempts to find a general mass flow parameter, and retained
the most convincing in 1988 [27] which is:

V =
µ2 + λ(λ+ λm)√

µ2 + λ2
(2.2.1)

where µ is the advance ratio, λ is the total inflow velocity, and λm is the mean axial
induced velocity. All are nondimensionalized by the blade tip speed due to rotor rotation.

The Pitt-Peters model was then corrected in 1988 by Peters and HaQuang [28], by
replacing the mass flow parameter by a mass flow parameter matrix, having a different
value for the collective term:

[V ] =



VT 0 0
0 V 0
0 0 V


 (2.2.2)

where VT =
√
µ2 + λ2. It was also added to the model by multiplying it to the [L]

matrix.
A similar extension was then used for all the induced flow models mentioned above, by

expanding the mass flow parameter matrix’s dimension with V by the number of inflow
states and by multiplying it to the [L] matrix:

[V ] =




VT 0 0 . . .
0 V 0
0 0 V
...

. . .


 (2.2.3)

The definition of the mass flow parameter V has been refined, in 2000 to cover vortex
ring state [29], and in 2006 to cover windmill state [30].

In 2009, Murakami and Houston [31] proposed a change in the definition of some
parameters of the definition of the mass flow parameter in order to cover all cases in a
unified manner.

Another nonlinear extension concerns the wake curvature. The main concern of this
extension is to obtain an off axis response coherent with experimental data. In the 90s, the
off axis response obtained through simulations was of the opposite sign to the experimental
one. In 1995, Rosen and Isser [32] postulated that this was due to the wake curvature.
Indeed, during a pitch or roll maneuver, the blade tip vortices tend to accumulate under
one side of the rotor while being spread farther under the other side. This leads to a first
harmonic inflow gradient, and with the blade having a 90◦ phase lag at a once per rev
harmonic1, it implies an hub moment in an off axis manner, as explained in [33].

In 1996, Keller [34] introduced a single factor KR to render the effect of wake distortion
on the inflow gradient, that greatly improved the off axis response. The effect of KR were
given by:

λc
λ0

= KR
q

λ0

(2.2.4)

1This phase lag is not the same for all rotors, e.g., the R22 has a 72◦ phase lag.
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where q is the pitch rate and λ0 is the average uniform inflow.
In 1997, Barocela [35] took an other more consistent definition of the parameter repre-

senting the wake distortion:

λc
λ0

= κcKRe (2.2.5)

where κc is the curvature of the wake centerline.
In 1998 Basset and Tchen-Fo [36] used a multi-vortex-rings wake model to study and

simulate wake distorsions. From the simulations, they derived analytical expressions of the
distorsion factors by using neural network techniques.

In 2001, Krothapalli, Prasad and Peters [37] used a vortex tube model with a single
tube of given circulation to include the effect of wake curvature in the Peters-He model.
This augmentation required the modification of the L matrix to:

[LK ] =
[
[L̃] + [C]KRe

]
(2.2.6)

where [L̃] contains both the matrices [Lc] and [Ls], and where [C] is:

[C] =




[0] [Cpk]
T κc

2 [0] [Cpk]
T κc

2 . . .
[Cpk]κc [0] [0] [0]

[0] [0] [0] [0]
[Cpk]κc [0] [0] [0]

...
. . .




(2.2.7)

where the [Cpk] matrix is not known in closed form and links the inflow state variables
to the circulation of the vortex tube.

However this model assumed the wake to be instantaneously influenced by the heli-
copter pitch or roll movement. In 2004, Zhao, Prasad and Peters [38] took into account
time constants, determined with free wake results, in order to account for this effect, and
added a set of first order equations to the Pitt-Peters model:

[τD]

˙


X
S
κc
κs


+




X
S
κc
κs


 =




X
S
κc
κs



qs

(2.2.8)

where X, S, κc and κs are respectively the tangent of half the skew angle, the wake
spacing, the longitudinal and lateral wake curvatures, and qs denotes quasi-steady con-
ditions. [τD] is a diagonal matrix containing the time constants obtained through vortex
tube theory.

In 2016, Goulos [33], inspired by the work of Zhao [39], who used 5 vortex tubes
rather than only one, improved the approach by generalising the form of the distribution
of circulatory loading taken to an arbitrary number of terms, allowing a better radial
description.

Huang also takes into account the wake contraction thanks to non linear extension,
when the mass flow parameter is accounted for. To do so, he considers the continuity
equation to compute the equivalent radius the inflow tube should have, and then map
the space so that the inflow is expanded above the rotor disc and contracted below. The
contraction factor he derived is expressed as:
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K =

√
V∞ + ν0

V∞ + ν1
(2.2.9)

where V∞ is the axial free-stream velocity and ν0 and ν1 are the integral of the axial
velocity on a disc of radius 1 respectively at the rotor disc and at the wanted height (or
normal distance from the disc) of calculation.

Furthermore Huang includes the effect of a nonlinear skew angle, method that was
already advised by He in [29]. Indeed the skew angle used in the computation of the [L]
matrix as defined earlier does not take into account the induced flow. Huang therefore
corrects it in the following manner:

χeff = arctan
(µ
λ

)
(2.2.10)

where λ = λf + λm, with λf the free stream axial velocity and λm the mean axial
induced velocity. And thus:

Xeff = tan

(
µ

VT + λ

)
(2.2.11)

where χeff is the effective wake skew angle, and Xeff is the parameter to be used in
the [L] matrix.

The Huang and Peters model, [1, 2], considers all these nonlinear extensions, in order
to give a complete nonlinear inflow model for the three components of the induced velocity
by the rotor in the entire flow field.

2.3 Spectral Methods and hyperbolic equations

2.3.1 Spectral methods

Taking a step back on the previously mentioned method of resolution, one can see that it
is in fact part of what are known as spectral methods. The spectral methods encompass a
large variety of method that deal with partial differential equations in the spectral domain,
and are thus a way to discretise the equations. Among those methods are the Galerkin
method, the tau method and the collocation method. A thorough review of those methods
and their applications can be found in [40].

One of the main advantages of the spectral methods lies in the so-called spectral ac-
curacy, which translates the fact that the interpolation operator of a spectral method
converges faster than any power of the number of element chosen in the interpolation.
This means that only a few elements in the approximation are enough to have a good de-
scription of the approximated function. This spectral accuracy is however closely linked to
the regularity of the function being approximated, as was shown in [41], which is concerned
with Fourier transform and Legendre and Chebyshev polynomial approximations.

In our case the method of interest is the Galerkin method, which is in fact a method
that has been disregarded for a long time, but now raises interest because of its efficiency.
A series of paper by Shen in 1994 and 1997, offers a great framework to treat partial
differential equations in different coordinate systems [42, 43]. The main idea behind Shen’s
application of the Galerkin method is to choose an appropriate basis of trial function, fitted
both to the equations and to the boundary conditions.

The applications of this method are numerous, but a particular case caught our at-
tention, since it applied a Galerkin method to the incompressible Navier-Stokes equations
for a confined fluid, treating both the axisymmetric [3] and non-axisymmetric cases [4],
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respectively in 1998 and 2002. In those papers, Lopez, Marques and Shen successfully
model the behaviour of a viscous fluid confined in a cylinder with a moving wall.

2.3.2 Hyperbolic Equations

In our case, the equations with which we are concerned, once the fluid is considered non
viscous and incompressible, are the incompressible Euler equations. They are non linear
hyperbolic equations, for which numerous problems might hinder the use of spectral meth-
ods. In 2001, a review of the state of the art in those domains has been made in [44],
where most problems encountered are addressed. Two main problems are of interest in our
case. First the stability of hyperbolic equations treated by spectral methods is not guar-
anteed.This is sometimes called the blow-up problem of the Euler equations, and is still an
active field of research ( see [45, 46] in 1994 and 2019). This hints that accounting for the
viscosity, as low as it is for our application might help the convergence of the equations.
Another problem arises when the inputs of the algorithm are discontinuous, or when the
solution of the hyperbolic equation is itself discontinuous. In this case, the problem comes
from the difficulty for spectral methods to represent discontinuous or irregular functions,
and is most visible with the "infamous" Gibbs phenomenon. This phenomenon has been
studied extensively in the past and the mitigation of its effects is still a current field of re-
search [47, 48, 49, 50]. There are a number of different methods that have been developed,
but one of the most interesting for our application are filters.

Among the other methods for treating the Gibbs phenomenon are the mollifiers. The
mollifiers are similar to the filters in their effects, but the way they are applied is quite
different (see [51, 50]). Other post treatment methods exist, using Gegenbauer polynomials
[47]. Close to the idea of the mollifiers, is the idea of pseudo spectral viscosity developed
in [49].

2.3.2.1 Filtering

Filters have the huge advantage to be simple, and thus efficient to apply, and to mitigate
the two unwanted effects of the hyperbolic equation treatment by spectral methods. In
1991, Vandeven defines a filter in [52] by the following properties:





σ(0) = 1

∀l, 1 ≤ l ≤ p− 1, σ(l)(0) = 0

∀l, 1 ≤ l ≤ p− 1, σ(l)(1) = 0

(2.3.1)

A filter can be applied to a spectral approximation as follows:

FN (u)(x) =

N∑

n=0

σ
( n
N

)
ûnφn(x) (2.3.2)

Vandeven, in [52], also presents a number of different filters with various properties.
The aim of the filter is mainly to attenuate the high orders of a spectral approximation in
order to recover a faster convergence.

In 2008, Hesthaven and Kirby apply the filters specifically to Legendre polynomials
in [53]. They show, both experimentally and theoretically, the improvements that can
provide a filter, and its ability to recover a fast convergence. The behaviour of filter varies
however when applied after each time-step, when trying to maintain the stability of a
scheme. Kanevsky, in [54], comments on the fact that it tends to apply stronger filter than
expected, because of the cumulative effect of the filter.
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2.3.3 Boundary conditions

As with any set of differential equations, boundary conditions are required to guarantee
the unicity of the solution.

In our case most of the boundary conditions are set by the fact that we use an open
domain. A simple way to deal with this boundary is to have a size of the domain sufficiently
large to assume that the effects that one wants to model are not disturbing the boundaries.
This is mainly to counter the fact that vortices leaving the domain may generate back flow
into the computational domain, which might make the algorithm diverge with the wrong
boundary condition.

However this requires very large domain which may hinder the resolution of the spectral
method used. Better alternatives are in fact still an active field of research, see [55, 56], as
well as simply determining what boundary conditions to choose for incompressible Navier-
Stokes equations [57, 58, 59].

However, in 2014, an interesting solution to the problem as been proposed by Dong in
[60], and generalised in [61], which allows to reduce the size of the domain, by checking
the value of the velocity at the open boundary condition, in order to balance the energy
equation thanks to an added pressure term.
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3
Huang and Peters’ Model

Résumé en français: Modèle de Peters et Huang Dans ce chapitre, le modèle de
Peters et Huang est décortiqué pour en fournir une analyse approfondie. L’étude porte non
seulement sur la manière dont le modèle résout les équations, mais aussi sur les extensions
qui lui sont apportées pour compenser certains de ces défauts.

La résolution des équations passe par une méthode spectrale, dite de Galerkin. Cette
dernière fournit une approximation de la solution des équations, qui est une projection
sur un sous espace fonctionnel. Le choix de la taille de ce sous espace permet de varier la
précision et la performance de l’algorithme de résolution. L’application de cette méthode
fournit donc un cadre idéal pour l’application à la dynamique du vol, où la performance
est primordiale. La suite de ce chapitre se concentre sur les extensions non linéaires du
modèle qui cherchent à compenser certains défauts ou conséquences des hypothèses prisent
pour simplifier le traitement des équations d’Euler en incompressible.

La conclusion de cette étude approfondie est un certain manque de définition du do-
maine de validité du modèle finale. En effet, certaines hypothèses limitent le domaine de
validité du modèle, et les solutions apportées pour dépasser ces limites ne sont pas toujours
justifiées, ou clairement définies.
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In this chapter the model developed by Huang and Peters [1] will be presented. This
model inherited from a long line of various induced velocity models, all involving Peters
et al. First, the various hypothesis taken by this model will be presented and commented,
then its mathematical derivation. This will allow to underline in a final section the various
drawbacks and advantages of this method, and it will show the way for further improve-
ments.

3.1 Euler’s equations and development

3.1.1 Assumptions for Euler’s equations

One can derive the incompressible Euler equations from the Navier-Stokes equation by
making the inviscid assumptions:

• Incompressibility: this hypothesis allows to decouple the system and to reduce it to
2 equations: the continuity equation and the momentum conservation equation. It is
justified by the low values of the induced velocity, allowing to neglect the compressible
effects.

• Inviscid fluid: this hypothesis removes the viscous terms of the equations, and is
justified by the high Reynolds number of our application, mainly due to the low
kinematic viscosity of air.

Those assumptions are justified in most flight conditions, but will be problematic in
extreme scenarios, which are therefore excluded of this theory. This leads to the following
equations between the velocity

−→
V and the pressure P :

ρ
∂
−→
V

∂t
+ ρ
−−→−−→
grad

(−→
V
)
.
−→
V = −−→∇P

div
(−→
V
)

= 0

3.1.2 Further assumptions

On top of this, a few other assumptions are taken in order to simplify the Euler’s equations:

• Neglecting external forces: which is justified by the low influence of the gravity on
our application.

• Velocity potential: allowing to say ∃Φ,−→V =
−−→
gradΦ. This assumption is justified for

non rotational flows, which might be true above the rotor, but can not be justified
below it.

• Linearisation: The non-linear terms of the Euler equations are linearised by assuming
a variation of the velocity around the free stream velocity V∞, such that

−→
V = V∞

−→
ξ +−→

δν,
−→
ξ being the direction of the streamline.

Those two last assumptions are much harder to justify in our case. The flow we are
interested in has no reason to be non rotational below the rotor, and the impact of the
linearisation will be problematic for the hover case, where V∞ is null, and all the cases of
low velocities. Nonetheless, this leads to the following form of the equations:
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ρ
∂
−→
δν

∂t
+ ρ
−−→−−→
grad

(−→
δν
)
.V∞
−→
ξ = −−→∇P

div
(−→
δν
)

= 0

Those equations are however easier to treat, since they are now linear, and will show
good properties with the potential assumption.

3.1.2.1 Note on the non dimensional equations

There are two ways found in the literature to nondimensionalize the above equations.
The first one, used by Peters and his students, consists in nondimensionalizing the
time by V∞

R , τ = tV∞R , velocities by V∞, −→ν =
−→
V
V∞

, pressure by ρV 2
∞, P = p

ρV 2
∞
and

finally the distances by R.
The second way to do simply replaces the free stream speed V∞ by the tip blade
speed ΩR in all the cases mentioned above.
The first method gives the following form of the conservation of momentum equation:

∂−→ν
∂τ
− ∂−→ν

∂ξ
=
−−→
gradp (3.1.1)

while the second gives the following:

∂−→ν
∂τ
− ν∞

∂−→ν
∂ξ

=
−−→
gradp (3.1.2)

The main advantages of the first method is that it gives an equation with no other
parameters than the velocity and pressure, while the second method introduces a
remaining parameter, ν∞ = V∞

ΩR . However it avoids the issue of dividing by V∞,
which might be a problem in hover cases, while the rotor will always be considered
to rotate or to have certain radius.
We will however follow the Peters nondimensionalising convention for the remainder
of this chapter which presents the Huang and Peters model as it is.
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3.1.2.2 Note on the link between acceleration potential and veloc-
ity potential

Following results of [62], we develop the following line of reasoning. One can compute
the rotational of the acceleration as follows, by applying the rotational operator to
the momentum conservation equation:

−→rot
(
d
−→
V

dt

)
= ρ

[
d

dt

(−→rot−→V
ρ

)
−
−−→−−→
grad
−→
V .

−→rot−→V
ρ

]
(3.1.3)

=

−−→
gradρ ∧ −−→gradp

ρ2
+
−→rot−→F (3.1.4)

This shows that, for the rotational of the acceleration to be null, two conditions
should be met:

• The forces applied to the system should derive from a potential (which is the
case of the gravitational force)

• The fluid should be incompressible (
−−→
gradρ = 0) or at least barotropic (which

implies
−−→
gradρ ∧ −−→gradp = 0)

If both conditions are met, then −→rot
(
d
−→
V
dt

)
= 0. This means that one can assume an

acceleration potential in the domain. In turn one can find that:

d

dt

(−→rot−→V
ρ

)
=
−−→−−→
grad
−→
V .

−→rot−→V
ρ

(3.1.5)

And therefore:
dn+1

dtn+

(−→rot−→V
ρ

)
=
−−→−−→
grad

dn
−→
V

dtn
.

−→rot−→V
ρ

(3.1.6)

Under those conditions, if the rotational of the velocity is null at a given time, then
the flow is non rotational in a continuous domain.
This gives in turn that the rotational of the velocity is always null only by assuming
that an instant t exists where the rotational is null, on top of the two previous
assumptions.
In this case, the acceleration potential assumption implies an irrotational flow which
therefore implies the existence of a velocity potential for a simply connected domaina.
This shows that the only assumptions required for a velocity potential in a continu-
ous domain, are an acceleration potential and an instant t with no rotational. This
can in turn be translated by:
In a continuous domain,





The fluid is barotropic
The forces derive from a potential

∃t,
(−→rot−→V

)
t

=
−→
0

=⇒ ∃φ,−→V =
−−→
gradφ (3.1.7)

Therefore, in the case of a simply connected domain, there is little advantage to
assume an acceleration potential rather than a velocity potential.

aTo be simlpy connected is a property of a topological space. A topological space is simply
connected if it is path-connected and if any loop can be continuously contracted to a point [63].25
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3.1.3 Link to the Laplace equation

Computing the divergence of the momentum equation, and accounting for the velocity
potential, one obtains, above the rotor:

∆p = 0 (3.1.8)

Indeed, the first term of acceleration can be expressed as follow:

div

(
∂
−→
V

∂t

)
=

∂

∂t
div
(−→
V
)

= 0 (3.1.9)

And the second term can be simplified by using the continuity equation:

div
(−−→−−→
grad

(−→
δν
)
.
−→
ξ

)
= sin(χ)

∂

∂x
[div (δν)]− cos(χ)

∂

∂z
[div (δν)] = 0 (3.1.10)

This gives that the pressure is a potential function1, since it satisfies the Laplace equa-
tion. Furthermore the continuity equation, combined with the potential velocity assump-
tion, implies that:

∆φ = 0 (3.1.11)

Meaning that the velocity potential is also a potential function. We thus need to find
an adequate method to solve the Laplace equation, under the influence of an actuator disc.

3.2 Developing a Galerkin method for the model

This section will present how the Euler equations are solved. First we present the phi-
losophy behind the treatment of equations by the Galerkin method, then we present the
ellipsoidal coordinates system, and finally how Peters et al. apply the Galerkin method to
this case.

3.2.1 Galerkin’s method

The Galerkin’s method is a way to discretise a set of partial differential equations. For this
it uses a set of functions (λi)i∈N, preferably orthogonal to each other for a function scalar
product, i.e.
∀i, j ∈ N:

〈λi, λj〉 =

Xb∫

Xa

λi(X)λj(X)w(X)dX = δi,j (3.2.1)

where δi,j is the Kronecker notation and w the weight function associated to the (λi)i∈N.
This set will be called the trial or test functions. The normalised Legendre polynomials
and the normalised Chebyshev polynomials form examples of such orthogonal families with
w = 1 and w = (1− x2)−

1
2 respectively.

Thus, the solution u of a partial differential equation, such that: L(u) = f , can be
approximated on the sub vector space defined by the (λi)i∈N so that:

1A potential function is by definition a function respecting the Laplace equation, while the potential
assumption means that a vector derive from a potential, i.e.

−→
f =

−−→
grad(φ)
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u = uapp +R (3.2.2)

where:

uapp =

∞∑

i=0

ai(t)λi(x) (3.2.3)

The approximation of the solution is thus made, short a residual R, that is by definition
orthogonal to the vector space defined by the (λi)i∈N.

Injecting the approximation of u in its partial differential equation, it remains to express
the scalar product 〈λj , L(uapp) − f〉 = 0 function of the ai(t) in order to discretise the
system, and finally inverse it to find the values of the ai(t).

By truncating the basis of the (λi)i∈N to a finite set of N functions, one can obtain a
N ∗N system and find the coefficients of the approximate uapp. With a regular enough u
and well chosen trial functions this will give a good approximation of u.

The main challenge of this method thus resides in the expression of 〈λj , L(uapp) − f〉
for all the λj in the truncated basis. In the case of a linear operator, the task can be done,
but even such linear operation as derivation will imply a loss of accuracy, depending on
the trial functions used, and non linear operator tend to introduce numerous terms out of
the truncated basis selected. A study of the loss of accuracy due to the various operations
is done in section 5.5.1.

More generally, the Galerkin method is in fact part of a larger category of method called
spectral methods. Those methods rely on the discretization of functions through the use
of well chosen function basis. The Galerkin is the special case where the projection and
the approximation spaces are the same, i.e. the velocity is approximated on the same basis
it is projected on. Furthermore, other spectral methods rely on quadrature to evaluate
the scalar products they encounters, while the Galerkin method turns to a more efficient
method by relying on analytically evaluating those same scalar product.

3.2.1.1 Note on the accuracy of the Galerkin’s method

The main advantages of the Galerkin method lies in its accuracy. If we consider the
functional space L2(I) (see definition in appendix C), the Legendre and Chebyshev
set (and in fact any orthonormal polynomial set with increasing degree) are complete
in L2(I) [41].
This means that if one considers such a set to approximate u, where u ∈ L2(I),
then R is null. Furthermore, if one considers the Sobolev spaces of Hilbert type
(see appendix C again), one can show the spectral accuracy of the Legendre and
Chebyshev Galerkin methods [41]. The spectral accuracy underlines the fact that
the truncated series for the approximation of u converge extremely fast (faster than
any polynomial power), as long as u is regular enough.

Figures 3.2.1 and 3.2.2 presents respectively Galerkin approximations of a continuous
and of a discontinuous function, with 10, 20 and 30 terms. This allows to see the depen-
dency of the accuracy of the approximation to the regularity of the approximated function.
Indeed the smooth function is satisfyingly represented with 10 terms, while the discontin-
uous function is not even close to the step function with 30 terms. One can also observe
the apparition of spurious oscillations, called the Gibbs phenomenon.
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Figure 3.2.1: Approximation of a Gaussian function with 10, 20 and 30 terms

Figure 3.2.2: Approximation of a step function with 10, 20 and 30 terms

3.2.2 The ellipsoidal coordinates system

The choice of this coordinate system to treat the equations is due to several factors. Firstly,
it is highly linked to the vision of the rotor taken. In the case of Huang and Peters’s model,
the rotor is seen as an actuator disc, i.e. an infinitely thin disc immersed in the domain,
acting on the fluid by creating a pressure discontinuity across its two sides. Representing
this discontinuity might be difficult, and other implementations of an actuator disc exist
and will be commented in section 5.4. It so happens that the ellipsoidal coordinates are
discontinuous on a disc at the centre of the domain which fits our need nicely. It is indeed
possible, thanks to the coordinate discontinuity, to impose a jump in pressure across the
disc.

The transform from the cartesian coordinates to the ellipsoidal coordinates is made
through the following relationships:





x = −
√

1− ν2
√

1 + η2 cos(ψ)

y =
√

1− ν2
√

1 + η2 sin(ψ)
z = −ην

(3.2.4)

Fig. 3.2.3 gives a representation of the ellipsoidal coordinates. The red lines represent
variations of ν (which forms ellipses), the green lines the variations of ψ and the blue lines
the variations of η (which forms hyperbolas).
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x y

z

Figure 3.2.3: Representation of the ellipsoidal coordinates

Furthermore the solution of the Laplace equation can be nicely expressed using associ-
ated Legendre functions and trigonometric polynomials in ellipsoidal coordinates, that we
will now present.

3.2.3 The Laplace equation in ellipsoidal coordinates

In the ellipsoidal coordinates system, the Laplace equation can be put under the following
form:

∂

∂ν

[
(1− ν2)

∂Φ

∂ν

]
+

∂

∂η

[
(1 + η2)

∂Φ

∂η

]
+

∂

∂ψ

[
ν2 + η2

(1 + η2)(1− ν2)

∂Φ

∂ψ

]
= 0 (3.2.5)

If we suppose that the space variables can be separated in the pressure potential func-
tion Φ as follows:

Φ(ν, η, ψ) = Φ1(ν)Φ2(η)Φ3(ψ) (3.2.6)

It gives:

(
1

Φ1

∂

∂ν

[
(1− ν2)

∂Φ1

∂ν

]
+

1

Φ2

∂

∂η

[
(1 + η2)

∂Φ2

∂η

])
(1 + η2)(1− ν2)

ν2 + η2
= − 1

Φ3

∂2Φ3

∂ψ2
(3.2.7)

Which gives the following system, with M a separation constant:

1

Φ1

∂

∂ν

[
(1− ν2)

∂Φ1

∂ν

]
+

1

Φ2

∂

∂η

[
(1 + η2)

∂Φ2

∂η

]
= M

ν2 + η2

(1 + η2)(1− ν2)
(3.2.8)

∂2Φ3

∂ψ2
+MΦ3 = 0 (3.2.9)
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By noting that (1+η2)(1−ν2)
ν2+η2

= 1
1−ν2 − 1

1−η2 , one can once again separate the equation,
to obtain:

∂

∂ν

[
(1− ν2)

∂Φ1

∂ν

]
+

( −M
1− ν2

+N

)
Φ1 = 0 (3.2.10)

∂

∂η

[
(1 + η2)

∂Φ2

∂η

]
+

(
M

1 + η2
−N

)
Φ2 = 0 (3.2.11)

∂2Φ3

∂ψ2
+MΦ3 = 0 (3.2.12)

If one takes M = m2 and N = n(n+ 1), it follows that:

∂

∂ν

[
(1− ν2)

∂Φ1

∂ν

]
+

( −m2

1− ν2
+ n(n+ 1)

)
Φ1 = 0 (3.2.13)

∂

∂η

[
(1 + η2)

∂Φ2

∂η

]
+

(
m2

1 + η2
− n(n+ 1)

)
Φ2 = 0 (3.2.14)

∂2Φ3

∂ψ2
+m2Φ3 = 0 (3.2.15)

The solution to the above equations in Φ1 and Φ2 are the associated Legendre function
of first and second kind respectively, Pmn and Qmn , that are defined in appendix A.1. The
solution of the last equation are the trigonometric functions cos(mψ) and sin(mψ).

This gives that a potential function can be written as a sum of the following terms:

Φm
n (ν, η, ψ) = Pmn (ν)Qmn (iη) cos(mψ) + Pmn (ν)Qmn (iη) sin(mψ) (3.2.16)

However, the boundary conditions give some restrictions on the possible values for m
and n, since the pressure potential can not have infinite values. This implies m,n ∈ N
and n ≥ m, which are the only values for which the associated Legendre functions do not
diverge.

3.2.4 Application of the method

We now have a form of our velocity and pressure potential in a coordinate system allowing
us to implement easily the presence of a rotor. In the present case, the Galerkin method
seems particularly adapted. The functions to be described are regular, the pressure discon-
tinuity being included in the coordinates, and the Φm

n , solutions of the Laplace’s equation
in ellipsoidal coordinates, make good candidates as trial functions. They are not however
an orthogonal basis of L2(D) (see appendix C) in ellipsoidal coordinates, and the author
could not find any research on their completeness in L2(D). However, the fact they do
have some orthogonality properties, see [19], and that they are solution to the Laplace
equation justify their use2.

For the sake of conciseness the following symbol is introduced to designate the double
sum:

M,N

+
m,n

=
M∑

m=0

N∑

n=m

(3.2.17)

2The basis could be orthonormalised, using a Gram-Schmidt process to truly apply a Galerkin method.
However, since a simple change of basis allows to pass from one form to the other, the principles of the
method remain the same.
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Using the potential assumption, one can express the velocity as follows:

−→ν =

∞,∞

+
m,n

am,cn (t)
−−→
gradΨm,c

n + am,sn (t)
−−→
gradΨm,s

n (3.2.18)

While the pressure is expressed as follows:

p =

∞,∞

+
m,n

τm,cn (t)Φm,c
n + τm,sn (t)Φm,s

n (3.2.19)

The Φm
n are the solutions of the Laplace equation in ellipsoidal coordinates. The Ψm

n

can be chosen differently in a first time, for they need to satisfy the velocity boundary con-
ditions, and might differ from the pressure form. The time dependency of the coefficients
is dealt with through the use of the frequency domain. We will assume that it depends on
a single frequency ω in the remainder of the chapter, i.e. amn (t) = amn e

iωt. We also drop
the dependency with time in the notations for conciseness.

Injecting the expression of the velocity and of the pressure in the momentum conserva-
tion equation, one only needs to choose a basis for the projection space. Using a Galerkin
method should imply the choice of projection basis, being here the Φm

n , but nothing would
prevent the use of some other trial functions.

We thus multiply the equations by the gradient of the trial functions and integrate over
the domain D. D is here the domain of validity of the velocity potential assumption, and
consists of the space situated above the disc, but represented through ellipsoidal coordinate.
It is presented on Fig.3.2.4.

x y

z

Figure 3.2.4: Representation of the integration domain, with a hashed rotor disc

The momentum equation thus become, ∀r, j ∈ N, r > j:

∞,∞

+
m,n

∫∫∫

D

∂amn
∂t

−−→
gradΨm

n

−−→
gradΦj

r + amn
−−→
grad(

−−→
gradΨm

n .
−→
ξ )
−−→
gradΦj

rdD

=

∞,∞

+
m,n

∫∫∫

D

τmn
−−→
gradΦm

n

−−→
gradΦj

rdD

One can then apply a particular form of the divergence theorem reminded here:
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∫∫∫

D

−−→
grad(f).

−−→
grad(g)dD =

∫∫

S

g
−−→
grad(f).−→n dS −

∫∫∫

D

g∆(f)dD (3.2.20)

=

∫∫

S

f
−−→
grad(g).−→n dS −

∫∫∫

D

f∆(g)dD (3.2.21)

where −→n is the normal to the surface of integration S, which is the boundary of the
domain D.

In the present case the functions f and g are the Φm
n and the Ψm

n . Remembering that
the velocity potential also respects the Laplace equation, the second term of the two right
hand side equations are null. It follows that the momentum equation can be put under
both of the following forms:

∞,∞

+
m,n

∂amn
∂t

∫∫

S

Ψm
n

−−→
gradΦj

r.
−→n dS + amn

∫∫

S

−−→
gradΨm

n .
−→
ξ
−−→
gradΦj

r.
−→n dS

=

∞,∞

+
m,n

τmn

∫∫

S

Φm
n

−−→
gradΦj

r.
−→n dS

or:

∞,∞

+
m,n

∂amn
∂t

∫∫

S

−−→
grad(Ψm

n ).−→nΦj
rdS + amn

∫∫

S

−−→
grad(

−−→
gradΨm

n .
−→
ξ ).−→nΦj

rdS

=

∞,∞

+
m,n

τmn

∫∫

S

−−→
gradΦm

n .
−→nΦj

rdS

One can show that the previous integrals can be reduced to integrals over the rotor
disc plane only, see [19]. Furthermore one can notice that, on the rotor disc plane, noted
SD:

−−→
grad(Φm

n ).−→n =
∂Φm

n

∂z
(3.2.22)

And, one can furthermore take the notation:

−−→
grad(Φm

n ).
−→
ξ =

∂Φm
n

∂ξ
(3.2.23)

Which gives the following forms of the momentum equation:

∞,∞

+
m,n

∂amn
∂t

∫∫

SD

Ψm
n

∂Φj
r

∂z
dS + amn

∫∫

SD

∂Ψm
n

∂ξ

∂Φj
r

∂z
dS =

∞,∞

+
m,n

τmn

∫∫

SD

Φm
n

∂Φj
r

∂z
dS (3.2.24)

or:

∞,∞

+
m,n

∂amn
∂t

∫∫

SD

∂Ψm
n

∂z
Φj
rdS + amn

∫∫

SD

∂2Ψm
n

∂z∂ξ
Φj
rdS =

∞,∞

+
m,n

τmn

∫∫

SD

∂Φm
n

∂z
Φj
rdS (3.2.25)
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The integrals over the rotor disc can also be seen as a scalar product, which gives if we
set:

〈f, g〉 =

∫∫

SD

fgdS (3.2.26)

∞,∞

+
m,n

∂amn
∂t
〈Ψm

n ,
∂Φj

r

∂z
〉+ amn 〈

∂Ψm
n

∂ξ
,
∂Φj

r

∂z
〉 =

∞,∞

+
m,n

τmn 〈Φm
n ,
∂Φj

r

∂z
〉 (3.2.27)

or:

∞,∞

+
m,n

∂amn
∂t
〈∂Ψm

n

∂z
,Φj

r〉+ amn 〈
∂2Ψm

n

∂ξ∂z
,Φj

r〉 =

∞,∞

+
m,n

τmn 〈
∂Φm

n

∂z
,Φj

r〉 (3.2.28)

Limiting the size of the approximation to a given number of terms, we obtain a discre-
tised problem, that can be put under the following matrix form:

[M ]

{
∂amn
∂t

}
+ [C] {amn } = [D] {τmn } (3.2.29)

The terms of the matrices are therefore the scalar products of the various terms of the
equations. The way the approximation is truncated is done following the table method
that is explained in [29, 19]. It requires two values: modd which defines the number of odd
terms and meven for the even terms. The author could not find any justification for this
method of truncation in the literature, but the way it is made resembles a rough filtering
of the higher order terms in order to maintain the stability of the algorithm.

