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Résumé
L’Univers est actuellement décrit par le modèle standard ΛCDM dont la contribution
majeure vient de l’existence de l’énergie noire, un processus physique responsable
de l’expansion accélérée de notre Univers. Un défi majeur de la cosmologie est de
dévoiler la nature de cette substance inconnue en mesurant des effets subtils qui
démontreraient une déviation du modèle standard établi. Dans ce but, les grandes
structures de l’Univers sont d’un intérêt primordial pour la contrainte cosmologique,
leur formation et leur croissance étant animées par l’expansion de l’Univers. En
particulier, les vides cosmiques, des zones sous-denses étendues dans les structures
à grande échelle, fournissent un environnement idéal pour étudier l’énergie noire,
dont les effets devraient être dominants en leur sein. Cette thèse s’inscrit dans le
cadre de l’étude des vides cosmiques comme une sonde prometteuse de l’énergie
noire. Nous présenterons d’abord comment les vides sont détectés au sein des
structures à grande échelle. Ensuite, nous extrairons les vides dans les dernières
données du relevé spectroscopique SDSS-eBOSS et étudierons les distorsions de
l’espace des redshifts autour de ceux-ci pour contraindre le taux de croissance des
structures pour trois époques différentes. Enfin, nous aborderons l’application du
test cosmologique Alcock-Paczynski en considérant les vides comme des sphères
standards. Cette thèse met en avant le potentiel des vides comme une sonde
discriminante de la cosmologie, tout en montrant les obstacles entravant l’étude de
ces objets pour parvenir à une précision au niveau du pourcent dans les contraintes
cosmologiques des futurs relevés.
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Abstract
The Universe is currently described according to the standard ΛCDM model
whose main contributions comes from the existence of dark energy, an unknown
physical process responsible for the accelerated expansion of our Universe. The
main challenge of cosmology today is to uncover the nature of this unknown
substance by measuring the subtle effects that would evidence a deviation from
the established standard model. To this end, the Large-Scale Structure is of prime
interest as its formation and growth are driven by the expansion of the Universe
and especially: cosmic voids. Cosmic voids are large under-dense zones within the
Large-Scale Structure of the Universe. Being deprived of matter, they provide a
perfect environment to study dark energy whose effects are expected to be dominant
in their vicinity. This thesis is part of the study of cosmic voids as a promising
dark energy probe. We will first present how cosmic voids are detected within
large-scale structures. Then, we will focus on the extraction of voids in the latest
eBOSSS data, part of SDSS, and the study of redshift-space distortions around
them in order to constrain the growth rate of the structures at three different
epochs. Finally, we will discuss the use of the voids as standard spheres that would,
theoretically, directly constrain the energy content of the Universe through the
application of the Alcock-Paczynski test. This thesis highlights the potential of
voids as a discriminating probe of cosmology, while presenting the challenges that
the study of these objects presents to achieve percent level precision in cosmological
constraints in future surveys.
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Introduction
Cosmology, as we know, it today represents a recent development in modern physics.
This field of physics, which originates from the beginnings of philosophy and its
questioning of the laws of nature, have seen its renewal as a fundamental part of
physics in the early 20th century. At this time, the formulation of the General
Relativity by Albert Einstein provides a theoretical framework to describe the laws
of our Universe, introducing a major paradigm shift in the consideration of the
laws of Gravity. The massive content of the Universe bends the space-time metric.
In tandem with the development of observations of the outskirts of our galaxy, the
Universe is found expanding.
Cosmology has once again gone through a transformation in recent years. In

the late 1990s is made the discovery that the Universe is currently undergoing an
acceleration of its expansion. This is encoded in the measurement of a non-zero Λ
cosmological constant contribution. In the decade that follows, the parameters that
drive the expansion of the Universe are estimated with increasing precision, allowing
to establish a standard flat Λ CDM model. These major discoveries, however, are
shadowed by the fact that our Universe is dominated by two unknowns: dark
matter and dark energy. The former has been confirmed since the 70’s as a form of
invisible matter that dominates the matter content of our Universe, the latter, is
the name of the physical process encoded by the Λ constant.
While current researches regarding the nature of dark matter are slowly driven

toward the domain of particle physics, dark energy remains, for now, a purely
cosmological issue. Several scenarios have been advanced to explain the late-time
cosmic acceleration which involve a modification of the laws of gravity on large
scales or the existence of a fifth force, opposed to that of gravity, that would
evolve slowly in time. These two scenarios present themselves in the form of very
subtle observational effects, that would indicate a deviation from the standard
ΛCDM model. Discerning such deviations from either General Relativity or ΛCDM
have brought out a new era: that of precision cosmology. To satisfy the accuracy
requirements on the cosmological constraints to be below the percent, cosmology has
become a data-driven science that necessitates years-long surveys to acquire a large
statistic. Another challenge undertook is the development of new probes that would
enable cosmologist to remove the degeneracies between different observables and
therefore tightening the constraints. In this framework, the Large-Scale Structure
of the Universe represents an observable of choice to probe for dark energy and in
particular, the cosmic voids within.
Cosmic voids are extended under-dense regions in the Large-Scale Structure
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of the Universe. Being devoid of matter, it is considered that their evolution
and properties should be dominated by the action of dark energy, thus providing
an environment of choice to research this quantity. With the advent of redshift
surveys, the delineation of the Large-Scale Structure of the Universe has reached
unprecedented finesse. The amount of statistic provided by the positions of galaxies
has allowed the extraction of a significant number of voids to be used in cosmological
analyses.
Cosmic voids have shown to be sensitive to dark energy or modified gravity

through various aspects, such as their sizes, shapes or surrounding density field
and as such, provide numerous probes of cosmology. However, while the advent
of large-scale surveys has tremendously increased the statistics of detected cosmic
voids, their identification is non-trivial nor are the physical processes that drive
their growth. While being a high potential probe that could narrow down efficiently
the cosmological constraint, their use as discriminating cosmological probes has to
be investigated.
Two probes of cosmology, in particular, have been put forward in regard of the

study of voids: the Alcock-Paczynski test, as a probe of dark energy and the study
of redshift space distortions around voids as a probe of modified gravity. This
manuscript investigates the use of cosmic voids in the context of precision cosmology,
it is structured as follows: In the first chapter the theoretical context of modern
cosmology is introduced, from the Einstein equations to the latest constraints
on the cosmological parameters, as well as an overview of the linear depiction of
the Large-Scale structure growth. The second chapter focuses on cosmic voids
in the large-scale structures and details their identification, their properties and
their potential in terms of cosmological probes. The third chapter addresses the
constraint of the redshift-space distortions parameter in the final data release DR16
of the eBOSS survey with the void galaxy two-point cross-correlation. Finally, the
last chapter investigates the use of the Alcock-Paczynski test on stacks of voids to
recover the cosmological parameters.
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1 Observational cosmology
Our current understanding of the Universe is based both on the theoretical modelling
of large-scale gravity and on the observation of our Universe outside the boundary
of our galaxy. Over the centuries, with the development of observation techniques,
humanity has been able to probe farther and farther, within the appropriate spirit
of: the sky is the limit. These observations, when compared to theory, have allowed
us to discover some of the mysteries of the universe while opening doors to other
unknown physical processes.

1.1 Hubble, Einstein and Friedmann: an expanding
Universe

1.1.1 Foundations
1.1.1.1 Einstein Equations

At the heart of our current understanding of the observable Universe lies the
gravitational interaction. This interaction, an attractive force between massive
objects, has an infinite range affecting the most remote places of the Universe. The
laws of gravitation were first developed in the 17th century by Isaac Newton. They
have proven to be a good description of the mechanics at work within our local
reference frame that is the Earth and the solar system and have been at the heart
of our understanding of the motion of objects for centuries. With his work on
Special Relativity, Einstein helped to understand the importance of the reference
frame, the coordinate system, when considering physical laws. A consequence is the
introduction of a relative, rather than absolute, definition of time, which depends
on the frame of reference adopted. One can no longer consider physical interaction
in a spatial frame only but, has to consider a space-time reference frame.
A few years later, Einstein devised a general formulation of the laws of gravity:

General Relativity. It corresponds to a formulation of the laws of gravity in regard
to any reference frame encoded in what are now known as Einstein Field Equations:

Gµν := Rµν − 1
2g

µνR = 8πGT µν + Λgµν . (1.1)

The Gµν tensor, which corresponds to the right-hand side of the equation (RHS) is
itself a combination of the Ricci tensor Rµν also known as the space-time curvature
tensor, the scalar curvature R and the space-time metric tensor gµν which defines the
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1.1 Hubble, Einstein and Friedmann: an expanding Universe

reference frame adopted. The left-hand side is composed of the energy-momentum
tensor T µν , which relates to the energetic content of the Universe, Λ, an arbitrary
constant called the cosmological constant and G, the gravitational constant.
The consequence of these equations is that the very definition of the reference

frame considered and the energetic content of the Universe affects one another.
The energetic content affects the general geometry of the Universe, curving the
space-time metric. A second consequence of this formulation is that it implies a
dynamic universe, an evolving Universe. The arbitrary Λ constant was at first
added by Einstein to the equations as a way to counteract this implied evolution
of the Universe to depict a static Universe. This addition was later on qualified by
himself as ’its biggest blunder’.

I leave the Λ constant in the formulation of these equations as a free parameter.
If positive, this constant acts as a repulsive force, opposite to that of gravity, if it is
negative, it becomes an additional contribution to the gravitational interaction. If
null, then, the evolution of the Universe is solely governed by the energetic content
carried by the Tµν tensor.

This general formulation, a priori quite simple provides a theoretical framework
to model the laws governing the Universe. In order to solve these equations,
however, a metric gµν has to be defined. This definition is derived from general
assumptions and observations of our Universe.

1.1.1.2 Cosmological principle

A key principle adopted to depict our Universe is that it obeys the cosmological
principle. The cosmological principle states that the Universe is both homogeneous
and isotropic. The homogeneity assumption is an extension of the Copernican
principle, which simply says that Earth is not the centre of the Universe, to all of
the objects found in the Universe. There are no privileged positions in the Universe,
which means that the positions in the Universe are invariant by translation.

In contrast, the isotropy assumption was derived from the observation of the
night sky. In any direction an observer can look, the distribution of stars and
objects doesn’t seem to be different. This observation led astronomers to postulate
isotropy that is, there are no privileged directions in the Universe, inferring that
positions are also invariant by rotation.

1.1.1.3 Receding galaxies

While Einstein imagined a static Universe and therefore added a cosmological
constant to impose his view, a fundamental observation questioned and buried
the idea of a static Universe. The observation of nebulae in the night sky was
the subject of two major discoveries. Firstly, it was evidenced that nebulae were
extra-galactic objects similar to our own Milky Way (Slipher, 1917). Secondly,
further observations of these objects allowed to estimate both their distance and
dynamics (Slipher, 1913) uncovering a linear relation between the distances of the

11



1 Observational cosmology

galaxies and their velocities (Hubble, 1929; Lemaître, 1927; Slipher, 1917). The
farther the galaxy, the faster it seemed to recede from us. This relation has come
to be known as the Hubble-Lemaitre law:

v = H0d, (1.2)

where v is the recession velocity of the galaxy, d is its distance and H0 is the Hubble
constant which corresponds to the rate at which the galaxy recedes from us. This
relation consisted in the evidence of an expanding Universe. The idea of a static
Universe and the associated non-zero cosmological constant were abandoned. The
interpretation of the H0 constant changed to depict the rate at which the Universe
is expanding today.
As the extra-galactic objects are observed thanks to their luminous nature, it

results that the wavelengths of the emitted photons are influenced by the recession
velocities of the galaxies. These introduce a form of Doppler shift toward higher
and redder wavelength: the redshift. This redshift can be quantified by comparing
the observed wavelength λobs to the corresponding original emitted wavelength λem:

1 + z = λobs

λem
(1.3)

1.1.1.4 Friedman-Lemaitre-Roberston-Walker Metric

Solving the Einstein equations requires a definition of the reference frame gµν . The
metric has to be formulated so according to our knowledge of the Universe. The
expansion of the Universe is already encoded in the Einstein equations, therefore the
metric has to comply to the cosmological principle. The general form of the metric
respecting these prescriptions is then the Friedman-Lemaître-Roberston-Walker
metric:

ds2 = dt2 − a(t)2[ dχ2

1− kχ2 + χ2dθ2 + χ2 sin2 θdφ2], (1.4)

where a(t) is the scale factor of the Universe and k is indicative of the curvature of
space. Homogeneity of the Universe leads to the introduction of a(t) which accounts
for the change of the physical distance due to the expansion of the Universe. By
convention, the scale factor at present day t0 is set to unity.

Considering the expansion today and at an arbitrary time t, we can now properly
define the cosmological redshift:

1 + z = a(t0)
a(t) = 1

a(t) (1.5)

As such, the cosmological redshift is an observable that can be measured thanks to
the relation given by Eq. 1.3.
The introduction of the curvature of space k in the spatial coordinates comes
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1.1 Hubble, Einstein and Friedmann: an expanding Universe

from the isotropy requirement. Only three values of k comply to the cosmological
principle:

k = 1, spherical Closed Universe (1.6)
k = 0, flat Open Universe (1.7)
k = −1, hyperbolic Open Universe (1.8)

As such, the curvature defines the geometry of the Universe which can be either
Spherical, Flat or Hyperbolic and therefore depict either a finite universe (closed)
or an infinite universe (open).

1.1.2 Friedmann equations
With the metric defined by Eq. 1.4, it is then possible to express the geometrical part
of the Einstein equations, the Gµν tensor considering an isotropic, homogeneous
and expanding Universe. A detailed discussion on the derivation of the Einstein
equations and their geometrical part can be found in Weinberg (2015). The Gµν

tensor can be expressed in terms of its temporal G00 and spatial part Gii, which
are the only non-zero contributions in this case:

G00 = 3
(
ȧ

a

)2
+ 3k
a2 , (1.9)

Gii = (2 ä
a

+
(
ȧ

a

)2
+ k

a2 )gii. (1.10)

Eq. 1.9 and 1.10 describe the geometrical part of the Einstein equations, namely
how the metric is affected through the expansion of the Universe. Recalling the
Einstein equations (1.1), this geometrical part both affects and is affected by the
energetic content of the Universe whose information is encoded in the tensor T µν .

Considering all that is in the Universe as a perfect fluid, with isotropic pressure,
the energy-momentum tensor of the energetic content of the Universe can be written
as a diagonal tensor:

T µν =


ρ 0 0 0
0 −P 0 0
0 0 −P 0
0 0 0 −P

 , (1.11)

where ρ corresponds to the density and P is the pressure of the fluid. Thus, we
have:
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1 Observational cosmology

T 00 = ρg00 = ρ (1.12)
T ii = −Pgii, (1.13)

which, through Einstein’s relation yield:(
ȧ

a

)2
+ k

a2 = 8πGρ
3 + Λ

3 , (1.14)

(2 ä
a

+
(
ȧ

a

)2
+ k

a2 )gii = −8πGPgii + Λgii. (1.15)

Combining the above equations, we recover the Friedmann equations:(
ȧ

a

)2
= 8πG

3 ρ+ Λ
3 −

k

a2 , (1.16)

ä

a
= −4πG

3 (ρ+ 3P ) + Λ
3 . (1.17)

We define ȧ
a

= H, the Hubble parameter H which gives us the expansion rate of
the Universe at time t.
These equations represent the most general solutions to the Einstein equations

obeying homogeneity, isotropy and expansion as conditions. However, in this
general framework, they cannot be solved while the relation between the energy
density ρ and the pressure P of the content is not formulated.

1.1.3 Dynamic contribution of the content
The Friedman equations are valid for any type of expanding Universe respecting the
cosmological principle. The solutions to these equations necessitate an inventory of
the content of the Universe and the relation between their density and pressure in
order to expand Eq. 1.17.

From Eq. 1.16, we can denote three types of contributions driving the expansion
of the Universe:

– Matter encoded in the existence of the ρ(t) term which is affected by gravity.
Two species of matter exist: ultra relativistic, near massless matter such as
the radiation (photons, neutrinos, etc) and non-relativistic baryonic matter.

– Curvature carried out in the k dependent term describes the curvature of
space-time, in the event of a non-flat universe.

– Cosmological constant, Λ, in the event of a non-zero constant.

While all of these species are not encoded in the energy-momentum tensor T µν ,
the existence of curvature in the metric or of a non-zero cosmological constant have
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1.1 Hubble, Einstein and Friedmann: an expanding Universe

repercussions on the general fate of the Universe. Considering the contributions
listed above as different perfect fluids, the relation between pressure and density is
of the form:

P = wρ (1.18)

where w is the equation of state of the considered content.
The energy-momentum conservation law in an expanding Universe goes as follows:

a−3d(ρa3)
dt

= −3 ȧ
a
P. (1.19)

So, combined with Eq. 1.18, the evolution of density in terms of the expansion
can be expressed as:

ρ(t) = ρ0a
−3(w+1), (1.20)

where ρ0 is the density ρ(t0) at present time. Isolating each specie to an associated
density, pressure and therefore equation of state allows to identify the evolution of
their energy density in terms of the expansion.
The matter content is non-relativistic and considered as collisionless at cosmo-

logical scales, thus w = 0. Radiation, on the other hand, is ultra-relativistic and
thus suffers collisions, therefore w = 1/3. The curvature can be considered as a
fluid with density ρk,0 defined as :

ρk,0 = −3k
a28πG, (1.21)

which yields a parametric equation of state of w = −1/3. Finally, a supposed Λ
will have an equation of state w = −1 as it is constant throughout the expansion
of the Universe. As a result, we have:

ρr ∝ a−4, (1.22)
ρm ∝ a−3, (1.23)
ρk ∝ a−2, (1.24)
ρΛ ∝ 1. (1.25)

and the Friedmann equation (1.16) can thus be expressed in terms of the different
content of the Universe:

H2 = 8πG
3 (ρr,0a−4 + ρm,0a

−3 + ρk,0a
−2 + ρΛ,0). (1.26)

Let us consider the critical density ρc, corresponding to a threshold density at
which the Universe halts its expansion and is considered flat (k = 0.) This density,
evaluated at present-day then takes the value:

ρc = 3H2
0

8πG. (1.27)
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The sum of all contributions ρi,0 should thus equate the critical density. This allows
us to parametrize the densities ρi in terms of their rescaled quantities Ωi = ρi/ρc.
The total energetic content becomes:

Ωtot =



∑
i

Ωi,0 > 1 Ωk < 0, Spherical/Closed∑
i

Ωi,0 = 1 Ωk = 0, Flat/Open∑
i

Ωi,0 < 1 Ωk > 0, Hyperbolic/Open

(1.28)

The Hubble parameter can be rewritten in terms of the dimensionless densities
and H0:

H2 = H0(Ωm,0a
−3 + Ωr,0a

−4 + Ωk,0a
−2 + ΩΛ,0) (1.29)

The above equation expresses the expansion rate in terms of dimensionless quanti-
ties. Expressing the scale factor in terms of the redshift, we obtain the following
expression of the expansion rate:

H(z) = H0

√
Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + Ωk,0(1 + z)2 + ΩΛ,0 (1.30)

In practice, one express H0 as follows:

H0 = h100 km s−1Mpc−1 (1.31)

where h is the reduced Hubble constant.
The behaviour of our Universe can thus be described by a singular association of

the cosmological parametersH0,Ω0,m,Ω0,r,Ωk and ΩΛ which we will call through the
misnomer: cosmology. The cosmology can only be inferred through observational
means.

1.1.4 Distances
Throughout the section, it was mentioned that the metric of the Universe is
embedded in the framework of an expanding Universe. This time-evolving spatial
coordinate system raises the question of the distance definition and measure in our
Universe: how should we quantify the distance when comparing the distance of an
object A to an object B?

1.1.4.1 In regard to the metric

The spatial part of the metric depends on both a, the scale factor and χ the radial
coordinate. The latter is set to be an expansion independent distance, along the
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line of sight which we define as comoving distance:

χ = c
∫ t0

t

dt

a(t) (1.32)

We use χ from now on to mention the comoving distance. In practice, it is more
convenient to express χ in term of the redshift. This yield:

χ = c
∫ z

0

dz

H(z) (1.33)

This distance, however, does not amount to the true euclidean distance in the
presence of a non-null curvature of the metric. .

