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AIX-MARSEILLE UNIVERSITÉ

Abstract
Doctoral School: Sciences du Mouvement Humain

Robotic touch for contact perception:

Contributions to sensor design, manufacturing and signal processing

by Xi Lin

Tactile perception subserves the impressive dexterity found in humans but
also found in their robotic counterparts. However, despite their inception in
the early 50s, robotic tactile sensors remain rarely seen in commercial and
research developments, because their manufacturing is complex, and they
often have few sensing points. Recently, a new wave of tactile sensors rely-
ing on off-the-shelf cameras, provides a dense tactile image of the contact.
However, by the way these sensors operate, the link between the mechanics
of the skin and the tactile images is not evident.

In this thesis, we present a novel camera-based tactile sensor, named Chro-
maTouch, which captures physically-driven dense images of the three di-
mensional interaction that happens at the interface between the artificial skin
and the touched object. The sensor measures the strain field induced by the
contact, by imaging the pattern and color change of two overlapping markers
array, one translucent and yellow and the other opaque and magenta. The
motif seen by the camera is a bijective function of the relative motion of the
markers allowing a reconstruction of the stress and strain field at the inter-
face. The sensor, boasting up to 441 sensing elements, shows high robustness
to external luminosity and camera resolution, and it is able to estimate the
local coefficient of friction of the contact surface with one simple press. A
hemispherical version extended the results to arbitrary shapes and is able to
estimate the local curvature via a simple press using Hertz contact theory.

Sensing the dense 3d deformation field at the contact opens the doors to a
comprehensive, physically-based measurement of the interaction. Improved
artificial perception of the object (i.e. shape, compliance and friction) and of
the interaction (i.e. partial and full slippage or rotation, and roll) can inform
robotic exploration, dexterous grasping and manipulation.
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Résumé
La perception tactile sous-tend l’impressionnante dextérité observée chez les
humains mais également chez leurs homologues robotiques. Malgré leurs
débuts dans les années 50, les capteurs tactiles robotiques restent rarement
vus dans les développements commerciaux et de recherche, car leur fabrica-
tion est complexe et ils ont souvent peu de points de détection. Récemment,
une nouvelle vague de capteurs tactiles reposant sur des caméras du com-
merce offre une image tactile dense du contact. Cependant, par le fonction-
nement de ces capteurs, le lien entre la mécanique de la surface du capteur et
les images tactiles n’est pas directe et nécessite un étalonnage.

Dans cette thèse, nous présentons un nouveau capteur tactile, appelé Chro-
maTouch, qui utilise une caméra pour capturer des images denses physique-
ment conduites de l’interaction tridimensionnelle qui se produit à l’interface
entre la peau artificielle et l’objet touché. Le capteur mesure le champ de
contrainte induit par le contact, en imaginant le motif et le changement de
couleur de deux couches de marqueurs qui se chevauchent, l’un translucide
et jaune et l’autre opaque et magenta. Le motif vu par la caméra est une
fonction bijective du mouvement relatif des marqueurs permettant une re-
construction du champ de contraintes et de déformations à l’interface. Le
capteur, doté de 441 éléments de détection, montre une grande robustesse à
la luminosité externe et à la résolution de la caméra, et il est capable d’estimer
le coefficient de frottement local de la surface de contact avec une simple
pression. Une version hémisphérique a étendu les résultats à des formes ar-
bitraires et est capable d’estimer la courbure locale via une simple presse en
utilisant la théorie des contacts de Hertz.

La détection du champ de déformation 3D dense au niveau du contact
ouvre les portes à une mesure complète et physique de l’interaction. Une
perception artificielle précise des propriétés de l’objet (forme, compliance et
frottement) et de l’interaction (c’est-à-dire le glissement ou la rotation par-
tielle et totale, et le roulis) peut informer l’exploration robotique, la saisie et
la manipulation habiles.
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2 Chapter 1. Introduction

1.1 Background

Automation and robotics permeate every aspect of the modern society, from
the most complex industrial applications to helping the general public with
daily chores. They are particularly useful for handling menial or dangerous
tasks and help us live better lives. This rapid adoption creates a new demand
for robots that perform complex operations in dynamic and unstructured
environments. The promise of a robot that can safely and intuitively work
alongside humans will lead to fundamental changes in our society through
application in healthcare, agriculture, human-robot interactions and object
manipulations. In particular, one of the central challenge of robotics is to be
able to explore, grasp and manipulate arbitrary objects with a human-like
accuracy and dexterity. For instructing robots to manipulate with precision
and care, we can take inspiration from how humans can easily feel, explore,
grasp, and manipulate a wide variety of objects, do complex tasks with high
precision such as writing and sewing. The answer to humans’ extraordinary
dexterity seems to lie in their fine-tuned sensorimotor loop that controls the
muscle activation based, in par, on inputs from the sense of touch.

Imagine lighting up a match, one have to just grab the match stick, strike
the stick on the match box. This is a simple task that human may perform
many times in their life. However, Johansson et al. [75] carried out an exper-
iment, studying the impact of removing the sense of touch on their ability to
perform dexterous manipulations. The subject with fingertips anesthetized
is asked to light a match. The results were remarkable: subject could barely
manage to pick up a match stick and light it up. The simple task, which only
took 5 seconds before with sense of touch, became struggling and will take 5
times longer after anesthetization of fingertips. Human’s clumsiness in this
experiments is similar to the struggles of modern robots when they deal with
complex manipulation tasks. Why did taking away the sense of touch have
such an impact on human subject?

Human’s sense of touch allows direct measurement of the contact through
interactions with the external environment. The measurements of contact in-
form about pressure, friction, compliance, texture, temperature, and other
physical properties of objects in contact, which helps create a mental model
of the haptic scene. Without this tactile feeling, human hands would be like
anesthetized, and manipulation tasks such as lighting a match, will be ex-
tremely difficult.

Given the prevalence of touch in human, it is surprising that most of the
recent commercial and industrial robots use visual sensing as a substitute of
tactile sensing. However, the visual feedback is remote and the view is often
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occluded by the actuators at the point of contact. Moreover, when robotic
hand is in touch with the object, no knowledge of the contact force can be
obtained. For a grasping task, the slippage may happen if the object is slip-
pery and the grasping force is too small. The fragile object may risk of being
broken if the grasping force is too large. Interactions with objects without
tactile sensing hinder the robot from achieving dexterous manipulation in
unknown environments.

In this context, implementation of tactile sensors onto robotic grippers
have become an essential step towards human-like manipulations. Tactile
sensors began to develop in the 1970s and now play an important role in var-
ious domain. The increasing requirement of tactile information in various
technical systems, such as robotic hands, medical equipment, touch screen
on smart phones, leads to the appearance of diverse tactile sensing technolo-
gies. Nowadays, the development of tactile sensing technologies becomes a
trend. Various tactile sensors with different modalities have been designed
and studied. Several tactile sensors are now commercially available.

1.2 Problem statements

The importance of tactile sensing has long been well acknowledged in the
robotics community as substantial advances in tactile sensor technology be-
gan from 1980s. However, despite the fast advancement in tactile sensing
technologies, artificial tactile sensors aiming at robust dexterous manipula-
tion still need much improvements to achieve the capabilities of human be-
ings. Exploiting the sense of touch in robots remains challenging after almost
50 years of research.

First of all, the tactile sensing technology has been largely limited to sparse
pointwise measurements, which falls far away from the rich tactile feedback
of human skin. The density of human’s mechanoreceptors on the fingertip
can reach around 250 units/cm2 [76], which offer an extremely dense sensing
array comparing with the palm where the receptors’ density is only around
58 units/cm2. Moreover, these mechanoreceptors respond to various stimuli
such as normal force, shear force, light tapping and vibrations. The sense
to shear is also proven important to detect slippage [11]. However, most
commercially available tactile sensors either lack of dense measurement, or
cannot measure both normal and shear stresses.

Second, many recent tactile sensors focus on measuring one single contact
information, which is not enough for acquiring a complete view of the object
in touch for dexterous manipulation. For example, many tactile sensors are
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only able to measure one directional force or deformation. However, it was
proved that shear information is as important as normal information because
it can be used for detecting friction to prevent slippage.

Finding the adequate method to process and interpret the tactile data for
robotic control could be a third challenge. Using tactile feedback has been
proven to be useful in robotic hand control. However, almost all the off the
shelf robotic hands employ only vision or single point force sensor to per-
form manipulation tasks. A few solutions employing tactile sensors but lack
of sensing capabilities [9, 155, 160]. The implementation of tactile array in
robotic control loop remains computationally costly.

In order to design and develop a tactile sensor suitable for dexterous ma-
nipulation tasks, one should answer the following questions.

– How to measure relevant tactile cues? The interaction between tactile
sensors and objects is complex. Contact information involves various
modalities including normal and shear forces, 3d deformation, vibra-
tion and slippage. Force and deformation indicate whether the object
is in contact, and how much is the contact force. The vibration may
indicate the texture and roughness of the contact surface. The slippage
measurement enables the robot to increase the grip force to prevent ob-
jects from dropping. The measurements of contact information are usu-
ally achieved by transducers that convert mechanical touch to different
types of signals including electrical, magnetic, optical, and even acous-
tic signals. Analyzing the converted signals allows the estimation of
different contact information. The combination of all the tactile modal-
ities may even provide a more complete understanding of the contact.
A tactile sensor should be able to measure tactile information which
infers the contact conditions.

– How to extract contact information and object properties from mea-

surements? In general interactions, objects could have arbitrary shape,
friction, compliance and other physical properties. For objects with dif-
ferent physical properties, different manipulation strategies should be
employed for robot to execute appropriate actions. The interaction in-
formation such as contact force and slippage should also be detected
to ensure a robustness of the action. For fragile objects, the grasping
force should be suitable for holding the object whilst not damaging it.
For slippery objects, the grasping force must increase to avoid slippage.
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For objects with complex shape, the robot must know where is the op-
timal position to perform the most stable grasp. The knowledge of the
object properties, which could be extracted from the contact informa-
tion mentioned above, may guide humans to properly manipulate no
matter which kind of objects. For example, the measurement of de-
formation and stress distribution are usually used for shape and edge
detection. The vibrations can be used for slippage detection. The ratio
of normal and shear forces applied on the object leads to the coefficient
of friction of the contact. Therefore, the tactile sensor should be able
to extract various object properties from the contact information in or-
der to adapt manipulation tasks on different objects and in unknown
environments.

1.3 Research objectives

Aiming to solve the problem of existing tactile sensors and satisfy the re-
quirements in tactile sensing, the two main goals of this thesis are:

• First, to design an artificial tactile sensor that is able to measure both
normal and lateral deformation or force. Additionally, the sensor should
have a high spatial resolution with dense measuring elements and could
be mounted onto robots for manipulation tasks. For achieving this goal,
the camera-based tactile sensing method is employed. The detailed ra-
tionale of the camera-based sensor design is explained in section 3.1.
Several different prototypes were manufactured to improve the sensor
design. A testing platform was set up to calibrate and test the proposed
sensor.

• Second, to use the sensor to measure contact information and extract
properties of the object in touch. In this thesis, we focus on measure-
ments of sensor’s deformation due to contact, estimations of the curva-
ture of the object, and also estimations of the friction between the object
and the sensor. Objects with various shapes and frictional state will be
used to test the tactile sensor. The frictional state can be quantified by
the coefficient of friction and is related to the frictional properties (e.g.
slippery, rough). Sensor’s ability to measure different contact informa-
tion and object physical properties will be evaluated.
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1.4 Thesis overview

This thesis is organized as follows:
Chapter 2 provides a literature review of studies on tactile sensing in the

context of improving robotic manipulation. The functionality of humans fin-
ger is reviewed to provide an overview of how humans sense touch. Vari-
ous tactile sensors and tactile sensing technologies are then reviewed to in-
troduce how do tactile sensors transduce touch to other processable tactile
signals. Tactile perception is also reviewed to show methods for extracting
useful tactile signals and interpreting the tactile data to contact conditions
and object properties. Robot actions regarding various perceived tactile in-
formation is further detailed at the end, including exploration, grasping and
manipulation.

Chapter 3 presents the first version of a camera-based tactile sensor named
ChromaTouch. The design and manufacturing of the sensor are described.
A sensing method using color mixing principle is proposed and evaluated.
With this new sensing design, the sensor is able to estimate the normal dis-
placement map by calculating the color change induced by the deformation
of the sensor. Advantages and limitations of this method are discussed in
this chapter.

Chapter 4 presents the second version of the ChromaTouch sensor which
comes in a hemi-spherical shape. The sensor is designed for robotic use and
is mounted onto a robotic arm. The advantages of spherical sensor is dis-
cussed. The sensor is able to estimate the curvature via a simple press. The
algorithm for curvature estimation using the hemi-spherical sensor is tested
and evaluated.

Chapter 5 presents the third version of the ChromaTouch sensor with a
much higher spatial resolution, which has 441 sensing elements of 1 mm2 in
size, comparing to the first and second version with only 100 and 77 sensing
elements. Instead of calibrating the sensor using color change as presented
in chapter 3, the calibration of this sensor is acheived using convolutional
neural network, which is proven to be more accurate and robust comparing
with the first version. With the high spatial resulotion, this sensor can dis-
tinguish the difference of frictional condition on the same contact area by a
simple press.

Chapter 6 concludes the thesis by summarising the different versions of
the tactile sensor, the progression of the signal processing algorithms, as well
as the contributions of this thesis and possible future studies building on this
work.
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TACTILE sensors provide rich information on the contact condition and
object properties. Comparing with traditional robots that use only vi-

sual feedback, robots equipped with tactile sensors not only see, but also feel
the objects, which improve robotic grasping and manipulation. This chapter
reviews the literature from the design of tactile sensors to the use of tactile
feedback in robotic control. This chapter is divided into the following three
sections:

– Transduction: Various tactile sensing designs using different transduc-
tion methods are presented in this section, as the transduction from
mechanical touch to processable tactile signal is the first step of tactile
sensing. After a presentation of humans’ tactile sensing system, two
main transduction methods are reviewed including electromechanical
and camera-based transduction.

– Perception: Tactile perception refers to extracting information of ob-
jects and contact from raw tactile signals. This section introduces how
humans perceive objects and interactions, and then reviews the litera-
ture for the robotic perception of object properties and interactions.

– Action: This section presents the state of the art of robotic actions em-
ploying tactile sensing. The literature review in this section shows the
control of robotic exploration, grasping, and manipulation tasks using
the contact information extracted from the tactile signals as feedback to
improve the dexterity of the robotic hand.

Figure 2.1 shows the relation between robot-object contact, tactile trans-
duction, tactile perception, and robotic action, where tactile sensor plays an
essential role to link the contact and perception.

2.1 Transduction: Encoding mechanics

At its core, a tactile sensor transduces mechanical interactions into signals
that are interpretable by a digital controller. From the past 30 years, a plethora
of tactile sensors have been invented using all the possible transduction tech-
niques, such as capacitive, piezoresistive, piezoelectric, magnetic, and optic.
The objective of all these transduction methods is to convert mechanical con-
tact to another form of signals. Reading and analyzing the converted signals
allows the estimation of the object property, such as shape, texture, softness,
and contact information, such as slippage, force, deformation.
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Contact Transduction

PerceptionAction

touch, pressure, 

rotation, sliding, tap

electrical,

mechanical,

magnetic,

optical signal

shape, texture, friction, 
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exploration,

grasp,

manipulation

FIGURE 2.1: The relation between robot-object contact, tactile transduc-
tion, tactile perception, and robotic action

2.1.1 Human sense of touch

Humans sensitivity to tactile stimuli provides a gold standard for design-
ing artificial tactile sensing abilities in robots. Human skin is an essential
sensory system that allows sensing of contact, pressure, shear, temperature,
vibration, and pain. The skin is composed of two primary layers: epider-
mis and dermis. The dermis transmits tactile information due to mechanical,
thermal, or chemical stimuli [34].
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FIGURE 2.2: Mechanoreceptors in human’s skin

Among all the skin areas, the glabrous skin of the hand is one of the most
sensitive to tactile stimulation. Most of the nerve endings are embedded in
the dermis of the glabrous skin. Some of these nerve endings function as no-
ciceptors and detect pain, while some function as thermoreceptors and de-
tect temperature. The mechanoreceptive afferents are relative to mechanical
stimuli such as pressure, shear, vibration, and stretch [74]. They are mainly
divided into four types: fast-adapting type I (FA I, Meissner corpuscles) and
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fast-adapting type II (FA II, Pacinian corpuscles), slowly-adapting type I (SA
I, Merkel’s cells) and slowly adapting type II (SA II, Ruffini endings) [75].
Meissner corpuscles and Merkel’s cells are located toward the surface of the
skin, and the other two are located deeper (Fig.2.2a). Each kind of recep-
tor has their specific adaptation rate and perceptive field. The afferent neu-
rons convert specific types of stimulus, via their receptors, into action poten-
tials that propagate towards the CNS (Central nervous system). As shown in
Fig. 2.2b. The slowly-adapting receptors generate continuous action poten-
tials from the time the stimulus is applied until it is removed [178]. Merkel
cells detect pressure and can sense the shape of the object. They have small
receptive fields and produce sustained response to static stimulation. Ruffini
endings respond to force and direction of skin stretch. They also produce sus-
tained responses to static stimulation but have a large receptive field. In con-
trary, the fast-adapting receptors generate a burst of action potentials at the
moment when stimulus is applied and when the stimulus is removed [178].
Meissner corpuscles deal with the low-frequency vibrations, slip and light
touch on the skin. They have small receptive fields and produce transient
responses to the onset and offset of stimulation. Pacinian corpuscles detect
high-frequency vibration and are responsible for the perception of surface
textures. They respond to rapid mechanical changes, an have large receptive
fields.

Table 2.1 shows a summary of the mechanoreceptors and their corre-
sponding afferent types.

Receptor Detection
Adaptation

rate
Location

Receptive
field

Pacinian
corpuscles

high frequency
vibration

(100-300Hz)

rapid
(FA II)

deep
skin

large

Meissner’s
corpuscles

slip and light touch,
low frequency

vibrations
(20-40Hz)

rapid
(FA I)

superficial
skin

small

Ruffini
endings

force and direction
of skin stretch

slow
(SA II)

deep
skin

large

Merkel
cells

pressure and form
of the object

slow
(SA I)

superficial
skin

small

TABLE 2.1: Summary of the characteristics of human mechanorecep-
tors

Human mechanoreceptors are highly sensitive to a wide range of stimuli
and researchers have attempted to replicate the performance of the human
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mechanoreceptors using a large variety of artificial tactile sensors. However,
due to the complexity of the human sensory system, the development of the
human-like transduction system still proves to be a major challenge for re-
search and industry.

Despite the fast advancement in tactile sensing technologies, artificial tac-
tile sensors aiming at robust dexterous manipulation still needs many im-
provements to achieve the capabilities of human beings.

2.1.2 Electromechanical transduction

Electromechanical transductionis achieved by taking advantage a host of
physical phenomena such as piezoresistivity, electrtical capacitance, or piezo-
electricity. Pressure sensing arrays are built by arranging multiple individual
sensing cells in columns and rows. Building with soft layers, some sensors
can be thin and stretchable. Thus the electromechanical transduction tech-
nologies are widely used to manufacture touch-sensitive skin.

Piezoresistive

The piezoresistive sensors transduce force variation into changes of resis-
tance. The special material used for manufacture piezoresistive sensors react
to deformations by changing its resistance.

Conductive

thread

Flexible

substrate

Piezoresistive

rubber

(a) (c)(b) (d)

FIGURE 2.3: (a) A piezoresistive sensor proposed by [42] and (b) its
structure. (c) A piezoresistive sensor [183] using carbon-based fillers
for conductive layer, and (d) its structure.

Using strain gauges is a typical way to measure contact force in MEMS
(Microelectromechanical systems) piezoresistivitive sensors. However, the
lack of flexibility is the major drawback of rigid gauges. In recent years, be-
cause of the advancement in the fabrication of microstructures and nanoma-
terials, piezoresistive rubber made by mixing non-conductive polymers and
distributed electrically conductive nanoscale fillers becomes the most used
material in piezoresistive sensing [42, 16]. There are two widely used con-
ductive fillers for piezoresistive tactile sensor: metal-based and carbon-based
fillers. However, the difficulties in bonding metallic particles and polymers
into a thin layer limit the application to soft electrical skin. The carbon-based



12 Chapter 2. State of the art

fillers usually consist of carbon nanotubes (CNTs) [157, 183] or graphene
nano-sheets [22, 5], which influence the mechanical and electrical properties
of the sensor [54].

Piezoresistive sensors can be flexible, thin, and robust to noise. They are
also relatively simple to manufacture. Thus many commercial solutions ex-
ist for robotic applications, such as Inaraba and Eeonyx. Nevertheless, the
lack of reproducibility as well as the hysteresis remain the most considerable
drawbacks of piezoresistive sensing technology.

Capacitive

Capacitive tactile sensors vary the capacitance by changing the geometry of
their capacitors. The most common structure of a capacitive tactile sensor
consists of two parallel conductive plates separated by a compressible di-
electric material. The capacitance is changed when the distance between the
two plates changes because of the pressure applied onto the dielectric layer.

Air gap

Normal force Shear forceBump

Top electrode

Insulator

Spacer

Pillar

Bottom electrode

FIGURE 2.4: A capacitive tactile sensor capable of measuring both nor-
mal and shear stress [96]

Capacitive sensors can detect both normal and shear forces by embedding
four electrodes in one unit and measuring the difference and co-effect of the
four sensing cells [96]. The dielectric layer between the electrodes is usually
made of flexible PDMS. The sensitivity of the capacitive tactile sensor can be
increased or tuned by patterning the dielectric layer [156, 121]. There are also
some other dielectric layer designs that can increase the sensitivity to small
forces applied on capacitive tactile sensors, such as using air gaps [138], and
liquids [1].