3.2.5 Expression of the velocity potential

In order to solve the previous matrix equation it remains to express the velocity potential
in a suitable form.

3.2.5.1 Choice of the form of potential

In the method presented above, the matrices depend on the form chosen for the velocity
potential decomposition i.e. on the Ψm

n . The choice of this potential is motivated by the
fact that it is adapted to the problem at hands. We here describe the reasoning for its
choice.

In the literature [19, 13], a common form of the velocity potential is taken as:

Ψm
n =

ξ0∫

−∞

Φm
n dξ (3.2.30)

where the integral follows a straight rectilinear streamline, skewed by the wake skew
angle χ, described as follows:





x = x0 + ξ sin(χ)

y = y0

z = −ξ cos(χ)

(3.2.31)

This form can be justified by a series of reasons:
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• It satisfies the condition that the potential is 0 far upstream

• It has integrable derivatives, which allows to express the velocity nicely

• It seems a suitable candidate if we consider the form given to the pressure

It does however have a few drawbacks:

• It does not have a closed form expression

• It therefore requires a change of variable

The application of the Galerkin method would require the velocity to be expressed
with the test functions Φm

n . Indeed, this ensures a good conditioning of the matrices, since
the Φm

n have good orthogonality properties. This would remove a part of the problem
due to the previous form but it renders all the integrals containing even terms in (n+m)
divergent.

This form however has its own advantages:

• Satisfy the 0 condition far upstream

• Closed form expression of all components with (n+m) odd

• No change of variable required

A perfect solution for the expression of the velocity would ideally meet the following
criteria:

• Satisfy the 0 condition far upstream

• Closed form expression of all components (integrable derivatives)

• No change of variable required (thus no matrix inversion)

• Have a gradient that is not singular (to express the velocity easily)

• Give matrices that are well-conditioned (or at least with a slow evolution of the
condition number with higher orders)

It was however hard to find any form meeting all the requirement cited. Therefore,
this seems to justify the form proposed in the Morillo and Duffy model [19, 13]. However
one of the ideas behind the Huang and Peters model [1] is precisely to change the form
of the velocity potential depending on where their strengths and weaknesses are. This
underlines the versatility of the spectral method, which allows to choose many forms of
the approximation space, but also allows to choose the test functions.

Having chosen a velocity potential, one only needs to compute the matrices and solve
for the states in order to obtain the induced velocities above the rotor.

3.2.5.2 Link between the various forms of potential

The chosen form of the velocity potential allows to express the required scalar products
easily but is a hindrance when one tries to compute the values of the velocity, for it requires
to perform an integral. It will therefore be replaced by another form of the potential, that
allows to compute more easily the velocity values. A link can be found between any two
kinds of expression of the potential, since they both describe the same velocity:

−→ν =

∞,∞

+
m,n

amn
−−→
gradΨm

a,n =

∞,∞

+
m,n

bmn
−−→
gradΨm

b,n (3.2.32)
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Thus by applying the Galerkin method to the previous equation, one can obtain the
following expression linking the (amn ) and the (bmn ):

[A] {amn } = [B] {bmn } (3.2.33)

where:

[A] =



∫∫

S

Ψm
a,nΦj

rdS


 (3.2.34)

and

[B] =



∫∫

S

Ψm
b,nΦj

rdS


 (3.2.35)

This relation allows to pass from one description of the velocity to another simply by
inverting a matrix, as long as the components of the matrix can be expressed. One can
therefore use a more suitable expression of the velocity potential for expressing the velocity,
while computing the matrices with another one. One can refer to [19] for the choices made
in the literature for this change of variables. In fact, the functional space described by the
approximation space is the same, but the basis describing this space differ.

However this method is, theoretically, only viable if all the terms up to infinity are
considered, which is of course never the case. This means that the truncation chosen with
one type of potential may not be represented exactly by an other choice of potential with
the same number of terms. The error added to the approximation of the velocity potential
by this process could be measured by the distance between the two approximation spaces.
However, the effect of the truncation should be mitigated by definition through the use of
a spectral method and retain the spectral accuracy.

In the case of the Morillo and Duffy model, the matrices are computed with the following
form of the velocity potential:

Ψm
n =

ξ0∫

−∞

Φm
n dξ (3.2.36)

While the value of the velocity uses this form for the

Ψm
n = σmn Φm

n+1 + ςmn Φm
n−1 (3.2.37)

where σmn and ςmn are functions defined in [19]. This allows to solve the momentum
conservation equation with a form of the potential which is simple, and then to express
the value of the velocities with another form of the potential, more suited to this use.

It gives the following form of the equation:

iω[M c] {am,cn }+ [Dc][Lc]−1[M c] {am,cn } = [Dc] {τm,cn } (3.2.38)

Here, only the cosine part is considered, and the frequency formulation is assumed for
the velocity with a frequency ω.
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3.3 One model to rule them all

The Huang and Peters model is in fact constituted of an agglomeration of different models
each having different strengths and weaknesses, but all treating the same equations in
almost the same manner. It solves however a single equation and uses the method presented
above to pass from one model to another. Those models are presented in table 3.3.1.

Model Validity Domain Weaknesses

Morillo-Duffy [19] Above and on the rotor Struggle on the rotor
Nowak-He [29] On the rotor Struggle out of the disc

Adjoint method [24] Extend velocities below
the rotor

Limited to frequency
domain...

Downstream Velocity [1] High advance ratio, in the
wake

Limited to its validity
domain, Uses adjoint

method

Table 3.3.1: The different models in use in the Huang and Peters model.

The main difference between the models is that each one expresses the velocity potential
Ψm
n on a different basis, giving them different properties. For example, the Nowak-He model

is practical to express the velocity on the disc, while the Morillo-Duffy model performs
better above and out of the disc. Since all the models only differ in the basis they consider,
one only needs to compute one solution (the momentum equation is solved only once),
and then apply a change of basis to obtain the other solutions, for the cost of a matrix
multiplication.

The Morillo-Duffy and Nowak-He models can be used in combination to describe the
flow above and on the rotor, see Fig. 3.3.1 and 3.3.2. But they struggle to represent
accurately the high wake angle cases. Therefore, Huang and Peters in [2] added a third
model, the downstream velocity model, specifically suited to represent the high wake angle
case. They then perform a blending between those three velocities, depending on the point
of space considered (the closer to the disc, the more the Nowak-He model is predominent)
and of the wake angle (the higher the wake angle, the higher the part of the downstream
velocity), see Fig. 3.3.3.

x y

z

Figure 3.3.1: Schematic representation of the capabilities of the Nowak-He model

Once the velocities on and above the rotor are fully determined, one can apply the
adjoint method in order to obtain the value of the velocity below the rotor, as presented
on Fig3.3.4.

In the following sections, the way the velocities below the disc are computed will be
quickly presented, as well as the way one computes the downstream velocities. And this
will lead us to the expression of the final velocity, which blends all the models into one
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x y

z

Figure 3.3.2: Schematic representation of the capabilities of the Morillo-Duffy model

x y

z

Figure 3.3.3: Schematic representation of the capabilities of the blended model above the
rotor. It combines the advantages of Morillo-Duffy above the rotor, and of Nowak-He on
the rotor.

x y

z

Figure 3.3.4: Schematic representation of the capabilities of the Huang and Peters model

expression, as mentioned above.

3.3.1 Inflow below the disc

The Galerkin method presented above can give an expression of the induced velocity above
the actuator disc, but several problems arise when one tries to expand it below the disc,
indeed:

• The velocity potential assumption is much harder to justify below the rotor.

• The shape of the wake is initially unknown, and is in principle required to compute
the inflow by integration along a streamline.

• The conditions far downstream are unknown, because the wake is unknown. Al-
though one could use open boundary conditions, but they were not considered in the
Huang and Peters model.
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Nonetheless, Fei shows how to proceed in [24]. Part of the development will be carried
out here in order to underline several points where some important hypothesis are taken,
and to highlight their impact on the results given by this method.

Following the developments of Fei, who assumes a form of the velocity −→v = −→u + i−→w ,
we begin with the exact solution of the momentum conservation equation by a convolution
form, integrated over a streamline:

−→u (ω, x0, y0, ξ0) = −
ξ0∫

−∞

cos(ω(ξ0 − ξ))
−−→
gradPdξ

−→w (ω, x0, y0, ξ0) =

ξ0∫

−∞

sin(ω(ξ0 − ξ))
−−→
gradPdξ

ξ is, as previously, the parameter of the curvilinear line describing the streamline, and
ξ0 refers to the point of the streamline where the velocity is computed, and is negative
above the rotor. The development of the expression is presented in [24, 1], and earlier forms
can be found in [19]. It is to be noted that this expression relies solely on the momentum
conservation equation, and would require to account for the input pressure jump in order
to be extended below the rotor.

Fei’s argumentation to expand this model (see [24]) is that the form of the pressure is
known also below the disc since it is set by the choice of inputs. He therefore expands the
integral form of the velocity to points of the streamlines below the rotor.

This leads Fei to the following expression for ξ0 > 0, i.e. below the disc:

−→u = −
0∫

−∞

cos(ω(ξ0 − ξ))
−−→
gradPdξ −

ξ0∫

0

cos(ω(ξ0 − ξ))
−−→
gradPdξ (3.3.1)

Several remarks can be made here about the validity of this expression. First, this
expression of the velocity does not account for the continuity equation (see section A.3 for
a proof). It has the consequence of ignoring the natural wake contraction below the rotor3.
Then, the hypothesis of straight streamlines is at best dubious for most flight conditions,
with the exception of high upstream velocities, where the impact of the induced velocities
on the shape of the streamline could be neglected. But this does beg the question of the
adaptability of this method to other flight conditions. Finally, the pressure jump across
the disc is not accounted for.

In order to use this formulation and to avoid the tedious integration, one needs to link
it to the form of the velocity presented above. Fei uses symmetries in the form of the
velocity and the adjoint equation, which is the momentum conservation equation where
the time is replaced by −t, in order to do so. The adjoint equation gives a new form of the
velocity, called adjoint velocity, which is used by Fei to express the velocity below the disc.
It does however require to solve a new equation. Only the results of this development will
be presented here, and we refer the reader to Fei’s dissertation for more details [24].

3This can be justified by the fact that the free stream velocity is high compared to the induced velocity.
This effect is accounted for by Huang and Peters in [2, 1] by post-treating the velocity and applying a
re-mapping to match the contraction, but is treated as a fix to the effect of the mass flow parameter. This
is coherent with the vision of adapting to the free stream velocity
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Fei obtains the following expression for the velocity below the disc:

−→
V (τ, x, y, z) =

−→
V (τ − ξ0, x0, y0, 0)

+
−→
V ∗(τ − ξ0,−x0,−y0, 0)−−→V ∗(τ,−x,−y,−z)

(3.3.2)

where
−→
V ∗ designate the adjoint velocity, τ is the non dimensional time and ξ0 is the

streamline coordinate. Fig. 3.3.5 shows the points considered in this expression. Thus, in
order to compute the velocity at a point below the rotor, one needs the values of velocities
at three different points: one on the rotor disc, up the considered streamline, and two
adjoint velocities on the centro-symmetric streamline. Note that the velocities on the
rotor are shifted in time correspondingly to the distance to the rotor of the considered
point of calculation.

x
y

z
(−x,−y,−z)

(x, y, z)

(x0, y0, 0)

(−x0,−y0, 0)

Figure 3.3.5: Points of interest used for the computation of the velocity below the disc

3.3.1.1 Expression of velocity for perfectly edgewise flow

Huang developed in [1, 2] a method using the same theoretical background as the adjoint
method of Fei in order to express the velocity in the perfectly edgewise flow case. Huang
considers a 90◦ wake angle and apply to this flow the adjoint method in order to compute
the velocities in the plane of the rotor and above. This gives him the following expression:

−−→
VDS(τ, x, y, z) =

−−→
VBL(τ − σ sin(χ),−s0, y, z)

+
−−→
V ∗BL(τ − σ sin(χ), s0,−y, z)−

−−→
V ∗BL(τ, σ + s0,−y, z)

(3.3.3)

For this expression, Huang considers a distance s0 to the disc where the wake is
converged by the blended model, and replace the distance ξ in the adjoint method, by
σ = x − s0. ξ represents the distance of the point considered to the rotor plane disc,
i.e. the distance along the streamline from the point considered to the space where the
velocities are known. Thus, σ serves the same purpose, but from the point considered to
the point where the velocities are converged. However, its value might differ depending on
the component of the velocity considered, since the convergence of the blended model does
not behave similarly for all components. One can refer to [1] for a thorough explanation
of this method and of the differences between the components.
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Furthermore, since the adjoint method will be applied to this velocity, one also needs
the expression of its adjoint, which is given by:

−−→
V ∗DS(τ, x, y, z) =

−−→
V ∗BL(τ + σ sin(χ),−s0, y, z)

+
−−→
VBL(τ + σ sin(χ), s0,−y, z)−

−−→
VBL(τ, σ + s0,−y, z)

(3.3.4)

These formulae suffer from the same criticisms as for the velocity obtained below the
rotor, since they are based on the same theoretical concepts. However, it adds a detail
that will latter be a problem, when developing a time domain solution. Indeed, to compute
the downstream velocity and its adjoint at a time τ , one needs the values of VBL at time
τ + σ sin(χ) and τ − σ sin(χ). In the frequency domain, this is not a concern, since the
time of computation is irrelevant, but in the time domain, it will require velocities that
are not yet computed. We will see the consequences of this problem in the time domain
formulation presented in section 4.1.1.

3.3.2 Blending of the various solutions

Huang and Peters model provides one with several expressions for the velocity:

• Above the disc rotor: VMD

• On the rotor disc: VNH for the z component and VHH for the x,y components

• A blending of those two velocities: VBL

• The velocity for perfectly edgewise flow: VDS

• The blending of the two previously mentioned: VF

Furthermore the last expression is extended to the cases below the disc thanks to the
adjoint method presented earlier.

The blending take the following general form:

VBL = αVMD + (1− α)VNH (3.3.5)

VF = βVBL + (1− β)VDS (3.3.6)

where α depends on the distance to the disc, while β depends on the wake angle χ.
The precise values of this terms are determined by Huang in his thesis [1] thanks to a curve
fitting method.

3.3.2.1 Blending functions

Not much is said in the literature about how the blending functions were derived. The
only thing we know is that a curve fitting process was used. This raises several questions
about the number of cases used, the order of the curve fitting, and about the limitation
and validation of this method. Indeed, some cases do not seem to match the exact solution,
but it is hard to predict if it is due to a lack of precision of the method, to a limitation
of the validity domain of one of the sub-model or to the curve fitting, that overlooked this
specific case.

We here present a few cases that do not match the exact solution as well as the presented
cases. All are done using modd = 20, meven = 10 which is considered to be a quite accurate
approximation. One can however see, in Fig. 3.3.6 and Fig. 3.3.7 that the exact solution
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and the proposed blended solution do not match, but that the Morillo-Duffy model provides
a better approximation of the exact solution. This case is in the middle of the validity case
of the models, with χ = 45◦, ω = 10, y = 1 and z = −0.3. This reveals the problem that
the blending solution is in fact changing the validity domain of the model, although the
Morillo-Duffy model is valid at the points considered.
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Figure 3.3.6: Comparison of Huang and Peters model with the exact solution. Axial
velocity, real part, for modd = 20, meven = 10, χ = 45◦, ω = 10, y = 1, z = −0.3

Cases computed below the rotor also give inaccurate results, as can be seen on Fig. 3.3.8
and Fig. 3.3.9, but it is harder to guess where the problem might come from and if another
blending could have improved the solution.
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Figure 3.3.7: Comparison of Huang and Peters model with the exact solution. Axial
velocity, imaginary part, for modd = 20, meven = 10, χ = 45◦, ω = 10, y = 1, z = −0.3
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Figure 3.3.8: Comparison of Huang and Peters model with the exact solution. Axial
velocity, real part, for modd = 20, meven = 10, χ = 45◦, ω = 10, y = 1, z = 0.3
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Figure 3.3.9: Comparison of Huang and Peters model with the exact solution. Axial
velocity, imaginary part, for modd = 20, meven = 10, χ = 45◦, ω = 10, y = 1, z = 0.3
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3.3.3 Change of coordinates to express the NH and HH variables

The values of the [S] matrix presented in [1, 2] are not accurate. We here present their
derivation and, hopefully, true right values.

Using the Galerkin Method Using the change of basis method presented above,
which relies on a Galerkin method, we develop the terms for the matrix allowing to pass
from the Morillo-Duffy model basis to the basis of the Nowak-He and Huang-He model.

We look at the matrix [S] dealing with the x component of the velocity which does not
seem to reduce to Huang’s proposed form.

In order to obtain this change of basis, the expression of the velocity is reminded here,
for the x component, as given by Huang:

νx,MD =
∑

m≥0

∑

n≥m
amn v

m
x,n (3.3.7)

νx,HH =
∑

(m+n)odd

αmn
Pmn
ν
Qmm+1 cos(mψ) +

∑

(m+n)even

amn v
m
x,n (3.3.8)

(3.3.9)

With the scalar product on the rotor disc surface4:

〈f, g〉 =

∫∫

S

fgdS (3.3.10)

The Galerkin method gives:
∀(r, j), j > r :

〈νx,MD,Φ
r
j〉 = 〈νx,HH ,Φr

j〉 (3.3.11)

Which can be put under the form proposed by Huang:




(αmn )odd

(amn )even


 =



S 0

0 I


 (amn ) (3.3.12)

But where the components of the S have a different value for the r = m− 1 cases:

Sm,rn,j = 0 for r 6= m± 1 (3.3.13)

For r = m+ 1:
If m = 0:

Sm,rn,j =





σ0
n

√
(j + 1)j for j = n+ 1

ς0
n

√
(j + 1)j for j = n− 1

0 for j 6= n± 1

(3.3.14)

4The Jacobian on the disc, in ellipsoidal coordinates, is |ν|
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Otherwise:

Sm,rn,j =





1
2σ

m
n

√
(j +m+ 1)(j −m) for j = n+ 1

1
2 ς
m
n

√
(j +m+ 1)(j −m) for j = n− 1

0 for j 6= n± 1

(3.3.15)

For r = m− 1:

Sm,rn,j =





−1
2σ

m
n

√
(j +m)(j −m+ 1) for j = n+ 1

−1
2 ς
m
n

√
(j +m)(j −m+ 1) for j = n− 1

0 for j 6= n± 1

(3.3.16)

The values of the scalar product were computed thanks to appendix A.1.1 which
presents the expression of the derivatives of Φm

n by x. σmn and ςmn are helping functions
defined in [19, 1]. These values allow to reproduce the results presented in [1], which did
not present the same values for this matrix.

3.3.4 Extensions of the Model

Once the model completed with the blending of all various velocities, Huang expands it
through the use of different non linear extensions. Those extensions attempt to improve
the validity domain of the model by tackling some of its downsides. We will review these
non linear extensions here, as well as some of them present in the literature, and comment
on them.

3.3.4.1 Mass flow parameter

Euler’s equations have been linearised in order to develop Huang and Peters method. How-
ever this has a downside, which is that it will ignore the non linearity of this phenomenon.
An intuitive way to see this is in the V∞ parameter introduced earlier by the linearisation.
This parameter will be null in the hover case, which would lead to an equation without
any convection, which is unacceptable.

In order to take into account this non linearity, the mass flow parameter method was
introduced and consists in replacing V∞ by a matrix [V ] depending on the inflow through a
parameter, called the mass flow parameter. The main problem is now to find what should
be put in this matrix.

As shown by various authors, it can be simple to determine those coefficients in specific
cases, as in hover, climb, axial flow, etc...through momentum theory. The main problem
consists in finding a general mass flow parameter, for any flight conditions, respecting all
the limit cases that can be solved.

As of today, the solution is the one first given by Peters and Haquang in [28], although
this expression has been criticised for the special cases of auto-rotation or windmilling. It
is formed by the following diagonal matrix:

[V ] =




VT 0 0 . . .
0 VMFP 0
0 0 VMFP
...

. . .


 (3.3.17)

Where VT =
√
µ2 + λ2 and VMFP is the mass flow parameter expressed as:

VMFP =
µ2 + λ(λ+ λm)√

µ2 + λ2
(3.3.18)
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where µ is the advance ratio, λ = λf + λm is the total inflow velocity, with λm the
mean axial induced velocity due to rotor thrust and λf the axial free stream velocity. All
are nondimensionalised by the blade tip speed.

The mass flow parameter depends on the induced velocity, hence the non linearity,
but requires a sensible expression for λm. The various expressions of λm present in the
literature depend on the model of induced velocity, but all seem to focus on the fact that
only the velocities generating some thrust are accounted for. This means that the main part
taken into account is the mean value of the induced velocity, thus ignoring the oscillating
terms.

Thus, by definition of the thrust coefficient, which can be expressed in the case of the
current model as:

CT =

∫∫

S

∆pdS

=
2√
3
τ0,c

1

And following the momentum theory definition for the axial induced velocity due to
rotor thrust:

λm =
CT
2VT

(3.3.19)

This gives that λm is only linked to the τ0,c
1 term in steady conditions. However in

order to account for a non steady state, the following expression is taken:

λm =
1√
3

(1, 0,−, 0)[L]−1[M ](amn ) (3.3.20)

Which therefore only account for the terms having an influence on the τ0,c
1 term.

The above expression is however not the one presented in the literature (Duffy [64] and
Huang [1] both have a different one), but the author believes it is more coherent with the
one used by both the Pitt and Peters model and the He and Peters model.

Nevertheless, this expression could be criticised because of the presence of some even
terms in τmn . Indeed those terms create some thrust by adding mass to the flow. This
would highly modify the above expression of λm but would only concern the very specific
cases of mass flow injection.

Finally, this non linear method will require to add an extra loop to the method in order
to converge the value of λm.

3.3.4.2 Wake skew angle non linearity

The idea behind this extension is to account for the effect of the induced flow in the value
of the wake skew angle. This is done by accounting for the mean value of the axial induced
velocity at the rotor disc in the expression of the wake skew angle.

However, this new definition of the skew angle, given in [29, 1], raises many questions.
Indeed, does such a wake skew angle, define globally makes sens ? If one looks at each points
locally, the impact on the wake skew angle of the induced velocity is far from constant.
Although the mean axial induced velocity is a good approximation, is it accurate enough
? No definite answers to those questions could be found in the literature.

This extension also requires a convergence step. But it could admittedly be done
simultaneously with the mass flow parameter convergence.
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3.3.4.3 Accounting for the wake deformations

This non linear extension aims at accounting for the wake deformation effects on the
induced velocities. It was initially developed as an extension of the Peters and He model in
[37], following previous developments made on the Pitt and Peters model. It was further
refined by Zhao et al. in [38, 39]. It consists in modifying the [L] matrix of the model
in order to account for pitch and roll rates in manoeuvring flights, defined through a
rotor wake distorsion parameter κ. Zhao model accounts for the dynamic evolution of this
parameter (as well as the dynamic evolution of the wake skew angle) in order to accurately
describe the effect of manoeuvring flights.

Although this is more accurate than the original straight tube wake description, one
can again wonder if this extension allows to describe the full range of possibilities of the
helicopter. For example, the wake curvature parameter only allows to describe a constant
wake curvature, which is limiting. Furthermore, it does not represent the wake at the
transition between, for example, a hover flight and a constant pitching manoeuvre motion.
This explains the need for a time delay in the application of the curvature that Zhao
computed thanks to comparison with a vortex tubes method. The time delay simply
represents the time necessary for the wake to have a predominant part redefined by the
curved wake.

Finally, although this method is at present applied to the equations in the Huang and
Peters model, there is no mention of its impact on the adjoint equation and therefore on
the velocities below the rotor. Indeed, the adjoint equation heavily relies on the straight
streamline assumption in order to be developed. Accounting for wake curvature should
therefore also be done in this method. Furthermore, the distribution of the velocities
below the rotor should also account for wake curvature. It is however easier to apply the
wake deformation to the computed velocities, than to account for the wake curvature in
the adjoint method. We refer the reader to section 4.3.1 for an exploration on the impact
of removing the straight streamline assumption.

3.4 Results and comparison

The Huang and Peters model has been implemented, and it was verified that the results
obtained were identical to the ones presented by Huang in [1]. A few examples are reported
here in order to demonstrate the validity of our implementation.

Figure 3.4.1 reproduces figure 4.2 of [1], figure 3.4.2 reproduces figure 4.5 of [1] (both
with modd = 12 and meven = 8), and figures 3.4.3 and 3.4.4 reproduce figures 4.14 a) and
b) respectively (with modd = 6 and meven = 4).
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Figure 3.4.1: Axial velocity on the disc for ω = 0, y = z = 0, χ = 0 and τ1
0 as pressure
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Figure 3.4.2: Axial velocity on the disc for ω = 0, y = z = 0, χ = 85 and τ1
0 as pressure
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Figure 3.4.3: Axial velocity on the disc for ω = 4, y = z = 0, χ = 60 and τ1
0 as pressure

input, real part.
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Figure 3.4.4: Axial velocity on the disc for ω = 4, y = z = 0, χ = 60 and τ1
0 as pressure

input, imaginary part.
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3.5 Conclusion on Huang and Peters model

The analysis of the Huang and Peters model allows us to draw a number of conclusions.
First of all, this model has a number of advantages. It is efficient: considering the precision
and resolution it offers on the rotor disc, it takes little time to solve the equations for a
given frequency. It is adaptable, meaning that by choosing the number of terms present
in the Galerkin approximation, one can adapt the model to the needs of the considered
application, from a fast but not entirely accurate model, to a not so fast, but accurate
model. It gives all the components of the velocities at all points on and around the rotor,
thus providing a unified dynamic model for computing the rotor induced velocities both
on the rotor blades and on the other helicopter components. This means, for example,
that one can use this model to study the aerodynamic interaction due to the rotor wake on
the other rotorcraft components and to obtain a flight dynamics model able to represent
phenomena such as the pitch up effect due to the rotor wake blowing on the horizontal
stabiliser for a certain range of forward speeds.

However, a number of downsides could also be drawn from the study of this model.
The easiest way to put it is to say that the validity domain of this model is limited. First it
is limited by the assumptions it takes in order to treat the equations. Indeed, if one takes
the linearisation assumption for example, it implies a high value of the free stream velocity
in comparison to the induced velocity value. This implies that the validity domain for this
model is limited to these cases, and will be hardly applicable to represent the near hover
cases. To improve its validity domain, the model is augmented with non linear extensions,
such as the mass flow parameter in order to treat the hover case. The main issue with this
fix, is that it seems to create more problems (requiring another non linear extension, and
a convergence step), and that it is hard to find a justification for it. The same drawbacks
can be observed for the wake skew angles non linear extension.

Another fact limiting the validity domain of the model is the reference to the so called
"exact solution" for validation. This method could be used for the validation of the results
obtained above the rotor for high free stream velocity. However, below the rotor, this
expression requires a lot more assumptions in order to be justified, if it can truly be
justified. Nonetheless, it is used as a foundation for the derivation of the adjoint method.

Lastly, the use of blending functions limits the validity domain of the model. As
mentioned in 3.3.2.1, the lack of information on the derivation of the blending functions
prevents to truly define the validity domain of the model.

Finally the attempts made to improve the model, as non linear extensions, are costly,
and do not always bear all their promises.

The main issue with all the above limitations, is that the author could not find a clear
definition of the validity domain. From this point, two roads could have been taken. The
first one is a nice but boring path, requiring the careful study of the validity domain, and
giving as sole result a clear view of what’s not possible. The second road is much more
exciting, but looks like a dark unkempt forest path. It leads, if one can make it to the end,
to the improvement of the model.

The remaining part of this thesis consists in the exploration of this second path, and
in the description of what was found on the way.
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4
Extension and Improvements

Résumé en français: Extension et améliorations Ce chapitre tire les conclusions
du précédent et tente d’améliorer le modèle de Peters et Huang de diverses manières. Tout
d’abord une extension au domaine temporel de la formulation frequentielle de Peters et
Huang est proposée. En effet, celà permet de coupler ce modèle à un modèle par éléments
de pale, et ainsi de le comparer à d’autres modèles existants. Cette comparaison révèle de
nouveau certains problèmes, et met le doigt sur l’origine de ces problèmes.

Dans un second temps, des améliorations plus théoriques sont proposées. Elles perme-
ttent d’améliorer l’efficacité et la précision du modèle.

Enfin, plusieurs tentatives d’améliorations sont présentées. Celles-ci ne sont pas con-
cluantes, mais montrent le chemin qui a conduit à une refonte plus profonde présentée dans
le dernier chapitre.
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4.1 Extension to the time domain

In this section the model proposed by Huang and Peters is extended to the time domain,
where it can be more easily compared to various models who already live in this domain
and are coupled with a blade element model. To do so it has been coupled to a code
already implementing other induced velocity models, and also capable to integrate a wide
variety of geometries.

4.1.1 Motivation

The need for a time domain extension of the Huang and Peters model arose from the
necessity to couple it with a blade element model. Indeed, the main advantage of the
frequency domain is to give a solution for all frequencies considered, giving a valid solution
for all points in time. But this advantage is lost when coupling the model with a blade
element model. Moreover, a time marching model is more suited for many applications
such as flight dynamics simulation. The coupling between both models does not allow to
foresee the input of the induced velocity model for all the frequencies, except in a stationary
case. Indeed, the variation of the inputs of the model are unknown, because the influence of
the induced velocities on the blades will significantly modify their behaviour, and thus the
inputs of the model. This means that it is difficult to compute the frequency representation
of the blade airloads (the inputs of the model). A problem that is not present with a time
domain formulation.

Furthermore, having a time domain model means having only one set of coefficients
describing the velocity, whereas a frequency domain solution requires a set of coefficients
for each considered frequency.

4.1.2 Principle of the extension

In practice the only facts limiting the use of Huang and Peters model to the frequency do-
main are the validation they use, where the time dependence is assumed to be in frequential
form, and by the use of the adjoint theorem.

The first limiting factor can be dealt with by saying that thanks to the linearity of
the equation and because a temporal signal can simply be expanded on an infinity of
frequencies, the validation done in the frequential domain validates the temporal domain.

I.e., if the pressure and velocities are viewed as follows, the validation done the fre-
quency domain is still valid in the time domain.

−→ν =

∞∫

−∞

−→ν ω(x, y, z)eiωtdω (4.1.1)

p =

∞∫

−∞

pω(x, y, z)eiωtdω (4.1.2)

For the second problem, the same remark as previously still holds true, meaning that
the adjoint theorem can be extended to the time domain, although the use of symmetries
will be harder to justify. However, as mentioned in section 3.3.1.1, the downstream velocity
will be problematic to implement, as it refers to times that are not yet computed.
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4.1.3 Testing the extension

The time domain version of the code was implemented in Python and tested through
comparisons of the steady-state response. Although this method does not cover all cases,
it allows to validate the time domain model with the cases that validate the frequency
domain model. However, it does not validate the transitory phases. But this will be done
thanks to the comparison to other induced velocity model. Indeed, if the steady state
response agrees with the frequency domain model, and if the transitory phases can be
compared to other models, the implementation can be deemed to be satisfying.

