Biodiversité de l'écosystème marin et flux de carbone autour de Kerguelen (Océan Austral) : le rôle du petit phytoplancton à l'échelle de la cellule
Auteur / Autrice : | Solène Irion |
Direction : | Urania Christaki, Ludwig Jardillier |
Type : | Thèse de doctorat |
Discipline(s) : | AGRONOMIE, PRODUCTIONS ANIMALE ET VEGETALE, AGROALIMENTAIRE, biologie de l'environnement, des populations, écologie |
Date : | Soutenance le 19/11/2020 |
Etablissement(s) : | Littoral |
Ecole(s) doctorale(s) : | École doctorale Sciences de la matière, du rayonnement et de l'environnement (Lille ; 1992-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'Océanologie et de Géosciences (LOG) - Laboratoire d'Océanologie et de Géosciences / LOG |
Financeur : Hauts-de-France. Conseil régional | |
Jury : | Président / Présidente : Sébastien Monchy |
Examinateurs / Examinatrices : Aud Larsen, David Scanlan, Ingrid Obernosterer, David Moreira | |
Rapporteurs / Rapporteuses : Aud Larsen, David Scanlan |
Mots clés
Résumé
Cette thèse s'intéresse à la diversité du petit phytoplancton (<20 µm) et à sa contribution à la fixation du carbone dans les écosystèmes marins contrastés : la région productive du plateau de Kerguelen d'une part et les zones à faible productivité en dehors du plateau, d'autre part. Le petit phytoplancton domine les communautés phytoplanctoniques tout au long de l'année en dehors du plateau, où les faibles concentrations en fer limitent la production primaire. Le plateau de Kerguelen, naturellement fertilisé en fer, est quant à lui caractérisé par le développement au printemps-été de blooms massifs de diatomées en chaîne et de grande taille. Depuis la découverte du mécanisme de fertilisation naturelle en fer sur le plateau, l'attention de la communauté scientifique s'est focalisée sur les diatomées de grande taille, qui favoriseraient la séquestration du carbone sur la zone. Toutefois, les données satellitaires suggéraient que le petit phytoplancton dominait les communautés phytoplanctoniques en dehors du bloom sur l'ensemble de la zone. Le premier objectif de ce travail visait à obtenir une image fine de la diversité du petit et grand phytoplancton après le bloom de diatomées (Mars 2018). Un fragment de l'ADNr 18S des communautés planctoniques de petite (0.2-20 µm) et grande taille (20-100 µm), collectées à plusieurs profondeurs, a été séquencé par la méthode Illumina MiSeq. Les séquences ainsi obtenues ont permis de déterminer la diversité taxonomique moléculaire du petit et grand phytoplancton. En surface, les diatomées étaient majoritaires dans la grande fraction de taille tandis que Phaeocystis antartica était particulièrement important dans la petite fraction sur l'ensemble de la zone d'étude. Dans leur ensemble, les communautés de petit phytoplancton différaient sur et en dehors du plateau. Des concentrations élevées en acide silicilique en dehors du plateau favorisaient la présence d'un assemblage varié de diatomées de petite taille, tandis que de fortes concentrations en ammonium sur le plateau pourraient favoriser le développement de picophytoplancton du genre Micromonas. L'utilisation de marqueurs pigmentaires chémotaxonomiques a permis de décrire la succession temporelle des communautés phytoplanctoniques sur le plateau, dominées par les diatomées du début au déclin du bloom, tandis que la contribution du petit phytoplancton augmentait fortement après le bloom (moins de 10% à 53% de la chlorophylle). Le deuxième objectif de cette thèse était d'établir la contribution relative de différents groupes phytoplanctoniques à la fixation globale de carbone, en prenant en compte les différences inter- et intra-groupe dans l'activité métabolique de cellules individuelles. Pour ce faire, des communautés planctoniques naturelles ont été incubées en présence d'un traceur isotopique (NaH¹³CO₃) en reproduisant les conditions in situ. La fixation du carbone au niveau cellulaire a été mesurée par imagerie NanoSIMS et SIMS. Les grandes diatomées (>20 µm) montraient des taux de croissance faibles et variables d'une cellule à l'autre, avec 19±13% de diatomées inactives. Inversement, les petites cellules, appartenant à des taxons phylogénétiques éloignés (prymnesiophytes, prasinophytes et petites diatomées) étaient majoritairement en croissance active (>98%). Par conséquent, le petit phytoplancton contribuait de 41 à 70% à la fixation du carbone sur l'ensemble de la zone après le bloom. Tandis que le petit phytoplancton contribuait de façon importante à la fixation de carbone et à la biomasse chlorophyllienne en surface, les diatomées dominaient dans les données pigmentaires et de séquençage en dessous de 200 m, indiquant leur export préférentiel par sédimentation directe. Cependant, un faisceau d'indices suggère que le phytoplancton de petite taille, en particulier Phaeocystis, pourrait participer à l'export de carbone par agrégation, ainsi que via les réseaux trophiques et la production de pelotes fécales des brouteurs.