Because of the high sensitivity, high resolution, and large dynamic ranges,
capacitive sensing is very popular among the tactile transduction technology.
However, the hysteresis, the susceptibility to electromagnetic noise, and the
sensitivity to temperature remain the main disadvantages of capacitive tac-
tile sensors.



2.1. Transduction: Encoding mechanics 13

Piezoelectric

Piezoelectric sensors are made of piezoelectric materials, which generate elec-
trical charges in response to deformation applied by force or pressure.

Poled: piezoelectric film

Non-poled: dielectric film

Aluminum PVDF-TrFE

FIGURE 2.5: A piezoelectric tactile sensor using PVDF film presented
by [102]

The piezoelectric layer is usually embedded between two electrodes on
a soft substrate [200]. When pressure is applied to the sensor, the piezoelec-
tric layer will be compressed, which converts its deformation to an electri-
cal charge. Zinc oxide (ZnO) [7] and poled ceramic lead zirconium titanate
(PZT) [92] are popular materials for making rigid sensing elements. Flexible
sensing structures can be achieved by distributed nano particles. Polyvinyli-
dene fluoride (PVDF) is the most widely used material to make the flexible
piezoelectric layer [102, 109].

Piezoelectric sensors are highly sensitive to dynamic pressure with a fre-
quency range of 1 Hz to 1 kHz, and they exhibit fast response speed [158].
Due to this advantage, they can be used to measure the vibrations associated
with slip [31]. In spite of there impressive sensitivity, piezoelectric tactile
sensors are not suitable for the measurement of static contact forces because
the induced charge in piezoelectric materials dissipates very quickly in the
sensing resistance. The sensitivity to temperature is also one of the main
drawbacks of piezoelectric materials.

Magnetic

Tactile sensors based on magnetism measure the change in magnetic flux or
magnetic field density as a result of the applied force by the magnetic sen-
sor such as Hall effect sensor [175] and giant magneto resistance (GMR) sen-
sor [51]. Magnetic tactile sensors are usually constructed by embedding pairs
of magnets in an elastomer body. The deformation of the elastomer changes
the position of the permanent magnet, which leads to variation in the mag-
netic field. The direction and magnitude of the applied force can be then
estimated by measuring the change of magnetic field [95, 137]. However, the
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size and spatial resolution are limited for this kind of design. Another kind of
tactile sensor uses a magnetic nanocomposite hair-like cilia. The deflection of
cilias caused by external force leads to changes in the magnetic field, which
can be detected by a magnetic sensor. The flexible hair-like structure of the
sensor resulting in high sensitivity to small surface texture changes [181, 2].

Magnetic tactile sensors exhibit physical robustness, high sensitivity, good
dynamic range, and it has no measurable mechanical hysteresis. However,
they can only be used in nonmagnetic environments.

Hall-effect sensor

Soft material

Small

magnet

Flexible

PCB

Hall-effect

sensor

Soft

material
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FIGURE 2.6: (a) A tactile sensor employing arranged magnetic trans-
ducers for robotic hand proposed by [175] and its structure. (b) A low-
cost tactile sensor using hall effect [137] and its working principle for
measurement of shear and normal force. (c) Structure and working
principle of a hair-like magnetic tactile sensor for measuring surface
texture [2].

Multi-modal tactile sensors

Human hands have various types of tactile sensing modalities. The imple-
mentation of multi-modal tactile sensors allows the robots to match human’s
tactile sensing ability as much as possible.

BioTac is one of the multi-modal tactile sensors that are commercially
available and widely used in research. It’s a finger-shaped tactile sensor that
can measure the contact forces, vibrations, and temperature produced during
contact with an object [48]. Cranny et al. also proposed a tactile sensor for a
prosthetic hand that provides slip, temperature, and force information [33].
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The sensor developed by Mittendorfer et al. is able to provide whole-body-
touch sensation using connected multimodal tactile modules named HEX-
O-SKIN. It is a small hexagonal printed circuit board equipped with multi-
ple discrete sensors that can measure temperature, acceleration, and proxim-
ity [124]. Kampmann et al. presented a three-fingered robot gripper that in-
corporates strain gauge sensors, piezoelectric sensors, and fiber optic sensors
to measure absolute the dynamic forces and the force distribution, respec-
tively [86]. Viola et al. reported a multimodal temperature and force sensor
by using an ultrathin PVDF film, which has both piezoelectric and pyroelec-
tric properties [180]. Recently, Yu et al. proposed a vision based multi-modal
tactile sensor. The black and white grating pattern of the soft sensor allows
the measurement of distributed pressure via Fourier Transform Profilometry.
The whole sensing surface is covered with a Thermochromic Liquid Crystal
(TLC) ink layer that changes color when temperature changes [199]. Another
vision based multi-modal tactile sensor, named MultiTip was introduced by
Soter et al [167]. By adding thermochromic powder in the sensing skin, the
sensor is able to measure both temperature changes and deformation due to
the contact.

Multi-modal sensors have the ability to sense different tactile features at
the same. However, when a large number of modalities is integrated into the
sensor, the reduction of sensor size becomes a main issue to solve.

Sensing layer

Transparent
silicon filler

Clear plate

Mirror

Main body

Temperature

sensitive ink

Grating black silicone base

White silicone

rubber

FIGURE 2.7: The structure and working principle of the multimodal
tactile sensor proposed by [199] capable of measuring pressure and
contact temperature.

2.1.3 Camera-based transduction

Tactile sensors based on electro-mechanical transduction could have a high
sensibility and high dynamic range. However, the fabrication is complex if
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high spatial resolution is desired in such sensors due to the requirement of
bulky sets of electrical interconnections. To obtain a high-resolution tactile
sensor with simple manufacturing, employing a camera in the sensing sys-
tem became a practical solution. The use of the camera in tactile sensors
appeared for more than 30 years. Since then, more and more studies have
focused on developing camera-based tactile sensors.

The transduction from tactile contact to vision problem benefit from the
high resolution provided by the camera embedded in the tactile sensor. Be-
cause of the recent development in imaging technology, the use of mini cam-
era becomes inexpensive and convenient. In addition, with the recent devel-
opment of computer vision and machine learning, image processing becomes
much easier and faster for real-time camera-based tactile sensing. Moreover,
the camera and soft skin could be isolated, which leads to physical robust-
ness. The shape of the sensor could also be more flexible. Due to all the above
advantages, employing a camera into the tactile sensor is becoming a trend
in recent years. Nowadays, the camera-based tactile sensors begin to appear
not only in research but also for commercial use [50, 182, 29].

A camera-based tactile sensor is generally composed of two parts: the
camera for imaging and the soft skin for contact. The camera captures im-
ages or videos according to different sensing needs. Different camera lenses
can be used to control the angle of view to satisfy different requirements in
the measurement area. The contact part is usually made by soft skin that
converts mechanical tactile contact into light signals that can be captured by
the camera. Most of the existing camera-based tactile sensors achieve the
conversion from contact to light by using total internal reflection, embedded
markers, or reflective skin.

Total internal reflection Marker tracking Reflective skin

FIGURE 2.8: Three main methods for camera based tactile sensing [164]
using total internal reflection, marker tracking, and reflective skin.
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Total internal reflection

The tactile sensing using total internal reflection (TIR) employs a light con-
ductive plate. Various solid transparent materials can be used as the light
conductive medium such as glass, acrylic plate, and elastomer. LED lights
are introduced into the light conductive medium and will be reflected only
inside the medium when the angle of incidence is larger than the critical an-
gle. This phenomenon is called total internal reflection. If contact is made
onto the transparent medium, the reflected light on the area of contact will
be scattered. The intensity and size of the scattered light spot related to the
contact force will be captured by the camera.

This method is used in many early studies of camera-based tactile sens-
ing. In 1984, Scheiter and Sheridan designed and built a planar tactile sensor
using the total internal reflection principle. The sensor consists of a flexible
material covered by a white silicon rubber to reflect light. Two sets of opti-
cal fibers are embedded in the sensor to send light and capture images. The
pattern generated by the reflected light can be used to detect slip and orien-
tation of the object by calculating the centroid and moments of inertia from
the image difference before and after pressure. The sensor design allows for
extremely high spatial resolution as it has 2100 sensitive spots per inch2 [154].

Tanie et al. developed a similar planar tactile sensor in the same year [172].
The sensor is constructed by a transparent acrylic plate and an elastic sheet.
The elastic sheet under pressure leads to an increase in the size of the con-
tact area. Lights on the region in contact are reflected. Instead of using
optical fiber, a photo-transistor was employed as the imaging system. The
photo-transistor captures the change of light to detect the pressure. Later on,
Hiraishi improved the sensor by replacing the photo-transistor with a CCD
camera, which largely increased the resolution of the sensor [55]. Then from
1990 to 1992, Maekawa developed three spherical versions of tactile sensors
based on Hiraishi’s planar one. The last version only has a finger-shaped size
with 20mm in diameter and 44mm in length [128, 118, 116, 117].

Another TIR based tactile sensor was reported by Begej et al. in 1988 [10].
They manufactured a planar and a finger-shaped tactile sensor using TIR
principle. The sensor uses plastic fibers to capture the tactile imprint. The
latter was then transported to a remote display array. The sensor under pres-
sure produces a gray-scale image that indicates the normal force of the con-
tacted object.
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FIGURE 2.9: Tactile sensors using total internal reflection principle
by [10], which use an elastic skin with irregular surface structure to
scatter lights. The lighter region indicates where the sensor is under
pressure.

Marker tracking

Another popular method using the camera for tactile sensing is to track mark-
ers in/on a soft body. The typical structure of the sensor using marker track-
ing is made of several arranged markers embedded inside a transparent elas-
tomer. When the elastomer is in contact with an object, the displacement of
the markers under the deformation of the soft body is captured by the cam-
era, which indicates the information of the contact force [177, 130, 69, 53, 146,
159].
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FIGURE 2.10: Tactile sensors using marker tracking methods: (a) Tactile
sensor sensitive to edges and corners [26]. (b) Transparent tactile sensor
presented in [196] capable of seeing the external scene. (c) Gelforce
sensor with double layers of markers for measuring 3d forces [148]

In 2000, Hiristu et al. manufactured a finger-shaped tactile sensor cov-
ered by a dotted membrane [63]. The sensor has a metal housing to hold the
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camera and the transparent window. The inside of the sensor was filled with
transparent gel to act as a sensing area. The deformation of the dots is col-
lected by the camera and is used to reconstruct the shape of the membrane.

In 2001, Kamiyama introduced a camera-based tactile sensor [84] named
GelForce. The sensor was made of a transparent elastomer embedded with
two layers of spherical markers in different colors. 3D force vectors can be
calculated from the spatial distribution of the double layers of markers. A de-
tailed evaluation of the GelForce sensor was reported in 2004 [83]. Later on,
the sensor was miniaturized into a finger-shaped version by Sato et al. [149].
The implementation of the finger-shaped sensor on a robotic hand was pre-
sented in [148].

Another popular camera-based tactile sensor was introduced in 2009 by
Chorley et al. [26] in Bristol Robotics Lab. The sensor was made by a trans-
parent gel covered by a papillae-shaped skin taking inspiration from the
papillae structure in humans’ fingertips. The markers are located on papil-
lae nodules, which are proved to amplify the signal for edge and corner de-
tection. This sensor was later improved and named as TacTip in 2012 [193].
Later, the manufacturing of the sensor was simplified using 3D printing tech-
nology [186]. The addition of a biomimetic fingerprint on was proved to be
able to improve the sensibility of the sensor [32]. Based on the hemispherical
version, Ward-Cherrier et al. developed two versions with different sensor
shapes that are implemented in robotic grippers for operating manipulation
tasks [185, 184]. Various tactile sensing applications were developed using
Tactip sensors, including global slip detection [73], incipient slip detection
[72], contour following [99, 101], pose estimation [100], and implementation
on 3-fingered robotic hand for grasping [71].

Both GelForce and TacTip sensors make use of an opaque membrane to
cover the transparent elastomer in order to block the light from outside.
In 2016, Yamaguchi developed a new soft tactile sensor without covering
opaque layer. The cameras can see the external scene through the skin. Thus
this sensor is able to measure the lateral displacement field by tracking the
markers in the elastomer, and can obtain visual information of grasped ob-
jects for slip detection [196].

Moreover, Lin and Wiertlewski developed a new tactile sensor in 2019.
A layer of semi-transparent yellow markers and a second layer of opaque
magenta markers are arranged and overlap in a transparent elastomer. The
shear and normal deformation can be calculated by subtractive color mixing
when the markers show blends of colors depending on the displacement of
the markers [106].
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Reflective skin

Tactile sensing based on reflective skin is widely used in recent studies. The
sensor is generally composed of a transparent polymer covered by a reflec-
tive membrane. The light introduces by LEDs is reflected by the membrane.
When the object is pressed against the sensor, the deformation of the mem-
brane leads to a shading image on the reflective skin due to light reflection.
This shading image can be captured by the camera, and then used to com-
pute the contact information.

In 2009, Johnson and Adelson developed a new tactile sensor named Gel-
Sight using the reflective skin, which is one of the most popular tactile sen-
sors today. Since then, reflective skin becomes a widely used method for
tactile sensing. The first version of GelSight was introduced as a retrographic
sensor that can be used as a 2.5D scanner to measure the shape of the ob-
ject [79]. The sensor is composed of a transparent elastomer sheet coated
with a reflective skin. 3 LED lights in red, green, and blue color are located in
a circle with an angle of 120 degrees between each other that illuminates the
reflective skin. When the object is in contact with the sensing, the elastomer
surface deforms, and a shading image reflecting these deformations appears
in the image obtained from the camera, which can be used to estimate the
shape of the objects. Later on, following the development of robotics and
computer vision, different sensor designs and various tactile sensing appli-
cations based on GelSight sensor were developed for robotic use. In 2011,
a portable version was reported by Johnson et al. [80]. In 2013 and 2014, a
finger-shaped version and a hemispherical version were designed by Li et
al. [104, 105]. In 2015, Yuan et al. improved the sensor by adding markers
onto the reflective skin in order to detect shear and slip [204]. In 2018, a
flat version named GelSlim was designed by Donlon et al. [40] based on Gel-
sight that used only white LED light to form reflected shading. Markers were
added onto the reflective skin of Gelslim by Ma et al. in 2019 for measuring
the 3d force vectors applied onto the sensor [115]. Recently, Romero et al.
integrated the Gelsight sensor on a robotic hand that acts as soft fingertips
for carrying out different manipulation tasks [145].

Others

Besides the common methods mentioned above, there also exist several camera-
based tactile sensors that use different technologies to measure the object in
contact. For example, the work of Baimukashev et al. proposed a tactile
sensor that measures contact force using the color change of a pigmented
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FIGURE 2.11: Gelsight sensors using reflective skin: (a)-(d) Different
sensor design. (e) Basic structure of the sensor. (f) Tactile images ob-
tained by the sensor

polymer due to the decrease in the thickness at the point of contact [6]. Zhu
et al. also proposed a camera-based tactile sensor capable of detecting con-
tact information using the color-changing principle of butterfly wings [209].
Bioinspired gratings similar to the micro-structure of Morpho menelaus were
fabricated onto the surface of a transparent elastic film. The contact force ap-
plied on the film leads to angle change of diffracted light. The diffraction
pattern on the film captured by the CCD camera predicts the location and
magnitude of the contact force.

In conclusion, the first step to perceive the mechanical interaction is to
make the transduction of the mechanical state of the artificial skin into sig-
nals. This transduction is an essential step in tactile sensing, which can be
done via various methods. Electromechanical transductions may suffer from
the complex manufacturing, cumbersome set of electrical interconnections,
or conditioning electronics. In contrary, camera-based transduction allows
tactile sensors to obtain high-density distributed tactile information with a
simple structure.

2.2 Perception: making sense of the mechanics

After the transduction of mechanical touch to various tactile signals, robots
could achieve the tactile perception of object properties and interaction in-
formation by interpreting the converted tactile outputs. According to the de-
sired function of the robot, three types of information are most commonly
extracted from the tactile data: object shape properties (including curva-
ture, edge), object material properties (including softness, friction, surface
texture), and interaction information (including forces, slippage).
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2.2.1 Human perception

The contact between finger and object activates human’s mechanoreceptors
to provide inputs into the computation of object properties. Different contact
motion activates different types of mechanoreceptors [178, 78].

For example, texture and roughness are measured by lateral movement
of the finger over a surface. The lateral motion moves the skin tangentially,
which enhances the responses of SA I mechanoreceptors for coarse roughness
perception. The deep micro-vibrations caused by finger sliding activates the
FA I and FA II units for finer roughness perception. These two neural systems
are both used to compute the surface roughness and detect slippage.

FIGURE 2.12: The incipient slippage of human fingertip under tangen-
tial load [8]

In addition, humans are able to detect the slippage before any relative
motion between fingers and touched objects [8]. When the finger is sliding
on a surface, the slippage does not happens suddenly but propagate from
the edge to the center of the contact area. This incipient slippage can be
perceived by human’s extraordinary sense of touch, which allows human to
adjust the grip force rapidly to prevent object from dropping during grasping
and manipulation. Fig. 2.12 shows the incipient slippage of human fingertip
under tangential loading. Johansson et al. [74] have shown that, 100ms before
lifting an object, (so before that any tangential traction develops), humans
already start to adjust their grip force according to the frictional properties.
Thus, perception of friction will be possible in static, and this has recently
been proven by Willemet et al. [192]. They found that by simply pressing the
finger onto a surface, the skin stretch skin may also indicates the frictional
properties of the contact surface without any lateral motion.

For the perception of stiffness, the contact area between the finger pad
and the target object seems to be an important cue [131]. The contact area
may be related to the activation of SA receptors sensitive to force and pres-
sure. SA units are also in charge of sensing the curvature, edge, corner, and
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protrusion, while active exploratory motions such as contour following, are
usually used for obtaining a complete knowledge of the global shape of the
object. Human’s exploratory motion for object perception will be reviewed
in section 2.3.1.

Overall, how humans achieve the perception of object properties and in-
teraction information using the sense of touch may inspire the development
of tactile sensing methods [36].

2.2.2 Robotic perception of shape

Object shape perception refers to the ability to identify and reconstruct the
shape of the object in touch with the sensor. This capability is essential for
robotic grasping and manipulation tasks. For example, for a grasping task of
a vase as shown in figure 2.13, the concave part of the vase would be a more
stable grasping location because the gripper can have a larger contact area.
The complete knowledge of the object shape allows the robot to better plan
and execute stable and robust actions.

FIGURE 2.13: Concave part of the object for a more stable grasp

The object perception in today’s commercial robots is usually achieved
by vision. However, the vision-based perception is not possible when the
object is occluded by the robotic hand or when the environment is too dark.
The tactile sensor is more suitable in this situation to perceive object shape
through the sense of touch.

The shape perception involves the local shape and the global shape of the
object in contact. The local shape includes curvatures, edges, corners of a part
of the object at the contact region. The global shape refers to the complete
shape of the object, which is usually measured with tactile exploration.
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Local shape perception

For traditional single point tactile sensors, the local shape of objects can be
estimated by combining the contact position and the surface normal during
active exploration [126, 23].

In recent years, with the development of tactile sensing technologies, the
pressure distribution measured by the tactile sensor with high spatial resolu-
tion can serve as a tactile image. Various methods were proposed to extract
the object geometry information from the tactile images.

In some research, the normal strain distribution of the contact surface can
be approximated with a second-order polynomial equation [44] or a Gaus-
sian function [107] for calculating the local curvature of the object using con-
tact theories. The edge of the object could be detected by finding the zero
crossing line from the shear strain distribution [141, 27].

As the tactile array data can be considered as an image, many researchers
applied feature descriptors adapted from computer vision to the pressure
distribution map obtained by tactile sensors in order to extract object fea-
tures. The latter is then fed into classifiers, such as neural networks, kNN
(K-Nearest Neighbor), and SVM (Support Vector Machine), for recognition of
object local shape. Several studies applied image moments [21] to compute
shape features [57, 30]. The Scale Invariant Feature Transform (SIFT) [111] is
proved robust to the change of object pose. Therefore it can be used for ob-
ject recognition regardless of object rotation and translation [139, 114]. Some
other descriptors are also used in tactile sensing, such as regional descriptors
by Khasnobish et al [89].

Besides vision descriptors, PCA-based features are also used for shape
recognition. Principal Component Analysis (PCA) was applied to tactile
readings, and the acquired principal components (PCs) are taken as features [108,
110].

Despite the wide use of feature extraction mentioned above, sometimes it
is not clear what kinds of features are useful for object recognition. Therefore,
machine learning attracts increasing attention in recent studies, which allows
learning self-organized features for object identification instead of manually
choosing task-specific features. [152, 142, 147].

Global shape perception

With the measured local shape information of the object at different contact
locations, the global shape can be reconstructed. In early research, the dis-
tribution contact point obtained at different locations of the object is widely
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FIGURE 2.14: A summary of procedures for local shape perception

used by single point force sensors for reconstructing the global shape. The
cloud of contact points can be fitted by geometric models to outline the con-
tour of the object in the research of Casselli [20].

The Bag of feature (BoF) approach, which originates from the Bag of Word
(BoW) for text classification, can be applied to the collection of tactile images.
A vocabulary of object features learned from tactile observations of multi-
ple objects is used to generate a histogram codebook. The global shape of
an unknown object can be obtained by identifying from the codebook the
distribution of features extracted from tactile images at different contact lo-
cation [153]. A more recent approach associates tactile images with sensor
locations for object global shape perception. The fusion of tactile and kines-
thetic information is employed to classify object shape using machine learn-
ing methods [113].