Hereafter a few examples of comparisons are shown, validating the agreement between
Huang’s frequency formulation and the time domain model.

4.1.4 Coupling the model

In this section the temporal domain extension is coupled with the home-made ONERA
code AMB (Aero Multi Body), implemented in Python by Philippe Beaumier. AMB will
be presented, as well as the integration of the induced velocity model.

4.1.4.1 AMB

AMB allows to represent all kind of aircraft, although we will only use it in order to model
isolated rotors. It allows to compute the induced velocities with several methods, notably
prescribed and free wake models, and integrate a blade element model for a wide range of
flight conditions. It was originally dedicated to presizing of rotorcrafts [65]. One drawback
of this code is that it does not provide a way to compute trimmed solutions, i.e. the
required rotor pitch angles for generating the forces and moments corresponding to the
equilibrium of the specified flight condition. Therefore, the following computations will be
made by imposing the blades kinematics (pitch, flap and lead-lag angles). Furthermore,
this will allow to ensure that the only differences between two computations are only the
induced velocity models, since all other elements will be identical.

In order to converge the induced velocities, AMB uses a loop on the forces generated
by the rotor, and a relaxation method can be used on the induced velocities. In the
implementation, rotors are represented with a disque_rotor class which allows to treat
them as an actuator disc, and can give a basic evaluation of the induced velocities based
on momentum theory. Our implementation of the temporal domain model will come in
place of this existing induced velocity model, in order to ease the integration, by creating
a daughter class of the disque_rotor class.

4.1.4.2 Integration

We will first present the architecture of the module made and its integration to AMB,
before going into more details about the specifics of the time domain application.

Architecture Fig 4.1.1 presents the Unified Modelling Language (UML) Class diagram
of the module implemented. It is constituted of 6 classes. The first one ViInputs reads an
input text file and computes some required values from them. It also stores some required
values for a quicker the computation of the matrices. The ViMatrices class computes all
required matrices. Notice that all matrices are computed at the initialisation, but that one
can compute new values for [Lc] and [Ls] if the skew wake angle is to be changed. The
ViStatesTemp class inherits from the ViMatrices class, and adds all the required states for
the computation of the velocity. It also provides a method to compute the velocities at
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the next time step. In order to compute the velocity value at a given point, one needs first
to compute the associated Legendre functions, which is done by the LegendrePoly class.
One also needs to be able to go from cartesian to ellipsoidal coordinates, which is made
possible thanks to the Coordinates class.

All those classes are then implemented in the InducedVelocity class, which provides the
tools to set the pressure inputs at each time step, and to compute the value of the velocity
at any given point.
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InducedVelocity

ViInputs

+chi0 : float
+m odd : int
+m even : int
+MFP : int
+todd: int
+teve : int
+tot:int
+h val st : numpy array
+k val st : numpy array
+sigal st : numpy array
+zetal st : numpy array

-calctot( m tot) : tot
-store usefull values()

Coordinates

+x : float
+y : float
+z : float
+nu : float
+eta : float
+psi : float

+update()

LegendrePoly

+coord : Coordinates
+inp : ViInputs
+P: numpy array
+Q: numpy array
+Pdnu: numpy array
+Qdeta: numpy array

+update poly()
-Pnu(x:float)
-dPdnu(x:float)
-Qeta(x:float)
-dQdneta(x:float)
-QLarge(x:float)
-pmm all(x:float)

ViMatrices

+inp : ViInputs
+M: numpy array
+D: numpy array
+S: numpy array
+Sanm: numpy array
+A: numpy array
+Lc: numpy array
+Ls: numpy array

+L comp()
-perm matrices()
-m values(n:int, m:int, j:int) : float
-d values(n:int, m:int, j:int) : float
-gamma(n:int, m:int, j:int, r:int) : float

ViStatesTemp

+tau c: numpy array
+tau s: numpy array
+tadj c: numpy array
+tadj s: numpy array
+a n mc: numpy array
+a n ms: numpy array
+alpha cz : numpy array
+alpha sz: numpy array
+alpha cx : numpy array
+alpha sz: numpy array
+alpha cy : numpy array
+alpha sz: numpy array

+update forcing function(tau c, tau s)
+update chi(chi: float)
+compute states(delta t: float, Vinf: float)

InducedVelocity

+inp: ViInputs
+states : ViStatesTemp
+coord: Coordinates
+poly: LegendrePoly
+t : float

+set pressure inputs()
+update vi(Vinf:float)
+velocity()

Figure 4.1.1: UML Class Diagram of the temporal implementation of Huang and Peters
method.

55



CHAPTER 4. EXTENSION AND IMPROVEMENTS

Time scheme The implementation of the time scheme was made with the simplest pos-
sible scheme, a Euler forward step, with a time step δt, and is presented on the cosine
part:

[M c]
am,cn,k+1 − a

m,c
n,k

δt
+ [Dc][Lc]−1[M c]

{
am,cn,k

}
= [Dc]

{
τm,cn,k

}
(4.1.3)

Which can be simply solved with:

amn,k+1 = amn,k + δt[M
c]−1

(
−[Dc][Lc]−1[M c]

{
am,cn,k

}
+ [Dc]

{
τm,cn,k

})
(4.1.4)

It was thought that in a first time, in order to assess the capacities of the algorithm,
this method would be sufficiently accurate, and could be easily controlled by the size of
the time step. After test and implementation, it was shown that the only drawback of this
simple time step was the fact that it limited the size of the approximation that could be
considered.

Computation of the inputs of the model In the case of a coupling of the induced
velocity code with an external blade lift theory, the computation of the pressure inputs
may not be explicit. The following derivation applies the method presented by Peters and
He in [8]. It does require some adjustments to be applied to the Huang and Peters model,
since it is originally applied to the Peters and He finite state induced velocity model, which
uses an other polynomial basis for the τmn than the one considered here.

The rotor has a finite number of blade, Q, generating lift. Thus the pressure distribution
on the rotor is constituted of ’pressure spikes’, rotating with the blades.

The qth blade, at azimuth ψq, generate a pressure pq(r, y, t), where y is defined from
−b to +b, b being the half chord of the blade, also seen by the angle ψ = ψq + sin−1(yr ).
This pressure is taken under the following form:

pq(r, y, t) = +
m,n

Pmn (ν) [τm,cn cos(mψ) + τm,sn sin(mψ)] (4.1.5)

It is thus possible to express the pressure coefficients thanks to the orthogonality prop-
erties of the Legendre’s polynomials:

τm,cn =

Q∑

q=1

〈pq(r, y, t),Φm,c
n 〉 (4.1.6)

τm,sn =

Q∑

q=1

〈pq(r, y, t),Φm,s
n 〉 (4.1.7)

These equations are the main differences with the derivation presented in [8], since the
factors used in the paper are not the Φm,c

n .
Blade lifting line theory does however not provide the chordwise pressure. The aim of

this derivation is thus to express the pressure coefficients, through the lift generated by a
blade, given by any blade lift theory.

Following [13], it is therefore assumed that the pressure can be put under the following
form:

Pq(r, y, t) = L̂q(r, t)
Py(y)

b∫
−b
Py(y) dy

(4.1.8)
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With L̂q the non dimensional lift generated by blade q. The pressure coefficients can
then be expressed as:

1

2
(τm,cn − iτm,sn ) =

1

2π

Q∑

q=1

1∫

0

fmLqΦ
m
n dν e

−imψq (4.1.9)

with:

fm =

b∫
−b
Py(y)e−im sin−1( y

r
) dy

b∫
−b
Py(y) dy

(4.1.10)

For a lifting line theory, fm = 1, which will be the case considered here, since AMB
uses a lifting line method.

It is to be noted however, that the pressure states τmn are, in our case, not exactly
extracted with the above equation. Indeed, the basis used is not orthonormal, which will
thus require an inversion of the obtained terms in order to truly represent the τmn in the
basis used by the algorithm. Another way to achieve the same result, is to remark that the
given integral is the result of the scalar product by the gradient of the test function used,
and thus to consider that the computed states are in fact [D]{τmn } rather than the τmn .
This allows their direct integration to the equations, since they will be anyway multiplied
by the matrix [D].

Another problem raised by this method is due to cases considering flapping motion of
the blades out of the rotor disc plane. Indeed in those cases the very definition of the rotor
disc is threatened. Several solutions to this conundrum might be considered: either take
the rotor disc as fixed relatively to the rotor mast, or take it to be the rotor blade tip
path. Both definitions are identical in the case of rigid blades with no flap, and both need
adjustment when considering either flap motion and/or elastic blades. These adjustments
are required because the theory requires to compute the pressure distribution on the rotor
disc, and blades may not be contained in this disc. A usual method to fix this problem
consists in projecting the force on the disc along the direction of the normal to the disc,
regardless of the position of the blades.

Adjoint equation and induced velocities below the rotor The implementa-
tion of the adjoint equation in the time domain is not as easy as it could seem. Indeed,
their are a few problems to solve.

The first one is the treatment of the velocities computed thanks to their adjoint. Indeed,
the computation of these velocities require to access previous time of the simulation. This
requires, first, to store all the previous time step states, then, to interpolate between the
time steps computed when required by the point at which the velocity is computed. This
was a hindrance for the algorithm performance, but could be solved efficiently1.

The second major problem is the adjoint of the downstream velocity. In a specific
region fore of the rotor and below it, the adjoint of the downstream velocity is required
to be known at a time that is not yet computed in the simulation. The specific region is
constituted of the part of space D defined by:

D = {(x, y, z) |x2 + y2 + z2 ≥ cos(χ) andx ≤ 0, z < 0} (4.1.11)
1The use of the cPickle module greatly improved the time required to pack and unpack the data.
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This definition is intimately linked to the definition of the downstream velocity and
to the region where it is required to compute its adjoint. It may seems strange that this
problem occurs fore of the disc, when the downstream velocity is used aft of the disk.
However, it the adjoint expression of this velocity that is problematic, and not the velocity
itself, hence the non intuitive shape of the domain. The method used to compute this
domain is presented in appendix A.4. Therefore, below the disc and with some advance
ratio, the adjoint of the downstream velocity VDS may require to be computed at a time
in the future 3.3.1.1). In practice, for helicopter flight dynamics, the induced velocities
have to be computed on the main rotor blades and outside of the rotor mainly on the tail
components. Therefore the issue revealed here is not a significant downside of the Huang
and Peters model for practical application.

Among the solutions to solve this issue that were experimented, one was to consider
the last known step to be the step required, and another was to extrapolate the time values
of the coefficients. However no truly convincing fix were found for this problem, and it was
chosen to take the downstream velocity as null in these cases.

Considering now the dynamic behaviour of the wake, no adaptation or extension, as
proposed by Huang or Zhao, is considered. This means that a change in skew wake angle
during a simulation would give what is represented on Fig 4.1.2. It represents schematically
on the left a green wake for an axial flight condition, and on the right, in green, what would
be expected if the wake skew angle suddenly change at the next time step, and, in red,
what happens in the current version of the model. Improving the depiction of the dynamics
of the wake would thus not only require to account for the non linear extension designed
for the wake curvature, but also to modify the streamlines shapes accordingly. In flight
dynamic simulation, any variation of the speeds in translation or rotation will cause a rotor
wake deformation that will not be well captured by this too rough representation of the
rotor wake with rectilinear streamlines varying in block quasi-steadily.

Rotor’s wake in hover

x

y

z

Rotor’s wake after wake angle step

x

y

z

Figure 4.1.2: Schematic representation of the wake behaviour for a change in wake skew
angle.
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4.1.5 Results

The implementation of the Huang and Peters model in AMB allows to compare it to various
types of models, such as a prescribed wake model and a free wake model.

4.1.5.1 Comparison to prescribed and free wake methods

Prescribed and free wake methods presentation The prescribed and free wake
models implemented in AMB generate vortex sheets attached to each blade lifting line
accounting for trailing vortices. The shed vortices due to the azimuthal variation of the
circulation on the blades are neglected in a first approximation for reducing the compu-
tational time as AMB is dedicated to presizing. Furthermore, in the cases of helicopter
rotors, the shed vortices have a smaller impact than the trailing vortices. It then uses
the Biot and Savart induction law in order to compute the value of the induced veloc-
ity at the required points. In the case of the prescribed model the vortices are all only
convected with the free stream velocity. With the free wake model however, the induced
velocities generated by the wake also have an impact on the shape of the wake itself. The
induced velocities of other vortices are accounted for on each vortex element. It makes the
free wake model computationally more expensive but allows a better representation of the
wake geometry and thus of the induced velocities.

Comparison The comparison are made using the 7A rotor, represented in Fig 4.1.3,
which is a two bladed rotor made by Onera for wind tunnel measurements. Its main
characteristics are presented in table 4.1.1 The simulation is performed over 5 rotor’s
rotations in order for the wake to develop, and in ascending axial flight condition, with
V∞ = 10m/s. The blade pitch angle setting is a collective angle of 10◦ and no flap or
lead lag angle are considered. Therefore, the movement of the rotor is prescribed and the
induced velocities have no impact on it, other than modifying the airspeed seen by each
blade element.

X

−0.5

0.0

0.5

Y

−0.5

0.0

0.5

1.0

Z

−0.5

0.0

0.5

1.0

Figure 4.1.3: Representation of the 7A rotor in AMB.

For the parameters of the model, we use modd = 6 and meven = 4, and we make the
time step small enough to ensure the convergence of the time marching scheme. It is chosen
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Radius R 2.1 m
Blade mean chord 0.14m
Rotational Speed Ω 1020 rpm
Blade root radius 0.425

Airfoils used along the span
0.425m 7→ 1.575m OA213
1.575m 7→ 2.1m OA209

Linear twist angle
0.425m 0◦

1.575m −4.545◦

1.89m −3.490◦

2.1m −4.320◦

Table 4.1.1: Characteristics of the 7A rotor.

to be of 1◦ of rotation, which makes the non dimensional time step effectively seen by the
model of π

180 .
We compare in Fig 4.1.4, 4.1.5 and 4.1.6 the axial, radial and orthoradial induced veloc-

ities on the blades respectively and the forces on Fig 4.1.7, for all three models considered
here. One can see that the agreement for the axial velocity is satisfying. The behaviour
at the tip of the blade could be improved but the general trend is respected, which also
gives a good representation of the forces on the blades. However, the representations of
the radial and orthoradial velocities are less satisfying. Especially the models exhibit op-
posite trends on the tangential velocity. Although the two vortex wake models do not
include shed vortices, their trends agrees with the expected swirl values. It is possible that
the fact that the Huang and Peters model only considers the lift force, in the form of a
pressure gradient is detrimental to the accurate representation of the orthoradial velocity.
Nevertheless, further comparisons are still required before drawing a definitive conclusions.

Fig 4.1.8 and 4.1.9 compare the velocities generated by the rotor in the plane defined by
y = 0 for the same case with Huang and Peters model and the free wake model respectively.
There are a few points that caught our attention. First, the wake is developed in a coherent
way in the case of Huang and Peters model although not all the details of the wake are
rendered. There is no wake contraction, since the model used is the Huang and Peters
model without non linear extensions. Then there is a visible representation of the passage
of the blades in the wake, although the blade tip vortices are not rendered with as much
precision as with the free wake model. Finally, the free wake model experiences blade root
vortices that are due to the way one models the blades. There is indeed no rotor head or
hub represented in the model. This behaviour is smoothed in the Huang and Peters model.

It is to be noted that finer description of the velocities were researched, but required a
much smaller time step in order to converge. A case with modd = 8 and meven = 6 required
a non dimensional time step of 0.2 π

180 in order to converge. No significant improvement
can be seen on the components in the plane of the rotor, and the improvement on the axial
velocity is marginal.

A case with modd = 12 and meven = 8 was tested, but required a non dimensional time
step of less than 0.01 π

180 , which would have required 100 steps to represent 1◦ of rotation,
and was therefore not carried out. It is to be noted that the lack of stability is surely linked
to the temporal scheme used here which is conditionally stable.
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Figure 4.1.4: Comparisons on the blades of the axial velocity given by Huang and Peters
model, and prescribed and free wake models, after 5 rotations.
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Figure 4.1.5: Comparisons on the blades of the radial velocity given by Huang and Peters
model, and prescribed and free wake models, after 5 rotations.
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Figure 4.1.6: Comparisons on the blades of the tangential velocity given by Huang and
Peters model, and prescribed and free wake models, after 5 rotations.
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Figure 4.1.7: Comparisons on the blades of the lift distribution given by Huang and Peters
model, and prescribed and free wake models, after 5 rotations.
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Figure 4.1.8: Wake given by Huang and Peters model, after 5 rotations.
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Figure 4.1.9: Wake given by the free wake models, after 5 rotations.
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4.1.6 Conclusion

The Huang and Peters model agrees in a limited range with the prescribed and free wake
models. The agreement is rather good for the axial velocity, but for the radial component,
the trend is correct, whereas for the tangential component, the Huang and Peters model
gives an opposite trend compared with the vortex wake models results. If we assume that
the coupling was done in an acceptable manner2, we may have come across a shortcoming
of the new method. The fact that the radial and tangential velocities are not satisfyingly
represented could be a consequence of the form of the inputs. Indeed, the Huang and Peters
model sees the inputs, that are rotor forces, as a discontinuity of pressure. Therefore it
only accounts for the lift generated by the rotor (as all the Peters et al. models), but the
gradient of the pressure has a direct impact on all the components of the velocity. It could
be interesting to account for the drag, and to reduce the impact of the pressure on the
other components, or to find another way to account for the forces generated by the blades.

However, the fact those discrepancies might be due to a mistake in our time domain
implementation of the model prevents us to draw any definitive conclusion on the subject.
An interesting paper, [66], was published about a coupling of the Huang and Peters model
with a blade element model, but does not show any result concerning the two problematic
components of the induced velocity (only the axial velocity is considered in this paper).

Furthermore, a better time marching scheme could be useful to improve the convergence
of the model and test in a meaningful way a more precise approximation. Finally, besides
the accuracy, an important point of comparison is the computational time. It should be
underlined that the Huang and Peters model is faster than the vortex models it is compared
with here. The comparison is presented in table 4.1.2. It shows that the computational
cost of the Huang and Peters model is one order of magnitude lower than the one of the
prescribed wake model, and 3 orders of magnitude lower than the one of the free wake
model. This is a non negligible advantage of this model.

Method Computation time (min)

Prescribed Wake 0.01
Free wake 2.5

Huang and Peters:
modd = 6 and meven = 4

2.78E-3

Huang and Peters:
modd = 8 and meven = 6

4.305E-3

Huang and Peters:
modd = 12 and meven = 8

8.33E-3

Table 4.1.2: Mean time taken by the different models for one time iteration.

2This has been validated by the verification of the steady state cases done, but there are a lot of other
factors that should be accounted for and that could have been overlooked in the implementation of the
time domain method presented here.
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4.2 Improvements of the model

The aim of this chapter is to present an improvement of Peters and Huang model, and
to present a possible modification. More precisely, it aims at improving the Morillo-Duffy
model used within the Huang and Peters model in order to reduce the number of ma-
trix inversions done in the model, and to improve its efficiency for varying wake angles.
The possible modification concerns the use of another method to compute the associated
Legendre functions of second kind for large values.

4.2.1 Less inversion

4.2.1.1 Principle

In the general case, the linearised Euler’s equation can be put under the following form:

∂−→ν
∂τ

+ cos(χ)
∂−→ν
∂z
− sin(χ)

∂−→ν
∂x

=
−−→
gradp (4.2.1)

Where we have simply expressed the derivatives along ξ, the curvilinear coordinate
along the streamline, with the wake skew angle χ.

The usual Galerkin method, as described in section 3.2.4, is given as:

+
m,n

∫∫∫

D

∂amn
∂t

−−→
gradΨm

n .
−−→
gradΛrj + amn

−−→
grad(

−−→
gradΨm

n .
−→
ξ ).
−−→
gradΛrjdD

= +
m,n

∫∫∫

D

τmn
−−→
gradΦm

n .
−−→
gradΛrjdD

(4.2.2)

This then gives (considering only the cosine part), when applying the gradient theorem,
and by applying the z derivatives to the weight functions:

+
m,n

∂amn
∂t

∫∫

S

Ψm
n

∂Λrj
∂z

dS + amn

∫∫

S

(
cos(χ)

∂Ψm
n

∂z
− sin(χ)

∂Ψm
n

∂x

)
∂Λrj
∂z

dS

= +
m,n

τmn

∫∫

S

Φm
n

∂Λrj
∂z

dS

(4.2.3)

Here the choices of velocity potential and of test functions is still open, and one can
still move the z derivatives on the term of its choice, thanks to the gradient theorem, as
long as the velocity potential is a potential function. One can thus put the equations under
the following form:

A1
d

dt
({amn }) + (cos(χ)D1 − sin(χ)S1){amn } = M{τmn } (4.2.4)

As one can see, this expression does not rely on an inversion of any matrices (at least
before solving the equation). Furthermore the dependency on the χ angle is explicit,
meaning that changing the wake skew angle does not require to compute a new matrix.

The game is now to make the correct choices for our three degrees of freedom (Ψm
n , Λrj ,

and placement of the z derivative), so that we can restrict the integrals to the rotor disc. A
second point that should be kept in mind when making these choices is the conditioning of
the matrices. Most attention should be given to the matrix generated by the x derivative
terms, S1, which tends to be close to singular. Since the matrix to be inverted is in fact
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iωA1 + cos(χ)D1 − sin(χ)S1 in the frequency domain, the conditioning of S1 tends to be
less of a problem, as long as the wake angle is low enough so that D1 compensates it.

4.2.1.2 Application

In this section we show the choices we have made for our degree of freedom and explain
why these choices were made. We refer the reader to appendix D, for the full expression
of the matrices, and the treatment of all the singular cases.

We take the following form of the velocity potential and of the test function:

Ψm
n = σmn Φm

n+1 + ςmn Φm
n−1 + σm+1

n+1 Φm+1
n+2 + ςm+1

n+1 Φm+1
n (4.2.5)

and

Λrj = σrjΦ
r
j+1 + ςrjΦr

j−1 (4.2.6)

First, the use of combinations of potential functions ensure that we can use the gradient
theorem as intended. Then, the z derivatives of each element is easily expressed with the
Φm
n elements, as shown in [19]. Finally, one can notice that the integrals can be reduced

to the rotor disc if at least one of the term below the integral is odd in ν (as remarked in
[19]). Keeping in mind that the x derivative does also change the parity, one can change
the position of the z derivatives in order to reduce the integrals to the rotor disc.

The choice of the form of the velocity potential is motivated by its capacity to improve
the condition number of the S1 matrix. Indeed, the x derivative tends to generate singular
matrices because the image of the Φm

n basis by this derivative is expressed with the Pmn
ν . The

idea of the Ψm
n is here to combine various terms so that their x derivative can be expressed

on the Pmn basis. The full derivation of the S1 matrix is presented in appendix D.
This therefore gives a new formulation of the Morillo-Duffy model, that does not require

to inverse the L matrix, and that shows explicitly the dependency on χ, which means that
there is no need to compute all the terms in L when changing the value of χ.

4.2.1.3 Results

We show here a few results illustrating the capacity of the method to reproduce results of
the Morillo-Duffy model.

One can observe that for the given case, which uses modd = 12 and meven = 8, both
models are in pretty good agreement with the exact solution. This tends to validate the
improvement made. Furthermore, since this improvement is based on the same assumptions
and concept as the Morillo-Duffy model, it could be integrated to the Huang-Peters model
in order to improve its performances in the case of an evolution of χ. The computational
time on a single case would not be affected, but the variation of the value of χ could be
instantaneously accounted for. This is even more impacting with a large number of element,
since the lower theoretical bound on the complexity would be at least O(n2ln(n)), where
n is the size of the matrix, and O the big O Landau notation.

4.2.1.4 Limitations

Although this new formulation gives interesting results, it still struggles to represent high
advance ratio cases. Indeed, despite the use of a good formulation of the velocity potential,
the condition number of the S1 matrix is still too high to give physical results when
considering a high wake angle. This is linked to the fact that, since the wake is in the rotor
plane at high advance ratio (or perfectly edgewise flow case), there is no way to represent
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Figure 4.2.1: Comparison of the axial velocity with Morillo-Duffy model: real part

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

New Method
Exact Solution
Morillo's method

Figure 4.2.2: Comparison of the axial velocity with Morillo-Duffy model: imaginary part

it accurately with the chosen potentials which all converge to 0. This is also a limitation
of the Morillo-Duffy model, which points the way to a better choice of velocity potentials
that could be made in order to have a method that avoids inversion on the whole range of
χ. They may be found in the other solutions to the Laplace equations, i.e. the associated
Legendre polynomials of first and second kind, with less constraints on n and m.
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4.2.2 Large values of the associated Legendre functions of second
kind

As mentioned by Fei in [24], the computation of the values of the associated Legendre
polynomials of the second kind, Qmn (η) for large values of η is difficult. Indeed the use
of the recurrence formula to compute them is problematic, and tends to diverge. Large
values here represents values above η = 1 for polynomials of high order (m > 10) and
above η = 1.5 to η = 2 for lover values of m.

Fei proposed a method to smooth the values of the Qmn , which consists in approximat-
ing them with a 1

η2q
development. However, this method does not verify the regularity

of the approximation at the transition. We here propose a similar approach, but we pay
special attention to the transition between the recursively computed solution and the ap-
proximation.

4.2.2.1 Principle

We begin with the same hypothesis as Fei, which is that for large enough values of η, Qmn
can be approximated by:

Qmn (η) =

p∑

k=0

A2k

ηq+2k
(4.2.7)

Using the fact, demonstrated by Fei, that q = n+ 1, one can then set two conditions:
one for the continuity of the approximation at the change, and one for the continuity of
its derivative. Naming ηmax the value of change between the two methods, it gives:

Qmn (ηmax) =

p∑

k=0

A2k

ηn+2k+1
max

∂Qmn
∂η

(ηmax) =

p∑

k=0

−(n+ 2k + 1)
Ak

ηn+2k+2
max

(4.2.8)

In order to determine the rest of the Ak coefficients, one can add p − 2 equations to
the system with the same method as Fei, which consists in injecting the form chosen for
the Qmn into the differential equation verified by the Qmn .

This gives a matrix equation, with an inversion to do in order to calculate the Ak.

4.2.2.2 Comparison

Figure 4.2.3 and Figure 4.2.4 compare three various methods for the computation of Q0
2

and Q0
10: the recursive one, Fei’s method, and the proposed method. The value of ηmax is

set to 1, and we observe the behaviour of all the methods around the value of ηmax. The
recurrence formula being exacte for the cases chosen, it will our reference here.

One can see that the proposed method follows the recursive method with more accu-
racy than Fei’s method at the truncation. Indeed, the rest of the domain is accurately
represented.

It is to be noticed that the scale on those figures are small, and that the effect of
the improvement is marginal in the case of a single polynomial, and even less important
with higher orders. However, the sum of a lot of those polynomials, as is done in the
computation of the velocities, leads to visible effects on the results.
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Figure 4.2.3: Comparison of the three method of computation of Q0
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10, with ηmax = 1
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4.3 Failed attempts to improve the model

4.3.1 Improving the exact solution

4.3.1.1 Motivation

The main last advancement in the models of Peters et al. were made by accessing the
values of the velocities below the rotor. The expression of the velocity below the rotor is
mainly based on the exact solutions developed analytically in the frequency domain. As
mentioned before, this exact solution does not account for the continuity equation and
assumes straight streamlines.

Thus a method improving the said "exact solution" could lead to a different, but more
comprehensive adjoint method. Furthermore, the modification of the straight streamline
could later lead to a way to account for wake deformation. We here lay the beginning of
a reflection that seemed promising, but that never yield any results.

4.3.1.2 Method

In order to improve the integral form of the induced velocity, a new form of the streamlines
will be sought, so that the integral form does not differ, and so that the continuity equation
is respected. I.e. we will seek to find a path so that the shape of the streamline makes the
exact solution respect the continuity equation.

The streamline is therefore described by the following parametric curve:

Γ : −→γ (ξ, x0, y0, χ) =





x = f(ξ, x0, y0, χ)
y = g(ξ, x0, y0, χ)
z = h(ξ, x0, y0, χ)

(4.3.1)

where ξ is the parameter of the curve, x0 and y0 represent the coordinate at which the
streamline crosses the rotor disc plane, and f , g, and h are C 1 functions on R. The other
dependencies will be omitted for clarity.

This new chosen path does in fact influence not only the exact solution but also the way
the equations used for this theory were derived. Indeed, the second term of the conservation
of the momentum equation depends on it:

−→
V .
−−→
grad
−→
V = (V∞

−→γ +
−→
δv).
−−→
grad

(
V∞
−→γ +

−→
δv
)

(4.3.2)

Thus by assuming both that V∞−→γ >>
−→
δv and that

−−→
grad

(−→
δv
)
>>
−−→
grad(V∞

−→γ ), one can
find the same equations as used in the theory developed by Huang and Peters.

Furthermore using the complex notation used to derive the exact solution, see sec-
tion 3.3.1:

div (−→v ) = 0⇔
{

div (−→u ) = 0
div (−→w ) = 0

(4.3.3)

Considering only the term ∂ux
∂x of the divergence, and applying Leibniz’s rule, we have:
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∂ux
∂x

=
∂

∂x




ξ0∫

−∞

cos(ω(ξ0 − ξ))
∂P

∂x
dξ




=
∂P

∂x

∂ξ0

∂x
+

ξ0∫

−∞

−ω sin(ω(ξ0 − ξ))
∂P

∂x

∂(ξ0 − ξ)
∂x

+ cos(ω(ξ0 − ξ))
∂2P

∂x2
dξ

(4.3.4)

Hence, by considering the real part equation, and using the assumption that the pres-
sure respect the Laplace equation:

div (−→u ) = 0

⇔ ∂P

∂x

∂ξ0

∂x
+
∂P

∂y

∂ξ0

∂y
+
∂P

∂z

∂ξ0

∂z

+

ξ0∫

−∞

−ω sin(ω(ξ0 − ξ))
(
∂P

∂x

∂(ξ0 − ξ)
∂x

+
∂P

∂y

∂(ξ0 − ξ)
∂y

+
∂P

∂z

∂(ξ0 − ξ)
∂z

)
dξ = 0

The imaginary part of the divergence equation gives similar results with the exception
of the first term of the previous equation. Speaking of this first term, taking ω = 0, it
is the only term remaining in the equations. This means that to respect the continuity
equation, this term should be null. However, this term could be seen as:

∂P

∂x

∂ξ0

∂x
+
∂P

∂y

∂ξ0

∂y
+
∂P

∂z

∂ξ0

∂z
= 〈−−→gradP |−→v Γ〉 = 0 (4.3.5)

That is to say as the scalar product between the gradient of the velocity and the
tangent to the parametric curve defined by Γ. This can be further interpreted as the fact
that the stream line should be perpendicular to the pressure isolines in order to respect the
continuity equation. This is normally the kind of relation obtained for the equipotential
for potential flows.

The derivation of the parametric curve can be expressed through the derivative of the
functions f , g and h by assuming they are bijections. However, this leads to highly involved
equation that could not be solved. Therefore, in a first time and in order to simplify the
method, an axisymmetric case is considered, with χ = 0, allowing to make a more simple
and manageable assumption on the shape of the streamline:

Γχ=0 :





x = r(ξ) cos(θ)
y = r(ξ) sin(θ)
z = ξ

(4.3.6)

The aim here would be to deduce the function r from the continuity equation. To
do so we inject the form of the streamline in the previous equations. It is to be noted
that since the r function is assumed to be a bijection, the derivative of its inverse can be
expressed as the inverse of its derivative. We here show a rapid derivation for a case where
the streamline is in the plane y = 0:
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div (−→u ) = 0

⇔ ∂P

∂x

1

r′(x)
+
∂P

∂z
+

ξ0∫

−∞

−ω sin(ω(ξ0 − ξ))
(
∂P

∂x

(
1

r′(x)
− ξ
)

+
∂P

∂z
(1− ξ)

)
dξ = 0

Unfortunately, no analytic solution for the form of r could be found. Although this
could be solved numerically while advancing the streamline through the predetermined
pressure gradient, this is far too computationally expensive for the kind of method we wish
to develop.