Indeed, let us consider object A and B, both situated at a distance χ from us but
separated by a wide angle ∆θ. In regard to us, both object will present the same
radial comoving distance as it is directly the distance along the line-of-sight. Were
we to consider the comoving distance between A and B, then, their distance would
change according to the curvature of our universe. This transverse comoving
distance will thus be defined as follows:

DM =


DH

√
|Ωk| sin [

√
|Ωk|χ/DH ] Ωk < 0,

χ Ωk = 0,

DH

√
|Ωk| sinh c[

√
|Ωk|χ/DH ] Ωk > 0,

(1.34)

where DH = c
H0

, the Hubble distance. It is to be noted that we recover the
Euclidean distance in the case of a flat Universe. To refer to the comoving distance,
the notation Dc = χ will be used henceforth.

The two distances presented above, however, do not relay the physical distance
between the two A and B objects. If an observer out of the Universe were to take
snapshots along the expansion, the true distance between the object should have
changed. This physical distance between the object, or proper distance goes as
follows:

dp(t) = a(t)Dc, (1.35)

Considering the velocity of the object measured with Eq. 1.35, it is possible to
recover an expression of the recession velocity of a considered object:

v = d dp(t)
dt

= da(t)Dc

dt
= ȧDc = Hdp(t), (1.36)

which is similar to the Hubble law. For sufficiently small redshifts, it can be
considered that objects are nearly simultaneous to us. It follows that dp ∼ Dc and
H ∼ H0, allowing us to recover the Hubble law:

v = H0dp. (1.37)
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1.1.4.2 In regard to observation

The main information of a distant object is the light emitted by it and the subsequent
photon flux that travels up to us. It allows us to see the object and decipher its
general shape provided that it is close enough. The information thus provided by
astronomical observations amount to the luminosity L and an angular diameter δθ.
The angular diameter distance is thus defined as:

DA = DM

1 + z
(1.38)

where DM is the transverse comoving distance, and the (1+z) term comes from
the fact that the apparent distance subtended δθ between the extremities of the
object will be also be affected by the expansion.
Let us now consider the luminosity of the object. The flux of photons which

arrive to the instruments is dependent on the distance of the source, thus:

F = L

4πd2
L

, (1.39)

where dL is the luminosity distance. The luminosity is defined as:

dL = (1 + z)DM (1.40)

1.2 The Standard model of cosmology
The expansion history of the Universe is defined as a function of several parameters
whose association describe a single Universe. The information relayed by different
observations seems to converge toward a single favoured model which is called
Λ-CDM. The parameter Λ stands for a non-zero cosmological constant and ’CDM’
for Cold Dark Matter, an unknown kind of invisible matter but nevertheless highly
massive with non-negligible impact on the observable Universe. Recent constraints
on cosmological parameters are given by the 2018 Planck collaboration results
(Aghanim et al., 2020c):

Ωm = 0.3111± 0.0056, (1.41)
ΩΛ = 0.6889± 0.0056, (1.42)
Ωk = 0.001± 0.002. (1.43)

As a consequence, our Universe can be considered flat because the curvature
is compatible with k = 0 and would be mainly dominated by the so-called dark
sector, which qualifies the unseen quantities represented by the dark matter and the
constant Λ. The latter reflects the fact that our Universe is currently experiencing a
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1.2 The Standard model of cosmology

late-time acceleration of its expansion. The existence of the dark sector represents
a great challenge for cosmology: the measured Ω quantities tell us nothing about
their nature and their underlying physical process.

1.2.1 Dark matter
The first observations of the velocities of galaxies made by F. Zwicky (Zwicky,
1933) within the Coma cluster gave a curious result: the underlying mass of the
cluster estimated from the velocities of the galaxies implied a quantity of galaxies
much larger than that estimated by the quantity of visible light in the cluster. This
led to the hypothesis of the presence of a kind of dark – non-visible – matter in the
clusters. Later, the observation of the rotation curve of spiral galaxies by Rubin
& Ford (1970) reinforced this idea at the scale of galaxies. Indeed, the velocity of
stars is related to both the mass of the galaxy and their distance from the centre
of the galaxy. However stars at the periphery of these galaxies rotated as fast as
those located at the centre, as shown in Fig. 1.1, while the velocity was expected
to decrease in ∝ r−1/2.

This implied the presence of an invisible massive contribution: dark matter. This
dark matter would take the form of a non-luminous halo surrounding the galaxies
and clusters (Ostriker et al., 1974)

Figure 1.1: M33 rotation curve observed with 21cm meter estimation (full circles) as
well as the theoretical prediction in dark matter paradigm (full line). The
contributions from the stellar disc (normal dashed lined), the gas (long
dashed line) and dark matter halo (dot-dashed line) are also displayed
(Corbelli & Salucci, 2000).

A final consecration to the existence of these dark matter haloes in the neigh-
bourhood of the galaxies is provided by the observation of lensing phenomena.
Photons, as per their nature of massless particles, travel along the geodesics of the
space-time metric taking the shortest path. General Relativity tells us that gravity
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and thus mass bends the fabric of space-time causing photons to deviate from their
original paths. The amount of deflection of the photons’ trajectory is proportional
to the amount of mass contained by the cluster. Such lensing effect, when detected
in its strongest form (and rarer, unfortunately), can thus relay an indication of the
total amount of matter contained within a structure. From this total mass can be
removed that of the visible contributions, yielding constraints on the fraction dark
matter present in the object (Massey et al., 2018; Tyson et al., 1990)
In a generalized view, if the dark matter field is akin to that of the galaxies,

then it affects all the photons emitted by the observed galaxies on their way to our
cameras. As a result, it is possible to recover a statistical depiction of the dark
matter field through the use of this form of lensing, called weak lensing (Bartelmann
& Schneider, 2001; Kaiser & Squires, 1993).

(a) (b)

Figure 1.2: (a) Strong lensing effect in the A3827 cluster with inferred dark matter halo
distribution in blue isocontours, (b) Lensing imprint in the Bullet cluster
in the form of convergence map (red) and sigma map (blue), Credits: (a)
NASA/ESA HST, composite image by Massey et al. (2018) , (b) NASA/ESA
HST composite image by Clowe et al. (2006)

The presence of non-luminous, albeit massive, quantity suggested that dark
matter (DM) had to be collisionless interacting primarily through gravitation. As
per its nature of matter, the particles that constitute DM are defined on the point
of view of particle physics. Three leading hypothesis were advanced to describe
such matter:

– Cold dark matter (CDM): Non-relativistic particles that interact weakly
with ordinary matter are the preferred candidates for dark matter. The most
popular candidates for CDM (Frenk & White, 2012) are WIMPs (Weakly
interacting Massive Particles) with masses ∼ 0.1 − 10 TeV. They are pre-
dicted in the context of beyond standard model particle physics, for example,
in supersymmetry as lightest supersymmetric particles (LSP) or in extra-
dimensional theories as lightest Kaluza-Klein particles (LKP). Finally, axions
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1.2 The Standard model of cosmology

are theoretical particles introduced to solve the lack of observed CP violation
in the strong interaction, with very light masses < 0.1 eV (Blumenthal et al.,
1984).

– Warm dark matter (WDM): Well-motivated elementary particle candi-
dates that have appreciable thermal velocities at early times, could behave
as warm dark matter. The best-known example is a sterile neutrino with a
particle mass of order a keV (Asaka & Shaposhnikov, 2005; Kusenko, 2009).

– Hot dark matter (HDM): Ultra Relativistic particles of very low mass
that interact very weakly. The most likely candidates in this framework are
the three flavour of neutrinos (νe, νµ, ντ ) which have evidenced oscillations
suggesting massive particles (Fukuda et al., 1998).

A final explanation to the observation of this dark matter in the overall distri-
bution of matter has been advanced in the form of a modification of Newton’s
dynamics like the MOND theory (Milgrom, 1983). The latter has been ruled out
by observational evidence of lensing in the Bullet cluster whose effects were not
predicted by MOND (Clowe et al., 2006).

Dark matter represents the major contribution of matter in the Ωm energy density
term, amounting to ∼ 80%. The remaining 20% are attributed to ordinary matter.
Observations such as the large-scale distribution of matter and fluctuations in
initial density, which will be discussed later, have shown a preference for the cold
dark matter paradigm (CDM).

1.2.2 Dark energy
While the dark matter contribution of the dark sector has been a long-standing
assumption regarding the content of our Universe, the discovery of a dark energy
component is quite new. In the 1990s, the view of a matter-dominated Universe
is no longer in favour of most of the observation, such as the age of the oldest
clusters (Ostriker & Steinhardt, 1995) or preliminary results of the temperature
fluctuations of the CMB (see next section).
In this context, the study of the type Ia supernovae (SNIa), thermonuclear SN,

uncovered what seemed to be a late-time cosmic acceleration of the expansion of
the Universe. SNIa stems from a binary system composed of a white dwarf and
a giant star: the white dwarf through gravitational interaction accretes the gas
released by the giant star up until its mass exceeds 1.4M�, the Chandrasekhar
mass. At this point ensues a thermonuclear explosion: the Supernovae of Type Ia.
The light emitted as a result of this process generally follows the same profile and
display the same intrinsic luminosity, regardless of the epoch. In this sense, they
are called standard candles.

A consequence of the observation of the SNIa is that, when considering the flux
of the luminous object as seen in Eq. 1.40, an acceleration of the expansion rate
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of the Universe will cause the luminosity of the supernovae to appear fainter in
redshift or brighter in the event of a deceleration of the expansion rate.

To this end, both the Supernovae Search Team and the Supernoave Cosmology
Project observed the apparent luminosity of SNIa at several redshifts in order to
reconstruct the luminosity to redshift relation, dependent on cosmology. In their
analysis, it became apparent that there was a non-negligible contribution in the
form of a non-zero dominant Λ evidencing a late-time acceleration of the expansion
of the Universe (Perlmutter et al., 1999; Riess et al., 1998). As can be seen in
Fig.1.3a, the observed Hubble diagram of the supernovae favours a non-zero ΩΛ
configuration.
Fig. 4. from Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant
Riess et al.Vol. 116 1998 AJ 116 1009 doi:10.1086/300499
http://dx.doi.org/10.1086/300499
© 1998.  The American Astronomical Society. All rights reserved. Printed in U.S.A.

(a) Discovery (b) Latest result

Figure 1.3: 1.3a Hubble diagram of the early Supernovae Search Team (Riess et al.,
1998), 1.3b displays the most up-to-date Hubble diagrams of SNIa (Scolnic
et al., 2018). Lower panels both show the residuals between the best-fit
model and the data.

More recent results on both SNIa and other probes (see next section) have
established the Λ constant as a contribution in the overall expansion of the Universe.
The latest constraints concerning the SNIa light-curve, displayed in Panel 1.3b,
are brought by the Pantheon sample defined by 1048 SNIa (Scolnic et al., 2018).
The matter-energy density, within a flat ΛCDM framework (ΩΛ = 1 − Ωm) is
estimated at Ωm = 0.307± 0.012 and the Dark Energy equation of state amounts
to w = −1.026± 0.041, in accordance to a cosmological constant w = −1. However,
the explanation of a cosmological constant as the source of an acceleration of the
Universe poses the well known cosmological constant problem. Considering Λ as
vacuum energy density, the measured contribution in cosmology is 120 order of
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magnitudes too low compared to the predictions on the point of view of quantum
mechanics. As a result, the physical process underlined by this non-zero Λ constant
is known as an unexplained dark energy.
Attempts have been made to model such dark energy which can be separated

in two kinds: Dynamical dark energy and their likes which attempt to conserve
the idea of an energetic contribution leading to a late-time cosmic acceleration and
modifications of the law of gravity at large scale which involve a modification the
Gµν tensor.

In the following paragraphs are given a broad depiction of both kind of theories,
detailed descriptions can be found in Sami (2007) and Yoo & Watanabe (2012):

Dynamical dark energy This modelling in its general form involves the use of
a time-evolving scalar field φ and its potential V (φ) to describe dark energy as a
time-evolving field acting as an opposite to the gravitational field. In their most
simple forms, these models assume a spatially homogeneous field which would
propagate, in the framework of GR and FLRW metric, as follows:

φ̈+ 3Hφ̇+ dV

dΦ = 0 (1.44)

Such modelling generally yield an observable that can be quantified in terms of
a time-evoluting equation of state:

wφ =
1
2 φ̇

2 − V (φ)
1
2 φ̈

2 − V (φ)
(1.45)

In order to account for the evolution of the dark energy equation of state
throughout the expansion, it is convenient to use the Chevallier-Polarski-Linder
parametrization (Chevallier & Polarski, 2001; Linder, 2003):

w(z) = w0 + (1− a)wa = w0 + z

(1 + z)wa (1.46)

As such, it is possible to define bounds on the value of the equation of state today,
denoted w0, to be situated in the range −1 < w0 < −1/3 where the high boundary
is directly inferred from Eq. 1.20 as the exclusive maximal value which guarantees
a late-time acceleration of the expansion. The wa quantity, however, varies in time.
Such classes of dynamical dark energy models are called quintessence. The

resulting new definition of the dark energy equation of state leads to the following
definition of the dark energy density: ρDE = ρDEa

−3(1+w0+wa)e−3wa(1−a).
These classes of models, as they allow for several parametrization of φ and V (φ)

and subsequent equation of state, remain in line with general relativity theories.

Alternative or Modified Gravity model In this case, instead of considering a
modification of the energetic content, one considers a direct modification of the
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definition of the geometrical part of the Einstein field equations, changing the laws
of gravity themselves on large scales. Some involve the addition of extra-dimensions
that would cause a change of the general laws of gravity on large scales, such as
the DGP brane-world model (Deffayet et al., 2002; Dvali et al., 2000). Others
consider the introduction of an arbitrary function of the scalar curvature f(R)
(De Felice & Tsujikawa, 2010; Sotiriou & Faraoni, 2008) that involves the apparition
of higher-order terms in the formulation of the Einstein equations. Such models
are bound by the obligation to recover the Newton gravity at small scales.
Alternative-theories to the Λ constant should lead to fine observable effects in

the form of the equation of state of dark energy or deviations from direct prediction
of Einstein’s gravity as presented above. A major problem remains that, if there
were to be modifications of the properties of dark energy or of the gravitational
interaction itself, current measurements do not allow to discriminate from a Λ
constant framework.

1.2.3 Test of the standard model
1.2.3.1 Early Universe: Cosmic Microwave Background

An expanding Universe implies that it went through, in its early stages, a very
dense and hot period during which matter and radiation alike were part of a
plasma. This density field was considered to be generally smooth, composed of
small perturbations. The photons trapped in the plasma pushed matter into
gravitational potential wells while matter, in turn, resisted pushing the radiation
outward. As a result, the baryon-photons interactions in the primordial universe
led to contraction-dilation processes of the over-densities, causing perturbations
in the plasma to propagate like sound waves: the baryonic acoustic oscillations
(BAO) (Hu & Sugiyama, 1995).

In time, the Universe cooled down causing it to become less dense. Photons were
suddenly released from the primordial plasma carrying out an imprint of the initial
density fluctuations and baryons were free to assemble to form the first atoms. This
period is called recombination (or decoupling). The resulting radiation was first
predicted by Gamow, Alpher and Bethe (Alpher et al., 1948; Gamow, 1948) in the
late 1940s, but unfortunately discarded. At the time, cosmology was considered as
a nearly metaphysical science, due to the lack of experimental validation of the
theories. Years later, however, the prediction of isotropic radiation originating from
an early dense Universe was recovered by Dicke et al. (1965) in an independent
manner. The latter having been emitted so early in time should be redshifted
to reach the microwave wavelength. The same year, a corresponding signal was
detected as white noise through an antenna, in the microwave regime (Penzias &
Wilson, 1965).

The existence of relic radiation which had travelled throughout the expansion
was a powerful incentive to understand our Universe from its early stages. Due to
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the influence of the atmosphere smearing the signal, space missions were sent in
order to properly characterise the black-body signal. The COBE (Mather et al.,
1994) experiment measured a near-perfect black-body spectrum of a temperature of
2.73 K today at a wavelength of the microwave, however, such spectrum presented
anisotropies in its spectrum of the order δK

K
∼ 10−5 (Smoot et al., 1992). The

measured fluctuations of temperatures in the spectrum were actually the remnants
of the initial density fluctuations. The analysis of the statistical properties of these
fluctuations thus enabled to gain knowledge on both the early Universe but also,
the value of the cosmological parameters today (Hu et al., 1997).

The first inkling toward a flat Λ-CDM model was brought by the BOOMERANG
(Hanany, 1997) experiment which consisted in balloons sent high in the atmosphere
to map the fluctuations of the density. The study of the resulting spectrum favored
strongly an Ωk = 0 universe (de Bernardis et al., 2000). Two space missions
dedicated to more precise measurements of the cosmic microwave background
temperature fluctuations followed. First, WMAP (Bennett et al., 2013; Hinshaw
et al., 2013; Komatsu et al., 2011) provided the first evidence the Λ-CDM model
to be obviously favoured by multiple probes and later, the Planck mission, which
released its last cosmological results in 2018 (Aghanim et al., 2020a,c).

The study of the temperature fluctuations of the CMB, in the form of the angular
power spectrum, yielded very precise constraints on the values of the cosmological
parameters. As seen in Fig. 1.4, the power spectrum features oscillations in
its spectrum which directly relate with the initial baryonic acoustic oscillations
happening in the early plasma. The first peak is directly dependent on the energy
density Ωm and the overall spectrum is also dependent on Ωb, the total amount of
baryonic matter.

The existence of such a cosmic microwave background provided several confirma-
tions concerning our Universe. A first validation was the existence of primordial
density fluctuations which are considered to be the origin of the large scale distri-
bution of matter observed today. The validity of the cosmological principle at large
scale was also confirmed and finally, it enabled to assume that the Universe has a
flat geometry.

1.2.3.2 Baryonic Acoustic Oscillations in galaxy clustering

With the expansion and gravity, the initial density fluctuations present in the
Universe evolved to form a peculiar large scale matter distribution. These present
a similar feature in their power spectrum as to the Cosmic Microwave Background
radiation. As the Universe cooled down, so did the plasma in which the pertur-
bations propagated up until the baryons stop interacting with photons: the drag
epoch. At this time, gravitational interaction led to dark matter following the
behaviour of the baryon plasma, yielding a distinctive feature in the overall density
field: BAO. The latter being embedded directly in the density field and subject
to no observational effects that affect the photons of the CMB (Eisenstein & Hu,
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Figure 1.4: Upper panel: In red, estimated angular power spectrum of the temperature
fluctuations of the cosmic microwave background of the Planck 2018 data
release. In blue is shown the best fit theoretical prediction from a Λ−CDM
model. Lower panel: Residuals in regards to the model prediction. Errors
displayed are the 1σ errors which include the cosmic variance. Credits:
(Aghanim et al., 2020b)

1998).
This freeze of the BAO feature in the density field led to statistical over-density

found at a specific scale of ∼ 100h−1Mpc , thus providing a standard ruler embedded
in the general density field. The comoving distance is directly dependent on
cosmology, as such, the comparison of this standard scale to the predicted standard
ruler enables to place constraints on the cosmological parameters. Furthermore,
the information on the galaxy density field is a late-time probe which can give
interesting constraints on the expansion rate of the Universe or look for eventual
discrepancies between early and late time measurements.

The study of the BAO feature is a recent development in cosmology. This excess
density pattern was first noticed by Broadhurst et al. (1990) as a puzzling feature in
the distribution of matter at large-scale for which an explanation was given later on
by Eisenstein et al. (1998). The first significant detection was made in the Luminous
Red Galaxies (LRG) sample of the SDSS-I program (Eisenstein et al., 2005) and
has since been a powerful and robust probe of cosmology, contributing to precise
measurements at different epoch allowing to extract the cosmological parameters,
consistent with a flat ΛCDM cosmology (Alam et al., 2017, 2020b). Fig. 1.5 displays
the most recent measurement of the BAO feature in both Fourier and Configuration
space for the LRG sample of the Sixteenth Data Release (DR16) of the extended-
Baryon Oscillation Spectroscopic Survey (eBOSS)1. The BAO feature in Fourier

1https://www.sdss.org/science/final-bao-and-rsd-measurements/
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(a) Power spectrum (b) Two-point correlation function

Figure 1.5: Baryonic Acoustic Oscillation feature in the density field of the eBOSS
DR16 Luminous red galaxy (LRGs) sample in (a) Fourier space and (b)
Configuration space. Circles represent the measured data and the full line
correspond to the Λ-CDM model. Credits: (Bautista et al., 2020; Gil-Marín
et al., 2020)/SDSS/eBOSS Collaboration.

space is shown in the embedded subpanel of Panel 1.5a, marked by the wiggles at
the lower scales of the measured power spectrum between k = 0.1 hMpc−1 and
k = 0.3 hMpc−1. In configuration space, the BAO is seen as a near gaussian density
excess around ∼ 100 h−1Mpc .