However, as the global shape involves multiple local shapes at different
locations, the robot should know where to get the local shape information
in order to reconstruct the global shape efficiently. Tactile exploration is em-
ployed for such objective, which will be presented in detail in section 2.3.2.

2.2.3 Robotic perception of material properties

Tactile sensors can be used to perceive material properties, which is diffi-
cult for vision sensors. Among all the material properties, the texture, the
stiffness, and the coefficient of friction of the object are the most crucial pa-
rameters for robotic use. The texture is important for object classification
and recognition. The coefficient of friction of the object helps robots to avoid
slippage during manipulation tasks. The stiffness is an important property
widely used for tumor detection.
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Texture

Textures can be measured by sliding tactile sensors on the object surface and
observing the vibrations and time serie signals [47, 194]. Classifiers such as
k nearest neighbors (kNN), artificial neural network (ANNs), and support
vector machine (SVMs), can then be trained to classify different textures [47,
198].

Besides, tactile sensors with a high spatial resolution (such as GelSight)
are widely used for capturing tactile images containing microstructures of
the objects. Figure 2.15 shows the examples of tactile images obtained by
pressing the sensor against different clothing materials.

Empty touch Swimwear Cotton polo Terry robe Satin dress Denim Garbardine pants

Net top Crepe top Broadcloth shirt Knit jacket Wool sweater Wool scarf Leather coat

FIGURE 2.15: Tactile images of clothing texture captured with a Gel-
sight sensor [104]

Feature descriptors described in the previous section can be used on such
tactile images for texture recognition. For example, the Local Binary Pattern
(LBP) descriptor, which is locally invariant to rotation, is popular for texture
recognition and classification in vision [140]. Li et al. employed this feature
descriptor on the tactile images to extract textures of the surface in contact.
The texture was then classified by comparing extracted features with the ref-
erence features using Hellinger distance metric [104].

In recent works, deep learning or Convolutional Neural Networks (CNNs)
are also applied to tactile data to classify different textures. Yuan et al. trained
a CNN for classifying clothing materials, which inputs the tactile images and
outputs directly the clothing material properties [203].

Coefficient of friction

The coefficient of friction is calculated by the ratio of normal and lateral force
when two objects have relative motion. This parameter depends on the ma-
terial of the object in contact. Measurements of the coefficient of friction can
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be achieved by calculating the ratio of normal and lateral force when sliding
between two surfaces happens [62, 176].

However, the sliding is usually undesirable in manipulation and grasping
tasks. As an alternative, a number of sensors have been proposed to measure
the coefficient of friction when the sensor first contacts the object before slid-
ing. In Maeno’s work, the coefficient of friction is obtained without sliding
by robot pressing into the object with a specified contact force and measuring
the resulting displacement of a specific location under contact region [120].
Chen et al. reported an eight-leg tactile sensor on which legs were mounted
with different angles with respect to the vertical. The coefficient of friction
can be estimated by determining the number of legs that slip when the sensor
is pressed against the object [24].

Stiffness

Stiffness is related to the material’s elasticity and can be calculated by the
ratio of force and deformation. It can be provided by pressing a sensor into
the object with a specified speed and measuring the increment of contact
force [206]. By using a BioTac sensor, the object stiffness can be estimated by
investigating the ratio between force and indentation depth extracted from
electrodes data [171]. In Drimus’ work, by employing image moments of the
tactile images as features, the k-NN classification method is used to classify
objects into rigid and deformable [41]. A tactile sensing device is proposed
with multiple indenting elements connected to springs with different spring
constant. The stiffness of the surface in contact can be computed from the dif-
ferent indentation depth of each indenter [43]. In recent works, the hardness
of objects can also be estimated by processing the tactile image sequences
from a GelSight sensor [202, 205].

2.2.4 Robotic perception of interaction information

Robots equipped with tactile sensors can acquire information about the en-
vironment through interaction with its surroundings. The perception of in-
teraction, including essentially force and slippage, is important for robots to
plan stable and robust manipulation.

Contact forces

Perception of contact forces is essential in robotic interactions. All the robotic
manipulation tasks involve the feedback and adjustment of forces. Some
sensors only provide lateral or normal force, while others can measure 3d
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force vectors. Contact forces can be directly measured by single point tactile
sensors that convert other forms of signals to forces [137, 151].

Although for tactile sensors with arrays of sensing elements, the con-
tact pressure on each taxel can be estimated using simple calibration meth-
ods [70], it is still necessary to calculate the resultant contact force. Some re-
search model the local pressure measured by each tactile sensing element as a
linear function, and sum up local pressures to estimate the contact force [171].
However, as the soft elastomer of the sensor is nonlinear material, machine
learning algorithms are widely used to learn the nonlinear relation [189, 201,
170]. Besides machine learning, other methods are also applied for mapping
the local pressure or deformation array to resultant contact force. For exam-
ple, finite-element methods have been used to model the nonlinear functions
and estimate the force distribution using a Gelslim sensor [115]. Another
research computes the contact force and torque from the deformation dis-
tribution of the sensor using the Helmholtz-Hodge Decomposition (HHD)
algorithm [208].

Slippage

During the manipulation tasks, slippage should be avoided for ensuring a
stable grasp. Therefore, the capability of slippage perception is particularly
important for tactile sensors to correct grip force.

The slippage includes gross slip (when all parts of the contact interface
slide against each other) and incipient slip (when part of the contact interface
slides while other parts remain stuck). The gross slip detection is mostly
based on sharp changes in signals due to the stick-to-slip transition [25].
Moreover, the micro-vibrations of the sensor induced by slippage is also
widely used for gross slip detection [45, 170]. The sudden displacements
of the markers in the slip direction can also be considered as the appear-
ance of gross slip. This method is often used by camera-based tactile sensors
embedded with markers of which the displacement can be captured by the
camera. [73].

However, during the robotic manipulation, the gross slip should usually
be avoided to prevent the object from dropping. Therefore, a large number
of research proposed methods for detecting the incipient slip. Maeno et al.
showed that the incipient slip always occurs near the edge of the contact
area. The lateral strain distribution of the soft medium indicates the stick-slip
pattern at the contact surface and can serve for incipient slip detection [119].
Therefore, the perception of incipient slippage is mostly done by soft tactile
sensors with multiple distributed sensing elements.
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For example, Canepa et al. designed a tactile sensor constructed by eight
pairs of piezoelectric transducers embedded inside a silicone rubber. One
transducer in each pair is sensitive to normal stress and the other to shear
stress. Normal and shear stresses components inside the sensor are used to
train a neural network to output the degree of incipient slip [19].

Watanabe and Obinata proposed a camera-based tactile sensor made of
transparent elastomer painted with a grid of dots. The incipient slip can be
perceived when the lateral displacement of the dots on the outer side of the
contact region happens [187].

Yuan et al. have also proposed a method to measure the incipient slip us-
ing a Gelsight sensor. Markers are printed onto the surface of the soft sensor.
When an object is pressed against the sensor, the entropy of the displacement
field of the elastomer calculated by marker tracking indicates the degree of
incipient slip [204].

In conclusion, tactile sensing capability is crucial for robotic perceptions
of object properties and interaction information. Tactile sensors could be
used in various applications such as slip detection, object classification, and
material recognition. With the development of computer vision and deep
learning, tactile sensor with high spatial resolution becomes a trend because
many vision-based processing methods could be directly applied to tactile
images to extract object features. However, despite the advantages of high-
resolution tactile sensors, few commercial solutions exist for now. How to
efficiently use the tactile data for an accurate and robust perception of the
object properties and interaction information; how to map the distributed
tactile data to 3d space; how to combine tactile data and kinaesthetic infor-
mation; how to integrate tactile perception to other sensing modalities, still
remain open issues in tactile perception.

2.3 Action: active interaction with objects

For most robotic applications, robots need to execute sequences of actions to
carry out complex tasks, such as exploring, grasping, and manipulating. In-
dustrial robots are able to act fast and reliably even without a tactile sensor
because movements are predetermined and programmed in advance. With-
out knowledge of the object, accurate and automatic action is impossible.
The perception of interaction information and object properties allows the
robot to perform manipulations automatically on more general objects with
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unknown properties. However, while tactile sensors provide a rich percep-
tion capability, how to integrate tactile information into robotic control and
develop robust action strategies for different tasks is still the main challenge
for today’s robots. According to different tasks, the required robotic actions
variate. The most common actions include exploration, grasping, and ma-
nipulation.

2.3.1 Human hand action

Hands movements allow humans to perform an enormous range of actions,
among which, object exploration is one of the most essential actions that are
usually performed by hands. Humans can perceive object properties through
active contact and movement of hand and fingers relative to objects, which
was called exploratory procedures. This exploratory procedure involves both
static and dynamic contact between hand and object. The thermal sensing is
associated with static contact, for which there is no essential moment of fin-
gers. Dynamic contact includes normal motion and tangential motion of the
finger relative to the object surface. The normal motion induces pressure
onto the finger. The finger skin deformation indicates the local shape of the
objects. Pressure on the finger combined with the normal indentation gives
cues of the object compliance. Lateral motion between finger and object sur-
face allows the perception of textures and roughness. Contour following can
also be performed by continuously moving the finger tangentially to the sur-
face of the object, which is essential for perceiving the global shape of the ob-
ject. Figure 2.16 illustrate the most investigated EPs for object perception [91].
(EPs) [94].

Besides exploration, grasping and manipulation are also essential actions
of human hands. Human is able to adapt the grip force and holding gestures
to grasp different objects without dropping them. The adjustment of grip
force even begins from the first contact with the object [74].

While grasping is about holding the object steadily in hand, manipula-
tion refers to the change of the object pose and rotation while keeping the
contact. It can be classified as prehensile manipulation and non-prehensile
manipulation, as shown in figure 2.17. The prehensile manipulation requires
at least two contact points on the object to stably keep the object in hand,
while the non-prehensile manipulation can be performed with only one fin-
ger. A manipulation task consists of a series of finger actions, especially for
manipulations with within-hand motions. Actions to choose for a manipu-
lation task depend on object properties such as shape, weight, and texture.
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FIGURE 2.16: Exploratory procedures for active tactile perceptions of
different object properties [94]

This requirement on object properties reveals the importance of humans’ tac-
tile sensing and perceiving ability. Besides, the task-related factors such as
required movement pattern and manipulation performance demands also
influence the choice of hand actions [90].

2.3.2 Robotic exploration

Tactile exploration is an effective way to extract properties of unknown ob-
jects such as material properties and object shapes as mentioned in the pre-
vious section.

During the exploration tasks, it is important to select optimal exploratory
movements, which enable the robot to gain the most information. In the
study of Xu et al. [195], objects with different textures, compliance, and tem-
perature were explored and identified. The exploratory movements are intel-
ligently selected using a process called Bayesian exploration developed in the
previous work of Fishel et al. [47]. With this exploration strategy, exploratory
movements that provide the most distinction between likely candidates of
objects are automatically selected.

Another essential application of tactile exploration involves tactile servo-
ing control, which computes robotic actions to maintain the desired contact
pattern. Zhang et al. presented for the first time the tactile servo, which
uses tactile sensing in the feedback control of robot contact tasks [207]. Using
tactile jacobian and inverse sensor model, the proposed tactile servoing con-
troller transforms the change from the tactile feature to a robotic task related
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FIGURE 2.17: Human manipulation taxonomy proposed by Bullock et
al. [15]

to the movement of the robot’s end-effector. In the work of Li et al., a control
framework is introduced to perform tactile servoing tasks [104]. The robot
was able to follow the unknown shape of a cable by maintaining contact lo-
cation, orientation, and force. Later, Lepora et al presented an algorithm that
TacTip sensor to perform contour following [99]. With rotation, radial, and
tangential movement of the sensor, their tactile servoing control maintains
the same orientation and displacement relative to the edge perceived by the
tactile sensor. The movement of the sensor was decided using evidence ac-
cumulation methods which is detailed in their previous work [98].

2.3.3 Robotic grasping

Grasping is one of the most basic and essential actions in robotic applications.
In order to ensure a stable grasp, tactile feedback can be used to control the
contact force and the contact location.

Grasp with slippage detection

Slip detection is a popular approach to control the grasp. Robots just need
to increase the grip force when slippage is detected for ensuring a robust
grasp. This strategy is widely used via different tactile modalities, such as
vibrations, relative movement of markers, signal peaks of force, which in-
dicate the appearance of total or partial slippage. McInroe et al. developed
a pneumatic camera-based tactile sensor. When the shear deflection of the
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markers is detected, the pressure within the sensor is increased to regrasp
the object and prevent slippage [122]. The grasp control with FingerVision
sensor mounted on a two-finger gripper was presented by Yamagauchi et
al. [197]. The sensor could detect slippage by measuring the object move-
ment captured by the camera of the sensor. Using slip detection, the gripper
was able to hold deformable and fragile objects such as tomatoes, raw eggs,
and cupcakes without slippage or damage on objects.

Grasp with estimation of coefficient of friction

The grasp control can also be achieved by estimating the coefficient of fric-
tion between the sensor and the object. The common procedure is shown in
figure 2.18a.
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lift object
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FIGURE 2.18: Basic algorithms for grasping control using friction
estimation (adapted from [170]) and stability estimator (adapted
from [35]).

Su et al. used a BioTac sensor to estimate contact forces, as well as de-
tect and classify slip events [170]. The coefficient of friction was first set to
an initial value and then updated by the ratio of shear to normal force mea-
sured by the BioTac sensor if slippage happens. This newly estimated coef-
ficient of friction is then used for calculating the required grip force in order
to lift objects of various weights and texture with minimal forces. Later, a
grasping strategy employing the coefficient of friction estimation was stud-
ied in [81]. A three-finger robotic hand attached with OptoForce sensors was
used to grasp objects with changed weight. During the increase of the object
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weight, the coefficient of friction was estimated as soon as the slip was de-
tected. Then the coefficient of friction was used for regulating grip force. In
order to avoid crushing the deformable heavy object, the grip force cannot
exceed the limit. Thus, if the mass of the object continuously increases, the
gripper will start rotating the object for compensating the weight. This strat-
egy allows the gripper to prevent slippage with minimal grip force while
grasping deformable heavy objects with dynamic centers of mass, such as
containers with liquids.

Grasp with stability estimator

Constructing a grasp stability estimator from tactile reading is also a popular
approach in grasp control, as shown in figure 2.18b.

In the work of Dang and Allen, in order to grasp objects with an uncer-
tain pose, a control algorithm was developed using a BarrettHand. An SVM
classifier was trained to estimate the stability of the grasp. By inputting the
grasp features extracted from tactile data captured by the sensor, the classi-
fier outputs whether the grasp is stable or unstable. If the grasp is unsta-
ble, a tactile experience database which consists of predefined stable grasps
and their corresponding tactile contacts was used to adjust the gripper. The
adjustment was performed by querying the database for stable grasps with
tactile contacts similar to those of the current grasp using k-nearest neigh-
bor algorithms [35]. Recently, with tactile data obtained from OptoForce
sensor mounted on a three-finger robotic hand, Murali et al. developed a
re-grasping policy that plans new grasp gestures based on the previous one.
A grasping stability estimator was trained by deep learning to estimate the
state of the grasp. Then the robot re-grasp the object if the grasp is unstable
because of the wrong grasp position and the object slippage [127]. Calan-
dra et al. used a two-finger gripper embedded with GelSight sensor to con-
trol the grasp. A convolutional neural network was constructed as a grasp
stability estimator that predicts the success probability of the grasp. The
input of the estimator is multi-modal which includes the tactile image ob-
tained by the GelSight sensor, the RGB image obtained by an external cam-
era, as well as the candidate re-grasping action. Once the estimator is built,
the most promising re-grasp action which maximizes the success probability
of grasp was then selected from randomly sampled potential actions using
the Markov decision process [18]. Moreover, a re-grasping strategy was ex-
plored by Hogan et al. using the GelSlim sensor. They simulate the new
tactile image that would be obtained from the regrasp motion by performing
rigid-body transformations of the given tactile measurements of the initial
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grasp. A trained grasp-stability estimator evaluates the possible motion of
the robotic gripper and chooses the one with the best stability score [59].

2.3.4 Robotic manipulation

Robotic manipulation tasks refer to the handling and state change of the ob-
ject using a robotic hand. It includes not only in-hand manipulations, but
also non-comprehensile manipulations.

In hand manipulation

Different from grasping tasks that only require firmly keeping the object in
hand, for in-hand manipulation, the grippers or multi-fingered robotic hands
should be able to preserve the grip and relocate the object at the same time.
In such tasks, system models are usually used, which describe the finger-
object contact as well as the mechanics of fingers and objects, for design-
ing the control algorithm. The early literature assumes perfect knowledge of
grasp properties, including the object center of mass and the contact friction.
For example, Cole et al. studied the kinematics of two surfaces with arbitrary
shape rolling on each other. The control of two planer multi-fingered hand
manipulating an object was simulated by applying the kinematic model to
the finger-object dynamic system [28]. However, the object properties are
usually unknown without measurements when performing real manipula-
tion tasks. The tactile perception of the object and the contact force could
help to compute the appropriate action.

Li et al. proposed a control algorithm to search the local optimal contact
points for grasping by exploring the surface of the object during the in-hand
manipulation [103]. Using tactile feedback of contact location and force, the
multi-fingered robotic hand is able to stably rotate a sphere by sliding one fin-
gertip over the surface of the sphere to search the next optimal grasp location,
while the other fingers are holding and slightly rotating the object. As tac-
tile feedback is available in their simulation, a very simple model with only
a few assumptions is sufficient for designing the controller. Shaw-Cortez et
al. proposed a controller for manipulating unknown objects with the im-
plementation of tactile force sensors in robotic hands. They proved that by
integrating the tactile feedback into the control loop, the robotic hand was
able to guarantee that the object does not slip within grasp during manipu-
lations [162].

Lambeta et al. also introduced the DIGIT sensors mounted on Allegro
multi-finger hand. A deep neural network model-based controller was trained
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allowing the in-hand manipulation of a glass marble with the robotic fin-
gers [93].

The manipulation algorithms mentioned above involve a fully actuated
system, where the number of degree of freedom (DoF) is equal to the number
of actuators. However, in robotic hand manipulation, underactuated hands,
where the number of DoF is larger than the number of actuators, are com-
monly used, as it can perform grasp and manipulation tasks with a small
number of actuators and control inputs. Additionally, with the compliance
and under-constrained mechanisms, such a system adapts better to the ob-
ject pose uncertainties. In the work of Van Hoof et al., an underactuated
robotic hand was used to perform in-hand rolling tasks. They employed deep
learning to learn generalized policies for a rolling primitive based on Markov
Decision Process. The robotic fingers were equipped with tactile sensors to
provide tactile feedback in their control policy [179]. Moreover, a method
using biomimetic active touch is reported by Ward-Cherrier et al. [184]. A 3d
printed gripper is presented able to perform in hand cylinder reorientation
while maintaining a stable grasp. Tactile feedback allows the control of the
manipulation trajectory of the gripper using Bayesian active perception al-
gorithms [97]. Instead of rotating the in-hand object only by finger motion,
Lu et al. developed a soft gripper composed of 2 pressurized air cavities on
each finger. The deformation of the cavities caused by pressure change al-
lows the gripper to perform in hand rotations. The cavities act as soft tactile
sensors for the measurement of contact pressure in order to provide control
of grasping position [112].

(a)

(b) (c)

(b)

FIGURE 2.19: In hand manipulations using tactile sensing presented in
(a) [179], (b) [93], (c) [184] and (d) [112]
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Non prehensile manipulation

Non-prehensile manipulations refer to interactions with objects without grasp-
ing, such as pushing, hooking, squeezing, and rolling. Different tactile infor-
mation can be implemented in different non-prehensile manipulation.

In the work of Sutanto et al., tactile information was implemented to the
control loop for a door opening task. The tactile feedback can help ensuing an
accurate alignment between robotic fingers and the door handle [143]. Meier
et al. proposed a method to use the slip detection capability of the tactile
sensor for pushing tasks. The sensor was pressed onto the object’s top sur-
face and moved laterally to push the object. A convolutional neural network
was employed to classify whether the object is sliding with the sensor or slip-
ping from the sensor [123]. Recently, by decomposing complex manipulation
plans into sequences of manipulation primitives with simple mechanics and
efficient planners, Hogan et al. achieved various manipulation tasks using
two robotic hands equipped with tactile sensors. The tactile information was
used for object state estimation and contact state estimation in a close-loop
controller to enforce the desired contact state and change the planned trajec-
tory of the object in response to perturbations [58]. Another non-prehensile
robotic controller was presented by Tian et al. for performing rolling tasks.
They proposed a framework for learning to perform tactile servoing from
raw tactile images. A predictive model was learned using the deep neural
network to predict different action sequences with tactile observation as in-
puts to roll the objects on the table [174].

In conclusion, it is important for robots to know how to perform an appro-
priate action regarding different tasks. For doing this, the use of tactile sen-
sors is beneficial as it can give feedback to robotic motion controllers about
the contact location, object properties, and information of the interaction (e.g.
direction and magnitude of the pressure, friction, and slippage). Nowadays,
most of the off-the-shelf robots only use single-point force sensors or vision
to guide the robotic motion. However, with the development of deep learn-
ing, the implementation of tactile arrays in robotic control loops for dexterous
robotic actions seems to meet a bright future.