This development gave us insight on the strength of the straight streamline assumption
and on the difficulty to modify this assumption in the case of the exact solution. There
is thus little doubt on the consequence this change would have on the adjoint method
derivation.

4.3.2 Freeing the model from the yoke of the velocity potential

4.3.2.1 Motivation

Imposing the hypothesis of a velocity potential creates a certain number of problems. Most
notably, because the potential functions all converges to zero at infinity, it prevents the
model to replicate the perfectly edgewise flow, as mentioned by Morillo [19]. Indeed the
perfectly edgewise flow implies a non null velocity in the rotor disc plane, which prevents its
description by the given velocity potential. Furthermore, the potential assumption creates
an asymmetry between the treatment of the domain above the rotor and the domain
below the rotor. It does, however, allow a good representation of the effect of the rotor,
since its influence should only be localised on the disc. This is the origin of the need
for an alternative form of the velocity, provided by the downstream velocity in the case
of the Huang and Peters model. However, this velocity creates some unwanted problems
in the time domain, as mentioned earlier. A second downside of this solution is that it
does not respect the continuity equation. Several solutions were thought of to improve
the behaviour or simply get rid of the problems created by this velocity. It remains that a
good way to solve this problem would simply be to avoid the velocity potential assumption,
while keeping the spirit of the method, which does give satisfying results in many cases.

It is important to note that without the hypothesis of a velocity potential, there is no
longer a link between the velocity and the Laplace equation. However one can show that
the pressure still respects the Laplace equation, if we linearise the convective terms. This
will force us to rework the equations from the beginning in order to cope with what is at
our disposal. This approach lays the foundation of the induced velocity model developed
in chapter 5.

4.3.2.2 First attempt: separating all components

We go back to the linearised Euler’s equations:

∂−→ν
∂t

+
−−→−−→
grad (−→ν ) .

−→
ξ = −−→∇p

div (−→ν ) = 0
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However, we now assume a form for the three components of the velocity, as well as
for the pressure. This gives a lot of various options to apply the Galerkin method. Indeed
one can choose the function basis, the test functions, and the scalar product to apply for
each of the 3 velocity equations and for the continuity equation separately.

Two ways of making the numerous choices at hand are considered. The first one is
to assume a form of the velocity and pressure so as to deduce weight function and a
scalar product behaving in a good manner in order to compute closed form values. The
second method consists in selecting a scalar product to then form an orthogonal (or even
orthonormal) basis of polynomials, which will then be used to describe the velocity and
the pressure and to pray for them to behave nicely in the equations.

The main problem one is confronted to when considering these options is the fact that
the derivatives of the equations tend to introduce terms hard to represent on the same
basis.

It is therefore decided to use the first option and to compute numerically the integrals,
to store the results and use them when required. The following form of the velocity and
pressure are adopted:

Vi =

∞∑

m=0

∞∑

n1=m

∞∑

n2=0

am,in1,n2
Φm
n1,n2 (4.3.7)

p =

∞∑

m=0

∞∑

n1=m

∞∑

n2=0

τmn1,n2
Φm
n1,n2 (4.3.8)

Where Φm
n1,n2 = Pmn1

(ν)Pmn2

(
2η
ηmax

− 1
)

cos(mψ), i represents any of the three compo-
nents of the velocity and where ηmax is the maximal value of η where boundary conditions
are set.

The scalar product chosen is then:

〈f, g〉 =

∫∫∫

D

fg dD (4.3.9)

And finally the chosen test functions will be the Φr
j1,j2.

This allows to obtain a new set of equations: 3 coming from the momentum equation,
under the following form:

+ dam,in1,n2

dt
〈Φm

n1,n2,Φ
r
j1,j2〉+ am,in1,n2

〈
∂Φm

n1,n2

∂ξ
,Φr

j1,j2

〉
= + τmn1,n2

〈
∂p

∂xi
,Φr

j1,j2

〉

And one from the continuity equation, as follow:

+
〈
am,xn1,n2

∂Φm
n1,n2

∂x
+ am,yn1,n2

∂Φm
n1,n2

∂y
+ am,zn1,n2

∂Φm
n1,n2

∂z
,Φr

j1,j2

〉
= 0

These equations can be set under the following matrix form, assuming a discretisation
of time on frequencies ω:




iωA+B 0 0
0 iωA+B 0
0 0 iωA+B
W1 W1 W1






am,xn1,n2

am,yn1,n2

am,zn1,n2


 =




Mτ,x 0 0
0 Mτ,y 0
0 0 Mτ,z

0 0 0






τmn1,n2

τmn1,n2

τmn1,n2




(4.3.10)
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This allows to solve for the values of the am,in1,n2 by using the pseudo or generalised
inverse.

However, it proved difficult to obtain significant results thanks to this method. Indeed,
the integral over the whole domain are not that easy to compute, and the pseudo inverse
gives only a least square method solution, which might lead to inaccurate results, on top
of its heavy computational cost.

Note on the 3D integrals In order to simplify the derivation and to make
the development more similar to the one made by Peters et al., we seek to reduce
the integrals used to surface integrals. It is in fact possible to do it for most of the
terms encountered, since:

div
(

Λ
−→
V
)

= Λdiv
(−→
V
)

+
−→
V .
−−→
gradΛ (4.3.11)

where Λ represents the test function and
−→
V represents the approximation of the

velocity.
This gives, by using the divergence theorem, since div

(−→
V
)

= 0:

∫∫∫

D

−→
V .
−−→
gradΛdD =

∫∫

S

Λ
−→
V .−→n dS (4.3.12)

and:

div
(

Λ
−−→
grad
−→
V .
−→
ξ
)

= Λdiv
(−−→
grad
−→
V .
−→
ξ
)

+
(−−→
grad
−→
V .
−→
ξ
)
.
−−→
gradΛ (4.3.13)

and since:

div
(−−→
grad
−→
V .
−→
ξ
)

= div
(−−→
grad
−→
V
T
)
.
−→
ξ =

−−→
grad

(
div
−→
V
)
.
−→
ξ = 0 (4.3.14)

This gives:
∫∫∫

D

−−→
grad
−→
V .
−→
ξ .
−−→
gradΛdD =

∫∫

S

Λ
(−−→
grad
−→
V .
−→
ξ
)
.−→n dS (4.3.15)

4.3.2.3 Use of a vector potential

Principle The continuity equation is difficult to translate without 3D integrals. One
way to simplify this problem is to see the velocity as the rotational of some vector field,
since it has no divergence:

∃−→G,−→V =
−→rot−→G =⇒ div

(−→
V
)

= 0 (4.3.16)

We then can choose a field
−→
G such that its third component is null (since

−→
G is defined

short a potential function) which gives the following form of the velocity:




Vx = −∂Gx
∂z

Vy =
∂Gy
∂z

Vz =
∂Gy
∂x − ∂Gx

∂y

(4.3.17)
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One can thus choose any form for
−→
G , and have the continuity equation respected, and

then inject the results in the momentum equation and proceed to the projection on a space
of polynomials to determine the coefficients defining

−→
G .

Going through the use of a rotational field however require this field to be derivable
twice, which might be hard to accomplish in ellipsoidal coordinates, because of their in-
herent singularities. Changing of coordinate system might (if well chosen) highly simplify
the derivatives, but also mean that the definition of the discontinuity at the rotor disc will
not be as practical.

Cylindrical coordinates Keeping in mind the previous considerations, the idea of
seeing the space in cylindrical coordinates is considered. This allows to easily define the
rotor disc area, while drastically simplifying the derivatives used. However, it loses the
accuracy the ellipsoidal coordinates has on the disc, and treats symmetrically the out of
disc and on disc regions. Indeed, in cylindrical, r must render both the areas on the disc
and out of the disc. A solution could be to restrain the space and to only be concerned with
the space close to the disc. But this raises the concern of the boundary conditions, since,
with a small domain, the boundaries would be close to the disc, and it would thus be false
to assume a null gradient of the velocity as was the case in Huang and Peters model. And
taking a too large radius around the rotor disc would require too many polynomials states
to give a meaningful representation, since the detail of the disc would be highly localised.

The choice of the cylindrical coordinates has pros and cons. The good opportunities
offered by this coordinate system are:

• The Laplace equation gives an expression to the pressure expressed through known
functions (Bessel functions and trigonometric polynomials)

• The expression of the rotational can give a simple and continuous expression to the
velocity (avoiding divisions by zero of Bessel functions or their derivatives)

Indeed, in cylindrical coordinates (−→ux,−→ur,−→uθ), the rotational is:

−→rot−→G =




∂rGθ
r∂r − ∂Gr

r∂θ
∂Gx
r∂θ −

∂Gθ
∂x

∂Gr
∂x − ∂Gx

∂r


 (4.3.18)

Hence the following expression of the velocity, by choosing Gθ = 0:




Vx = −∂Gr
r∂θ

Vr = ∂Gx
r∂θ

Vθ = ∂Gr
∂x − ∂Gx

∂r

(4.3.19)

The main disadvantage of this choice of coordinates is the fact that there is no disconti-
nuity directly representing the rotor disc. But this problem could be used to our advantage
by redefining the way the inputs of the model are seen, hence avoiding to reduce the inputs
to a pressure discontinuity on the disc, but by seeing directly the effects of the blades on
the fluid.

Redefining the inputs of the model "Bereft of disc, work lies ahead."
A problem arising when using other coordinates than the ellipsoidal coordinates is that

the pressure discontinuity is no longer embedded by the coordinates but has now to be
created in the middle of the integration domain considered. Some of the possible solution
considered are listed here:
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• Divide the space in two domains, one above the disc and one below:

One way to include discontinuities in the domain would be to discretise the various zones of
discontinuities and to solve each zone individually. This would however introduce boundary
conditions on the rotor disc plane, not only in pressure but also in velocity, which would
be far less convenient to compute.

• Write the general form of the pressure, then solve for the coefficients respecting the
best the discontinuities due to blades

This would probably cause a lot of Gibbs phenomenon to appear and add a step of com-
putation to the model.

• Add a new version of the input, in order to only account for the effect of the blades.

This would be mostly done by applying forces rather than pressure discontinuity to the
domain. Although it would probably suffer of the same Gibbs phenomenon problem, It
would probably allow a more generic representation of the blades’ effects.

• Place vortices to recreate the effects due to blades. Then use Biot and Savart law to
translate the inputs in a more meaningful manner for the model.

This method would be similar to free- and prescribed-wake methods by imposing directly
velocities on the domain. The main problem here would be to translate efficiently and
meaningfully the vortex effects and positions.

Computation of the matrices terms In the following subsections the author ex-
plores various ways to exploit the equations obtained above in cylindrical coordinates.

Using the Bessel functions
In this section, we will assume the following forms of the velocity, pressure and test

functions:

−→ν =

∞∑

m=0

∞∑

n=0

amn
−→rot−→Gmn (4.3.20)

p =
∞∑

m=0

∞∑

n=0

τmn Jm(nr) cos(mθ) cosh(nz) (4.3.21)

Λpj = Jp(jr) cos(pθ) cosh(jz) (4.3.22)

where the (z, r, θ) are the cylindrical coordinates, Jm is the mth Bessel function, issued
from the resolution of the Laplace equation in the cylindrical coordinates and where:

−→
Gmn =




Jm(nr) cos(mθ) sinh(nz)
Jm(nr) cos(mθ) cosh(nz)

0


 (4.3.23)

Giving:

−→rot−→Gmn =




νmn,z
νmn,r
νmn,θ


 =




mJm(nr)
r sin(mθ) cosh(nz)

−mJm(nr)
r sin(mθ) sinh(nz)

n
(
Jm(nr)− dJm

dr (nr)
)

cos(mθ) sinh(nz)


 (4.3.24)
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Injecting the form of the velocity and of the pressure in the momentum conservation
equation gives:

+
m,n

∂amn
∂t

−→rot−→Gmn + amn
−−→
grad

(−→rot−→Gmn
)
.
−→
ξ = +

m,n

τmn
−−→
gradΛmn (4.3.25)

Projecting the whole equation on
−−→
gradΛpj gives:

+
m,n

∂amn
∂t

〈−→rot−→Gmn |
−−→
gradΛpj

〉
+ amn

〈−−→
grad

(−→rot−→Gmn
)
.
−→
ξ |−−→gradΛpj

〉
= +

m,n

τmn

〈−−→
gradΛmn |

−−→
gradΛpj

〉

(4.3.26)
Applying the relations obtained in 4.3.2.2, and thus reducing the integrals to surface

integrals, gives:

+
m,n

∂amn
∂t

∫∫

S

−→rot−→Gmn .−→nΛpjdS

︸ ︷︷ ︸
=Am,pn,j

+amn

∫∫

S

−−→
grad

(−→rot−→Gmn
)
.
−→
ξ .−→nΛpjdS

︸ ︷︷ ︸
=Dm,pn,j

= +
m,n

τmn

∫∫

S

−−→
gradΛmn .

−→nΛpjdS

︸ ︷︷ ︸
=Mm,p

n,j

(4.3.27)
The surface S represents the boundary of the cylindrical domain. It is constituted of

D0 and DH which are the top and the bottom of the cylinder, and of its side, C.
The terms of the previous equation can be expressed by developing the integrals on the

surfaces constituting S as:

Am,pn,j = m cosh(0 · n) cosh(0 · j)
∫∫

D0

Jm(nr)Jp(jr)dr sin(mθ) cos(pθ)dθ

−m cosh(−nH) cosh(−jH)

∫∫

DH

Jm(nr)Jp(jr)dr sin(mθ) cos(pθ)dθ

−mJm(nR)Jp(jR)

∫∫

C

sinh(nz) cosh(jz)dz sin(mθ) cos(pθ)dθ

= m(cosh(0 · n) cosh(0 · j)− cosh(nH) cosh(jH))

R∫

0

Jm(nr)Jp(jr)dr

2π∫

0

sin(mθ) cos(pθ)dθ

−mJm(nR)Jp(jR)

H∫

0

sinh(nz) cosh(jz)dz

2π∫

0

sin(mθ) cos(pθ)dθ

Mm,p
n,j = n sinh(0 · n) cosh(0 · j)

∫∫

D0

Jm(nr)Jp(jr)rdr cos(mθ) cos(pθ)dθ

− n sinh(nH) cosh(jH)

∫∫

DH

Jm(nr)Jp(jr)rdr cos(mθ) cos(pθ)dθ

+ n
dJm
dr

(nR)Jp(jR)

∫∫

C

cosh(nz) cosh(jz)dz cos(mθ) cos(pθ)dθ
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With the test functions Λmn expressed as:

−−→
gradΛmn =




nJm(nr) cos(mθ) sinh(nz)

ndJmdr (nr) cos(mθ) cosh(nz)

−mJm(nr)
r sin(mθ) cosh(nz)


 (4.3.28)

For the last matrix, it is preferable to express first intermediate terms. With:

−−→
grad(−→ν ) =




dνz
dz

dνz
dr

dνz
rdθ

dνr
dz

dνr
dr

dνr
rdθ −

νθ
r

dνθ
dz

dνθ
dr

dνθ
rdθ + νr

r


 (4.3.29)

And the expression of the rotational given in 4.3.24, one can derive:

−−→
grad

(−→rot−→Gmn
)

=




nmJm(nr)
r sin(mθ) sinh(nz)

−mnJm(nr)
r sin(mθ) cosh(nz)

dVθ
dz

m
(
n
r
dJm
dr (nr)− Jm(nr)

r2

)
sin(mθ) cosh(nz)

−m
(
n
r
dJm
dr (nr)− Jm(nr)

r2

)
sin(mθ) sinh(nz)

dVθ
dr

m2 Jm(nr)
r2

cos(mθ) cosh(nz)(
−m2 Jm(nr)

r2
+ n

r

(
Jm(nr) + dJm

dr (nr)
))

cos(mθ) sinh(nz)
dVθ
rdθ + Vr

r




(4.3.30)
and using:

−→
ξ =



− sin(χ)

0
cos(χ)




(x,y,z)

=




cos(χ)
− sin(χ) cos(θ)
sin(χ) sin(θ)




(z,r,θ)

(4.3.31)

It gives for the disc surfaces D0 and DH :

−−→
grad

(−→rot−→Gmn
)
.
−→
ξ .−→n = ±

[
cos(χ)

dνz
dz

+ sin(χ)

(
− cos(θ)

dνz
dr

+ sin(θ)
dνz
rdθ

)]
(4.3.32)

and for the cylindrical surface C:

−−→
grad

(−→rot−→Gmn
)
.
−→
ξ .−→n = ±

[
cos(χ)

dVr
dz

+ sin(χ)

(
− cos(θ)

dVr
dr

+ sin(θ)

(
dVr
rdθ
− Vθ

r

))]

(4.3.33)
With the notation:

Dm,p
n,j = cos(χ)Cm,pn,j + sin(χ)Sm,pn,j (4.3.34)

Cm,pn,j and Sm,pn,j can be expressed as follow:
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Cm,pn,j = nm sinh(0 · n) cosh(0 · j)
∫∫

D0

Jm(nr)Jp(jr)dr sin(mθ) cos(pθ)dθ

− nm sinh(−nH) cosh(−jH)

∫∫

DH

Jm(nr)Jp(jr)dr sin(mθ) cos(pθ)dθ

−mnJm(nR)Jp(jR)

∫∫

C

cosh(nz) cosh(jz)dz sin(mθ) cos(pθ)dθ

Sm,pn,j = m (cosh(0 · n) cosh(0 · j)− cosh(−nH) cosh(−jH))×



R∫

0

Jm(nr)

r
Jp(jr)dr

2π∫

0

(
m+ 1

2
sin((m+ 1)θ)− m− 1

2
sin((m− 1)θ)

)
cos(pθ)dθ

+

R∫

0

−n
2

dJm
dr

(nr)Jp(jr)dr

2π∫

0

(sin((m+ 1)θ) + sin((m− 1)θ)) cos(pθ)dθ




+

−H∫

0

sinh(nz) cosh(jz)dz×


−mJm(nR)Jp(rR)

R

2π∫

0

(
m+ 1

2
sin((m+ 1)θ)− m− 1

2
sin((m− 1)θ)

)
cos(pθ)dθ

+ n
dJm
dr

(nR)Jp(jR)

2π∫

0

(
m+ 1

2
sin((m+ 1)θ) +

m− 1

2
sin((m− 1)θ)

)
cos(pθ)θ

+
n

2
Jm(nR)Jp(jR)

2π∫

0

(sin((m+ 1)θ)− sin((m− 1)θ)) cos(pθ)dθ




This method was however not implemented due to the difficulty of computing analytical
values for the matrices used. Although the scalar product of two Bessel function can be
computed analytically, the values of the derivative integrals, and of the integrals divided
by r are not so obvious. It would have been possible to use a numerical method to compute
the integrals and then store all the values for later use in the matrices. However, it was
thought to be more convenient to rely on analytical computation of the matrices values.

Using the Chebyshev Polynomials
The use of the Chebyshev polynomials is here proposed, following ideas of Shen in [42],

in order to solve the previous problem of the analytical values of the integrals. Indeed they
are Jacobi polynomial, with numerous relations allowing to compute the value of many
kinds of integrals.

In this version we express Gmn,j as:

−−→
Gmn,j =




rφn(r)φj(z) cos(mθ)
rφn(r)φj(z) cos(mθ)

0


 (4.3.35)
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Where φk is expressed as a combination of Chebyshev polynomials of the first kind, the
Tn.

It follows:

−→rot−→Gmn =




mφn(r)φj(z) sin(mθ)
−mφn(r)φj(z) sin(mθ)(

rφn(r)φ′j(z) + (φn(r) + rφ′n(r))φj(z)
)

cos(mθ)


 (4.3.36)

and since:

−−→
grad(−→ν ) =




dνz
dz

dνz
dr

dνz
rdθ

dνr
dz

dνr
dr

dνr
rdθ −

νθ
r

dνθ
dz

dνθ
dr

dνθ
rdθ + νr

r


 (4.3.37)

We have:

−−→
grad

(−→rot−→Gmn
)

=




mφn(r)φ′j(z) sin(mθ)

−mφn(r)φ′j(z) sin(mθ)
dνθ
dz

mφ′n(r)φj(z) sin(mθ)
−mφ′n(r)φj(z) sin(mθ)

dνθ
dr

m2

r φn(r)φj(z) cos(mθ)[
−(1

r + m2

r )φn(r)φj(z)− φn(r)φ′j(z) + φ′n(r)φj(z)
]

cos(mθ)
dνθ
rdθ + νr

r




(4.3.38)
The φk are chosen to respect the boundary conditions of the problem, as prescribed

by Shen in [43], while allowing a simple form of their derivatives, in order to obtain sparse
matrices:

φk = Tk −
2k

k + 2
Tk+2 +

k

k + 4
Tk+4 (4.3.39)

with:
φ′k = 2k(Tk+3 − Tk+1) (4.3.40)

Those polynomials respects the null Neumann boundary conditions such that:

∂−→ν
∂−→n

∣∣∣
S

= 0 (4.3.41)

However the Chebyshev polynomials are orthogonal with respect to the weight w(x) =
1√

1−x2 . It is thus required to multiply by this weight to obtain sparse matrices, but do-
ing so would prevent one from using the divergence theorem. Indeed in the cylindrical
coordinate system, the Jacobian is |r|. Incorporating the weight in the scalar product is
thus problematic since it differs from the Jacobian, and would invalidate the form of the
divergence theorem used. Therefore, it is chosen to modify the test function rather than
the scalar product, in the following manner:

Λ̃pn,j = Λpn,jw(r, z) =
φn(r)φj(z) cos(mθ)√

1− r2
√

1− z2
(4.3.42)
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which translates the fact that the boundaries are situated far enough of the cause of
the movement.

Injecting the form of the velocity and of the pressure in the momentum conservation
equation gives:

+
m,n

∂amn
∂t

−→rot−→Gmn + amn
−−→
grad

(−→rot−→Gmn
)
.
−→
ξ = +

m,n

τmn
−−→
gradΛmn (4.3.43)

Projecting the whole equation on
−−→
gradΛ̃pn2,j2

gives:

+
m,n

∂amn
∂t

〈−→rot−→Gmn |
−−→
gradΛ̃pn2,j2

〉
+amn

〈−−→
grad

(−→rot−→Gmn
)
.
−→
ξ |−−→gradΛ̃pn2,j2

〉
= +

m,n

τmn

〈−−→
gradΛmn |

−−→
gradΛ̃pn2,j2

〉

(4.3.44)
It follows that:

+
m,n

∂amn1,j1

∂t

=Am,pn,j︷ ︸︸ ︷∫∫

S

−→rot−−−→Gmn1,j1 .
−→n Λ̃pn2,j2

dS+amn1,j1

=Dm,pn,j︷ ︸︸ ︷∫∫

S

−−→
grad

(−→rot−−−→Gmn1,j1

)
.
−→
ξ .−→n Λ̃pn2,j2

dS

= +
m,n

τmn1,j1

∫∫

S

−−→
gradΛmn1,j1 .

−→n Λ̃pn2,j2
dS

︸ ︷︷ ︸
=Mm,p

n,j

The various terms of the equation are expressed with the use of the following notation:

ck,j =

1∫

−1

φk(x)φj(x)w(x)xdx (4.3.45)

dk,j =

1∫

−1

φk(x)φj(x)w(x)dx (4.3.46)

ek,j =

1∫

−1

φ′k(x)φj(x)w(x)xdx (4.3.47)

fk,j =

1∫

−1

φ′k(x)φj(x)w(x)dx (4.3.48)

Am,pn,j = m (φj1(1)φj2(1)− φj1(−1)φj2(−1)) cn1,n2

1∫

−1

sin(mθ) cos(pθ)dθ

−m (φn1(1)φn2(1)− φn1(−1)φn2(−1)) dj1,j2

1∫

−1

sin(mθ) cos(pθ)dθ
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Cm,pn,j = −m (φn1(1)φn2(1)− φn1(−1)φn2(−1)) fj1,j2

1∫

−1

sin(mθ) cos(pθ)dθ

Sm,pn,j = m (φj1(1)φj2(1)− φj1(−1)φj2(−1))

−1

2
en1,n2

2π∫

0

(sin((m+ 1)θ) + sin((m− 1)θ)) cos(pθ)dθ

+
m

2
dn1,n2

2π∫

0

(sin((m+ 1)θ)− sin((m− 1)θ)) cos(pθ)dθ




+
1

2
(φn1(1)φn2(1)− φn1(−1)φn2(−1))

(
−(m2 + 1)dj1,j2 − fj1,j2

) 2π∫

0

(sin((m+ 1)θ)− sin((m− 1)θ)) cos(pθ)dθ

It was however noticed that with the current form of the rotational, the velocity com-
ponents in r and z would always be of opposite sign and of equal norm, which is not an
adequate constraint to give. Therefore the

−→
G field is redefined, in order to cover a more

general case, as:

−−→
Gmn,j =




rφn(r)φj(z) cos(mθ)
rφn(r)φj(z) cos(mθ)
rφn(r)φj(z) sin(mθ)


 (4.3.49)

The r factor being added in order to stabilise the rotational form with the derivation.
Finally to avoid the singular matrices, the test function is no longer taken in the form

of a gradient, but as follows:

−−→
Λpk,h =




φk(r)φh(z) cos(pθ)
φk(r)φh(z) cos(pθ)
rφk(r)φh(z) sin(pθ)


 (4.3.50)

Note the difference in the form of the θ component which is here to regularise the θ
derivative.

This allowed to obtain stable matrices. The form of the velocity and of its gradient are
described below.

−→rot−→Gmn =




(rφ′n(r) + (m+ 2)φn(r))φj(z) sin(mθ)(
−mφj(z)− rφ′j(z)

)
φn(r) sin(mθ)(

rφn(r)φ′j(z)− (φn(r) + rφ′n(r))φj(z)
)

cos(mθ)


 (4.3.51)

and:
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−−→
grad

(−→rot−→Gmn
)

=




(rφ′n(r) + (m+ 2)φn(r))φ′j(z) sin(mθ)(
−mφ′j(z)− rφ′′j (z)

)
φn(r) sin(mθ)(

rφn(r)φ′′j (z)− (φn(r) + rφ′n(r))φ′j(z)
)

cos(mθ)

(rφ′′n(r) + (m+ 3)φ′n(r))φj(z) sin(mθ)(
−mφj(z)φ′n(r)− rφ′j(z)φ′n(r)− φ′j(z)φn(r)

)
sin(mθ)(

(rφ′n(r) + φn(r))φ′j(z)− (2φ′n(r) + rφ′′n(r))φj(z)
)

cos(mθ)

m
(
φ′n(r) + (m+2)

r φn(r)
)
φj(z) cos(mθ)(

1−m2

r φj(z)φn(r)− (m+ 1)φn(r)φ′j(z) + φ′n(r)φj(z)
)

cos(mθ)(
−(m+ 1)φn(r)φ′j(z) +mφ′n(r)φj(z)

)
sin(mθ)




(4.3.52)
Furthermore, with:

−→
ξ =



− sin(χ)

0
cos(χ)




(x,y,z)

=




cos(χ)
− sin(χ) cos(θ)
sin(χ) sin(θ)




(z,r,θ)

(4.3.53)

−−→
grad

(−→rot−→Gmn
)
.
−→
ξ .−→n = ±

[
cos(χ)

dνz
dz

+ sin(χ)

(
− cos(θ)

dνz
dr

+ sin(θ)
dνz
rdθ

)]
(4.3.54)

However, once again, the model proved to be inadequate. Indeed the matrices turned
out to be singular as soon as a too high number of terms were included.
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Last resort: going full 3D
As a last resort to improve the conditioning of the matrices, we take the following form

of the potential vector:

−−→
Gmn,j =




αmn,jφn(r)φj(z) cos(mθ)

βmn,jφn(r)φj(z) cos(mθ)

γmn,jφn(r)φj(z) sin(mθ)


 (4.3.55)

This was made in the hope that the bad conditioning of the matrices was in fact the
result of the constraints laid on the model by the chosen form of the potential vector, that
would be too constraint to be able to depict the equations.

We do not present the full development of this method here, since it is highly similar
to the previous ones, and gives the same results: matrices with a bad condition number,
as soon as the number of elements included in the approximation becomes useful.

Conclusion on the potential vector This formulation had a lot of advantages,
but it appeared that it was difficult to obtain non singular matrices with it.

It is thought that this difficulty originates from the fact that the kernel of the rotational
operator is tremendously large. Indeed, the kernel contains all fields that can be expressed
as a gradient. And because of the properties of the chosen polynomials, which derivatives
can be expressed on the same basis, given a large enough number of element, a combination
will appear that can be expressed with a gradient, and that will be in the kernel of the
rotational. It is therefore difficult to use this assumption in a meaningful way.

In order for this assumption to work efficiently, one would have to find a form of the
vector potential with which linear combinations can not be expressed by a gradient. This
seems difficult to combine with the property of having easily expressible derivatives for the
functions describing the potential vector.
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5
A new model of rotor induced velocities

Résumé en français: Un nouveau modèle de vitesses induites par un rotor
Dans ce chapitre, le modèle de vitesses induites développé à la suite des études précédentes
est présenté. Il consiste en l’application d’une méthode de Galerkin aux équations d’Euler
en incompressible, inspiré de l’approche de Lopez, Marques et Shen [4]. Cela permet de
dépasser les défauts de l’approche de Peters en se débarrassant des hypothèses injustifiées,
tout en conservant la plupart des avantages de cette approche.

Cependant, cette méthode présente certains défauts. En effet, les équations hyper-
boliques qu’elles traitent n’ont pas d’amortissement et les termes non linéaires, qui ne
sont désormais plus linéarisés, générent des instabilités. Mais ces instabilités peuvent être
réglées par l’emploi de méthodes de filtrage adaptée aux méthodes spectrales.

Après avoir démontré la pertinence de ce modèle par rapport au modèle de Peters et
Huang, il est comparé à d’autres modèles de vitesses induites, de façon à en valider les
résultats.
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5.1. MOTIVATION

This chapter is dedicated to the development of a new rotor induced velocity model that
strives to offer a more accurate description than the one given by the existing dynamic
inflow models, while remaining as efficient as possible, with all the advantages of the
previous models.

5.1 Motivation

From the conclusion of the study of the current state of the art (see 3.5) it appears that
most of the limitations of the model stem from its assumptions. The previous chapter
emphasised the difficulty to overcome the drawbacks of the method without modifying
these assumptions. Table 5.1 lists the assumptions taken, their domain of validity, and
their consequences, both positive and negative.

Assumption Validity Advantages Drawbacks

Incompressibility
Low
Mach
number

Only two equations
instead of the full

Navier-stokes equations

Reduced domain of
validity and pressure

definition
Negligible
viscosity

High
Reynolds Uncouple the equations Leads to hyperbolic

equations

Velocity potential See note
3.1.2

Simplify the equations and
the expression of the

velocity

Hard to justify the validity
of the assumption

Linearisation High
velocity

Uncouple and simplify
equations

Introduce static
parameters, invalid for

hover and near hover cases
Straight

Streamlines
High

velocity
Simplify integration along

a streamline
Same as the linearisation

assumption

Frequency
Domain Always Solve the whole simulation

in one step

Number of states1 and
coupling with blade
element models

The new model we wish to develop here aims to get rid of the unwanted assumptions.
From this new framework, a spectral method will be built, allowing to compute the three
components of the induced velocities, at all points around the rotor and for all flight
conditions.

We will remove the potential assumption because it is judged to be too limiting to
describe the flow below the rotor. We will not linearise the non linear terms, in order to
better capture the behaviour of the velocities, to remove the dependency of the treatment
of the equations on the flight conditions and to keep the method fully dynamic. Finally,
we will develop the method in the time domain in order to have only one set of parameters
that varies in time, and to easily couple it with a time marching blade element model.

Removing these assumptions rid us of a powerful tool for solving the equations. For-
tunately for us, the resolution of the incompressible Euler and Navier-Stokes equations is
an active field of research.

In our case we will follow the methods of treating the incompressible Euler equations
prescribed by [3, 4], heavily supported by the theory developed in [42, 43]. They are mostly

1The time domain expression only requires one set of coefficients, while the frequency domain formula-
tion requires as many sets of coefficients as frequencies considered.

