Étude de la répartition des automorphismes de Frobenius dans les groupes de Galois

par Alexandre Bailleul

Thèse de doctorat en Mathématiques Pures

Sous la direction de Florent Jouve.

Soutenue le 27-11-2020

à Bordeaux , dans le cadre de École doctorale de mathématiques et informatique , en partenariat avec Institut de mathématiques de Bordeaux (laboratoire) .

Le président du jury était Youness Lamzouri.

Le jury était composé de Florent Jouve, Emmanuel Kowalski, Nathan Ng, Daniel Fiorilli, Olivier Ramaré, Philippe Cassou-Noguès.

Les rapporteurs étaient Emmanuel Kowalski, Nathan Ng.


  • Résumé

    Dans cette thèse, on s'intéresse à divers aspects de la théorie des courses de nombres premiers, initiée par Rubinstein et Sarnak en 1994. Dans le premier chapitre, on revient sur la méthode de Rubinstein et Sarnak, on fait un tour d'horizon de prolongements de leurs travaux, et on développe leur méthode dans un cadre général, en cherchant à s'affranchir le plus possible des hypothèses de travail de ceux-ci concernant l'indépendance linéaire des parties imaginaires des zéros non triviaux des fonctions L de Dirichlet. Dans le deuxième chapitre, on s'intéresse à la généralisation des problèmes de courses de nombres premiers au contexte de la répartition des automorphismes de Frobenius dans les groupes de Galois d'extensions de corps de nombres. Dans la lignée de travaux récents de Fiorilli et Jouve, on met en évidence l'influence que des zéros en 1/2 de certaines fonctions L d'Artin peuvent avoir sur de telles courses. Dans le troisième et dernier chapitre, on s'intéresse à la transposition des questions précédentes aux extensions de corps de fonctions en une variable sur les corps finis, et on montre un nouveau théorème central limite pour des extensions superelliptiques.

  • Titre traduit

    On the distribution of Frobenius automorphisms in Galois groups


  • Résumé

    In this thesis, we are interested in multiple aspects of the theory of prime number races, initiated by Rubinstein and Sarnak in 1994. In the first chapter, we explain Rubinstein and Sarnak's method, we give an overview of extensions of their work, and we develop their method in a general setting, with the goal of weakening as much as possible their working hypothesis about the linear independence of the imaginary parts of non-trivial zeros of Dirichlet L-functions. In the second chapter, we are interested in the generalisation of problems of prime number races in the context of the distribution of Frobenius automorphisms in Galois groups of number field extensions. Following recent work of Fiorilli and Jouve, we highlight the influence that the vanishing at 1/2 of some Artin L-functions can have on such races. In the third and final chapter, we are interested in the same kind of questions as before in the context of extensions of function fields in one variable over finite fields, and we prove a new central limit theorem for superelliptic extensions.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Bordeaux. Direction de la Documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.