2.4 Conclusion

This chapter reviews the state-of-the-art from tactile sensing to robotic ac-
tions. Figure 2.1 illustrates the four most essential steps towards dexterous
robotic manipulation. The first step is to sense the contact. Different types
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of tactile sensors and tactile sensing technologies were presented. With the
tactile sensor converting contact signals to other forms of processable signals,
the tactile perception could be achieved. Various processing methods can be
adapted for extracting different interaction information (e.g. force, slippage)
and object properties (e.g. shape, texture, friction). By integrating the knowl-
edge of the interactions and object properties perceived by tactile sensors
into the control loop, the robot is able to perform suitable actions on objects,
including exploration, grasping, and manipulations. The robotic actions in-
volve contact between the robotic hand and the object, which is detected and
measured by tactile sensors. In this whole procedure from sensing to actions,
tactile sensors play an indispensable role, which bridges the gap between
the physical contact and the robotic perception of the external world. Tactile
sensing provides robots a much complete knowledge of the object during
interaction and seems to be a promising key towards dexterous robotic ma-
nipulations.
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Tactile sensing via color mixing
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—————————————

Preface to Chapter 3
—————————————

To address the issue of low spatial resolution and lack of 3d measurements of
many tactile sensors, this chapter introduces the design, manufacturing, and
working principle of a new camera-based tactile sensor, which uses subtrac-
tive color mixing principle and marker tracking to compute both normal and
lateral displacement field. With 100 overlaid markers that changes color un-
der external load, the sensor is able to recover its 3d deformation map from
2d images. Experiments were carried out to calibrate the sensor and validate
the sensing methods. Simulations show sensor robustness to pixel density
and lighting condition. The same sensing principle is used in the following
chapters of this thesis to measure the 3d deformation map of the sensor, esti-
mate the curvature, and estimate the frictional property of of the object.

Abstract

The perception of surface properties such as shape and adherence is crucial to
ensure that the hand-held object is stable. Without touch, precise manipula-
tion becomes difficult. Some robotic tactile sensors use cameras that observe
the elastic deformation of a membrane to detect edges or slippage of the con-
tact. Information about the contact state drive innovative control strategies.
However, most previous methods on these lines do not include quantitative
means of measuring the 3-dimensional deformation of the skin or suffer from
a lack of spatial resolution. Here we present a tactile sensor based on a sub-
tractive color mixing process designed to track the 3-dimensional displace-
ment of an array of markers, using the information delivered by the color
channel of off-the-shelf cameras. The distributed shear and normal deforma-
tion can be assessed from the spectrum of the light reflected and refracted
by an array of diffusive and transmissive markers placed on two superim-
posed layers. The markers show various blends of colors, depending on the
displacement at the surface. The color pattern of each marker can be tracked
with little computation and remains robust external lighting. The ability to
sense the 3-dimensional deformation field can improve robotics perception
of frictional properties which have applications in the fields of robotic con-
trol and human-robot interactions.
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3.1 Introduction

For both robots and humans, tactile perception is essential to be able to learn
and perform appropriate hand gestures for grasping and manipulating ob-
jects [129]. In particular, humans’ tactile perception of the state of contact
between a finger and an object generates information on which the stability
of the grasp depends [75]. The object might have to be moved reliably from
one place to another without inducing any perception of relative motion with
respect to the fingers. In other scenarios, the opposite problem might arise
when the object has to be slid to a certain part of the hand in order to be
properly lifted. These chains of events involve fine and dexterious control of
the frictional contact between the object and the skin. In humans, the state
of friction is thought to be assessed not by directly determining the normal
and tangential components of the force, but rather depending on which part
of the fingertip is stuck to the object and which part is starting to slide [3, 38].
The contribution of tactile sensing to grasping and manipulation has been
well recognized [34]. Artificial skin based on piezo-resistive [169], piezoelec-
tric [61], electrostatic [190], optical [82] and even ultrasonic transducers [165]
have been previously tested. These tactile sensors convert the localized de-
formation of the surface into a signal that is stored and interpreted by a com-
puter. These sensors can collect information that is not accessible visually,
not only because the contact is often hidden from view, but mostly because
the information about the contact, such as the adherence of the surface or the
compliance of the material, requires mechanical interactions to be revealed.

Many of the latest methods designed for this purpose focus on measuring
the pressure field applied normal to the surface, which suffices to recognize
objects [195]. It has been established, however, that the lateral traction pro-
duced by friction is essential to controlling robotic grippers [119, 56]. Sensors
with large number of sensing elements also requires a cumbersome set of
electrical interconnections and conditioning electronics.

Some sensors use a camera to transduce the deformation of an elastic
body or membrane [46, 186, 148, 79]. The usual procedure starts by locating
the center of black or white markers. The lateral motion of each marker can
be easily determined with computer-vision algorithms and the distributed
measurements are sufficiently rich to recognize the nature and orientation of
an object. However, these methods do not directly provide the normal and
lateral pressure field at the interface. In particular, the local friction coeffi-
cient, expressed by the ratio between the lateral shear stress and the normal
stress cannot be directly observed although this parameter is essential for
characterizing the adherence of an object and its stability in the hand.
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To address these challenges, we developed the camera-based sensor, shown
in Fig. 3.1a and b, which not only tracks the lateral motion of an array of
markers but also resolves the motion normal to the surface. The sensor re-
cruits a double array of overlapping semi-transparent colored markers. The
deformation of the markers, which are attached to the interaction surface,
affects their shape and their color content, which makes it possible to recon-
struct of the 3-dimensional deformation field at the interface.

diffused
lighting camera

(b)

(c)

(a)

3
0
m

m

50mm

2mm

yellow

magenta

red

(d)

rigid 
backing
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FIGURE 3.1: (a) Exploded view of the tactile sensor based color mix-
ing. Yellow markers are rigid and magenta markers are deformable.
(b) View of the sensor assembly. (c) Diagrams illustrating the deforma-
tion of each layer under an inclined external force. (d) Compressive and
shear deformations can readily be determined from the color pattern.

FIGURE 3.2: Illustration of the sensor without pressure, normal force
and shear force captured by the camera, and the real image of the
pressed marker captured by the camera.
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3.2 Background on camera-based robotic fingertip

Since cameras are ubiquitous and provide a fast, reliable way of transfer-
ring real-time data to a controller, many artificial fingertips have included
an off-the-shelf optical sensor, thus reducing the need for the custom-made
electronics required in piezoresistive and capacitive sensor arrays.

Artificial fingertips are often made by including in a soft hemispheric
membrane markers that can easily be tracked using state-of-the-art image
segmentation methods. Once the membrane’s elasticity and shape have been
determined, the stress at the surface can be calculated by performing least-
squares regressions [46]. Markers can be mounted on pillars to amplify the
rotation of the membrane and improve the sensitivity of these sensors to
edges [26, 186].

In these devices, the sensor encodes a 2-dimensional displacement field
in which the local traction and the indentation are combined.

The GelForce sensor includes two layers of spherical markers of different
colors to determine the full 3-dimensional stress field. Any stresses imposed
on the surface will induce deformations of the solid, the intensity of which
depends inversely on the depth of the markers. By performing a linear in-
terpolation, it is possible to determine the lateral and normal stresses from
the displacement of markers located at different depth [85]. The efficiency
of this method has been established with an artificial finger equipped with a
5x5 grid [148]. However, as these markers are opaque, only a few markers
can be seen at the same time, which reduces the spatial resolution of the sys-
tem. In another interesting approach is based on the apparent sharpness of
the marker when it moves out of focus [53].

The Gelsight sensor provides a picture of the deformation field using pho-
togrammetric methods [79]. This sensor is composed of a thin layer of silver
flakes, which diffuse light in all directions. The relief of an object that is
touched can be reconstructed using three separate illumination sources and
a Lambertian reflectance model. This setup gives the shape of the object with
an unmatched level of precision, and hence the relative position of a tactile
feature [105]. However, since the motion of artificial skin particles is not
tracked, the stress field at the interface cannot be easily determined. The au-
thors solved this problem by adding a layer of dots giving information about
slippages [204].

Our own method focuses on uniformly sampling the deformation field
at the surface of an elastic body. With this marker-based method, the shear
deformation is determined via the centroid tracking of each, and the normal
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deformation, via the blend of colors between two layers of markers acting as
a band-limited optical filter.

3.3 Sensor principle and manufacturing

3.3.1 Design rationale

Inspired from tactile sensing capability human fingertip, some basic design
criteria can be formulated for tactile sensing in a general robotic system in
order to ensure that the sensor collects meaningful information [34].

– High spatial resolution: Without any relative motion, surface defects as
small as 1mm in a ⇡10mm-diameter contact area can be detected by
human touch alone [188]. Therefore the tactile sensor is expected to
able to detect surface undulations which are at least 10 times smaller
than the contact area. As the spatial resolution of human fingertip is
as high as 1mm, the tactile sensors is suggested to have similar spatial
resolution of 1-2mm in order to detect fine distribution of stress and
deformation field.

– Force sensitivity and dynamic range: In robotics, the sensitivity and dy-
namic range are highly application dependent. However, in order to
adapt various exploration and manipulation tasks, a high sensitivity
and dynamic range is desired in tactile sensors [37].

– 3d force and deformation measurement: Friction plays a crucial role in the
stability of our grasp [11] and in the perception of materials [191]. In
order to determine the friction and slippage, both not only normal but
also shear components of the deformation field have to be determined
by the tactile sensor.

– Soft sensing skin: The robotic tactile sensors are better to be soft in order
to protect the sensor from damages and ensure safe human-robot inter-
action. The elasticity of the medium diffuses the stress throughout the
solid so the deeper the markers are located, the more individual motion
are smoothed out. To avoid this, the markers should be located close to
the surface of the sensor [163].

– Fast response and low hysteresis: The robotic tactile sensors should be
fast and respond quickly without visible hysteresis. This is particularly
important, if the feedback from tactile sensor is involved in the robotic
control loop.
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– Multi-functionality: The tactile sensor with ability to measure more than
one contact parameter is desired. According to the research of Oka-
mura et al [133]. following modalities of an external mechanical stim-
ulus are important for robotic manipulation tasks: contact detection,
pressure distribution and slip detection. Robotic exploration tasks can
be supported by following tactile information: object shape, object soft-
ness and surface roughness.

However, one of the consequences of having a large number of markers
to improve sensor spatial resolution is that each individual marker occupies
only a few pixels and changes of size and location are hardy perceivable. Our
approach overcomes this issue by making use of the color channel available is
off-the-shelf cameras. Instead of finding the normal motion from the change
in size of a pixellated monochromatic blob, our sensor encodes the normal
motion reliably via a change of color, even when only a handful of pixels are
used.

3.3.2 Color mixing from partial occlusion

The new sensor is constructed around a soft transparent silicone body in
which two separate layers of colored markers are embedded. Markers closer
to the surface of the skin are soft and reflect magenta light (that has a spec-
trum containing both blue and red wavelengths). In the implementation
shown in Fig.3.1a, the setup is comprised of one hundred 2mm-wide mark-
ers placed 1mm apart. The second layer of markers overlying the magenta
marker array and consists of a material that is transparent to light with a
wavelength greater than 500 nm. The high-passfilter gave these markers a
yellow appearance to the naked eye and to camera sensors. When pressure is
applied to the surface of the sensor, the magenta markers are brought closer
to the yellow filter, see Fig.3.1c. Shear forces will shift the center of each
marker relative to each another. The combination of stretch, compression,
and a lateral shift creates a colored pattern, which specifies the direction and
the magnitude of the displacement vector of the surface above the markers
Fig.3.1d.

Fig. 3.3a and b are typical views of the two layers, showing the three col-
ors magenta (which is white without any green), yellow (which is white with-
out any blue) and red (which is white any green or blue). Marker arrays are
flooded with diffuse white light, which can be either diffused by the magenta
markers or the white layer and possibly filtered by the yellow markers on its
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FIGURE 3.3: (a) Diagram of the image of the marker observed by the
camera (b) The white light is scattered by either the background or the
magenta marker. Some of the scattered light crosses through the yel-
low filter, which further filters the color spectrum (c) Color spectra of
the light after the reflection by the magenta markers, of the light after
being transmitted trough the yellow markers, and of the light which is
both scattered by the magenta markers and filtered by the transparent
yellow filter. (d) Corresponding histograms of the hue channel in the
HSV colorspace.

way back to the camera. All four combinations of the color spectrum shown
in Fig. 3.3b can be seen in the resulting image.

Physically, shifting from white to red occurs when the magenta markers
reflect only the red and the blue parts of the spectrum and the blue is filtered
out by the yellow layer, as described in Fig. 3.3c.
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FIGURE 3.4: Effect of the change in the size of the magenta markers
on the histogram of the hue channel. The histogram is only slightly
affected by the number of pixels in the image.
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Humans and cameras alike detect only three bands in the optical spec-
trum, in the blue (⇡450nm), green (⇡580nm) and red (⇡690nm) ranges. Im-
ages detected in the Red-Green-Blue color space can be converted into Hue-
Saturation-Value (HSV) color space, where the value and the saturation de-
pend only on the illumination of the markers and the hue channel contains
the color information. An example of the hue intensity of typical light rays
is presented in Fig. 3.3d. The hue channel is presented in the form of a color,
where the colors are shown at an angle with respect to an arbitrary origin, set
at red. In the HSV color space, the center of mass of the histogram of the hue
channel depends on the normal displacement of the soft marker with respect
to the transparent marker, see Fig 3.4. Since changes in the hue of the image
involve a large number of pixels carrying 24 bits of information (versus 1 bit
in the case of segmented black and white images), these fluctations will be
theoretically more visible in the case of small displacements than the appar-
ent change in the marker size, which translates into greater sensitivity to the
motion normal to the surface.

3.3.3 The opto-mechanical model

This section describes models for the optical and mechanical components of
the complete sensor.

Effects of the focal length on the resolution The reliability of the measure-
ments depends on the camera and lens used to detect the markers. A longer
telephoto lens will reduce the apparent changes in the marker size, and a
simple model shows that the shorter the focal length, the more pronounced
the motion of the moving marker will be.

The model illustrated in the Fig 3.5a is based on the well-known pinhole
camera model, in which light rays reflected by objects and reaching the image
plane cross a point located one focal length from the image sensor.

The problem is constrained by the fact that n markers have to fit into the
field of view θt as shown in Fig 3.5. Each of the markers therefore has to
cover a fraction of the field of view, L0/(d + t) = tan(θt/n). The pinhole
model states that the angular size of the markers is the same on both sides of
the focal point, tan (θt/n) = l0/ f . With these constraints in mind, maximiz-
ing the sensitivity of the sensor in the normal direction amounts to maximiz-
ing the relative changes in the apparent size (l � l0)/l0 with a given normal
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FIGURE 3.5: (a) The pinhole camera model explaining how sensor mo-
tion is correlated to changes in apparent size. (b) The large Poisson coef-
ficient of soft material results in significant stretching of the soft marker,
which increases the signal to noise ratio. (c) The optimum thickness
maximizing the apparent change in the case of a given external force is
presented here, depending on the camera’s angle of view.

displacement of the marker δz. Let us take Thales’ intercept theorem:
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The result of this equation is shown in Fig 3.6a. The smaller the distance to
the object is, the more noticeable the changes will be. In addition, a camera
with a short focal length is beneficial for creating a compact tactile sensor.
Smaller focal length optics are therefore preferred.

Mechanics and optimal thickness between layers The top layer of the as-
sembly is soft and the magenta markers can be stretched elastically. Stretch-
ing increases the actual size of the marker and therefore further enhances the
sensitivity, see Fig 3.5b.

A simple model for the deformation of the marker can be drawn up, tak-
ing only the elasticity of the material sandwiched between the two layers.
In this simplified model, which is presented in Fig. 3.5c, the behavior of the
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FIGURE 3.6: (a) The soft magenta layer is pushed down towards the
yellow filter. (b) The model predicts that a wide angle lens will give
greater magnification at a given normal displacement of the marker.

material boils down to a compression ratio that can be described by the ma-
terial’s Young’s modulus E, the thickness t and the marker size L, as well as
a lateral extension corresponding to the Poisson’s ratio ν. The compressive
elasticity of the material just below the marker can be obtained by deriving
Hooke’s and Poisson’s laws:
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EL2
0

t (3.4)

L = L0
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δz

t

◆

(3.5)

We can see that a thicker sensor gives greater marker mobility at a given
external force, at the expense of a smaller change in the apparent area. A
thickness that maximized the compliance while keeping a large stretch was
obtained by combining equations 3.1, 3.2, 3.4 and 3.5. Assuming that we have
a Young’s modulus of E = 0.4 MPa, Poisson’s ration ν = 0.5 and a marker
size of L0 = 2 mm projecting an image onto a ls = 35 mm sensor, the results
obtained with three different lenses are presented in figure 3.6b. The model
argues in favor of a soft material with a low Young’s modulus, which could
be thin and deformable.

3.3.4 Robustness to pixel density and lighting conditions

One of the main advantages of using color channels is that the marker con-
figuration can be resolved using just a few pixels. A simulation was run to
verify the robustness of the method when only a few pixels were used. A sin-
gle marker was first drawn using a vector graphics editor (Illustrator, Adobe,
San Jose, CA, USA) to depict an opaque magenta marker underlying a yel-
low marker with an opacity of 50%. The size of the magenta marker was
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changed to provide a range of artificial normal displacements. Images were
rasterized in a 512x512 image and a pyramid gaussian process was used to
create smaller versions, with the goal to emulate the effect of having smaller
markers. Once the small version was created, an anti-aliasing filter that lever-
ages a Gaussian filter with standard deviation set to 1/8th of the size of the
image was added to remove artifacts.
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FIGURE 3.7: (a) The hue measurements of the marker are almost insen-
sitive to the apparent size. The simulation showed that the mean hue
shifts smoothly towards the hue of the flexible magenta marker. (b)
Effects of the apparent size on the accuracy of the polynomial fit. (c)
Effects of the non-uniform luminosity on the displacement measure-
ments

Fig. 3.7a shows that even with a apparent size of 4x4 pixels, displacements
can be satisfactorily approximated by a second order polynomial fit (R2

>

0.98). We also ran simulations on the effects of changing the pixel density on
the estimated size of black and white markers. Fig. 3.7b shows the dramatic
effects of decreasing pixel density on the black and white markers, resulting
in a steady decrease in the accuracy of the polynomial fit, which goodness of
fit reach as low as R2 = 0.5 when the apparent size is 4x4 pixels, while the
hue-based method is only slightly affected.

Lastly, in order to gauge the robustness to illumination non-uniformity,
we looked at the effect of adding a 25%-opacity gradient overlay. Figure 3.7c
reports the difference value of the hue or luminosity for the color-mixing
and the black and white method respectively, between the non-uniform and
the uniform illumination, relative to the overall range of measurement. This
metric compares both methods using a dimensionless number. The results
show that the accuracy of the color-based method decreased by less than 1%
under non-uniform illumination, whereas the black and white markers have
relative error as high as 50%.
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3.3.5 Manufacturing

Because it relies only on color and transparency, the sensor can be constructed
with inexpensive off-the-shelf equipment and materials. The procedure used
to make the two layers is presented in Fig. 3.8. First, a soft white com-
pound (SortaClear 12 with Pigment Ignite, Smooth-On, Macungie, PA, USA)
is poured into a 3-D printed mould (TPU95A, Ultimaker, Geldermalsen, Nether-
lands) to form the outer layer of the sensor. The soft material has a Young’s
modulus of E = 0.4 Mpa and a Poisson’s ratio of ν = 0.5. The white color
serves to block out the light from the outside, while at the same time diffus-
ing the white illumination. Once the outside layer has been cured, a rigid
mask is set in place and a mixture of the same soft compound and a ma-
genta dye is screen printed and heat-cured. A transparent layer (SortaClear
12, Smooth-On, Macungie, PA, USA) is cast on top of the magenta markers to
fill the holes left by the mask. The transparent layer also protects the markers
and sets the right thickness for the sensor, depending on the intended de-
sign. All the elastomer compounds are first degassed in a vacuum chamber
before being poured into the mold. The rigid base is constructed by bonding
a transparent yellow film (Color 410e, Luminis-Films, Peronnas, France) to a
transparent acrylic substrate. The squares are cut by laser and the excess film
is removed by hand. Lastly, the rigid and soft layers are bonded.

flexible diffusive base 

rigid mask

Fill the mask 
with magenta compound

Assembly with rigid 
yellow markers layer

Remove the mask

Cover markers 
with transparent compound

(a)

(b)
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(f)

(e)

(d)

FIGURE 3.8: The production process. (a) A white light-diffusive soft
layer is placed in a cast. (b) Once it has been cured, a rigid mask is
applied, and (c), the magenta markers are screen printed. (d) After the
curing process, the mask is removed and the remaining markers are
covered with a transparent compound. (e) The soft part is mounted on
the rigid backing support.

The entire process can be performed within 3 days, including the curing.
The cost of the raw material is about 4.5 euros in the case of this specific
configuration and the process involves only commonly used manufacturing
techniques.
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3.4 Experimental results

3.4.1 Experimental Apparatus

Experiments were conducted on a laboratory test bench, a diagram of which
is shown in Fig. 3.1c. The soft sensor was fitted into a stack of transparent
laser-cut acrylic plates leaving only the top surface accessible for stimula-
tion. Light was provided by 3 LED strips (Neutral White, RS Pro, Corby,
UK) mounted on the side of the acrylic support. The light was diffused by
the white layer to minimized the presence of any colored shadows and in-
creased the color saturation. A manually adjustable 3-axis translation stage
moved a probe with a swappable tip to apply normal and lateral deformation
loads to the surface of the sensor.

