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Chapter 1

Introduction

1.1 Motivation : les métriques à courbure minorée
sur les surfaces

Le problème des immersions isométriques est un problème de langue date. L’une des
questions les plus célèbres qui ont été posées dans ce sujet était celle que H. Weyl a
posé en 1916: Peut-on réaliser un plongement isométrique d’une métrique à courbure
positive sur la sphère dans R3?

Ce problème a été résolu indépendamment par Nirenberg et Pogorelov dans les
années 50 [Nir53].

A.D. Alexandrov a généralisé la question de Weyl, il a commencé à étudier pour
la première fois les espace métriques de courbure positive (métrique non-régulière) et
cela est venu en essayant de décrire la métrique induite sur le bord des corps convexes
dans R3. Il a prouvé ce premier théorème célèbre.

Theorem 1.1.1 (Alexandrov). Soit d une métrique de courbure positive sur une
sphère de dimension 2. Alors d est isométrique au bord d’un corps convexe dans R3.

Donnons quelques détails. Appelons surface convexe le bord d’un convexe com-
pact de l’espace euclidien. Alexandrov a caractérisé la distance intrinsèque induite
par le fait d’être de courbure ≥ 0. Il a ensuite généralisé la notion de courbure ≥ 0
par le fait de comparer les triangles géodesiques de l’espace concerné avec des trian-
gles dans le plan euclidien appelés " triangle de comparaison" (i.e. un triangle avec
les mêmes longueurs de côtés). Une définition plus précise est que, pour tout point,
il existe un voisinage tel que pour tout triangle géodésique dans ce voisinage, le tri-
angle de comparaison dans le plan euclidien a des angles plus petits [Ale06]. Il a en
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CHAPTER 1. INTRODUCTION

fait montré que ces métriques caractérisent exactement les métriques sur les surfaces
convexes. Plus précisément, pour toute métrique à courbure ≥ 0 sur la sphère, il
existe une surface convexe isométrique dans l’espace euclidien. La preuve consiste à
d’abord résoudre le problème pour les polyèdres, puis procéder par approximation.

Soit S une surface compacte. On définit facilement une métrique à courbure ≥ k
sur S comme une distance intrinsèque géodésique, qui a la même propriété que au-
dessus, mais où le triangle de comparaison est dans un plan de courbure k. Par une
homothétie, il suffit de se ramener aux cas k = −1, 0, 1.

Une question naturelle est donc de savoir si ces métriques sont isométriques à
la métrique induite sur des surfaces convexes dans des espaces de dimension 3 de
courbure constante. Effectivement, on a le résultat suivant:

Theorem 1.1.2. Toute métrique à courbure ≥ k sur une surface compacte est
isométrique à la métrique intrinsèque induite sur une surface convexe dans un es-
pace riemannien de courbure k.

Cet énoncé est fait de la juxtapositions de différents cas. Voir l’introduction de
[FIV16]. Nous n’entrons pas dans les détails car nous allons considérer des situations
similaires.

1.2 Premier résultat de la thèse
La définition de métrique à courbure ≤ k sur une surface est similaire à celle de
courbure ≥ k, mais où les angles du triangles de comparaison sont cette fois plus
grands. Les métriques à courbure ≤ k, en particulier ≤ 0, sont devenus des objets
fondamentaux en géométrie (voir par exemple [BH99]). Ce sont en fait des objets très
généraux, ici nous supposons que la topologie de la métrique est celle de la surface.

Dans tous ce qui suit on va noter M+,3
k l’espace modèle riemannien de dimension

3 et de courbure constante k ∈ {−1, 0, 1} : respectivement l’espace hyperbolique,
l’espace euclidien, et la sphère de dimension 3.

Introduisons aussi les analogues lorentziens : l’espace de Minkowski R3,1 (de cour-
bure 0), l’espace de Sitter dS (de courbure 1) et l’espace Anti-de sitter AdS3 (de
courbure −1). On note ces espaces M−,3

k selon la courbure k ∈ {−1, 0, 1}.
Dans un espace riemannien, la courbure extrinsèque d’une surface (lisse) convexe

est positive. En utilisant la formule de Gauss il est facile de voir qu’une surface
strictement convexe dansM+,3

k est de courbure sectionnelle ≥ k. Par ailleurs la même
formule dans un espace lorentzien M−,3

k indique bien que la courbure sectionnelle
d’une surface convexe de type espace est ≤ k. L’idée générale est donc d’essayer de

1.2. PREMIER RÉSULTAT DE LA THÈSE 9



CHAPTER 1. INTRODUCTION

plonger isométriquement des surfaces compactes de courbure minorée dans un espace
lorentzien de courbure sectionnelle constante.

Les deux premiers résultats dans ce sens ont concerné le cas de la sphère, pour le
cas polyédral et pour le cas lisse respectivement.

Theorem 1.2.1 ([Riv86] et [HR93]). Soit d une métrique sphérique à singularités
coniques sur la sphère S2 tel que:

1. Tous les angles coniques de (S2, d) sont plus grand que 2π.
2. Toutes les géodésiques fermés contractiles dans (S2, d) sont de longueur supérieur

à 2π
Alors il existe une surface convexe polyédrale de type espace (unique modulo les

isométries) dans l’espace de Sitter telle que la métrique induite est isométriques à
(S2, d).

Theorem 1.2.2 ([Sch96]). Soit g une métrique Riemannienne de courbure < 1 sur la
sphère. Supposons qu’il n’existe pas de géodésique contractile de longueur ≤ 2π. Alors
il existe une surface lisse convexe de type espace dans l’espace de Sitter isométrique
à g.

Notons que, hormis son intérêt intrinsèque en physique théorique, il y a une dualité
entre l’espace hyperbolique et l’espace de Sitter. Elle peut être interprétée en utilisant
le modèle de l’hyperboloïde de l’espace hyperbolique comme hypersphère dans R4,1.
Cette dualité associe à chaque point de H3 un plan totalement géodésique de type
espace dans l’espace de Sitter. Elle transforme une surface convexe de type espace
de l’espace de Sitter en une surface convexe dans H3. Une isométrie de l’espace de
Sitter qui fixe un point correspond à une isométrie de H3 qui fixe un plan.

Pour le genre > 1, on a le premier résultat suivant, qui introduit les surfaces
convexes fuchsiennes: ce sont des surfaces convexes de type espace invariantes sous
l’action d’un groupe d’isométrie qui fixent un point et agissent de manière cocompacte
sur une surface à distance constante de ce point. Des détails sont donnés dans le corps
du texte.

Theorem 1.2.3 ( [LS00]). 1. Soit g une métrique riemannienne de courbure < 1
sur une surface S de genre > 1. Supposons qu’il n’existe pas de géodésique
contractile de longueur ≤ 2π. Alors il existe une surface convexe fuchsienne
dans l’espace de Sitter dont le quotient est isométrique à (S, g).

2. Soit g une métrique riemannienne de courbure < 0 sur une surface compacte
de genre > 1. Alors il existe une surface fuchsienne convexe dans l’espace de
Minkowski dont le quotient est isométrique à (S, g).

10 1.2. PREMIER RÉSULTAT DE LA THÈSE



CHAPTER 1. INTRODUCTION

3. Soit g une métrique riemannienne de courbure < −1 sur une surface compacte
de genre > 1. Alors il existe une surface fuchsienne convexe l’espace Anti-de
Sitter dont le quotient est isométrique à (S, d).

L’analogue polyédral est énoncé dans [Fil11] mais nous n’en auront pas besoin.
Dans le cas polyédral plat, une preuve variationnelle a été donnée dans [Bru17]. À par-
tir du cas lisse plat, par approximation, la généralisation du théorème d’Alexandrov
au cas lorentzien a été obtenue :

Theorem 1.2.4 ([FS18]). Soit (S, d) une métrique à courbure ≤ 0 sur une surface
compacte de genre > 1.

Alors il existe une surface fuchsienne convexe dans l’espace de Minkowski telle
que la métrique induite sur le quotient est isométrique à (S, d).

On se pose alors la question naturelle suivante :

Conjecture 1.2.5. Soit (S, d) une surface compacte avec une métrique à courbure
≤ k, qui n’ait pas de géodésiques contractiles de longueur ≤ 2π. Alors il existe un
plongement isométrique convexe de (S, d) dans un espace lorentzien de dimension 3
de courbure k.

Notons que par le théorème de Hadamard, l’hypothèse sur les géodésiques con-
tractiles ne concerne que le cas k = 1.

Pour le cas k = 0, le théorème 1.2.4 répond à la question (pour le cas du tore
plat, il se plonge trivialement dans T2×R munit de la métrique lorentzienne produit).
En effet, le groupe fuchsien du théorème 1.2.4 agit sur le cône futur de l’origine, qui
contient la surface fuchsienne. La variété en question dans la conjecture ci-dessus est
le quotient du cône par le groupe.

Le résultat principal de cette thèse est le résultat suivant, qui correspond au cas
k = −1 de la conjecture ci-dessus.

Theorem 1.2.6. Soit (S, d) une métrique à courbure ≤ −1 sur une surface compacte
de genre > 1. Alors il existe une surface fuchsienne convexe dans l’espace de Anti-de
Sitter telle que la métrique induite sur le quotient est isométrique à (S, d).

On expliquera dans la suite pourquoi le cas k = 1 est plus difficile à obtenir.

1.3 Plan de la thèse et méthode employée
Le premier chapitre est dédié à une introduction rapide à la géométrie semi-Riemannienne
(Lorentzienne) dans lequel on introduit les espaces qu’on a besoin dans cette thèse,

1.3. PLAN DE LA THÈSE ET MÉTHODE EMPLOYÉE 11



CHAPTER 1. INTRODUCTION

l’espace anti-de Sitter, hyperbolique et de Sitter en essayant de relever les propriétés
demandées dans la résolution des problèmes considérés dans ce manuscrit.

Dans le deuxieme chapitre on montre qu’une métrique à courbure ≤ k est limite
uniforme de métriques polyedrales. En ayant cette approximation, on cosidère les cas
suivants:

• k = −1: La preuve du théorème 1.2.6 a une stratégie similaire à celle du
théorème 1.2.4, pour cela:

1. L’approximation sera par les métriques lisses, donc on montre de plus
que ces métriques poléyèdrales obtenues admettent une approximation par
des métriques lisses (section 3.4) et donc, on obtient qu’une métrique de
courbure ≤ −1 est limite uniforme de métriques riemanniennes à courbure
< −1.

2. On utilise le théorème 1.2.3 pour obtenir une suite de surface convexes
fuchsiennes lisses.
Grâce aux propriétés des surfaces convexes, et comme les métriques in-
duites convergent, on montre que, quitte à extraire une sous-suite, ces
surfaces convergent, ainsi que la suite de groupes fuchsiens associés.
On conclut en montrant que la suite des métriques induites correspon-
dantes converge.

La preuve du théoreème 1.2.6 occupe donc la section 4.1 de la présente thèse.

• k = 1: Pour avoir une preuve de la conjecture 1.2.5, il reste à considérer
le cas des métriques à courbure ≤ 1. Ces métriques existent pour tout type
topologique de surfaces compactes. Pour le tore, on voudrait réaliser les métriques
par des surfaces convexes paraboliques, c’est-à-dire invariantes par un groupe
qui fixe une horosphère dans l’espace de de Sitter. Pour le genre supérieur à 1,
la réalisation sera comme d’habitudes par des surfaces convexes fuchsiennes.
Une différence avec les cas k = −1, 0 pour k = 1, c’est que l’argument du 1
ci-dessus n’est pas évident. C’est peut-être un résultat folklorique, mais nous
sommes incapables de trouver une référence. La difficulté réside exactement
dans la possibilité d’avoir une triangulation convenable, ou les sommets sont

12 1.3. PLAN DE LA THÈSE ET MÉTHODE EMPLOYÉE



CHAPTER 1. INTRODUCTION

exactement les singularités de la métrique. Les surfaces ayant cette propriété
s’appelle "les surface de courbure intégrale bornée (BIC)". Cette étape est
evidente à prouver pour le cas k = −1 mais pas pour k = 1. Ceci est discuté
en détail dans la section 3.2.

Ensuite, les suites de surfaces convexes dans de Sitter peuvent présenter un type
original de dégénérescence, qui peut se traduire de manière intrinsèque par la condi-
tion sur la longueur des géodésique. Enfin, nous discuton rapidement la réalisation
de métrique dans le cas k = 1, la preuve n’a pas encore été complétée, on va parler
de tous ça dans la section 4.2.

1.4 Références
Comme les preuves de ces théorèmes se font par approximation lisse ou polyédrale,
indiquons des références dans les tableaux suivants.

Métriques Polyèdre Références
genre courbure Singularité conique Type Espace ambiant

0 0 positive compact Euclidien Alexandrov
0 1 positive compact Sphère Alexandrov
0 −1 positive compact Hyperbolique Alexandrov
0 1 négative compact de Sitter [HR93]
1 0 positive parabolique Euclidien Cas trivial
1 0 négative parabolique Minkowski Cas trivial
1 −1 positive parabolique Hyperbolique [FI09]
1 1 négative parabolique de Sitter [FI11]
> 1 −1 positive fuchsienne Hyperbolique [Fil07]
> 1 1 negative fuchsienne de Sitter [Sch]
> 1 0 negative fuchsienne Minkowski [Fil11]
> 1 −1 negative fuchsienne Anti-de Sitter [Fil11]

Table 1.1: Le cas polyédral

1.4. RÉFÉRENCES 13
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Métriques Lisse Références
genre courbure sectionnelle Type Espace ambiant
0 > 0 compact Euclidien Nirenberg-Pogorelov
0 > 1 compact Sphère Alexandrov
0 > −1 compact Hyperbolique Alexandrov
0 < 1 compact de Sitter [Sch96]
1 > 0 parabolique Euclidien Cas trivial
1 < 0 parabolique Minkowski Cas trivial
1 > −1 parabolique Hyperbolique [Sch06]
1 < 1 parabolique de Sitter question ouverte
> 1 > −1 fuchsienne Hyperbolique Conséquence de [Sch06]
> 1 < 0 fuchsienne Minkowski [LS00]
> 1 < −1 fuchsienne Anti-de Sitter [LS00]
> 1 < 1 fuchsienne de Sitter [LS00]

Table 1.2: Le cas lisse

Métriques Quelconque Références
genre courbure Type Espace ambiant

0 ≥ 0 compact Euclidien Alexandrov
0 ≥ −1 compact Hyperbolique Alexandrov
0 ≥ 1 compact Sphère Alexandrov
0 ≤ 1 compact de Sitter en cours de résolution (H. LABENI)
1 ≥ 0 parabolique Euclidien Cas trivial
1 ≤ 0 parabolique Minkowski Cas trivial
1 ≥ −1 parabolique Hyperbolique [FIV16]
1 ≤ 1 parabolique de Sitter en cours de résolution (H. LABENI)
> 1 ≤ 0 fuchsienne Minkowski [FS18]
> 1 ≤ −1 fuchsienne Anti-de Sitter [LAB20](H. LABENI)
> 1 ≥ −1 fuchsienne Hyperbolique Conséquence de [Slu18]
> 1 ≤ 1 fuchsienne de Sitter en cours de résolution (H. LABENI)

Table 1.3: Le cas général

14 1.4. RÉFÉRENCES
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1.5 D’autres questions ouvertes
Dans le cas d’une surface lisse S de genre > 1 avec une métrique riemannienne g de
courbure > −1, on peut montrer, dans l’esprit du théorème 1.1.2, qu’il existe une
surface convexe fuchsienne lisse dont le quotient est isométrique à (S, g).

Une généralisation est le résultat suivant prouvé par Labourie 1992 [Lab92] (pour
l’existence) et Schlenker [Sch06] (pour l’existence et l’unicité) :

Theorem 1.5.1. Soient g, h deux métriques riemanniennes de courbure sectionnelle
> −1 sur une surface compacte de genre > 1. Alors il existe une unique variété à
bord quasi-fuchsienne hyperbolique et tel que le bord est convexe et isométrique à g et
h.