87



CHAPTER 5. A NEW MODEL OF ROTOR INDUCED VELOCITIES

x y

z

Observation
Plane

Computational
Domain

Rotor

Figure 5.2.1: Computational domain

concerned with the Navier-Stokes incompressible equations, but the method can be applied
in the present case nonetheless.

5.2 Developing the model

Treating the equations at hand to describe the induced velocities can be done in several
steps. We will discretise time by using a second order projection scheme, as proposed in
[4]. Then we will apply a spatial discretisation, by applying a Galerkin method at each
time step. The spatial method used is similar to the one used by Peters et al. in their
work so as to retain adaptability. But the basis of projection chosen is quite different, and
is inspired by the work of Shen in [42, 43].

5.2.1 Choice of domain

Before implementing a solution to the Euler incompressible equations, one needs to choose
a computational domain in which the equations will be solved. In our case, the ellipsoidal
coordinates would have been ideal to describe the rotor, but the singularities they introduce
are a real hindrance for the regularity of the solution.

We therefore chose a cylindrical computational domain Dc, of aspect ratio Λ = H
Rc

,
described on Fig. 5.2.1, with the rotor generating the forces on the fluid at its centre:

Dc =

{
0 6 r 6 Rc, 0 6 θ < 2π,

−H
2

6 z 6
H

2

}
(5.2.1)

It is to be noted that this bounded domain is chosen because we follow Shen’s method
which uses Legendre polynomials. However, an unbounded domain could have been mod-
elled with the use of different orthogonal polynomials having more adapted supports, such
as the Laguerre and Hermite polynomials.

Since we chose to use Legendre polynomials to describes this domain, we have to scale
the axial and radial coordinates into [−1; 1]. To do so we use the coordinates:
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x =
2r

Rc
− 1 (5.2.2)

z =
2z

H
(5.2.3)

For convenience, we will also use the coordinate r = x+ 1.

5.2.2 Euler equations

The non dimensional Euler incompressible equations are define as:

∂−→ν
∂τ

+
−→∇(−→ν ) · −→ν =

−→∇p
∇ · −→ν = 0

(5.2.4)

And can be expressed in cylindrical coordinates as follows:

∂u

∂τ
+ u

∂u

∂r
+ v

∂u

r∂θ
− v2

r
+ w

∂u

∂z
= −∂p

∂r
∂v

∂τ
+ u

∂v

∂r
+ v

∂v

r∂θ
+
uv

r
+ w

∂v

∂z
= − ∂p

r∂θ
∂w

∂τ
+ u

∂w

∂r
+ v

∂w

r∂θ
+ w

∂w

∂z
= −∂p

∂z
∂(ru)

r∂r
+

∂v

r∂θ
+
∂w

∂z
= 0

(5.2.5)

This expression is however not well suited for the non axisymmetric case. As mentioned
by Lopez in [4], a good way to add some symmetry in the non axisymmetric case is to use
the complex variables u+ = u+iv and u− = u−iv in place of the u and v components of the
velocity. This change in coordinate also allows an easier definition of the pole conditions
on the axis. It gives the following form of the equations:

∂u+

∂τ
+
u+ + u−

2

∂u+

∂r
+
u+ − u−

2ir

(
∂u+

∂θ
+ iu+

)
+ w

∂u+

∂z
=−

(
∂p

∂r
+ i

∂p

r∂θ

)

∂u−

∂τ
+
u+ + u−

2

∂u−

∂r
+
u+ − u−

2ir

(
∂u−
∂θ
− iu−

)
+ w

∂u−

∂z
=−

(
∂p

∂r
− i ∂p

r∂θ

)

∂w

∂τ
+
u+ + u−

2

∂w

∂r
+
u+ − u−

2i

∂w

r∂θ
+ w

∂w

∂z
=− ∂p

∂z
∂

r∂r

(
r
u+ + u−

2

)
+

∂

r∂θ

(
u+ − u−

2i

)
+
∂w

∂z
=0

(5.2.6)

The last form of the equations is obtained by accounting for the change in scale. Indeed,
changing the variables requires to account for the scale in the derivatives: ∂f

∂r = 2
Rc

∂f
∂x and

∂f
∂z = 2

H
∂f
∂z . This gives:
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Rc
2

∂u+

∂τ
+
u+ + u−

2

∂u+

∂x
+
u+ − u−

2ir

(
∂u+

∂θ
+ iu+

)
+
w

Λ

∂u+

∂z
= −

(
∂p

∂x
+ i

∂p

r∂θ

)

Rc
2

∂u−

∂τ
+
u+ + u−

2

∂u−

∂x
+
u+ − u−

2ir

(
∂u−
∂θ
− iu−

)
+
w

Λ

∂u−

∂z
= −

(
∂p

∂x
− i ∂p

r∂θ

)

Rc
2

∂w

∂τ
+
u+ + u−

2

∂w

∂x
+
u+ − u−

2ir

∂w

∂θ
+
w

Λ

∂w

∂z
= − 1

Λ

∂p

∂z
∂

r∂x

(
r
u+ + u−

2

)
+

∂

r∂θ

(
u+ − u−

2i

)
+

1

Λ

∂w

∂z
= 0

(5.2.7)

5.2.3 Time discretisation

In order to discretise the time, we set −→νk as the approximation of the velocity at time
τ = kδt, with components (uk, vk, wk) in the axisymmetric case and (u+,k, u−,k, wk) for the
non axisymmetric case. Applying the first step of the second order semi-implicit projection
scheme presented in [3, 4] gives an estimate of the velocity

−→̃
ν k+1:

1

2δt

(
3
−→̃
ν k+1 − 4−→νk +−→ν k−1

)
= −−−→grad(pk)− 2

−→
N k +

−→
N k−1 (5.2.8)

where we use the notation
−→
N k =

−→∇(−→νk) · −→νk . The non-linear terms are expressed
explicitly with a simple time scheme.

We then have a relation linking both pk+1 and −→ν k+1 to its estimation computed in the
previous equation:

3

2δt
(−→ν k+1 −

−→̃
ν k+1) = −−−→grad(pk+1 − pk) (5.2.9)

Applying the divergence operator to this equation gives an equation to evaluate pk+1,
thanks to the continuity equation:

− 3

2δt
div(
−→̃
ν k+1) = −∆(pk+1 − pk) (5.2.10)

Finally we have −→ν k+1:

−→ν k+1 =
−→̃
ν k+1 −

2δt
3

−−→
grad(pk+1 − pk) (5.2.11)

One can notice the use of an explicit scheme for the non linear terms, allowing to
decouple the equations, and the fact that −→ν k will always respect the continuity equation.
Thus, this algorithm taken from [3, 4] solves two of the problems that we faced with
the previous model. It guarantees that the continuity equation is respected in all the
domain, and it accounts for the non linear terms without linearising them or introducing
any parameters.

5.2.4 Space discretisation

Once the time has been discretised, we are left at each time step with three different
equations to solve. We will apply on them a Galerkin method. Following the methods
advocated by Shen in [42, 43], we will project the radial and orthoradial components on
combinations of Legendre polynomials. Since these polynomials will have to respect the
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boundary conditions, we will describe them after the boundary conditions definition in
section 5.3. The azimuthal component will be projected on trigonometric polynomials in
order to exploit its periodicity. The choice of the Legendre polynomials rather than the
Chebyshev or other orthogonal Jacobi polynomials might seem arbitrary, but they are
prefered in the current application for two reasons: their weight is simple, and they have
been thoroughly studied, offering a large number of available relations, as shown in [67].

The components of the velocity or of the pressure are therefore expressed as follows:

fk(x, θ, z) =
∞∑

n=0

∞∑

j=0

∞∑

m=−∞
f̂n,jk,mψn(x)φj(z)e

imθ (5.2.12)

where the polynomials φj and ψn will depend on the boundary conditions, and where fk
represent the quantities of interest at time k. We here use the x variable since its domain
is [−1; 1] which is the domain of definition of the Legendre polynomials. Note that x = −1
corresponds to the axis (r = 0).

One can then truncate the approximation to the desired order. We will here consider
the maximal orders to be Nr, Nz and Nθ respectively for the radial, axial and azimuthal
description.

With the specific form taken for the non linear terms (see equation 5.2.7), one can
notice that the azimuthal orders are uncoupled. This allows to separate the various orders
in azimuth, and to define for all values of m:

fmk (x, z) =

Nr∑

n=0

Nz∑

j=0

f̂n,jk,mψn(x)φj(z) (5.2.13)

and thus:

fk(x, θ, z) =

Nθ∑

m=−Nθ

fmk (x, z)eimθ (5.2.14)

We inject this form for each of the quantity of interest in the equations, and apply the
Galerkin method by projecting on the same polynomial space. This provides a matrix rep-
resentation of the equations, with Nθ + 1 uncoupled equations. Therefore, for a considered
m order, we have, for the first step of the algorithm:

ũmk+1 =
4

3
umk −

1

3
umk−1 −

2δt
3

(mu A)−1 (m
uMpmk + 2 uN

m
k − uN

m
k−1

)

ṽmk+1 =
4

3
vmk −

1

3
vmk−1 −

2δt
3

(mv A)−1 (m
v Mpmk + 2 vN

m
k − vN

m
k−1

)

w̃mk+1 =
4

3
wmk −

1

3
wmk−1 −

2δt
3

(mwA)−1 (m
wMpmk + 2wN

m
k − wN

m
k−1

)
(5.2.15)

The notation used here for the matrices is as follows: the upper left subscript refers to
the azimuthal order, the lower left to the component of the velocity. The non linear terms
follow a similar notation, but with the azimuthal order subscript on the right, similar to
the notation of the velocity components.

Then for the second step:

pmk+1 = pmk +
3

2δt
(mL)−1 (mu Dũ

m
k + m

v Dṽ
m
k + m

wDw̃
m
k ) (5.2.16)
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And for the third step:

umk+1 = ũmk+1 −
2δt
3

(mu A)−1 (m
uM(pmk+1 − pmk )

)

vmk+1 = ṽmk+1 −
2δt
3

(mv A)−1 (m
v M(pmk+1 − pmk )

)

wmk+1 = w̃mk+1 −
2δt
3

(mwA)−1 (m
wM(pmk+1 − pmk )

)
(5.2.17)

The coefficients are put in column vectors, while the various terms of the matrices are
defined by:

uA
j,h
n,k =

1∫

−1

ψn(x)ψk(x)(x+ 1)dx ·
1∫

−1

φj(z)φh(z)dz (5.2.18)

Thanks to the independence of the r and z coordinates in the approximation, the
matrices can be seen to be formed by Kronecker products from smaller matrices, as follows:

uA = uAr ⊗ uAz (5.2.19)

where ⊗ is the Kronecker product, uAr and uAz are square matrices defined by:

uA
n,k
r =

1∫

−1

ψn(x)ψk(x)(x+ 1)dx (5.2.20)

uA
j,l
z =

1∫

−1

φj(z)φl(z)dz (5.2.21)

Here the upper right subscripts of the matrices refer to the coefficients of the polyno-
mials involved in the scalar products, while the lower right subscript refers to the type of
scalar product considered, r representing the integration along the radial axis, and z along
the axial axis.

The other matrices used are described as follows:

m
u A

n,k
r =

1∫

−1

uψn(x)uψk(x)(x+ 1)dx (5.2.22)

m
v A

n,k
r =

1∫

−1

vψn(x)vψk(x)(x+ 1)dx (5.2.23)

m
wA

n,k
r =

1∫

−1

wψn(x)wψk(x)(x+ 1)dx (5.2.24)
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m
uM

n,k
r =

1∫

−1

∂ pψn
∂x

(x)uψk(x)(x+ 1)dx (5.2.25)

m
v M

n,k
r =

1∫

−1

pψn(x)vψk(x)dx (5.2.26)

m
wM

n,k
r =

1∫

−1

pψn(x)wψk(x)(x+ 1)dx (5.2.27)

m
u D

n,k
r =

1∫

−1

(
(x+ 1)

∂ uψn
∂x

(x) + uψn

)
pψk(x)dx (5.2.28)

m
v D

n,k
r =

1∫

−1

vψn(x)pψk(x)dx (5.2.29)

m
wD

n,k
r =

1∫

−1

wψn(x)pψk(x)(x+ 1)dx (5.2.30)

m
u L

n,k
r = −

1∫

−1

∂ pψn
∂x

(x)
∂ pψk
∂x

(x)(x+ 1)dx (5.2.31)

m
v L

n,k
r =

1∫

−1

1

x+ 1
pψn(x)pψk(x)dx (5.2.32)

m
wL

n,k
r =

1∫

−1

pψn(x)pψk(x)(x+ 1)dx (5.2.33)

m
u A

j,l
z =

1∫

−1

uφj(z)uφl(z)dz (5.2.34)

m
v A

j,l
z =

1∫

−1

vφj(z)vφl(z)dz (5.2.35)

m
wA

j,l
z =

1∫

−1

wφj(z)wφl(z)dz (5.2.36)
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m
uM

j,l
z =

1∫

−1

pφj(z)uφl(z)dz (5.2.37)

m
v M

j,l
z =

1∫

−1

pφj(z)vφl(z)dz (5.2.38)

m
wM

j,l
z =

1∫

−1

∂ pφj
∂z

(z)wφl(z)dz (5.2.39)

m
u D

j,l
z =

1∫

−1

uφj(z)pφl(z)dz (5.2.40)

m
v D

j,l
z =

1∫

−1

vφj(z)pφl(z)dz (5.2.41)

m
wD

j,l
z =

1∫

−1

∂ wφj
∂z

(z)pφl(z)dz (5.2.42)

m
u L

j,l
z =

1∫

−1

pφj(z)pφl(z)dz (5.2.43)

m
v L

j,l
z =

1∫

−1

pφj(z)pφl(z)dz (5.2.44)

m
wL

j,l
z = −

1∫

−1

∂ pφj
∂z

(z)
∂ pφl
∂z

(z)dz (5.2.45)

where the uψ, vψ,wψ, pψ designate the r polynomials for the induced velocity compo-
nents u, v, w, and for the pressure p respectively, while the uφ, vφ,wφ, pφ are for the z part.
It is to be noted that the m dependency of the polynomials is dropped here for clarity.

This form of the matrices can be further exploited thanks to the properties of the
Kronecker product, in order to reduce the size of the matrices involved, and thus improve
the efficiency of the method. For example, the product uA · umk can be written as uAz ·
Umk · uATr , where Umk is a matrix containing the same coefficients as umk . We will refer to
this form of the equations as the ’mini-matrices’ form, for lack of a better name.

This form of the equations might however be a problem when solving the equations.
The inversion is indeed less straightforward for some cases. In the case of the second step
of the algorithm, the matrix decomposition method has to be employed. This method is
described in section 5.2.5.

5.2.5 Matrix Decomposition Method

There are two ways of solving the obtained equations depending on how they are expressed.
The first is the more direct one, but is much less efficient. Indeed, if one considers the
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states in vectors, and use Kronecker product to express the matrices, one simply has to
inverse the matrices to solve for the coefficients. However the size of the matrices are
larger than they need to be (NrNz · NrNz) and manipulating such huge objects is not
efficient. It makes the computation of inverse and of products needlessly long. Using the
properties of the Kronecker product allows to reduce the size of the matrices considered.
This significantly improves performance for the multiplication, however, the process needed
to solve the equation becomes more involved than a simple inversion. It is referred in the
literature under several name such as the Matrix Decomposition Method [42, 43], the
Matrix Diagonalization Method or the Tensor Product Method.

We will present this method here in the case that is of interest, i.e. solving for the
pressure in the second equation of the algorithm. Using the mini-matrices form, and with
D representing the divergence terms, the equation can be presented under the following
form (the m indices have been dropped off the matrices for conciseness):

(u,vLz)
T pmk

(
uLr −m2

vLr
)

+ (wLz)
T pmk wLr = D (5.2.46)

One can see here that a simple inversion is not possible in order to solve for pmk because
of the impossibility to factor the matrices. We however use to our advantage the fact that
uLz and vLz are identical to slightly simplify the problem (u,vLz thus represents both uLz
and vLz).

The idea behind the Matrix Diagonalization Method is to look for the eigenvalues of(
Lrr −m2Lrθ

)
(Lrz)

−1. Indeed:
((

uLr −m2
vLr
)

(wLr)
−1 − λI

)
g = 0 (5.2.47)

with g an eigenvector and λ an eigenvalue, is equivalent to:
(
uLr −m2

vLr
)
g = λgwLr (5.2.48)

Solving this eigenvalue problem allows to put the previous equation under the following
form, with

(
uLr −m2

vLr
)

(wLr)
−1 = EΛE−1:

E−1
(
uLr −m2

vLr
)

= ΛE−1
wLr (5.2.49)

where E is the eigenvector matrix and Λ the diagonal eigenvalue matrix.
This allows, if one write pmk = Y E−1, to write the pressure equation as:

(u,vLz)
T Y ΛE−1

wLz + (wLz)
T Y E−1

wLr = D (5.2.50)

which gives:

(u,vLz)
T Y Λ + (wLz)

T Y = D (wLr)
−1E (5.2.51)

Thanks to the fact that Λ is diagonal, one can solve for the columns of Y separately,
i.e. ∀λj :

((u,vLz)
T λj + (wLz)

T )Yj = (D (wLr)
−1E)j (5.2.52)

Then multiplying Y by E−1 on the right, one can find the value of pmk .
This method, coupled with the reduced size matrices, allows to improve the performance

of the algorithm significantly, and makes it less than quadratic in Nr and Nz.
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5.2.6 The non linear terms

The non linear terms are all the terms coming from the
−−→−−→
grad(−→v ) · −→v , which are for the

three components of the velocity:

uNL = u
∂u

∂r
+
v

r

(
∂u

∂θ
− v
)

+w
∂u

∂z

vNL = u
∂v

∂r
+
v

r

(
∂v

∂θ
+ u

)
+w

∂v

∂z

wNL = u
∂w

∂r
+
v

r

∂w

∂θ
+w

∂w

∂z

(5.2.53)

They therefore become, with the complex transforms u+ = u+ iv and u− = u− iv:

NL+ =
u+ + u−

2

∂u+

∂r
+
u+ − u−

2ir

(
∂u+

∂θ
+ iu+

)
+w

∂u+

∂z

NL− =
u+ + u−

2

∂u−
∂r

+
u+ − u−

2ir

(
∂u−
∂θ
− iu−

)
+w

∂u−
∂z

NLz =
u+ + u−

2

∂w

∂r
+
u+ − u−

2ir

∂w

∂θ
+w

∂w

∂z

(5.2.54)

The terms they will generate, once projected on another basis with the Galerkin
method, will be products of three polynomials in the best case (i.e. when the deriva-
tive can be expressed with a single polynomial). In order to avoid the struggle of finding
an analytical value for all the various combinations of polynomials, we will use a Legendre-
Gauss-Lobato quadrature to evaluate the relevant integrals. This will be less efficient than
using analytical values, but will also avoid storing the values of the numerous combinations
of integrals.

A Gauss quadrature is a way to approximate the value of an integral by evaluating the
function to integrate at a given number of well chosen of points, with well chosen weights:

1∫

−1

f(x)dx ≈
N∑

n=0

f(xn)wn (5.2.55)

The more points are added, the more precise the method is, and it happens to be exact
for polynomials up to a given order, depending on the quadrature type.

The Legendre-Gauss-Lobato quadrature is a special case of the Gauss quadrature where
the points and weights chosen depend on the derivatives of a Legendre polynomial and
include the border points. It is exact for all polynomials of order up to 2N −3, where N is
the number of points used in the quadrature, which is particularly useful in our case, where
all terms can be expressed as polynomials. We describe the specifics of this quadrature in
appendix B.

Accounting for the non linear terms has the advantage to better represent the phe-
nomenon, while avoiding to introduce parameters to describe the flow which lack any
dynamics. However, they also introduce some difficulties. The two main difficulties we
have faced are the fact that they introduce high order terms which are not dampen and
tend to destabilise the algorithm. The second point is due to the loss of regularity due
to some non linear terms (e.g., the azimuthal derivation introduces a division by r). This
loss of regularity needs to be handle properly to avoid introducing spurious terms, and in
order to maintain the accuracy of the approximation on the axis.
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5.2.7 Accounting for the free stream velocity

In order to account for the free stream velocity, we decide to describe it as in the Huang
and Peters model, with a modulus V∞ and an angle χ. The free stream velocity is therefore
described as:

−→
V∞ =




V∞ sin(χ)
0

V∞ cos(χ)




(x,y,z)

=




V∞ sin(χ) cos(θ)
V∞ sin(χ) sin(θ)
V∞ cos(χ)




(r,θ,z)

(5.2.56)

The free stream velocity can then be added to the equations, where it only appears in
the non linear terms, and will be treated similarly, as follows:

−−→−−→
grad(

−→
V∞ +−→v ) ·

(−→
V∞ +−→v

)
=
−−→−−→
grad(−→v ) ·

(−→
V∞

)
+
−−→−−→
grad(−→v ) · (−→v ) (5.2.57)

It is to be noted that these parameters are inputs of the model, and are not dynamic
parameters, since they define the rotor velocity in the air which is uncorrelated from the
induced velocity it generates in the simulations. However, nothing prevents the change of
these parameters from one time step to another, while keeping the accurate description of
the wake. Thus, although they are described similarly to the Huang and Peters model,
they do not hinder the accuracy of the model.

5.2.8 No need for negative m values

In the azimuthal description, one would need to consider both negative and positive values
of m values. However the fact that all our quantities have in fact real values imposes
additional information, thus removing the need for the computation of the negative values
of m. Indeed, e.g., for the component w of the velocity, the fact that its values are real
imposes w−m = wm. One can refer to [4] for a more thorough explanation.

5.3 Boundary conditions

One of the strengths of the Galerkin method is to avoid adding equations to the system
in order to respect the boundary conditions by making every element in the solution’s
description respect them. In this section, we will look at various possibilities for our
boundary conditions, and the choice of elements they impose for the Galerkin method.

5.3.1 Open boundary condition

For our application, we require the boundaries of our cylinder (side, top and bottom) to be
open boundary conditions, i.e. to let the airflow pass the limit of the domain as if there was
no boundary. Two options were tested in this case. The first one is a simple combination
of Neumann boundary conditions both on the pressure and on the velocity:





∂−→v
∂−→n = 0

∂p

∂−→n = 0

(5.3.1)

Here, −→n represents the normal vector to the boundary. The boundary condition on
the velocity translates the fact that the boundary is far enough of the rotor disc, while the
pressure boundary condition implies a null pressure gradient in the normal direction of the
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boundary, which is coherent with the velocity boundary condition. This combination of
boundary conditions gives satisfying results, but might sometimes generate non physical
phenomena at the boundary, which might end up making the algorithm divergent. It is
however easily implemented with the Galerkin method.

A second, more robust, open boundary condition was designed by Dong in [60]. It also
consists in a Neumann boundary condition on the velocity, but coupled this time to an
adaptable Dirichlet boundary condition on the pressure:





∂−→v
∂−→n = 0

p = −1

2
|−→v |2S0(−→v · −→n )

(5.3.2)

Here, S0 is a smoothed step function designed to be null if some velocity is leaving the
domain and is 1 otherwise. (See [60] for more information).

The aim of the pressure boundary condition is here to balance the energy equation when
airflow is leaving or entering the domain. It is especially efficient in the case of vortices
leaving the computational domain. This boundary condition is however not that easy to
implement in the case of a spectral method. Indeed it implies a value that is not only
variable at the boundary, but also that depends on the current value of the velocity. Its
implementation can however be done, by using the lifting method described by Shen in [43],
while using quadrature (ideally the same as the one used for the non linear elements) to
evaluate the velocity at the boundary. Indeed, once the velocity is known at the boundary,
one can compute the required pressure Dirichlet boundary condition and impose it with
the lifting method.

5.3.2 Axis boundary conditions

On top of the previously mentioned boundary conditions, one needs to specify conditions
on the axis, which is singular in cylindrical coordinates. These conditions impose some
regularity to the velocity and pressure and are referred to as pole conditions. As described
in [4], two main types of pole conditions are considered: the essential pole conditions, that
are the minimal requirements for the velocity to be regular, and the natural pole conditions
that ensure analyticity2 of the velocity in the Cartesian coordinate system. In the current
version of the model, only the essential pole conditions are accounted for. We will see in
section 5.11 that one can benefit from accounting for the natural pole conditions.

These essential pole conditions consist in adding Dirichlet or Neumann boundary con-
dition at x = −1 for all the quantities considered, depending on their azimuthal order
m:

For m = 0:

∂u+
k,0

∂x

∣∣∣
x=−1

= 0 and u+
k,0(x = −1) = 0 (5.3.3)

∂wk,0
∂x

∣∣∣
x=−1

= 0 (5.3.4)

∂pk,0
∂x

∣∣∣
x=−1

= 0 (5.3.5)

2Analyticity defines the property of a function to be described locally by a convergent power serie.
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For m = 1:

∂u+
k,1

∂x

∣∣∣
x=−1

= 0 and u+
k,1(x = −1) = 0 (5.3.6)

∂u−k,1
∂x

∣∣∣
x=−1

= 0 (5.3.7)

∂wk,1
∂x

∣∣∣
x=−1

= 0 and wk,1(x = −1) = 0 (5.3.8)

∂pk,1
∂x

∣∣∣
x=−1

= 0 and pk,1(x = −1) = 0 (5.3.9)

(5.3.10)

For m > 1:

∂u+
k,m

∂x

∣∣∣
x=−1

= 0 and u+
k,m(x = −1) = 0 (5.3.11)

∂u−k,m
∂x

∣∣∣
x=−1

= 0 and u−k,m(x = −1) = 0 (5.3.12)

∂wk,m
∂x

∣∣∣
x=−1

= 0 and wk,m(x = −1) = 0 (5.3.13)

∂pk,m
∂x

∣∣∣
x=−1

= 0 and pk,m(x = −1) = 0 (5.3.14)

(5.3.15)

The summary of the boundary conditions is presented in Fig 5.3.1. It presents the
observation plane as described by Fig 5.2.1, and precises the boundary conditions for this
plane.

5.3.3 Choice of polynomials

We now have a complete set of boundary conditions. This will allow to choose sets of
polynomials respecting these boundary conditions. We will use combinations of Legendre
polynomials Ln, that should ensure a good conditioning of the matrices.

We basically need four different sets of polynomials to cover all our boundary conditions.
The first one must have null Neumann boundary conditions at both boundaries:

γn(x) = Ln(x)− n(n+ 1)

(n+ 2)(n+ 3)
Ln+2(x) (5.3.16)

The second one respect the same boundary conditions plus a null Dirichlet boundary
condition at x = −1:

κn(x) =− n2 + 5n+ 6

n+ 1
Ln(x)− 2n3 + 17n2 + 45n+ 36

(2n+ 5)(n+ 1)
Ln+1(x)

+ nLn+2(x) +
2n2 + 7n+ 6

2n+ 5
Ln+3

(5.3.17)

The third one is used on the pressure in the case where the Dong boundary condition is
used. It has a null Dirichlet boundary condition at x = 1, and a null Neumann boundary
condition at x = −1:

χn(x) = Ln(x)− 2n+ 3

(n+ 2)2
Ln+1(x) +

(
2n+ 3

(n+ 2)2
− 1

)
Ln+2(x) (5.3.18)
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∂−→v
∂−→n = 0

∂p

∂−→n = 0





∂−→v
∂−→n = 0

∂p

∂−→n = 0





For m = 0
∂w0

∂−→n = 0

For m > 0

{
∂wm
∂−→n = 0

wm = 0

∀m
{

∂u+m
∂−→n = 0

u+m = 0

For m = 1 u− = 0

For m 6= 1

{
∂u−m
∂−→n = 0

u−m = 0

Rotor

Figure 5.3.1: Boundary conditions represented in the observation plane.

Finally, the last polynomial is used for the z component of the pressure in the case of
the Dong boundary condition, and respect two null Dirichlet boundary conditions at the
boundaries:

Λn(x) = Ln(x)− Ln+2(x) (5.3.19)

5.3.3.1 Note on the ground effect case

If one were to apply this method to a rotor near the ground, the boundary conditions
would have to be highly modified. Two ways can be seen to deal with this case.
First, considering a case entirely in ground effect, one could modify the bottom
boundary condition, and thus the polynomials used. The second way would apply
more generally, and allow to model the transition between no ground effect and
ground effect. It would consist in adding a new term in a similar way as the one
used for the Dong pressure boundary condition, but this time on the velocity, to
model the right boundary condition.

5.4 Rotor definition

In the above section a time domain method allowing to conserve the divergence-free prop-
erty of the velocity is described. However, including the rotor as a pressure discontinuity
in the domain is not adapted to our method of treating the equations. Indeed, in the
Huang and Peters model, the discontinuity was embedded in the coordinate system, but
considering a discontinuity in our model would introduce unknown boundary conditions in
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velocity at this discontinuity, which is precisely the rotor disc. By taking another point of
view on the action of the rotor on the fluid, it is possible to avoid this. The change made is
to consider the disc as a collection of source terms rather than as a pressure discontinuity.
More precisely, the effect of the rotor will be directly the transcription of the blade forces
on the air (in reaction to the aerodynamic forces on the blades). This method is used in
various actuator disc methods such as described by [6, 68]. On top of removing the need
for a discontinuity in the domain, it is also a good way to describe the effect of the blades in
a more direct and complete manner. Indeed, in the Peters model, only the blade lift forces
are considered to calculate the pressure discontinuity on the rotor disc. Furthermore, since
the Galerkin method does not rely on a grid to impose these forces, one could theoretically
position the forces at the true position of the blades, therefore accounting for flap and
lead-lag angles.

The way to see the action of the blades on the fluid can be illustrated in the case of a
Blade Element Model. In this case each element produces forces (i.e., lift and drag), that
can be seen as acting on the air at a given location. The challenge is now to represent
adequately the forces with spectral elements in our equations. This is done in two steps.
First, our equations will only be able to see force density, so one has to divide the forces
given by the blade element model by the size of the volume where they will be applied.
Then one has to project the force density on the test functions to obtain the spectral
elements representing the forces.

The first step might be a problem, since the volume of the blade element might not
be represented accurately by the approximation, depending on its precision. Therefore
one should use the volume of the representation rather than the true volume of the blade
element model. In our applications the axial size of the rotor (i.e., the thickness of the
profile) is represented thanks to a Gaussian function which thickness depends on the num-
ber of axial coefficients used in the approximation. The azimuthal description of the blade
is simplified to a straight line, while the radial description is described accurately. Other
azimuthal descriptions could have been chosen, but in this first implementation this simple
description seemed to give satisfying results, and is consistent with the lifting line blade
element model used for rotorcraft flight dynamics.

The second step is simply the application of the Galerkin method to the spatial de-
scription of the forces in order to obtain spectral elements compatible with the model.
Once the projection is made, the input terms can be added to the right hand side of the
incompressible Euler equation.

5.5 Stability

Hyperbolic equations are at the centre of our model once the negligible viscous terms
have been removed. The main problem presented by these equations is that they tend
to be unstable when represented by spectral methods, and to develop discontinuities such
as shocks. It is well known that these kinds of behaviours are not easily represented
by spectral method because of the emergence of Gibbs phenomenon, detrimental to the
accuracy of the method, that might even occur in the case of high gradients. Furthermore,
in our application, the input of our model (i.e. the blade forces) will be highly localised,
which will be associated to high gradients.

Many options exist in the literature in order to maintain the stability and the accuracy
of the method.

Our aim in this section is first to understand the origin of the instability, and then to
mitigate its effects. To do so we first study the evolution of the norm of the velocity in
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the case of the chosen algorithm, and then propose to use filters in order to stabilise the
algorithm. We will also address the problem of the sharpness, or even discontinuity of the
inputs. We then demonstrate the effectiveness of this approach.