A high-resolution camera (A7Rii, Sony Corp., Tokyo, Japan) equipped
with a zoom lens (24-70mm FE Zeiss, Sony Corp., Tokyo, Japan) set at a focal
length of 24mm took high-resolution images of the markers with an aperture
of f /4 and a locked white balance. With this setup, the deviation of the hue
of 50 identical images was as low as 0.3 degree.

(a)

(b)

xy

z

(c)indenter

camera view

FIGURE 3.9: Experimental set-up. (a) spherical indenter for pressing
the sensor in x, y and z directions. (b) Camera view of the sensor using
a mirror put at 45 degree with respect to the horizontal surface. (c)
Whole set-up.



3.4. Experimental results 53

3.4.2 Image processing method

The image processing was performed using Matlab (Mathworks Inc, Natick,
USA). The raw images were corrected to even out the nonuniform lighting
using a morphological tophat filter, and the contrast was then enhanced us-
ing histogram equalization methods. The locations of the markers were seg-
mented and labeled using the centroid detection method regionprops. At this
stage, the location of each marker in the image plane of each marker is de-
termined. In order to assess the normal motion, the image is segmented into
regions of interest around each marker. Each region of interest was trans-
formed in the HSV colorspace using rgb2hsv. The hue of each pixel which
level of saturation was above 50%, ensuring that white pixel were excluded,
was averaged to produce the estimation of the mean hue.

3.4.3 Single marker calibration

The behavior of one marker was modeled from the displacement data recorded
when it was subjected to a 3-dimensional localized external load. The model
was then inverted to estimate the displacement field in the case of more com-
plex load distribution, using the superposition principle.

In this experiment, the indenter was a 4 mm diameter sphere, matching
the resolution of the marker grid. The normal displacement is correlated with
the hue of the marker and the lateral displacement is determined by tracking
the centroid of each marker.

To determined the effect of a normal displacement, the indenter was low-
ered onto the surface and an image was taken every 50 microns step over a
3 mm displacement. The results can be found in Fig. 3.10. The average hue
is satisfactorily approximated by a linear trend (R2 = 0.99).
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FIGURE 3.10: Direct measurements show the linear relationship be-
tween the mean hue degree and the normal displacement of the sur-
face.

The changes in the position of the centroid of each marker also obeyed a
linear relationship with the lateral displacement, see Fig. 3.11a. The lateral
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displacements were applied with a step size of 0.05 mm during a total dis-
placement of 1 mm on the x axis. 15 series of lateral displacements were made
by varying the normal indentation depth from 1.5 mm to 3 mm in 0.1 mm
steps. By calculating the movement of the centroid of the soft marker under
pressure loading, the linear relationships between the lateral displacement
and the position of the centroid were determined for all 15 series of lateral
movements with various normal indentation depths, as shown in Fig. 3.11b.
Since the area of the magenta marker is more visible when the normal dis-
placement is large, the relationship between the lateral displacement and the
motion of the centroid Gxy was affected by the normal displacement applied
to the surface. The value of the linear regression Gxy was found to be lin-
early correlated (R2 = 0.93) with the normal displacement of the surface, see
Fig. 3.11c.
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FIGURE 3.11: The direct measurement confirms the linear relationship
between the position of the centroid of the magenta marker and the
displacement of the surface.

The corresponding behavioral model can be summarized by the follow-
ing set of equations :

h = Gz δz + h0 (3.6)

cxy = Gxy δxy = (aδz + b) δxy (3.7)

where Gz is the slope of the hue-normal displacement function, h is the
hue value and h0 the hue of the marker at rest. The gain Gxy between the
displacement of the centroid cxy and the displacement of the surface δxy is
modeled by an affine relationship with a slope a and an intercept b.

Once the behavior of a single marker had been measured, we inverted the
model to make predictions based on the data recorded. Three series of lat-
eral displacements were applied with normal indentation of 2, 2.5 and 3 mm.



3.4. Experimental results 55

At each step, the indenter pushed the marker along the x and y axes simul-
taneously in 0.1 mm steps. The calibration process used was specific to the
camera and sensor setup used.

The inversion of the model starts by finding the average before determin-
ing the normal displacement of the surface. Once this has been done, the ap-
propriate scaling factor is used to determine the actual lateral displacement
as a function of the distance.

δz = (h � h0)/Gz (3.8)

δxy = cxy/(aδz + b) (3.9)

Linear regression of the curves showed a good fit R2
> 0.94 under all the

conditions tested. The errors between the estimated δ̂ and actual displace-
ments were less than 350µm, which can be improved by using a non-linear
approximation.
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FIGURE 3.12: Validation of the model. (a) Normal to the surface (b)
The estimated lateral displacement fit well the actual stimulation for
different amount of normal pressure, regardless of the direction.

3.4.4 Reconstruction of the displacement field

The inverse model was then applied to the entire grid of markers. The effects
of the parallax imposed on the corner markers were small and not compen-
sated. Some examples of the entire scene can be found in Fig. 3.13. With the
flat indenter, Fig. 3.13a and b, the maximum deformation occurred on the
edge of the shape, in line with the theory of contact mechanics [77]. Like-
wise, the normal displacement induced by the spherical indenter shown in
Fig. 3.13c was in line with the parabolic distribution predicted by Hertz’s
contact theory. Interestingly, the lateral deformation of the surface was also
visible because of the large Poisson’s ratio the of elastomeric skin. This lat-
eral radially distributed field, which contains information about the frictional
state of both objects in contact, has been used in several robotic applications
[120] and is thought to be involved in the perception of adherence in human
tactile perception processes [75].
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FIGURE 3.13: Experiment with a square (a), a cylindrical (b) and hemi-
spherical (c) probe. The normal distribution is in line within the lit-
erature and the direction of the deformation vector hints at the work
of friction. For all the estimated displacement map, interpolation was
applied over inferred normal indentations over each marker.

3.5 Conclusion and limitations

We introduce a new approach to measure 3d displacement field with a camera-
based tactile sensor. The fastidious process of encoding the normal displace-
ment is done through the use of the color channels allowing to capture both
the normal and lateral displacement of an array of colored markers with a
precision that corresponds to 2% of the original size based on the color pat-
tern produced when transmitted through a reference translucent array.

Finding means of measuring the distributed 3-dimensional interactions
that occur in the contact area between a surface and an external object is cru-
cial to determining the properties of the material such as its shape or its com-
pliance, along with the dynamics of the contact, especially the occurrence of
any incipient slippage. Tactile sensors have been found to be of great benefit
in the field of robotic surgery [64, 196], and prosthesis [136].

The design principles and experimental results show that this sensor is
suitable for gauging the distributed 3-dimensional motion of a surface to
which complex stress field involving friction can be applied. However, suit-
able means of measuring the force applied to the surface still remain to be
developed. A localized force applied at the center of the sensor will induce a
displacement which has visible effects on all the markers and deconvolution
methods [61] can be used to determine the stress and traction forces exerted
at the surface from the markers data.
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3.6 Future work

Further investigations will focus on perception of interactions and object
properties, such as contact force, object shape and friction, especially in the
scenario such as grasp adjustment after a perturbation, or measuring the
compliance of an object. The silicone-based sensor is highly compliant, which
is useful for the automatic control of grasping, human-robot interactions and
teleoperation.

In the case of extremely large displacements, it can happen that the soft
markers will be visible between two transparent filters. In this case, the sin-
gle marker approach will not be appropriate. Since the sensor consists of two
regularly spaced grids of markers, a large scale interference similar to the
Moiré pattern will be observed. Viewed from afar, the colored fringes pro-
duced by the sensor provide information about the shape of the object and
the friction forces at work.
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—————————————

Preface to Chapter 4
—————————————

The previous chapter proposed a camera based tactile sensor using subtrac-
tive color mixing principle for measuring 3d displacement field. Based on
the same sensing method, this chapter introduces a hemispherical version,
which is beneficial for exploring arbitrarily shaped objects. The manufac-
turing inspired from fabrication procedure of the spherical globe is detailed.
Then a curvature estimation algorithm based on Hertz contact theory was
proposed and validated by experiments, showing that the sensor is able to
estimate the curvature of the object via a simple press. With this curvature
estimation, the sensor could help the robot to find the optimal grasping loca-
tion in future work.

Abstract

The only way to perceive a small object held between our fingers is to trust
our sense of touch. Touch provides cues about the state of the contact even
if its view is occluded by the finger. The interaction between the soft fingers
and the surface reveals crucial information, such as the local shape of the ob-
ject, that plays a central role in fine manipulation. In this work, we present
a new spherical sensor that endows robots with a fine distributed sense of
touch. This sensor is an evolution of our distributed tactile sensor that mea-
sures the dense 3-dimensional displacement field of an elastic membrane,
using the subtractive color-mixing principle. We leverage a planar manufac-
turing process that enables the design and manufacturing of the functional
features on a flat surface. The flat functional panels are then folded to create
a spherical shape able to sense a wide variety of objects.

The resulting 40mm-diameter spherical sensor has 77 measurement points,
each of which gives an estimation of the local 3d displacement, normal and
tangential to the surface. Each marker is built around 2 sets of colored patches
placed at different depths. The relative motion and resulting hue of each
marker, easily captured by an embedded RGB camera, provides a measure-
ment of their 3d motion. To benchmark the sensor, we compared the mea-
surements obtained while pressing the sensor on a curved surface with Hertz
contact theory, a hallmark of contact mechanics. While the mechanics did
not strictly follow Hertz contact theory, using the shear and normal sensing,
ChromaTouch can estimate the curvature of an object after a millimeter-size
indentation of the sensor.
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4.1 Introduction

Robots interact with their surroundings by sensing and reacting to the me-
chanical behavior of the environment, usually through an impedance control
feedback loop [60]. In a classical impedance control, the mechanical inter-
action with the environment is measured with a force sensor and serves as a
basis to control the motion of the robotic arm at modulating its apparent stiff-
ness. Yet, perceiving the mechanical world with only a single point of mea-
surement discards the abundance of information that the mechanical scene
has to offer. A single 6-axis force sensor can indeed be used to find the tim-
ing, location, and direction of a contact force [12, 65] but the limited spatial
distribution of the data prevents the estimation of the shape and the surface
properties of an object without active exploration [144].

detection

(a) (b) (c)

(d)

Rt

hue and centroid 

FIGURE 4.1: (a) The sensor, mounted on a robotic arm, explores an
object (b) Typical image retrieved by the embedded camera (c) Effect
of lateral and normal forces on the shape and hue of a marker. (d)
After calibration, the lateral and normal deformation of each point is
estimated.

Humans also use proprioception to gather kinematic information to con-
trol the impedance of their limbs, but what set them apart is that they are
endowed with a rich sense of touch, mediated by a collection of mechanore-
ceptors, densely populated in the fingertips. This wide-ranging array of
mechanoreceptors encodes the complex mechanical interaction that occurs
at the contact between the skin and the object. The sense of touch captures
surface features [191, 88], compliance of materials [168, 49] or the presence of
edges [141]. Of importance for the present work, an estimate of the curvature
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of an object can be extracted from a single press [52] and guide the timing of
motor commands required for grasping and object manipulation [14, 75].

Given the usefulness of touch in manipulation, it is not surprising that
tactile sensors for robotics have shown great promise in providing a rich im-
age of the mechanical interaction on a par with human perception. A large
variety of strategies can be used to transduce the mechanical deformation
into an electrical signal, for a full review the reader can refer to [34].

Amongst these techniques, camera-based tactile sensors attract increasing
attention due to their higher spatial resolution and minimum wiring require-
ment compared to other tactile sensing technologies.

These sensors typically use a camera to track the displacements of mark-
ers embedded in a soft elastomer. This method delivers dense tactile images
with a relatively fine temporal resolution when leveraging high frame-rate
cameras [148, 115]. However, except for a few exceptions detailed in the next
section, these sensors usually are limited to measuring lateral deformation,
which provides valuable measurements but requires complex processing and
approximations to gauge the normal motion of each marker.

The ChromaTouch sensor, introduced previously [106], solves the prob-
lem by encoding the normal motion of each marker in the color channels of
the camera, effectively converting a 2-dimensional color image information
into 3-dimensional deformation field. Each marker is made by 2 overlapping
submarkers, one diffusive and magenta, the other translucent and yellow.
The full 3d relative motion of the submarkers is found from both the centroid
detection and the change of hue of the marker. We demonstrated the effec-
tiveness of this transduction principle to detect dense 3d displacement fields
on a flat sensing surface. The long-term goal of the work is to integrate this
sensor in with a robotic end-effector with curved fingertips. In this paper, we
introduce a new version of ChromaTouch that uses the color-mixing trans-
duction principle on a hemispherical sensing surface, able to explore surfaces
with arbitrary shapes, see 4.1a. The sensor embeds a camera equipped with
a fisheye lens, which has the double benefit of amplifying the signal used to
estimate the normal displacements as well as unwrapping the spherical pro-
jection of the sensing hemisphere, see 4.1b. Figure 4.1c, illustrates the sensing
method. After calibration, the sensor retrieves the 3d deformation field at the
location of the markers which can be interpolated into the full deformation
of the body, see fig 4.1d.
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4.2 Related work

4.2.1 Camera-based sensors

The success of camera-based tactile sensors can be attributed to the decades
of engineering that refined camera sensors and allowed converting photons
into digital data. By relying on off-the-shelf camera, these sensors bypass the
electronic engineering that is required to make capacitive and piezo-resistive
tactile sensors. For this reason, camera-based sensors often boast larger reso-
lution and higher refresh-rate.

Camera-based tactile sensors rely on a deformable medium seen by the
camera, which essentially converts the mechanical interaction into a visi-
ble change of the image. Therefore, the necessary inventiveness to extract
data about the contact lies in the engineering of this medium. The simplest
method is to place black markers on a white background on a soft elastomer
and track the motion of these markers to infer the interaction at the contact.
The biomimetic approaches suggest amplifying motion via an array of pins
attached to a deformable membrane [186]. However, the transduction from
the 2D optical image to a 3D mechanical deformation field remains a chal-
lenge [46], mainly because the distance from the markers to the camera is
unknown.

GelForce developed by Sato et al. [148] employing double layers of rigid
markers to compute the 3D stress field. The normal stresses are calculated
from the lateral distribution of the markers. This implementation is effec-
tive but the spatial resolution of the sensor is limited, because the markers
on both layers cannot be overlaid. The GelSight sensor measures the topog-
raphy of an elastomer covered by a light-reflecting membrane illuminated
from 3 sides by 3 lights of complementary color. The 3d geometry of the
deformation of the gel is reconstructed from the shadow of the asperities in
contact with the membrane. The sensor has been used with added markers
to measure the slip and shear at the contact [204, 115]. Because of its work-
ing principle, these sensors can only be planar or have small curvature, and
therefore accommodate well only with convex objects. In Kappassov’s work
[87], the tactile sensor uses the change of color to determine normal pressure
with 3⇥3 markers.

The ChromaTouch sensor builds upon these principles and extends to the
recovery of the full displacement field to gather a complete picture of the
contact.
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4.2.2 Spherical-shaped sensors

Soft spherical-cap artificial fingertips are popular in robotic grasping as they
help stabilizing the contact with an arbitrarily shaped object. Therefore, a
large body of research has created artificial fingertips with spherical or com-
plex convex shapes.

A wide array of manufacturing strategies has been deployed. Casting the
body of the sensor in a spherical mold, with grooves results in structures with
soft and complex shape that can even incorporate markers if the grooves are
included in the mold [146]. Another popular fabrication method makes use
of 3d printing with soft elastomer. 3d printing offers a versatile method for
producing complex-shaped sensors [186]. One of the downside of spherical
sensors has to do with the fact that circular markers on a sphere will appear
as ellipses when projected on the image plane. Several sensors subsequently
require image wrapping to recover the proper shape of markers [146].

Alternatively, piezoresistive and capacitive sensors can be mounted on a
flexible printed circuit board that is cut and wrapped around a rigid core,
then covered with a rigid layer [150]. The cover filters and blurs the signal
from the contact thus markers benefit from being near to the surface [163].

4.3 Convex sensor to measure flat, convex and con-

cave objects

4.3.1 The case for spherical shape when exploring objects

Simple reasoning can highlight why a curved sensor is beneficial for the ver-
satility of sensing with arbitrary objects. It allows the sensor tip to conform
to the touched object with a larger contacting surface [44, 132]. The shape
and size of the contact surface are determined by the relative curvature at
the contact point. Assuming concave or convex spherical sensor and object,
the relative curvature can be expressed as Cr = R�1

t + R�1
o , where Rt is the

radius of the sensor, and Ro is the local radius of the object, near the contact
point. The radius is positive for the convex object and negative for the con-
cave object. When the object is flat, the radius is infinite and the curvature
of the object is null. If both the sensor and the objects are flat, the relative
curvature is null, and in this special case, the contact is made on the higher
asperities of both surfaces, therefore, relying on stochastic properties and be-
ing ill-defined at macroscopic scales [67].



4.3. Convex sensor to measure flat, convex and concave objects 65

ill defined

R
−1

t

Cr = R
−1

t
+R

−1

o

Cr > 0

Cr < 0
. . .

. . .

.
.
.

.
.
.

R
−1

o
0

R
−1

o
>0

R
−1

o
=0

R
−1

o
<0

R
−1

o
0

0 0=0 >0<0

FIGURE 4.2: Shape of the contact between a sensor with curvature R�1
t

and an object with curvature R�1
o . When relative curvature Cr is null,

the contact topology is ill-defined. Since the environment of the robot
contains objects of undefined curvatures, a small radius will provide
the best versatility. The shaded area shows the operating range of cur-
vature that spherical sensors can typically sample.

On the other hand, when the relative curvature is negative — the con-
cave object has a smaller radius than the convex object — the contact is made
at the edge of the convex object and therefore the mechanical interaction is
discontinuous. From a sampling point of view, in order to have an uninter-
rupted contact surface, the best choice is to have positive relative curvature
(see Figure 4.2). In this case, the contact follows Hertz theory and the con-
tact area is elliptical. A summary of Hertz contact theory could be found in
Appendix A.

This result is well known by the mechanical community and is the reason
why surface scanning instruments have small diameter tips and can capture
the small-scale changes in curvature [67].

4.3.2 Flat to curved projection

The manufacturing of the double overplayed layer needed for ChromaTouch
requires the alignment of magenta and yellow dots on two different planes.
This sensitive operation is relatively straightforward to process on flat sur-
face but challenging when the alignment must be done on a curved surface,
such as a sphere.

Gauss’ Theorema Egregium provides an opportune framework to under-
stand how to design a flat part that can be folded. The remarkable theorem
states that the gaussian curvature κ — defined by being the product of each
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principal curvature — of a surface is invariant under bending. A flat plane
of gaussian curvature κ = 0 can be bent along one dimension for which one
of the principal curvatures will be non-zero, but cannot be deformed into a
sphere for which both principal curvatures will be the reciprocal of the bend-
ing radius Rb, i.e. κ = 1/R2

b. Since bending and folding are not sufficient to
make the sphere, in our production process, the surface has to be stretched
or cut.

To work out a way around this fundamental constraint, we used a produc-
tion method that is popular for making spherical globes from flat maps. The
sphere is divided into n gores (i.e. segments), each of which can be worked on
as it is a flat surface. In globe production, each of the gore contains a part of
the map so that the shape and linearity of the meridian are preserved. Once
the gores are printed, they are folded into a sphere to make the globe. The
fold introduced a small distortion as the flat gores still must be bent in both
directions. However, as the number of gores increases, the bend along the
equator is less pronounced and the distortion induced by stretch is reduced.
In our case, because we are using compliant elastomers which forgive some
stretch, cutting the sphere in 4 gores was enough to ensure an easy manufac-
turing process, while reducing the number of seams.

R

2πR

n

πR

2

πR

2m
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FIGURE 4.3: Construction of the polyconic pattern. (a) One of the nth

segment — called gore — of the sphere (b) is constructed by project-
ing m regularly spaced points of an inner circle whose diameter is the
equator of a segment onto a regular line grid spaced by πR/2m (c) The
segment is then copied n times and rotated around its apex to produce
the final flat pattern.

Figure 4.3 illustrates the process used to create the shape of the gores and
assemble them into a spherical cap of radius R. The shape of each gore is
found by constructing a semicircle with a diameter the equatorial edge of
length 2πR/n. Then we divide the inner circle in m radii and project the
vector field onto a regularly spaced grid of which extend from the equator
line to a parallel line spaced by πR/2. Placing the markers onto the flat gores
is effortless compared to assembling them on a spherical surface. Regular
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manufacturing techniques such as printing, laser cutting, molding can be
used to create the required pattern.

4.3.3 Manufacturing process

The manufacturing process illustrated in figure 4.4 is an update from the
original flat version. First, the base is cast from transparent elastomer (Sor-
taclear 12, Smooth-On, Macungie, PA, USA) in a high-resolution 3d-printed
mold. The grooves left by the cast are filled with the magenta markers, made
from the same elastomer in which a dye is added. Then, a protective layer is
molded, on top of which the yellow filter is placed. The yellow elements are
laser cut and the rest of the film are discarded. A protective transparent layer
embeds the yellow transparent submarkers. The whole operation including
curing takes approximately 2 days.

At this stage, the manufacturing process requiring the part to be flat are
completed and the pattern is folded onto a rigid and transparent sphere made
of acrylic. Lastly, the white outer layer is cast onto the exterior of the sphere
to ensure the proper cohesion of the gores. The last external layer also acts as
a barrier for external light and as a diffuser for the marker

4.3.4 Assembly and optical image correction

Within the current limit of our off-the-shelf manufacturing process, we can
create spherical sensors with 77 markers measuring 2 mm in diameter and
distributed on the meridians of a sphere of radius 40 mm. A USB-camera
(Aria A15S-C, Alkeria, Cascina, Italy), with a 1/2.9” image sensor, is placed
at the center of the sphere. The camera is fixed onto a mounting fixture that
is linked to the force sensor of the robot arm. The overall assembly of the
sensor is shown in figure 4.5a.