On précise que le théorème 1.5.1 a été démontré dans le cas ou le bord est lisse
et il en sera de même pour le théorème 1.5.3 ci-dessous.

Avec un argument d’approximation, Slutskiy a démontré le théorème suivant :

Theorem 1.5.2 ([Slu18]). Soient g, h deux métriques à courbure ≥ −1 sur une
surface compacte de genre > 1. Alors il existe une variété à bord quasi-fuchsienne
hyperbolique et tel que le bord est convexe et isométrique à g et h.

Un résultat récent de A. Tamburelli [Tam18] qui est l’analogue du théorème 1.5.1
dit que :

Theorem 1.5.3. Soient g, h deux métriques riemanniennes de courbure sectionnelle
< −1 sur une surface compact de genre > 1. Alors il existe une variété à bord
globalement hyperbolique Anti-de Sitter et telle que le bord est convexe et isométrique
à g et h.

Maintenant passant au cas général (quand le bord n’est pas lisse) la question qui
se pose naturellement est la suivante :

Question 1.5.4. Soient g, h deux métriques de courbure ≤ −1 sur une surface com-
pacte S de genre > 1. Existe-il une variété à bord globalement hyperbolique Anti-de
Sitter tel que le bord est convexe, de type espace et isométrique à g et h ?

Notons que le théorème 1.2.6 est un cas particulier de la question dessus dans le
cas ou g = h, on va expliquer cela dans la section 4.1.6.

1.5. D’AUTRES QUESTIONS OUVERTES 15



Chapter 2

Preliminaries

Semi-Riemannian geometry 1 [O’N83] is the study of manifolds endowed with met-
ric tensors of arbitrary signature. The most important special cases of the semi-
Riemannian geometry are the Riemannian geometry [dC16] where the metric is posi-
tive definite and the Lorentzian geometry [BEE96] which has a very important place
in physic and especially in the theory of relativity [SW77, Syn56] where the space-
time is mathematically studied as the Minkowski space. The latter plays also an
important role in Einstein’s theory of relativity where the gravitation is no longer
treated as a force, but as a deformation of the space-time.

In this chapter, we introduce the basic geometric concepts. To start with, semi-
Riemmannian metric tensors, semi-Riemannian manifolds, connexion, curvature..
etc. Then we pass to the geometry of constant sectional curvature introducing hyper-
quadrics and the model spaces we are using in this work (Minkowski, hyperbolic, de
Sitter and anti-de Sitter space (section 2.3)) trying to highlight the most important
properties and features that we will need in this thesis.

2.1 Semi-Riemannian geometry
Definition 2.1.1. A Riemannian metric g on M is a (0, 2) tensor field of M , which
is symmetric, non degenerate and positive definite .

1. In general, the name pseudo-Riemannian geometry is also used instead of semi-Riemannian
geometry.

16



CHAPTER 2. PRELIMINARIES

A Riemannian manifold is a couple (M, g) where M is a differentiable manifold
and g is a Riemannian metric.

Semi-Riemannian manifolds are generalization of Riemannian manifolds, where
the metric is not necessarily positive definite. So, a semi-Riemannian metric g on M
is a (0, 2) tensor field of M , which is symmetric and non degenerate.

Definition 2.1.2. A semi-Riemannian manifold is a couple (M, g) where M is a
manifold and g is a semi-Riemannian metric.

If the metric g is of constant signature (−,+, ..,+), then g is called a Lorentzian
metric, and (M, g) is called a Lorentzian manifold.

A tangent vector v to M is said to be space-like, time-like or light-like following
its pseudo-norm g(v, v).

It is called:


space-like if g(v, v) > 0.
time-like if g(v, v) < 0.
light-like if g(v, v) = 0.

A differentiable curve γ : [0, 1] → M is space-like, (resp. time-like, light-like) if
its tangent vector is space-like (resp. time-like, light-like) at every point. The length
of a differentiable curve γ will be

length(γ) =
∫ 1

0

√
g(γ′(t), γ′(t)) if γ is a space-like curve.

length(γ) =
∫ 1

0

√
−g(γ′(t), γ′(t)) if γ is a time-like curve.

Orientation

Let p be a point on the manifold M , and TpM the tangent space at p to M . The set
of light-like vectors together with null vectors divides TpM in two regions:

The first region is constituted by two convex open cones formed by time-like
tangent vectors, one opposite to the other. The second region is constituted by
space-like tangent vectors (Figure 2.1). It is then easy to remark that the set of
time-like vectors in the tangent bundle TM is either connected or formed by two
connected components.

We say that M is time-orientable if the set of time-like vectors is formed by two
components. In this case, a time orientation is simply the choice of one of these
components. Now, let’s choose one component and denote it C+: A non-space-like

2.1. SEMI-RIEMANNIAN GEOMETRY 17
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tangent vector is future-directed (resp. past directed) if it is not the null vector and
it lies (resp. it does not lie) in the chosen component C+.

Let p ∈ M , the future of p (resp. the past) is the subset denoted by I+(p) (resp.
I−(p)) ofM formed by the points ofM which are connected to p by a future directed
time-like (or light-like) curve.

Figure 2.1: The time cone

2.1.1 Connection

There are no changes required in extending the notion of connexion and curvature
to semi-Riemannian manifolds because the proofs uses only the non-degeneracy of the
metric. Let’s start by the following definitions.

A linear connection on a semi-Riemannian manifold M is a map :

2. Γ(TM): space of vector fields.
3. C∞(M): set of differentiable functions on M .

18 2.1. SEMI-RIEMANNIAN GEOMETRY
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∇ : Γ(TM)× Γ(TM)→ Γ(TM)
(X, Y ) 7→ ∇XY.

such that for all X, Y, Z ∈ Γ(TM) .2 and f ∈ C∞(M) .3., we have:

• ∇X(Y + Z) = ∇XY +∇XZ,

• ∇X(fY ) = X(f)Y + f∇XY ,

• ∇X+fYZ = ∇XZ + f∇YZ.

As in the Riemannian case, on a semi-Riemannian manifold M there is a unique
linear connection which is symmetric and compatible with the metric g, it is the
Levi-Civita connection. We define it to be the unique connection on TM verifying,
for all X, Y, Z ∈ Γ(TM):

• ∇XY = ∇YX − [X, Y ], (∇ is said to be without torsion).

• X(g(Y,X)) = g(∇XY, Z) + g(Y,∇XZ), (∇ is said to be compatible with the
metric g).

The Levi-Civita connection determines the Riemann curvature tensor R. It is
defined as follows

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

We give without demonstration some properties of the Riemann tensor. IfX, Y, Z,W ∈
Γ(TM) then

• R(X, Y )Z = −R(Y,X)Z,

• g(R(X, Y )Z,W ) = −g(R(X, Y )W,Z)

• R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0

2.1. SEMI-RIEMANNIAN GEOMETRY 19
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2.1.2 Curvature
From the Riemann curvature tensor R, we can construct different notions of curva-
ture. Here we introduce the notion of "sectional curvature", then we introduce quickly
other notions of curvature which are less important in our thesis.

The sectional curvature of a plane π in TM is defined by sec(π) = R(X, Y,X, Y )
where X, Y form an orthonormal basis of π. A manifold is of sectional curvature ≥ k
(resp. < k) if for every plane sec(π) ≥ k (resp. < k). Let

Q(X, Y ) = g(X,X)g(Y, Y )− g(X, Y )2

A tangent plane π is non-degenerate if and only if Q(X, Y ) 6= 0

Lemma 2.1.3. Let π be a non-degenerate tangent plane to M at p. The number

K(X, Y ) = g(R(X, Y )Y,X)
Q(X, Y )

is independent of the choice of basis X, Y for π, and is called the "sectional curvature"
K(π) of π.

Now, let S be an embedded surface in a semi-Riemannian manifoldM and x ∈ S.
The Gauss map is defined to be the map that associates to each point p of S the
point N(p) ∈ S2, where N is the unit normal vector to the surface S. The operator
of Weingarten (also called the shape operator) denoted by B is the map defined as
follows

B : TxS → TxS

X 7→ −∇XN.

Principal, mean and Gauss curvature: the principal curvatures of the surface
S are the eigenvalues of B. The mean curvature is the half of the trace of B and
the Gauss curvature KGauss is the determinant of B (i.e. the product of principal
curvatures).

Gauss formula: Let N be a hypersurface in a manifold M there is a well known
formula ([O’N83], Corollary 20, page 107) relating the sectional curvature of the man-
ifoldM at a point x (denoted byKM

sec) and the Gaussian curvature of the hypersurface
N (denoted by KN

Gauss). It is given as follows:
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If the normal at x is space-like then:

KN
sec = KM

sec +KN
Gauss

If the normal at x is time-like then:

KN
sec = KM

sec −KN
Gauss

2.1.3 Geodesics
Geodesics are a generalization of the Euclidean notion of "straight lines". They be-
come an essential ingredient of semi-Reimannian geometry, as they are for Rieman-
nian one. Although there are usually a lot of similitude of notions between the two
geometries, but it is not the case for geodesics. In semi-Riemannian case there are
other difficulties and complications, we will see some of them in the sequel.

Parallel transport

Let ∇ be a linear connection on M , γ : [0, 1] −→ M a curve and Y a vector field
along γ (i.e. a smooth mapping Y : [0, 1] −→ TM such that Y (t) ∈ Tγ(t)M for each
t ∈ [0, 1] ). For t0 ∈ [0, 1] we may locally extend Y to a smooth vector field defined
on a neighborhood of γ(t0). Then we may consider the vector field ∇γ′Y (t) along γ.
The preceding arguments show that this vector field along γ is independent of the
local extension, and consequently ∇γ′Y (= Y ′) is well defined. A vector field Y along
γ is said to move by parallel translation along γ if it satisfies: ∇γ′Y (t) = 0 for all
t ∈ [0, 1].

Definition 2.1.4. A geodesic γ : [0, 1] −→ M is a smooth curve of M such that
the tangent vector γ′ moves by parallel translation along γ. In other words, γ is a
geodesic if

∇γ′γ
′ = 0.

As we saw before the square of the norm of a vector can be negative then the
length of a curve can be imaginary. A remarkable difference in semi-Riemannian
geometry, is that the tensor metric does not induce a distance on M (because it is
not positive definite) as in Riemannian setting, in this case there is no meaning to
talk about the notion of “minimization of distances" for the geodesics (a geodesic can
even be maximizing). In this case we will call "distance between two points" joined
by a time-like geodesic the module of the length of the geodesic.
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Exponential function

As in the Riemannian manifolds, the exponential map expp : TpM −→ M is defined
as follows: given v ∈ TpM , let γv(t) denote the unique geodesic in M with γv(0) = p
and γ′v(0) = v. Then the exponential map expp(v) of v is given by expp(v) = γv(1)
provided γv(1) is defined.

Definition 2.1.5. We say that M is geodesically complete if every geodesic is defined
for all times, (in other words) the exponential map is defined everywhere.

2.1.4 Isometries
Let M1 and M2 be two semi-Riemannian manifolds with metric tensors g1 and g2.
An isometry between M1 and M2 is a diffeomorphism φ : M1 −→ M2 that preserves
metric tensors i.e.

g1(X, Y ) = g2(df(X), df(Y )), ∀X, Y ∈ Γ(TM)

this means that g1 is the pull back of g2 by φ and we write

φ∗(g2) = g1

Example 2.1.6. The identity map Id : (M1, g) −→ (M1, g) is an isometry (Id is a
diffeomorphism and Id∗ = Id).

Isometric immersions: An immersion of M1 into M2 is just a smooth mapping
φ : M1 −→ M2 such that dφx is injective for all x ∈ M1. An isometric immersion of
M1 into M2 is a smooth immersion such that

φ∗(g2) = g1

An isometric embedding is an injective isometric immersion.

2.2 Hyperquadrics
In this section the concept of hyperquadrics is introduced, roughly speaking they are
a family to which the sphere and the hyperbolic space belong. We give also some of
their useful properties, which will be used further. In the following we denote by Rn

p

the space Rn endowed with the quadratic form

〈x, x〉np = −x2
1 − ...− x2

p + x2
p+1 + ...+ x2

n

Let’s first introduce the familiar special case of the hyperquadrics, the sphere.
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Sphere

The round sphere S2 can be seen as the set of unit vectors of the Euclidean space.
The following well known points about the sphere can be easily checked [O’N83] .

• S2 is a smooth surface of sectional curvature equal to 1 at every point.

• Geodesics of S2 are given by intersecting S2 with linear planes, hence they are
great circles. Now, given a tangent vector v to the sphere in a point x, the
curve defined by

t 7→ (sin t)v + (cos t)x

for t ∈ [0, 2π[ is a geodesic, and by the way, all geodesics of the sphere can be
written in this form.

• Isometries of S2 are isometries of the Euclidean space which preserve the
Euclidean scalar product. One can verify that this is the orthogonal group
O(3) (we recall that O(3) = {M ∈ Mat3(R)|tMM = 1} where Mat3 is the set
of (3× 3)-dimensional matrices))

• The distance between two points x, y on the sphere is the length of the (smallest)
geodesic between x and y and by a direct computation, one can easily check
that this is equal to the angle between the vectors x and y in R3, also we have
the following relation between distance on the sphere and the Euclidean scalar
product

cos d(x, y) = 〈x, y〉

Pseudo-spheres and pseudo-hyperbolics

We introduce the pseudo-sphere of radius 1 in Rn+1
p as the hyperquadric defined as

follows

Snp = {x ∈ Rn+1
p , 〈x, x〉n+1

p = 1}

The pseudo-hyperbolic space of radius 1 in Rn+1
v+1 is defined as follows

Hn
p = {x ∈ Rn+1

p+1 , 〈x, x〉n+1
p+1 = −1}

We give one of the important basic properties in the following Lemma
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Lemma 2.2.1. The pseudo-sphere Snp is diffeomorphic to Sn−p × Rp; the pseudo-
hyperbolic space Hn

p is diffeomorphic to Sp × Rn−p.

Proof. The map φS from Sn−p × Rp to Rn+1−p × Rp
p ' Rn+1

p defined by

φS(x, y) 7−→ (x
√

1 + ||y||2, y)
is a diffeomorphism its inverse is given by

φ−1
S (x, y) 7−→ (x 1√

1 + ||y||2
, y)

Where ||.|| is the Euclidean norm. The same proof holds for Hn
p .

The following points are worth mentioning, one can see ([O’N83], Chapter 4) for
more details and proofs.

For pseudo-spheres: Let’s now give some properties of the pseudo-spheres
which in some sense are the analogous of the preceding properties for the sphere.
Note that, in general the proof of these properties is done following the same way as
for the spheres (see [O’N83] for more details and proofs).

• Snp is a smooth hypersurface of constant sectional curvature equal to 1.

• Geodesics of Snp are given by intersecting Snp with planes in Rn+1
p which crosses

the origin.

• totally geodesic sub-manifolds are the intersections of Snp with vector subspaces.

• Isometries: The isometries of the pseudo-sphere Snp are the restrictions of isome-
tries of the ambient space which preserve the bilinear form 〈x, x〉n+1

p , this is the
group O(p, n+ 1− p).4

For pseudo-hyperbolics: Similarly we give the following analogous properties
for Pseudo-hyperbolic, we have:

4. Recall that O(p, q) is the subgroup of GLp+q(R) of isometries preserving the quadratic form
〈., .〉qp so that O(p, q) = {M ∈ GLp+q(R),R|MIp,qM

t = Ip,q}, where Ip is the (p×p)-identity matrix

for p, q ≥ 1 and Ip,q =
(
Ip 0
0 −Ip

)
.
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• Hn
p is a smooth hypersurface of constant sectional curvature equal to −1.

• Geodesics on Hn
p are given by intersecting Hn

p with planes in Rn+1
p+1 which crosse

the origin.

• Totally geodesic sub-manifolds are the intersections Hn
p of with vector sub-

spaces.