5.5.1 Origin of the instability

In order to simplify the reasoning, we only consider one dimension approximated with N
elements. Most of the derivation can be done easily in one dimension, and the non linear
terms will be far more readable with only one. The generalisation to the three dimension
case is straightforward, with the exception of the azimuthal component which relies on the
Fourier approximation, and which has thus different properties. The conclusions neverthe-
less remain the same. Compacting the algorithm to remove the estimated velocity gives
the following equation:

∂−→νk
∂t

= −−−→gradpk − 2
−→
N k−1 +

−→
N k−2 +

−→
fk (5.5.1)

We here ignore the continuity equation and the way we obtain pk to focus on the
evolution of the norm ‖−→νk‖ with time. This then gives, by taking the scalar product of the
previous equation with −→νk :

〈∂
−→νk
∂t
| −→νk〉

︸ ︷︷ ︸
=
∂‖−→νk‖2
∂t

= 〈−−−→gradpk | −→νk〉︸ ︷︷ ︸
:=Ikp

−〈2−→N k−1 +
−→
N k−2 | −→νk〉︸ ︷︷ ︸

:=IkNL

+ 〈−→fk | −→νk〉︸ ︷︷ ︸
:=Ikf

(5.5.2)

This approach is close to an evaluation of the variation of energy of the system, which
is similar to the approaches found in [45, 53]. This allows to measure the stability of the
method by assessing if the energy can diverge or not. With only the upper bound, one can
say that the energy can diverge, if it is unbounded, or that the energy will converge.

By definition of the scalar product:

∂‖−→νk‖2
∂t

= −
∫

∂Dc

pk
−→νk · −→n dS −

∫

Dc

(
2
−→
N k−1 +

−→
N k−2

)
· −→νkdD +

∫

Dc

−→
fk · −→νkdD (5.5.3)

We can then reintroduce the actual value of the non linear term to obtain the following
expression:

∂‖−→νk‖2
∂t

= −
∫

∂Dc

pk
−→νk · −→n dS −

∫

∂Dc

| −→νk |2
2
−→νk · −→n dS

+



∫

∂Dc

| −→νk |2
2
−→νk · −→n −

∫

Dc

(
2
−→
N k−1 +

−→
N k−2

)
· −→νkdD


+

∫

Dc

−→
fk · −→νkdD

(5.5.4)

We now have to find acceptable bounds for the integrals IkP , I
k
NL and Ikf in order to

find the cause(s) of divergence in the algorithm, and how to solve it. It is to be noted that
the main argument of the following upper bounds originate from the spectral accuracy
property. This property is summarised by equation 5.6.1.
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5.5.1.1 The input forces terms

We start by using a more transparent version of the integral we have to evaluate by using
the interpolation operator PN , since all the algorithm will ever see will always be an
interpolated version of the inputs:

Ikf = 〈PN
−→
fk | PN−→νk〉

= 〈PN
−→
fk −

−→
fk | PN−→vk〉+ 〈−→fk | PN−→νk〉

(5.5.5)

Then one can use the Cauchy-Schwartz inequality and equation 5.6.1 to bound the
different terms of the previous equation:

|Ikf | ≤ ‖PN
−→
fk −

−→
fk‖‖PN−→νk‖+ ‖−→fk‖‖PN−→vk‖

≤
(
CfN

−σf ‖−→fk‖σf + ‖−→fk‖
)
‖PN−→νk‖

(5.5.6)

Applying the same argument of spectral accuracy on the PN−→vk term gives:

|Ikf | ≤
(
CfN

−σf ‖−→fk‖σf + ‖−→fk‖
) (
CνN

−σν‖−→νk‖σν + ‖−→νk‖
)

(5.5.7)

This shows that if the input function experience high gradients, or even is discontinuous,
it can hinder the stability of the solution. The input will however not be at the origin of
the divergence, as long as it is square-integrable, which should be the case of the blade
input forces, unless extreme conditions are encountered.

Filtering the input is thus not a necessity, but might improve the stability of the
algorithm.

5.5.1.2 The pressure terms

Following the same steps as for the input term, we have:

Ikp = 〈−PN
−−→
grad(PNpk) | PN−→νk〉

= 〈−−−→gradpk | PN−→νk〉+ 〈−−→gradpk − PN
−−→
gradpk | PN−→νk〉︸ ︷︷ ︸

:=EkpI

+ 〈PN
−−→
gradpk −

−−→
grad(PNpk) | PN−→νk〉︸ ︷︷ ︸
:=EkpC

+ 〈−−→grad(PNpk)− PN
−−→
grad(PNpk) | PN−→νk〉︸ ︷︷ ︸

:=EkpII

(5.5.8)

The three last terms of the right hand side of the last equation are all linked to dif-
ferent errors. Respectively they correspond to the approximation error on the gradient of
the pressure, EkpI , to the commutation error between the interpolation operator and the
gradient operator, EkpC , and to the interpolation error of the gradient of the interpolated
pressure EkpII .

While EkpI and EkpII are simply bounded by using Cauchy-Schwartz inequality and the
regularity argument as follows:

|EkpI | ≤ CpIN−σpI‖
−−→
gradpk‖σpI‖PN−→νk‖

|EkpII | ≤ CpIIN−σpII‖
−−→
grad(PNpk)‖σpII‖PN−→νk‖

(5.5.9)
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the commutation error EkpC uses a different argument, found in [41], that gives:

|EkpC | ≤ ‖
−−→
grad(PNpk)− PN

−−→
gradpk‖‖PN−→νk‖

≤ CCEN
3
2
−σCE‖pk‖σCE‖PN−→νk‖

(5.5.10)

Thus, contrary to the input terms, these terms might generate instabilities for it is
unbounded with N if the pressure is not regular enough. In practical applications for
helicopters, the pressure should also be regular. Once again, extreme conditions, such as
shocks, would be problematic to represent, and would notably reduce the stability of the
method.

5.5.1.3 The non linear terms

This term is the one necessitating the most attention. In order to simplify the present
discussion, we introduce two operators: the quadrature interpolation operator QN and the
non linear operator NL defined as follows:

NL(−→ν ) =
−−→−−→
grad(−→ν ) · −→ν (5.5.11)

This leads to the following form of Ik,wNL , with Nk = QN (NL(PN (−→νk))):

Ik,wNL = 〈2Nk−1 −Nk−2 | −→νk〉
= 〈2Nk−1 −Nk−2 −Nk | −→νk〉︸ ︷︷ ︸

:=EkNL,δt

+ 〈QN (NL(PN (−→νk)))−NL(PN (−→νk)) | −→νk〉︸ ︷︷ ︸
:=EkNL,Q

+ 〈NL(PN (−→νk))− PN (NL(−→νk)) | −→νk〉︸ ︷︷ ︸
:=EkNL,C

+ 〈PN (NL(−→νk))−NL(−→νk) | −→νk〉︸ ︷︷ ︸
:=EkNL,P

+ 〈NL(−→νk) | −→νk〉

(5.5.12)

Thus we have divided the integral in the time estimation error EkNL,δt , the quadrature
interpolation error EkNL,Q, the commutation between non linear term and projection error
EkNL,C and the projection error EkNL,P .

The error EkNL,C is particularly difficult to estimate, since it is combining a multipli-
cation commutation error and a derivative commutation error. We thus only consider one
dimension for simplicity, but the results will still hold for the other components. This leads
to take the following form of this error for the first component of the velocity:

EkNL,C = 〈PNuk
∂PNuk
∂r

+ PNvk
∂PNuk
r∂θ

+ PNwk
∂PNuk
∂z

− PNukPN
∂uk
∂r

+ PNvkPN
∂uk
r∂θ

+ PNwkPN
∂uk
∂z
| uk〉

+ 〈PNukPN
∂uk
∂r

+ PNvkPN
∂uk
r∂θ

+ PNwkPN
∂uk
∂z

− PN
(
uk
∂uk
∂r

+ vk
∂uk
r∂θ

+ wk
∂uk
∂z

)
| uk〉

(5.5.13)
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One can here see these two scalar products as errors: a commutation error between
derivation and interpolation, and a commutation error between multiplication and inter-
polation. The first term, the commutation error between derivation and interpolation, can
be bounded with the same method as for the pressure commutation error with:

〈PNuk
∂PNuk
∂r

+ PNvk
∂PNuk
r∂θ

+ PNwk
∂PNuk
∂z

−PNukPN
∂uk
∂r

+ PNvkPN
∂uk
r∂θ

+ PNwkPN
∂uk
∂z
| uk〉 ≤ CN

3
2
−σNL‖−→νk‖σNL

(5.5.14)
While the second term demands slightly more work. No estimation of the error of this

term was found in the literature, but from the result obtained, it may simply be trivial
to bound by some other method. We nevertheless develop the line of reasoning for this
bound, once again only in one dimension to simplify the discussion, the generalisation to
higher dimensions being straightforward.

We begin by showing the link between the coefficients of the product of two functions,
and the coefficient of each function:

∀f, g ∈ H[−1,1]

fg =
∞∑

k=0

∞∑

j=0

f̂kĝjφkφj

=

∞∑

k=0

∞∑

j=0

f̂kĝj

k+j∑

l=0

dk+j
l φl

=
∞∑

l=0



∞∑

k=0

∞∑

j=l−k
f̂k ĝj d

k+j
l




︸ ︷︷ ︸
=f̂gl

φl

(5.5.15)

Then we can compute the product of the two interpolated functions:

∀f, g ∈ H[−1,1]

PNfPNg =

N∑

k=0

N∑

j=0

f̂kĝjφkφj

=
N∑

k=0

N∑

j=0

f̂kĝj

k+j∑

l=0

dk+j
l φl

=

2N∑

l=0




N∑

k=l−N
k≥0

N∑

j=l−k
j≥0

f̂k ĝj d
k+j
l


φl

(5.5.16)

We drop the notation of the non negativity of k and j in the following relations for the
sake of clarity.

105



CHAPTER 5. A NEW MODEL OF ROTOR INDUCED VELOCITIES

This leads us to the following expression for the commutation error:

PN (fg)− PNfPNg =
N∑

l=0




∞∑

k=N+1

∞∑

j=l−k
f̂k ĝj d

k+j
l


φl

−
2N∑

l=N+1




N∑

k=l−N

N∑

j=l−k
f̂k ĝj d

k+j
l


φl

(5.5.17)

The norm of the second term can be bounded by the product of the interpolation error
of f and of g:

‖
2N∑

l=N+1




N∑

k=l−N

N∑

j=l−k
f̂k ĝj d

k+j
l


φl‖2 ≤ ‖f − PNf‖2‖g − PNg‖2 (5.5.18)

For the first term, we need to evaluate the evolution of dk+j
l , which can be found in

[69], for Legendre polynomials:

dk+j
l =

1∫

−1

φk(x)φj(x)φl(x)dx

=

{
0, if l + k + j odd

(−1)s
√

(2s−2k)!(2s−2j)!(2s−2l)!
(2s+1)!

s!
(s−k)!(s−j)!(s−l)! if l + k + j even, with s = k+j+l

2

Using this in the evaluation of the norm of the first term, we found:

‖
N∑

l=0




∞∑

k=N+1

∞∑

j=l−k
f̂k ĝj d

k+j
l


φl‖2 ≤

N∑

l=0




∞∑

k=N+1

∞∑

j=l−k
f̂2
k ĝ

2
j

(
1

N !

)2

 ‖φl‖2 (5.5.19)

Leading to the final estimation of the commutation error:

‖PN (fg)− PNfPNg‖ ≤
C

N !
‖f‖ ‖g‖+ CN−σ1−σ2‖f‖σ1‖g‖σ2 (5.5.20)

Which shows this commutation error is unlikely to be unstable for regular functions.
The use of a second order approximation in time for the non linear term gives for

EkNL,δt :

|EkNL,δt | ≤ Cδtδ2
t ‖−→νk‖ (5.5.21)

The error of the quadrature EkNL,Q can be taken to be null if one choose a high enough
order, since we simply approximate interpolated function, thus product of derivatives.

And finally the regularity of the velocity gives:

|EkNL,P | ≤ ‖NL(−→νk)− PN (NL(−→νk))‖‖−→νk‖ ≤ CN−σNL‖NL(−→νk)‖σNL‖−→νk‖ (5.5.22)

By definition of the non linear operator, one can thus conclude:

|EkNL,P | ≤ CN−σNL‖−→νk‖(σNL−1) ‖−→νk‖σNL ‖−→νk‖ (5.5.23)

Finally, we obtain the following bound on non linear term:

Ik,wNL ≤ CN
3
2
−σNL‖−→νk‖σNL + Cδtδ

2
t ‖−→νk‖+ CNσNL‖−→νk‖σNL‖−→νk‖σNL−1‖−→νk‖ (5.5.24)
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Which leads to the conclusion that the non linear terms can also be a cause of diver-
gence. Indeed, EkNL,C is unbounded with respect to N , mainly because of the commutation
error between derivation and interpolation. Furthermore, one can also see the dependence
on the time step, which is satisfyingly of second order, underlying that the error introduced
by the explicit scheme used to simplify the integration of the non linear terms is acceptable.

5.5.1.4 Conclusion on the norm estimations

To conclude with these norm estimations, it has been shown that the instability stems from
the non linear and gradient terms of the momentum conservation equation. Furthermore,
the regularity of the velocity, as well as of the inputs can highly influence the rate of
convergence. This highlights the fact that it is required to modify the algorithm in order
to maintain its stability, while maintaining sufficient accuracy to represent the phenomena
of our application.

5.5.2 Stabilising the algorithm

In order to maintain the stability of spectral methods treating hyperbolic equations during
the whole length of a simulation, many different tools have been developed. Filters are
a case of particular interest, since they are easy to implement in the case of a spectral
method, and act directly on the coefficients of the approximation. Furthermore, their
application can be done efficiently. Some methods are more promising and precise, but
are mainly tailored for post treatment (see [51]), or are far too computationally heavy (see
[50]).

In the next section, we will present what filters are, how to use them and their impact
on the results of the approximation.

5.5.2.1 Filters

Filters of order p are defined by Vandeven in [52] as a function σ of the order of the
approximation coefficient, having the following properties:





σ(0) = 1

∀l, 1 ≤ l ≤ p− 1, σ(l)(0) = 0

∀l, 1 ≤ l ≤ p− 1, σ(l)(1) = 0

(5.5.25)

And being applied as follows to the spectral approximation of a function u, with the
filtered interpolation operator FN :

FN (u)(x) =

N∑

n=0

σ
( n
N

)
ûnφn(x) (5.5.26)

The main effect of a filter is to improve the convergence rate of the coefficients of
the approximation, which can be seen as introducing some viscosity or damping into the
equations (see [53] for a detailed explanation). It makes sense in terms of maintaining the
stability of the algorithm to introduce a term dissipating the surplus of energy.

An interesting point of view on filters, is to see them as modification of the kernel (see
appendix E.1).

The choice of the filter will therefore be made in order to maintain a decent accuracy,
while ensuring stability.
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5.5.2.2 Effect of filters on the commutation error

As shown during the estimation of the evolution of the norm of the velocity, the main
hindrance to the rate of convergence of the algorithm lies in the commutation error between
interpolation and derivation. In this section we will evaluate this error when filters are used,
and measure their effects.

We first introduce the filtered approximation of a function g:

FN (g)(x) =
N∑

n=0

σ
( n
N

)
ĝnφn(x) (5.5.27)

with σ a filter.
The error of interest is therefore:

I∂FN (g)(x) = FN

(
∂g

∂x

)
(x)− ∂

∂x
(FN (g)(x)) (5.5.28)

Using the fact that:

∂g

∂x
(x) =

∞∑

n=0

∂̂gnφn(x) =

∞∑

n=0

ĝn
∂φn
∂x

(x) (5.5.29)

and:
∂φn
∂x

(x) =

n−1∑

l=0

dφ,nl φl(x) (5.5.30)

In the case of normalised Legendre polynomials:

dL,nl =





2

√
2l + 1√
2n+ 1

for n+ l odd, l ≤ n

0 otherwise
(5.5.31)

we have, by inversion of the sums:

∂̂gl =

∞∑

k=l+1

ĝkd
φ,k
l (5.5.32)

Then, one can expand the terms of I∂FN (g) to obtain:

I∂FN (g)(x) =

N∑

l=0

∞∑

k=l+1

σ

(
l

N

)
ĝkd

φ,k
l φl(x)−

N−1∑

l=0

∞∑

k=l+1

σ

(
k

N

)
ĝkd

φ,k
l φl(x)

=
N−1∑

l=0

[
N∑

k=l+1

(
σ

(
l

N

)
− σ

(
k

N

))
ĝkd

φ,k
l φl(x)

]

+
N∑

l=0

∞∑

k=N+1

σ

(
l

N

)
ĝkd

φ,k
l φl(x)

(5.5.33)

One can see that the usual term of the interpolation error is found, but is filtered,
which does show that the filter works as intended. However an additional term, that is
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usually null, is added, which seems here to compare the filter at different points. This term
can however be dealt with, by using the Taylor formula on σ and the fact that the first p
derivatives of σ are null at 0. This gives:

σ

(
l

N

)
− σ

(
k

N

)
=

l
N∫

0

σ(p+1)(x)

(p+ 1)!
xp+1dx−

k
N∫

0

σ(p+1)(x)

(p+ 1)!
xp+1dx

=
1

Np+1

l∫

k

σ(p+1)( t
N )

(p+ 1)!
tp+1dt

(5.5.34)

This allows to minimise the norm of the first term and to see that its accuracy is limited
by the order p of the filter. It however shows that filtering might introduce unwanted errors
if the order of the filter is too low.

The filtered commutation error remains to be bounded:

EF =

N∑

l=0

∞∑

k=N+1

σ

(
l

N

)
ĝkd

φ,k
l φl(x) (5.5.35)

Similarly to the unfiltered case, one can bound this part as follows, first by assuming
that dφ,kl = dφ,0l dφ,k0 , then by using the spectral accuracy bound on the derivative of g:

‖EF ‖2 ≤
∥∥∥∥∥
N∑

l=0

σ

(
l

N

)
dφ,0l φl(x)

∥∥∥∥∥

2
1

N

∥∥∥∥∥
∞∑

k=N+1

ĝkd
φ,k
0

∥∥∥∥∥

2

≤ CN2(1−s)−1‖g‖2s
N∑

l=0

σ

(
l

N

)2 2l + 1

2

(5.5.36)

The last line of the previous equation assumes the case of Legendre polynomials. With-
out accounting for the filtering, one can find the usual N

3
2
−s order for the Legendre case.

The filter does have a positive influence on the commutation error. However, in order
to truly remove the negative effects of this error, one would have to adapt the order of the
filter with the value of N . This prevents to truly conclude on the theoretical effectiveness
of the filters. Nevertheless, application results are much more encouraging.

5.5.2.3 Effect of filters

Fig 5.5.1 shows the evolution of the states of azimuthal order m = 0 for the axial velocity,
in a unfiltered case. The darker the colour of the line, the higher the order of the coefficient
is. One can here see the development of the high order coefficients and their impact on
the stability of the algorithm.

The literature contains numerous different types of filters for our purpose, such as:

σ1(η) = exp
(
−αη2p

)
(5.5.37)

or

σ2(η) = exp

((
η2

η2 − 1

)2p−1
)

(5.5.38)

Where p is an integer defining the order of the filter and α = −log(ε) (where ε is the
machine zero). These exponential filters have the advantage of being adaptable to our
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0 1 2 3 4 5 6
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 5.5.1: Evolution with time of the coefficients of the axial velocity without any filter,
for 6000 time steps, with δt = 1E − 3.

needs, with a parameter p and to be simple to compute and to apply. The evolution of
the filter σ1 with p, that we will refer to hereafter as the exponential filter, is presented on
Fig 5.5.2. It can be seen that the main function of the exponential filter is to filter mainly
the high order terms, and that its order p selects the amount of element being filtered.
This is coherent with the observation made above on the study of the evolution of the
norm of the velocity and on the observation made in Fig 5.5.1.
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Figure 5.5.2: Impact of the order p on the shape of the exponential filter.

To compare the improvement provided by the filter, we plotted on Fig 5.5.3 the evo-
lution of a low order coefficient of the axial velocity w0

0,0, for different values of p3. With
decreasing order of the filter (and thus stronger filtering), one can see that the value of
this coefficient converges to the same value. This shows that the impact of the filter does
not hinder the evolution of the low order coefficients.

However for a high order coefficient w0
19,29, as is shown on Fig 5.5.4, the impact of the

filter is important. For low and high values of the order p, the coefficient is completely
filtered. Only the order p = 20 is represented here, and it remains null. Higher order of
filtering allows it to be expressed but if not enough filtering is used, the coefficient will

3Here, p =∞ corresponds to a case without filter, by extension of the exponential formula.
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diverge.
Finally for a coefficient of medium order, such as w0

9,14 presented on Fig 5.5.5, the
time evolution is impacted by the presence of filter in a good manner, avoiding diverging
oscillations. However one can see that the impact of a low order of filtering is too important
and makes the value of the coefficient irrelevant.
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Figure 5.5.3: Evolution with time of w0
0,0 for different values of the order p of an exponential

filter.
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Figure 5.5.4: Evolution with time of w0
19,29 for different values of the order p of an expo-

nential filter.

5.5.2.4 Conclusion on filters

The use of filters is indispensable in the current version of the algorithm. Although it
seems hard to ensure that they will solve the problem for any situations, they show very
good results, at a low computational cost, and for a wide range of cases.

There are some downsides to this approach, however. For example, it tends to introduce
some damping in the equations, as shown in [53], which might lead to undesirable effects,
and to smooth some details of the induced flow. Another concern, raised in [54], is the fact
that the application of the same filter at each time step will eventually lead to an effect
much more important than the anticipated effect of the simple filter. The reasoning is that
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Figure 5.5.5: Evolution with time of w0
9,14 for different values of the order p of an expo-

nential filter.

the cumulative effect of the filter over N time step is similar to the application of a filter
of the form σN .
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5.6 Accuracy

In a spectral method, the accuracy of the solution is ensured by the so called spectral
accuracy. This is a property of the spectral approximation that ensure that for regular
enough function to approximate, the approximation will converge faster than any power of
the number of elements in the approximation. In the case of the Legendre approximation,
with PN the Legendre interpolation operator of order N, [41] shows that:

‖u− PNu‖ 6 CN−σ‖u‖σ (5.6.1)

Where C is a constant, ‖.‖ is the norm of the L2
[−1,1] space, ‖.‖σ is the norm of the

Hilbert space Hσ
[−1,1], and u is the function to be approximated (see appendix C for the

functional spaces definitions and notations).
As one can see on equation 5.6.1, the precision of the solution converges faster for

more regular approximated function, and in the extreme case of discontinuous functions,
convergence can be really slow. The main example of this slow convergence is found in the
famous Gibbs phenomenon. Many methods have been developed to counter the oscillations
generated by this phenomenon and to improve the convergence rate of the representation
in discontinuous cases. In our case, the main source of discontinuity emerges from the
inputs of the algorithm. Indeed, the ideal thin disc, and the sharpness of the blades are
detrimental to the accuracy of the spectral method. This also impacts the convergence
of the algorithm, since the oscillations tend to introduce unwanted behaviours. In order
to ease the convergence of the algorithm and to improve its accuracy in the case of sharp
blade forces inputs, a solution proposed by the literature is the use of filters.

To solve the problem of the Gibbs phenomenon, the filters proposed in the literature
are numerous. A good review can be found in [52]. In our case we mainly use two filters.

The Fejèr filter, which is defined as follows:

σF (η) = 1− η (5.6.2)

And the Lanczos filter, defined as:

σL(η) =
sin(πη)

πη
(5.6.3)

Their behaviour is plotted on Fig 5.6.1. One can notice that they are much stronger
than the filters presented in the previous section.

They aim at smoothing the inputs in order to avoid the problematic consequences of
the Gibbs phenomenon. Their effect is demonstrated on Fig 5.6.2. This figure presents the
approximation of a Gaussian function and the effect of the filters. It was made however with
only 20 terms in the approximation, and thus one can see that the removal of the Gibbs
oscillations is made at the cost of the accuracy of the representation. However, Fig 5.6.3
shows the same function being approximated, but with 60 terms in the representation.
Once again the Gibbs phenomenon is obliterated, but this time the accuracy of the filtered
approximation is much better.

Two conclusions can be drawn of these examples. First, the best way to improve the
accuracy of the method is still to increase the number of terms in the approximation. How-
ever, the filtering has a smaller impact on the accuracy with greater number of elements,
while still removing the spurious oscillations.
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Figure 5.6.1: Representation of the Fejèr and Lanczos filters.

Figure 5.6.2: Approximation of a Gaussian function with 20 elements and different input
filters.
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Figure 5.6.3: Approximation of a Gaussian function with 60 elements and different input
filters.
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Huang and Peters Model New Model

Inputs as pressure
discontinuity τ1

0
Force density

sources

√
1− (x+ 1)2 for
x ∈ [−1, 0]

Number of
elements

modd = 20,
meven = 10,
Total: 157

Number of
elements

Nr = 50, Nj = 50,
Nθ = 20 4,

Total: 50000

Conditions ω = 0, χ = 0 Conditions V∞ = 1.0, Λ = 5,
δt = 2E − 3

Filter order p = 20

Table 5.7.1: Input data for comparison with Huang and Peters model

5.7 Comparison with the Huang and Peters model

In this section we compare our new model with Huang and Peters model. We first explain
the principles of the comparison, then present the results and discuss them.

5.7.1 Comparing what is comparable

The main problem when trying to compare both models comes from the difference between
the two models, one being in the frequency domain and the other in the time domain, one
taking its inputs as pressure gradient, the other as forces.

It was therefore decided to choose a constant input, so as to compare a ω = 0 case,
and simply to wait for the convergence of the time domain model. Then the shape of the
axial input force of the new model was chosen to match the τ1

0 input of Huang and Peters
model. Finally, in order to represent the fact that the Huang and Peters model considers
the V∞ to be large compared to the induced velocity, a non dimensional freestream velocity
was chosen with a value of 1 in the new model.

Table 5.7.1 presents the conditions in which both models where taken to make the
comparisons.

5.7.2 Results and discussion

Figure 5.7.1 and 5.7.2 present the comparison for χ = 0◦ of the axial and radial velocities
respectively. Since the case is axisymmetric, only half the plane is represented. One can
see the comparison of the results given by both models on the rotor disc, far upstream and
far downstream.

One can see good agreement between the two models for the axial velocity, which is
what would be expected, since we are in the validity domain of the Huang and Peters model.
The use of the ellipsoidal coordinates however allows a much sharper transition between
the on disc and off disc regions. The contraction of the wake is almost not visible in both
cases because of the high value of the free stream velocity. Although the tendencies are
also similar for the radial velocity, the discrepancies appearing are to be expected because
of the huge difference in the form of the inputs. While the axial inputs are tailored to give
a comparable description, the radial inputs are left untouched. This is due to the different
vision of the inputs. Huang and Peters model considers a discontinuity of pressure as input,
which is deduced from the lift distribution, but that impact the radial component directly,

4For the axisymmetric case we took Nθ = 1
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(a) Axial velocity given by Peters and Huang’s
model
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(b) Axial velocity given by the proposed new
model

Figure 5.7.1: Comparison of the axial velocity between Peters and Huang’s model and the
proposed new model for a τ1

0 load, as presented in [2]. The green dashed line is taken 2R
above the rotor, the red continuous one on the disc, and the blue dotted one 2R below the
disc

while the radial component of the new model is here only generated by the coupling of the
equations, since the input forces only act on the axial component of the velocity.
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(a) Radial velocity given by Peters and Huang’s
model
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(b) Radial velocity given by the proposed new
model

Figure 5.7.2: Comparison of the radial velocity between Peters and Huang’s model and
the proposed new model for a τ1

0 load, as presented in [2]. The green dashed line is taken
2R above the rotor, the red continuous one on the disc, and the blue dotted one 2R below
the disc
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Figure 5.7.3 and 5.7.4 present the comparison for χ = 45◦ on the disc, for axial and
radial velocities respectively. The same observation as previously can be made: that is
to say that the sharp features given by the ellipsoidal coordinates are smoothed in the
new model. Furthermore a discrepancy appears in the description of the velocity out of
the disc. This may be linked to the differences in the boundary conditions, and domain
descriptions between models.
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Figure 5.7.3: Comparison of the axial induced velocity on the disc for χ = 45◦. The dashed
blue line is given by Peters and Huang model, and the red line is given by the proposed
new model.
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Figure 5.7.4: Comparison of the radial induced velocity on the disc for χ = 45◦. The
dashed blue line is given by Peters and Huang model, and the red line is given by the
proposed new model.

This part of the comparison shows the capacity of the new model to at least give
coherent results with the Huang and Peters model in its validity domain. We will further
explore its capacities in the following sections to demonstrate its interest.
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5.8 Demonstration of capabilities

In this section we test our model on academical cases that would be out of the validity
domain of the Huang and Peters model, even with non linear extensions. This aims to
demonstrate the capabilities of the new model, and its relevance in the domain of dynamic
inflow modelling. In these cases, the loading of the disc is constant and uniform. Only the
flight conditions are changed.

5.8.1 Descending flight

For this case, we consider the free stream velocity to have a wake skew angle of 180◦. This
case is relevant in comparison with the Huang and Peters model, since the wake angle of
the model is limited to the 0◦ − 90◦ range.

Fig 5.8.1 presents the flow field obtained around the rotor once the algorithm is con-
verged. One can see a satisfying representation of the velocity, and in blue lines, the
representation of the streamlines emanating from the rotor disc plane. It is to be notice
that on this figure the induced velocity and the free stream velocity are plotted at the same
time (by addition).
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Figure 5.8.1: Induced velocity plus free stream velocity in the case of a descending rotor.
The red line represents the rotor, and the blue lines represent the streamlines emanating

from the rotor disc plane.

5.8.2 Transition flight

One of the downside of the Huang and Peters model is the rigidity of the representation of
the wake, due to the straight rectilinear streamline assumption. Although some effects of
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wake deformation can be accounted for on the disc thanks to a non linear extension (see
section 3.3.4.3), no deformation of the wake is applied in Huang and Peters model.

In this case we have let the wake for an axial flight converged, and then made the
rotor instantaneously transition to a forward flight condition. Practically, this was made
by modifying the angle of the free stream velocity from 0◦ to 90◦, without changing its
norm. The resulting evolution of the wake is presented on Fig 5.8.2. On this figure one
can see that the wake deforms as would be expected, while the previous hover part of the
wake is convected downstream towards the boundary of the domain.

On the final snapshot of Fig 5.8.2 one can notice some spurious velocities on the left
boundary of the domain. These velocities are generated by a Gibbs phenomenon in the
azimuthal description of the wake, which underlines the facts that not enough azimuthal
elements were accounted for, and that a stronger azimuthal filtering should be used.
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(a) τ = 1000δt
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(b) τ = 2000δt
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(c) τ = 3000δt
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(d) τ = 4000δt
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(e) τ = 5000δt
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(f) τ = 6000δt

Figure 5.8.2: Evolution of the induced velocities in the y = 0 plane, with Nr = 30 ,
Nj = 30 and Nθ = 20.
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5.9 Comparison to a prescribed and free wake model

In this section we compare the new model to a prescribed wake and to a free wake model.
To do so we couple the model to AMB, which already possesses the required models and
rotor descriptions. All the comparisons presented below will be made on the 7A and 7AD
rotors which are well documented ONERA wind tunnel rotors.

5.9.1 Integration of the model to AMB

As for the integration of the Huang and Peters model, the model was coded as an inde-
pendent Python module in order to validate it against our Matlab implementation in the
time domain (from which the above results are generated), then integrated as a daughter
class of the disque_rotor class (see section 4.1.4.1 for AMB description).

The architecture of the new model is presented through the UML Class diagram of
Fig 5.9.15. In this diagram, one can see that the implementation of the new model has been
slightly changed in comparison with the implementation of Huang and Peters temporal
version. Most of the classes are in fact storing classes. The FileInit class reads the input
data from a file, and stores it, while computing the required filters, depending on the choice
of the user. From the input information the States class, which stores the coefficients of
all the approximated quantities, can be initialised, as well as the Quad class, which stores
all information related to the quadrature. The polynomials are then initialised, and their
values at the quadrature points are stored. They are indeed required for the quadrature
of the non linear terms. This allows to compute all the matrices required in the Matrices
class.

Finally all these data are aggregated in the NPGIVM class, which possesses the three
main functions of the method. The time_step method implements the time marching algo-
rithm presented above. The lgl_quad deals with the computation of the non linear terms
thanks to the Legendre-Gauss-Lobatto quadrature. Finally, the velocity_point method
allows to compute the value of the velocity at any given point in space.