1.2.3.3 Cosmic Ladders

The probes presented above are targeted toward the determination of the energetic
content of the Universe. However, the expansion rate of the Universe depends
on the value of the Hubble parameter today H0, which is primordial to trace its
expansion history. To this end are generally used cosmic ladders, that is, probes of
the distance that are generally independent of the cosmological parameters. The
estimation of the H0 constant can be done in the early Universe through the study
of the CMB which yield H0 = 67.4± 0.5km.s−1 in the Planck analysis (Aghanim
et al., 2020a) and H0 = 67.6± 1.2km.s−1 for the ACT-WMAP (Aiola et al., 2020)
analysis (both in combination with BAO measurements as well as lensing). Most
of the constraints on the Hubble constant are done in the local Universe with a
calibration of the distance through the use of the SNIa luminosity distance or
Cepheids. The latter are stars whose luminosity varies periodically, allowing the
recovery of their intrinsic luminosity and therefore, their distance. The latest
results from SH0ES (Reid et al., 2019) yield a constraint of H0 = 73.5± 1.4km.s−1.
The use of time-delays from strong quasar lenses can also be used to estimate
the present time Hubble parameter, the most recent analysis from the H0liC0W
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collaboration (Wong et al., 2020) gives a value of H0 = 73.3+1.7
−1.8.

The estimation of Hubble constant with cosmic ladders evidences a strong tension
between the Early and Local Universe.

1.2.3.4 Limitations of the ΛCDM cosmological model

While cosmological constraints have reached unequalled precision in the last decade,
several issues have yet to be overcome in regard to the ΛCDM scenario:

– Flatness problem: The idea of a flat universe, separated in Ωm and ΩΛ as
major contributions, suggests that in its early times, both quantities had to
be extremely finely tuned in order to obtain the Universe observed today.
Any deviation would have caused a different scenario to occur. The flatness
problem emphasises the fact that were are part of a unique non-reproducible
experiment which cannot be thoroughly tested.

– The nature of the late time cosmic acceleration: While still embodied by the
existence of a non-zero cosmological constant, no satisfying scenario has been
settled on. A precise estimation of the dark energy equation of state has
taken very high stakes as it could enable to disentangle between several dark
energy or modified gravity models.

– The mass of neutrinos: Massive neutrinos can have a non-negligible impact
on the clustering of galaxies, it is thus primordial to properly measure their
mass to understand where is their place in the overall energetic content of
the Universe. Can they be accounted for as a part of dark matter?

– Tension between local and large-scale H0 estimation: A consequence of the
wealth of observables is the variety of estimations of the present-day expansion
rateH0. However, there seems to be a tension between the measures performed
in the local Universe on SN and Cepheids and those carried out on the
distant Universe with the large-scale structure analysis and cosmic microwave
background.

The ΛCDM Universe, while seemingly favoured by the various constraints, is
not quite satisfactory. No definite explanation have been given on the general
unknowns listed above. To properly discriminate between available scenarios, both
a large statistic and a variety of cosmological probes are needed. In this context
are developed the next generation of large scale surveys such as LSST, Euclid
(Amendola et al., 2018; Laureijs et al., 2011), and DESI (DESI Collaboration et al.,
2016a,b), destined to provide a large amount of data such as SNIa, galaxy and
quasar positions both in photometry and spectroscopy.
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Figure 1.6: The Large-Scale structure of the Universe traced by galaxies in the early
data of the Sloan Digital Sky Survey in which can be seen the different
cosmic structures voids, filaments and clusters. Credits: Blanton et al.
(2003)

1.3 Cosmic structures
As part of the modern cosmology development, the distribution of matter at large
scale was found to form an intricate pattern of galaxies. As shown in Figure 1.6,
matter on large scales clusters along and in structures delineating filaments, walls
and forming clusters and superclusters. As a result, regions seemingly empty of
matter can also be detected: cosmic voids.
The cosmic structures, well known as the Large Scale Structure (LSS) of the

Universe, results from the concurrent effects of the expansion of the Universe
and the gravitational interaction. In the context of precision cosmology, the LSS
abounds of cosmological information that can be found, for example, in the Baryon
Acoustic Oscillations but also in the dynamics at work in the cosmic structures. In
this section, I give an overview of the linear theory of perturbations which allows
understanding how these observed structures came to be and how their statistical
properties are dependent on the cosmology. For references on the subject, I refer
the reader to the following sources: Bernardeau (2012) and Peebles (1980), as well
as Bothun (2000) that heavily influenced this chapter.

1.3.1 A model of the structure formation
The cosmic microwave background provides observational evidence of the early state
of the Universe, especially in regard to the existence of initial density fluctuations
which can be understood as the seed of the Large-scale distribution of matter. In
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this framework, two models of the structure formation were advanced relying on
the same assumption that the observed large scale structure resulted from the
growth of initial density perturbations:

Top - bottom formation: The top-bottom formation picture consists in the
growth of over-density to ultra-dense large-scale structure, ’pancake-like’, which
later on fragmented to form the smaller structure such as superclusters, then clusters
and finally galaxies. This formation process advocated by Zeld́ovich (Zel’dovich,
1970; Zeldovich, 1976) favoured the existence of a hot dark matter specie, subjected
to pressure, yielding diffuse clustering.

Bottom-up formation: This second model proposed a hierarchical formation
of the structure, in which the initial density fluctuation grew to form the first
galaxies. This formation process relies on the existence of cold dark matter, that is
a very weakly interacting matter which interacts dominantly through gravitational
interacting. CDM would then start the structure formation process forming the
skeleton of the LSS, forming gravitational potential wells in which ordinary matter
would be attracted and then trapped, resulting in the formation of the first galaxies.
This model implies a continuous formation of the LSS, where the galaxies through
gravitation would assemble in clusters and superclusters.
In the current Λ-CDM paradigm, the bottom-up formation process is favoured

by the amplitude of density fluctuations of the CMB.

1.3.2 Gravitational instabilities
The existence of initial density perturbation implies a variation of the mass distri-
bution and subsequent perturbation of the gravitational potential. An over-dense
region will attract matter with more intensity than an under-dense one, this uneven
repartition of the gravitational potential is called gravitational instabilities
In this framework, the Large-Scale structure (LSS) formation is driven by the

evolution of gravitational instabilities in a background expanding Universe. Con-
sidering self-gravitating non-relativistic fluid such as matter, we can describe its
motions with the following set of equations:

∂ρ

dt
+∇ · (ρv) = 0, (1.47)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P −∇Φ, (1.48)

∇2Φ = 4πGρ, (1.49)

where ρ denotes the density of the fluid, v its velocity, P the pressure and Φ
the gravitational potential. Eq. 1.47 is the continuity equation of a non-relativistic

30
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fluid which governs the transport of density in time, Eq. 1.48 is the Euler equation
which depicts the variation of the fluid velocity through the interaction of opposite
forces at play: in our case the pressure and gravity. Finally, Eq. 1.49 is the Poisson
equation which relates the gravitational potential to its surrounding density field.
To understand the growth of the structure, we are interested in initial pertur-

bations in the medium. Therefore, the quantities of interest are described as
the sum of two contributions: their initial background value and an infinitesimal
perturbation, assuming that the latter is adiabatic:

ρ = ρ0 + ρ̃ (1.50)
P = P0 + P̃ (1.51)
v = v0 + ṽ (1.52)
Φ = Φ0 + Φ̃. (1.53)

Considering the fluid to be homogeneous and isotropic, the equations of motion
of the fluid rewrite as:

∂ρ̃
∂t

+∇ · (ρ0ṽ) + ρ̃(∇ · v0) + v0 · ∇ρ̃ = 0 (1.54)
∂ṽ
∂t

+ (v0 · ∇)ṽ + (ṽ · ∇)v0 = − 1
ρ0
∇P̃ −∇Φ̃ (1.55)

∇2Φ̃ = 4πGρ̃ (1.56)

where the product of the perturbed components are considered to be negligible.
The set of equations represents a Eulerian description of the fluid, that is a

description of the evolution at a specific coordinate. As we want to express the
displacement of the perturbation in regard to both gravitational interaction and
the expansion of the background, we use the Lagrangian description:

∂ρ̃

∂t
= dρ̃

dt
− (v0 · ∇)ρ̃ (1.57)

∂ṽ

∂t
= dṽ

dt
− (v0 · ∇)ṽ, (1.58)

and substitute them in the continuity equation 1.54 and Euler equation 1.55
respectively, which reduces to:

dρ̃
dt
− ρ0(∇ · ṽ) = 0 (1.59)

dṽ
dt

+ (ṽ · ∇)v0 = − 1
ρ0
∇P̃ −∇Φ̃ (1.60)

Let us consider a density fluctuation δ, also known as the density contrast.
This represent a dimensionless quantity describing the density field in regard to a
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background ρ0:
δ(x, t) = ρ(x, t)− ρ̄0

ρ̄0
. (1.61)

The continuity equation then rewrites in term of the dimensionless quantity:

dδ

dt
+ (∇ · ṽ) = 0 (1.62)

The whole system of equations can then be considered in terms of the dimensionless
density δ.
Finally, to properly account for the expanding background influence on the

spatial reference frame suggested by ∇, we use the comoving distance:

r = x
a(t) , (1.63)

where x is the proper coordinate system and a(t) the scale factor of the Universe.
The spatial derivative thus redefines as:

∇r = 1
a
∇. (1.64)

The time derivative has already been modified to take into account the expanding
background through the equations 1.57. The velocity rewrites as:

v = dx
dt

= r
da

dt
+ dr
dt
a, (1.65)

where the first term corresponds to the expansion of the universe and the second
term to our perturbation. We recover here the condition that the velocities of the
objects have to be negligible compared to the Hubble expansion at large scales.
The perturbed velocity vector rewrites as follows:

ṽ = au. (1.66)

Applying our new definitions, the continuity equations becomes:

dδ

dt
+ (∇r · u) = 0, (1.67)

and the Euler equation reduces to:

du

dt
+ 2Hu = −∇P̃

a2ρ0
− ∇Φ̃

a2 , (1.68)

Taking the divergence of the Euler equation, we can relate the evolution of the
perturbation δ with the pressure and the gravitational potential thanks to the
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relation in eq. 1.66 :

d2δ

dt2
+ 2Hdδ

dt
= ∇

2P̃

a2ρ0
= ∇

2Φ̃
a2 . (1.69)

The gravitational potential can be expressed through the Poisson equations 1.56.
Considering the density fluctuations to be adiabatic, the pressure and density
perturbations relate through cs = P̃ /ρ̃, with cs the velocity of sound in the medium.
Eq. 1.69 rewrites:

d2δ

dt2
+ 2Hdδ

dt
= ∇

2δcs
a2 + 4πGδρ0. (1.70)

This equation describes the rate at which the gravitational instability is affected
in time, as the Universe expands. Considering the perturbation δ in a linear manner,
the spatial and time component can be considered independent:

δ ∝ exp(ik · r − ωt)

, we obtain the final equation for the time-evolution of perturbations in a self-
gravitating fluid embedded in an expanding background:

d2δ

dt2
+ 2Hdδ

dt
= δ(4πGρ0 −

k2cs
a2 ). (1.71)

Considering δ as defined by two independent component: x and t, we can write:

δ(x, t) = δ(x) exp(iωt)

which gives the following equation:

ω2 + 2Hiω = 4πGρ0 −
k2cs
a2 . (1.72)

The above equation relates to an oscillating system. If we consider the system
at equilibrium, we can define the Jeans length:

λj = 2π
kj

= 2πcs
a
√

4πGρ0
(1.73)

The Jeans length corresponds to the equilibrium between the gravitational force
and the pressure of the gravitational instability. It allows us to consider two limiting
cases:

– λ� λj, the perturbation oscillates due to the pressure-density interaction in
the medium

– λ � λj, the perturbation time evolution is dominated by the expansion of
the medium and grows or decays exponentially.
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The latter case dominates in the context of structure formation and growth.

1.3.3 Linear theory of perturbation
Considering the very large scale, the oscillating perturbation can be discarded. The
growth of an over(under) density follows the following equation:

d2δ

dt2
+ 2Hdδ

dt
− δ4πGρ0 = 0, (1.74)

As the LSS formation process is driven by the gravitational interaction, it is
considered that the matter content contributes dominantly. In this scenario, the
background density ρ0(t) thus relates to that of the matter ρm(t) which we express
in terms of the critical density:

ρdm(t) = Ωm(t)ρc(t) (1.75)

where ρc(t) = 3H(t)2

8πG is the time evolutive background density. The equation of
describing the time evolution of the perturbation thus becomes explicitly only on
the expansion rate of the Universe H(t).

d2δ

dt2
+ 2Hdδ

dt
− 3

2H(t)2Ωm(t)δ = 0, (1.76)

The evolution of the perturbation δ(x, t) presented above is thus only dependent
in time while the spatial evolution remains unchanged. It is thus possible to look
for a solution to the equation 1.76 of a general form:

δ(x, t) = D+(t)δ(x) +D−(t)δ(x) (1.77)

which separates spatial component and time component. D+(t) corresponding to
the growing mode overtime and D−(t) the decaying mode.
In an Eistein-de Sitter Ωm = 1 universe, the solutions to this equation yield:

D+(t) = t2/3 (1.78)
D−(t) = t−1, (1.79)

where D+ is responsible for the growth of perturbations and subsequent formation
of the LSS while D− decreases and becomes negligible in time.
In ΛCDM Universe, however, the solutions yields:

D+(t) = H(t)
∫ dt

aH
, (1.80)

D−(t) = H(t). (1.81)

Again, the growing mode is dominant before the decaying mode. For a time, the
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growth will be near that of the Einstein-de Sitter solutions up-until dark energy
starts to dominate before the matter. From that point, the growth of the LSS will
slow in time. D+, the growing mode is known as the growth factor of structure
and gives us the time evolution of the δ field.

1.3.3.1 Peculiar velocities and growth rate of structure

The derived equations above evidence that the density perturbation will be subjected
to two types of velocities, one is that falls under the expansion of the Universe
(Hubble flow) and one, that we call peculiar velocity.

Considering the Euler’s equation at large scale, meaning we neglect the pressure:

du

dt
+ 2Hu = −∇Φ̃

a2 , (1.82)

Once again, the equation are considered in a linear manner. The velocity can
thus be expressed as the product of two separate contributions, spatial and time.

u(x, t) = u(t)u(x) (1.83)

In this case, we can write u(x) = −∇Φ as the ∇Φ is the only spatial component.
Taking the divergence of the velocity:

∇ · u = −u(t)∇2Φ̃ (1.84)

The divergence of the velocity is also defined from the continuity equations 1.67:

∇ · u = −dδ
dt

= −ȧ dδ
da

(1.85)

Combining both equations thus allows us to express the time component of the
velocity:

u(t) = − 2f
3Ha2Ωm

. (1.86)

were the δ(x) contributions have disappeared in favour of the growth function
D+ and f , the growth rate of structure is defined as:

f := d lnD+

d ln a (1.87)

Considering a matter-dominated Universe, the growth rate of structure describes
the rate at which structure forms and can be parametrized as follows (Peebles,
1980):

f ≈ Ωm(a)γ, (1.88)

where γ is of premier importance as it explicitly depends on the dark energy
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equation of state (Linder, 2003):

γ = 3(wDE − 1)
6wDE − 5 (1.89)

In the framework of GR, the prediction gives γ ≈ 0.55. As a consequence,
any deviation from this expected value would imply a non-standard dark energy
such as modified gravity (Linder & Cahn, 2007). The dynamics involved in the
creation of the LSS represent a powerful probe of the nature of the late-time cosmic
acceleration.

1.3.4 The density field
The growth of the initial density fluctuations is considered to be the mechanism
at cause for the observed large scale structure of matter. As the initial density
field is assumed to be a random variables δ(x), a favoured paradigm to describe its
distribution is the multivariate gaussian probability density function:

P(δ1δ2...δN) = 1
(2π)N/2|C|1/2 exp

[
1
2
∑
N

δiC
−1
ij δj

]
(1.90)

This description has been corroborated by the results of the Planck collaboration
(Aghanim et al., 2020a). A benefit from this description is given by the Wick
theorem, which states that a multi-variate gaussian can simply be described by the
knowledge of its covariance, here C and its average value. The latter is considered
to be 〈δ〉 = 0. The former, the covariance of the density field is also known as the
two-point correlation function or two-point covariance function:

ξ(x1,x2) = 〈δ(x1)(δx2)〉. (1.91)

By virtue of the cosmological principle, the correlation function is actually
dependent on the separation between the objects instead of their specific location, as
well as independence on the direction of the pair separation ξ(x1−x2) = ξ(x2−x1).

The density field can also be describe in terms of the power spectrum, corre-
sponding to the Fourier transform of the density field in configuration space:

P (k) =
∫
δ(r)eik·rd3r (1.92)

The power spectrum between two modes is formally described as:

P (k1,k2) = 1
(2π)3 〈δ(k1)δ(k2)〉, (1.93)
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which, considering statistical homogeneity and isotropy reduces to:

P (k1,k2) = 1
(2π)3 δ

D(k1 − k2)P (k1). (1.94)

The δD denotes the Dirac function. Inflation, a model describing the expansion
of the early universe predicts a power law power spectrum of the initial density
fluctuation:

P (k) = Ask
ns (1.95)

where As is the amplitude of the initial density perturbation and ns is the spectral
index. As of today, both quantities have been estimated in the analysis of the
CMB anisotropies (Aghanim et al., 2020c), yielding As = (2.105± 0.030)10−9 and
ns = 0.9656± 0.0042.
In linear theory, the power spectrum of the density field can thus be fully

described from initial perturbations with the following form:

P (k, z) = Ask
nsD+(z)2T (k)2 (1.96)

where D+(z) is the growth function defined in the previous section that accounts
for the time evolution of the density field. T (k) is the transfer function, it encodes
the scale-dependent evolution of the density field, such as the impact of pressure
that suppresses the growth of perturbations or the contribution of each specie and
their interactions.
The power spectrum and subsequent correlation function that describe the

underlying density field can be predicted in the context of linear theory. In practice,
the power spectrum of the density field is estimated with tracers of the under-lying
matter field in the form of galaxies or clusters.

However, the density field estimated from the observed objects δg does not exactly
render the underlying matter field δm. Due to their different properties such as
their luminosity, mass or simply environment, the sampling of the density field
with discrete astrophysical objects will yield a biased estimate of the density field.

To take that into account, a simple assumption has been applied in the relation
between the measured density field and the real density field, that is that both
quantities are related in a linear manner:

δg = bδm (1.97)

where b is the linear bias. At large scale, this bias is assumed to be scale-independent,
however, it is expected to evolve with the redshift. This linear bias encodes the
non-linear information of the environment, such as the galaxy formation.
When considering the power spectrum or the two-point correlation function
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estimated from biased tracer of matter we thus have:

Pgg(k, z) = b(z)2P (k)δδ
ξgg(r, z) = b(z)2ξ(r)δδ

(1.98)

where the subscript gg denotes the galaxy auto-power spectrum or correlation
function and δδ denotes the matter auto-power spectrum.
The Large-Scale structure of the Universe can therefore be probed and studied

in a statistical manner in order to constrain cosmology.
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2 Voids in the Large-Scale
Structure of the Universe

2.1 Exploration of the large scale structure
The understanding of the current picture of the Universe has been lead through the
discovery and exploration of the large-scale structure. The Large Scale Structure
(LSS) of the Universe refers to the distribution of matter on scales larger than
that of galaxies. Previous framework (Rood, 1988) relied on the thought that the
matter was uniformly distributed in the distant sky, in which clumps of matter
appeared as clusters or superclusters of galaxies. The advent of redshift surveys
has allowed astrophysicists and cosmologists to probe the LSS and to uncover some
key aspects of the large-scale distribution of matter. The increasing number of
objects probed as well as the technical advances have made LSS studies the focus
of most cosmological constraints in recent years.