• Isometries: The isometries of the pseudo-sphere are the restrictions of isome-
tries of the ambient space which preserve the bilinear form 〈x, x〉n+1

p+1 , this is the
group O(p+ 1, n− p).

2.3 Model spaces M ε,n
k

In this thesis we are most interested in Anti-de Sitter and de Sitter space. In this
section we give a geometric description to these two spaces, we will try to focus
especially on the projective models (Klein models), trying also to raise the most
important features and properties that we need in the resolution of the main problems
considered in this thesis. Also, naturally we pass quickly by some basic definitions
and properties of the Minkowski and hyperbolic space.

The notation M ε,n
K , where K ∈ {−1, 0, 1} designates the curvature of the space,

ε takes the sign + (resp. −) to designate that the space is Riemannian (resp. semi-
Riemannian) and n ∈ N is the dimension of the space, so that we have

M−,3
1 = de Sitter space M−,2+1

0 = Mink(2, 1) M+,2
−1 = H2

M−,3
−1 = Anti-de Sitter space M−,3+1

0 = Mink(3, 1) M+,3
−1 = H3

2.3.1 Minkowski space and hyperbolic plane
(2 + 1)-Minkowski space: The (2 + 1)-dimensional Minkowski space denoted by
R2,1 is the vector space R3 endowed with the bilinear quadratic form

〈x, y〉12 = −x1y1 + x2y2 + x3y3

It is a simply connected complete Lorentzian (2 + 1)-manifold of curvature 0. It
is an orientable and time-orientable Lorentz manifold. Let’s mention quickly some of
its main properties:

2.3. MODEL SPACES M ε,N
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• Geodesics in Minkowski space are straight lines. As usual there are three types
of geodesics (up to isometry) classified according to the restriction of the bilinear
form 〈., .〉12 on them. If it is positive (resp. negative, null) then it is called space-
like (resp. time-like, light-like).
The totally geodesic planes are the affine planes in Minkowski space. Again,
they are classified (up to isometry) by the restriction of the bilinear form 〈., .〉12
on them. Hence we say that a plane P is space-like (resp. time-like, light-like)
if 〈., .〉12|P is positive (resp. negative, null).

• Isometries: The group of all isometries of the Minkowski space is isomorphic to

R2,1 oO(2, 1)

We mention also that the group of orientation-preserving and time-preserving
isometries denoted by Isom0(R2,1) is isomorphic to

R2,1 o SO0(2, 1).5

Hyperbolic plane H2: The hyperbolic plane has several models. The well known
are the hyperboloid and the projective model (Klein). The most one we are interested
in and using it in this thesis is the projective model, but first we start by defining
the hyperboloid model,

H2 = {x ∈ R2,1|〈x, x〉12 = −1, x0 > 0}

The hyperboloid has two sheets, distinguished by the sign of the first coordinate.
We define the hyperbolic space to be the sheet with x0 > 0. Let’s mention briefly
the following properties:

• Geodesic: In the hyperboloid model the geodesics are given by intersecting H2

with planes of R2,1 passing through the origin, hence they are straight lines.

5. Recall that the group SO(p, q) is defined by SO(p, q) = {A ∈ O(p, q)|det(A) = 1}. It is
the group of linear isometries which preserve orientation of the Minkowski space. The connected
component of the identity SO0(p, q) is the group of linear transformations which preserve orientation
and time-orientation.
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• Isometries of H2 are given by restricting the linear isometries of the ambient
space R2,1. The group of orientation-preserving isometries of H2 is SO0(2, 1).

Klein model of H2: We define the Klein model of the hyperbolic plane as a
domain of the projective space RP2. It is given as follows

H2 = {x ∈ R2,1|〈x, x〉 < 0}/ ∼

where x ∼ x′ if and only if there exists λ such that x = λx′. The boundary of H2

is given as follows

∂∞H2 = {[x] ∈ RP2|〈x, x〉 = 0}/ ∼

Image in an affine chart: Let ϕ0 : RP2 \ {x0 = 0} → R2 be an affine chart of RP2

defined by:

ϕ0([x0, x1, x2]) = (x1

x0
,
x2

x0
) = (x̄1, x̄2) (2.1)

Then ϕ0(H2 \ {x0 = 0}) gives,
−x2

0 + x2
1 + x2

2 < 0⇒ −(x0
x0

)2 + (x1
x0

)2 + (x2
x0

)2 < 0, so in this affine chart H2 is the
domain

{(x̄1, x̄2) : x̄1 + x̄2 < 1}

and this is the interior of a disc. Now, analogously to the Minkowski space, we
will give the following properties of the hyperbolic plane (one can see [Rat94], for
more proofs and details):

• Geodesics in the projective model are given by straight lines.

• Isometries: The group of isometries in this model satisfies the following isomor-
phism

Isom(H2) ∼= PSL2(R)

2.3.2 Hyperbolic space and de Sitter space
(3+1)-Minkowski space: Following the same way as in the lower dimensional case,
we define the (3+1)-dimensional Minkowski space, to be the vector space R4 endowed
with the bilinear form

2.3. MODEL SPACES M ε,N
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〈x, y〉13 = −x1y1 + x2y2 + x3y3 + x4y4

It is a simply connected complete Lorentzian (3 + 1)-manifold of curvature 0,
denoted by R3,1. It is also an orientable and time-orientable Lorentzian manifold.

Hyperbolic space H3: As in the 2-dimensional case, we define quickly the
hyperboloid model of H3 as follows

H3 = {x ∈ R3,1|〈x, x〉13 = −1, x0 > 0}

It is easy to check that H3 is a simply connected complete Riemannian manifold
of constant curvature −1. Again, the following properties can be easily checked
[reference for more details]

• Geodesics of H3 are given by intersecting H3 with 2-planes of R3,1 which pass
through the origin.
If a unit speed geodesic starting at a point p with initial vector v, then it has
the following parametrization

γ(t) = cosh(t)p+ sinh(t)v

Totally geodesic planes of H3 are given by intersecting H3 with a time-like plane
which passes through the origin.

• Isometries: The group of orientation-preserving isometries of H3 is the group of
linear isometries of R3,1 which preserve orientation and do not switch the two
connected components of the quadric {〈x, x〉13 = −1}, it is given by

Isom(H3) = SO0(3; 1)

,

Klein model of H3: Again, and similarly to the lower dimensional case, we
define the Klein model ( projective model) of the three dimensional hyperbolic space
as follows:

H3 = {x ∈ R3,1|〈x, x〉13 < 0}/ ∼
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where x ∼ x′ if and only if there exists λ such that x = λx′. The boundary of H3

is given as follows

∂∞H3 = {[x] ∈ RP3|〈x, x〉13 = 0}/ ∼

Image in an affine chart: By definition H3 is a subset of the projective space. In
order to better visualize it, we look at its intersection with an affine chart and see its
image in R3. Let ϕ0 : RP3 \ {x0 = 0} → R3 be an affine chart of RP3 defined by:

ϕ0([x0, x1, x2, x3]) =
(
x1

x0
,
x2

x0
,
x3

x0

)
= (x̄1, x̄2, x̄3). (2.2)

Then ϕ0(H3 \ {x0 = 0}) gives,

−x2
0 + x2

1 + x2
2 + x2

3 < 0⇒ −1 +
(
x1

x0

)2
+
(
x2

x0

)2
+
(
x3

x0

)2
< 0

so in this affine chart H3 fills the domain

x̄2
1 + x̄2

2 + x̄2
3 < 1,

which is the interior of a ball. In this chart, the boundary at infinity ∂∞H3 is the
round sphere,

Ω = {(x̄1, x̄2, x̄3) ∈ R3|x̄2
1 + x̄2

2 + x̄2
3 = 1},

Again, we give the following corresponding properties for the Klein model of the
hyperbolic 3-space.

• Geodesic lines (resp. hyperplanes) in this model are given by intersecting H3

with lines (resp. hyperplanes) of RP3. It follows directly that in the affine chart
geodesics are straight lines and totally geodesic planes are the intersection of Ω
with an affine plane.

• Isometries: The group of orientation-preserving isometries of H3 is PSO(3, 1).

De-Sitter space: In this section we recall the basic theory of de Sitter space.
Good refrence for this material is [O’N83].

Let consider the (3 + 1)-Minkowski space R3,1 with the bilinear form

〈x, y〉13 = −x0y0 + x1y1 + x2y2 + x3y3
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We define the quadratic model d̂S to be the the pseudo-sphere

d̂S = {x ∈ R4|〈x, x〉13 = −1},

endowed with the induced metric. It is a Lorentzian manifold of constant sectional
curvature 1, which is simply connected and diffeomorphic to S2×R. (Lemma 2.2.1).
Although de Sitter space is orientable, it is not time orientable.

Klein model of dS: In the following, we will define the Klein model of de Sitter
space, and see its image in an affine chart. Let x, y ∈ R4 we say that x ∼ y if and
only if there exists λ ∈ R∗ such that x = λy.

Definition 2.3.1. We define the de Sitter space of dimension 3 as follows:

dS = d̂S/ ∼

endowed with the quotient metric.

Image in an affine chart: by definition dS is a subset of the projective space RP3.
In order to better visualize it, we look at its intersection with an affine chart and see
its image in R3. Let ϕ0 : RP3 \ {x0 = 0} → R3 be an affine chart of RP3 defined by:

ϕ0([x0, x1, x2, x3]) =
(
x1

x0
,
x2

x0
,
x3

x0

)
= (x̄1, x̄2, x̄3). (2.3)

Then ϕ0(dS \ {x0 = 0}) gives,

−x2
0 + x2

1 + x2
2 + x2

3 > 0⇒ −1 +
(
x1

x0

)2
+
(
x2

x0

)2
+
(
x3

x0

)2
> 0

so in this affine chart dS fills the domain

x̄2
1 + x̄2

2 + x̄2
3 > 1,

which is the exterior of a ball. The interior of this ball is the hyperbolic 3-space
already seen above.

30 2.3. MODEL SPACES M ε,N
K



CHAPTER 2. PRELIMINARIES

Figure 2.2: In an affine chart {x0 6= 0}, dS is the exterior of the ball.

Analogously to the preceding cases the following properties are worth mentioning:

• Geodesics of dS are given by intersecting dS with projective lines of RP3. Hence,
it is clear from the construction that in the affine chart ϕ0, geodesics (resp.
totally geodesic planes) are given by the intersection between affine lines (resp.
affine planes) in R3 with the exterior of the ball describes above. A plane P is
space like if the restriction of the induced metric on P is positive-definite. A
convex space-like surface in de Sitter space is a convex surface which has only
space-like planes as support planes (see section 4.2.1). Recall also that the ideal
boundary at infinity ∂∞dS is given by

∂∞dS = {[x] ∈ RP3|〈x, x〉13 = 0}/ ∼ .

We can distinguish the type of geodesics in de Sitter space as follows (Figure
2.3):

– A geodesic in dS is time-like if it meets ∂∞H3 in two different points.

– A geodesic in dS is light-like if it meets ∂∞H3 in only one point .

– A geodesic in dS is space-like if it is not contained in ∂∞H3.
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Figure 2.3: Geodesics of de Sitter space in the affine chart {x0 6= 0}.

• Isometries of dS: the isometry group of dS is the projective quotient of O(3, 1)
denoted by PO(3, 1). It has two connected components preserving or reversing
the orientation, and its identity component identifies with PSO(3, 1).

2.3.3 Anti-de Sitter space
In this section we recall the basic theory of Anti-de Sitter geometry, which is a
Lorentzian analog of hyperbolic geometry. Among the most important references for
this material, we cite the seminal parper of Geoffrey Mess in 1990 [Mes07], we cite
also theses good references [LAB20, BS12, BS10, O’N83].

In the following we will describe a geometric model of Anti-de Sitter space (of
dimension 3) we are most interested in, and illustrate some of its features.

We denote with R2,2 the vector space R4 endowed with the symmetric bilinear
form of signature (2, 2),
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〈x, x〉22 = −x0y0 − x1y1 + x2y2 + x3y3.

Definition 2.3.2. We define the quadratic model ÂdS3 as follows,

ÂdS3 = {x ∈ R4|〈x, x〉22 = −1},

endowed with the Lorentzian metric induced by the restriction of the bilinear form b
to its tangent spaces.

One can easily check that ÂdS3 is a Lorentzian space of constant curvature −1,
it geodesically complete, but not simply connected. The following properties can be
easily checked:

• Geodesics in ÂdS3 are given by straight lines. As usual there are three types of
geodesics (up to isometry) classified according to the restriction of the bilinear
form 〈., .〉22 on them. If it is positive (resp. negative, null) then it is called
space-like (resp. time-like, light-like).

Again, the totally geodesic planes are given by intersecting ÂdS3 with hyper-
planes of R2,2. Hence we say that a plane P is space-like (resp. time-like,
light-like) if 〈., .〉22|P is positive (resp. negative, null).

• Isometries: The group of isometries of ÂdS3 is the group O(2, 2), while the
group of orientation-preserving and time-preserving isometries is SO0(2, 2).

Klein model: As for the hyperbolic space and de Sitter space, there is the Klein
model of anti-de Sitter space, obtained by projecting in R2,2 from the quadric to any
tangent plane in the direction of the origin. In the following we will see that the
anti-de Sitter space is sent to the interior of a one sheeted hyperboloid.

Now let x, y ∈ R4. We say that x ∼ y if and only if there exists λ ∈ R∗ such that
x = λy.

Definition 2.3.3. We define the Anti-de Sitter space of dimension 3 as follows:

AdS3 = ÂdS3/ ∼

endowed with the quotient metric.
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It is easy to see that ÂdS3 is a double cover of AdS3. The pseudo-Riemannian
metric induced on ÂdS3 goes down to the quotient.

Image of AdS3 in an affine chart: By definition AdS3 is a subset of the projective
space. In order to better visualize it, we look at its intersection with an affine chart
and see its image in R3. Let ϕ0 : RP3 \ {x0 = 0} → R3 be an affine chart of RP3

defined by:

ϕ0([x0, x1, x2, x3]) =
(
x1

x0
,
x2

x0
,
x3

x0

)
= (x̄1, x̄2, x̄3). (2.4)

Then ϕ0(AdS3 \ {x0 = 0}) gives,

−x2
0 − x2

1 + x2
2 + x2

3 < 0⇒ −1−
(
x1

x0

)2
+
(
x2

x0

)2
+
(
x3

x0

)2
< 0

so in this affine chart AdS3 fills the domain

−x̄2
1 + x̄2

2 + x̄2
3 < 1,

which is the interior of a one-sheeted hyperboloid. Notice that AdS3 is not contained
in a single affine chart. In the affine chart ϕ0 we are missing a totally geodesic plane
at infinity, corresponding to {x0 = 0}.

In all the following, we will denote by D, the disc
{
x̄2

2 + x̄2
3 < 1

x̄1 = 0 in the affine

chart ϕ0 (see Figure 2.4).
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Figure 2.4: Image of AdS3 in the affine chart ϕ0.

Again, we give the following properties of the anti-de Sitter space:

• Geodesics are given by intersecting AdS3 with projective lines of RP3. It is
clear from the construction that in the affine chart ϕ0, geodesics (resp. totally
geodesic planes) are given by the intersection between affine lines (resp. affine
planes) in R3 with the interior of the one sheeted hyperboloid described above.
A plane P is space like if the restriction of the induced metric on P is positive-
definite. A convex space-like surface in Anti-de Sitter space is a convex surface
which has only space-like planes as support planes. Recall also that the ideal
boundary at infinity ∂∞AdS3 is given by

∂∞AdS
3 = {[x] ∈ RP3 : b(x, x) = 0}/ ∼ .
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We can distinguish the type of geodesics in Anti-de Sitter space as follows (see
Figure 2.5):

– A geodesic in AdS3 is space-like if it meets ∂∞AdS3 in two different points.
– A geodesic in AdS3 is time-like if it is strictly contained in AdS3.
– A geodesic in AdS3 is light-like if it meets ∂∞AdS3 in only one point .

Figure 2.5: type of geodesics in AdS3 space.