5The majority of the matrices name of the Matrices class have been removed for clarity

123



CHAPTER 5. A NEW MODEL OF ROTOR INDUCED VELOCITIES

NPGIVM

FileInit

+chi : float
+vinf : float
+m : int
+n : int
+j : int
+n t : int
+delta t : float
+order filter : int
+Height : float
+Radius: float
+F in : numpy array
+ F : numpy array

-make filters()

Quad

+ord quad r : int
+ord quad z : int
+r quad : numpy array
+r quad w : numpy array
+z quad : numpy array
+z quad w : numpy array

-lgl nodes(N:int) : x:numpy array, w:numpy array

LegendrePoly

-Lr quad: numpy array
-Lz quad: numpy array
+phir quad: numpy array
+phiz quad: numpy array
+phir prime quad: numpy array
+phiz prime quad: numpy array

-fill poly(inp: FileInit, quad : Quad)
+value(quad: Quad, kind: string, family: int,
point:numpy array) : p:numpy array

Matrices

+Ar k : numpy array
+Ar g : numpy array
+Az g : numpy array
.
.
.

-fill matrices(inp : FileInit)

States

+u: numpy array
+v: numpy array
+w: numpy array
+p: numpy array
+u quad: numpy array
+v quad: numpy array
+w quad: numpy array
+u in: numpy array
+v in: numpy array
+w in: numpy array

NPGIVM

+inp: FileInit
+states : States
+mat: Matrices
+poly: LegendrePoly
+Vr: float
+Vt: float
+Vz: float

+time step(time : int)
+lgl quad(nn : int)
+velocity point(point: numpy array, time: int)

Figure 5.9.1: UML Class Diagram of the new model.
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5.9.2 Computing the inputs of the model

Similarly to the case of Huang and Peters model, one needs to translate the raw blade
aerodynamic forces input of the blade element model. In the specific case of the AMB
coupling, the forces are localised at the centre of each blade element, on the quarter line
chord. Since these information are highly localised, they would be badly represented by
our method. We thus decide to apply a force density to a volume of the computational
domain tailored to the blade volume. The main issue with this point of view is the axial
dimension of the blade which is very thin when compared with the size of the domain. It
is therefore represented thanks to a Gaussian function. However depending on the number
of elements used in the axial direction, even a smooth Gaussian function can be too sharp
for the spectral method. Therefore the shape of the Gaussian function is tailored to the
number of axial element rather than to the real thickness of the blade. Thus the function
used is:

f(z) =
1

σ
√

2π
e−

1
2( zσ )

2

(5.9.1)

where σ = 4
Nz

. Note that the function is normalised so that the integral over the
domain is one. Then the quadrature implemented for the non linear terms is used to
compute the values of the projection of this Gaussian on the polynomial subspace.

For the radial distribution of the forces, two cases can be considered. In the case of a
straight blade with no flap and lead lag angle, one can interpolate the values of the force
at the quadrature points in order to evaluate its participation. In the other cases, i.e. with
a flap angle, or non straight blades, each blade element force needs to be associated with
a radial domain to apply the force accordingly.

In the model presented here, both the lift and drag generated by each blade element
is accounted for, in order to represent the interaction between the blade and the air as
precisely as possible.

5.9.3 Results

Several cases are presented here, with the main objective of underlining the effect of the
trade trade off between accuracy and rapidity of the description. In order to do so we
observe two different flight conditions (ascending and descending axial flights), with two
different approximations (a very precise one, and a fast one), for the 7A and 7AD rotors.
The main difference between these two rotors is that the 7AD as tapered blade tips. It
makes the induced velocity distribution easier to represent with a spectral method. Indeed,
the induced velocity at the tip of the blade is less sharp, and thus easier to represent. The
7AD representation in AMB is presented on Fig 5.9.2, and its characteristics are listed in
table 5.9.1

The fast configuration was computed with Nr = 80, Nz = 70 and Nθ = 10. The mean
time for an iteration run on one CPU was of 3.9s. The precise configuration was run with
Nr = 200, Nz = 150 and Nθ = 16, and the mean time of the iteration was around 3.2
minutes. Both methods were filtered with a Lanczos input filter and an exponential filter
of order p = 20. However the time step of the fast method was set to 1◦ of rotor rotation,
while the precise case used a 0.5◦ of rotor rotation. Table 5.9.2 compares the computation
time of the different methods tested for one iteration. It is to be noticed that the heart of
the prescribed and free wake models are coded in Fortran, which makes them significantly
faster, and that the time for each iteration tends to grow as the number of vortices to
account for increases.
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Figure 5.9.2: Representation of the 7AD rotor in AMB.

5.9.3.1 Ascending axial flight condition

For this flight condition the free stream is set to 10m/s in the axial direction. Which is
a case similar to the one used for the comparison with Huang and Peters model made in
chapter 4.

In the case of the 7A rotor, we compare on Fig 5.9.4, 5.9.5, 5.9.6 the axial, radial and
azimuthal induced velocities on the blades respectively, for the free wake model, prescribed
wake model and the new model with the fast configurations. Fig 5.9.3 presents the forces
on the blade for the same case. The agreement between the models is quite good for the
axial and the radial velocities. The azimuthal velocity is quite different for all cases, but
the tendencies are at least coherent for all the models. The main differences can be seen
at the blade tip. Indeed, in the area where the lift varies strongly, the behaviour of the
induced velocity is quite difficult to represent with a spectral method.
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Radius R 2.1 m
Blade chord along the span

0.425m 0.14m
1.575m 0.14m
1.89m 0.14m
1.988m 0.14m
2.002m 0.1385m
2.018m 0.133m
2.025m 0.1298m
2.037m 0.122m
2.048m 0.113m
2.063m 0.0987m
2.078m 0.079m
2.1m 0.046m

Rotational Speed Ω 1020 rpm
Blade root radius 0.425

Airfoils used along the span
0.425m 7→ 1.575m OA213
1.575m 7→ 2.1m OA209

Linear twist angle
0.425m 0◦

1.575m −4.545◦

1.89m −3.490◦

1.988m −3.877◦

2.002m −3.93◦

2.018m −3.996◦

2.025m −4.024◦

2.037m −4.0707◦

2.048m −4.114◦

2.063m −4.174◦

2.078m −4.233◦

2.1m −4.320◦

Table 5.9.1: Characteristics of the 7AD rotor.

Method Computation time (min) Language

Prescribed Wake 0.01 Fortran
Free wake 2.5 Fortran

New model, fast
configuration 0.125 Python

New model, precise
configuration 3.24 Python

Table 5.9.2: Mean time taken by the different models for one time iteration.
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Figure 5.9.3: Comparisons on the blades of the lift distribution given by new model for
the 7A rotor, with prescribed and free wake models, after 5 rotations.
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Figure 5.9.4: Comparisons on the blades of the axial velocity given by new model for the
7A rotor, with prescribed and free wake models, after 5 rotations.
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Figure 5.9.5: Comparisons on the blades of the radial velocity given by new model for the
7A rotor, with prescribed and free wake models, after 5 rotations.
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Figure 5.9.6: Comparisons on the blades of the orthoradial velocity given by new model
for the 7A rotor, with prescribed and free wake models, after 5 rotations.
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For the 7AD rotor, we compare on Fig 5.9.8, 5.9.9, 5.9.10 the axial, radial and
azimuthal induced velocities on the blades respectively, for the free wake model, prescribed
wake model and the new model with the fast configurations. Fig 5.9.7 presents the forces
on the blade for the same case. The same remarks as previously can be made on the
comparisons of the various models. However, in the case of the 7AD rotor, the agreement
between the model at the tip of the blade is better, because of the shape of the induced
velocity that is more easily represented by the spectral method.
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Figure 5.9.7: Comparisons on the blades of the lift distribution given by new model for
the 7AD rotor, with prescribed and free wake models, after 5 rotations.
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Figure 5.9.8: Comparisons on the blades of the axial velocity given by new model for the
7AD rotor, with prescribed and free wake models, after 5 rotations.
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Figure 5.9.9: Comparisons on the blades of the radial velocity given by new model for the
7AD rotor, with prescribed and free wake models, after 5 rotations.
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Figure 5.9.10: Comparisons on the blades of the orthoradial velocity given by new model
for the 7AD rotor, with prescribed and free wake models, after 5 rotations.
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Fig 5.9.11 presents the wake given by the models after 5 rotor rotations for the fast
configuration. One can see that the fast model gives a good description, but that most of
the effects of the blades are smoothed in the wake, as can be seen on the wake generated
by the free wake model on Fig 5.9.12.
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Figure 5.9.11: Wake of the 7AD rotor given by the presented model, for the fast configu-
ration, after 5 rotations.

133



CHAPTER 5. A NEW MODEL OF ROTOR INDUCED VELOCITIES

−3 −2 −1 0 1 2 3
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0
Velocity field

Figure 5.9.12: Wake of the 7AD rotor given by the free wake model, after 5 rotations.
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5.9.3.2 Descending axial flight condition

We present here the results obtained on the 7AD rotor for a case of descending axial flight.
The free stream velocity is set to 1m/s. Only the results given by the fast configuration
are presented here.

Fig 5.9.14, 5.9.15, 5.9.16 present the axial, radial and orthoradial induced velocities on
the blades after 5 rotations of the rotor during the descending case, while 5.9.13 presents
the lift distribution. It can be said that the free wake and the new model are in good
agreement for the axial and radial velocities and the lift distribution, while the prescribed
wake model seems to have reach one of its limits. Indeed, the free stream velocity being
smaller than in the previous cases, the impact of the induced velocities on themselves,
which is not captured by the prescribed wake model, is not negligible. However, there
are some discrepancies between the representation given by the free wake model and the
new model. The main one concerns the tangential velocity that is completely different
for the two models. Another difference is visible between the two models mostly between
0.4 and 0.5 blade length where the two models have different tendencies. A higher order
approximation would probably improve the results given by the new model by making it
able to capture the phenomena at the root of these discrepancies.
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Figure 5.9.13: Comparisons on the blades of the lift distribution given by new model, with
prescribed and free wake models, after 5 rotations.
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Figure 5.9.14: Comparisons on the blades of the axial velocity given by new model, with
prescribed and free wake models, after 5 rotations.
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Figure 5.9.15: Comparisons on the blades of the radial velocity given by new model, with
prescribed and free wake models, after 5 rotations.
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Figure 5.9.16: Comparisons on the blades of the orthoradial velocity given by new model,
with prescribed and free wake models, after 5 rotations.
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Fig 5.9.17 and Fig 5.9.18 present the wake after 5 rotations, as computed by the free
wake and the new model respectively. One can see that the development of the wake is
coherent between both models, although the fast configuration does not capture all the
details of the vortices generated by the blade. Furthermore the wake is not convected as
much as it is in the case of the free wake model. However, there is a good description of
the inversion of the induced velocities on the blades, and of the low induced velocity value
zone above the middle of the blades. Finally, one can see on Fig 5.9.18 the emergence of
spurious velocities on the axis. This problem will be addressed in section 5.11, and is due
to the bad treatment of the cylindrical singularity on the axis.
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Figure 5.9.17: Wake given by the free wake model, after 5 rotations.

5.9.4 Discussion

The results given by the new model are in good agreements with the free wake model.
Furthermore the main features of the induced velocities are satisfyingly represented with
few coefficients, and thus a fast computation, while the more time consuming methods
allow a better description of all the features of the wake. It was furthermore demonstrated
that these remarks can be made for different flight conditions.

However the price to pay for precision is tremendous. The main cause of this cost is
the quadrature of the non linear terms, that is quadratic with Nθ. Parallel computing and
the use of more than one CPU could therefore greatly improve the performances of this
algorithm, but it is difficult to say if it would be competitive with the other models. Indeed,
in the computation of the new values of the velocity, the Nθ equations are uncoupled and
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Figure 5.9.18: Wake given by the presented model, for the fast configuration.

could be solved in parallel. Furthermore, the computation of the non linear terms only
depends on values that are already known and could therefore also benefit of the parallel
computing.
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5.10 Re-mapping

One of the reasons for the use of a filter on the blade forces inputs of the model is to avoid
the emergence of Gibbs phenomena due to the sharpness of the inputs. Another way to
mitigate this behaviour, which can be complementary to the use of filters, is to remap
the domain in such a way that one has a better accuracy on the disc. In this section we
investigate a way to apply this idea, and underline its advantages and downsides.

5.10.1 What is a remapping?

What will be called hereafter a remapping is a function allowing to pass from one vision
of the space to another smoothly. In our case, the aim is to expand space at the point of
sharpness, in order to reduce the norm of the derivatives of the function to be approximated.
It can be seen as a way to improve convergence of the interpolation operator without
increasing the number of elements considered, by acting on the other part of the norm
inequality, i.e. the norm of the function.

5.10.2 How to choose a remapping?

First of all, the remapping needs to be a bijection from [−1, 1] into [−1, 1] in order to be
able to describe the wanted space with Legendre polynomials. We propose this following
form:

bβ(x) =
x+ βx3

1 + β
(5.10.1)

where β is a parameter controlling the slope at 0 of the function bβ . For practical
purposes we set b−1

β = qβ . This choice of remapping is motivated by its simple form, a
polynomial, and by the fact it is in fact quite versatile thanks to its parameter β. This
parameter will allow space to be more or less expanded around 0, e.g. around the rotor
disc in the z coordinate, as can be seen on Fig. 5.10.1. This will have the main effect
that sharp functions will be smoothed, thus limiting the Gibbs phenomenon around the
point of high gradients. On Fig. 5.10.2 we have plotted a sharp gaussian function and its
approximation by the first 20 Legendre polynomials, but in various dilated spaces, using
different values of β. It visibly shows the diminution of the Gibbs phenomenon.

5.10.3 How to apply a remapping?

We need to distinguish the representation space, which is the space in which we wish to
compute the velocity, and the computational space, which is a dilated space where the
inputs take a more acceptable form (i.e. a less sharp form). Thus, in one dimension, one
can set:

u(x)︸︷︷︸
Input space

=
∞∑

k=0

ûkφ(x) =
∞∑

k=0

ûkψ (qβ(x)) =
∞∑

k=0

ûkψ(ξ) = v(ξ)︸︷︷︸
Dilated space

(5.10.2)

where we introduce the coordinate of the computational space ξ = qβ(x). This remap-
ping will dilate the neighbourhood of the point x = 0. Another way to see this, is that we
no longer use a combination of Legendre’s polynomials as projection space, but rather a
combination of Legendre’s polynomials composed with the function qβ .
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x

y

Figure 5.10.1: Evolution of the function bβ with various values of β. In black, β = 0, in
red β = 0.5, in green β = 1, and in blue β = 3.

Figure 5.10.2: Approximation of a gaussian function with various values of β. In red,
β = 0, in green β = 1, and in blue β = 2.
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Using this, one can also show that:

u′(x) =
∂qβ
∂x

v′(ξ) (5.10.3)

Here one can see, that the flatter bβ is at 0 (i.e. the steeper qβ is), the smoother v will
be. However, only the neighbourhood of x = 0 will be improved, if a sharp behaviour
appears elsewhere, there will be no remedy but a higher order, and/or filtering. One could
introduce another remapping, but it requires to know the location of the sharp behaviour
beforehand.

This leads to the following integration when projecting the velocity on a test function
φk, with a weight function w that might depend on β:

1∫

−1

u′(x)φk(x)w(x)dx =

1∫

−1

q′β (bβ(ξ)) v′(ξ)ψk(ξ)w (bβ(ξ)) b′β(ξ)dξ (5.10.4)

which is obtained by the change of variable x = bβ(ξ). Since bβ is a bijection, one have:
q′β (bβ(ξ)) = 1

b′β(ξ)
. Furthermore, one can choose the weight function, w, as wanted. Here,

one can choose w(x) = 1, allowing to keep a scalar product, and simplifying the presented
integral to:

1∫

−1

u′(x)φk(x)w(x)dx =

1∫

−1

v′(ξ)ψk(ξ)dξ (5.10.5)

But in a case where one wish to project u and not its derivative, one would have to
choose the weight w (bβ(ξ)) = 1

b′β(ξ)
. In our case, we need to use both integrals, hence the

incentive to use a polynomial form of the remapping in order to easily express the integrals.
In the case of the pressure equations, we choose a weight function of the form w(ξ) =

(1 + bβ(ξ))b′β(ξ)2.
Thus with a good choice of weight function, and for a given β, one can compute the

required matrices to run a simulation.

5.10.4 Results and comparisons

The first thing to notice for the remapping is its efficiency to help the representation
of the blade forces input. We can see on Fig 5.10.3 and Fig 5.10.4 the effect of β on
the representation of the input forces, localised on the rotor disc. All the figures have
been made with the same number of elements in the approximations: 30 for the axial
description and 30 for the radial description, on an axisymmetric case. The higher the β,
the sharper the description of the inputs are. On Fig 5.10.3 one can see that the highest
value of β allows to represent sharp functions as input, while having almost no Gibbs
phenomenon. On Fig 5.10.4, the improvement brought by the remapping can be seen in
its clear description of the rotor, and the swift transition between on disc and off disc.

It is to be noted however that too high values for β (β > 8) tend to increase the
condition number of the matrices, leading to instabilities.

This method has not been applied to a rotor case, but, from the results presented
here, it seems to be a possible improvement to represent cases such as the 7A rotor, which
presents an especially sharp induced velocities shapes at its blade tip.
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Figure 5.10.3: Approximation of a gaussian function in z with various values of β. In
green, β = 0, in blue β = 2, and in red β = 4. For the case β = 4, the sharpness of the
gaussian has been increased.
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Figure 5.10.4: Approximation of a step function in r with various values of β. In green,
β = 0, in blue β = 2, and in red β = 4.
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5.11 Regularity on the axis

As mentioned before, the axis is singular in cylindrical coordinates. The first method
employed to solve the consequences of this singularity was to impose the essential pole
conditions, as described in [4], as boundary conditions on the axis. This works fine for
axisymmetric cases and for most flight conditions.

However for higher and higher advance ratio conditions (or high wake angle) the algo-
rithm experiences unstable behaviour on the axis, first for the axial velocity, which then
leads to the divergence of the algorithm. The origin of this unstable behaviour could be
traced back to the non linear terms of the axial momentum conservation equation mainly.
They are not the only irregular terms, but are the most significant in the applications
studied. The most problematic of these terms, u−m1

∂wm2
r∂θ , happens to be irregular on the

axis when computing it with m1 = 1. Indeed, the orthoradial derivative has by definition
less regularity on the axis (because of the division by r), and no further regularity can be
retrieved from the u−m1

component of the velocity for m1 = 1, since its value is not null for
this azimuthal order. For example, the case with m2 = 1 should have the same regularity
on the axis as wm, where m = m1 +m2 = 2. It is in fact not the case. Although the non
linear term is not singular, it imposes a non zero value on the axis, when the required pole
condition should be null for this azimuthal order.

It is to be noted that this problem can be solved by the use of stronger exponential
filters. However, the aim of this filter is to remove high order spurious terms, and not to
smooth the representation of the velocities on the axis. Using it with a too large value of
the filter order has a non negligible impact on the representation of the sharp details of
the wake, and it is highly preferable to solve this problem by another mean that would not
impact the accuracy of the results.

This prompted the author to either add more regularity into the wm2 component, or
to find a way to ignore the axis region in the non linear terms. The second solution
was investigated, but lead to no satisfying solution since it implied to deal with Gibbs
phenomenon, or to ignore part of the computational domain, which was just moving to
another place the problem of the boundary conditions.

Furthermore, adding a constant regularity for all values of m2 was in fact ineffective,
because either too restrictive on the representation of the velocity, or leaving room for
some irregularities on the axis. One answer to the problem was in fact contained in the
natural pole conditions [4]. Indeed when including these boundary conditions into the non
linear terms, the radial derivatives and the orthoradial derivatives were much more regular
for all values of m2. Yet, it did not solve all the irregularities.

In fact most of the problems for this method come from the fact that the required
regularity of a solution is not matched by the other terms in the equations. This kind of
discrepancies in a spectral method is problematic. Indeed, part of the regularity on the axis
is dictated by the chosen boundary conditions (and thus in our case, by the approximation
basis). Imposing an effect that is less regular on a not adapted basis creates oscillations,
which are in fact assimilable to Gibbs phenomena. Indeed, the simplest example would be
a non null function at r = 0, represented by an approximation basis, null at r = 0, which
would try to represent it, creating oscillations, similar to Gibbs phenomena.

In the remaining of this section, we will present the way we have chosen to account for
these natural pole conditions, following ideas in [70], how we have derived it, how it affects
our algorithm. Unfortunately, no satisfying solution is found, although it is thought that
the heart of the problem has been exposed.

144



5.11. REGULARITY ON THE AXIS

5.11.1 Natural pole conditions

The natural pole conditions defined in [4] are deduced from the regularity conditions that
are required for the velocity field. I.e. if one assumes the Cartesian components of the
velocity to be analytic, one can deduce conditions on the regularity of the cylindrical
components.

However, one can find these pole conditions by another mean than the one presented in
[4]. The way they will be developed here will in fact answer the question: "what boundary
conditions should be imposed on the axis to have regular non linear terms?", since it is
the heart of our problem. This differs from the previous approach in the methodology, and
should be slightly more restrictive on the pole conditions. To solve this question one can
assume the form of the axis regularity, as proposed by [70], and tailor them in order to
have sufficient regularity.

Dropping the dependency in z and time, and considering only one term, in order to
clarify the derivation without loss of generality, it gives:

u+
m(r, θ) = rk

+
m û+,n

m (r)eimθ (5.11.1)

u−m(r, θ) = rk
−
m û−,nm (r)eimθ (5.11.2)

wm(r, θ) = rk
z
mŵnm(r)eimθ (5.11.3)

pm(r, θ) = rk
p
m p̂nm(r)eimθ (5.11.4)

Where k+
m, k

−
m, k

z
m, k

p
m control the regularities of u+

m, u
−
m, wm, pm on the axis, and are to

be determined. To do so, we input this form of the velocity components in the non linear
terms and verify that the non linear terms are at least as regular as its corresponding term
in the equations. Meaning that the non linear terms of azimuthal order m added to the
axial part of the velocity should be at least as regular as wm.

Computing the non linear term associated to the u−m component, and only considering
the u−∂u− terms, where m1 and m2 are positive, we have:

u−m1

2

∂u−m2

∂r
− u−m1

2

∂u−m2

r∂θ
=

1

2
u−,nm1

rk
−
m1

[
u−,nm2

rk
−
m2
−1(k−m2

−m2 + 1) + rk
−
m2
∂u−,nm2

∂r

]
(5.11.5)

with m1 + m2 = m being imposed by the exponential term. This gives the following
possible conditions on k−m:

k−m1
+ k−m2

> k−m, if k−m2
−m2 + 1 = 0 (5.11.6)

k−m1
+ k−m2

+ 1 > k−m, if k−m2
−m2 + 1 = 0 and

∂u−,nm2

∂r

∣∣∣
r=0

= 0 (5.11.7)

k−m1
+ k−m2

+ 1 > k−m, if k−m2
−m2 + 1 = −1 (5.11.8)

k−m1
+ k−m2

− 1 > k−m, otherwise (5.11.9)

With similar derivations on the other non linear terms, a set of conditions can be
derived for all parameters. Furthermore, by applying this method to the whole equation,
and not only the non linear terms, one can derive the same relations for the pressure.
Finally, one can settle on the following rules for the regularities of the velocity in order to
solve all the conditions:
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k+
m = m+ 1

k−m = m− 1

kzm = m

kpm = m

∂û+,n
m

∂r

∣∣∣
r=0

= 0

∂û−,nm

∂r

∣∣∣
r=0

= 0

∂ŵnm
∂r

∣∣∣
r=0

= 0

∂p̂nm
∂r

∣∣∣
r=0

= 0

(5.11.10)

One can verify that the boundary conditions on the degree ofm imposed by this method
is similar to the one obtained in [4]. However, the conditions to impose on the velocity
in order to produce regular non linear terms are more constraining than the natural and
essential pole conditions. This justify the fact that the natural pole conditions were not
sufficient in our case. It is however to be noticed that most of the cases treated in the
literature do not impose these conditions, although there seems to be no true consensus on
the matter. The need for stronger boundary conditions probably emerged from the lack of
viscosity in our equations, which thus tends to amplify the effects of the numerical errors
and the high order non linear terms, which are the root of this problem.

5.11.2 Impact on the algorithm

One way to implement the natural pole conditions automatically in our description is to
pass by a pseudo basis which adds the relevant regularity to the given coefficient, in the
form of a rm factor. This method presented in [70] allows to respect the pole conditions
without impacting too much the algorithm. Indeed, most of the rm terms will be simplified.
However, since the polynomials will be modified, all the matrices will change.

We therefore define the velocity component and the pressure as follows, ∀m > 2:

u+
k,m(r, θ, z) =

Nr∑

n=0

Nz∑

j=0

rm+1û+,n,j
k,m φm+1

n (r)γj(z)e
imθ (5.11.11)

u−k,m(r, θ, z) =

Nr∑

n=0

Nz∑

j=0

rm−1û−,n,jk,m φm−1
n (r)γj(z)e

imθ (5.11.12)

wk,m(r, θ, z) =

Nr∑

n=0

Nz∑

j=0

rmŵn,jk,mφ
m
n (r)γj(z)e

imθ (5.11.13)

pk,m(r, θ, z) =

Nr∑

n=0

Nz∑

j=0

rmp̂n,jk,mφ
m
n (r)γj(z)e

imθ (5.11.14)
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The first step of the projection method therefore becomes:

ũ+
k+1,m =

4

3
u+
k,m −

1

3
u+
k−1,m +

2δt

3

(
−∂pk,m

r∂r
+ r−m−1(2NLu

+

k,m −NLu
+

k−1,m)

)

ũ−k+1,m =
4

3
u−k,m −

1

3
u−k−1,m +

2δt

3

(
−2mpk,m − r

∂pk,m
∂r

+ r−m+1(2NLu
−
k,m −NLu

−
k−1,m)

)

w̃k+1,m =
4

3
wk,m −

1

3
wk−1,m +

2δt

3

(
−∂pk,m

∂z
+ r−m(2NLwk,m −NLwk−1,m)

)

(5.11.15)
The pressure correction is then given by:

− 3

2δt
div
(−→̃
ν k+1,m

)
= −∆(pk+1,m − pk,m) (5.11.16)

with:

−→
div
(−→̃
ν k+1,m

)
= rm

(
(m+ 1)ũ+

k,m +
r

2

∂ũ+
k,m

∂r
+

1

2

∂ũ−k,m
r∂r

+
∂w̃k,m
∂z

)
(5.11.17)

and:

∆pk,m = rm
(

2m+ 1

r

∂pk,m
∂r

+
∂2pk,m
∂r2

+
∂2pk,m
∂z2

)
(5.11.18)

where the azimuthal derivatives have been simplified with the corresponding terms from
the radial derivatives.

Furthermore the non linear terms can be expressed as:

NL+ = rm+1

(
ru+

m1

2

∂u+
m2

∂r
+
u−m1

2r

∂u+
m2

∂r
+ (m2 + 1)u+

m1
u+
m2

+ wm1

∂u+
m2

∂z

)

NL− = rm−1

(
r2u+

m1

2

∂u−m2

∂r
+
u−m1

2r

∂u−m2

∂r
+ (m2 − 1)u+

m1
u−m2

+ wm1

∂u−m2

∂z

)

NLz = rm
(
ru+

m1

2

∂wm2

∂r
+
u−m1

2r

∂wm2

∂r
+m2u

+
m1
wm2 + wm1

∂wm2

∂z

)
(5.11.19)

Thanks to the azimuthal part of the description, we have m = m1 +m2, which allows
to compensate for the terms simplified in the momentum conservation equation.

This shows that by simplifying by the relevant power of r, one can use similar equations
while ensuring both the essential and natural pole conditions.

5.11.3 Choice of polynomials

Because of the rm factor, the boundary conditions that the polynomials have to verify are
no longer expressed in the same manner. This implies to redefine all the polynomials, with
a new dependency on the azimuthal order m. We can therefore define our new polynomial
family as follows:

χmn (x) =
2n2 +m+ 10n+ 12

m(2n+ 3)
Ln(x) +

1

2n+ 5
Ln+1(x)

− 2n2 + 2n+m

m(2n+ 3)
Ln+2(x)− 1

2n+ 5
Ln+3(x)

(5.11.20)

These polynomials verify the following boundary conditions:
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m = 0 u+
k,0 u−k,0 wk,0 pk,0

Boundary
condition at
x = −1

u+
k,0(x) = 0 u−k,0(x) = 0 ∂wk,0

∂x (x) = 0
∂pk,0
∂x (x) = 0

Boundary
condition at
x = +1

∂u+k,0
∂x (x) = 0

∂u−k,0
∂x (x) = 0

∂wk,0
∂x (x) = 0

∂pk,0
∂x (x) = 0

Polynomial φn φn γn γn

Table 5.11.1: Boundary conditions and polynomials used for m = 0

m = 1 u+
k,1 u−k,1 wk,1 pk,1

Boundary
condition at
x = −1

u+
k,1(x) = 0 ∂u−k,1

∂x (x) = 0 wk,1(x) = 0 pk,1(x) = 0

Boundary
condition at
x = +1

∂u+k,1
∂x (x) = 0

∂u−k,1
∂x (x) = 0

∂wk,1
∂x (x) = 0

∂pk,1
∂x (x) = 0

Polynomial φn γn φn φn

Table 5.11.2: Boundary conditions and polynomials used for m = 1

∂

∂x
(χmn (x))

∣∣∣
x=−1

= 0

∂

∂x
(rmχmn (x))

∣∣∣
x=1

= 0

(5.11.21)

The tables 5.11.1, 5.11.2, 5.11.3 summarise the choice of boundary conditions and of
polynomials for the three components of the velocity as well as the pressure, depending on
the azimuthal order.

5.11.4 Limitations

It appears, once the solution is implemented and tested, that it does not solve the original
problem. This could have been foreseen by the fact that we impose a new boundary

m > 2 u+
k,m u−k,m wk,m pk,m

Boundary
condition at
x = −1

∂mu+k,m
∂xm (x) = 0

∂mu−k,m
∂xm (x) = 0

∂mwk,m
∂xm (x) = 0

∂mpk,m
∂xm (x) = 0

Boundary
condition at
x = +1

∂u+k,m
∂x (x) = 0

∂u−k,m
∂x (x) = 0

∂wk,m
∂x (x) = 0

∂pk,m
∂x (x) = 0

Polynomial (
x+1

2

)m+1
χm+1
n

(
x+1

2

)m−1
χm−1
n

(
x+1

2

)m
χmn

(
x+1

2

)m
χmn

Table 5.11.3: Boundary conditions and polynomials used for m > 1
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5.11. REGULARITY ON THE AXIS

condition on the derivative of the polynomials that is not ensured by the terms imposed
in the equations. In fact, the problem has simply been moved elsewhere. The author
could not find another valid way to ensure the regularity on the axis of the non linear and
pressure terms of the equations. The problem is seldom considered in the literature, but
Blackburn and Sherwin address it in [71]. However their solution does not seem satisfying
in our case. They advice to neglect the terms that are not regular enough on the axis.
In our case, this would notably hinder the representation of the high advance ratio cases,
since the representation of the advection term is problematic.

The origin of the problem is in fact the way the computational domain is seen, and the
fact that it is ill design for extreme flight conditions such as perfectly edgewise flow.
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6
Conclusion and further work

Résumé en français: Conclusion et perspectives Le travail de cette thèse a
permis de développer un nouveau modèle de vitesses induites dépassant un certain nombre
de défauts des méthodes à nombre d’états finis qui ont l’avantage d’être adaptables à
chaque type d’application en termes de compromis précision vs temps de calcul grâce au
choix du nombre d’états. Cependant, ce modèle n’est lui même pas sans défauts. Il semble
tout de même que les résultats obtenus grâce à ce modèle démontrent sa pertinence pour
la prise en compte de certains phénomènes. Il reste cependant plus coûteux en temps de
calcul que le modèle de Peters et Huang.

En suivant la voie explorée dans cette thèse, il peut être pertinent de développer d’autres
modèles, en utilisant par exemple des coordonnées ellipsoïdales, en améliorant les condi-
tions de régularité sur l’axe, ou simplement en rendant plus efficace le modèle, en particulier
par une implémentation réduisant le temps de calcul..
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6.1. SUMMARY

6.1 Summary

After the analysis of the state of the art in the matter of rotor finite states dynamic inflow
modelling, we have concluded for the need of a new model, more general, and able to
cover a wider range of flight conditions. The study of the Huang and Peters model allowed
to reveal some limitations of the model, first thanks to a theoretical study, and then by
implementing it both in the frequency and time domain. The need for a new model was
supported by several observations, mainly pointing out as main culprits the assumptions
taken by the previous models, that were responsible for the diminution of the domain of
validity. Thus, the main developments made in this thesis were achieved by removing the
too limiting assumptions, while still applying a Galerkin method to the equations.