2.1.1 Early redshift surveys : Discovery of voids
With the confirmation that nebulae in the night sky are extra-galactic objects
(Slipher, 1913, 1917), and as such are galaxies in their own right, along with
the steady rise in the number of observed galaxies, the distribution of galaxies
on a large scale became a key question for the cosmologist. While some authors,
including Zwicky (Bahcall & Joss, 1976; Zwicky, 1967), argued that the distribution
of galaxies was entirely random in order to respect the cosmological principle of
homogeneity and isotropy, others were convinced of the non-random distribution of
galaxies on length scales from 0.1 Mpc to at least 100 Mpc (de Vaucouleurs, 1975,
1976; Vaucouleurs, 1971). Indeed, evidence for a specific clustering of galaxies
has been shown by the observation of high-density regions of galaxies suggesting
the existence of clusters. A very general picture of the distribution of matter was
given in Abell (1958) as follows: ”There is a general field of galaxies, the surface
numerical density of which varies from point to point in the sky. Whether this
field is composed of isolated individual galaxies, of clusters of galaxies overlapping
in projection, or both, is considered immaterial. In any case, superposed upon
the general field there are occasional very rich clusters of galaxies which stand
out conspicuously and which we shall assume to be physical associations.” In a
second paper, Abell argued that in addition to the existence of clusters, there
would be traces of second-order clustering, meaning clusters of clusters, also called
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superclusters, found in the large-scale structure of the Universe (Abell, 1961).
With the slow accumulation of galaxy positions and velocity maps, a statistical
work applied on catalogues by Peebles (1974), which consisted in evaluating the
angular correlation function of two different cluster/galaxy catalogues, disfavored
the picture of a general field from which galaxies were drawn to form clusters
as there were no anti-correlations, or ”no holes” as he says. In conclusion, from
the discovery of galaxies to the end of the 1970s, no real scientific consensus had
emerged on the distribution of galaxies. In 1976, Tifft & Gregory endeavoured to
observe galaxies in a specific portion of the sky : the Coma/A1367 supercluster and
found evidence of structuring of matter in what they called clusters, groups (smaller
clusters) and isolated galaxies, although the latter were less numerous (Tifft &
Gregory, 1976). Thompson and Gregory continued this work by accumulating
more data in a magnitude-limited sample (a catalogue of all observable galaxies
in a specific magnitude range) in order to obtain a more complete picture of the
Coma cluster and its surroundings (Gregory & Thompson, 1978). At the same
time, another group compiled the available data from different galaxies and cluster
catalogues to obtain a clearer picture of the distribution of the galaxies (Jôeveer
et al., 1978).

Figure 2.1: Redshift map of the magnitude-limited survey of Gregory & Thomson
(Gregory & Thompson, 1978) showing the Coma/A1367 supercluster region.
On the right panel, the redshift map and on the left panel, an interpretative
depiction of the different clusters and groups. The first voids can be
recognized in the foreground between the bridges formed by the galaxies.

As it is, Gregory & Thompson (1978) presented a first result for which there is
evidence of structuring of matter, as shown in Fig. 2.1. Even more so, it seemed
that the surroundings of the cluster contained a region devoid of galaxies. The
same year, Jôeveer et al. (1978) presented similar findings from their compiled
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catalogues which highlighted the presence of chains of clusters and galaxies linking
different structures. They also noted the presence of large empty regions in these
distributions. The Large scale structure and the voids therein were found.

Due to the lack of consensus on the distribution of galaxies at large-scale, various
criticisms shed a shadow on the discovery regarding the methodology used to
create these galaxy maps. One of them, concerning Gregory and Thompson’s work,
was that their selection of galaxies was magnitude-limited, so that there could be
fainter galaxies, unseen by the instrument, that could populate those supposedly
empty regions (Tifft & Gregory, 1978). Another criticism, concerning the work
of the Estonian team and acknowledged by the authors, was that their data were
a compilation of very different catalogues and could be inhomogeneous, thus not
depicting a real vision of the large-scale structure (Jôeveer et al., 1978; Thompson
& Gregory, 2011).

Despite these misgivings of the scientific community, the large-scale structures of
the Universe were the subject of an in-depth study in the following years. This
’lace curtain’ (Jôeveer et al., 1978) was the first inkling of a cell-like (or foam-
like) pattern of the Large-Scale Structure of the Universe and has deeply affected
our understanding of the distribution of matter in the Universe. The presence of
prominent holes in this distribution is the first step towards a non-matter dominated
Universe.

2.1.2 Confirmation of the existence of voids
Following the first observations, the telescopes continued to focus on the distribution
of galaxies in the vicinity of clusters or super-clusters. The insights of a complex
large-scale structure given by the first observation were confirmed on many occasions
by larger statistics. The newfound structuration of matter found provided an
impetus in the general study of cosmology.

Voids became a real feature of the large-scale structure landscape. Kirshner et al.
(1981) detected a very large void of size ∼ 50 h−1Mpc : the Boötes void, although
further analysis (Kirshner et al., 1987) downgraded the size to ∼ 34h−1Mpc . In
his review, Zeldovich et al. (1982) presents the true consequence of the observed
structuring of matter in the sky: clusters and superclusters are not isolated objects
at all but seem to form a complex and connected pattern in which voids play an
important role. His first estimate was that voids represented more than 90% of the
Universe.

Further work from de Lapparent et al. (1986) confirmed this structuration. They
collected the redshift of galaxies in the vicinity of Coma/A1367, the same region
of the sky initially covered by Gregory & Thompson (1978) wherein was revealed
the existence of voids. With a much larger field, they were able to capture a
more sharply defined image of the large-scale structure, as shown in Fig. 2.2. This
picture perfectly illustrates the LSS: the filamentary structure develops from the
Coma cluster, highlighting the idea of a connected network of galaxies, clusters and
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superclusters. This cone diagram cemented the existence of voids which became
central in the study of LSS.

Figure 2.2: Redshift map of the CfA redshift survey in units of velocity (cz) and right
ascension in h (hours) showing the distribution of galaxies around the coma
cluster from de Lapparent et al. (1986).

Discovery of such connectedness of matter, however, had very large implications
from a cosmological point of view. First of all, it very obviously broke the cosmo-
logical principle in that this distribution was obviously non-homogeneous! This
pitfall was successfully avoided with the assumption that on a larger scale, the
cosmological principle remained true.

The size of the structure also questioned the modelling of our universe, because
the Universe was supposed to be dominated by matter, hardly explaining the
existence of such large empty regions as voids. Several explanations were evaluated
to explain the extent of these empty regions, among which the fact that these
regions were formed by some kind of explosive process (de Lapparent et al., 1986;
Ikeuchi et al., 1983), pushing matter out of them and thus creating these large
empty regions. On the other hand, some considered, according to the observation of
N-body simulations (Melott, 1983), that the possible existence of massive neutrino
particles of mass in the MeV range led to void comparable in size to those observed
in the sky. Nowadays, it is considered that the formation of the LSS – over and
under dense – is quite well understood by a hierarchical formation process stemming
from gravitational instabilities in the early Universe and in which Cold Dark Matter
has a prominent role (Fry et al., 1989).

2.2 Identification of voids
The major challenge when considering voids in LSS is the ability to define them
using tracers of matter and ensure that they represent the underlying true matter
void regions as faithfully as possible. Indeed, voids are not objects that can be
observed directly through a telescope but are defined from galaxies spread over the

42



2.2 Identification of voids

cosmic web. The definition of the voids will thus depend on the void extraction
procedure, or more precisely on the algorithms for finding voids in tracer samples.
In this section, I will focus on void finder algorithms that allow recovering the

position of under-densities and some of their properties in a tracer sample, with a
special emphasis on the algorithms used during my thesis: the VIDE and Revolver
algorithms, which are both wrappers of the ZOBOV algorithm.

2.2.1 Overview of void finding algorithms
The void finding step is paramount to any void studies undertook in the realm
of cosmology. With the large number of galaxy positions collected over the years,
visual inspection of redshift maps is no longer sufficient or even feasible to probe
the under-dense regions of the Universe. The extraction and characterisation of
voids in galaxy samples has to be an automated process in order to process the
positions of the galaxies in an efficient and fast way. Over the course of the years, a
variety of void finding algorithms have been developed in order to best extract the
information from various LSS tracers, primarily galaxy or other point-like objects
(QSOs).

The choice of the void finding algorithm is primordial as the void finding choices
seep into the properties of the found voids. It is thus necessary to consider the
different categories of void-finders in order to understand the possible bias that
percolates in the void definition.
Overall, two general features of void finding can be discerned. The first is the

dimensionality of the void finder, that is, whether the void finder is applied to two
or three-dimensional information. Three-dimensional void finders are generally
suited to find voids in tracer distributions or 3D estimation of the density field.
Two-dimensional void finders can be most commonly used in photometric surveys,
allowing to compensate for the error in redshift estimates by stacking angular
positions and thus recovering a depth in h−1Mpc (Sánchez et al., 2017). The second
feature concerns the shape of the voids. One of the objectives of void finders is
to locate voids in the density field and to evaluate their approximate extent. One
approach used in void algorithms is to assume that voids are spherical. Although
voids are not necessarily spherical, as can be seen in N-body simulations, such an
assumption allows to speed up the void search process – which can take time – and
still be able to locate under-densities with accuracy.
The working of a void finding algorithm is fairly universal and, in principle,

follows three main steps:

1. Estimation of the density field which is methodology dependent,

2. Identification of the under-dense regions in the inferred density field,

3. Characterisation of the under-density to define voids.
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The large existing variety of void finding will differ in the first aspects, that is
the estimation of the density field and the definition of the voids which enters after
the identification of the under-dense parts. The methodologies themselves can be
classified into three general kinds (Lavaux & Wandelt, 2010), although those may
not be mutually exclusive.

– Density criterion void finders : These are among the most developed and
used algorithms. Such void finders estimate the density contrast of given data
in order to identify over and under-dense regions. The subsequent regions are
qualified as voids if their density is below a given density threshold. The latter
is generally set as ρ < 0.2, in accordance with linear theory prediction (Sheth
& Van De Weygaert, 2004). These voids are usually found using a spherical
assumption in order to define the voids as the largest sphere containing the
threshold density. Void finders defined by the density criterion have the
benefit of being applicable to a wide range of data, as discrete distributions
(Gottlöber et al., 2003; Hoyle & Vogeley, 2004; Kauffmann & Fairall, 1991;
Micheletti et al., 2014; Padilla et al., 2005), 2D projected field (Sánchez et al.,
2017), or 3D reconstructed density field such as tomographic maps, (Clampitt
& Jain, 2015; Stark et al., 2015). The density criterion is usually applied as a
step which corresponds to both the identification of the under-densities and
the void definition. Indeed, the void size is defined as the general volume in
which the density criterion is satisfied.

– Geometrical void finders : As the name suggests, such void finders define
voids as constructs of geometrical structure, the latter being generally defined
at the step of the density field estimation. As such, voids can be defined as a
cluster of Voronoi polygons (Nadathur et al., 2019b; Neyrinck, 2008; Sutter
et al., 2015) or their dual, Delaunay tetrahedra DIVE (Platen et al., 2011;
Zhao et al., 2016), spheres or ellipsoids (Colberg et al., 2008) or grid cells
(Müller et al., 2000; Shandarin et al., 2006). Such methods, except for DIVE,
have the advantage of not assuming the general shape of voids, which can be
quite aspherical.

– Dynamical void finders : In these kinds of void finders, the tracers are
considered as test particles of the velocity field induced by the gravitational
evolution of the LSS. They rely on the identification in Lagrangian coordinates
rather than the Eulerian scheme (Elyiv et al., 2015; Hahn et al., 2007; Hoffman
et al., 2012; Lavaux & Wandelt, 2010). In the local Universe, the velocities
of the galaxies can also be used to map the underlying density field, thus
enabling the identification of under-dense regions through velocity outflows,
like the Local Void (Courtois et al., 2011; Tully et al., 2019).

Choosing a void finder from the list of possibilities is a non-trivial matter. The
choice depends first of all on the choice of the definition of what a void should
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be: an under-dense volume or an empty volume. If the void search is based on a
density criterion, then an under-density will be considered as a void only below
a density threshold, but by construction, may not be totally empty, since these
voids are composed of cells defined by the matter tracers themselves. This density
threshold may be stringent, imposing empty voids or on the contrary allows for
only under-dense voids in which some of the matter tracers can be found, thereby
affecting the very definition and properties of voids. Geometrical void finders or
dynamical void finders in this regard are less sensitive to such definitions, generally
yielding under-dense regions with varying depth.

The variety of void finding choices corresponds to an unending search for a
proper definition and parameter-free void detection. Another aspect to be taken
into account in the void finding choice is the geometry of the survey. For instance,
a pencil beam like survey such as VIPERS (Guzzo et al., 2014) is very deep but
covers a limited area in the sky. The density reconstruction of a geometric void
finder would thus not properly estimate the volume of the survey and is very
dependent on the shot noise. A spherical density criterion void finder such as the
one developed specifically for the survey (Micheletti et al., 2014), at the contrary,
is less restrained by such specificities.

The major consequence of these choices is to impart some a priori of what a void
should be. It follows then, that the recovered properties are affected by the choice
of the definition, disabling the possibility to identify and compare the entirety of
the void characteristics from one algorithm to another. A prime example of that is
the shape. While finding spherical empty structures can ease the void extraction
from available data, a part of the information is lost in the process. The sizes are
also affected by the choice of both shape and density criterion: considering spherical
voids may cause the estimated volume of the void to be smaller than in reality.
This incomplete characterization of the voids can therefore be problematic when
the very properties distribution can be of interest to constrain cosmology (as we
will see later on), such as the shape of the voids in the case of the Alcock-Paczynski
test, see Chapter 4.
Some authors have attempted to draw a comparison of various void findings.

Figure 2.3 shows a selected few void finders compared against the same dark
matter N-Body simulation in the Aspen-Amsterdam void finder comparison project
(Colberg et al., 2008). It evidences the disparity in the void finding algorithms
along with their extracted properties, such as the void centre displayed in red.
Although voids are identified in the same region, they obviously differ in size, shape
and void centre definition. The spherical assumption based void finders are easily
noticed. The geometrical void finders, however, tend to have different behaviour,
although, some provide more refined contours of voids. The latter, however, find
voids in the DM particle distribution or DM density field which can explain this
level of definition.
It is to be noted that the definition of the void centre still differs, even when

considering the same category. A similar study, with 6 different void finders, has
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also been lead more recently by Cautun et al. (2018), where the different void
positions and properties are compared in regard to their sensitivity to different
cosmologies like GR or f(R) cosmologies. Void properties are studied in both 2D
and 3D and display similar discrepancies. However, such form of comparison is
primordial in void science. It is necessary to make sure that, regardless of the void
finding algorithm, the properties inferred are self-consistent and display the same
overall discriminating behaviour.

2.2.2 The ZOBOV algorithm
In this part, I present the algorithm which is the core of the two algorithms used in
my thesis to recover voids and associated properties in samples of data, galaxies or
mock galaxies. In order to have a comprehensive understanding of the void science,
the algorithm must be properly studied in order to understand the objects that we
recover.

ZOBOV, as in ZOnes BOrdering on Voidness (Neyrinck, 2008) is a parameter-free
void finding algorithm which relies on the combination of the Voronoi Tesselation
Field Estimation (VTFE) and a Watershed technique. It aims to find voids in a
discrete sample of points as defined by galaxies or quasars. These tracers of matter
will be referred to as particles hereafter. Prior to any of these methods, the sample
is translated to comoving coordinates in h−1Mpc through the use of flat Λ-CDM
fiducial cosmology of choice. After this transformation, the particles are placed in
a cubic volume, as ZOBOV was developed only run on cubic boxes.

2.2.2.1 Voronoi Tessellation

The Voronoi tessellation paves the 3D space in small volumes. It carves the whole
volume in small volume entities. These small volume entities, called cells, have
three properties:

– Each cell contains only one particle, and its centre is defined as the position
of the particle.

– The volume of the cell is defined by the set of points in 3D space which are
closer to the centre of the cell than to any other centre of another cell.

– The boundaries of the cell correspond to the mid-segment between the centre
of the cell and the adjacent cell centres.

The Voronoi tessellation enables to partition the space in small volumes centred
on the input particles in the form of complex polygons. The volume of each
cell, by definition of the Voronoi tessellation field estimation (VTFE) (Schaap,
2007), represents a local estimate of the volume in the vicinity of the cell. The
resulting local density estimation corresponds ρcell = 1/Vcell, providing a local
density associated to each tracer. It is a simple matter of comparing the different
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Figure 2.3: The Aspen-Amsterdam Void comparison project : A variety of void finding
algorithm compared in the same slice of thickness 5h−1Mpc of the central
40 h−1Mpc region of the Millenium simulation. The top-left corner displays
the original simulation and top-middle shows tracer galaxies. The rest of
the panels display the void identified by each algorithm in the same region.
Red circles show the void centre positions position, green dots show the
member dark matter particles and the blue dots display the member tracer
galaxies. A review of these algorithms can be found in the source of the
plot: Colberg et al. (2008).
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volumes/density to find the local minima of the distribution, and thus, local
under-densities in the sample.
Preliminary zones are built from the different adjacent cells up until a local

maximum is reached. At which point, the merging process ceases. Fig. 2.4 illustrates
the process from the point distribution (Panel a) to the resulting zones (Panel d)
in a 2D plane. The tessellation allows to directly identify the most isolated galaxies
by the largest cells. At the contrary, the smallest cells allow to separate and trace
the high-density regions.

Figure 2.4: 2D illustration of the Voronoi tessellation procedure from Neyrinck (2008),
(a) shows the initial disposition of the galaxies, (b) the issueing Voronoi
tessellation, (c) Preliminary zone building and (d) The resulting void
candidates.

2.2.2.2 Watershed Transform

In order to properly explore the density field, and to, eventually, identify a possible
structure hierarchy, the resulting preliminary zones are merged together according
to the Watershed Transform. This method consists in merging adjacent zones so
that the dense wall separating both doesn’t cross a given density threshold. It
takes its name from the fact that, if one were to have adjacent basins and were
to pour water in those, then, the water may connect if the separation between
the two basins is low, otherwise, the basins remain distinct. It is the same for

48



2.2 Identification of voids

the voids, if the density threshold is obeyed to, then the distinct proto-voids are
merged in a larger void. At the opposite, if the wall is too dense, the voids remain
unconnected. Such a threshold is generally taken as 0.2ρ̄, where ρ̄ is the mean
density of the sample, as mentioned earlier. Others have found this threshold to
be too arbitrary to really provide information on the void hierarchy in a survey
(Nadathur & Hotchkiss, 2015a).

The process is illustrated in three steps in Fig. 2.5, a slice of a 2D density field
is shown on the left panel for which under-dense regions can clearly be identified.
The Watershed process then ’floods’ the density field linking and identifying the
ridges separation the basins (middle). Finally, once the water level has risen, one
can identify the different separation between the catchment basins. The higher the
ridge, the less likely the adjacent zones are to be merged.

Figure 2.5: Illustration of the watershed transform from Platen et al. (2007), from left
to right, the flooding level increase up until only the ridges separating the
depressions are seen.

The resulting zones obtained through the combination of the VTFE and the
Watershed transform are qualified as under-dense zones in a given sample of points.
They correspond to an aggregate of complex polygons defining the entirety of the
under-dense volume as the sum over all individual cell volume. The zones are
further characterized by the particles at the core of the Voronoi cells. Some use
them as full voids, in the sense that, they do not apply further post-processing.
From this, in order to obtain the position of the void, some post-processing is

needed and as such, a final definition on the void centre is needed as well. The
possibilities are numerous: emptiest centre of the cell, geometrical average of the
cell contributions etc...

2.2.3 VIDE and Revolver algorithms
vide (Void Identification anD Examination toolkit) (Sutter et al., 2015) and
Revolver (Nadathur et al., 2019b) are zobov-based algorithms. As mentionned
above zobov was initially created to identify voids in cubic dark matter simulations
boxes, while both vide and Revolver are wrapper of this algorithm developed to
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be able to be applied on survey data. Survey data are generally characterised by
their geometry (or footprint) which depends on the targeted area and redshift depth.
These are observational data, thus making their footprint sometimes discontinuous
due to the presence of bright objects or other observational systematics. This results
in vetoed/masked regions within the footprint. The existence of such boundaries
has to be taken into account in order to properly extract voids, without them
leaking out of the footprint.