Therefore, a geodesic γ with initial point x and and tangent vector v is parametrized
as follows:

– If γ is space-like then
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expx(tv) = cosh(t)x+ sinh(t)v

– If γ is time-like then

expx(tv) = cos(t)x+ sin(t)v

– If γ is light-like then

expx(tv) = x+ tv

• Isometries of AdS3: The isometry group of AdS3 is the projective quotient of
O(2, 2), this coincide with the group PO(2, 2).
The group of orientation-preserving and time-preserving isometries of AdS3 is
then the projective quotient of SO0(2, 2), it coincides with the group PO0(2, 2).
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Approximation of metrics

3.1 Some of Alexandrov geometry
Alexandrov spaces with curvature ≤ k form a generalization of Riemannian manifolds
with sectional curvature ≤ k, where k ∈ R. This generalization of curvature relies on
the ability to compare a curved space with another space that has constant curvature
k. This is done in general by comparing the geodesic triangles of the two spaces.
We will explain that by details below. Now, given a real number k, in term of the
previous notations (section 2.3) we will have:

• if k < 0 then M+,2
k is the hyperbolic space H2 with the distance function scaled

by a factor of 1/
√
−k.

• if k = 0 then M+,2
k is the Euclidean plane.

• if k > 0 then M+,2
k is the 2-sphere S2 with the metric scaled by a factor of

1/
√
k.

In all the following (in this section) and for simplicity of writing, we will denote every
space M+,2

k simply by Mk.
Let (X, d0) be a geodesic metric space. A (geodesic) triangle ∆ ∈ X consist

of three points x, y, z ∈ X and shortest paths [x, y], [y, z] and [z, x]. A comparison
triangle inMk for ∆ is a geodesic triangle ∆̃ inMk with vertices x̃, ỹ and z̃, such that
d0(x, y) = dMk

(x̃, ỹ) , d0(y, z) = dMk
(ỹ, z̃), d0(x, z) = dMk

(x̃, z̃). Note that if k ≤ 0
then ∆ always exists and if k > 0 then it exists provided the perimeter of ∆ is less
than 2π/

√
k in both cases it is unique up to isometry of Mk. The interior angle of

comparison triangle ∆̃ at a vertex x̃ is called the comparison angle between y and z
at x of the triangle ∆.
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Upper angle

Let’s recall the notion of "upper angle" that was first introduced by A. D. Alexan-
drov. Let γ, γ′ be two non trivial geodesics issuing from the same point x. Let
∠̃k(γ(t)xγ′(t′)) be the angle at x̃ of the comparison triangle ∆̃ with vertices γ̃(t), x̃
and γ̃′(t′) in Mk corresponding to the triangle ∆(γ(t)xγ(t′)) in X. Then the upper
angle at x of γ and γ′ denoted by ∠̄(γ, γ′) is defined by

∠̄(γ, γ′) = lim sup ∠̃k
t,t′−→0

(γ(t)xγ′(t′)) (3.1)

Note that the limit above is independent of the choice of k and that the upper
angle lies in the interval [0, π].

Definition 3.1.1. We say that (X, d0) is CAT (k) if the upper angle between any
couple of sides of every geodesic triangle with distinct vertices is no greater than the
angle between the corresponding sides of its comparison triangle in Mk.

The terminology "CAT(k)" was introduced the first time by M. Gromov [Gro87].
The initials are in honour of E. Cartan, AD. Alexandrov and V.A. Toponogov.

Now, fix k ∈ R. Let X be a geodesic metric space, the following proposition is
worth mentioning, we will use those equivalent properties in the sequel. (when k > 0
we assume that the perimeter of each geodesic triangle considered is smaller than
2π/
√
k).

Proposition 3.1.2. ([BH99], Proposition 1.7). The following conditions are equiv-
alent.

(1) X is a CAT (k) space.
(2) The Alexandrov angle between the sides of any geodesic triangle in X with

distinct vertices is no greater than the angle between the corresponding sides of its
comparison triangle in Mk.

(3) Every geodesic triangle satisfies the CAT (k) inequality that is: for every x, y ∈
∆(pqr) and them comparison points x̃, ỹ ∈ ∆̃(p̃q̃r̃) we have

d(x, y) ≤ d(x̃, ỹ)
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Figure 3.1: Comparison triangle and CAT (k) inequality

Now, let Bd0(x, r) be the ball of center x and radius r in (X, d0):

Definition 3.1.3. A metric space (X, d0) has a curvature ≤ k (in the Alexandrov
sense), if for any x there exists r such that Bd0(x, r) endowed with the induced (in-
trinsic) metric is CAT (k).

Let us remind also the notion of bounded integral curvature [AZ67, Chapter I, p.
6].

A simple triangle is a triangle bounding an open set homeomorphic to a disc,
consisting of three distinct points (the vertices of the triangle) and three shortest
paths joining these points, and which is convex relative to the boundary, i.e. no two
points of the boundary of the triangle, can be joined by a curve outside the triangle,
which is shorter than a suitable part of the boundary joining the points, (see [AZ67]
for more details). Two simple triangles are said to be nonoverlapping if they do not
have common interior points.

Definition 3.1.4. An intrinsic distance d0 on a surface S is said to be of bounded
integral curvature (in short, BIC), if (S, d0) verifies the following property:

For every x ∈ S and every neighborhood Nx of x homeomorphic to an open disc,
for any finite system T of pairwise non-overlapping simple triangles T belonging to
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Nx, the sum of the excesses

δ0(T ) = ᾱT + β̄T + γ̄T − π,

of the triangles T ∈ T with upper angles (ᾱT , β̄T , γ̄T ) is bounded from above by a
number C depending only on the neighborhood Nx, i.e.∑

T∈T
δ0(T ) ≤ C.

Triangulation: Let (X, d) be an Alexandrov compact surface of curvature bounded
from above. A triangulation is a finite family of triangles (Ti)i∈I such that:

• Each triangle is homeomorphic to an open disc and that the family {Ti}i∈I
must cover X.

• The intersection of two faces is a disjoint union of edges and vertices.

This notion is then different from the usual notion of "triangulation" in topology.
Euler characteristic and Euler formula: The definition of the Euler charac-

teristic is given by
X (S) = (2− 2g)

Where g is the genus of the compact surface S. Now, let |T | be the number
of triangles, E the number of edges and N the number of vertices in our geodesic
triangulation. We have E = 3

2 |T |, and the Euler formula says

|T | − E +N = X (S)

3.2 CAT (k)-surfaces are BIC
As we said in the introduction of this thesis, the general method to prove the re-
alization of CAT (k)-metrics on surfaces, is by using approximation by "smooth" or
"polyhedral" metrics. This method is based on the fact that some surfaces admit a tri-
angulation by suitable triangles, these surfaces are called BIC-surfaces (see definition
3.1.4 above), we can resume that by stating this Alexandrov’s Theorem.

Theorem 3.2.1 ([AZ67, Theorem 2 p.59]). Let ε > 0. A compact BIC surface
admits a triangulation by a finite number of arbitrary non overlapping simple triangles
of diameter < ε.
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To use this Theorem for our CAT (k) surfaces, we need to prove that these surfaces
are BIC. Exactly we need to prove the following Theorem for all k ∈ R.

Theorem 3.2.2. A CAT (k) surface is a BIC surface.

For k ≤ 0 the proof is obvious ([LAB20], Lemma 5.8) as the Alexandrov angles
of a geodesic triangle in a CAT (0) surface are less than the comparison angles in the
Euclidian plane (Proposition 3.1.2), it follows immediately that for every triangle ∆
on the surface we have

δ0(∆) ≤ δ0(∆̃) = 0

where ∆̃ is its comparison triangle in the Euclidiean plane and δ0 is the excess of the
triangle (see definition 3.1.4). This says that CAT (0) surfaces are BIC. The proof
follows by transitivity for all k < 0 because of the property that every CAT (k) surface
is a CAT (0) surface for all k < 0 (see [BH99], Chapter II, page 165).

For k > 0 the proof is not obvious and need more delicate discussion. The idea
repose on the result given by the following Theorem, whose the proof occupies the
whole section 3.2.

Theorem 3.2.3. For every geodesic triangle ∆ we have

δ0(∆) ≤ kArea(∆)

where Area(∆) is the 2-dimensional Hausdorff measure given by the CAT (k) metric.

This Theorem was given without proof in ([MO01], Lemma 5.3). The authors say
that the arguments for the proof are similar to the proof of the analog of Theorem
3.2.3 for spaces with curvature bounded from below (CBB) provided in ([Mac98],
Theorem 2.0) and the principal argument is [(3) of Lemma 5.1 in [MO01]] which
says (roughly speaking) that there are points with a neighborhood bi-Lipschitz to a
Euclidean disc (Theorem 3.2.6). There is no proof of this Lemma in [MO01], the
authors say that the proof can be done using some results of [OHon] which is a
preprint currently not available.

3.2.1 Bi-Lipschitz equivalence
The aim of this section is to prove Theorem 3.2.6 below. For that, let’s prepare some
basic definitions and results that will be used in the proof.

42 3.2. CAT (K)-SURFACES ARE BIC



CHAPTER 3. APPROXIMATION OF METRICS

Space of directions

In the following we will introduce the notion of space of directions, [LS97a, LS97b,
KL97] this notion replaces the concept of the tangent space in the theory of smooth
manifolds.

Let X be a complete length space, that is X is a connected complete metric space,
and γ, γ′ be two non trivial geodesics issuing from the same point x. We say that γ
and γ′ define the same direction at p if the Alexandrov angle between them is zero.
We define a relation ∼ as follows: γ ∼ γ′ if and only if ∠̄x(γ, γ′) = 0 (the Alexandrov
angle is null).

Using a triangle inequality for the upper angle it is easy to check that ∼ is an
equivalence relation on Σ′x (the set of equivalence classes of non-trivial geodesics
issuing from p) and that ∠̄x induces a metric on Σ′x hence a structure of a metric
space (Σ′x, ∠̄x) is well defined. The completion of (Σ′x, ∠̄x) is called the space of
directions at p and denoted by (Σx, ∠̄x). An element of Σx is called a direction at x.

For a length surface X, the length L(Σx) of Σx at x ∈ X is by definition the
one-dimensional Hausdorff measure of (Σx, ∠̄x).

Singular points

A point x ∈ X is called a positive (resp. negative) singular point if L(Σx) < 2π
(resp. L(Σx) > 2π). We denote the set of positive (resp. negative) singular points
by Sing+(X) (resp. Sing−(X)). For a metric space the set of singular points is the
union of the sets of positives and negatives singular points. For Alexandrov spaces,
an important remark that can be easily seen is that there are no negative singular
points for Alexandrov spaces of curvature bounded from below and no positive ones
on those of curvature bounded from above. A point x ∈ X is said to be regular if it
is not singular.

We will call a point x ∈ X a δ-singular point if L(Σx) ≥ 2π+δ, or equivalently, the
diameter of Σx is not less than π+δ/2. We designate by SingδX the set of δ-singular
points in X and define Sing X := ⋃

δ>0 SingδX (the set of metrically singular points
in X).

The following Lemma is given in ([MO01], Lemma 5.2) and the associated proof is
a straightforward adaptation of the one given in ([Mac98], Lemma 1.3) for Alexandrov
spaces with curvature bounded from below.

Lemma 3.2.4. For any δ > 0, the set of points whose space of directions is of length
greater than 2π+2δ has no accumulation point. In particular, the number of singular
points in a compact domain is countable.
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Proof. By contradiction we suppose that the set Singδ has an accumulation point x.
Then there exists a sequence {xn} ⊂ SingδX such that limn→∞ xn = x. Without loss
of generality, we can take a subsequence, and suppose that for n > m, |xxn| ≤ |ppm|.
Since π + δ ≤ ∠(xxnxm) (because the length of the space of direction is greater
than 2π + 2δ) and that ∠(xxnxm) ≤ ∠̃(xxnxm) (because of the CAT (k) properties),
there is a positive number α (depending only on k and δ) such that ∠(xnxxm) ≤
∠̃(xnxxm) ≤ α for arbitrary n,m with n 6= m. This leads to a contradiction because
Σx is compact. The fact that the number of singular points in a compact domain is
countable follows directly from the first result of the Lemma.

Tangent cone

In this section we will introduce quickly the notion of "tangent cone" in Alexandrov
spaces, this notion will be used in the proof of Theorem 3.2.6.

Definition 3.2.5. Let X be an Alexandrov space of curvature bounded from above,
x ∈ X and ΣxX be the space of directions of X at x. The tangent cone of X at x
denoted by TxX, is defined to be the Euclidean cone over the space of direction of X
so that

TxX = C(ΣxX)

Let’s state here the main Theorem of the section 3.2.1.

Theorem 3.2.6. Let x ∈ X be a point satisfying L(Σx) < 2π + δ for sufficiently
small δ. Then for sufficiently small r > 0, there is a positive number ε = ε(δ, r) with
limδ,r→0 ε(δ, r) = 0 such that the ball Bx(r) (of center x and radius r) is bi-Lipschitz
homeomorphic to a ball of radius r in R2 with the Lipschitz constant in (1− ε, 1 + ε).

In the following we will give a sketch of the proof of Theorem 3.2.6, it will be done
using ([BB98], Theorem 3.1) stated bellow as Theorem 3.2.9, whose the proof was
done following a similar way as for ([BGP92], Theorem 5.4) proving the existence of
some suitable maps associated to a collection of points called "distance frames" for
CBA case (in some sense analog of the maps called "strainers" [Ber08] or "burst points,
explosions" [BGP92]) in R2, the difference from the CBB case was (roughly speaking)
only that a lower estimate for angles is based on the extendability of geodesics (see
[BB98] form more details). For that in the sequel we will suppose that geodesics are
extendable.

We recall that a geodesic γ : [0, β] −→ X is said to be extandable if it is the
restriction of a geodesic γ′ : [0, β′] −→ X with β < β′.
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Chain of directions and iterated tangent cone

To prove the first part of Theorem 3.2.6 (existence of a bi-Lipschitz homeomerphism)
we will use Theorem 3.2.9 and the iterated tangent cone below. The idea was taken
from a part of the proof of ([BB98], Lemma 3.10).

Let’s start by the following Theorem due to I. G. Nikolaev [Nik95].

Theorem 3.2.7. ([BH99], Theorem 3.19) Let k ∈ R, and X a metric space with
curvature ≤ k then the space of directions at each point x ∈ X is a CAT (1) space.
And the tangent cone TxX is CAT (0) at every x ∈ X.

A good remark, is that furthermore if X is with extandable geodesics then the
space of direction will be with extandable geodesics too.

Now, as the space of directions is a space of curvature ≤ 1 then we can define a
recurrence relation (space of directions of the space of directions) as follows

{
Σx,v1,...,vm−1X = ΣxX, m = 1
Σx,v1,...,vmX = Σvm(Σx,v1,...,vm−1X) at vm ∈ Σx,v1,...,vm−1X, ∀m ∈ N

The collection ξ = (x; v1, ..., vm) is called the chain of directions at x, and the
number |ξ| = m is the length of ξ. It is clear that the chain ξ is maximal if and only
if vm is an isolated point of Σm,v1,...,vm−1X.

It is easy to prove that the direction space of the tangent cone TxX at a point
(v, t) is isometric to the spherical suspension3 over Σx,v, thus T(v,t)(TxX) is isometric
to CΣx,v × R.

Iterating this operation for a chain ξ = (x, v1, .., vm) and t = (t1, ..., tm), tm ≥
0, ∀m ∈ N, we can define recurrently TξtX to be the tangent cone to Tξ′t′X at
(vm, tm), where ξ′ = (x, v1, .., vm−1) and t′ = (t1, ..., tm−1). For a chain of direction ξ =
(x; v1, ..., vm) and a collection t = (t1, ..., tm) of positive reals, we define recurrently
TξtX as the tangent cone to Tξ′t′X at the point (vm, tm), where t′ = (t1, ..., tm−1), ξ′ =
(x; v1, ..., vm−1). It follows directly that TξtX is isometric to (CΣξ) × Rm. If ξ is
maximal, then TξtX = R|ξ| = Rm.

