Thèse soutenue

Contrôlabilité en dimension finie et infinie et applications à des systèmes non linéaires issus du vivant
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Clément Moreau
Direction : Jean-Baptiste Pomet
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 17/06/2020
Etablissement(s) : Université Côte d'Azur
Ecole(s) doctorale(s) : École doctorale Sciences fondamentales et appliquées (Nice ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Institut national de recherche en informatique et en automatique (France). Unité de recherche (Sophia Antipolis, Alpes-Maritimes) - Mathematics for Control, Transport and Applications
Jury : Président / Présidente : Jean-Baptiste Caillau
Examinateurs / Examinatrices : Jean-Baptiste Pomet, Jean-Baptiste Caillau, Emmanuel Trélat, Eamonn Gaffney, Karine Beauchard, Antonio De Simone, Laetitia Giraldi, Pierre Lissy
Rapporteurs / Rapporteuses : Emmanuel Trélat, Eamonn Gaffney

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Cette thèse traite des aspects mathématiques de la contrôlabilité de micro-robots nageurs et de la mobilité de micro-filaments, avec des ramifications en théorie du contrôle et en modélisation. La première partie présente les résultats de théorie du contrôle obtenus. On énonce d'une part une condition nécessaire de contrôlabilité locale pour une classe particulière de systèmes à deux contrôles en dimension finie, grâce à l'étude de la série de Chen-Fliess associée à ces systèmes. D'autre part, on établit la contrôlabilité avec contrainte de positivité sur l'état pour des systèmes d'équations aux dérivées partielles linéaires paraboliques couplées. On démontre qu'il est possible de contrôler ce type de systèmes en conservant l'état approximativement positif lorsque la matrice de diffusion est diagonalisable, et en conservant l'état positif dans le cas particulier ou celle-ci est égale à la matrice identité.La deuxième partie aborde les applications au domaine de la micro-natation, et constitue une illustration des résultats de la première partie. On s'intéresse plus précisément à des robots nageurs magnétiques planaires constitués de deux et trois segments, reliés entre eux par des liaisons élastiques, et contrôlés par un champ magnétique. On démontre que ces robots ne sont en général pas contrôlables au voisinage de leur équilibre pour lequel les segments sont alignés, et on explicite les cas particuliers dans lesquels on peut obtenir la contrôlabilité. Les résultats sont appuyés par des simulations numériques.Dans la troisième partie, on présente des travaux de modélisation et de simulation numérique autour du mouvement de micro-filaments élastiques à bas nombre de Reynolds. On décrit un modèle à N segments performant, robuste et polyvalent. On le valide en comparaison à un autre modèle, puis on l'utilise pour réaliser une étude numérique du phénomène de buckling (flambage) d'un filament.