2.2.3.1 Footprint boundaries

Voids and associated properties are extracted from galaxy samples or their likes
(mocks or light-cone N-Body simulations). This process is not trivial when it comes
to observational data or mocks. The existence of bright stars or other observational
systematics in the measurement of the galaxy spectra results in an uneven footprint
of the galaxy distribution, necessitating stringent cuts in the footprint in areas too
deeply affected by those. Another aspect of these observational data is that the
footprint is restricted to the specific observed area of the sky where the survey
probed the positions of the galaxies.
The final galaxy catalogue is necessarily affected by these systematics and

observational conditions in the form of masked out areas in the galaxy distribution.
The consequence in terms of void finding is highly important because these parts
of the sky must not be identified as voids in the void search process.

Both vide and revolver tackle this issue through the use of a binary pixelized
angular mask in (RA, Dec) coordinates, in which each pixel indicates an angular
region in the sky. The presence or absence of galaxies can then be mapped, tracing
the footprint of the survey. As a result, the empty pixels at the boundary of the
survey are identified and used to generate buffer particles in the vicinity of the
boundaries, the redshift boundaries of the surveys are carefully controlled also.
The buffer particles, or mock particles are random positions generated within the
footprint boundaries. These are then tracked in the tessellation process in order to
prevent the identification of the masked regions. Fig. 2.6 illustrates the pixelized
angular map corresponding to the footprint of the sample on the upper panel. The
lower panel displays the identified boundary pixels within which will be generated
the buffer particles.
This step is capital in the void finding process, the VTFE on which both

algorithms rely, needs a properly defined volume in order to perform consistent
paving of the density field. The consequence of an ill-defined survey boundary, other
than finding voids in ’forbidden’ regions can lead to a general misidentification or
truncation of local density minima at the root of the void finding process. As such,
a large number of mock particles is generated in the empty pixels corresponding
to the survey angular boundary to avoid them being taken into consideration as
under-dense zones. The empty pixel positions providing the angular (RA,DEC)
positions. Although this step is common to both algorithms, they differ in the
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Footprint

Boundary

Figure 2.6: Identification of the boundary angular pixels of an Healpix map with
NSIDE= 128. The upper panel displays the full pixel given by the particles’
angular positions and the lower panel displays the boundary pixels

generation of such boundary particles.
Assuming the survey volume to be embedded in a spherical volume, the vide

algorithm generates the radial positions of the particles in the whole range 0 to
Dc(zmax), the maximal radial distance of the tracer, where zmax is the higher edge of
the redshift distribution. On the other hand, Revolver draws the radial positions
between Dc(zmin) and Dc(zmax), the radial boundaries of the survey.

A second step in the generation of the buffer mock concerns the redshift bound-
aries, vide only places a thin layer of buffer particles on the complete angular
area of the survey at positions Dc(zmin) and Dc(zmax), while Revolver generates
a wider layer which corresponds to 1.5 times the mean tracer separation of the
galaxy (∼ 1.5(3V/4πn̄)1/3 ). Additionally, the density of the buffer particles can
be controlled in Revolver with a multiple of the mean tracer density.
Although these two processes seem inconsequential to the void finding process,

the handling of the survey boundaries is primordial and has a great impact on the
recovered void positions, as we will see in 3.1.3.1.
After tessellation, vide rejects any galaxy and information that is adjacent to

the generated buffer particles. On the contrary,Revolver retains the volume of
this galaxy to perform the identification of local density minima.
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2.2.3.2 Under-density definition

Post-processing of the zobov output covers another aspect of the vacuum search
choices. vide allows a watershed transformation of the tessellated field with a
density threshold estimated at 0.2ρ̄, ρ̄ being the mean tracer density of the sample.
This step is performed in order to extract an eventual void hierarchy which is
favoured in the void excursion set theory. Revolver allows the merging without
density threshold and defuses the resulting zones in its final post-processing steps
in order to obtain the smallest entity corresponding to a under-density.
From the final information provided by the zones and the galaxies that define

them, the void centre and subsequent properties are computed. The volume of the
void is defined as:

Vv =
Np∑
i

V i
c , (2.1)

where Np is the number of galaxies which are part of the void and V i
c is the

Voronoi volume of the ith member galaxy cell built in the tessellation stage. In the
case of revolver, the Voronoi volume pertaining to each galaxy can be corrected
to take into account an eventual weighting of the considered tracers.

An effective void radius is then defined as the radius of a sphere of equal volume
Vv:

rv = (3/4πVv)1/3. (2.2)

Finally, the centre of the void is defined as the Voronoi volume-weighted barycen-
tre of the tracer :

xv = 1
Vv

Np∑
i

V i
c xi, (2.3)

where xi is the position vector of the ith member galaxy. Revolver also provides
an alternative definition of the void centre: the circumcenter, which is computed
as the centre of the circumcircle of the four largest volumes defining the void. The
knowledge of the galaxy positions and input fiducial cosmology used to find the
void is used to recover the voids position in observational (RA,Dec, z) space.

2.2.4 Limitation of void search processes
Indirect void finding is the only method to pinpoint under-dense zones in an
estimated density field. While it was possible to decipher these zones visually in the
early void work, where the sampling statistics and subsequent number of voids were
limited, it is nowadays impossible not to process the data in a big data approach.
These "black box" type of methodologies are based on theoretical or geometrical
assumptions and sometimes require fine-tuning in order to extract voids properly.
The lack of a unified context on what to expect from the voids, their distribution
and characteristics leads to several drawbacks.
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2.2.4.1 Void definition and properties

Void finding techniques are numerous and can relay very different results and void
properties. While the general under-density ’recognition’ is independent of the
void finding algorithm, extraction processes of the true underlying properties of
the void are not so universal.
The consequence is that, from one algorithm to another, the behaviour of the

observed properties may not be exactly the same, or even comparable. As void
finder comparison projects (Cautun et al., 2018; Colberg et al., 2008) illustrate,
the void centre and the sizes can be quite different depending on the type of tracer
probed (Dark Matter particle, haloes or galaxies) and the adopted void definition.
Theoretical expectations on the void sizes may provide a framework of comparison.
Nevertheless, sizes of voids extracted with void finding algorithms have not been
able to be directly compared to the theoretical distributions from the excursion set
formalism of Sheth & Van De Weygaert (2004) or more recently, the ’Vdn’ model
of Jennings et al. (2013).
A new method has been developed in order to re-evaluate the properties of

voids in regard to theoretical expectations. It enables to compare the distribution
of voids to that of the expected abundance (Ronconi & Marulli, 2017), as the
raw catalogue from void algorithms (even when treated through cuts) are highly
different from the predicted distributions. This procedure relies on the rescaling of
the under-densities in regard to theoretical under-density levels which leads to a
rescaling of the void radius.

When probing for the spatial distribution of matter – clustering – around voids,
this disparity in terms of void finding measurements does not seem to present a
massive problem. The clustering estimation is quite consistent despite the different
algorithms used, and the theoretical models explored still yield similar results,
see 2.4.3 and reference therein. That being said, probing cosmology through the
use of the void properties is another matter entirely, the need to modify the void
size distribution, for example, raises an underlying issue of the void science: the
lack of true and thorough sanity check of the void finding procedure.

2.2.4.2 The matter of significance

Most of the conclusions drawn on voids and their properties have been done
through the extracted information of N-Body simulations (van de Weygaert &
van Kampen, 1993) or observational data (Hoyle & Vogeley, 2004; Mao et al., 2017;
Müller et al., 2000; Nadathur & Hotchkiss, 2014; Sutter et al., 2014a, 2012b). It
follows that the void finding procedure has never been tested against a hypothetical
simulation in which the underlying void positions are known. The fidelity of the
void reconstruction, as such, as never been attested for. The lack of significance
index on the validity of the under-density found thus raises some questions on the
methodology itself. Do we find a majority of ’actual’ voids? Or can they be found
by our algorithm solely due to the fact that they probe a discontinuous field? Such
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questions are in part answered by the measurement of lensing signature in voids
(Fang et al., 2019; Sánchez et al., 2017) which confirms that voids they found are
truly under-dense statistically.
However, the question of the significance of individual voids found remains.

zobov provides a significance level in the form of a p-value calibrated with a
Poisson sampling in a cubic box, as such, it may not be properly applied to the case
of survey data. In the same vein, a multivariate analysis of the different information
extracted by the void finders was developed in Cousinou et al. (2019) to compare
them to under-density found in truly random distributions.

2.2.4.3 Bias in voids

A last and primordial aspect of the void finding is the role of the bias. The
matter field, when probed through the prism of tracer distributions, evidences a
bias in relation to the underlying true matter (DM) field. In the same way, the
identification of voids rely on the estimation of such density field and should thereby
be affected by the bias of the tracers. It is thus not a stretch to assume the same
linear relation between true underlying dark matter voids and those inferred from
luminous tracers.

δgv = bδmv (2.4)

where the superscript g or m relays the density field in which voids were extracted.
A primary study on the effect of the bias on voids was led by Little & Weinberg
(1994) with N-Body simulations, wherein it was shown that the bias affected the
void size estimation along with the surrounding density. As a result, a higher bias
made the void appear emptier, seemingly consistent with the hypothesis of a linear
bias affecting both over and under density. The linear bias identified in Eq 2.4 is
generally considered to be the tracer linear bias bt. This was investigated by Pollina
et al. (2017) which lend credence to this assumption, at large scale. Identification
of the influence of the galaxy bias in the general void properties such as their sizes
and depth is made difficult by the influence of the number density of the tracer –
in the event of a point-like tracer – (Nadathur & Hotchkiss, 2015b; Pollina et al.,
2016; Sutter et al., 2014a). The effect of the bias furthermore affects the sensitivity
to eventual deviations from the Λ-CDM model.

The linear biasing relation presented above, however, does not relate the predic-
tion of the underlying density field δm and the underdense density field. As such, a
second formulation of the biasing of voids can be inferred:

δmv = bvδm (2.5)

where bv is the void bias. The void bias in this form becomes a scale-dependent
quantity that has yet to be quantified. The void bias has been investigated in
simulations (Chan et al., 2014, 2020; Jamieson & Loverde, 2019; Schuster et al.,
2019), and data samples (Clampitt et al., 2016). In the latter, a dual behaviour

54



2.3 Cosmic voids

was noticed: large scale contributions identify a linear bias relation. However, this
bias also displayed a scale-dependent behaviour, changing sign as larger voids were
considered.
It follows the total void bias contribution of voids found in a galaxy sample is

considered to be the product of the void bias and tracer linear bias: bvbg. However,
for the moment a scale-independent bias on large scale is assumed bvbg ∼ bg.
This bias was extended to an affine relation with a constant term calibrated in
simulations (Contarini et al., 2019; Ronconi et al., 2019).
The relation of the observed void in regard to the true under-dense field, the

void bias, is still under investigation. The void bias and its nature represent an
unresolved issue in the study of voids and their properties for an application to
cosmological constraints. It is an essential part of the void science to be which
prevents to have a predictive power regarding the under-dense density field. In
addition, while it can be considered distinct from the linear bias of the galaxies, it
probably encodes an additional bias from the non-linear transformation that is the
void finding process.

2.3 Cosmic voids
Linear evolution of the density field in time is well modelled in the context of
the standard Λ-CDM model. It helps to understand the process at work in the
formation and evolution of the Large-Scale structure and its associated content:
filaments, clusters and voids.
As such, the evolution of voids embedded in the Large-Scale structure relies

on the cosmological model as well. However, due to their nature as non-linear
extended objects, it is not possible to predict the clustering of matter around voids
and deduce the underlying properties. Voids have been studied in detail since their
discovery using numerical models and N-Body simulations and observations. In
this section, I give a general overview of what is known today in the field of cosmic
voids.

2.3.1 Growth of voids
Voids are fully part of the LSS, their definition and observation are dependent on
the surrounding matter field. Their evolution and growth also impact the structure
formation and affect the distribution of the surrounding over-dense field.

2.3.1.1 Void Density Profile

Discovery of voids in the LSS forced cosmologists to consider how they became
these salient features of the cosmic web. On the basis that the structure is a marker
of past density fluctuations (Bardeen et al., 1986), the early void science was driven
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to explain the growth of the voids in time and space through the study of the void
density profile and its evolution in an expanding Universe.
First and foremost, the void density profile traces the density field from the

inside of the voids to their outskirts. It is generally evaluated by way of the
void two-point correlation function (or void-galaxy cross-correlation) or modelled
through a parametric function.

The first explorations concerning the growth of voids consisted in an attempt to
understand their development within the Large-Scale Structure. Through the use of
numerical solutions and adopted density profile, the growth of initial under-density
was explored in the general growth of structure picture. The density profile was
assumed to grow toward sphericity and spur from initial conditions. In time, the
pressure caused by the expansion of the voids, happening more rapidly in the
centre of the voids than at its outskirts should push the matter outward along
the line of sight (Peebles, 1982), creating an accretion of matter around the voids
that we define as its wall. This behaviour has been predicted several times over
(Bertschinger, 1985; Fillmore & Goldreich, 1984; Fujimoto, 1983; Hausman et al.,
1983; Hoffman et al., 1983; Icke, 1984; Lake & Pim, 1985). It is to be noted that
the growth of structure is then dependent of both the growth of over-densities
and-under densities. Such studies were derived using different assumptions for the
void density profile and, a fortiori, different parametrizations.

(a) Numerical density profile (b) N-Body void density profile

Figure 2.7: Void density profile evolution in an Einstein de-Sitter Ωm = 1 at different
epochs. (a) Parametric density profile from 1 + z = 1000 to 1 + z = 2.4
in comoving radius coordinate from Hausman et al. (1983) (b) N-Body
simulation from a = 1 to a = 64 (past to now) Dubinski et al. (1993)

Figure 2.7 displays the density profile of voids at different epoch. Panel 2.7a
displays the evolution of the density profile parametrized by an arbitrary function
and evolved in time from 1 + z = 1000 to 1 + z = 2.4. Panel 2.7b shows the
estimated density profile from N-Body simulations at different epoch. Both evidence
a similar behaviour : the voids grow less and less dense while at their limits forms
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an over dense ridge. Meanwhile, the void also expands radially, although this
behaviour is not emphasized in the Panel 2.7a as the radial coordinates adopted
are independent of the expansion. This spatial expansion is responsible for the
growth of the surrounding over-density.
The accretion of matter surrounding the void is indicative of the surrounding

dense structure of the void. Its amplitude and definition are affected throughout
the evolution of the Universe. The depth of the voids represents in some way
a deficit in mass ∆M in the overall density field. As such, three types of void
density profile scenarios can be inferred (Bertschinger, 1985; Ryden, 1994). The
existence of the void in a general matter field, that can be considered over-dense, is
evidence for the existence of a mass deficit in the general perturbation. Depending
on the voids, the net mass deficit can be ∆M ≥ 0, marked by the presence of an
over-dense wall. The void can thus be considered as compensated: ∆M = 0, or
over-compensated: ∆M > 0. If the net mass deficit is negative, ∆M < 0, the hole
is considered as uncompensated and should not feature an over dense shell. This
type of compensation affects the rate at which the void expands.

Bertschinger (1985) showed that, in an Einstein-de Sitter (EdS) Universe, over-
compensated voids expand at a lower rate than the under-compensated voids. This
can be understood in the fact that expanding over-compensated voids will end up
’competing’ with the physics in charge of the growth of over-densities and thus will
be challenged by those. However, uncompensated voids will not be affected by the
presence of the over-dense surroundings and will expand at a different rate.

The impact of the growth of void along the Hubble flow is non-negligible in the
formation process of the structure and subsequent pattern observed. Voids are not
isolated objects, they do affect the surrounding density field and, as a consequence
contribute in shaping up the LSS. The expansion of voids throughout the LSS tends
to push matter outward of the under-densities thus compressing matter along the
filaments, sheets and walls of the LSS (Dubinski et al., 1993; Icke, 1984; Martel &
Wasserman, 1990; Regos & Geller, 1991; van de Weygaert & van Kampen, 1993).

The numerous studies in relation to the density profile evolution have thus
agreed on a general behaviour of the void density profile: the void density profile is
characterized by an under dense centre with rising density along the separation
up until it crosses the mean density of matter. The density then features a wall,
depending on its compensation level, before lowering toward the mean background
density.
Voids found in both surveys and N-Body simulations have confirmed that this

behaviour can be found for all type of voids, evoking a universal behaviour (Hamaus
et al., 2014a), which was similarly confirmed in other studies (Ricciardelli et al.,
2014). Some even go further arguing that observed voids can be considered as
self-similar objects (Nadathur et al., 2015). All the work cited above put forward a
fitting function that seemingly reproduces the void density profile:
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δ(r) = δc
1− (r/rv)α
1 + (r/rv)β

(2.6)

where δc is the density contrast, an indicator of the under-density level of the
void, rs is the scale at which the density profile crosses the average δ(rs) = 0 density
threshold, and α and β governs the shape of the surrounding wall and the slope of
the profile. Finally, rv is the radius of the void.

Although there is a good agreement between the numerical explorations performed
in the early void works and more recent works on observed voids (Padilla et al.,
2005; Paz et al., 2013; Sutter et al., 2012a, 2014b), the true density profile of voids
has yet to be predicted in terms of the initial density power spectrum and initial
conditions as for the standard galaxy clustering.

2.3.1.2 Hierarchy

Along with the study of the evolution of voids in terms of their density profile, the
development of numerical simulations of dark matter contributed significantly to
the understanding of the behaviour of voids. Voids interact with their surrounding,
be it over-dense or under-dense. Looking at the evolution in N-Body Dark matter
simulation through random walk initial conditions, Sheth & Van De Weygaert
(2004) were able to discriminate voids formation in three scenarios:

– void-in-cloud : a void is included in a high-density region and thus surrounded
with clusters

– void-in-void : an under-denser region is encapsulated in a deeper void, creating
one large void with local density minima.

– cloud-in-void : a void surrounds an over-density

Those three scenarios, combined with the void evolution, evidence the role of the
void expansion in shaping the LSS: in the case of the cloud-in-void, the matter inside
the void is pushed in the expansion leading to the formation of walls, while in the
void-in-void case, the expansion of two voids leads to filamentary structure. Finally,
in the case of the void-in-cloud process, voids tend to disappear as the surrounding
over-densities merge. Those several cases, when considering the evolution of a void
in time, evidence that voids follow, as for over-densities, a hierarchical formation
process. All three scenarios are illustrated in Fig. 2.8.

2.3.2 Void properties
Through the void finding procedure or visual inspection, properties of note have
been investigated in regard to voids. The evolution of under-densities along the
expansion has consequences on their general properties: their size and their shape.
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Figure 2.8: Void hierarchy clustering from Sheth & Van De Weygaert (2004), the left
column shows the different initial density fluctuations at early times in
the N-body simulation, while the two other columns illustrates the void
scenario with a dark matter distribution. The void-in-void scenario presents
substructure within its rank, while the void-in-cloud scenario presented on
the right-most panel shows a void that is about to disappear through the
gravitational collapse.

2.3.2.1 Sizes

Ever since their discovery in the cosmic web, the sizes of the void have been a
stringent feature with cosmological implications. Indeed, the existence of such large
objects, ranging in terms of tens to hundreds of h−1Mpc provided an insight into
the initial conditions necessary to produce such large under-dense zones. The size
of voids has been a premium interest since day one of their discovery: the extent
of the patches of the sky devoid of galaxies (Kirshner et al., 1981; Kirshner et al.,
1987) was indubitably in tension with the cosmological mindset of the epoch of
a matter-dominated universe. The size of such structure was actually part of the
progressive rejection of an EdS model (Blumenthal et al., 1992).

The size of these under-densities is generally quantified in terms of length, through
an estimated radius rv or diameter, but, it is important to note that these empty
regions represent an under-dense volume in the LSS of which the measured radius
or diameter represents an effective 1-dimensional observable.