3. Recall that the spherical suspension for a metric space X of diameter ≤ π is the quotient
space Γ(X) = X × [0, π]/ ∼ where (x1, a1) ∼ (x2, a2) ⇔ a1 = a2 = 0 or a1 = a2 = π with the
conical metric

cos |x̄1x̄2| = cos(a1)cos(a2) + sin(a1)sin(a2)cos|x1x2|

where x̄1 = (x1, a1), x̄2 = (x2, a2)
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If X is a surface of bounded curvature ≤ k then the length of the chain will be
bounded ([BB98]) and not greater than 2, (m ≤ 2).

Let’s recall the following definition of the Gromov-Hausdorff distance.

Definition 3.2.8. We define the distortion of a map f : X → Y between two metric
spaces as follows:

dis(f) = sup
x,x′∈X

|dY (f(x), f(x′))− dX(x, x′)|

Let A be the class of all maps f : X → Y . If we put

δ(X, Y ) = inf
f∈A

dis(f)

Then the Gromov-Hosdorff distance between X and Y is defined by

dGH(X, Y ) = max{δ(X, Y ), δ(Y,X)}

A (compact) metric space X is the Gromov-hausdorff limit of a sequence of metric
spaces (Xn)n if dGH(Xn, X) → 0 as n → ∞. (Of course this limit is unique up to
isometry since dGH is a metric).

Recall that for a metric space X and λ > 0, the metric space λX is the same set
of points equipped with the original metric multiplied by λ.

If X is a compact surface of with extandable geodesics, then the tangent cone TxX
is the Gromov-Hausdorff limit of pointed spaces (λX, x) when λ→∞ (see [BS07] or
[BB98] for more details).

Since TxX is the Gromov-Hausdorff limit of the pointed spaces (λX, x) as λ→∞,
then for every ε there exists λ > 0 and a small θ′ such that

dGH(Bθ′(x)Bθ′(o)) < ε

for the balls Bθ′(x) ⊂ λX and Bθ′(o) ⊂ TxX where o is the vertex of the cone TxX.
Iterating this construction and using the fact that TξtX = R2, we can find θ such
that

dGH(Bθ(x)Bθ(0)) < ε

where Bθ(x) ⊂ λX and Bθ(0) ⊂ R2. Now we can apply the following Theorem due
to B. Kleiner [Kle99], and proved in [BB98] to deduce the existence of a bi-Lipschitz
homeomorphism to an open subset of R2.
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Theorem 3.2.9. ([BB98], Theorem 3.1). Let X be geodesically complete surface of
curvature ≤ k with extandable geodesics such that

dGH(Bθ(x)Bθ(0)) < ε

where Bθ(x) ⊂ X and Bθ(0) ⊂ R2. Then every ball Br(x) ⊂ Bθ(x) is bi-Lipschitz
homeomorphic to an open disc in R2.

Hence the first part of Theorem 3.2.6 (the existence of a bi-Lipschitz homeomor-
phism) is now proved. Now let’s see how to prove the second part (the distortion
coefficients of the homeomorphism are (1− ε, 1 + ε)).

Before seeing that, we note that the proof of the Theorem 3.2.9 was done by
proving that the associated distance map to the distance frames is a bi-Lipschitz
homeomorphism (see [BB98] for more details). In the following we will introduce
the homeomorphism in question (the homeomorphism verifying Theorem 3.2.9) and
prove that under some suitable conditions is furthermore an almost4 isometry (that
is, the distortion coefficients are (1− ε, 1 + ε)).

Distance frames

The notion of "distance frames" (see below) were introduced and used in [Ber75] (in
the form of distance coordinates). Using this notion and Theorem 3.2.9, we will give
a proof to the Theorem 3.2.6 by proving that the associated distance map to the
distance frames is an ε-almost isometry.

Definition 3.2.10. Let (X, d) be a locally compact space of upper bounded curvature
with extendable geodesics. A collection Θ = {x0; ai, bi, i = 1, 2} is called a distance
frame if

|π − ∠aixbi| < δ |π/2− ∠aixaj| < δ
|π/2− ∠aixbj| < δ |π/2− ∠bixbj| < δ

for all 1 ≤ i, j ≤ 2, i 6= j and x ∈ Bδ(x0)

4. A surjective map between two metric spaces f : X → X ′ is said to be a ε1-almost isometry
if the following holds for any x, x′ ∈ X

|dX′(f(x), f(x′))− dX(x, x′)| < ε1dX′(x, x′)
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The associated distance map f = fΘ : X −→ R2 with the coordinate functions
fi = fai,bi

where fai,bi
: X −→ R are given by fai,bi

(x) = 1
2(d(bi, x)− d(ai, x))

The following Theorem is an analogous of ([BGP92], Theorem 9.4) for CBB spaces.
Theorem 3.2.11. Let X be a surface of curvature ≤ k and let x0 ∈ X have a
distance frame {x0; ai, bi, i = 1, 2}. Then the map f : X −→ R2 given by f(q) =
(fa1,b1(q), fa2,b2(q)) is an almost isometry from a small neighborhood of the point x0
onto a domain in R2.

So we need to prove the following inequality

|
2∑
i=1

1
4

((d(bi, q)− d(bi, r))− (d(ai, q)− d(ai, r)))2

d(q, r)2 − 1| < ε(δ, r)

The proof can be done using a suitable cosinus formula, we note that we didn’t
complete the proof yet. If we prove this inequality then the proof of Theorem 3.2.6
follows. (It can be done using an analog of ([BGP92], Lemma 9.3) which seems to be
obvious for n = 2).

The quasi-total excess
Now, to prove the Theorem 3.2.3 we have to introduce the notion of "quasi-total
excess".

Let ∆ be a triangle ∆ with bounds the geodesics γ1, γ2, γ3, and vertices V =
{γ1(0), γ2(0), γ3(0)} and let ∑∆

x be the space of directions at x ∈ X of ∆, [MO01].
We define the quasi-total excess as follows

δ′0(∆) = 2π − ∑
x∈V

(π − L(∑∆
x ))

This definition coicides with the definition of the total excess in Alexandrov sur-
faces of curvature bounded from below, and in such a case δ′ depends only on the
boundary ∂∆ of ∆ and not on the choice of geodesics.

The total excess is then defined as follows
δ0(∆) = sup{δ′(∆; γ1, γ2, γ3)}

where the supremum is taken over all pairs of geodesics which construct ∂∆.
Now using Theorem 3.2.11, Lemma 3.2.4, and following the same technical way as in
([Mac98], Theorem 2.0) we can get the proof of Theorem 3.2.3.

In the end, using Theorem 3.2.3 then clearly Theorem 3.2.2 holds, one have just
to take the bound C in the definition 3.1.4 as the sum of the areas of the triangles.
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3.3 Approximation of CAT (k)-metrics by polyhe-
dral metrics

In this section we will show how to approximate an Alexandrov metric of curvature ≤
k for k ∈ R on a compact surface S by a sequence of metrics with conical singularities
of negative curvature.

In the following, we mean by a k-polyhedral metric on a surface S, a metric such
that each point has a neighborhood isometric to the neighborhood of a point on a
cone in Mk. The points having a neighborhood isometric to a neighborhood of the
apex of a cone are the vertices of the metric. The curvature of a vertex is 2π minus
the total angle around the corresponding cone vertex. For k = 1 we will call it simply
a spherical polyhedral metric, and for k = −1 we will call it a hyperbolic polyhedral
metric.

The convergence that will be used is the uniform convergence so let’s recall its
definition.

Definition 3.3.1. We say that a sequence of metric spaces (Sn, dn)n converges uni-
formly to the metric space (S, d) if there exist homeomorphisms fn : S −→ Sn such
that

sup
x,y∈S
|dn(fn(x), fn(y))− d(x, y)| −−−→

n→∞
0 .

If Sn = S and fn = id, then this is the usual definition of uniform convergence of
distance functions.

In this section, we want to prove that a metric of curvature ≤ k on a closed surface
S can be approximated (in the sense of the uniform convergence) by k-polyhedral
metrics.

The main tool is [AZ67, Theorem 2 p. 59] it is given as follows:

Theorem 3.3.2. Let ε > 0. A compact BIC surface admits a covering by a finite
number of arbitrary non overlapping simple triangles of diameter < ε.

We will also need the following result to prove that the sum of the angles in a
cone point is not less than 2π, it corresponds to Theorem 11 in [AZ67, Chapter II,
p. 47].

Lemma 3.3.3. Let p be a point on a BIC surface such that there is at least one
shortest arc containing p in its interior. Then for any decomposition of a neighborhood
of p into sector convex relative to the boundary formed by geodesic rays issued from p
such that the upper angles between the sides of these sectors exist and do not exceed
π, the total sum of those angles is not less than 2π.
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To get a triangulation of our surface, we will use some properties of BIC surfaces,
so let’s consider the Theorem 3.2.2, we restate it here as follows

Theorem 3.3.4. A CAT (k) surface is a BIC surface.

Note that for a BIC surface, the angle exists, that means that in (3.1) the limit
exists in place of the limsup [AZ67]. So in the following we will speak about angles
rather than upper angles.

Theorem 3.3.5. Let (S, d) be a metric of curvature ≤ k on the closed surface S.
Then there exists a sequence (Sn, dn) converging uniformly to (S, d), where Sn is
homeomorphic to S and dn is the metric induced by a k-polyhedral metric on Sn.

The remainder of this section is devoted to the proof of Theorem 3.3.5.
Applying Theorem 3.3.2 we obtain a triangulation Tε of our surface in which every

simple triangle has diameter < ε. Replace the interiors of the triangles of Tε by the
interiors of the comparison triangles inMk. We obtain (S̄ε, d̄ε) which is a k-polyhedral
metric with conical singularities, corresponding to the vertices of the triangles. By
construction, S̄ε is endowed with a triangulation T̄ε.

Lemma 3.3.6. The total angles around the conical singularities of d̄ε are not less
than 2π.

Proof. By a property of the CAT(k) spaces, we have that every vertex of Tε lies
in the interior of some geodesic in (S, d) [BH99, II.5.12]. Applying Lemma 3.3.3
we immediately get that the sum of the sector angles αi at any vertex V of the
triangulation Tε in (S, d) is not less than 2π. By definition of the CAT(k) spaces,
we have that the angles αk,i of the comparison triangles in Mk are not less than the
corresponding angles at every vertex V in the triangulation Tε in (S, d). It follows
that

2π ≤
∑
i

αi ≤
∑
i

αk,i .

We want to prove that the finer the triangulation is, the closer d̄ε is from d (for
the uniform convergence between metric spaces). This relies on a series of lemmas.

Lemma 3.3.7. Let α be the angle at a vertex of a triangle T in a surface of curvature
≤ k, and αk be the corresponding angle in a comparison triangle Tk in Mk then,

αk − α ≤ karea(Tk)− δ0(T ).
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Proof. If β and λ are the angles of T and βk, λk the corresponding angles in Tk, then
we have

αk − α ≤ αk − α + βk − β + λk − λ = δ0(Tk)− δ0(T ) = karea(Tk)− δ0(T ).

Lemma 3.3.8. If T is a triangulation of a compact surface (S, d) with curvature ≤ k
by non overlapping simple triangles, then∑

T∈T
δ0(T ) ≥ 2πX (S),

with X (S) the Euler characteristic of S.

Proof. Let |T | be the number of triangles, E the number of edges and N the number
of vertices in our geodesic triangulation. We have E = 3

2 |T |, so that the Euler formula

|T | − E +N = X (S)

implies

2N − |T | = 2X (S). (3.2)

We have also that the sum of all the angles of all the triangles is equal to the sum of
all the cone angles i.e. if we denote by αi the sum of the angles around each vertex
vi then using (3.2) it follows that

∑
T∈T

δ0(T ) =
N∑
i=1

αi − |T |π =
N∑
i=1

(αi − 2π) + 2πX (S)

Now as αi − 2π ≥ 0 for all i, the proof follows.

Lemma 3.3.9. Let T be an isosceles triangle in Mk with diameter less than a given
ε and with edges length x, x, l and θ the angle opposite to the edge of length l, then

l ≤ fk(ε)θ.

where f−1 = sinh, f0 = id, f1 = sin
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Proof. k = −1. By the hyperbolic cosine law,

cosh(l) = cosh2(x)− sinh2(x) cos(θ),

that is equivalent to

1 + 2 sinh2( l2) = cosh2(x)− sinh2(x)(1− 2 sin2(θ2)),

so

l

2 ≤ sinh( l2) = sinh(x) sin(θ2) ≤ sinh(ε)θ2 .

k = 0. By the Euclidean cosine law,

l2 = 2x2 − 2x2 cos(θ) = 2x2
(

1− 2 sin2
(
θ

2

))
= 4x2 sin2

(
θ

2

)
,

hence
l = 2x sin

(
θ

2

)
≤ 2εθ2

k = 1 . By the spherical cosine law,

cos(l) = cos2(x) + sin2(x) cos(θ)
that is equivalent to

1− 2 sin2
(
l

2

)
= cos2(x) + sin2(x)

(
1− 2 sin2

(
θ

2

))
hence

sin
(
l

2

)
= sin(x) sin

(
θ

2

)
the result follows because for 0 < λ < 1 we have arcsin(λy) ≤ λ arcsin(y).

Lemma 3.3.10. Let ε > 0. Let T be a simple triangle in (S, d) of diameter < ε with
vertices OXY . Let A (rep B) be on the edge OX (rep. OY ) and at distance a (resp.
b) from O. Let T 1

k be a comparison triangle for T in Mk, with vertices O′X ′Y ′. Let
A′ (resp. B′) be the corresponding point of A (resp. B) (i.e on the edge O′X ′ (resp.
O′Y ′) and at distance a (resp. b) from O′), then

0 ≤ dMk
(A′, B′)− d(A,B) ≤ −δ0(T )fk(ε), k ≤ 0
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0 ≤ dMk
(A′, B′)− d(A,B) ≤ (o(ε)− δ0(T ))fk(ε), k > 0

where o is a function such that o(ε) −→
ε→0

0.

Proof. For k ≤ 0: The left hand inequality comes from the fact that we are in
CAT (k) neighborhood (see Proposition 3.1.2). Let T 2

k be the comparison triangle for
OAB in Mk drawn such that the edge of length a is identified with O′A′ (see Figure
3.2). Let B′′ be the corresponding comparison point for B in T 2

k (i.e. B′′ satisfies
d(A,B) = dMk

(A′, B′′) and d(O,B) = dMk
(O′, B′′)). By triangle inequality we have

dMk
(A′, B′)− d(A,B) = dMk

(A′, B′)− dMk
(A′, B′′) ≤ dMk

(B′, B′′). (3.3)

Let θ1 be the angle at O of T 1
k (i.e. the angle at O′ of O′A′B′), and let θ2 be the

angle at O′ of T 2
k (i.e. O′A′B′′).

We have that θ1−θ2 is the angle at O of OB′B′′ which is isosceles so by inequality
(3.3) and Lemma 3.3.9 it follows that

dMk
(A′, B′)− d(A,B) ≤ fk(ε)(θ1 − θ2) (3.4)

If β is the angle of T at O, then both θ1 and θ2 are angles corresponding to β in
comparison triangles, so by Lemma 3.3.7

θ1 − θ2 = θ1 − β + β − θ2 ≤ θ1 − β ≤ karea(T 1
k )− δ0(T ) (3.5)

hence it is not greater than −δ0(T ), for k ≤ 0. Now replacing in (3.4) the proof
follows.
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Figure 3.2: Notations for the proof of Lemma 3.3.10.

For k > 0: The left hand inequality comes from the fact that we are in CAT (k)
neighborhood (see Proposition 3.1.2). For the right hand side, if T 1

k is a comparison
triangle with edges of lengths not greater than ε. The result follows from a majoration
and a taylor expansion from L’Huilier’s Theorem which says that: if T 1

k has edge
length a, b, c then

area(T 1
k ) = 4

k
arctan

√
tan a+ b+ c

2 tan a+ b

2 tan a+ c

2 tan b+ c

2
then using inequality (3.5) which can be found directly following the same way as

for the case k ≤ 0, the proof follows.