The camera is equipped with a f = 2.2 mm fisheye wide lens (Lensagon
BF5M2223S129, Lensation GmbH, Karlsruhe, Germany). As found previ-
ously [106], the interference of the marker is most notable when the lens has
a short focal length, which provides a better signal to noise ratio. The fisheye
lens has a 180� field of view, which usually creates a characteristic distortion
due to the equidistant projection. However, in this case, each marker is at
the same distance from the focal of the lens and cancels exactly the distor-
tion made by projecting the markers onto a plane. The image created by the
combination of the fisheye lens and spherical marker array creates an image
without needing post-processing for image distortion.
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(2) Fill magenta markers

(3) Laser cut yellow film

(4) Remove surplus

(1) Fill transparent base

(6) fold

(7) light diffusive coating 

(8) release

(5) transparent coating

FIGURE 4.4: Manufacturing process. A flat mold makes alignment of
the magenta and yellow marker easier. Once the flat pattern is com-
pleted, it is folded into a spherical shape, and held in place by curing
additional elastomer, which acts as a diffuser for the illumination.

4.3.5 Signal processing

The 3-dimensional displacement of each marker with respect to the camera
depends on the observed lateral displacement of the centroid and the change
of hue of their projection on the image sensor. To convert the image into a
vector field, a processing pipeline is as follows. First, the raw images from
the camera are cropped using a circular mask to remove everything outside
of the edge of the sensor. Then a tophat filter is applied to mitigate the effect
of non-uniform lighting and the contrast is enhanced. Once the correction
is done, the images are converted from RGB to HSV color space. The hue
channel is used to segment the markers by thresholding around the yellow
and magenta hue. The centroid of each magenta marker is detected from
the binary images using the regionprop function in Matlab. The mask is used
to isolate the marker in the original image. For each marker, the average
hue is stored. At this stage, we have the hue, which reflects the normal dis-
placement, and the motion of the centroid in 2 dimensions, which reflects the
lateral displacement of the markers.
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FIGURE 4.5: (a) Exploded view of the assembly. (b) The fisheye lens
creates a flat projection of the spherical array, canceling the distortions.
The markers have similar area throughout the image.

4.4 Experimental validation

4.4.1 Calibration

The link between the hue of the marker and the actual displacement it experi-
ences is influenced by the construction, illumination, and camera parameters.
Therefore, this relationship needs to be calibrated against a ground truth.

The calibration is done by pressing the sensor onto a flat plate, with a
robot (UR3, Universal Robots, Odense, Denmark) equipped with a force-
torque sensor (FT300, Robotiq, Lévis, Canada) to measure interaction forces.
During a normal loading experiment, the force and the displacement of the
robot are recorded to provide ground truth for the load curve of the system.
At the same time, the state of each marker is determined to find the distribu-
tion of the displacement over the contact area.

As shown in figure 4.7a, the external force P applied by the robot will
induce a deformation δr of the soft sensor if the contacting surface is infinitely
stiff compared to the compliance of the soft elastomer of the sensor. This
deformation δr also corresponds to the maximum of the deformation field
measured by the tactile sensors, independently of the curvature of the object.
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FIGURE 4.6: Comparison of the sensing image before and after pres-
sure, and the reconstruction of 3d displacement field.
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FIGURE 4.7: (a) Effect of pressing the spherical sensor on a plane (b) The
reference hue as a function of the normal displacement of the robotic
arm, and its linear fit in dashed line. (c) Results from the tangential
calibration.

Therefore, we can use the ground truth values to calibrate the variation of
observed hue.

Figure 4.7b, shows typical traces obtained during calibration. The rela-
tionship between the hue of the marker that experiences the maximum defor-
mation (i.e. located in the center of the contact patch) and the displacement
recorded by the robot is invariant with the curvature of the contacting object.
A linear fit gives the coefficient to extrapolate the displacement from any ar-
bitrary observed hue. The goodness of fit on the sampled data is R2 = 0.89.
A similar procedure is done for the lateral displacement with the goodness
of fit R2 = 0.99, see figure 4.7c.

4.4.2 Example application: model-driven curvature estima-

tion

Once the relationship between the observed hue and the displacement is es-
tablished, we can reconstruct the 3d displacement field of the sensor from
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the observed images sampled at the location of the markers. The data is then
interpolated again to provide a regularly spaced sampling.

The contacts with two curved objects of radii ±80 mm and a flat surface
are illustrated in figure 4.8. The image reveals a difference in the extent to
which the markers are disturbed. The measured displacement field reveals
the nature of the interaction. The field shows a peak at the center of the
contact that tapers as the edge of the contact in a monotonic fashion. It is
interesting to note that the local contact force is not strictly normal to the sur-
face but has a slight angle due to the work of friction and elastic stretch. The
measurement of the lateral motion has importance in evaluating the shape
of the normal deformation since the markers moved. The red dots in Fig 4.8
show the normal displacement at the original radial location of the markers.
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FIGURE 4.8: (a) Comparison between Hertz contact theory and mea-
surement given by the sensor when pressing on a negative, null and
positive curvature object. (b) The image difference between the normal
state and the deformed state is affected by the curvature of the object.
The negative difference is in magenta and the positive in green. (c)
The resulting profile of the displacement of the middle cross-section of
markers. The vectors show the actual displacement of each marker, the
red dots highlight only the normal motion and the gray curves show
the result of curve-fitting with a filtered Hertzian contact.

The Hertz contact theory can be used to analyze the measured displace-
ment and extract the radius of the contacting body [77]. In the following
paragraph, the assumption is that the object is infinitely rigid compared to
the soft fingertip. The theory first observes that the contact area between two
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spherical objects will lead to a circular contact area of radius a. The rela-
tive displacement of the two bodies δr is related to the contact area a2 by the
equivalent radius R = (R�1

s + R�1
o )�1 such as:

a2 = Rδr (4.1)

where the effective radius is calculated with the radius of the sensor Rs and
the radius of the object Ro in contact. This equation can be reversed to find the
radius of the object from the displacement and the area of contact, knowing
the radius of the object.

According to Hertz theory, the contact at the surface should lead to nor-
mal displacement uz of the soft body which follows a parabolic shape such
as:

uz(r)|z=0 = δr

✓

1 �
r2

2a2

◆

(4.2)

where r is the radial coordinate. Curve fitting this relationship to the dis-
placement field of the contact surface, could in theory resolve from tactile
data the displacement of the sensor and the area of the contact patch. How-
ever, the measured displacements from ChromaTouch come from the mark-
ers that are embedded deeper in the elastomer. The elastomeric layer that
covers the markers acts as a mechanical filter and blurs the contact distri-
bution. Figure 4.9a illustrates the filtering done by the soft tissues, which
can be estimated from Boussinesq-Cerruti equations that are widely used
for solving half-space contact problems at any point of an elastic body un-
der a pressure. Using the pressure given by Hertz contact model by p(r) =

p0

⇣

1 � r2

a2

⌘1/2
, where p0 is the maximum pressure given by p0 = 3P

2πa2 , the
displacement field at a certain depth of the elastic body could be expressed
by a function which is difficult to fit with the estimated displacement of the
markers because of its complexity. In order to simplify this fitting proce-
dure, the distribution under the filtering effect is approximated by a gaussian
curve:

uz(r)|z=2mm = δre(� r2/a2) (4.3)

from which the amplitude is the global displacement and the deviation is
related to the area of contact. The gaussian approximation has a goodness of
fit with the theoretical deformation of R2 = 0.96.

We conducted measurements on three spherical objects mentioned earlier.
Figure 4.9b shows the estimation of the area of contact a2 extracted from the
gaussian fit, when the normal displacement of the robot increases. The ra-
dius of the contact area increases with the applied normal displacement. The
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equivalent curvature is computed from the deformation field. Figure 4.9c re-
veals that the equivalent curvature converges to the actual curvature when
the normal displacement increases, although some discrepancies exist. For
indentation lower than a millimeter, the noise of measurement has a sig-
nificant influence on the quality of results. After a normal displacement of
1 mm, the estimation converges to the real value. When the total displace-
ment reaches 1.4 mm, the estimations of the effective radius R corresponds
well the desired values, which are R = {26.7mm, 20mm, 16mm} for the sen-
sor with the radius of Rt = 20 mm in contact with objects with the radius of
Ro = {�80mm, ∞, 80mm} respectively.
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FIGURE 4.9: (a) Sensors embedded in the elastomer inherently observe
a blurry picture of the contact. (b) Evolution of the contact area as the
sensor is pushed into a curved object. (c) Results of the estimation of the
curvature at the beginning of the press. The estimated effective radius
(plain lines) converge to the real value (dashed lines).

4.5 Discussion and conclusions

4.5.1 Discussion

Tactile sensors are essential tools to enable robots to haptically explore their
surroundings, perceive changes in contact conditions and subsequently ac-
complish dexterous manipulation tasks. The spherical shape associated with
the use of soft elastomer offers tactile sensing as well as intrinsic stability
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when grasping. The color subtraction method, presented in this work, en-
ables access to the shear as well as the normal components of the deforma-
tion, which is theoretically enough to reconstruct the stress pattern at the sur-
face. The current work shows that the deformation of the sensor is in good
agreement with the Hertz contact theory despite showing some striking dif-
ferences.

During the experiment, we made sure that the contact was lubricated,
therefore as close to frictionless as possible, to follow the assumptions un-
derlying Hertz contact theory. Upon contact, the section touching the object
expanded laterally to maintain its surface area. The displacement of individ-
ual points did not follow a pure normal path but was also shifted toward
the outside of the contact patch contrary to the prediction of Hertz theory in
which the displacement is purely normal. The discrepancy with the linear
small-strain theory of Hertz is most certainly due to large deformations of
the soft layers of the sensor. The lateral motion could be used to estimate
slipperiness of the surface without having to slide the sensor laterally. Some
evidence shows similar capabilities of friction perception while pressing in
humans [120, 125].

Lastly, the lateral calibration is performed only at one normal force, but it
appears to be affected by the indentation depth, which translates into an un-
derestimation. Finer calibration procedure should lead to even more accurate
results.

4.5.2 Future improvements

The analysis of the experimental results suggests several essential improve-
ments. First of all, the rigid core inside the sensor should be removed to have
a more linear deformation pattern and to avoid saturation of the sensor at
higher loads. Along those lines, future sensors will use a softer compound
to maximize the deformation and color changes of the markers inside the
sensor.

Second, in this study, the sphere was made using four gores which is prac-
tical from the standpoint of folding but still induces too much stress and dis-
tortion when wrapped around the spherical core. The sweet spot between
low distortion and ease of manufacturing might be closer to 6 or 8 gores. In-
creasing the number of markers to provide better spatial resolution will offer
the possibility of digital spatial filtering that can improve the signal to noise
ratio.
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Lastly, the calibration procedure will be replaced by a machine-learning
approach in the hope that it considers the deviation from the calibration of
each marker.

4.5.3 Conclusion

This work presents a new hemispherical version of the camera-based tactile
sensor developed before. The sensor can measure the 3d deformation field
of the contact via marker tracking and hue detection. With the hemispheri-
cal configuration, the sensor is suited to explore surfaces with arbitrary cur-
vature even if the object is slightly concave. We proposed an algorithm to
estimate the curvature of the object with a 1 mm indentation on the object.
Experimental results show a good agreement between the estimated effective
radius and the real value despite using Hertz contact in the presence of fric-
tion. Future work will solve the existing limitations of the sensor and extend
the application of the sensor to robotic manipulation tasks.
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—————————————

Preface to Chapter 5
—————————————

The previous chapter proposed a hemispherical shape of the sensor for es-
timating the curvature of the object by a simple press. Taking the advan-
tage of the estimation of local curvatures, robots could adjust their grasping
points to maximize grip stability. However, this estimation did not take into
account that concave sections of the object might be slippery, leading to un-
stable grasps. In this chapter, we present a method for estimating the friction
of a surface via simple press along with the topography of the surface. Taken
together, these results could endow robots with the ability to adjust grip force
in the instants following the initial contact. The sensor used in this chapter
was improved from the planar sensor presented in chapter 3 with 4-times
higher spatial resolution. The calibration of the sensor was performed using
a convolutional neural network (CNN) to derive a more accurate measure-
ment of the normal displacement field used to estimate the local shape. An-
other CNN model was trained to predict the local coefficient of friction from
the tactile images. Experiments were carried out, showing that the sensor
is able to distinguish different frictional states on the same contact surface.
This sensing capability could allow robotic hands and gripper to adjust the
location of their grip to a less slippery area if the target object has a nonho-
mogeneous frictional property.

Abstract

Successfully grasping and manipulating an object with a robotic gripper de-
pends strongly on the ability to regulate the grip force, to allow for some con-
trolled slippage while avoiding catastrophic sliding. To this end, an early es-
timate of the coefficient of friction of the object-skin is paramount to achieve
this delicate balance. Here, we present a tactile sensor and calibration pro-
cedure, permitting an estimate of the frictional interaction at the very instant
the finger comes into contact with the object.

The sensor comprises 441 marker points, composed of two overlaid layers
of colored markers. The relative motion and the color change of the overlaid
markers, captured by an embedded color camera, encode the 3d deformation
of the sensor under pressure. After the calibration, the visual variation of the
marker is used to infer its motion within the surface and estimate the local
friction. When pressed against a high-friction object, the membrane of the
sensor remains attached to the object, limiting the amount of lateral motion of
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the markers. Conversely, in low friction conditions, the membrane is allowed
to slide, creating more noticeable movement. Convolutional neural networks
are employed for calibrating the sensor and training the friction estimation
model. After the training, the algorithm learns to use the lateral deformation
to estimate complex frictional patterns, such as a curved shape with both
high and low friction region, at the initial contact between finger and object.
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5.1 Introduction

Modern robots and grippers boast new perceptual capabilities, owing to the
information retrieved by tactile sensors. These sensors provide crucial knowl-
edge of the state of contact and the physical properties of the object that vi-
sion alone cannot provide. While vision allows to globally estimate the shape
and orientation of an object – useful for reaching–, the tactile sensors provide
a sense of the pressure, friction, and material properties that are unique to
touch. These tactile cues are essential to capture a rich haptic scene of the
contact, conveying potential slippage, the stability of the contact and the ro-
bustness to external perturbations. More importantly, they are the bedrock
for solving one of the outstanding challenges in robotics: automated grasp-
ing and manipulation of arbitrary objects.

In contrast to robots, humans can manipulate arbitrary objects effortlessly,
as long as cutaneous sensations are present [4]. Every time we grasp a glass
of water or a pen on a table, a complex sensorimotor dance is being uncon-
sciously operated by our nervous system. The object is identified and lo-
cated, the arm extends to reach, and, at the very instant of contact, a complex
ensemble of neural impulses coming from mechanoreceptors embedded in
our skin informs the brain about the shape, presence of edges, and nature of
surface [14]. Within a tenth of a second, motor commands are modulated to
accommodate the orientation of edge [135] or the presence of a slippery sur-
face [74]. During grasping, the nervous system regulates grip forces so that
it creates a friction force slightly larger than the load on the object, providing
a safety margin of about 10% of the maximum permissible friction force, to
be robust to unexpected perturbations.

Robotic grasping algorithms, on the other hand, regulate grip forces by ei-
ther relying on prior knowledge of the frictional behavior [13] or formulating
assumptions about the coefficient of friction [161]. Because the knowledge of
the coefficient of friction is necessary to find the optimal grasping force that
balances the load on the object coming from gravity, inertial force, or exter-
nal perturbations, with the friction force applied by the fingertips. However,
to be robust to the potential uncertainties of its estimation, the value of the
coefficient of friction is often assumed to be lower than its actual value. This
underestimation leads to a grip force larger than the optimal force. While this
assumption of low initial friction ensures a robust grasping behavior, it may
cause damage to the fragile objects, or leads to loss of mobility as the object
cannot rotate around the contact point during force closure tasks. More dra-
matically, in the few cases where the object is more slippery than anticipated,
the absence of the real-time estimation of the frictional state leads to a failure
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to grasp and lift. Sensing the coefficient of friction early in a grasp-and-lift
task is therefore crucial for controlling robotic hands, especially during the
interaction with fragile or slippery objects.

Several groups have recognized the intrinsic need for precise and timely
measurements of the frictional state during grasping and manipulation and
suggested original approaches for estimating the frictional state from tactile
sensors. For instance, gross slip between the sensor and the object surface is
straightforwardly detected using the transient tactile signal change when the
stick-to-slip transition happens [25], by measuring micro-vibrations of the
sensor induced by gross slip [45, 170], or by observing sudden displacements
of the markers on a membrane [73].

However, to keep the object stable in hand and prevent falls, gross slip-
page should be avoided. As a consequence, the previous methods based on
detecting gross slippage of the object are triggering adjustments too late. To
gain warning signs of incipient slippage, several methods rely on detecting
the fast transition from stick-to-slip by measuring the evolution of the charac-
teristic pattern of deformation inside the area of contact on a spherical finger-
tip. This pattern evolves with the progression of the slippage, the outer edge
of the contact is first to slip while the center remains stuck. Progressively, the
stuck area disappeared, leading to a full slip.

The incipient slippage can be detected using a membrane covered with
hemispherical nibs. When the edge of the contact breaks free, the nibs near
the periphery vibrate and create a transient signal that can be recorded by an
accelerometer embedded in the elastic body [176]. The incipient slippage can
also be estimated from fitting an ellipse to the optic flow image of the contact
area and measuring its eccentricity [66]. Other methods detect the increase of
shear strain in an elastic membrane at the edge of the contact area [120, 19],
or compare the lateral shift of the markers near the periphery of the contact
area [68]. Lastly, the inhomogeneity of the displacement field, measured by
its entropy, can provide a powerful metric of partial slippage [204]. By de-
tecting incipient slippage, the controller is able to adjust the grip force earlier
before the total slippage, greatly improving the robustness of grasping tasks.

However, the regulation grasping force based on the detection of the in-
cipient slip can occur too late. In cases where the dynamic coefficient of fric-
tion is smaller than the static coefficient of friction, the stuck region can dis-
appear catastrophically, leading to the sudden slippage of the object if the
grip forces are not adjusted quickly enough [173]. The regulation of grip
force in humans makes use of the incipient slip for reacting to external per-
turbations, but one other cue is likely to inform about the slipperiness of a
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surface from the moment when the finger comes into contact with the sur-
face. It has been shown that, when voluntary lifting an object, participants
regulated their grip force with a similar safety margin to slippage that was
independent of the coefficient of friction of the surface [74, 17]. The grip
forces are increased for slippery surfaces such as velvet but smaller for sur-
faces with more adherence, such as sandpaper or glass. A surprising finding
of this research is that the adjustment of grip force begins within 100 ms of
the contact being made, preceding the appearance of the tangential load. The
regulation is illustrated in Fig.5.1a. The variation of rate of increase of grip
force at initial contact indicates that humans use early estimates of friction by
applying a simple normal pressure onto the object to adjust their initial grip
force. One of the hypotheses put forward is that the friction of the surface is
encoded in the magnitude of the lateral strain of the skin when the finger is
pressed onto the surface. High friction surfaces limit the lateral mobility of
the skin during the contact, and therefore the total amount of lateral strain of
the skin is lower for surfaces with a lower coefficient of friction [75].

Few years before the hypothesis of a lateral strain pattern emerged in the
neuroscience community, roboticists have developed sensors to measure the
coefficient of friction between the two surfaces by applying only normal pres-
sure. First Shinoda et al. then Maeno et al. demonstrated that the gradient
of the shear strain at the center of an elastic body under normal pressure is
a function of the value of the coefficient of friction between the two contact
surfaces. [120, 166].

Despite promising results, the early estimate of friction in the robotic con-
trol still remains a curiosity. Chen et al. proposed an eight-legs sensor to esti-
mate the coefficient of friction by a simple press. Despite its simple principle
of measurement, the sensor is only able to estimate the range of coefficient of
friction [24, 134]. But more importantly, because the number of elements is
low, it cannot resolve fine details of the haptic scene such as the presence of
edges, corners, and the spatial variation of elasticity, which also contribute to
the regulation of grip.

To overcome this limitation, we present a method for sensing the distri-
bution of coefficient of friction within the area of contact, mapping the resis-
tance to motion onto observable surface features before any lateral motion
is observed, while retaining the ability to capture a dense representation of
the tactile scene. The ChromaTouch is a camera-based tactile sensor that uses
441 distributed markers, each of which measures the local 3d deformation of
an elastic membrane. Using convolutional neural networks, we are able to
estimate the deformation of the membrane under the indentation of various
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objects and reconstruct their shape as well as the distribution of the coeffi-
cient of friction. This dense reconstruction required only 1.5 mm of normal
indentation with the object. The estimation of the local shape and friction
coefficient could directly be used for re-positioning the contact between the
fingers and the object for optimal grip (i.e. making use of edges and high fric-
tion area). The early knowledge of the amount of adherence that the surface
also provides information to design feedforward regulation of grasp force.

5.2 Perception architecture

The objective of this work is to develop sensing and processing method able
to tactually extract:

– the global curvature at the location of the contact
– the shape of small features within the contact region
– local distribution of friction

In our previous work, we demonstrated a tactile sensor which used color-
mixing of an array of marker to capture the 3d deformation field and to use
the information embedded in this vector field to measure the global curva-
ture [106, 107]. However, the markers of these two previous sensors mea-
sures 2 mm in length or in diameter, which shows inaccuracy in measuring
small features of the objects. A higher spatial resolution could improve the
sensing ability for small geometry changes on the object, so allows a more
precise measurement of the object shape.

