Thèse soutenue

Développement de nanocomposites BaTiO3 @ polymères fluorés pour les matériaux diélectriques et comme liant de cathode dans les batteries lithium

FR  |  
EN
Auteur / Autrice : Fatima Ezzahra Bouharras
Direction : Bruno AmeduriMustapha Raihane
Type : Thèse de doctorat
Discipline(s) : Chimie et Physico-Chimie des Matériaux
Date : Soutenance le 21/07/2020
Etablissement(s) : Montpellier, Ecole nationale supérieure de chimie en cotutelle avec Université Cadi Ayyad (Marrakech, Maroc)
Ecole(s) doctorale(s) : École doctorale Sciences Chimiques (Montpellier ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut Charles Gerhardt (Montpellier ; 2006-....)
Jury : Président / Présidente : Hamid Kaddami
Examinateurs / Examinatrices : Bruno Ameduri, Mustapha Raihane, Hamid Kaddami, Cristina Iojoiu, Valter Castelvetro, Vasile Hulea, Nicolas Louvain, Mourad Arous
Rapporteurs / Rapporteuses : Hamid Kaddami, Cristina Iojoiu, Valter Castelvetro

Résumé

FR  |  
EN

Les matériaux nanocomposites présentent des propriétés physico-chimiques uniques qui ne peuvent être obtenues en utilisant un seul composant. Ainsi, l'amélioration des propriétés de ces matériaux a suscité un intérêt majeur dans différents domaines. Les matériaux nanocomposites diélectriques à haute densité d'énergie présentent des performances prometteuses pour les applications de stockage d'énergie. Des efforts importants ont été menés pour combiner la constante diélectrique élevée de la céramique avec la flexibilité et la facilité de mise en œuvre des polymères. Ainsi, cette thèse porte sur le développement et la caractérisation de nanocomposites à base de céramique BaTiO3 et de polymères fluorés. Dans un premier temps, la synthèse de PVDF-g-BaTiO3 a été réalisée en utilisant la polymérisation RAFT du VDF à partir de la surface des nanoparticules fonctionnalisées, en utilisant différentes concentrations en BaTiO3, et l'effet de ce pourcentage sur les propriétés finales a été étudié. Les résultats ont montré que le greffage du PVDF a été réalisé avec succès, conduisant à des nanocomposites avec une stabilité thermique améliorée. De plus, le succès du greffage du PVDF a été principalement prouvé par la spectroscopie RMN HRMAS, qui a été utilisée pour la première fois pour caractériser les nanocomposites préparés. Les propriétés diélectriques de ces matériaux ont été étudiés et révèlent l'existence de trois relaxations : la première a été attribué à la relaxation secondaire β dans le PVDF, la seconde a été liée à la fraction cristalline dans le polymère, tandis que la troisième relaxation a été attribué à la polarisation interfaciale résultant de la présence de charges et d'impuretés dans le système. Cependant, la relaxation liée à la température de transition vitreuse n'a pas pu être observé en raison de la cristallinité élevée du polymère. Le procédé de mélange en solution a été également utilisé pour préparer des matériaux nanocomposites constitués de PVDF-g-BaTiO3/P(VDF-co-HFP) et les films préparés ont été entièrement caractérisés. La dispersion uniforme des nanocomposites PVDF-g-BaTiO3 dans la matrice de copolymère a conduit à des performances mécaniques améliorées. Ensuite, pour fournir une application pour les nanocomposites PVDF-g-BaTiO3 préparés, ces derniers ont été utilisés comme liant pour préparer un matériau de cathode pour les batteries. La procédure de calandrage a été utilisée pour préparer les films d'électrode et a permis d'obtenir une structure uniforme et des performances de cyclage améliorées.