Sur l’échantillonnage des processus ponctuels déterminantaux
Auteur / Autrice : | Guillaume, Michel, Jean Gautier |
Direction : | Michal Valko, Rémi Bardenet |
Type : | Thèse de doctorat |
Discipline(s) : | Automatique, génie informatique, traitement du signal et des images |
Date : | Soutenance le 20/03/2020 |
Etablissement(s) : | Centrale Lille Institut |
Ecole(s) doctorale(s) : | École doctorale Sciences pour l'ingénieur (Lille) |
Partenaire(s) de recherche : | Laboratoire : Centre de Recherche en Informatique, Signal et Automatique de Lille - Centre de Recherche en Informatique- Signal et Automatique de Lille - UMR 9189 / CRIStAL |
Jury : | Président / Présidente : Pierre-Olivier Amblard |
Examinateurs / Examinatrices : Frédéric Lavancier, Michalis Titsias, Sheehan Olver | |
Rapporteur / Rapporteuse : Agnès Desolneux, Romain Couillet |
Mots clés
Résumé
Un processus ponctuel déterminantal (DPP) génère des configurations aléatoires de points ayant tendance à se repousser. La notion de répulsion est encodée par les sous-déterminants d’une matrice à noyau, au sens des méthodes à noyau en apprentissage artificiel. Cette forme algébrique particulière confère aux DPP de nombreux avantages statistiques et computationnels. Cette thèse porte sur l'échantillonnage des DPP, c'est à dire sur la conception d'algorithmes de simulation pour ce type de processus. Les motivations pratiques sont l'intégration numérique, les systèmes de recommandation ou encore la génération de résumés de grands corpus de données. Dans le cadre fini, nous établissons la correspondance entre la simulation de DPP spécifiques, dits de projection, et la résolution d'un problème d'optimisation linéaire dont les contraintes sont randomisées. Nous en tirons une méthode efficace d'échantillonnage par chaîne de Markov. Dans le cadre continu, certains DPP classiques peuvent être simulés par le calcul des valeurs propres de matrices tridiagonales aléatoires bien choisies. Nous en fournissons une nouvelle preuve élémentaire et unificatrice, dont nous tirons également un échantillonneur approché pour des modèles plus généraux. En dimension supérieure, nous nous concentrons sur une classe de DPP utilisée en intégration numérique. Nous proposons une implémentation efficace d'un schéma d'échantillonnage exact connu, qui nous permet de comparer les propriétés d'estimateurs Monte Carlo dans de nouveaux régimes. En vue d'une recherche reproductible, nous développons une boîte à outils open-source, nommée DPPy, regroupant les différents outils d'échantillonnage sur les DPP.