5.2.1 Dense deformation sensing

The tactile sensor used to estimate the distribution friction derives from our
previous implementations of the color-mixing principle [106, 107]. The num-
ber of markers is increased to 21 by 21, which offers 4.5 times more resolution
than previous devices. The experimental apparatus alongside an illustration
of the inner-working are shown in Fig.5.1b. For each marker, the camera sees
the transparent yellow markers on the top layer. The opaque magenta mark-
ers placed closer to the surface partially overlap the yellow marker on the
image. Where this overlap occurs, the color seen by the camera appears red,
resulting from the combination of yellow and magenta. Applied forces on the
surface of the sensor shift and stretch the magenta markers, which leads to an
apparent change in size and of color content of the image of the markers. The
pattern made by markers is unique to the 3-dimensional displacement of the
magenta marker, which is itself affected by the stimulation on the surface. A
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FIGURE 5.1: (a) Grip regulation in humans involves reacts to vari-
ous frictional conditions at the instant of contact, even before a lateral
force is observable. Larger grip forces are engaged for slippery objects.
Adapted from [75]. (b) Experimental apparatus and sensor used for es-
timating the frictional interaction at initial contact. The indenter presses
against the elastic membrane of the sensor, fixed on a rigid base. The
stretch and motion of magenta markers relative to the yellow marker
were captured by a camera. (c) When in contact with high friction sur-
faces, the lateral motion of the marker is smaller than when in contact
with low friction surfaces, for which local slippage appears. The sensor
uses this effect to estimate the frictional state during initial contact.

calibration of the marker’s change of shape and color allows the estimation
of friction between the contact and the 3d deformation of the sensor.

5.2.2 Apparatus for dataset creation

The dataset used for calibrating the sensor, estimating topographical fea-
tures of the object and the friction between the contact surfaces was ob-
tained using the apparatus shown in Fig.5.1b. The sensor was clamped on
its edges between transparent acrylic plates and supported on the bottom.
LEDs mounted under the acrylic support provided diffuse illumination lim-
iting the shadows and influence of external light sources. A high-resolution
camera (A7Rii, Sony Corporation) set at 24-mm focal length, with manual fo-
cus and manual white balance, captured images of the marker array. During
the experiments, 3-dimensional displacements were applied by a 3d printed
indenter or glass lenses mounted on the end effector of an industrial robot
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(UR5, Universal Robots). The force sensor (FT300, Robotiq), mounted on the
end effector of the robot, measured applied forces. A sliding procedure after
the initial contact provided ground truth of coefficient of friction.

5.2.3 Shape perception

The pattern formed by the markers directly informs about the topography of
the surface. When the object is pressed, the surface of the sensor deforms,
stretching and moving the soft magenta markers. The pixel shift of each
marker on the sensing image is directly linked to its relative lateral displace-
ment. In addition, the observed size of the magenta marker increases under
normal pressure. This change of size might not induce pixel-sized motion,
but it does induce a visible change in color when combined with the overlaid
marker patch. The change of color provides a direct measure of the normal
displacement of each marker. Once the lateral and normal displacements are
known, the local shape of the object can be recovered by bi-linear interpola-
tion of the normal displacements, to consider the lateral movement of each
marker.

5.2.4 Estimation of local friction

The friction of the surface has a dramatic effect on how much the marker
is stretched for a given force. A high friction surface restricts the deforma-
tion of the surface, and consequently, markers experience only little stretches.
However, when the sensor is in contact with a convex and slippery object,
the markers laterally stretch due to the Poisson effect, the phenomenon by
which a material tends to expand in directions perpendicular to the direc-
tion of compression. The same behavior can be seen on the entire contact
with larger lateral displacement of the magenta marker for the low friction
case due to local sliding. Friction produces a pattern of deformation that is
markedly different under different frictional conditions, even if the normal
pressure distribution is the same. The images in Fig.5.1c illustrate the effect
of friction of the object on the stretch and shift of the marker.

Therefore, the friction between the indenter and the tactile sensor can be
estimated by observation of the behavior of the marker. To estimate friction,
we trained a convolutional neural network to derive an estimate from the
tactile images captured by the camera of the sensor. This network takes into
account the size and spatial distribution of the markers to derive a friction
estimation.
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5.3 Data-driven shape estimation

Previously we estimated the displacement field of the marker from the change
of hue which is correlated to the normal displacement, and we used center
tracking of the marker to retrieve their lateral displacement. While the lat-
eral displacement was directly proportional to the actual deformation at the
surface, the estimation of the normal displacement at the surface required a
complex non-linear model. This model also shows a dependency on friction
and softness of the indenter and tends to underestimate the normal displace-
ment for high friction surfaces.

To remedy these limitations and improve the estimation of the normal
displacement, instead of calibrating the sensor from a single marker as what
has been done before, a convolutional neural network (CNN) was employed
to calibrate the relationship between marker shape and color and its normal
displacement. To train the network, it was fed with real images of the mark-
ers as input and simulated deformation found with finite element models.

5.3.1 Training and testing datasets

The convolutional neural network model for shape estimation was trained
using supervised learning. To build the dataset that links the images seen
by the sensor to the deformation of the surface, we used real measurements
made with the apparatus and compared them to the displacement simulated
with a finite-element model, shown in Fig. 5.2a. Four rigid hemispherical in-
denters with radius r = {10 mm, 15 mm, 20 mm, 25 mm} were used to press
the sensor in both the real and the virtual environments. Each indenter was
lowered at the center of the sensor with a step size of 0.5 mm during a total
displacement of 2.5 mm on the z axis.

Finite-element simulation: The simulation was achieved using COMSOL by
a model of the sensor comprising a rubber of Young’s modulus of 0.5 MPa
which matched the Young’s modulus of the material used in the real sensor.
The boundary conditions were also set to mimic its real counterpart, where
all edges and faces were set to be fixed (i.e. displacements are null), except
for the top surface which was left free (i.e. forces are null). An array of 21 by
21 marker points spaced with 1 mm distance was set at 0.5 mm depth from
the top sensing surface. Interaction with two coefficients of friction µ = 0.4
and µ = 0.1 at the contact surface was simulated, matching the experimental
conditions. The simulator is able to model the distributed 3D contact forces
and the deformation of the sensor for each indentation test.
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FIGURE 5.2: Comsol simulation of a indenter of 20 mm in diameter
pressing on the sensor with an indentation depth of 2.5mm. Red dots
shows the displacement of the markers under different frictional con-
ditions. Under low friction, the lateral displacement of the marker is
slightly larger.

Fig. 5.2b shows the middle cross-section of the sensor under 2 mm nor-
mal indentation applied by a hemispherical indenter of 10 mm in radius.
Differences on the displacement vectors caused by different friction can be
observed in the figure. Fig.5.2 shows the lateral and normal displacement
field of the cross-section for different indentation depth. The lateral shift of
the marker around the contact region is larger for high friction surfaces than
for slippery surfaces. The simulation is consistent with the previous remark
that high friction surfaces limit the lateral shift of the marker.

Experimental measurements: Input images from the real experiments were
collected when the sensor was pressed with spherical indenters at the center
of the sensing surface. To be consistent across the real and virtual environ-
ments, the size of the indenters, made from glass lenses, and their indenta-
tion depths were matched to the one of the simulations. To obtained a low
friction condition of µ ⇡ 0.1, we applied oil onto the surface of the inden-
ter. The high friction (µ ⇡ 0.4) condition is achieved by directly press the
indenter onto the sensor after the glass was degreased. During each of the
trials, a camera captured the shift and stretch of the markers. For each differ-
ent contact condition, the robot pressed along the normal of the surface with
a speed of 10cm/s followed by a 5-second relaxation period. The isometric
procedure was repeated 8 times to collect enough data for the training and
estimate the variability to uncontrolled factors. The images fed to the net-
work consists of the image of the sensor under load to which the unloaded
image was subtracted.
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5.3.2 Calibration to recover displacement fields

To calibrate the sensor, conventional marker tracking method was used to
extract the lateral deformation of the sensor. But for normal deformation, a
CNN model was trained to convert the sensing image to marker displace-
ments. To train the network and derive a measurement of normal displace-
ment field which is invariant to the local coefficient of friction, we partitioned
initial images into numerous smaller subimages. To this end, the raw images
with 441 markers were cut into 289 subimages of 3-by-3 markers with a size
of 85⇥85 pixels for each subimage. The coefficient of friction strongly influ-
ences how the magenta layer is stretched and therefore, the hue value of a sin-
gle marker can be different even under the same normal pressure. Using the
8 neighboring markers, the accuracy of the regression greatly increased. The
underlying reason is that the surface of the sensor is a continuum medium,
and a localized stimulation diffused throughout the body, therefore, markers
away from the contact are affected. More importantly, the subimages contain
redundant information about friction which affects the stretch of the central
marker but also with the inter-marker spacing. Therefore training the net-
work with these subimages allow for providing the deformation data, while
negating the influence of the frictional contact.

Fig. 5.3a demonstrates how the training dataset was constructed. Illustra-
tion of the construction of the subimages is shown in Fig. 5.3b and is match
with the simulated normal displacement value illustrated in Fig. 5.3c.

Contact between 

sensor and object

image

subsampling

Simulated normal

displacement

normal indentation

dz (mm) = {0, 0.5, 1, 1.5, 2, 2.5}

indenter

r (mm) = {10, 15, 20, 25}

contact

surface

μ = {0.1, 0.4}

dz

labeling of the segmented image

(a) (b) (c)

FIGURE 5.3: (a) Experimental and simulated conditions used to pro-
duced the input training dataset from real images and virtual displace-
ment vectors. (b) Subimage creation uses 8 adjacent markers to each
marker. (c) Displacement labels simulated via finite-element method.
(b) and (c) show how the experimental images were labeled with the
simulated results

The structure of the convolutional neural network used for calibrating the
observed image of the sensor to the displacement of its surface, is shown in
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Fig. 5.4. 384 tactile images, for a total of 110976 subimages, were captured in
the experiments for training the CNN model. 80% of the images were used to
train the network, 10% for validating the results during the training, and 10%
for testing the accuracy after convergence. The network was trained with a
fit goodness of R2 = 99.2% for training and R2 = 98.4% for testing.

16
32

64

Concatenate

FC

FC
Regression

Conv+MaxPooling dx dy

dz

Marker tracking

Reconstruction

Input images

3d displacement

field500

50

Subsampling

(3x3 markers)

FIGURE 5.4: Structure of the CNN for estimation of the normal dis-
placement field. The input images were subsampled from the tactile
images captured by the camera and then trained by 3 convolution lay-
ers followed by 2 fully connected layers. A regression layer was used
to output the normal displacement.

5.3.3 Friction-invariant shape estimation

The results of the estimation were put to the test using two indenters not
seen before by the network during training: a flame-shaped indenter and a
barrel-shaped indenter. To reconstruct the 3d displacement map, images of
the sensor under pressure were captured and subsampled in order to be sent
as input images into the network obtained in the previous section. The net-
work outputs the normal displacement of the marker located in the center of
each 3-by-3 markers array subimage. The lateral displacement of the marker
in the middle of each subimage was obtained by marker tracking. The 3d
displacement vector related to each subimage was formed by the normal
displacement predicted by CNN and the lateral displacement of the marker
in the middle of that subimage. Then the 3d displacement field was recon-
structed by rearranging the displacement vector into the original 21 by 21
markers array. The whole displacement estimation procedure is shown with
the convolutional neural network structure in Fig.5.4.

The results of 3d displacement field estimation for the two indenters are
shown in Fig.5.5a. Results on normal displacement for both indenters show
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that estimation of normal displacement using the convolutional neural net-
work shows much less noise and better accuracy comparing with estimation
using the hue value of a single marker.
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FIGURE 5.5: (a) Estimation of the displacement field and the 3d re-
construction map when pressing a barrel-shaped object and a flame-
shaped object onto the sensor. (b) Comparison of the normal displace-
ment field estimated by the convolutional neural network and by the
hue changes, in the high and low friction conditions.

We compared the convolutional neural network to the previously used
hue method on the barrel-shaped indenter. The results can be observed in
figure Fig. 5.5b. The object was pressed at the center of the sensor with an
indentation depth of 2 mm. Two frictional conditions were tested with coef-
ficient of friction µ = 0.1 and µ = 0.4. Each test was repeated 3 times, and
the normal displacement field was estimated using both network prediction
and hue change. With the hue method, the displacement with high friction
shows underestimations for all the three repetition tests, while the displace-
ment field estimated by the CNN is invariant to the coefficient of friction,
which demonstrated the power of the convolutional neural network using
3-by-3 to solve the underestimation problem which regular calibration from
the simple variation of hue suffered from.

5.3.4 Effect of friction on the displacement field

To test the generalization of the calibration to different frictional conditions,
we experimented with estimating the deformation pattern on a barrel-shaped
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object with a mixed friction pattern. We coated half of the part with oil to cre-
ate an object where one side was slippery while the other maintains a high
level of frictional resistance. The image of the marker deformation was mea-
sured upon pressing the barrel-shaped object on the sensor with an indenta-
tion depth of 2mm. The results of the estimation of three frictional conditions,
high and low friction and mixed friction is shown in Fig. 5.6a. The three con-
ditions corresponded to the indenter degreased, fully coated with oil, and
for which oil was applied on only half the surface. Fig. 5.6b shows the es-
timated displacement field on x-axis for the split case. Fig. 5.6c plotted the
lateral displacement at the middle cross-section obtained from all the three
frictional conditions. The lateral displacement with the split coefficient of
friction shown in the dotted blue line coincides with the displacement for the
high-friction side on the left side of the figure, and with the displacement for
low friction side on the right side of the figure. This observation on lateral
displacement field demonstrated the capability of the sensor to correctly re-
cover the 3-dimensional deformation of each marker even in the presence of
arbitrary frictional pattern.
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FIGURE 5.6: (a). The generalization of the calibration network to fric-
tion was tested on three different frictional conditions. (b) The cross-
section shows the lateral displacement of the markers on the main ver-
tical axis. (c) The green, red and blue lines show the displacement for
the high, low, and mixed friction. Note that the blue line coincided with
the green line on the high friction side and with the red line on the low
friction side, demonstrating the discriminability of the approach.
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5.4 Learning to estimate friction

The second set of experiments is design to take advantage of the friction-
dependent behavior of each marker to derive an estimation of the distribu-
tion of the coefficient of friction throughout the contact surface. When the
sensor is pressed on an object, the markers deform, and the pattern of defor-
mation is affected by the local frictional constrained. High friction surfaces
impose a non-slip condition of the surface of the sensor, limiting the lateral
displacement of the embedded markers and conversely, when the surface of
the object has low friction, the surface of the sensor is free to move laterally
and markers shift toward the outside of the contact. The approach lay down
in this section reverses the relationship by extrapolating from the lateral dis-
placement and deformation of the markers an estimate of the local coefficient
of friction using another convolutional neural network.

Figure 5.7 shows the displacement map on x, y, and z directions resulted
from the simulation and the displacement estimation. The sensor was pressed
by an indenter of 10 mm in radius at 2 mm indentation depth. The images
on the top were captured with µ = 0.4, and the images below were with
µ = 0.1. The middle cross-section of the displacement field on x-axis shows
that, when the friction between the sensor and the indenter is low, the lateral
displacement of the marker is obviously larger than high friction. Therefore,
the pattern of the markers under pressure captured by the camera indicates
the friction of the contact surface, which was used to build the CNN model
for friction estimation.

5.4.1 Training dataset

For collecting the training dataset for friction estimation, the same sensor im-
ages used for training the network for shape estimation were used. To add
the diversity of the dataset, the sensor was pressed by a flat square inden-
ter with 20 mm in length, and a cylinder indenter with a radius of 10 mm.
These two new indenters promote the sensitivity to edges and sharp corners
not seen in the spherical indenter. Similar to the collection of the rest of the
dataset, these two indenters were lowered with a total indentation depth of
2.5 mm in 0.5 mm step size at the center of the sensor. Two coefficient of
friction µ = 0.4 and µ = 0.1 were applied using oil. Each test was repeated
8 times to provide redundancy. These additional experiments added 96 new
images or 27,744 subimages into the training dataset.

To collect the output labels for the training dataset, we incorporated the
displacement estimation. All the input images for friction estimation were
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FIGURE 5.7: Displacement field for a spherical object pressing on the
sensor. The lateral displacement field along the cross-section highlights
the difference for different frictional conditions. High contact friction
limits the lateral motion of the marker, resulting in small lateral dis-
placement magnitudes of the marker.

first sent to the first network to estimate the displacement and to reconstruct
a 3d displacement map of each image. Then, for each estimated displacement
map, the regions where the normal displacement of the marker smaller than
0.1 mm were labeled as no contact. The reminder areas are labeled as µ = 0.4,
or µ = 0.1, depending on the coefficient of friction applied for each indenta-
tion test. For the training dataset, the labels at the contact region were either
µ = 0.4 in the case where the object was degreased or µ = 0.1 when oil was
applied on the entire indenter surface.

5.4.2 Convolutional neural network for friction estimation

Before training, the raw images captured by the camera were cropped into
subimages containing a 5-by-5 markers array with a size of 145⇥145 pixels
for each subimage. The subimages were used as training input, and the cor-
responding local coefficient of friction on each marker was used as output
data for labeling the training images. Fig. 5.8a shows the contact conditions
contained in the training data, Fig. 5.8b illustrates the image crop of raw
images and Fig. 5.8c shows the output labels.

The network used to estimate friction contains 3 convolution layers, a
concatenate layer, followed by 2 fully-connected layers. The outputs of coef-
ficient of friction are classified into 3 categories: µ = 0.4, µ = 0.1 and no contact,
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FIGURE 5.8: (a) Contact conditions and indenters used for experiments
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friction labels. (b) Image partitioning into 5-by-5 markers subimages.
(c) Illustration of the local friction labels. The no contact area was thresh-
old from the displacement map. The friction labels in the area under
contact were set by the coefficient of friction applied during the exper-
iments. (b) and (c) shows how the experimental images were labeled
with the simulated results

using a Softmax layer. The solver for the training network is a stochastic gra-
dient descent with momentum (SGDM) optimizer. The validation accuracy
and loss were calculated with a frequency of 30 iterations per epoch to find
the optimal weights for the convolutional filters. The training has 10 epochs,
and the data was shuffled after each epoch. 480 raw images in total were
captured and segmented, leading to 138720 input images, among which 80%
were used for training the weight and biases, 10% for validating and refining
the training, and 10% for testing the trained network. The validation and the
testing results reach an accuracy of 92.5% and 91.2%, respectively.
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FIGURE 5.9: Structure of the convolutional neural network for friction
estimation. The outputs are classified to high friction, low friction, and no
contact using a Softmax layer.
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5.4.3 Generalization of the estimation of friction

The procedure for estimating friction from an arbitrary sensor image is il-
lustrated in Fig. 5.10. The images captured by the camera are partitioned
into subimages, which contain 5-by-5 markers arrays. The subimages were
used as input of the trained network. With these input images, the desired
estimated friction map should be half with high friction and half with low
friction, and is projected back to the grid map.

no contact

μ = 0.4
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Captured
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Reconstructed
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CNN
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FIGURE 5.10: Procedure for the estimation of the coefficient of friction.
The object with the split frictional condition (half surface applied with
oil) was pressed against the sensor. The obtained tactile images were
subsampled to 5-by-5 markers array and sent to the CNN model to
output the local friction classified by: no contact, µ = 0.4 and µ = 0.1.
The output values were then rearranged to form the friction map.

While the training dataset involved a spherical object, a cylindrical object,
and a flat square object, the network can generalize its estimation of the fric-
tional resistance to other shapes. To illustrate the generalization capabilities,
five objects shown in Fig. 5.11a were pressed against the sensor with an in-
dentation depth of 2 mm. These objects were 3d printed in polylactide (S3,
Ultimaker) and coated with oil on their right side only. The results of the es-
timation of friction are presented in Fig. 5.11b. Overall the network correctly
predicts that the coefficient of friction is high (µ ⇡ 0.4) on the left part and
smaller (µ ⇡ 0.1) on the right part, regardless of the shape of the object. The
shape itself however is not correctly interpreted, showing the limitation of
the network. The prediction result shows a mean accuracy of 76.1% for all
the indenters tested in this experiment.

Additionally, we compared the estimation of the cross shaped indenter
with uniform low and high friction. The result are shown in Fig.5.11c. In
the uniformly high friction case, where the indenter is degreased, the predic-
tion is correct for the most part but fails on the edge of the object probably
because of local slippage. On the other end, the uniform low-friction con-
dition is correctly predicted as the friction coefficient equals to 0.1 over the



96 Chapter 5. Friction estimation

μ ≈ 0.4

indenter 
shapes

μ ≈ 0.1

friction
estimation

μ ≈ 0.4 μ ≈ 0.1

(a)

(b)

FIGURE 5.11: Friction estimation results when pressing different ob-
jects onto the sensor. Yellow pixel shows the region with high friction,
light blue shows the region with low friction, and dark blue means re-
gions with no contact. The friction estimation method allows the de-
tection of two frictional states on the same surface for different object
shapes. (a) Mixed friction distribution. (b) Uniformly distributed fric-
tion.

entire contact area. The difference between the two conditions might result
in a bias towards low friction estimation built in the network. Nonetheless,
the results demonstrated that the sensor is able to estimate the coefficient of
friction on different objects via a simple press. More importantly, the sensor
can distinguish different friction value when the coefficient of friction on the
contact surface is not uniform.