Voids being scaled objects, their volume or effective radius grow along the Hubble
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flow and thus, evolve as the universe expands and are affected by the cosmology and
their initial conditions, like the energy density of matter or non-zero cosmological
constant, (Bertschinger, 1985) or the existence of a very massive neutrino (Melott,
1987). With the numerical exploration of the void properties, as the statistic
increase, follows the estimation of those experimentally. Kauffmann & Melott
(1992) advanced that the size of voids was proportional to the non-linearity scale
2π
knl

, while Dubinski et al. (1993) and Goldwirth et al. (1995) estimated that at each
redshift, and thus epoch, voids should have characteristic sizes.
Following the Excursion set formalism used for the clustering of haloes of dark

matter (Press & Schechter, 1974), a two-barrier excursion set model was derived by
Sheth & Van De Weygaert (2004) in order to take into account spherical collapse
and void-in-cloud phenomenon. This model can be used to predict the void size
function (or void abundance): the number of voids as a function of their size for a
given cosmology and epoch. The modelling was improved by Jennings et al. (2013)
and used by Pisani et al. (2015) to provide forecasts on the estimation of the dark
energy equation of states, depending on which, the void abundance varies. The void
abundance has since been thoroughly studied, especially in regard to its sensitivity
to various aspects of the current cosmological conundrum: the acceleration of the
expansion of the Universe. It was shown that the void abundance is sensitive to
different dark energy scenarios as well as modified gravity (Cautun et al., 2018;
Clampitt et al., 2013; Falck et al., 2018; Perico et al., 2019; Spolyar et al., 2013;
Verza et al., 2019; Voivodic et al., 2017). However, the void size function estimation
relies on the distribution of the tracers considered and the underlying dark matter
field. Although it was shown that the abundance prediction reproduces very well
voids found in underlying DM field (Ronconi & Marulli, 2017), it is not quite so
in the case of voids found in galaxies or other tracers of the LSS. The modelling
of the abundance has to account for this discrepancy which is a consequence of
the biasing of the density field (Contarini et al., 2019). Therefore, despite the
promising potential of the void sizes as a discriminating observable of dark energy,
it has yet to provide any stringent constraints on the cosmology.

2.3.2.2 Shape

The last void property to be noted is their shape. The early studies of voids consid-
ered voids to be spherical objects that grew in time. Initial density fluctuations as
origins for the LSS picture started to be favoured as an explanation for the peculiar
distribution of matter at large scale. Works on the shape of initial density revealed
those were not necessarily spherical but presented tri-axiality (Bardeen et al., 1986),
implying that structures and, by extension voids, did not grow as spherical objects
but rather as ellipsoidal objects. However, throughout their evolution along the
Hubble flow, they would tend toward sphericity (Icke, 1984; Ryden, 1994).

Observation of the void shapes in simulations (Shandarin et al., 2006), through
measurement of ellipticities, have shown that voids are not quite spherical (and
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sometimes far from it) despite it having been a long-standing assumption in regard to
voids. This departure from sphericity has been attributed to the tidal gravitational
field created by the surrounding matter. This tidal field, in turn, affects the shape
of voids, by virtue of them being under-dense (Lee & Park, 2006; Park & Lee, 2007).
A subsequent study of void ellipticities showed that these were indeed dependent
on initial conditions (Park & Lee, 2007). A model of the shape distribution of the
voids indicated a dependence in the dark energy equation of state (Lee & Park,
2009). The application of this model on several simulations, with various dark
energy models, indeed showed a dependency in the equation of state of dark energy
(Bos et al., 2012). It was noted, however, that even though this dependency was
observed with the DM particles field, it was not so discriminating when considering
biased tracers.

2.4 Cosmology with voids
The various properties presented above are tightly linked with the initial conditions
of the Universe. As voids are structures which trace the under-dense part of the
Universe, it is expected that their evolution and subsequent properties enable to
discriminate different aspects of the cosmology. Research on and with voids has
tremendously evolved in the last decades. Where voids once presented a mystery
whose sole presence in the LSS led to near cosmogonic implications, they have now
been widely accepted as a distinct part of the LSS. This change of paradigm of
singularities in the LSS to real objects, in the same vein of galaxies or clusters, has
allowed starting to shape voids as a very interesting object in order to constrain
cosmology.
With the advent of N-Body simulations which enable probing the behaviour

of the Large-Scale Structure of the Universe depending on the initial conditions,
voids have shown considerable sensitivity to the properties of dark energy and dark
matter. The impact, however, is not necessarily applicable as of yet in order to
place direct constraints on cosmology, nevertheless, it highlights the potential of
voids in the study of cosmology.

Indeed, voids are under-dense and so, are expected to be dominated by the only
component which doesn’t correspond to matter whatsoever, which means that their
expansion and related physics should be governed by physical processes based on
the presence of dark energy. It is thus expected that any hint on the nature of dark
energy is to be found in those large under-dense regions.
In addition to the energetic contribution ΩΛ, voids are expected to be able to

place severe constraints on the dark energy equation of state w(z) which could
help disentangle between dark energy models. To this end, several probes of dark
energy have been investigated in the context of under-densities. In the previous
section were highlighted the properties of voids and their sensitivity to the current
cosmological concerns: is the late-time acceleration a consequence of dark energy
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or of a modification of the laws of General Relativity?
The distributions of the shape and abundance have shown to be sensitive to a

variation of both of them and as such, voids are expected to be able to contribute
to the overall understanding of cosmology. As of today, the study of void properties
has not yet provided any observational constraints on the nature of dark energy
but their sensitivity to it highlight its potential. In this part, I will give a brief
overview of the additional probes of cosmology that can be considered in regard to
voids.

2.4.1 Voids and gravitational potential
Presence of under-density and their differing growth in regard to over-density have
several effects on the overall gravitational potential. Such effects can be probed in
order to detect traces of new physics in the dark energy framework.

2.4.1.1 Weak lensing imprints

The presence of very massive objects has a consequence of curving the space-time
in their vicinity. A consequence is that the light rays emitted by a luminous source
behind a massive object, like a cluster, will see its trajectory deviated depending
on how massive the object is. This cluster will thus act like a lens on other
light-emitting source situated behind it.
Voids, on the other hand, are generally surrounded by massive structures such

as filaments, clusters, walls, whose presence will curve the space-time, on different
levels. However, the centre of voids should not affect the fabric of space-time,
leading to a similar effect as with massive objects: weak lensing. The light rays
emitted from a bright source and sufficiently distance from the void centre should
be repulsed from the void-centre as in the massive lensing case if the mass was
negative, (Amendola et al., 1999). In the case of voids, it was considered that
measuring the individual weak lensing signal in the void yielded too noisy results
and were too dependent on whether the void was properly identified, as such,
weak lensing studies started to consider stacks of voids to infer an average weak
lensing signal, (Higuchi et al., 2013; Krause et al., 2013). A first detection and
measurement of the weak lensing was performed in Melchior et al. (2014) and
further refined with Clampitt & Jain (2015). The most recent results on the weak
lensing imprints in voids have successfully confirmed their under-dense nature (Fang
et al., 2019; Sánchez et al., 2017). The latter arguing that strong deviation from
ΛCDM, provided proper theoretical modelling, could very well be traces of new
physics. A primary study of the weak lensing signal in the presence of modified
gravity was led by Baker et al. (2018), in which was highlighted the potential of the
weak lensing in voids to investigate deviations from Λ-CDM with voids extracted
from the seventh data release of the SDSS program. However, a limiting factor
proved to be the statistics and subsequent errors on the weak lensing signal that
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prevented decisive discrimination. An interesting take on weak lensing has been
investigated by Davies et al. (2018), in which is considered finding voids directly in
weak lensing map, allowing to increase the significance of the lensing signal.

Following the work on the existence of potential lensing imprints on distant
sources, it is possible to consider the CMB. Indeed, the primordial photons carrying
the CMB signal are well enough distant in order to be affected by the existence
of voids. As such, the CMB measured by Planck (Aghanim et al., 2020a) has
probably been impacted by the gravitational lensing of voids. Chantavat et al.
(2016) provided a forecast of the study of CMB lensing with voids in and argued that
this could break degeneracies to allow for a precise measurement of cosmological
parameters. Such analysis was performed with voids found in the last BOSS data
release (DR12) (Cai et al., 2017; Raghunathan et al., 2020) and in the first year
release of the DES survey (Vielzeuf et al., 2019), all recovering a signal.

2.4.1.2 Integrated Sachs-Wolfe effect

The effect of CMB lensing can, however, be degenerate with the integrated-Sachs
Wolfe (iSW) (Sachs & Wolfe, 1967) effect inside voids. The latter is a result of the
decay of gravitational potential over time due to the effect of the late-time cosmic
acceleration, as it is, probing the amplitude of the iSW effect provides a direct
probe of dark energy (Sołtan, 2019). This effect is expected to be stronger in the
vicinity of superstructures of which voids are part. Such effect is generally probed
in combination with the CMB temperature measurements, which are affected by
the superstructures encountered by the CMB photons. The first detection of such
a signal was performed by Granett et al. (2008). Since then, the technique has
been thoroughly investigated (Kovács et al., 2017; Nadathur & Crittenden, 2016;
Nadathur et al., 2017) and recent results in the DES survey have reported an excess
iSW amplitude in tension with the standard Λ-CDM prediction (Kovács et al.,
2019).

2.4.2 Alcock Paczynski test
The Alcock-Paczynski test consists in measuring the shape of voids in regard to
a cosmological template. The shape of the void should vary if the cosmological
template is wrong, incurring a distortion of the shape. The measure of such a
distortion allows for recovering the true underlying cosmology. This test was first
proposed by Alcock & Paczyński (1979), and by Ryden (1995) in regard to its
application to voids. The work of Lavaux & Wandelt (2012) regarding the use of
stacks of voids to apply the Alcock-Paczynski test provided an impetus, arguing
that the Alcock-Paczynski test, when applied to voids, should compete in time
with the measurement applied to the BAO. First works did not provide a strong
constraint (Sutter et al., 2012a), but later works showed an improvement (Mao
et al., 2017; Sutter et al., 2014c). The Alcock-Paczynski test has also shown promise
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in voids found in 21cm intensity maps (Endo et al., 2020). The Alcock-Paczynski
test applied to void will be investigated in Chapter 4.

2.4.3 Clustering of voids
The study of the clustering can be used in order to constrain f , the growth
rate of structure, which is a quantity predicted by the General Relativity in the
ΛCDM framework. Deviation from the expected measurements would thus imply a
deviation from Einstein’s gravity, laying the ground for modification of gravity on
large-scale in order to explain the accelerated expansion of the Universe.
The clustering of voids in regard to the surrounding matter field has been

shown to be sensitive to the dynamics of the galaxies which carry the growth rate
information (Padilla et al., 2005). As the statistics of galaxies increased with the
advent of large redshift surveys, so did that of the voids, allowing to measure more
and more precisely the correlation function between voids and tracers of matter
(e.g galaxies). Since Pan et al. (2012) provided the first measurement of the growth
rate of structure of the galaxies in the vicinity of voids in the DR7 data release of
the BOSS (or SDSS) survey, the potential of voids as a probe of f , and thus gravity,
has been recognized over and over with various analysis applied to data (Achitouv,
2019; Achitouv et al., 2017; Aubert et al., 2020; Hamaus et al., 2017, 2015; Hawken
et al., 2017, 2016; Hawken et al., 2020; Nadathur et al., 2019a, 2020b; Paz et al.,
2013), the precision of the estimation tending toward competitivity with standard
galaxy clustering technique. The study of the growth rate will be addressed in
details in Chapter 3.
In conjunction with the growth rate can also be probed the cosmology with

the two-point correlation function (Hamaus et al., 2015; Nadathur et al., 2019a)
through the inclusion of a parameter taking into account the Alcock-Paczynski
effect (summarily described above), rendering the void-galaxy correlation function
very interesting in terms of cosmological constraints.

A final part of the interest of voids in terms of clustering is that they also include
a BAO feature(Chuang et al., 2017; Kitaura et al., 2016) which can contribute to
increasing the signal to noise and better the constraining power of this technique.

2.4.4 Degeneracy breaking
Voids are thus very sensitive to the cosmology and can be probe through numerous
techniques and physical processes. Combined altogether or with other standard
cosmological probes, they can relay significant improvement to cosmological analysis
as they consider different measurements which, in turn, display different degeneracies
between cosmological parameters. It is of great importance to be able to break
these degeneracies in order to obtain the clearer picture possible to make significant
constraints on the cosmology, and especially, dark energy models or traces of
modified gravity.
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Forecast focusing on the contribution of the void to the constraint of the equa-
tion of state was done on the void abundance (Pisani et al., 2015) or the shape
distribution (Biswas et al., 2010). The former evidenced that the combination
of the measurements of abundance with joint estimation from the CMB, Hub-
ble Space Telescope with the void expectations from Euclid-like or WFIRST-like
surveys provided a significant improvement on the constraint of the equation of
state measurement. The latter presented the forecast on the combination of the
shape distribution with SN forecast from LSST and DES and Euclid-like voids
and showed that the voids provided independent measurements allowing to break
degeneracies and thus obtain more constrained results on the estimation of the
dark energy equation of state.
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Figure 2.9: (a) Combination of the galaxy clustering standard constraints with the
two-point correlation function in the Hrs −DA(z)/rs plane. (b) Same but
on the fσ8 − DA(z)H(z)/c plane. Credits : taken from Nadathur et al.
(2019a)

The combination of voids and galaxy clustering standard techniques was studied
in Nadathur et al. (2019a), which evidenced very much tighter constraints as
the Alcock-Paczynski parameter and growth rate that were probed in this work
do not show the same degeneracies as the standard galaxy-clustering estimation,
amounting to an improvement on the parameter’s measurement of 30% to 60%. The
improvement thanks to the combination of all the LSS information is illustrated
in Fig. 2.9, showing that voids provide very complementary information, yielding
much tighter constraints than standard galaxy-clustering alone, as they break the
degeneracies in the parameters.

The same analysis was performed on later eBOSS data, yielding an improvement
ranging from 13% to 28% on the parameter estimation (Nadathur et al., 2020b).
Combination of void-galaxy clustering measurements along with these of standard
galaxy clustering and their consequence emphasize the benefit of considering all of

65



2 Voids in the Large-Scale Structure of the Universe

the volume traced by the redshift survey: over-dense and under-dense.
Finally, the combination of the added information provided by the voids, along

with other unrelated probes such as the CMB or the SN1a allows for a very precise
measurement of all the parameter space regarding the cosmology, among those: the
dark energy and H0 which remains to this day in tension with that found by the
CMB (Nadathur et al., 2020a). The void potential is again very much noticeable
in combination with the available probes, as can be seen on the estimation of ΩΛ
in Fig. 2.10.
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Figure 2.10: Concordance measurements with the combination of the BOSS voids +
galaxy , SNIa and Planck measurements. Significant improvement on the
estimation of ΩΛ can be seen. Credit : from Nadathur et al. (2020a)

Voids are very relevant to the present cosmological constant which tries to access
the nature of dark energy. They are sensitive through their properties, sizes, shapes
or density profiles, to the dark energy equation of state or eventual modifications
of gravity. Their evolution is driven by the current energy content of the Universe
and the behaviour of dark energy, which means that their relation with the matter
distribution is also dependent on the initial conditions. The abundance of voids has
not yet been used to derive the initial conditions from available data, the analysis
is still undergoing some fine-tuning in order to be able to correctly constrain the
cosmology regardless of the void finding algorithm, while the shape distribution of
voids has been put aside in favour of the attractive Alcock-Paczynski test (Shoji
& Lee, 2012). Several probes have been developed in order to search for hints
or clues on the late-time cosmic acceleration, voids lensing has been found to
occur in voids and to affect the CMB signal, but it has not yet provided tight
constraints on the initial conditions as it lacks the prediction available of the matter
distribution. The latter is currently unknown for voids. On the other hand, the
study of the void-galaxy clustering has been a long-standing process and shows
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significant improvement in signal recovery as time goes on, yielding complementary
observations to the standard galaxy clustering technique, allowing for much tighter
cosmology constraints.
The quest of precise measurement in cosmology, or precision cosmology, is

reaching a new era in which voids may have their say, allowing to disentangle
between measurements and discriminate between the favoured scenario of the
cosmic evolution.
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dynamical distortions around voids

In the search for the nature of dark energy and specifically, breaking the degeneracy
between dark energy models and modified gravity, a key test is provided by the
estimation of the linear growth rate of structure. This growth rate, as presented in
section 1.3.3.1, encodes the rate at which cosmic structures grow with the expansion
and can be predicted in the context of General Relativity. Constraints on the
growth rate can be provided by galaxy redshift surveys.
In this chapter, we will show how cosmic voids can be used to constrain the

growth rate of structure at three different effective redshifts. First, we will present
the final Data Release 16 of the Sloan Digital Sky Survey from which will be
extracted the growth rate estimates. Then we will introduce the linear redshift-
space distortion model used to estimate the growth rate of structure, describe its
application on mocks and evaluate systematic errors from different sources. Finally,
we will present the final constraints on the growth rate of structure using voids
in the final galaxy catalogues of the extended Baryon Oscillations Spectroscopic
Survey.

3.1 The Sloan Digital Sky Survey: Mapping the
Universe

3.1.1 Overview of The Sloan Digital Sky Survey
The Sloan Digital Sky Survey (SDSS) (York et al., 2000) has been working for more
than 20 years to map the Universe and has, as of today, gone through four phases.
In the first two phases, SDSS-I and SDSS-II ranging from 2000 and 2008, the

SDSS Legacy Survey was conducted by imaging the sky in five bandpasses (u, g,
r, i and z) (Fukugita et al., 1996) using the SDSS imaging camera (Gunn et al.,
1998). The spectra of more than 1.3 million targets were observed with the SDSS
Legacy spectrograph (Smee et al., 2013) over 8000 deg2 of the sky, covering a large
contiguous region in the Northern Galactic Cap (NGC) and three thin stripes
in the Southern Galactic Cap (SGC). The subsequent release of the SDSS main
galaxy sample at low redshift in the seventh data release, as well as Luminous Red
Galaxy sample, (Abazajian et al., 2009, DR7) provided the most precise picture
of the Large-Scale structure at that time. In these first stages was made the first
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detection of the Baryonic Acoustic Oscillations, presented in section 1.2.3.2. In
concurrence with the analysis of the growth rate of structure, redshift surveys were
put forward as the best environment to probe dark energy in its numerous forms.
In Summer 2009 started the Baryon Oscillation Spectroscopic Survey(BOSS)

(Dawson et al., 2013), part of SDSS-III (Eisenstein et al., 2011). Targeting prin-
cipally Luminous Red Galaxies, the BOSS main objective was to extract and
constrain the BAO at the percent level. Targets were observed using double-armed
fibre fed optical spectrographs (Smee et al., 2013) mounted on the 2.5-meter Sloan
Telescope at the Apache Point Observatory (APO) (Gunn et al., 2006).

By the end of SDSS-III, in 2014, BOSS spectroscopically surveyed 10,338 deg2,
gathering 1.2 million galaxy spectra of Luminous Red Galaxy (LRG) to z = 0.7
and 180,000 observed Ly-α quasars to map the fluctuations in neutral hydrogen
at redshifts 2.1 ≤ z ≤ 3.5. The complete SDSS-III data set was released in 2015
January in DR12 (Alam et al., 2015). The last data release (DR12) of the SDSS-III
provided the biggest catalogues of galaxies of the same specie to date as well as
percent level estimation on the BAO distances (Alam et al., 2017).

3.1.2 The DR16 of the extended-Baryonic Oscillation
Spectroscopic Survey

Part of the fourth phase of SDSS (Blanton et al., 2017, SDSS-IV), the extended
Baryon Oscillation Spectroscopic surveys (Dawson et al., 2016, eBOSS) endeavoured
to probe deeper in redshift, specifically targeting three types of tracers: Luminous
Red Galaxies (LRGs), Emission Line Galaxies (ELGs) and Quasi-Stellar Objects
(QSOs). The latter were probed both for galaxy clustering and Lyman-α forest
cosmology. The eBOSS survey had a duration of five years during which were
collected nearly a billion spectra thanks to the BOSS instrument described below.
It ended in March 2019 recording the last spectra measured to constrain cosmology.
The completed survey provided its last cosmological analysis in July 2020 (Alam
et al., 2020a), as part of the sixteenth date release of SDSS (Ahumada et al.,
2020). The work presented in this chapter was carried out as part of the eBOSS
collaboration.

