Thèse soutenue

Etude expérimentale des réactions de capture/désorption des iodes gazeux (I2, CH3I) sur des aérosols environnementaux

FR  |  
EN
Auteur / Autrice : Hanaa Houjeij
Direction : Sophie Sobanska
Type : Thèse de doctorat
Discipline(s) : Chimie Analytique et Environnementale
Date : Soutenance le 13/11/2020
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale des sciences chimiques (Talence, Gironde ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Institut des Sciences Moléculaires (Bordeaux)
Jury : Président / Présidente : Joëlle Mascetti
Examinateurs / Examinatrices : Sophie Sobanska, Joëlle Mascetti, Henri Wortham, Céline Toubin, Florent Louis, Olivier Masson, Eric Villenave, Anne Cécile Kappenstein-Grégoire
Rapporteurs / Rapporteuses : Henri Wortham, Céline Toubin

Résumé

FR  |  
EN

Lors d'un grave accident de centrale nucléaire l'iode gazeux I131, émit principalement sous les formes I2 ou CH3I, peut affecter la santé humaine et l'environnement lors de son rejet dans l'atmosphère. Les modèles de dispersion de l'iode ne tiennent pas compte de la réactivité de l'iode avec les espèces gazeuses ou les aérosols atmosphériques. Cependant, la modification de la spéciation chimique et/ou la forme physique des composés de l’iode n’est pas sans conséquence sur leur dispersion et leurs impacts sanitaires. Dans le cadre de l'amélioration des outils de simulation de la dispersion atmosphérique de l’iode radioactif, ce travail vise à contribuer à l'état actuel des connaissances sur la chimie de l'iode par une approche expérimentale permettant la compréhension des processus d'interaction entre CH3I gazeux, les aérosols et l'eau.L'interaction entre CH3I et l'eau a été étudiée à l'échelle moléculaire par des expériences en matrice cryogénique appuyées par des calculs théoriques. Un excès d'eau en regard de CH3I, a été utilisé pour simuler les conditions atmosphériques. Les dimères et trimères de CH3I sont observés malgré la quantité élevée d'eau ainsi que la formation d’agrégats mixtes de CH3I et de polymères d’eau. Ceci peut s'expliquer par la faible affinité du CH3I pour l'eau. Dans l'atmosphère, CH3I et H2O gazeux formeront probablement des agrégats d'eau et des polymères de CH3I au lieu d'hétéro complexes de type (CH3I)m-(H2O)n. L'interaction entre CH3I et la glace amorphe en tant que modèle de glace atmosphérique a fait l'objet d'une étude préliminaire. L'adsorption de CH3I sur la glace amorphe et sa désorption complète au-delà de 47 K ont été observés.L'étude expérimentale des processus d’interactions entre CH3I et le NaCl sec et humide comme modèle des sels marins a été réalisée en utilisant la Spectroscopie Infrarouge à Transformée de Fourier par Réflexion Diffuse (DRIFTS). Les spectres DRIFTS de la surface de NaCl mettent en évidence CH3I adsorbé sur la surface de NaCl. Les spectres FTIR montrent de nouvelles bandes d’absorption, qui n’ont pas pu être clairement attribuées. Le processus d'adsorption de CH3I sur NaCl est probablement une chimisorption puisqu'aucune désorption n'a été observée. Nous avons démontré que l'adsorption du CH3I n’atteint pas la saturation même après 5 heures d’exposition. Ce processus présente une cinétique d’ordre 1 par rapport à la concentration de CH3I en phase gazeuse. Les coefficients d'absorption sont de l'ordre de 3 × 10-11, avec une énergie globale d'absorption de -39 kJ.mol-1. Ces résultats montrent une faible probabilité de capture des molécules de CH3I par la surface de NaCl. La présence d'eau à la surface de NaCl ne semble pas modifier l'interaction entre CH3I et NaCl, ce qui est cohérent avec sa faible affinité pour l'eau.Les interactions de CH3I avec divers solides inorganiques et organiques comme modèles pour les aérosols atmosphériques ont été étudiées à l’aide d’un réacteur statique couplé à la chromatographie en phase gazeuse permettant de suivre la phase gazeuse. Nous avons montré une faible interaction entre CH3I et les aérosols étudiés indiquant sa faible affinité pour les surfaces des aérosols quelle que soit leur composition. Nous émettons l'hypothèse que la teneur en eau en surface de l'aérosol est un paramètre clé. Ainsi, lorsqu'il est libéré dans l'atmosphère, CH3I interagit très peu avec la surface des aérosols et reste en phase gazeuse. Cependant, bien qu’en faible teneur, CH3I est irréversiblement adsorbé à la surface des sels d’halogénures, ce qui pourrait être pris en compte dans le modèle de dispersion pour en évaluer l’impact.