5.5 Discussion

Tactile sensing in robotics has been mainly concerned with detecting contact
events. Recently, its true potential as a source of information about the state
of slippage and robust shape detection has been exploited[73, 170, 39, 204,
79, 46]. Building upon previous work, we introduce a new method that uses
convolutional neural networks to estimate the distribution of friction and the
3-dimensional deformation field that the sensors experience when pressed
with an arbitrary object. While the shape reconstruction depends on a rel-
atively small number of sensing elements and is not as precise as solutions
using retrographic sensing [79], it provides a unique look on the state of fric-
tional resistance that the skin experiences as well as sufficiently well-defined
corner and edges that are essential for estimating the pose of the object in
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hand. To illustrate this unique capability, the friction estimation and dis-
placement field are merged in Fig. 5.12, where the color represents the local
coefficient of friction. The high friction region, shown in green, provides an
optimal location for grasping the object stably without recruiting large grip
forces.

Area with high friction Area with low friction

FIGURE 5.12: Merged displacement field and friction map.

To the best of our knowledge, this is the first demonstration of the ability
to measure the distribution of friction only with a single contact, which helps
locate the area of high friction and could inform new grasping strategies. Pre-
vious works have shown estimation of friction on a spherical contact [165,
120], but could not resolve differences in adherence inside the contact area.
By estimation not only the global adherence of the contact, but also a map,
a gradient of friction can be computed to help predict the direction of slip-
page and potential area where the skin might detach first. Human grasping
behavior takes advantage of the knowledge of friction to maximize the sta-
bility while minimizing the grip force, for example, when grasping a pen on
the rubbery part, or holding a half soaked soap bar on the dry side. Taking
inspiration from these behaviors, the estimation of friction distribution may
potentially help to guide the motion of robots towards an optimal grasping
location in order to ensure a more stable manipulation.

The sensor used in this work has 441 sensing markers, which improves
the spatial resolution from the 100 and 77 markers sensors we used in pre-
vious works in [106, 107]. This resolution improvement increased the ability
to estimate the displacement field and the shape and feature of small objects.
This is particularly important to find edges and corners which could be used
to secure grasping and locate objects. However, small details of the com-
plex shape, such as the flame, are not well resolved. Increasing the density
of marker and increasing the training data on various objects could improve
the shape perception. In addition, today the friction map possesses a crude
quantization, and can only resolve two level of adherence. Maeno et al. [120]
reported detecting about 5 levels of friction, using the entire contact area.
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Building on this, larger subimages with more resolved deformation could
potentially increase the quantization of the friction. To achieve a finer accu-
racy, a new training dataset containing various levels of friction needs to be
created.

One common criticism of machine-learning methods is their lack of trans-
parency of the way they reach certain results. This work is no exception.
While we are confident that the pattern of the markers is used to estimate de-
formation and friction, the way the network operates to reach a conclusion is
still largely unknown. Future work will use tools from the field of explain-
able artificial intelligence to further the understanding of the inner working
of the networks.

This work investigates the development of friction during the initial con-
tact. However, slippage and shear forces are not yet captured. Several works
have shown that the lateral displacement of the markers on an elastic mem-
brane can be used to detect incipient and full slippage [73, 39]. Such ap-
proaches can straightforwardly be implemented alongside the current work.
At the moment, the method measure what we call the frictional capacity, rep-
resenting the amount of shear traction that a single element can support. Fu-
ture works will endeavor to quantify how much of this capacity is currently
being used.

5.6 Conclusion

Inspired from the early grip adjustments in humans during lifting tasks [74],
we proposed a method to estimate of the frictional state between the object
and the sensor at first contact via a simple press. This method uses a bespoke
tactile sensor that employs an embedded camera to capture a dense picture
of the 3-dimensional deformation of an elastic body.

We improved the sensing design by increasing sensor spatial resolution
with 441 arranged markers, which is around 4.5 times more than the first ver-
sion. This improvement allowed us to train a convolutional neural network
to calibrate the estimation of the normal displacement and lateral displace-
ment and subsequently recover the shape of the object. Comparing with the
first version using a direct change of hue, the proposed convolutional neural
network eliminated the influence of friction on normal displacement estima-
tion. This method produces a tactile image with less noise and better accu-
racy with R2 = 99.1 for training and R2 = 98.4 for testing. The 3-dimensional
shape of the object could be reconstructed using the trained network.
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We also trained another convolutional neural network to estimate the fric-
tional condition upon the initial contact with the object. To detect the area of
low and high friction, partitioned markers array were used as input images.
With the proposed algorithm, the sensor is able to estimate the frictional state
at first contact via a simple normal pressure with an accuracy of 76.1%. This
early estimation of friction would allow the robot to adjust the grip force at
the earlier state of grasping, even before any shear forces or slippage occurs.
This improvement is likely to be paramount for enabling stable and robust
manipulation. Moreover, the sensor is able to distinguish different frictional
conditions at the same contact surface, which can further help the robot to
choose the optimal grasping location to prevent slippage. Future work aims
at the implementation of the sensor on a robotic hand to provide tactile feed-
back for robotic manipulation control.



100 Chapter 5. Friction estimation

Supplementary Material

Sensor fabrication

The manufacturing process is built upon previous works. First, the base is
molded from a transparent elastomer (SortaClear 12, Smooth-On, Macungie,
PA, USA) in a high-resolution 3d-printed mold (PLA, Ultimaker, Gelder-
malsen, Netherlands). The grooves left by the cast are filled with the ma-
genta markers, made from the same elastomer in which a dye is added. Then
a protective layer is molded, on top of which the yellow filter is placed. The
yellow elements are laser cut, and the rest of the film discarded. A protective
transparent layer embeds the yellow transparent marker. The whole opera-
tion takes approximately 2 days, including the curing time.

FIGURE 5.13: Experimental set-up. The sensor is fixed on a rigid base
and illuminated with LED lights. The 3d printed indenter is mounted
onto the robot to press the sensor. The sensing image is reflected by
a mirror installing under the sensor at 45 degree. The reflected image
was captured by a Sony a7Rii camera for post-processing.

Measurement of ground-truth coefficient of friction

To find the actual value of the coefficient of friction, we used the robotic arm
as a tribometer by sliding the end effector across the surface and measur-
ing the normal and tangential forces. The coefficient of friction between the
sensor and the indenter are calculated by the ratio of applied lateral force to
normal force measured by the force sensor while sliding the indenter onto
the sensor. Each test was repeated 5 times with 3 different indentation depth
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as shown in figure 5.14 to calculate the average value of the coefficient of fric-
tion. The coefficient of friction is found to be approximately 0.1 and 0.4 for
the surface with oil and without oil, respectively.
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FIGURE 5.14: Images and time series of the sliding procedure to gather
the ground truth value of the coefficient of friction.

Image processing

The image processing was performed by Matlab. The top-hat filter was used
to correct the non-uniform illumination of the image. Then, the contrast was
adjusted to enhance the variation of the color. The image was then trans-
formed from RGB to HSV color space. The regionprops function was then used
on the hue channel to detect the centroids and the region of interest of each
marker. The boundaries of the region of interest of each marker were then
used to define the boundaries of the subimages with 3-by-3 or 5-by-5 marker
arrays.

Hertzian curvature equivalence

Human and robot fingertips are spherical and soft. The shape and compli-
ance allow them to grasp a wide variety of objects, by conforming to all sort
of shapes and surface curvature. However, with our current manufactur-
ing techniques, the high-density tactile sensors could only be manufactured
in a planar form. To remain in a Hertzian contact condition, and ensure
that the area of contact develops in a continuous surface, we reversed the
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roles and the object had a spherical form. According to Hertz contact the-
ory, when two elastic body is in contact, only the relative radius 1/Req =

1/Rsphere + 1/Rplane and indentation depth impacts the size of the contact
area. Simulation in Comsol, shown Fig.5.15 , confirmed that the displace-
ment field was similar when the sensor was spherical or flat as long as the
average curvature of the contact was identical.
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THe thesis set out to build a tactile sensor able to provide a rich represen-
tation of the tactile scene that lives under robotics fingers. The research

led to a novel tactile sensor based on embedded cameras, which is able to
perceive important mechanical properties of the object in hand. The sensor
uses color-mixing principle of a overlaid markers array to convert the me-
chanical interaction into a visual image captured by the embedded camera.
Using inverse models, we show that we can compute the 3-dimensional dis-
placement field with a fine spatial resolution directly from the image. This
sensing design solve the common problem of the commercially available tac-
tile sensors: low spatial resolution and lack of 3-dimensional measurements
which are central to sensing contact information such as friction and slip.
The main contributions of this research addresses: (1) the design and de-
velopment of new tactile sensor for converting mechanical interaction into
interpretable tactile data; (2) extraction of interaction information and object
properties from the tactile data.

6.1 Camera-based transduction

A family of tactile sensors, named ChromaTouch, was developed in this re-
search and rely on the color-mixing process. This sensing concept showed
the possibility of converting the contact information into a change of color
which can be used to subsequently reconstruct the 3-dimensional deforma-
tion of the soft membrane of the sensor. We then extended the concept to a
hemispherical shape which conforms with a wider set of objects. This new
sensors was able to estimate the global curvature of the object with few mil-
limeter of indentation. We also improved the spatial resolution of the planar
sensor that allows measurements of small object features. The sensor with
high resolution is used to estimate the friction distribution of the contact sur-
face. A representative sample of the numerous sensors fabricated during my
studies are shown in Fig. 6.1.

The survey of the literature illustrates very well that robotic manipulation
and grasping can fundamentally benefit from having tactile feedback. How-
ever, the relevant physics and metric that allows to depict a clear picture of
the tactile interaction is still subject of debate. In this work we focused on
extracting the meaningful mechanical information, that is not only an infor-
mation about contact and interaction normal to the surface, but also lateral
deformation that occurs due to frictional effects. But measuring the inter-
action in 3 dimensions is only useful if the spatial sampling of the contact
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scene is fine enough to resolve the subtle events that occurs inside the area of
contact.

The sensor proposed in this research solves these two problems of dimen-
sionality and density. The deformation induced by the "touch" of external
objects is captured as 2d color images, from which information of the in-
teraction and the object could be extracted. By embedding markers inside
the elastic body, a deformation map with high spatial resolution could be
reconstructed through marker tracking method. However, it is difficult to
extracted the normal displacement of the markers from the 2d image cap-
tured by the embedded camera. ChromaTouch overcame this drawback by a
method using color mixing principle. Two separate layers, one with opaque
soft magenta markers and another with transparent rigid yellow markers of
colored markers, are overlaid and embedded inside the elastic body of the
sensor. When an external force deforms the sensor, the magenta marker is
stretched, leading to color change of the overlaid marker patch. The normal
displacement of each marker was found approximately proportional to the
change of hue in HSV color space. One of the main advantages of using color
channels to compute the normal displacement field is that the markers con-
figuration can be resolved using just a few pixels. Comparing to methods
that extract the normal deformation by counting the number of pixels con-
taining in each marker, The change in color due to the stretch of the marker
is not influenced by the resolution of the camera and the pixel density of
the marker. Moreover, as in HSV color space the hue is independent to the
brightness, using change of hue to compute the normal displacement shows
good robustness to illumination non-uniformity. This process of encoding
the normal displacement reach a precision of 50 µm. However, the calibra-
tion using hue value was later proved to lead underestimation on normal
displacement of the markers due to the influence of coefficient of friction.
To address this issue, a convolutional neural network was built to estimate
the normal displacement of the marker. This model provides a goodness of
fit of R2 = 99.2% with the training data and R2 = 98.4% with the testing
data, which demonstrate the ability of generalizing to unknown data. This
approach eliminates the influence of surface properties on normal displace-
ments estimation and shows less noise compared to the method using the
variation of hue. Besides, from the first version to the last version, the spatial
resolution of the sensor was improved from 100 sensing points to 441 sensing
points. This higher resolution enables a much denser measurements and the
detection of smaller geometry variations of the object.
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FIGURE 6.1: ChromaTouch Zoo: A representative subset of all the sen-
sors fabricated during this thesis, from planar to spherical, from low
resolution to high resolution.

6.2 Tactile perception

The hemispherical sensor is beneficial for exploration tasks as it allows the
sensor tip to conform to the touched object with arbitrary shapes. For ex-
ample, when the object has a concave shape, the mechanical interaction is
discontinuous using flat sensor as the contact is made at the edge of the sen-
sor. In contrast, a spherical sensor can ensure a continuous contact while
pressing against an concave object if the sensor has a smaller radius than the
convex object. With this hemispherical sensor, the curvature of the object
was estimated by curve fitting the displacement field of the markers to the
Hertz contact model. Imagine the task of grasping a calabash which has both
concave and convex part. The concave part of the object would be a more
stable grasping location because the gripper can have a larger contact area.
Also, as the contact between the concave surface of the object and the con-
vex surface of the sensor is similar to a spherical joint, a grasping location
at concave region might limit the degree of freedom of the object and avoid
dropping of the object. The curvature estimation method proposed in this
work allows the sensor to estimate the curvature of the object after a 1 mm
normal indentation, without needs of sliding motion. This estimation may
provide the shape properties to robots as soon as the contact is made, and
guide the grasping location of the robot to ensure a stable grasp.

However, we observed that the displacement of individual points did not
follow a pure normal trajectory under normal pressure, which contradicts
the prediction of Hertz theory. In addition to a normal motion, the markers
also shifted toward the outside of the contact area due to the lateral expan-
sion of the soft sensor under pressure. More interestingly, we found out that
the lateral shift of the markers depends on the friction of the contact sur-
face. Using the third version of the ChromaTouch sensor which has a planar
sensor head and 441 sensing points, we demonstrated that this small lateral
motion of the markers could be used for estimating coefficient of the surface
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without having to slide the sensor on the object. A high coefficient limits the
lateral motion of the markers due to the adherence between two surfaces,
while a low coefficient of friction allows the marker to move laterally follow-
ing the lateral deformation of the soft sensor under only normal pressure.
Based on this effect, a convolutional neural network was trained to predict
local coefficient of friction of the contact surfaces using the images containing
the pattern of the markers under normal load as input data. The proposed
method allows the sensor to estimate the frictional state of the object via a
simple press during the first contact. This early estimation of friction would
allow the robot to adjust the grip force at the earlier state of grasping, even
before any shear forces or slippage occurs. A more remarkable advantage
of this method is that, it allows an estimation of the local coefficient of fric-
tion, such that the sensor is able to determine friction variations at the same
contact surface. Experimental results shows that the sensor is capable of dis-
tinguishing two coefficient of friction existing on the same contact surface at
first contact via a simple normal press. The fusion of the estimated displace-
ment field and the coefficient of friction of each marker may show potential
optimal grasping location for robot, because under the same grip force, the
slippage is less possible to happen in the region with high friction. More
importantly, using the method proposed in this work, the estimation of the
curvature, the displacement field and the coefficient of friction could all be
done via a simple normal pressure without any need of lateral sliding. It can
provide robots an early estimate of the contact properties, in order to plan
appropriate grip force and location for a stable grasping.

6.3 Future work

The sensor has shown its efficacy at perceiving shape and the coefficient of
friction of an object at first contact, without requiring long and complex ex-
ploration of the tactile scene. As no tangential force or slippage is necessary
to capture rich tactile data, this sensor could provide robots an early estima-
tion of the object properties and ensure a stable manipulation. Future work
will explore how the early perceptual cues can inform the control of complex
robotic manipulation.

6.3.1 Manufacturing improvements

The spherical version of the sensor shows the most promise as it can conform
to arbitrary shapes. However the current manufacturing capability limit the



108 Chapter 6. Conclusion and future work

achievable resolution. We demonstrated that high resolution can be achieved
on the planar sensor which is useful for fine measurements. The next step
in sensor manufacturing will aim at combining the spherical sensing design
with the high spatial resolution for implementation on robotic hands. Em-
bedding a dense array of markers could largely improve the spatial resolu-
tion of the sensor, but also create manufacturing challenges.

At the time of writing, we are exploring multi-material 3-d printing which
could help simplify the manufacturing procedure. In particular this would
be beneficial for spherical sensors, which to date requires complex folding to
ensure the overlapping of the markers. Softer material could also be used in
future work, allowing the sensor to deform more easily and make a contact
with arbitrary objects over a larger area. Also, softer material will improve
the sensibility of the sensor as softer markers would be more stretched under
the same force.

6.3.2 Machine learning improvements

Two methods for estimating the 3d displacement field were developed using
color mixing and convolutional neural network, respectively. The convolu-
tional neural network could eliminate the effect of friction on the estimation
of normal displacement of the marker. However, the sensor is not sensitive
enough to small details of complex shapes. Object features such as textures,
small protrusions, and holes cannot be precisely detected by the sensor. In-
creasing the density of the markers and decreasing the size of the marker
could improve the performance of the sensor on shape estimation. Enriching
the training dataset using various objects could also be an effective way to in-
crease the sensitivity of the sensor on small shape features. Also, in our work
for friction estimation, only two different values of the friction were used in
the experiments to test the proposed method. However, the coefficient of fric-
tion takes values ranging from 0 to ⇡1 in real scenario. In addition, the fric-
tion estimation shows inaccuracies when the object has an irregular shape.
In future work, more friction values should be included in the training data,
so that the sensor would be able to estimate the friction in real manipulation
tasks. Adding training data using more objects with different shapes could
also increase the accuracy of friction estimation for different contact condi-
tions. Lastly, to gather understanding of the set of feature that are relevant
to classify and discriminate frictional patterns, future work will explore the
use of explainable artificial intelligence to gather deeper understandings of
the inner working of the networks.
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6.3.3 Signal processing improvements

In this work, the sensor only measures the displacement of the markers. As a
localized force applied at the center of the sensor will induce a displacement
that has visible effects on all the markers, suitable means of measuring the
force applied to the surface remain to be developed. Deconvolution meth-
ods [61] might be a way to determine the stress and traction forces exerted at
the surface from the distribution of the markers.

In addition, for all the experiments carried out in this research, the im-
ages of the markers were firstly captured by the camera, and then processed
offline using Matlab after gathering all the necessary images. The offline
image processing allowed us to test the sensing designs and the estimation
algorithms. However, real-time processing should be developed in order to
use the sensor in real scenarios in the future.

6.4 Outlook

With this work, we demonstrated the possibility of gathering information
about the state of the contact at the earliest instant of the interaction. This
new outlook on tactile sensing allows understanding the contact conditions
that constrain the interaction between the robotics finger and the object. This
understanding will drive new perceptual capabilities to extract information
about the nature of the object but also help plan complex and dexterous mo-
tion.

With this new sense, robot capabilities will expand to new and challeng-
ing tasks which are still unreachable today: Human-robot interactions will be
safer with a soft touch applied by the robotic interface; surgical robots with
the sense of touch would be able to sense local region of increased stiffness;
robots could use their hands to explore dangerous areas that human cannot
access and do different tasks without human interventions; assistive robots
will be able to achieve dexterous manipulation to help elders and people with
disabilities.

I foresee that, in a not very distant future, robots equipped with new gen-
erations of tactile-based control will play crucial roles in our society, allowing
greater flexibility to unknown environments and help create a seamless col-
laboration between machines and humans.
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Appendix A

Summary of Hertz contact theory

Hertz contact theory is a classical theory of contact mechanics, which pro-
vides a set of simple analytical equations relating the properties of the system
to the developed stress of any two curved bodies of different radii of curva-
ture in contact. The theory was presented by Heinrich Hertz in 1881 and is
based on the following assumptions:

• The surfaces are continuous, smooth, nonconforming and frictionless,

• The size of the contact area is small compared to the size of the bodies,

• Each solid can be considered to behave as an elastic half-space in the
vicinity of the contact zone,

• The gap h between the undeformed surfaces can be approximated by
an expression of the form:

h = Ax2 + By2
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FIGURE A.1: Two objects in contact with or without loading force

For two elastic objects 1 and 2 of radii R1 and R2 pressed into contact with
force P, the resultant circular contact area has radius a such that
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where E⇤ is the contact modulus defined by

1
E⇤

=
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E1
+

1 � ν2
2

E2

and R, the effective radius of curvature, is related to those of the individual
components by the relation

1
R

=
1

R1
+

1
R2

For convex surfaces, the radii of curvature are positive, in contrary, those of
concave surfaces have negative. For such a contact, the resulting pressure
distribution p(r) is parabolic of the form

p(r) = p0

✓

1 �
r2

a2

◆1/2

, where r2 = x2 + y2 (A.1)

The maximum pressure p0 which occurs on the axis of symmetry of the pres-
sure distribution is given by

p0 =
3P

2πa2

Such a distribution is characteristic of Hertzian contact. Under this loading,
the centers of the two spheres move together by the displacement δ where

δ =
a2

R
=

✓

9P2

16RE⇤2

◆1/3

The local normal displacement at the surface can be calculated by:

uz = δ(1 � r2/2a2)

The Hertz model is widely useful even though some assumptions are
never strictly valid (e.g., some degree of friction will always occur between
the two bodies). Even so, the Hertz model can be used as a first and often
nearly exact approximation of the conditions in a contact between two ob-
jects.

However, the Hertz contact model only compute the information at the
surface of the contact. One solution for solving the displacement field of
the whole elastic body is to combine the Boussinesq-Cerruti function with
Hook’s law. The Boussinesq–Cerruti functions is widely used to compute
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the stress field of the whole elastic body for a given pressure by

σz = �

2
π

z
Z

p(r)

((x � r)2 + z2)2 dr

Combining the Hook’s law that calculates the strain-stress relation of an elas-
tic body by

∂uz

∂z
=

1 � ν2

E
σz

the displacement field at any point of the elastic body could be resolved. With
the pressure distribution at the contact surface p(r) given by the equation
A.1 from Hertz contact model, the displacement uz could be expressed in
function of the contact area a.
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