3.1.2.1 The BOSS instrument

At the heart of the eBOSS survey is the precise determination of the redshift of the
targeted tracers. This necessitates an optimal measurement of the spectra of the
considered targets to allow for the identification of the signature lines on which are
based the galaxies classifications and their subsequent redshift. To this end, the
eBOSS survey made use of the two-armed fibre fed optical spectrographs previously
used in the BOSS program. This instrument is built on the legacy instrument of
the two first stages of the SDSS program (I and II) which consisted of two fibre fed
spectrographs of 320 fibres each. It went through a re-design in order to suit the
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Figure 3.1: Optical scheme of one BOSS spectrograph. From:Smee et al. (2013)

requirements of the BOSS program. An in-depth description of both SDSS and
BOSS instrument can be found in Smee et al. (2013).
As such, the BOSS instrument consists of twin two-arms spectrographs, each

arm probing blue and red wavelength respectively. Each of the spectrographs is
fed by 500 optical fibres of sizes 2′′ (∼ 120 µm). The thousand optical fibres are
hand-plugged on aluminium plates in which are drilled the positions of the targets,
connecting the spectrographs to the focal plane of the telescope. The other end of
the fibres connects to two slit-heads, respective to each spectrograph. The structure
guaranteeing the assembly of the plates, fibres and slit-heads is called the cartridge.
Several cartridges are provided for in order to load in advance the plug-plate and
fibres to optimize the acquisition time.

An optical scheme of the one of the BOSS spectrograph is displayed in Figure 3.1.
The light collected by the fibres then goes through the slit-heads (A) and is
collimated (B) toward a dichroic plate (C). The dichroic plate splits the beam and
redirects it to the two arms of the spectrographs. Each beam is diffracted through
a grism (E, D), respective to the wavelength range of the cameras. The resulting
spectrum is then collected by a camera sensitive to the wavelength considered (F,
G).
The resulting spectra are fitted according to the noticeable emission line or

absorption lines in the spectra, allowing to recover a precise estimation of the
redshift of the observed object.
The fibres cannot be plugged on the plate at a distance inferior to 62′′ in order

to exclude fibres colliding with each others (Reid et al., 2016).

3.1.2.2 The DR16 clustering sample

Prior to the collection of the spectra, the target selection of the QSOs and LRGs
was performed with the DR13 SDSS imaging photometry (Albareti et al., 2017)
with additional information from the WISE satellite (Wright et al., 2010). The
ELG target selection was performed using the DECaLS part of the DESI Legacy

70



3.1 The Sloan Digital Sky Survey: Mapping the Universe

Imaging Surveys1(Dey et al., 2019).

Luminous Red Galaxies Luminous Red Galaxies sample the overdense part of
the Universe, as the brightest galaxies in the vicinity of galaxy clusters. With their
λ4000 Å line, their spectra can be identified and used to estimate their redshift
(Eisenstein et al., 2001). In eBOSS, the LRGs are sampled at a redshift z > 0.6,
where they appear fainter. This allows the eBOSS LRGs to be selected on a colour
cut basis and to discriminate them from the high redshift tail of the BOSS LRGs
(CMASS). The detailed LRG eBOSS selection is described in Prakash et al., 2016
to provide a sample of galaxies with redshift between 0.6 < z < 1.0. The eBOSS
LRG sample totals 174,816 objects over a footprint of 4,242 deg2, the full process
of the catalogue creation is described in Ross et al. (2020).

As in galaxy clustering analyses on the LRG sample in Fourier space (Gil-Marín
et al., 2020) and configuration space (Bautista et al., 2020), the eBOSS LRGs are
combined with the high redshift tail of the BOSS CMASS galaxies (z ≥ 0.6). The
combined LRGpCMASS catalogue contains 377,458 galaxies with 0.6 < z < 1.0
over a total footprint of 9,493 deg2. All eBOSS LRGs are assumed to be within the
CMASS footprint. From this point forward, the LRGpCMASS sample will either
be mentioned as LRGpCMASS or LRGs in an exchangeable manner, unless stated
otherwise.

Emission Line Galaxies The star-formation density increases with redshift in the
range 0 < z < 2 and this process is expected to happen mostly within galaxies
in the late Universe (Madau & Dickinson, 2014). This process leads to marked
emission lines in the spectrum of the host galaxy, the most characteristic among
them being the [OII] doublet emitter at (λ3727, λ3729 Å) or the Hα (λ6563 Å).
These wavelengths, due to the expansion, can be observed in the optical range in
the case of the oxygen doublet lines and in the infrared in the case of the Hα line.
The galaxies emitting these spectra are classified as Emission Line Galaxies. Their
increasing density at high redshift has made them prime targets in the case of the
eBOSS survey (for the [OII] ELGs) but also in future large spectroscopic surveys
such as DESI ([OII] emitter; DESI Collaboration et al., 2016a,b) and Euclid (Hα
emitter; Amendola et al., 2018). The target selection performed for eBOSS is
described in Raichoor et al. (2017). The creation of the Large-Scale structure
catalogue, specifically build toward cosmological analysis, is detailed in Raichoor
et al. (2020). The resulting catalogue counts 173,736 objects in the redshift range
0.6 < z < 1.1 covering a footprint of 1170 deg2.

Quasars Quasars, as in Quasi-Stellar Objects (QSOs), are highly luminous objects
powered by active galaxy nuclei (AGN) which are presumed to be supermassive
black holes. Their high luminosity makes them very interesting targets to probe

1http://legacysurvey.org/
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the Universe at very high redshift. Within the eBOSS survey, two populations of
quasars were targeted: high redshift QSOs (z > 2.1) for which the distribution
is not quite homogeneous and low redshift QSOs (0.8 < z < 2.2). High redshift
QSOs emits Lyman-α (Ly-α) line (λ1215.67 Å). As highly luminous objects, the
photon flux of the Ly-α is absorbed when neutral hydrogen gas is encountered in
the intergalactic medium. This absorption results in a series of absorption lines in
the spectrum: the Lyman-α forest. The latter gives an indication of the structures
encountered throughout the photon’s journey, allowing to map the large-scale
structure.

The low redshift QSOs, the CORE sample, represents a homogeneous sample in a
uniform volume in order to obtain point-like tracers of the LSS in the same capacity
as the LRGs and ELGs. The CORE sample allows bridging the gap between the
low z < 1 and high z > 2.2 redshift probes of cosmology (Dawson et al., 2013).
The total CORE and Ly-α QSO target selection is described in Myers et al. (2015)
for eBOSS. The resulting DR16 QSO catalogue compiles the entirety of the quasars
observed spectroscopically within all the SDSS stages and is presented in Lyke
et al. (2020).
Thereafter, we will only consider the homogeneous sample QSOs used for the

clustering. The creation of the clustering catalogue is fully described in Ross et al.
(2020). The number of eBOSS QSOs is 343,708 covering a sky area of 4,808 deg2,
and spanning the redshift range 0.8 < z < 2.2.

For each of the samples presented above, random catalogues are generated with
at least 40 times the number density of the original tracer sample, in accordance
with both their angular and radial distribution. They are used to measure the
correlation function respective to each tracer. The description of the random
catalogues generation is given in Ross et al. (2020) for the LRGs and QSOs, and
Raichoor et al. (2020) for the ELGs.

3.1.2.3 Correction of systematics

The catalogues provided for the analysis of the clustering of those objects report
the right ascension (RA), declination (Dec) and measured redshift z of each object,
the latter being estimated by fitting the galaxy spectra.
As the galaxy positions depend on both technical and observational conditions,

weights are computed to correct for eventual systematic effects and are defined as
follows:

– Fibre collision weights wcp: The minimal separation between two fibres
is of 62′′ in order to avoid any collisions between fibres. In the event where
several galaxies are situated within this range, only one galaxy will have an
assigned fibre. As a result, some initially targeted objects were not observed
spectroscopically. The likelihood for this case to present itself is higher in
over-dense regions. As such, the close-pair weight wcp defined as Ntarg/Nspec,
the ratio of targeted objects in a given group over the number these objects
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observed spectroscopically. It is used to up-weight the neighbouring galaxies
of the missing targets.

– Catastrophic redshift weights wnoz: Some observed spectra yield unreli-
able redshift estimates which have been attributed to the fibre used to collect
the signal. As for the close-pair, the resulting object is removed from the
catalogue and its presence is accounted for by up-weighting the nearest object
of the same type (QSO, ELG, LRG) with a weight wnoz.

– Photometric systematic weights wsys: Observations are based on pho-
tometric data which themselves are subjected to systematics. The density
of stars, seeing, airmass or overall sky background can affect both target
selection and resulting data acquisition. These effects are corrected for in a
single wsys weight.

– FKP weights wFKP: At the contrary of the three weighting schemes pre-
sented above, the FKP weights represent an optimization of the galaxy
clustering estimation. They are set to minimize the variance in the clustering
measurement that arise due to a non-uniform redshift distribution (Feldman
et al., 1994). In eBOSS, they are parametrized to optimize the estimation of
the BAO signal. The FKP weights are defined as follows:

wFKP = 1
[1 + n̄(z)P0] (3.1)

where n̄(z) is the mean number density of the sample at redshift z and P0 is
the amplitude of the power spectrum at the scale where the BAO signal is
highest. For the different eBOSS tracers:

P0,LRG = 10000h−3 Mpc3, (3.2)
P0,ELG = 4000h−3 Mpc3, (3.3)
P0,QSO = 6000h−3 Mpc3. (3.4)

These resulting weights balance the contribution of every redshift bin consid-
ered in the sample.

The final weight for each object can then be written as:

w = wnoz × wcp × wsyst × wFKP (3.5)

Both randoms and galaxies alike are provided weights.

3.1.2.4 Mock catalogues

Mock data are used to compute the covariance matrix of the two-point correlation
function as well as test eventual systematical effects. Two types of mocks are
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produced, approximate mocks and N-body simulation-based mocks.

EZmocks : EZmocks are approximate mocks that reproduce the clustering
of the original samples. They are sampled according to the radial and angular
distributions of their respective tracers and are downsampled according the obser-
vational systematic effects. EZmocks are based on the Zel’dovitch approximation
to generate a dark matter field at a given redshift (Chuang et al., 2015). The
process of the creation of the EZmocks specific to each eBOSS samples is detail
in Zhao et al. (2020). Each tracer sample is attributed a set of 1,000 realizations
of light-cone mocks and respective random catalogues. The latter are required to
properly normalize the clustering measurement without incurring any bias in the
estimation of the mean density estimation. The fiducial cosmological model used
for constructing the EZmocks is flat ΛCDM with:

Ωm = 0.307, Ωb = 0.0482, h = 0.678,
σ8 = 0.8225, ns = 0.96.

(3.6)

which are the best-fit values from the Planck 2013 results (Ade et al., 2014).
In order to assess the eventual modelling systematics, N-body based mocks are

provided which correspond to each tracer specificities.

OuterRim OuterRim mocks were created in the framework of the eBOSS mock
challenge whose purpose was to provide N-body based mocks to study eventual
systematic effects of the HOD models on standard galaxy clustering measurements.
These mocks are based on the N-body OuterRim simulation (Heitmann et al.,
2019a,b) of 10, 2403 particles in a (3 h−1Gpc )3 volume and built from snapshots of
the simulation. The underlying cosmology for OuterRim simulation is close to
the best-fitting model from WMAP-7 (Komatsu et al., 2011):

Ωm = 0.2648, Ωb = 0.0448, h = 0.71,
σ8 = 0.8, ns = 0.963.

(3.7)

From the sets of OuterRim haloes simulations are derived two sets of mocks,
tuned to the specificities of the eBOSS ELGs and QSOs such as the galaxy masses
M�, tracer density and effective redshift.

– OuterRim ELG mocks are built from a single snapshot at z = 0.865,
close to that of the DR16 ELG sample. Six sets of mocks were produced,
each with a different Halo Occupation Distribution (HOD) model. The
detailed description of the mock construction and HOD models can be found
in Alam et al. (2020b). In this work, we only use one blind mock of the ELG
mock challenge with a galaxy number density similar to that of the data
and populated with the HMQ3 (HighMassQuenched-3) HOD model. This
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mock contains 30 pseudo-independent realizations with periodic boundary
conditions.

– OuterRim QSO mocks are built from a snapshot at z = 1.433. From this
snapshot, 20 sets of mocks were created and populated with 20 different HOD
models. In order to include the effect of quasars redshift uncertainties, an
additional redshift smearing was added to mocks, providing 4 variations of
the same mock with a redshift smearing of varying intensity. The detailed
description of the mock construction, HOD modelling and redshift smearing
along with their impact on standard clustering measurements are described
in Smith et al. (2020). We use a ’non-blind’ mock populated with the HOD10
model in a realistic redshift smearing configuration. It contains 100 pseudo-
independent realizations with a tracer density comparable to that of the QSO
sample.

The LRG sample does not have a specifically tuned N-body simulation to test
the modelling systematics. Instead, the Nseries mocks are used. These mocks are
N-body simulation snapshots populated with a HOD model. They were generated
in the framework of the DR12 of the BOSS collaboration (Alam et al., 2017) to
reproduce the BOSS CMASS sample at the effective redshift z = 0.56. The number
of available realizations is 84 and the underlying cosmology for Nseries mocks
used to generate them is:

Ωm = 0.286, Ωb = 0.0470, h = 0.700,
σ8 = 0.82, ns = 0.96.

(3.8)

3.1.3 Void Identification in eBOSS
In this thesis, I make use of two void finding algorithms vide and revolver, with
a common root that is the zobov algorithm at their core, both are described in
section 2.2. In considering the eBOSS tracers, vide was found lacking in the
sense that it did not take into account the weighting schemes of the galaxies in
survey samples. In addition, some issues were encountered when considering small
footprint such as the ELGs. As a consequence, the use of revolver appeared to
be the most appropriate alternative due to its similarity with vide.

While both algorithms generate buffer particles to take into account the finiteness
of the footprint and overall survey, they do not do so in the same way. As there
are no ’real void’ catalogues to refer to when qualifying a void finding algorithm,
both algorithms were confronted with the same datasets (a set of eBOSS mocks)
in order to decipher if both extract voids with similar properties.

The comparison is based on the redshift distribution and related void positions,
as well as their radii which are dependent on the cosmology. These quantities
enters directly into the estimation of the clustering of voids.
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The catalogues investigated are 500 mock catalogues mimicking the eBOSS only
LRG galaxy catalogue in the redshift range [0.55, 1.05]. The comparison is done
between both void finding algorithms at the minimal post-processing steps, that is,
preliminary removal of objects which are decidedly not voids in the catalogues.

3.1.3.1 Impact of the buffer particles proximity

As presented in Section 2.2.3.1, both algorithms place buffer particles in order to
bound the volume of the survey that will be tessellated. This step is compulsory
when using light cone or survey data as, unlike cubic simulation, the geometry of
the survey is complex and non-homogeneous – some vetoed part of the mask have
to be discarded.

The placement of buffer particles becomes some kind of trade-off the computing
time – in the big data era, this is quite an important part – and the precision of
the tessellation. The more buffer particles are placed around the survey, the tighter
is the constraint on the volume at the tessellation stage, leading to better local
density estimation. The placement of the buffer is limited to the periphery of the
survey in order to optimize computing time.
While the generation of the buffer within the survey footprint cannot be quite

modified, the placement of the buffer at the redshift edges can. This positioning
scheme can therefore serve as a basis of comparison to compare both algorithms,
in addition to its impact on the derived properties. We investigate the proximity
of the buffer particles at the redshift edges of the survey, which can be decided by
setting redshift boundaries at which to place the buffers.
Two redshift boundaries were chosen: a wide range: [0.4, 1.2], wider than the

original redshift distribution and a narrow range [0.55, 1.05] , which corresponds
to the redshift range of the mocks. Both void finders were run on each of the 500
mock catalogues in both boundary schemes. It is expected that the narrow range
should provide the ’best’ void sample, in the sense that it bounds more tightly the
surveyed volume.

Table 3.1 summarizes the total number of voids found depending on the algorithm
and buffer proximity considered, averaged over the 500 mocks. The proximity of
the buffer particles seems to affect more strongly the void recovery in the case of
the revolver algorithm, since the average number of voids drops from 2360 to
1480, thus 880 voids, while vide has lost only 69 voids depending on the redshift
boundary. In both schemes, vide finds a larger number of voids. This can be
explained by the fact that vide actually disposes a very small amount of buffer
particles at the survey edges compared to revolver. The majority of the buffer
particles is concentrated in the cones bounding the survey footprint between 0
and Dmax

c . This buffer placement may also explain the stability of the void count
from one redshift scheme to another. On the contrary, revolver sticks to a
buffer placement close to the survey volume, which makes it more sensitive to the
variation of the redshift limits.
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Table 3.1: Number of voids found on average in vide and revolver algorithms,
depending on the proximity of the buffer particles to the redshift boundaries.

Algorithm wide [0.4, 1.2] narrow [0.55, 1.05] ∆Nv

vide 2509 2440 69
revolver 1480 2360 880
Difference 1029 80 -

Figure 3.2 displays the impact of the proximity of the buffer particles on the
redshift distribution in the wide and narrow cases. For the vide algorithm, the
redshift distributions of the voids are slightly affected by the redshift domain used.
On the contrary, for the revolver algorithm, the choice of the wide redshift
boundaries leads to a very sensitive effect with a drop in the statistic between
z = 0.6 and z = 0.8. This confirms the impact of the redshift boundary placement
particles deep within the survey.

There is a good agreement between the two algorithms in the wide configuration
from z = 0.82 onwards, and over the redshift range in the narrow case. In the
narrow case, we note however that an excessive number of voids is present at low
and high redshifts, for both algorithms.

0.6 0.7 0.8 0.9 1.0
z

0

50

100

150

200

250

N
v(z

)

WIDE , z = [0.4 - 1.2]

VIDE
Revolver

0.6 0.7 0.8 0.9 1.0
z

0

50

100

150

200

250

N
v(z

)

NARROW , z = [0.55 - 1.05]

Figure 3.2: Redshift distributions of the voids extracted from revolver (red) and
vide (blue) in the wide (left) and narrow (right) cases.

The distributions of the sizes of the voids (in terms of their effective radius) are
shown in Figure 3.3. While the difference of statistics is the primary difference
between both algorithms in the wide case, the radius distributions seem to reach
a common ground in the larger voids found and evidence a similar behaviour
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Figure 3.3: Radius distributions of the voids extracted from revolver (red) and vide
(blue) in the wide cas (left) and narrow (right)

at high radii. In the narrow case, the distributions are in agreement starting
at lower radii. Both void finders display a similar excess of large voids. This
feature is especially seen in the wide case in the form of an "ankle" like feature
starting at ∼ 110 h−1Mpc while it is dampened in the narrow case. In both
cases, revolver find larger voids than vide. This change in the distribution
of the radius evidences the impact of the boundary in the volume definitions of
voids. If the volume is ill-defined, larger and more shallow voids will probably be
found: Poisson voids. The addition of tighter boundaries dampens the identification
of large under-densities but increases the number of small voids found. When
comparing the number of voids found and the radius distribution, we can assure
that the voids found in excess by vide compared to revolver are small voids.
Finally, the edge contamination of the void sample is clearly shown by the

excess of voids found near the redshift boundaries. However, the classification of
those voids, cosmological or spurious is not easily identified. It could be that the
proximity of the buffer particles leads to a prevalence of smaller void-like entities
that may not be merged with other local under-densities due to the percolating
effect of volume estimation. That is, a random particle too close to the survey will
cause a tessellated particle to be part of a too large or too small volume depending
on its minimal redshift and angular coordinates, this volume, when compared, will
be used or discarded when building the under-dense zones.
The issues raised by this edge contamination show that we cannot completely

trust these excessive under-densities not to compromise the cosmological signal.
However, the behaviour displayed by both algorithms vide and revolver indicates
that the narrow range is the best configuration to use for analysis.
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Figure 3.4: A slice of 500h−1Mpc × 500h−1Mpc and 50 h−1Mpc deep within the central
region of one mock. The black dot corresponds to galaxies as matter tracers,
red dots to revolver void centres and blue dots to vide void centres. The
size of the surrounding circles corresponds to the radius of voids.

3.1.3.2 Comparison of the void positions

The similarity between the radius and redshift distributions between vide and
revolver hints at similar void centre positions, provided that the same definition
is used. Here, the barycentre as the void centre is considered. Fig. 3.4 shows a
500× 500 h−1Mpc X − Y slice of depth 50 h−1Mpc in one of the most populated
parts of a given mock chosen among the 500 on which the comparison was applied.
The redshift boundary scheme is narrow, as this configuration is the one where
the two void finders have the most similarities.
The voids found by both vide and revolver clearly trace the same under-

densities, although some void centres are slightly shifted from one void finder to
another. The sizes of the void in this part of the survey are similar. This is a
strong confirmation that both algorithms find the same under-density field and
that they can be used interchangeably.
We can note however the presence of a smaller void found only by vide, which

confirms that the main statistical difference between vide and revolver lies in
small voids.
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3.1.3.3 Mitigation of the edge contamination

The behaviour of the void finding algorithm in regard to the proximity of the buffer
particles uncovered non-negligible edge contamination in the recovered redshift
distributions, and, to a higher extent, the radius distribution. As there is no
discriminating factor between the excess voids and underlying true voids present in
the ’horns’ of the survey, it was decided to discard these voids, while minimizing
the number of objects cut out.