Now, let’s describe a homeomorphism between (S, d) and (S̄ε, d̄ε) in the following
way. The triangle T̄i do not degenerate into segments, since the sum of every two
sides is greater than the third. Therefore, the triangles Ti can be mapped homeomor-
phically onto the corresponding triangles T̄i, such that the vertices are sent to vertices
and the homeomorphism restricts to an isometry along the edges. We consider any
homeomorphism from the interior of the triangles that extend the homeomorphism
on the boundary. As the surfaces are triangulated by such triangles, this gives a
homeomorphism from S to S̄ε.

For two points H and J on S, we denote by H ′, J ′ the correponding points on S̄ε.
Fact 3.3.11. For k ≤ 0, with the notations above, −2ε ≤ d̄ε(H ′, J ′) − d(H, J) ≤
2ε− 2πX (S)fk(ε).
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Proof. The idea of this proof is the same as [Ale06, Lemma 2, page 263]. Let’s prove
the first inequality. Let H ′, J ′ ∈ S̄ε and γ′ a shortest path joining H ′ and J ′ and
γ be a path joining H and J such that the intersection with every triangle T is a
shortest path (i.e. each connected piece of γ′ meeting a triangle T ′ from a point A′
to a point B′ on the boundary of T ′ is associated in T the shortest path joining the
corresponding (in the sense of Lemma 3.3.10) points A and B).

Let us denote by γ′i, i = 0, . . . ,m+1 the decomposition of γ′ given by the triangles
it crosses, and by l(γ′i) their lengths.

As (S, d) is CAT(k), the length of a connected component of the intersection
of γ′ with T ′ joining two points of the boundary is greater than the length of the
corresponding component of γ in T ([BH99], page 158). Now, because the diameters
are not greater than ε then l(γ0) + l(γm+1) ≤ 2ε and l(γ′0) + l(γ′m+1) ≤ 2ε. It follows
that

d(H, J) ≤
m∑
i=1

l(γi) + 2ε ≤
m∑
i=1

l(γ′i) + 2ε ≤ d̄ε(H ′, J ′) + 2ε

then
−2ε ≤ d̄ε(H ′, J ′)− d(H, J).

The first inequality is now proved.
Let’s now prove the second inequality. For that, consider a shortest path γ joining

H and J in S and γ′ be a path in S̄ε joining H ′ and J ′ such that the intersection with
every triangle T ′ is a shortest path (i.e. each connected piece of γ meeting a triangle
T from a point A to a point B on the boundary of T is associated in T ′ the shortest
path joining the corresponding (in the sense of Lemma 3.3.10) points A′ and B′).

Let us denote by γi, i = 0, . . . ,m+1 the decomposition of γ given by the triangles
it crosses, and by l(γi) their lengths, we find

d̄ε(H ′, J ′)− d(H, J) ≤ l(γ′0) + l(γ′m+1) +
m∑
i=1

l(γ′i)− l(γi).

Since l(γ′0) and l(γ′m+1) are not greater than ε then l(γ′0) + l(γ′m+1) ≤ 2ε. By
Lemma 3.3.10 it follows that

d̄ε(H ′, J ′)− d(H, J) ≤ 2ε−
m∑
i=1

δ0(Ti)fk(ε),

But δ0(Ti) are non positive and moreover the triangles T are relative convex,
so γ meets each triangle at most once (because, if the shortest path γ meets the
(geodesic) triangle more than once, then there will be two points on the boundary of
the triangle joined by a shortest path lying outside of the triangle, that contradicts
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the fact that the triangles are convex relative to the boundary), so −
m∑
i=1

δ0(Ti) is less
than −∑T δ0(T ) for all the triangles of the triangulation of S, which is less than
−2X (S) by Lemma 3.3.8. The second inequality is now proved.

This fact is now proved.

Fact 3.3.12. For k > 0, and S is the sphere −2ε ≤ d̄ε(H ′, J ′) − d(H, J) ≤ 2ε −
o′(ε)fk(ε)

Proof. Following the same way as in fact 3.3.11 and using Lemma 3.3.10 we have
that

−2ε ≤ d̄ε(H ′, J ′)− d(H, J) ≤ 2ε+
m∑
i=1

(karea(T 1
k )− δ0(Ti))fk(ε),

hence

−2ε ≤ d̄ε(H ′, J ′)− d(H, J) ≤ 2ε+
m∑
i=1

(o(ε)− δ0(Ti))fk(ε),

The lemmas above imply the uniform convergence. Theorem 3.3.5 is now proved.

3.4 Approximation of polyhedral metrics by smooth
metrics

In this section we will approximate a hyperbolic metric with conical singularities of
negative curvature.

Proposition 3.4.1. Let d be the metric induced by a hyperbolic metric with conical
singularities of negative curvature on the closed surface S. Then there exists a se-
quence (Sn, dn) converging uniformly to (S, d), where Sn is homeomorphic to S, dn is
metric induced by a Riemannian metric of sectional curvature < −1.

We use the same method as that in [Slu13, Lemma 3.9], but we choose the cone
in anti-de Sitter space (Figure 3.3), rather than the hyperbolic space H3.
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Proof. Let p ∈ S be a singular point of the polyhedral hyperbolic metric d. Consider
a neighborhood Up of p in S which doesn’t contain any other singular point of d.
As the curvature is supposed to be negative, the neighborhood Up equipped with the
restriction of the metric d will be isometric to the neighborhood of a space-like circular
cone Cp in the affine model of the anti-de Sitter space, such that the singularity p
corresponds to the apex of Cp. Consider a sequence of smooth convex functions,
whose graphs coincide with the cone Cp outside a neighborhood of the apex, and
converging to Cp (this is very classical, see e.g. [Slu13, Lemma 3.9]).

Using Gauss formula, one can easily check that the sectional curvature for the
induced metric on the smooth approximating surfaces is ≤ −1. We can multiply
those metrics by any constant λ > 1 to get the sectional curvature < −1. As the
surfaces differ only on a compact set, and as the approximating sequence is smooth,
it follows from (4.7) that the induced distances are uniformly bi-Lipschitz to the
hyperbolic metric. From this and Proposition 4.1.8, it is classical to deduce that the
induced distances converges locally uniformly (hence uniformly in this case), see e.g.
the proof of Proposition 3.12 in [FS18].

The proposition follows by applying this procedure simultaneously to all singular
points of the metric d.
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Figure 3.3: Smooth surface and circular cone in Anti-de Sitter space.

Let d be any metric of curvature ≤ −1 on a compact surface S. We obtain a
sequence (dn)n from Theorem 3.3.5, and for each dn, a sequence (dnk

)k from Propo-
sition 3.4.1.

The following Theorem follows directly from a diagonal argument.

Theorem 3.4.2. Let (S, d) be a metric of curvature ≤ −1. Then there exists a
sequence (Sn, dn) converging uniformly to (S, d), where Sn are homeomorphic to S
and dn are induced by Riemannian metrics with sectional curvature < −1 .
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Realization of metrics

4.1 Realization of metrics with curvature ≤ −1

4.1.1 Definition of the problem and outline of the proof
In all the following, S is a closed connected oriented surface and when we speak
about a metric with curvature ≤ k, this means that S is endowed with a distance
d satisfying a curvature bound in the sense of A.D. Alexandrov, see e.g. [BBI01] or
Section 3. We want to prove the following Theorem.

Theorem 4.1.1. Let d be a metric with curvature ≤ −1 on a closed surface S of
genus > 1. Then there exists a Lorentzian manifold L of sectional curvature −1
homeomorphic to S × R which contains a space-like convex surface whose induced
metric is isometric to (S, d).

The proof of Theorem 4.1.1 will be given by a classical approximation procedure,
following the main lines of [FS18]. The proof relies on the smooth analogue of The-
orem 4.1.1 proved by F. Labourie and J.-M. Schlenker, see Theorem 4.1.27. We will
prove Theorem 4.1.1 showing that the universal cover of (S, d) is isometric to a con-
vex surface in anti-de Sitter space, invariant under the action of a discrete group of
isometries leaving invariant a totally geodesic hyperbolic surface. Such groups are
usually called Fuchsian, and the quotient of a suitable part of anti-de Sitter space by
such a group may be called a Fuchsian anti-de Sitter manifold. The main issues in
our case, comparing to [FS18], is that we lost the vector space structure given by the
Minkowski space —it is the Lorentzian analogue of the problem to go from Euclidean
space to hyperbolic space.
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4.1.2 Coordinates for a region of AdS3

In all the following, we will be interested in surfaces invariant under the action of
a Fuchsian group. We will see that theses surfaces are living in a cylinder. In the
following we introduce this cylinder and endow it with a suitable metric (a metric in
term of two suitable coordinates).

Note that AdS3 ∩ {x ∈ R4|x1 = 0} =: H0 is isometric to the hyperbolic plane.
We use this fact to define the following map. Let Ψ̃ : H2 × R −→ AdS3 be the map
defined by Ψ̃(x, t) = expx(tV ) where

• Ψ̃(H2, 0) = H0, and x 7→ Ψ̃(x, 0) is an isometry,

• V is a choice of a unit vector field orthogonal to H0, for the anti-de Sitter
metric.

Indeed, we have Ψ̃(x, t) = cos(t)x+ sin(t)V with V = (0,−1, 0, 0). For a given x,
t 7→ Ψ̃(x, t) is a time-like geodesic loop with time-length 2π. We will call AdS cylinder
the cylinder H2× [0, π/2[ endowed with the Lorentzian metric gAdS, which is the pull
back of the anti-de Sitter metric by Ψ̃. Let us denote AdS3∩{x ∈ R4|x1 = r} =: Hr.
The induced metric ontoHr is homothetic to the hyperbolic metric with factor (1−r2),
and clearly Ψ̃(H2, t) = Hsin(t). In turn,

gAdS(x, t) = cos2(t)gH2(x)− dt2

where gH2 is the metric on the hyperbolic plane.
It will be suitable to work with the image of Ψ̃ in the affine chart considered

above. Let us denote Ψ = ϕ0 ◦Ψ̃. The set Ψ(H2× [0, π/2[) is indeed a Euclidean half-
cylinder in R3 (see Figure 4.1). We have Ψ(H2, 0) = D and for x ∈ H2, t 7→ Ψ̃(x, t) is
a vertical half line from D. We will call affine AdS cylinder the image of H2× [0, π/2[
by Ψ. For convexity reasons, we will need only to consider a half cylinder.
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Figure 4.1: The AdS cylinder and a convex surface inside.

4.1.3 Convex functions
For a function u : H2 → [0, π/2[, we denote

Su = {(x, u(x))|x ∈ H2} .

For every x ∈ H2 we denote by x̄ = Ψ(x, 0) the corresponding point on the disc D,
where Ψ it the map introduced in the previous section. The image of Su in the affine
AdS cylinder is the graph of a function over D, that we will denote by ū. We will
denote by Sū the image of Su. Hence, ū : D→ R and

(x̄, ū(x̄)) = Ψ(x, u(x)) .

For a point x̄ ∈ D we use the notation x̄ = (x̄2, x̄3) for its Euclidean coordinates,
and its Euclidean norm is ‖ x̄ ‖=

√
x̄2

2 + x̄2
3. We obtain the following relation.

Lemma 4.1.2. With the notations above ū(x̄) = − tan(u(x))
√

1− ‖ x̄ ‖2.
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Proof. We may use the quadratic model (Definition 2.3.2). Let’s consider the surface
given by the intersection of the Anti-de Sitter space and the set {(x0, x1, x2, x3) ∈
R4|x1 = r} where r is a constant. The equation of the intersection surface is given
by

−x2
0 + x2

2 + x2
3 = −1 + r2.

Its image in the affine chart ϕ0 is given by the following simple computation,
−1 + x̄2

2 + x̄2
3 = (−1 + r2) 1

x2
0
,

it follows that
1− r2

r2 x̄2
1 + x̄2

2 + x̄2
3 = 1 (4.1)

and this is an ellipsoid of parameters (
√

r2

1−r2 , 1, 1).
Also the intersection of AdS3 with the set {(x0, x1, x2, x3) ∈ R4|x2 = x3 = 0} is

the circle (see Figure 4.2) whose equation is:

x2
0 + x2

1 = 1.

Figure 4.2: We look at the induced AdS3 distance on this intersection.

From the computation above, we have that r = sin(t) where t is the anti-de Sitter
distance from H2. (It is straightforward to see that the set of points with constant
Anti-de Sitter distance from H2 is an ellipsoid). From equation (4.1) it follows that

1
tan2(t) x̄

2
1 + x̄2

2 + x̄2
3 = 1 (4.2)
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Let (x, u(x)) be a point on the ellipsoid (the AdS distance from H2 is constant) of
equation (4.2) and (x̄, ū(x̄)) be its corresponding point. Considering the lower side
of the ellipsoid, then for all x ∈ H2 we have

ū(0, 0) = − tan(u(x)) (4.3)

Now, let’s consider in the affine chart (in the Euclidean cylinder) the lower half
ellipsoid with parameters (ū(0, 0), 1, 1), its intersection with the perpendicular line
passing through the point (0, x̄2, x̄3) verifies,

ū2(x̄2, x̄3)
ū2(0, 0) + x̄2

2 + x̄2
3 = 1 (4.4)

From (4.3) and (4.4) we deduce that

ū(x̄2, x̄3) = − tan(u(x))
√

1− x̄2
2 − x̄2

3 (4.5)

The Lemma above clarify the notion of convexity in our model, in fact a convex
function u corresponds to a function ū which is actually convex in R3.

Definition 4.1.3. Let u : H2 → R be a function. We say that u is C-convex if

• u ≥ 0 and there is R < π/2 such that u ≤ R < π/2;

• the corresponding function ū is convex.

It is worth noting that for R ≥ 0, if u = R, then the graph of the map defined by
ū(x̄) = − tan(R)

√
1− ‖ x̄ ‖2 is a half ellipsoid. Also, |ū(x̄)| ≤ tan(R)

√
1− ‖ x̄ ‖2. It

follows that if u is C-convex, then ū is bounded and satisfies ū|∂D = 0.
It is also clear that a bounded convex function ū : D→ R vanishes everywhere if

it vanishes in a point of the open disc D. So we have ū ≤ 0 by definition, and ū < 0
or ū = 0.

Let us note the following.

Lemma 4.1.4. In the image of AdS3 by ϕ0,

1. Every time-like line passes through the disc D.

2. Every light-like line which doesn’t pass through the boundary ∂∞D must pass
through the disc D.
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3. A cone with basis the disc D and with apex in the affine cylinder is a convex
space-like surface.

Proof. The proof is very easy, as we know that times-like lines are strictly contained
in the hyperboloid, and that light-like lines meet ∂∞AdS3 at most once.

1) In the affine chart ϕ0, let D be a time-like line. The general equation of D
passing by a point (x̄A1 , x̄A2 , x̄A3 ) is,

x̄1 = a1t+ x̄A1
x̄2 = a2t+ x̄A2
x̄3 = a3t+ x̄A3

If a1 = 0 then D is parallel to the plane (ox̄2x̄3), in this case it’s easy to see that
it meets ∂∞AdS3 in two points, D is then space-like line. Now let’s suppose that
a1 6= 0, by a property of time-like lines, D is strictly contained in the one sheeted
hyperboloid.