We have therefore developed a model with a larger domain of validity. In order to do
so, we have used a Galerkin method on the incompressible Euler equations, with no further
assumptions, thus removing the linearisation and the velocity potential assumptions. This
allows to treat all the domain in a coherent manner without distinguishing between what
is above, on and below the rotor. The time discretisation scheme allows to deal with non
linear equations, and to respect the continuity equation at each time step. Furthermore,
it allows to easily couple the induced velocity model with a blade element model. This
raises the question of the integration of a rotor within the method. Here again, the point
of view previously used in the Huang and Peters model (and in fact by all the Peters’ finite
states dynamic rotor inflow models), of a pressure discontinuity, is changed. Indeed this
simplified modelling of the rotor as a disc of pressure discontinuity, only accounts for the
lift distribution. The inputs of the new model are all the forces generated by the blades.
This allows to account for all the contributions of the blades in a more comprehensive way,
and not only the lift forces.

This new model is thought to be more coherent in its derivation, and allows to reach a
greater domain of validity than the previous models. Most notably, it is able to represent
most of the flight conditions encountered by a helicopter, and to represent the dynamic
evolution of the wake during the transition between these flight conditions.

This has however been achieved at the cost of some drawbacks, the main one being a
lack of performance in terms of computational time in the present implementation. Nev-
ertheless, the results obtained are thought to be a good display of the capacities of the
new model, which may lead the way for further developments, with better efficiency and
stability. Fig 6.1.1 presents the evolution with time of the various finite states models, and
where the presented model hopes to be and shows the step that has been reached in the
hypothesis considered with respect to the other models.

On the practical side, the model has been implemented in Matlab, and then has been
coupled with a blade element model in Python. The tests of various flight conditions,
revealed its capacities to treat all kinds of flight conditions, and to present a good agreement
with other models. The axial flight condition has been tested in descending and ascending
conditions, and revealed the expected results. The contraction of the wake is similar to the
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Fidelity

Pitt and Peters

x y

z

1980

He and Peters

x y

z

1990

Morillo and Duffy

x y

z

2000

Fei

x y

z

2010

Huang and Peters

x y

z

2015

x y

z

2019

Incompressible Euler

Linearised
Incompressible Euler

with velocity potential

Figure 6.1.1: Evolution of finite states induced velocity models, from Pitt and Peters to
the present model

one predicted by a free wake model, and the development of the wake with time is satisfying.
Furthermore, the calculated induced velocities on the blades are in good agreement with
the one computed with prescribed wake and free wake models.
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6.2. CONCLUSION

6.2 Conclusion

The following conclusion can be taken from the work made is this thesis:

1. Existing finite states dynamic models have been studied in depth in chapter 3, giving
a better understanding of their strengths and limitations. Most notably, it revealed
some issues for the adaptation of the model to the time domain. Furthermore, this
study highlighted the origins of the limitations and thus indicated the way to improve
the representation of the induced velocities.

2. A new finite states dynamic model of rotor induced velocities has been developed
in chapter 5, that expands the domain of validity of the Huang and Peters model.
All components of the induced velocity field can be computed, at all points around
the rotor and in all flight conditions in a homogeneous way with a unique consistent
model. Since the rotor is seen as acting directly on the air with its blade forces, the
model gives a more comprehensive way to account for its effects.

3. This new model retains the finite states properties of its predecessors by using a
Galerkin method. However, it treats the incompressible Euler equations with no
other assumptions, which allows to have a more homogeneous and coherent model
for all cases encountered (there is no need for a composition and transition between
different models depending where the induced velocity is calculated).

4. This model has been successfully implemented and coupled to the blade element
model of a rotorcraft simulation tool in order to demonstrate its capacities, and to
apply it on a real rotor, and finally to compare it to other induced velocity models
for validation.

5. These comparisons show that the new proposed model is able to reach the accuracy
of a free wake model for all the induced velocity components. Yet for the moment,
this accuracy is obtained at a computational cost higher than the free wake model.
But the free wake model is coded in Fortran whereas the new model is in Python
and could be widely parallelised.

6.3 Further Work

A number of aspects remains to be improved for the current state of the model.

1. The choice of representing the domain by a cylinder with a given ratio Λ makes
it difficult to compromise between the two extreme flight conditions of a helicopter,
which are the hover condition and the high advance ratio flight case. It could therefore
be interesting to use the ellipsoidal coordinates that are used by Peters et al. which
provides a better framework for representing the rotor wake in all conditions. They
were however not considered in the current work because of their singularities, and
of the difficulty to derive meaningful pole conditions in this system (which would
contain the exact same singularity on the axis, on top of other ones on the disk).
However, with sufficient study of the regularity conditions, they seem like the ideal
way to model the induced flow by a rotor.

2. Another point of improvement lies in representation of the velocities for a low number
of elements in the spectral approximation. The algorithm should be sufficiently
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efficient to be used with a large enough number of elements. For some applications
(e.g. rotorcraft presizing or real time simulation), where short execution time is of
the essence, reducing the number of elements in the representation may be a good
way to match the required efficiency. However the representation of the wake might
be far less accurate, as well as the behaviour on the blades. A better implementation
would allow parallel computing, that would remedy to this drawback.

3. Finally the stability of the algorithm is jeopardised by the axis pole conditions. First,
the axis regularity conditions used do not seem to be enough, and no meaningful
conditions could be derived in order to maintain the accuracy on the axis. This makes
some flight conditions require more filtering than others, because their representation
on the axis tends to generate spurious high order terms. A study of the behaviour
of the non linear terms in the cylindrical coordinate system seems necessary in order
to truly solve this problem.
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A
Miscellaneous

A.1 Legendre Polynomials

The Legendre functions of the first and second kind are solutions to the differential equa-
tions:

∂

∂x

[
(1− x2)

∂Pmn
∂x

(x)

]
+

[
n(n+ 1)− m2

1− x2

]
Pmn (x) = 0 (A.1.1)

In the case where m = 0, one finds back the Legendre’s differential equation, which
solutions are the orthogonal Legendre polynomials.

For integer values of n and m, one can express them as:

Pmn (x) = (−1)m(1− x2)
m
2
∂m

∂xm
Pn(x) (A.1.2)

Where:

Pn(x) =
1

2nn!

∂n

∂xn
(x2 − 1)n (A.1.3)

This gives:

Pmn (x) =
(−1)m

2nn!
(1− x2)

m
2
∂n+m

∂xn+m
(x2 − 1)n (A.1.4)

They are furthermore linked by numerous relations that can be found in [67] and [72]
for the Legendre polynomials and the associated Legendre functions respectively.

A.1.1 Form of the x derivative of the velocity potential

The motivation for the change of variable made by Huang is the stability of the solution
when high harmonic numbers are considered.

However it appeared, while manipulating the various expressions, that the x derivative
of the Φm

n potential functions could in fact be expressed solely with Pmn
ν functions on the

disk:
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∂Φm
n

∂x

∣∣∣
η=0

=

√
1− ν2

ν

∂P
m
n

∂ν
cos(mψ) cos(ψ)− m√

1− ν2
P
m
n sin(ψ) sin(mψ)

=
1

2
cos((m+ 1)ψ)

(√
1− ν2

ν

∂P
m
n

∂ν
+

m√
1− ν2

P
m
n

)

+
1

2
cos((m− 1)ψ)

(√
1− ν2

ν

∂P
m
n

∂ν
− m√

1− ν2
P
m
n

)

=
1

2
cos((m+ 1)ψ)

(
√

(n+m+ 1)(n−m)
P
m+1
n

ν

)

− 1

2
cos((m− 1)ψ)

(
√

(n+m)(n−m+ 1)
P
m−1
n

ν

)

with:
√

1− ν2

ν

∂P
m
n

∂ν

∣∣∣
η=0

=
1√

1− ν2

(
√

(n+m+ 1)(n−m)

√
1− ν2 P

m+1
n

ν
−mPmn

)
(A.1.5)

and:
√

1− ν2

ν

∂P
m
n

∂ν

∣∣∣
η=0

=
1√

1− ν2

(
−
√

(n+m)(n−m+ 1)

√
1− ν2 P

m−1
n

ν
+mP

m
n

)

(A.1.6)
This allows to derive the values to be used in the [S] matrix.
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A.2. ELLIPSOIDAL COORDINATE SYSTEM

A.2 Ellipsoidal coordinate system

The ellipsoidal coordinate system can be described in terms of the cartesian coordinates
as:





x = −
√

1− ν2
√

1 + η2 cos(ψ)

y =
√

1− ν2
√

1 + η2 sin(ψ)

z = −νη
(A.2.1)

The link between the derivatives in cartesian and ellipsoidal coordinates are useful for
the derivation of the matrices:

∂

∂z
=

1

ν2 + η2

(
η(1− ν2)

∂

∂ν
+ ν(1 + η2)

∂

∂η

)
(A.2.2)

∂

∂x
=

√
(1 + η2)(1− ν2)

ν2 + η2

(
ν
∂

∂ν
+ η

∂

∂η

)
cosψ +

1√
(1 + η2)(1− ν2)

∂

∂ψ
sinψ (A.2.3)

∂

∂y
= −

√
(1 + η2)(1− ν2)

ν2 + η2

(
ν
∂

∂ν
− η ∂

∂η

)
sinψ +

1√
(1 + η2)(1− ν2)

∂

∂ψ
cosψ (A.2.4)

Furthermore, these relations show clearly the singularities appearing due to the ellip-
soidal coordinates.

A.3 On the exact solution

We here develop a bit around the exact solution, in order to assess our affirmation that it
does not respect the continuity equation. To do so, we simply look at a simplified case,
where χ = 0, and we develop the divergence of the real part of the exact solution:

div−→u (x, y, z) = − ∂

∂x

z∫

−∞

cos(ω(z − z))∂P
∂x

(x, y, zdz

− ∂

∂y

z∫

−∞

cos(ω(z − z))∂P
∂y

(x, y, z)dz

− ∂

∂z

z∫

−∞

cos(ω(z − z))∂P
∂z

(x, y, z)dz

(A.3.1)

This form is justified by the fact that when χ = 0 the streamlines are parallel to the z
axis. It then can be expanded, using Leibniz’s rule:

div−→u (x, y, z) = −
z∫

−∞

cos(ω(z − z))∆P (x, y, z)dz

− ∂z

∂z
cos(ω(z − z))∂P

∂z
(x, y, z)

−
z∫

−∞

ω sin(ω(z − z))∂P
∂z

(x, y, z)dz

(A.3.2)
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In the general case, this would not simplify further. But using the fact that the pressure
is a potential function as in the case of Huang and Peters model, it gives:

div−→u = −∂P
∂z
−

z∫

−∞

ω sin(ω(z − z))∂P
∂z

(x, y, z)dz (A.3.3)

This expression has no reason to be null, which shows that in most cases the exact
solution does not respect the continuity equation.

A.4 Downstream velocity: problematic domain definition

The definition of the problematic domain answers the question: "what are the conditions
for the adjoint downstream velocity time τ + σ sin(χ) to be higher than τ?". The answer
is however not as obvious as it seems. Indeed, it is first required to need the adjoint
downstream velocity. For this, χ must be strictly positive, and the point to be considered
must be below the rotor (z < 0), in order to require the computation of the adjoint.

Let’s consider a point (x, y, z) below the rotor. Computing the induced velocities at
this point will require the values of the adjoint of VF at time τ at (−x,−y,−z) and at time
τ − ξ0 at (−x0,−y0, 0). (The notations used here are all defined in section 3.3.1.1) It is
now required to see if these adjoint VF values will require the computation of the adjoint
downstream velocity. Following its definition given by Huang in [1], one can see that the
downstream velocity is required for points with x ≤ 0 and |x2 + y2 + z2| ≥ ρ, where ρ = 1
for the axial velocity and ρ = cos(χ) for the other components of the velocity.

It follows that the points requiring the adjoint downstream velocity are points respect-
ing −x ≤ 0 and |x2 + y2 + z2| ≥ ρ, hence the definition of the domain D:

D = {(x, y, z) |x2 + y2 + z2 ≥ cos(χ) andx ≤ 0, z < 0} (A.4.1)
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B
Gauss-Lobatto quadrature

B.1 Principle

The Gauss-Lobatto quadrature is defined by its choice of quadrature points and weights.
The n+ 1 points of the quadrature are defined as the roots of P ′n−1 plus the two boundary
points, where Pn is an orthogonal polynomial. In the case where the chosen orthogonal
family is the Legendre polynomials Ln, the method is called a Legendre-Gauss-Lobatto
quadrature.

The weights are defined as:

wi =
2

n(n− 1) (Pn−1(xi))
2 (B.1.1)

This method is exact for polynomials of degree less or equal to 2n − 3, with n the
number of integration points.

All this information was found in [73].

B.2 Implementation

As mentioned in section 5.2.6, a quadrature method is used to compute the non linear
terms. Since the azimuthal part is dealt with a Fourier approximation, the non linearity
in azimuth can be dealt separately without any quadrature.

For the r and z approximation, and for a general non linear term v1(r, z)v2(r, z) pro-
jected on φk and ψl, a quadrature with nr points on the radial part and nz points on the
axial part gives the following formulation:

1∫

−1

1∫

−1

v1(r, z)v2(r, z)φk(r)ψl(z)rdrdz =

nr∑

i=0

nz∑

j=0

riv1(ri, zj)v2(ri, zj)φk(ri)ω
r
iψl(zj)ω

z
j

(B.2.1)
However, in the case of the velocity, we use its spectral representation, which gives:

v1(ri, zj) =

Nr∑

n=0

Nz∑

h=0

vn,h1 φn(ri)ψh(zj) (B.2.2)
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APPENDIX B. GAUSS-LOBATTO QUADRATURE

If we define matrices Qφ containing values of the polynomials φ at the quadrature
points as:

(Qφ)n,i = φn(xi) (B.2.3)

And the matrix Q as:
Q = Qφ ⊗Qψ (B.2.4)

Then one can compute the values of the velocity at the collocation points as:

v1(ri, zj) =
(
QV̂1

)
iNr+j

(B.2.5)

where V̂1 is the vector of the coefficients of the approximation of v1.
This then allows to write:

1∫

−1

1∫

−1

v1(r, z)v2(r, z)φk(r)ψl(z)rdrdz =
[
QT
((
QV̂1

)
∗
(
QV̂2

)
∗W

)]
kNr+l

(B.2.6)

Where ∗ is the Hadamar product (element-wise multiplication), and W = wr ⊗ wz is
the vector of weights where (wr)i = riω

r
i and (wz)j = ωzj

This gives a simple expression for the computation of the quadrature for the non linear
terms. However, depending on the non linear term to be expressed, the matrices Qφ and
Qψ will have to be adapted. It is to be noted that this formulation can be adapted to the
mini matrices formulation easily, by using the Kronecker product of the Q matrix.
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C
Functional normed spaces

We used several various normed functional spaces in the thesis, that we define properly
here.

C.1 Lpω spaces

The Lpω(I) spaces designate the functional space of function defined over the domain I
equipped with the norm:

‖f‖pω =



∫

I

|f(x)|pω(x)dx




1
p

(C.1.1)

And is defined by:

Lpω(I) = {f | ‖f‖pω <∞} (C.1.2)

The L2
ω(I) space is of particular interest since its norm derives from a scalar product.

It is the space of square integrable functions.

C.2 Sobolev and Hilbert spaces

The Sobolev spaces are also normed functional spaces, but in their case the norm with
which they are equipped is built with combination of Lpω norms, on the function itself, or
on its derivatives, and can be defined as follows:

W p,m
ω (I) =

{
f ∈ Lpω(I) | ∀n, |n| < m,

∂nf

∂xn
∈ Lpω(I)

}
(C.2.1)

However the definition of the associated norm might vary. In the case where p = 2, the
space considered is called an Hilbert space and denoted Hm

ω (I).
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APPENDIX D. A METHOD WITH LESS INVERSION

D
A method with less inversion

We present in the appendix a little more details about the development of the improvement
of the Morillo-Duffy model, presented in chapter 4.2.1.

We therefore have the following equation:

+
m,n

∫∫∫

D

∂amn
∂t

−−→
gradΨm

n .
−−→
gradΛrj + amn

−−→
grad(

−−→
gradΨm

n .
−→
ξ ).
−−→
gradΛrjdD =

+
m,n

∫∫∫

D

τmn
−−→
gradΦm

n .
−−→
gradΛrjdD

(D.0.1)

Which can be put under the following matrix form:

A1
d

dt
({amn }) + (cos(χ)D1 − sin(χ)S1){amn } = Mτ{τmn } (D.0.2)

We define:

Θm
n = σmn Φm

n+1 + ςmn Φm
n−1 + σm+1

n+1 Φm+1
n+2 + ςm+1

n+1 Φm+1
n (D.0.3)

We then refer to the following table for the choices made about the placement of the
z derivatives. The table present the choice of velocity potential and of test function, and
the various matrix terms to be computed, depending on the parity of the terms involved.
If the derivative must change it is indicated by the word ’Swap’.

odd/odd odd/even even/odd even/even

Ψm
n Θm

n

Λrj σrjΦ
r
j+1 + ςrjΦr

j−1

A1

∫∫
S

Ψm
n
∂Λrj
∂z dS even/odd Swap: odd/odd odd/odd odd/even

D1

∫∫
S

∂Ψmn
∂z

∂Λrj
∂z dS odd/odd odd/even (SP) even/odd (SP) Swap: odd/odd

S1

∫∫
S

∂Ψmn
∂x

∂Λrj
∂z dS even/odd (SP) Swap odd/odd odd/odd odd/even (SP)

Mτ

∫∫
S

Φm
n
∂Λrj
∂z dS odd/odd odd/even even/odd Swap: odd/odd
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One can then compute the expression of the various matrices. For A1: If m + n odd
and r + j even:

[A1]m,rn,j =

∫∫

S

∂Ψm
n

∂z
ΛrjdS

=

∫∫

A

(Φm
n + Φm+1

n+1 )(σrjΦ
r
j+1 + ςrjΦr

j−1)dA

= δm,r


σrj

1∫

0

Pmn P rj+1νdν + ςrj

1∫

0

Pmn P rj−1νdν




+ δm+1,r


σrj

1∫

0

Pm+1
n+1 P rj+1νdν + ςrj

1∫

0

Pm+1
n+1 P rj−1νdν




Otherwise:

[A1]m,rn,j =

∫∫

S

Ψm
n

∂Λrj
∂z

dS

=

∫∫

A

Θm
n Φr

jdA

= δm,r


σmn

1∫

0

Pmn+1 P
r
j νdν + ςmn

1∫

0

Pmn−1 P
r
j νdν




+ δm+1,r


σm+1

n+1

1∫

0

Pm+1
n+2 P rj νdν + ςm+1

n+1

1∫

0

Pm+1
n P rj νdν




For D1: For m+ n even and r + j even:

[D1]m,rn,j =

∫∫

S

∂2Ψm
n

∂z2
ΛrjdS

=

∫∫

A

∂

∂z

(
Φm
n + Φm+1

n+1

) (
σrjΦ

r
j+1 + ςrjΦr

j−1

)
dA

= δm,r
∂Qmn
∂η

(i0)


σrj

1∫

0

Pmn P rj+1dν + ςrj

1∫

0

Pmn P rj−1dν




+ δm+1,r
∂Qm+1

n+1

∂η
(i0)


σrj

1∫

0

Pm+1
n+1 P rj+1dν + ςrj

1∫

0

Pm+1
n+1 P rj−1dν




Otherwise:
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[D1]m,rn,j =

∫∫

S

∂Ψm
n

∂z

∂Λrj
∂z

dS

=

∫∫

A

(Φm
n + Φm+1

n+1 )Φr
jdA

= δm,r




1∫

0

Pmn P rj νdν


+ δm+1,r




1∫

0

Pm+1
n+1 P rj νdν




For S1:
We define γmn and κmn variables as follows, in order to simplify the expression of the

matrices:

∀m > 0,∀n > m :

γmn =
1

2

√
(n+m+ 1)(n−m)

κmn = −1

2

√
(n+m)(n−m+ 1)

If m = 0,∀n > m :

γmn =
√

(n+ 1)(n)

κmn = 0

For m+ n odd and r + j even:

[S1]m,rn,j =

∫∫

S

∂2Ψm
n

∂z∂x
ΛrjdS

=

∫∫

A

∂

∂x
(Φm

n + Φm+1
n+1 )(σrjΦ

r
j+1 + ςrjΦr

j−1)dA

=

∫∫

A

(
γmn

Φm+1
n

ν
+ κmn

Φm−1
n

ν
+ γm+1

n+1

Φm+2
n+1

ν
+ κm+1

n+1

Φm
n+1

ν

)
(σrjΦ

r
j+1 + ςrjΦr

j−1)dA

= δm+1,r γ
m
n


σrj

1∫

0

Pm+1
n P rj+1dν + ςrj

1∫

0

Pm+1
n P rj−1dν




+ δm−1,r κ
m
n


σrj

1∫

0

Pm−1
n P rj+1dν + ςrj

1∫

0

Pm−1
n P rj−1dν




+ δm+2,r γ
m+1
n+1


σrj

1∫

0

Pm+2
n+1 P

r
j+1dν + ςrj

1∫

0

Pm+2
n+1 P

r
j−1dν




+ δm,r κ
m+1
n+1


σrj

1∫

0

Pmn+1P
r
j+1dν + ςrj

1∫

0

Pmn+1P
r
j−1dν
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Otherwise:

[S1]m,rn,j =

∫∫

S

∂Ψm
n

∂x

∂Λrj
∂z

dS

=

∫∫

A

∂Θm
n

∂x
Φr
jdA

=

∫∫

A

(
σmn

(
γmn+1

Φm+1
n+1

ν
+ κmn+1

Φm−1
n+1

ν

)
+ ςmn

(
γmn−1

Φm+1
n−1

ν
+ κmn−1

Φm−1
n−1

ν

)

+ σm+1
n+1

(
γm+1
n+2

Φm+2
n+2

ν
+ κm+1

n+2

Φm
n+2

ν

)
+ ςm+1

n+1

(
γm+1
n

Φm+2
n

ν
+ κm+1

n

Φm
n

ν

))
Φr
jdA

= δr,m−1


σmn κmn+1

1∫

0

Pm−1
n+1 P

r
j dν + ςmn κ

m
n−1

1∫

0

Pm−1
n−1 P

r
j dν




+ δr,m


σm+1

n+1 κ
m+1
n+2

1∫

0

Pmn+2P
r
j dν + ςm+1

n+1 κ
m+1
n

1∫

0

Pmn P
r
j dν




+ δr,m+1


σmn γmn+1

1∫

0

Pm+1
n+1 P

r
j dν + ςmn γ

m
n−1

1∫

0

Pm+1
n−1 P

r
j dν




+ δr,m+2


σm+1

n+1 γ
m+1
n+2

1∫

0

Pm+2
n+2 P

r
j dν + ςm+1

n+1 γ
m+1
n

1∫

0

Pm+2
n P rj dν




And finally, the Mτ matrix is fairly similar to the M matrix with the exception of the
even/even terms.

It is to be noted that the above equations are all divided by π with the exception of
the m = r = 0 equations that are divided by 2π. The above formulae are for the general
case where no m = n terms appear. In the case were m = n and the case m = n+ 1, some
special treatment needs to be done. Some are handled by the definition of the γmn and κmn
variables, the others are presented hereafter.

For S1 in the case m = n > 0, the x derivative of the speed potential can be expressed
as follow:

∂Φm
m

∂x

∣∣∣
η=0

= −m
√

2m+ 1

2m
Φm−1
m−1 (D.0.4)
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Giving for the expression of the m = n > 0 terms of S1:

[S1]m,rm,j =

∫∫

A

∂

∂x
(Φm

m + Φm+1
m+1)(σrjΦ

r
j+1 + ςrjΦr

j−1)dA

=

∫∫

A

(
(−m)

√
2m+ 1

2m
Φm−1
m−1 − (m+ 1)

√
2m+ 3

2m+ 2
Φm
m

)
(σrjΦ

r
j+1 + ςrjΦr

j−1)dA

= δm,r(−m)

√
2m+ 1

2m


σrj

1∫

0

Pm−1
m−1P

r
j+1νdν + ςrj

1∫

0

Pm−1
m−1P

r
j−1νdν




+ δm−1,r(−(m+ 1))

√
2m+ 3

2m+ 2


σrj

1∫

0

PmmP
r
j+1νdν + ςrj

1∫

0

PmmP
r
j−1νdν




Adding the matrix allowing to pass from one projection to the one used by Morillo:
For P1: For m+ n even and r + j even:

[P1]m,rn,j =

∫∫

S

Ψm
n

∂Φr
j

∂z
dS

=

∫∫

A

Θm
n

∂Φr
j

∂z
dA

=

∫∫

A

(
σmn Φm

n+1 + ςmn Φm
n−1 + σm+1

n+1 Φm+1
n+2 + ςm+1

n+1 Φm+1
n

) ∂Φr
j

∂z
dA

= δm,r
∂Qrj
∂η

(i0)


σmn

1∫

0

Pmn+1 P
r
j dν + ςmn

1∫

0

Pmn−1 P
r
j dν




+ δm+1,r

∂Qrj
∂η

(i0)


σm+1

n+1

1∫

0

Pm+1
n+2 P rj dν + ςm+1

n+1

1∫

0

Pm+1
n P rj dν




Otherwise:

[P1]m,rn,j =

∫∫

S

∂Ψm
n

∂z
Φr
jdS

=

∫∫

A

(Φm
n + Φm+1

n+1 )Φr
jdA

= δm,r




1∫

0

Pmn P rj νdν


+ δm+1,r




1∫

0

Pm+1
n+1 P rj νdν




This method allows for good replication of the Morillo results. Stability still requires
some analysis, notably for the S1 matrix, and many cases of computation are to be tested.
The coefficients αψ and βψ might also require some optimisation.

Concerning the slow convergence of this kind of method, it can be improved through
the use of the Cesaro mean, as shown below. Indeed, good convergence is equivalent to
having coefficients describing the speed potential that converges to 0 as m and n increase.
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Since the Cesaro mean method takes the mean of the partial sum, it tends to improve
convergence and the operation can be repeated if necessary.

Thus the computation of the velocity that was taken under the form:

−→
V =

−−→
grad

M∑

m=0

N(M,m)∑

n=m+1

amn Ψm
n (D.0.5)

where
N(M,m) = m+

⌊
M

2

⌋
+ 1−

⌈m
2

⌉
(D.0.6)

Dealing only with the potentials and taking the mean of the partial sums gives:

SK =
1

K + 1

K∑

k=0

k∑

m=0

N(k,m)∑

n=m+1

amn Ψm
n (D.0.7)

Which gives when regrouping the identical terms:

SK =

K∑

k=0

N(K,k)∑

n=k+1

K − n+ 2

K + 1
aknΨk

n (D.0.8)

Other point of view: we are solely interested in the projection of the equation on the
subspace described by the Λrj functions. They leave the liberty of the choice of scalar
product, allowing to take a more permissive one with regard to the derivations.

For example taking:

〈f, g〉 =

∫∫

S

fgνdS (D.0.9)

as scalar product would allow to take as potential function

167



APPENDIX E. LEGENDRE KERNEL AND MOLLIFICATION

E
Legendre Kernel and mollification

This appendix is interested in a method of removing or rather mitigating the Gibbs phe-
nomenon, through the use of mollifiers. This idea is primarily developed for Fourier trans-
form, but can be adapted for Legendre polynomials, as will be shown in the second section
of this appendix. In order to understand the ideas behind this, we need to introduce the
concept of kernels.

E.1 Kernels

The principle of a kernel is to translate the interpolation of the projection by a convolution.
For example the fourier transform is linked to the Dirichlet kernel:

SN (f)(x) =

π∫

−π

f(y)DN (x− y)dy = (DN ∗ f)(x) (E.1.1)

where:

DN (x) =
1

2π

N∑

k=−N
eikx (E.1.2)

In order to see the projection with Legendre polynomials as a convolution (although
it will not be strictly speaking a convolution), one need to consider the normed Legendre
polynomials, in order to tackle an orthonormal basis.

One can then write:

IN (f)(x) =

N∑

k=0

f̂kφk(x)

=
N∑

k=0

1∫

−1

f(y)φk(y)dyφk(x)

=

1∫

−1

f(y)

N∑

k=0

φk(x)φk(y)dy

(E.1.3)

which yields the kernelKN , which can be presented in another form with the Christoffel-
Darboux formula:
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KN (x, y) =

1∫

−1

N∑

k=0

φk(x)φk(y)dy

=

1∫

−1

n+ 1

2

φN (y)φN+1(x)− φN (x)φN+1(y)

x− y dy

(E.1.4)

Combining with a new operator ⊗:

IN (f)(x) = (KN ⊗ f)(x) (E.1.5)

We thus see that one can see the whole projection and interpolation process as one
single operation, with all its content represented by the kernel KN .

Furthermore, this point of view of the kernel allows to cast a new light on the vision
one has of the filters. Indeed, the Fejèr filter is for example linked to the Fejèr kernel since:

SFN (f)(x) =

π∫

−π

f(y)FN (x− y)dy = (FN ∗ f)(x) (E.1.6)

with:

FN (x) =
1

N

N−1∑

k=0

Dk(x) (E.1.7)

One can here see that the Fejèr kernel is called a positive summability kernel, which
represents the property one seeks when using it, that it highly dampens the Gibbs phe-
nomenon, since it will experience little overshoot.

E.2 Mollifier

The main idea behind a mollifier is to use a modified kernel in order to retrieve the spectral
information. The most early forms of this can be seen with the Fejèr kernel. This modifi-
cation of the kernel can be easily translated by a linear filter, as it is the Cesaro mean of
the partial sum of the interpolation. We here see the link one can make between mollifiers
and filtering.

However the main forms of mollifiers, as described in [51], are in fact highly localised.
Furthermore adaptive mollifiers are an active field of research [48, 50, 74], and give im-
pressiv results in the treatment of discontinuities. However, those methods are first quite
computationally expensive, and then are only post treatment methods, that only give a
better representation of the approximation from Gibbs contaminated coefficients, and not
better values for those coefficients. They are therefore not adapted to our application.
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Abstract

Abstract

The rotor wake of a rotorcraft is difficult to model, and shows significant importance for
the flight dynamics of the aircraft, vibration, acoustics,... Numerous models exist, but the
most successful ones for the application to flight mechanics are the finite states models of
Peters et al. They allow to tailor the computational cost and fidelity of the model to each
application.

This thesis explores their development and underlines some shortcomings. A few im-
provements are suggested, but it appears that a more drastic change is required to intrin-
sically account for some phenomena. Therefore a new method is proposed to develop a
more general and homogeneous model, no longer relying on constraining assumptions. This
model is however not deprived of flaws. They are therefore treated in order to improve the
presented model.

The new model shows great results when a large number of states are used, and the
impact of a less precise but faster approximation are underlined.
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Résumé en français

Résumé en français

Le sillage d’un rotor est difficile à modéliser, et a un impact significatif pour la dynamique
du vol des voilures tournantes, leurs vibrations, leurs propriétés acoustiques... De nom-
breux modèles existent, mais le plus utilisé pour l’application à la mécanique du vol est le
modèle à états finis développé par Peters et al. Ce type de modèle permet d’ajuster le prix
en temps de calcul et la fidélité de leurs résultats à chaque application. Cette thèse ex-
plore le développement de ces modèles et en souligne quelques défauts. Des améliorations
sont suggérées mais il semble nécessaire d’appliquer des changements plus drastiques pour
dépasser certaines limites. Ainsi, une nouvelle méthode est développée dans un cadre plus
générale et homogène, qui ne repose plus sur des hypothèses contraignantes. Cependant
ce nouveau modèle n’est pas sans défauts. Ils sont donc analysés et traités afin d’améliorer
le modèle. Le nouveau modèle livre donc de bons résultats dans le cas d’un grand nombre
d’éléments utilisés, et l’impact d’une approximation plus rapide mais moins précise est
souligné.
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