Thèse soutenue

Méthodes Galerkin discontinues pour la simulation de problèmes multiéchelles en nanophotonique et applications au piégeage de la lumière dans des cellules solaires

FR  |  
EN
Auteur / Autrice : Alexis Gobé
Direction : Stéphane Lanteri
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 17/02/2020
Etablissement(s) : Université Côte d'Azur
Ecole(s) doctorale(s) : École doctorale Sciences fondamentales et appliquées (Nice ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Institut national de recherche en informatique et en automatique (France). Unité de recherche (Sophia Antipolis, Alpes-Maritimes) - Modélisation et méthodes numériques pour le calcul d'interactions onde-matière nanostructurée
Jury : Président / Présidente : Boniface Nkonga
Examinateurs / Examinatrices : Stéphane Lanteri, Boniface Nkonga, Stéphanie Salmon, Christophe Geuzaine, Amélie Litman, Stéphane Collin, Claire Scheid
Rapporteurs / Rapporteuses : Stéphanie Salmon, Christophe Geuzaine

Résumé

FR  |  
EN

L’objectif de cette thèse est l’étude numérique du piégeage de la lumière dans des cellules solaires nanostructurées. Le changement climatique est devenu une problématique majeure nécessitant une transition énergétique à court terme. Dans ce contexte, l'énergie solaire semble être une source énergétique idéale. Cette ressource est à la fois scalable à l’échelle planétaire et écologique. Afin de maximiser sa pénétration, des travaux visant à augmenter la quantité de lumière absorbée et à réduire les coûts liés à la conception des cellules sont nécessaires. Le piégeage de la lumière est une stratégie qui permet d’atteindre ces deux objectifs. Son principe consiste à utiliser des texturations nanométriques afin de focaliser la lumière dans les couches de semi-conducteur absorbantes. Dans ce travail, la méthode de Galerkine Discontinue en Domaine Temporel (DGTD) est introduite. Deux développements méthodologiques majeurs, permettant de mieux prendre en compte les caractéristiques des cellules solaires, sont présentés. Tout d'abord, l’utilisation d’un ordre d’approximation local est proposé , basé sur une stratégie de répartition particulière de l’ordre. Le deuxième développement est l’utilisation de maillage hybride mixant ses élements hexahédriques structurés et tétrahédriques non structurés. Des cas réalistes de cellules solaires issus de la littérature et de collaborations avec des physiciens du domaine du photovoltaïque permettent d'illustrer l' apport de ces développements. Un cas d’optimisation inverse de réseau de diffraction dans une cellule solaire est également présenté en couplant le solveur numérique avec un algorithme d’optimisation bayésienne. De plus, une étude approfondie des performances du solveur a également été réalisée avec des modifications méthodologiques pour contrer les problèmes de répartition de charge. Enfin, une méthode plus prospective, la méthode Multiéchelle Hybride-Mixte (MHM) spécialisée dans la résolution de problème très fortement multiéchelle est introduite. Un schéma en temps multiéchelle est présenté et sa stabilité prouvée.