−(a1t+ x̄A1 )2 + (a2t+ x̄A2 )2 + (a3t+ x̄A3 )2 < 1,

the intersection with the plane {x̄1 = 0} gives t = − x̄A
1
a1

hence the intersection of D
with the plane {x̄1 = 0} which is the point

(0,−a2
x̄A1
a1

+ x̄A2 ,−a3
x̄A1
a1

+ x̄A3 ),

verifies
(−a2

x̄A
1
a1

+ x̄A2 )2 + (−a3
x̄A

1
a1

+ x̄A3 )2 < 1,

it follows that D passes through H2.
2) A light-like line meets the boundary ∂∞AdS3 in at most one point. Then with

the same computation, we have for all t, (−a2
x̄A

1
a1

+ x̄A2 )2 + (−a3
x̄A

1
a1

+ x̄A3 )2 ≤ 1 as the
line doesn’t pas by ∂∞D then (−a1

zA

a2
+ x̄A2 )2 + (−a2

zA

a2
+ x̄A3 )2 < 1 then it must pass

trough the disc H2.
3) For the third point, either a support plane of the cone does not meet the closure

of D, hence it is space-like, or a support plane of the cone contains a half-line of the
cone, then it meets the boundary of the disc, but by assumption this half-line is not
vertical, hence not light-like, so the plane is space-like.

Lemma 4.1.5. Let u : H2 → [0, π/2[ be a C-convex function. Then the surface Su
is space-like.
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Proof. Let p be a point on the image of Su in the affine half cylinder, and let Cp be
the cone with basis the disc D and apex p. By definition, this cone is contained in
the affine half cylinder. By convexity, a support plane to the surface at p is a support
plane of the cone, so by Lemma 4.1.4 it must be space-like.

We say that a sequence (un)n of C-convex functions is uniformly bounded if there
is R < π/2 such that for any n, un < R.
Lemma 4.1.6. Let (un)n be a sequence of uniformly bounded C-convex functions.
Up to extracting a subsequence, (un)n converges to a C-convex function u, uniformly
on compact sets.
Proof. This is a classical property of the corresponding convex functions ūn, [Roc97,
Theorem 10.9], in the special case when the surfaces vanish on the boundary of the
disc D.

Let un, n > 1, be uniformly bounded C-convex functions converging to a C-convex
function u = u0. Let c : I → H2 be a Lipschitz curve and c̄ : I → D be its image by
Ψ. Then ū ◦ c̄, ūn ◦ c̄ are Lipschitz —the Lipschitz nature of c̄ is independent of a
choice of a Riemannian metric on the disc. By Rademacher Theorem, there exists a
set I0 of Lebesgue measure 0 in I such that for all n ∈ N, ūn is differentiable on I \ I0
.
Lemma 4.1.7. Let un : H2 → R be uniformly bounded C-convex functions converging
to a C-convex function u, and let c : I → H2 be a Lipschitz curve. Up to extracting
a subsequence, for almost all t,

(un ◦ c)′(t)→ (u ◦ c)′(t) .

Proof. The following proof is a straightforward adaptation of [FS18, Lemma 3.6].
We first prove the Lemma for the corresponding functions ūn and ū, then we deduce
the proof for un and u using continuity and Lemma 4.1.2. We consider that c̄ is
parameterized by arc-length.

Let 〈·, ·〉 be the the Euclidean metric on the affine cylinder, and we use the notation(
a
b

)
, with a ∈ D and b ∈ R. Let t be such that the derivatives exist. Let X be the

unit vector
(

0
1

)
and Y the unit vector

(
c̄′(t)

0

)
, we have 〈X, Y 〉=0. The tangent

vector to the curve
(

c̄
ūn ◦ c̄

)
at every point

(
c̄(t)

(ūn ◦ c̄)(t)

)
is given by

Vn = (ūn ◦ c̄(t))′X + Y
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and in the plane P spanned by X and Y , the vector

Nn = (ūn ◦ c̄(t))′Y −X

is orthogonal to Vn for 〈·, ·〉. Now because ūn and ū are equi-Lipschitz on any compact
set of D (see [Roc97, Theorem 10.6]) then there exists k such that |(ūn ◦ c̄)′(t)| ≤ k
for all n ∈ N, then

‖ Nn ‖≤ |(ūn ◦ c̄)′(t)| ‖ Y ‖ + ‖ X ‖≤ |(ūn ◦ c̄)′(t)|+ 1 ≤ k + 1

so ‖ Nn ‖ are uniformly bounded. Hence, up to extracting a subsequence (Nn)n
converges to a vector N . Note that N is not the zero vector, otherwise 〈Nn, X〉
would converge to 0, that is impossible because 〈Nn, X〉 = −1.

Let Tn be the intersection of the convex surface Sūn defined by ūn and the plane
P . The set Tn is a convex set in P , and Vn is a tangent vector, hence by convexity
for any ȳ ∈ D ∩ P ,

〈Nn,

(
c̄(t)

ūn ◦ c̄(t)

)
−
(

ȳ
ūn(ȳ)

)
〉 ≥ 0,

and passing to the limit we get

〈N,
(

c̄(t)
ū ◦ c̄(t)

)
−
(

ȳ
ū(ȳ)

)
〉 ≥ 0,

this says that N is a normal vector to T (the intersection of Sū with P ), hence

〈N, (ū ◦ c̄)′(t)
(

0
1

)
+
(
c̄′(t)

0

)
〉 = 0.

So there exists λ such that

(ū ◦ c̄)′(t)
(

0
1

)
+
(
c̄′(t)

0

)
= λ lim

n→∞
(ūn ◦ c̄)′(t)

(
0
1

)
+
(
λc̄′(t)

0

)
.

By identification it follows that λ = 1, hence (ūn◦c̄)′(t) must converge to (ū◦c̄)′(t).
The functions ūn ◦ c̄ and un ◦ c are defined from I ⊂ R to R, by Lemma 4.1.2

un ◦ c(t) = arctan
(
ūn ◦ c̄(t)
h(t)

)

where h(t) = −
√

1− ‖ c̄(t) ‖2, hence un ◦ c is clearly differentiable almost every-
where for all n ∈ N and
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(un ◦ c)′(t) = (ūn ◦ c̄)′(t)h(t)− (ūn ◦ c̄)(t)h′(t)
h2(t) + (ūn ◦ c̄)2(t) (4.6)

also we have (by hypothesis) for almost all t, that

(un ◦ c)(t) −→
n→∞

(u ◦ c)(t)

hence by continuity (in the relation given by Lemma 4.1.2) it is clear that,

(ūn ◦ c̄)(t) −→
n→∞

(ū ◦ c̄)(t)

then by the preceding arguments and by continuity again in (4.6) and passing to
the limit, it follows that (un ◦ c)′(t) converge to (u ◦ c)′(t).

Let u : H2 → R be a C-convex function. For c : [0, 1] → H2 a Lipschitz curve,
(c, u ◦ c) is a curve on Su, and its length for the anti-de Sitter metric is

Lu(c) =
∫ 1

0

√
cos2(u ◦ c(t))‖c′(t)‖2

H2 − (u ◦ c)′2(t)dt . (4.7)

By Lemma 4.1.7 above and using the dominated convergence Theorem, we get
the following proposition.

Proposition 4.1.8. Let un : H2 → R be uniformly bounded C-convex functions
converging to a C-convex function u, and let c : I → H2 be a Lipschitz curve. Up to
extracting a subsequence, Lun(c)→ Lu(c).

The induced (intrinsic) metric dSu on Su is the pseudo-distance induced by Lu:
for x, y ∈ Su, dSu(x, y) is the infimum of the lengths of Lipschitz curves between x
and y contained in Su. Note that as the AdS cylinder has a Lorentzian metric, the
induced distance between two distinct points on Su may be equal to 0, that is a major
difference with the case of induced metrics on surfaces in a Riemannian space.

Definition 4.1.9. We denote by du the pull-back of dSu on H2, so that for every
point x, y ∈ H2

du(x, y) = dSu((x, u(x)), (y, u(y))).

From (4.7), as cos ≤ 1, we clearly have the following.

Lemma 4.1.10. With the notations above, for x, y ∈ H2, du(x, y) ≤ dH2(x, y).
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Proof. Let c : [0, 1]→ H2 be a Lipschitz curve such that c(0) = x and c(1) = y. The

length of the curve
(

c
u ◦ c

)
is given by

Lu(c) =
∫ 1

0

√
cos2(u ◦ c(t))‖c′(t)‖2

H2 − (u ◦ c)′2(t)dt,

it is clear that

Lu(c) ≤
∫ 1

0

√
cos2(u ◦ c(t)) ‖ c′(t) ‖2

H2dt ≤
∫ 1

0
‖ c′(t) ‖H2dt,

it follows that du ≤ dH2 .

4.1.4 Fuchsian invariance
Convergence of surfaces implies convergence of metrics

The aim of this section is to state Proposition 4.1.19. The arguments are quite general
and close to the ones of [FS18]. The main point is Lemma 4.1.14 below, that is the
AdS analogue of Corollary 3.11 in [FS18].

Recall that a Fuchsian group is a discrete group of orientation preserving isome-
tries acting on the hyperbolic plane. In the present article, we will restrict this
definition to the groups acting moreover freely and cocompactly.

Definition 4.1.11. A Fuchsian C-convex function is a couple (u,Γ), where u is a
C-convex function and Γ is a Fuchsian group such that for all σ ∈ Γ we have u◦σ = u.

We will often abuse terminology, speaking about Fuchsian for a single function u,
so that the Fuchsian group will remain implicit.

Definition 4.1.12. Let (Γn)n be a sequence of discrete groups. (Γn)n converges to
a group Γ if there exist isomorphisms τn : Γ → Γn such that for all σ ∈ Γ, τn(σ)
converge to σ.

Definition 4.1.13. We say that a sequence of Fuchsian C-convex functions (un,Γn)n
converges to a pair (u,Γ), if u is a C-convex function, Γ is a Fuchsian group such
that (un)n converges to u and (Γn)n converges to Γ.

It is easy to see that if (un,Γn) is a sequence of Fuchsian C-convex functions that
converges to a pair (u,Γ), then (u,Γ) is a Fuchsian C-convex function, see e.g. [FS18,
Lemma 3.17]. Recall the definition of the distance du from Definition 4.1.9. Recall
also that a C-convex function is differentiable almost everywhere. At a point where u
is differentiable, we denote by ‖ · ‖u the norm induced by the ambient anti-de Sitter
metric on the tangent of Su at this point.
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Lemma 4.1.14. Let u be a C-convex function. Let K := inf(‖ v ‖u / ‖ v ‖H2),
and let dH2 be the distance given by the hyperbolic metric (for instance, dH2 = du for
u = 0). Then du(x, y) ≥ KdH2(x, y).

Moreover, if u is Fuchsian, then K > 0.

Proof. Let c be a Lipschitz curve between two points x, y ∈ H2. Let v be the tangent
vector field of (c, u ◦ c) whenever it exists. We have

Lu(c) =
∫ b

a
‖ v ‖u≥ K

∫ b

a
‖ v ‖H2≥ KdH2(x, y)

and the first result follows as by definition du(x, y) is an infimum of lengths.
Now let us suppose that u is Fuchsian. Let us suppose that K = 0, i.e. there

is a sequence (xn)n such that u is differentiable at each xn, and vn 6= 0 in TxnH2

such that ‖ vn ‖u / ‖ vn ‖H2→ 0. Without loss of generality, let us consider that
‖ vn ‖H2= 1. Let σn be isometries of H2 that send (xn, vn) to a given pair (x, v),
and let un := u ◦ σn. As u is Fuchsian, there exists β < π/2 such that u ≤ β, and
in turn un ≤ β. By Lemma 4.1.6, up to consider a subsequence, (un)n converges to
a C-convex function u0. As we supposed that ‖ vn ‖u→ 0, then Su0 must have a
light-like support plane, that contradicts Lemma 4.1.5.

Note that Lemma 4.1.14 indicates that in the Fuchsian case, du is a distance and
not only a pseudo-distance.

Let us recall the following classical result, see e.g. Lemma 3.14 in [FS18]. The
homeomorphisms in the statement below could also be constructed by hand, for
example using canonical polygons as fundamental domains for the Fuchsian groups,
see Section 6.7 in [Bus10].

Lemma 4.1.15. Let (Γn)n be a sequence of Fuchsian groups converging to a group
Γ and τn the isomorphisms given in Definition 4.1.12. There exist homeomorphisms
φn : H2/Γ −→ H2/Γn whose lifts φ̃n satisfy for any σ ∈ Γ,

φ̃n ◦ σ = τn(σ) ◦ φ̃n

and such that (φ̃n)n converges to the identity map uniformly on compact sets i.e

∀x ∈ H2, φ̃n(x) −→
n→∞

x

Now, let u be a C-convex function and Su the surface described by u. The length
structure Lu given by (4.7) induces a (pseudo-)distance dSu . In turn, dSu induces a
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length structure denoted by LdSu
defined in the following way: the length of a curve

(c, u ◦ c) : [0, 1]→ Su is defined as

LdSu
(c, u ◦ c) = sup

δ

n∑
i=1

dSu((c(ti), u ◦ c(ti)), (c(ti+1), u ◦ c(ti+1))),

= sup
δ

n∑
i=1

du(c(ti), c(ti+1)) = Ldu(c) (see definition 4.1.9 )

where the sup is taken over all the decompositions

δ = {(t1 . . . tn)|t1 = 0 ≤ t2 ≤ ... ≤ tn = 1},

We have the following proposition

Proposition 4.1.16. Let (un)n be a sequence of convex functions such that:

• dun is a complete distance with Lipschitz shortest paths,

• Lun = Ldun
on the set of Lipschitz curves,

• There exists 0 < R < π/2 with 0 ≤ un < R,

Then, up to extracting a subsequence, (un)n converges to a convex function u and
(dun)n converges to du uniformly on compact sets.

Proof. The proof of this proposition is similar as the one done in [FS18, Proposition
3.12]. The proof was done using proposition 4.1.8, the only difference is to use Lemma
4.1.10 and 4.1.14 instead of [FS18, corollary 3.11].

We recall that in this paper we are using approximation by smooth surfaces. We
note also that by Lemma 4.1.14 and Lemma 4.1.10, dun are complete distances on
H2, also we have Lun = Ldun

(because of smoothness, see [Bur15] for more details),
we deduce the following

Lemma 4.1.17. Let (un,Γn) be Fuchsian C-convex functions such that:

• (un,Γn)n converges to a pair (u,Γ),

• There exist 0 < R < π/2 with 0 ≤ un < R,
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• dun are distances with Lipschitz shortest paths,

• dun converge to du, uniformly on compact sets.
Then on any compact set of H2, dun(φ̃n(.), φ̃n(.)) uniformly converge to du, where φ̃n
is given by Lemma 4.1.15.
Proof. By Lemma 4.1.14 and Lemma 4.1.10, the topology induced by du ontoH2 is the
topology for the hyperbolic metric. It follows that for the maps φ̃n of Lemma 4.1.15,
we have that on compact sets, the maps x 7→ dun(φ̃n(x), x) uniformly converge to 0.
By the triangle inequality we have,

dun(φ̃n(x), φ̃n(y))− du(x, y) ≤ dun(φ̃n(x), x) + dun(φ̃n(y), y) + dun(x, y)− du(x, y)

by the preceding arguments and proposition 4.1.16, for n sufficiently large the
right-hand side is uniformly less than any ε > 0. On the other hand, by triangle
inequality again we have,

du(x, y)− dun(φ̃n(x), φ̃n(y)) = du(x, y)− dun(x, y) + dun(x, y)− dun(φ̃n(x), φ̃n(y))
≤ du(x, y)− dun(x, y) + dun(x, φ̃n(x)) + dun(y, φ̃n(y))

+ dun(φ̃n(x), φ̃n(y))− dun(φ̃n(x), φ̃n(y))

which is uniformly less than any ε > 0 for n sufficiently large (by the same
arguments).

By definition, if (u,Γ) is a Fuchsian C-convex function, then Γ acts by isometries
on du. In turn, du defines a distance on the compact surface H2/Γ.
Definition 4.1.18. For a Fuchsian C-convex function (u,Γ), we denote by d̄u the
distance defined by du on H2/Γ.

The reason to introduce the maps φ̃n from Lemma 4.1.15 is the following Corollary
of Lemma 4.1.17. Its proof is formally the same as the one of Proposition 3.19
in [FS18]. (The definition of uniform convergence of metric spaces is recalled in
Definition 3.3.1.)
Proposition 4.1.19. Let (un,Γn) be Fuchsian C-convex functions converging to a
pair (u,Γ). Up to extracting a subsequence, (H2/Γn, d̄un)n uniformly converges to
(H2/Γ, d̄u).
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Convergence of metrics implies convergence of groups

The aim of this section is to prove Proposition 4.1.20, that may be seen as a kind of
converse of Proposition 4.1.19. The distance d̄u was defined in Definition 4.1.18.

Proposition 4.1.20. Let (S, d) be a metric of curvature ≤ −1 and let (un,Γn) be
smooth Fuchsian C-convex functions, such that the sequence (H2/Γn, d̄un)n uniformly
converges to (S, d). Up to extracting a subsequence,

• (Γn)n converges to a Fuchsian group Γ;

• there exists 0 < β < π/2 such that 0 ≤ un < β.

Under the hypothesis of Proposition 4.1.20, let’s first prove the convergence of
groups. We first have a consequence of simple hyperbolic geometry, see [FS18, Corol-
lary 4.2].

Lemma 4.1.21. There exists G > 0 and N > 0 such that for any n > N , for any
x ∈ H2, for every element σn ∈ Γn \ {0}

dun(x, σn(x)) ≥ G.

Proposition 4.1.22. Under the hypothesis of Proposition 4.1.20, up to extracting a
subsequence, the sequence (Γn)n converges to a Fuchsian group Γ.

Proof. First by Lemma 4.1.10 we have that for all x, y ∈ H2,

dun(x, y) ≤ dH2(x, y),

and by Lemma 4.1.21, we have that there exists G > 0 and N > 0 such that for any
n > N and for any x ∈ H2:

G ≤ dun(x, σn(x)) ≤ dH2(x, σn(x)),

in particular if
Lσn = min

x∈H2
dH2(x, σn(x)),

we have
G ≤ Lσn .

The length is uniformly bounded from below, hence by a classical result of Mum-
ford [Mum71] we can deduce that up to extracting a subsequence, the sequence of
groups converges.
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Lemma 4.1.23. Under the assumptions of Proposition 4.1.20, there exists M < π/2
such that for all n, there is xn ∈ H2 such that un(xn) < M .

Proof. Suppose that the result is false: for a sequence Mk → π/2, there is nk such
that unk

≥ Mk. By the definition of the length structure (4.7), it follows that
dunk

≤ cosMkdH2 . In turn, (H2/Γn, d̄un)n has a subsequence converging to 0, that is
a contradiction.

Proposition 4.1.24. Under the hypothesis of Proposition 4.1.20, there exists 0 <
β < π/2 such that, for any n ∈ N, for any x ∈ H2,

un(x) < β.

To prove this proposition, let us consider the affine model of anti-de Sitter space.
As the sequence of groups converges, there exists a compact set C ⊂ D, which contains
a fundamental domain for Γn for all n. Hence the points xn given by Lemma 4.1.25
can be chosen to all belong to C. The result follows because the convex maps ūn on
the disc are zero on the boundary, so for any compact set C in the interior of the
disc, the difference between the minimum and the maximum of ūn on C cannot be
arbitrary large.

The following two facts are just a detailed proof of the previous paragraph.

Fact 4.1.25. ∃M ∈ [0, π/2[,∃x ∈ C, ∀n ∈ N, un(x) < M

Proof. By contradiction, we suppose that

∀M ∈ [0, π/2[,∀x ∈ C, ∃n ∈ N, un(x) ≥M.

is true.
Let x′, y′ be two points in H2 and c : [0, 1] → H2 be a Lipschitz curve, such that

c(0) = x′ and c(1) = y′ .

Let un : H2 → [0, π/2[ be a convex function, we denote by Lun(c) the length of the

curve
(

c
un ◦ c

)
between the two points

(
x

un(x)

)
and

(
y

un(y)

)
of the surface defined

by the function un. We have

Lun(c) =
∫ 1

0

√
cos2(un ◦ c(t)) ‖ c′(t) ‖2

H2 −(un ◦ c)′2(t)dt.

Let’s consider the ellipsoid of parameter (M, 1, 1) so the length of the curve be-

tween the two points
(
x
M

)
,
(
y
M

)
will be given by
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LM(x, y) =
∫ 1

0

√
cos2(M) ‖ c′(t) ‖2

H2dt.

Now we suppose that ∀x ∈ H2, ∃n ∈ N, un(x) ≥ M It follows that for each
t ∈ [0, 1]

cos(un ◦ c(t)) ≤ cos(M)

then∫ 1

0

√
cos2(un ◦ c(t)) ‖ c′(t) ‖2

H2 −(un ◦ c)′2(t)dt ≤
∫ 1

0

√
cos2(M) ‖ c′(t) ‖2

H2dt.

hence
Lun(c) ≤ cos(M)LH2(c),

then
dun(x, y) ≤ cos(M)dH2(x, y).

If M → π/2 then cos(M) → 0 and this gives a contradiction with the hypothesis of
proposition 4.1.20 (the distances dun converge to a non-zero distance d).

Fact 4.1.26. Let Su be the graph of a convex function u, and M,N any two points
of Su then the geodesic passing through the two points is space-like.

Proof. Let’s consider the cone ∆ with vertex M and base the disc D. Because of
convexity, it is clear that the line passing through the two points is out of the cone
∆, and so out of the disc D. By Lemma 4.1.4 the proof follows.

Proof of proposition 4.1.24: By the fact 4.1.25 we have,

∃M ∈ [0, π/2[,∃x0 ∈ C, ∀n ∈ N, un(x0) < M (4.8)

We want to prove that

∃β ∈ [0, π/2[, ∀n ∈ N,∀x ∈ C, un(x) < β

Let’s suppose that the converse,

∀β ∈ [0, π/2[,∃n1 ∈ N,∃x1 ∈ C, un1(x1) ≥ β (4.9)
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is true.
Let ∆ be the light cone of origin the point

(
x0

un1(x0)

)
, Sun1

be the graph described

by the convex function un1 and for any x ∈ C let L(x) be the Anti-de Sitter distance

from the point
(
x
0

)
to (the lower side of the light cone) ∆. Now if we suppose that

(4.9) is true, then using (4.8) and taking β = sup
x∈C

L(x), the point
(

x1
un1(x1)

)
of the

surface Sun1
will be in the lower side of the light cone ∆, hence the segment joining

the two points,
(

x0
un1(x0)

)
and

(
x1

un1(x1)

)
of Sun1

will be time-like. This gives a

contradiction with the fact 4.1.26 because Sun1
is space-like.

Figure 4.3: Bounded surface and light cone

Proposition 4.1.20 is now proved.
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4.1.5 Proof of Theorem 4.1.1
The proof relies on the following result.

Theorem 4.1.27 ([LS00]). Let (S, d) be a metric induced by a Riemannian metric
of sectional curvature < −1. Then there exists a C∞ Fuchsian C-convex u : H2 →
[0, π/2[ such that d̄u is isometric to d.

and Theorem 4.1.28 (we restate it here),

Theorem 4.1.28. Let (S, d) be a metric of curvature ≤ −1. Then there exists a
sequence (Sn, dn) converging uniformly to (S, d), where Sn are homeomorphic to S
and dn are induced by Riemannian metrics with sectional curvature < −1 .

Note that we are not aware if the analogue of Theorem 4.1.28 holds for metrics
of curvature ≤ 1.

Let d be a metric of curvature ≤ −1 on S. From Theorem 4.1.28, there exists a
sequence (dn)n of metrics induced by Riemannian metrics with sectional curvature
< −1 on S that converges uniformly to d. By Theorem 4.1.27, for each n ∈ N
there exists a Fuchsian C-convex pair (un,Γn) such that d̄un is isometric to dn and
un is smooth. By Proposition 4.1.20 there is a subsequence of (Γn)n converging to a
Fuchsian group Γ, and β < π/2 such that 0 ≤ un < β.

So Lemma 4.1.6 and Proposition 4.1.19 applies: up to extracting a subsequence,
there is a function u such that the induced distance on d̄u (the quotient of du by
Γ) is the uniform limit of (H2/Γn, d̄un), i.e. the uniform limit of (S, dn). The limit
for uniform convergence is unique, up to isometries [BBI01], so d̄u is isometric to d.
Theorem 4.1.1 is proved, with L the quotient of the AdS cylinder of Section 4.1.2 by
Γ.

4.1.6 The open question
"Global hyperbolicity" [HE73],[BEE96],[Ger70] is a term derived from the Einstein’s
theory of general relativity in which the "space-time" is modelled on a Lorentzian
manifold. To resolve some problems in the theory of relativity this variety must be
globally hyperbolic.

In mathematics, a Lorentzian manifold is globally hyperbolic, if it contains an
embedded space-like surface (called Cauchy surface) which intersects every inextensi-
ble non space-like line exactly in one point. Note that the Anti-de Sitter space is not
globally hyperbolic because time-like geodesics are loops, however the AdS-cylinder
that we consider in this paper is globally hyperbolic because we don’t consider the
point at infinity.
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In the beginning of the paper we asked the following question 1.5.4.

Question 4.1.29. Let g, h be two metrics with curvature ≤ −1 on a compact surface
S. Is there a globally hyperbolic Anti-de Sitter manifold with boundary, such that the
boundary is space-like convex and isometric to g and h?

This question is a generalisation of Tamburelli’s Theorem [Tam18], it is still open.
The Theorem 4.1.1 proved in this paper is a particular answer to it. In fact, if the
metrics g and h are equal then we can take two isometric surfaces in the AdS-Cylinder
that could be described by u1 and −u1 where u1 is a Fuchsian convex function.

The quotient of the two surfaces by the Fuchsian group Γ will be isometric to
(S, g).
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4.2 Realisation of metrics with curvature ≤ 1

4.2.1 Convex surfaces in de Sitter space
Recall that we are most interested in the Klein model of de Sitter (section 2.3). In
the following we will give quickly a description of convexe surfaces in this model of
de Sitter space. Let’s start by the following definition.

Recall that in this model de Sitter space is the exterior of the ball H3. Moreover
geodesics are straight lines (section 2.3). S,

We define a support space of a surface S to be a half space caontaining S and
bounded by an affine hyperplane H. A support plane of S is then the intersection
K ∩ S if it is not empty.
Definition 4.2.1. A space-like closed convex surface in de Sitter space is a surface
such that (up to a global isometry of de Sitter space) is a closed convex surface in the
Klein model of dS with only space-like support planes.

It is easy to see that in the Klein model, a space-like closed convex surface S is a
convex surface which contains the closed ball in its interior (Figure 4.4).

Figure 4.4: Convexe surface in de Sitter space containing the ball.

Recalling also that a spherical polyhedral surface is a surface endowed with a
metric of sectional curvature equal to 1 everywhere except at a discrete set of points
with conical singularities of angles not less 2π.
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A polyhedral geodesic is then a curve on a polyhedral surface which corresponds
to a geodesic for the induced metric, in its restriction to each face of the polyhedral
surface is a segment of a geodesic of de Sitter space.
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4.2.2 Hyperbolic-de Sitter duality
There is a well known classical duality [Sch03, Riv86, Riv93] between hyperbolic
space and de Sitter space. This duality associats to each point x of the hyperbolic
space H3 a space-like totally geodesic plane in de Sitter space dS in the following
way:

For x ∈ H3, we take the line of Min(3, 1) passing through x and 0, this line is
clearly time-like. Now, we take the hyperplane orthogonal to this line, it is clear that
this hyperplane is space-like passing through 0, its intersection with dS denoted by
x∗ is the dual of x.

Conversely and in the same way, we can associate to each point of de Sitter space,
its dual, an oriented totally geodesic plane in the hyperbolic space.

Duality for smooth surfaces: Given a smooth surface S in the hyperbolic space
H3 such that S is convex. For each point x ∈ S, we consider the oriented tangent
plane to S in x, and x∗ the dual point of this tangent plane. When x travels S, then
x∗ travels a dual surface S∗, briefly we write

S∗ = {x ∈ dS : x⊥ is a plane in H3 tangent to S}
It very easy to check that the dual surface S∗ is a space-like, convex and smooth

surface in de Sitter space.
Duality for noon-smooth surfaces: The notion of duality can be extended to non

smooth surfaces, considering the support plane of the surface rather than the tangent
plane. Hence we define the dual surface for a non-smooth surface S in H3 as follows

S∗ = {x ∈ dS : x⊥ is a support plane of S in H3}
Duality for polyhedral surfaces: In the same way and following the same con-

struction, it is very easy to check the following points:

• The dual of a unit vector (a point on a pseudosphere) is its orthogonal hyper-
plane

• The dual of a plane is its orthogonal plane

• The dual of a vertex is a face.

• The dual of a face is a vertex.

• The dual of an edge is an edge.

hence the dual of a polyhedral convex surface surface is clearly a polyhedral convex
surface which is furthermore space-like.
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4.2.3 Definition of the problem and outline of the proof
As always when we speak about a metric with curvature ≤ 1, this means that S is en-
dowed with a distance d satisfying a curvature bound in the sense of A.D. Alexandrov
(Chapter 3).

The realization of metrics of curvature ≤ 1 on surfaces in de Sitter space follows
a similar way as in the case of metrics with curvature ≤ −1 in anti-de Sitter space
([LAB20], or section 4.1). But here we will use approximation by polyhedral met-
rics rather than smooth metrics. So that this repose on the approximation result
(Theorem 3.3.5) found in section 3.3 for k = 1 which says that

Theorem 4.2.2. Let (S, d) be a metric of curvature ≤ 1 on the closed surface S.
Then there exists a sequence (Sn, dn) converging uniformly to (S, d), where Sn is
homeomorphic to S and dn is the metric induced by a spherical polyhedral metric on
Sn.

4.2.4 For the sphere
We want to prove the following Theorem

Theorem 4.2.3. Let d be a metric of curvature ≤ 1 on a sphere S2 such that all
closed contractible geodesics on (S2, d) have length greater than 2π. Then there exists
a convex space-like surface in de Sitter space such that the induced metric is isometric
to (S2, d).

The proof repose on the Theorem 4.2.2, and of course the Theorem of I. Rivin
and D. Hodgson below that prove the posibility of realizing of a spherical polyhedral
metric on a convex space-like surface in de Sitter space, we give the theorem as follows

Theorem 4.2.4. ([Riv86],[HR93]) Let d be a spherical metric with conical singular-
ities on the sphere S2 such that:

1. All cone angles of (S2, d) are greater than 2π.
2. All closed contractible geodesics on (S2, d) have length greater than 2π.
Then there exists a convex polyhedral surface in de Sitter space such that the

induced metric is isometric to (S2, d).

Sketch of the proof of Theorem 4.2.3: Let’s consider the statement of The-
orem 4.2.3. Let d be a metric of curvature ≤ 1, by Theorem 4.2.2, there exists a
sequence of spherical polyhedral metrics dn converging uniformly to d. By Theorem
4.2.4, for each n there is a convex space-like polyhedral surface Sn in de Sitter space
with the induced metric dn. Then we have to prove that:
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Convergence of metrics implies convergence of convex surfaces: We have to prove
that when the metrics converge then surfaces Sn converge to a surface S. This will
rely as usual on Azrela–Ascoli Theorem, but a subtle thing in de Sitter situation is
to use the hypothesis about the length of closed geodesics to provide the surfaces to
go to the boundary at infinity of the ambiant space. Howevere, the arguments are
already given in [HR93].

Finally: one has to check that convergence convex surfaces implies convergence of
the induced metrics, that is not so different from Minkowski or anti-de Sitter cases.

.
For higher genius: Analogously to the sphere, we wish to prove the following

Theorem for a surface with genius ≥ 1

Theorem 4.2.5. Let d be a metric of curvature ≤ 1 on a compact surface S such
that all closed contractible geodesics on (S, d) have length greater than 2π. Then there
exists a convex space-like surface in de Sitter space such that the induced metric is
isometric to (S, d).

The proof follows a similar way as for the sphere, (we use approximation by
polyhedral metrics), the group convergence is handled as in the other cases.
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