The adopted approach is to consider the volume of the under-densities, as their
extent. The voids volume are confronted to their distance to the redshift edges,
those being the most subject to the edge contamination. The voids are considered
to be voluminous objects whose proximity to the survey boundaries would cause
this volume to be truncated. On the basis of symmetry, we consider that a void
at the edge of the survey is likely to be continued by the same amount out of the
survey, so we base our void selection on a distance comparison to the border of the
survey.

The information of interest is the radius of the voids rv, the distance of the voids
to the nearest redshift edge dedge as well as the distance between the void centre
and the farthest galaxy defining the void rmax. From this information are defined
four primary cuts which associate the aforementioned quantities:

– rv cut: The void is discarded if its distance dedge from the nearest redshift
edge is less than its radius rv ,

– 2rv cut: The void is discarded if its distance dedge from the nearest redshift
edge is less than twice its radius rv ,

– rmax cut: The void is discarded if its distance dedge from the nearest redshift
edge is less than both its radius rv and its maximal extent rmax,

– Directional rmax cut: The void is discarded if the rmax cut condition is fulfilled
in the case where the rmax galaxy is situated between the nearest redshift
edge and the void centre.

These primary cuts were all tested in both wide and narrow configurations.
While it is considered that the narrow boundary allows for a better estimation
of the volume of the Voronoi cells and the subsequent void properties, the use of
these cuts on the wide sample is quite telling on the reliability of the voids at the
boundaries in this configuration, when compared to the narrow distributions.
Fig. 3.5 and Fig. 3.6 show the impact of the primary cuts on the redshift

distribution in the wide and narrow configuration, respectively, for both vide
and revolver algorithms. Both figures display the redshift distribution of the
voids extracted from a single mock realization. We can see that the voids at the
edges are easily removed in the wide frame with a simple cut in terms of the void
radius. This means that voids found in the wide scheme tend to have probably
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Table 3.2: Relative difference between average number of voids before and after primary
cuts over 500 mock realizations.

vide revolver
wide narrow wide narrow

rv cut −6.02% −0.2% −10.67% −0.38%
2rv cut −17.19% −10.72% −26.95% −15.2%
rmax cut −14.14% −6.4% −23.36% −10.69%

D-rmax cut −8.03% −2.9% −13.64% −4.17%

overestimated volumes due to the wide placement of the boundary particles at the
redshift edges, regardless of the algorithm used. In the narrow range, however,
the removal of the edge voids is not so evident with a simple rv cut, meaning that
the volumes and subsequent radius of the void are better bound by the proximity
of the buffer and do not allow for an overestimation of the volume.

Visually, the most useful cuts to get rid of excess voids at the redshift limits seem
to be the 2rv cut and the rmax cut, without taking directionality into account. The
2rv cut is more efficient, however, than the rmax cut, which seems to be confirmed
in the table 3.2 that shows the loss percentages due to primary cuts.

The wide frame is the most sensitive to cuts, especially in the case of revolver
as it can cut out up to 27% of voids. In the narrow case, the rv cut has a
negligible effect, while the 2rv cut is the most stringent cut. The rmax cut seems to
provide the best trade-off between cutting too many voids and discarding the edge
contamination.

3.1.3.4 Final Selection cuts

Additional selection cuts are applied to voids found by both void finders. A void
extracted by vide or revolver is defined by a specific number of particles which
volumes and positions are used to define the void radius and the void centre. To
characterise our final void sample after performing the void finding, the rmax cut is
applied to remove the visible edge contamination.

In the case of revolver, the proximity to the footprint buffer mocks and their
subsequent contamination are probed during the void finding, yielding a flag telling
whether a void is considered as edge or not: the Edge flag. vide does not provide
such information, relying instead on additional cuts linked to the proximity to the
footprint buffer particles. For the purpose of our analysis, the void finder of choice
is decided to be revolver.
In addition, a selection on the number of galaxies/tracer particles is performed.

The minimal number of tracers to define a void is usually two in void algorithms.
However, in order to use properly defined voids, we reject all voids with less than
five tracers.
Finally, the final selection cuts applied to voids are the Npart > 5 to remove
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Figure 3.5: Impact of primary cuts on the wide configuration, for vide and revolver
algorithms. The distribution of voids is shown as a function of the redshift
before (blue) and after (brown) primary cuts.
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Figure 3.6: Impact of primary cuts on the narrow configuration, for vide and re-
volver algorithms. The distribution of voids is shown as a function of the
redshift before (blue) and after (brown) primary cuts.
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Figure 3.7: Redshift distribution of voids in normalized units after selection cuts for
LRGpCMASS samples (red lines), ELG samples (blue lines) and QSO
samples (yellow lines). The solid lines correspond to both data and mean
of the 1000 realizations of the EZmocks. The shaded areas indicate the 1σ
regions evaluated from the 1000 EZmocks realizations. The normalized
number density of the galaxies/quasars is drawn for information in dashed
line.

poorly defined voids, along with the Edge Flag and rmax cut for the light-cone
samples, those allow us to keep only voids considered to be reliable.

3.1.4 Final DR16 voids catalogues
The revolver void finding algorithm was run on the DR16 tracer samples and
their associated thousand realizations of EZmocks and NNB N-body mocks.
The redshift distribution respective to each sample is shown in Fig. 3.7 along

with the galaxies n(z), in arbitrary units. First, there is a very good agreement
between the redshift distributions of the approximate mocks and their respective
dataset. Secondly, the redshift distribution of voids tends to follow that of their
respective galaxy sample. However, it can be noticed that the LRGs sample suffers
from the selection cuts at low redshifts. The abundance of galaxies in the low z
range is degenerate with the effect of the void finder. It results that a large number
of voids are cut out of the sample.

The size distribution of voids is displayed in Fig. 3.8. It is quite clear that each
void sample has a specific scale of reference: the ELG voids represent the smallest
population with voids smaller than 125h−1Mpc , while void radii from QSOs reach
nearly up to 200h−1Mpc . The sizes of the voids are highly correlated to tracer
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Table 3.3: Statistics of void catalogues identified in EZmocks catalogues and eBOSS
DR16 LSS catalogues. The quantity Ng is the number of galaxies or quasars,
Nv and Nv,cut are the averaged number of voids and their standard deviation
over the 1,000 mocks and data realizations before and after selection cuts as
described in 3.1.3.4, respectively. The quantity zeff is the effective redshift
of the void catalogues after selection cuts. smax is the maximum separation
used in the correlation function.

Sample Ng Nv Nv,cut zeff smax Area (deg2)
EZmocks
ELG 173,736 2, 210± 35 1, 895± 37 0.847 3.60 1,170
LRGpCMASS 380,190 4, 305± 54 2, 850± 47 0.740 3.52 9,493
QSO 343,700 5, 449± 53 4, 321± 52 1.478 3.52 4,808
Data sample
ELG 173,736 2, 097± 5 1, 801± 5 0.847 3.60 1,170
LRGpCMASS 377,458 4, 228± 11 2, 814± 12 0.740 3.52 9,493
QSO 343,708 5, 451± 8 4, 347± 9 1.478 3.52 4,808

specificities, such as the mass, bias and general sparsity of the survey (or number
density) (Jennings et al., 2013; Nadathur & Hotchkiss, 2015b; Sutter et al., 2014a).
In our case, the ELG sample is obviously the densest sample while the QSO is the
sparsest, so it is not surprising to see that their size reflects this property.

The resulting void statistics are shown in Table 3.3 for each DR16 samples. The
total cuts amount to a 34%, 14% and 20% loss in statistics for the LRGpCMASS,
ELG and QSO samples, respectively. The cut’s stringency is dependent on both the
shape of the redshift distribution and the average size of the voids. Indeed ELGs
have a quite gaussian redshift distribution and present generally smaller radius
compared to the other two samples. As a result, these tracers are less affected by
the selection cuts. On the contrary, the LRGpCMASS sample presents a decreasing
redshift density distribution where its highest density is situated at the lower edge
of the sample, the Rmax cut thus affect the LRG sample much more strongly. In
the case of QSOs, the redshift distribution is quite homogeneous but their scale is
greater, leading to more voids crossing the edges of the surveys.
Another crucial information quoted in Table 3.3 is the effective redshift of the

void-galaxy sample. Indeed, the voids statistics and clustering are estimated at a
specific redshift. It is thus necessary to define the effective redshift for each sample
which is attributed to our corresponding measurement. The effective redshift is
estimated from the following void-galaxy pair count:

zeff =
∑
ij wi(zi + Zj)/2∑

iwi
(3.9)

where zi is the redshift of the ith galaxy, Zj the redshift of the centre of the jth void,
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Figure 3.8: Number of voids after selection cuts as a function of their radius rv for
LRGpCMASS samples (red lines), ELG samples (blue lines), and QSO
samples (yellow lines). The solid and dashed lines correspond to the data
and the mean over the 1000 realizations of the EZmocks, respectively. The
shaded areas indicate the 1σ regions evaluated from the 1000 EZmocks
realizations.

and wi the total weight of the ith galaxy, as given by Eq 3.5. The void-galaxy pairs
are accounted for only if they contribute to the two-point void-galaxy correlation
function in the range 0 <= s < smax, where smax is the maximal separation probed
in the two-point correlation function, rescaled by the void radius rv. The smax
respective to each sample can also be found in Table 3.3.

Overall, the EZmocks and the data present quite a good agreement in terms of
both redshift distribution and size distribution, as well as their void count.

3.2 Estimation of redshift-space distortions around
voids in the linear approximation

The interaction and formation process of the Large-Scale Structure is a dynamical
process which evolves over time. Tracers of the LSS carry this dynamical information
through what is called the Kaiser effect. Indeed, galaxies positions that we observe
are affected by different physical interaction taking place in the vicinity of the
galaxies. Galaxies move in a coherent flow along filaments and clusters, shaping the
LSS at different epoch. These dynamical contributions, called peculiar velocities,
provide valuable information on the laws of gravity that govern the movement of
galaxies.
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3.2.1 Redshift space distortions
Redshift surveys measure the redshift of a luminous object in the sky. As a result
of the expansion of the Universe, the farther the object is, the faster it is moving
away from us and the more the wavelength of the emitted spectra shifts toward
longer wavelengths. The deviation between the emitted wavelength and measured
wavelength, due to the Hubble flow, is called the cosmological redshift. However,
the observed objects also have a motion of their own within a comoving frame.
Hence, the measured redshift is perturbed by the velocities vp of the galaxies,
introducing distortions in real space. It can then be developed in two kinds of
contributions:

z = zc + vp/c, (3.10)

where the term vp/c accounts for the impact of the dynamics of the objects.
These peculiar velocities can themselves be decomposed in two types: linear and
non-linear. The linear part results from the motion of the object induced by the
growth of gravitational instabilities in an expanding Universe. This process is part
of the creation and definition of the Large-Scale structure wherein the objects move
in coherent flows toward highly over-dense objects, while the non-linear component
relates to random velocities at small scales. These peculiar velocities lead to an
observational effect, as it interferes with the redshift measurement and induces
distortions in the radial component that are called Redshift-Space distortions (RSD).

Figure 3.9 illustrates the two kinds of effect induced by the velocities as observed
in redshift space:

– Linear velocities: Those velocities are most prominent on large scales and
relate to the continued growth of the large-scale structure. They materialize
as infall velocities in the case of over-dense structure and outflow velocities in
the case of voids. As a result, over-dense structures appear squashed along the
line-of-site, while under-dense structures tend to be ’stretched’. This apparent
distortion is called the Kaiser effect (Kaiser, 1987).

– Non-linear velocities: They spur mainly from the non-linear collapse of an
over-density, resulting in an apparent elongation of the over-dense structure
along the line-of-sight, called the Finger-of-God effect. Although Fig. 3.9
shows a squashing of an under-dense structure due to the non-linear velocities,
it is actually not quite clear how those peculiar velocities affect the observed
voids. They can cause voids to disappear, and the general agreement is that
the smaller the voids, the more likely to be highly affected by non-linear
effects.

These distortions deeply affect the density field estimated from luminous tracers
of matter distribution that can be probed through the power spectrum or the
two-point correlation function. Thereafter, we will neglect the study of non-linear
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Figure 3.9: Illustration showing how real-space structures (left row) are affected by
non-linear (middle row) and linear (right row) velocities, in the case of an
over-density (red) and under-density (blue). Adapted from Dodelson (2003,
Fig. 9.11 p.277)

velocities when considering the RSD around voids as those structures are considered
to have a linear relation to the density field compared to over-dense tracers such as
galaxies (Ceccarelli et al., 2013; Hamaus et al., 2014b; Lambas et al., 2016). Thus,
the main contribution of RSD in our studies is the Kaiser effect. The easurement of
the RSD signal is a powerful probe, as in the linear regime, velocities are directly
connected to the growth rate f :

v(r) = −1
3faH∆(r)r, (3.11)

where a is the scale factor of the universe, H is the Hubble parameter and ∆(r)
the volume-averaged density contrast defined as follows:

∆(r) = 1
r3

∫ r′

0
δ(r′)r′2 dr . (3.12)

In consequence, voids are quite interesting objects due to their very linear relation
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to the density field. The potential of voids as a sensitive probe of the growth rate
of structure f have been investigated since the first proof of their sensitivity to
dynamical effects in N-body simulations (Padilla et al., 2005). While at first set
aside due to the lack of statistics in observational data, the analysis of redshift
space distortions with voids regained favour with the first release of the DR7 data
sample in which the growth rate was successfully recovered (Paz et al., 2013). Since
then, constraints of the growth rate of structure with voids have been tirelessly
investigated in numerous surveys: 6dF (Achitouv et al., 2017), VIPERS (Hawken
et al., 2017), BOSS (Achitouv, 2019; Hamaus et al., 2017, 2020, 2016; Nadathur
et al., 2019a) and eBOSS DR14 (Hawken et al., 2020) with growing accuracy and
refinement of the modelling. This work is in the context of the DR16 eBOSS data
release in which we probe the growth rate of structure in three different tracer
samples at three different epochs. The model used to estimate the growth rate of
structure will be presented below.

3.2.2 Linear redshift-space distortions around voids
The main contribution of the redshift space distortions comes from the dynamics of
the matter tracers used to reconstruct the voids. The modelling of linear redshift
space distortions around voids then relies on the distribution of those objects in
redshift space, relative to the void centre.

3.2.2.1 Key assumptions

The distribution of matter around voids is measured through the correlation
function ξ(r) which estimates the underlying density field δ(r). We are interested
in the effect of the dynamics of the galaxies surrounding the void on the density
field δ. Under the assumption that the void-galaxy pair count is conserved when
transforming from real space to redshift space, the mapping between the real-space
correlation function and its redshift space counterpart is the following:

[1 + ξ(r)]dr3 = [1 + ξ(s)]ds3, (3.13)

where ξ(r) denotes the real-space void-galaxy correlation function, r corresponds
to real-space separation between the void-galaxy pairs and ξ(s) denotes the redshift-
space void-galaxy correlation function for which s corresponds to the redshift-space
separation between the void-galaxy pairs.
The mapping between the separations s in redshift-space and r in real-space is

fundamental, as it is this shift in the positions which permeates in the correlation
function. Under the distant-observer assumption (also known as the plane parallel
approximation), wherein the pair void-galaxy are sufficiently distant from the
observer to consider that the line-of-sight (LOS) of the pair coincides (Kaiser,
1987), the mapping between r and s is given by:
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s = r + v · X̂
aH(z)X̂, (3.14)

where X̂ is the unit vector in the LOS direction to the void centre and v is the
velocity of the galaxy considered in the void-galaxy pair. The velocity vector v
corresponds to the coherent velocity of the galaxies directed toward an over-density.
When considering under-dense regions, the velocity describes an outflow which
drives the galaxy out of the voids. It assumed to be directed isotropically along
the radial direction, which gives:

v = v(r)r̂, (3.15)

where v(r) is the linear velocity outflow as defined in eq. 3.11.
In addition to the linear assumption above, the bias in the void-galaxy correlation

function is assumed to be linear in regard to the underlying void-matter density
field and to have the same value as the effective bias of the tracer considered:

ξvg(r) = bgδvm. (3.16)

3.2.2.2 The redshift space void galaxy correlation function

From the key assumptions of linearity defined above, it is possible to recover a
formulation of the redshift-space to real-space mapping of the correlation function:

[1 + ξ(s)] = [1 + ξ(r)]dr
3

ds3 . (3.17)

As the redshift-space correlation function is, originally, a distorted real-space
correlation function, the distortion is encoded in the motion induced shift of
the separation between voids and galaxies. Such shift can be quantified as the
determinant of the Jacobian of the coordinate transformation (Nadathur & Percival,
2019):

|J
(s

r

)
| = 1 + (1− µ2) 1

aH

v

r
+ µ2 1

aH

∂v

∂r
(3.18)

where µ = cos θ and θ is the angle subtended between the separation of the void
galaxy pair r and the direction of the LOS. The derivative of the velocity yields:

∂v

∂r
= aH(δ(r)− 2

3∆(r)) (3.19)

Using the Jacobian of the coordinates transformation and the formulation of the
velocity, equation Eq. 3.17 becomes:

[1 + ξ(s)] = [1 + ξ(r)][1− f

3 ∆(r)− µ2f(δ(r)−∆(r))]−1. (3.20)
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The equation can be expanded at first order yielding:

[1 + ξ(s)] = [1 + ξ(r)][1 + f

3 ∆(r) + µ2f(δ(r)−∆(r))]. (3.21)

In developing the above equation to obtain a definition of the two-point correlation
function between voids and galaxies, it is considered that the contributions of the
ξ(r)∆(r) and ξ(r)δ(r) are negligible (Cai et al., 2016). This assumption allows us
to obtain the following linear modelling the redshift space void-matter two-point
cross correlation function to linear order:

ξ(s, µ) = ξ(r) + f

3 ∆(r) + fµ2(δ(r)−∆(r)) (3.22)

In the above equations ξ(r) is actually considered a function of δ(r). The relation
between the true underlying matter field is biased by both due to the mass and
density of the matter tracer. In the case of this simple modelling, we assume a
linear bias relation between the tracer bias and the underlying density field as
described previously (Eq. 3.2.2.1). The two-point void-tracer cross correlation
function thus becomes:

ξ(s, µ) = ξ(r) + β

3
¯ξ(r) + βµ2(ξ(r)− ¯ξ(r)), (3.23)

with the mapping between the real-space separation r and the redshift-space
separation s defined as:

s = r(1− β

3
¯ξ(r)). (3.24)

3.2.2.3 Estimator of the correlation function

The correlation function of given discrete tracers can only be estimated from the
available information. It directly relates to the joint probability of finding a pair at
a distance r = |x1 − x2|. An abundance of pair at a distance r should thus denote
an excess probability of finding a pair. The estimation of the correlation thus needs
to account for this excess in regard to a homogeneous random Poisson distribution
of pairs, in which case ξ(r) = 0.
First of all, let us define the pair-count variables DD and RR: DD(r) relates to

the number of pairs found at a distance r in bins of size ∆r for the data information,
RR(r) relates to the number of random pairs. We can thus define the estimate of
the correlation function through the comparison of the DD(r) pair-count to the
RR(r) pair-count:

1 + ξ̂(r) = NR(NR − 1)
ND(ND − 1)

DD

RR
, (3.25)

where the first term is a constant which normalises the estimated pair-counts:
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ND being the total number of data objects and NR the total number of random
objects. The association normalises the pair-counts DD(r) and RR(r) by the total
number of pairs available in both data and random samples to take into account
a different density of objects. This prescription is known as the Peebles-Hauser
prescription (Peebles & Hauser, 1974). It relates to most optimistic dataset possible,
in which the galaxies collected in a volume of the universe have all been accounted
for and the total footprint of the galaxies present no holes.
In the case of the existence of a survey mask, which masks the regions where

the observations are unreliable due to the presence of luminous sources such as
bright stars or other systematical effects, the random and data distributions will
thus be reliant on the holes in the footprint which may affect the estimation of the
correlation function, especially when estimating the pair-count contributions at
the edges of the mask. To mitigate these effects, we introduce the cross pair-count
DR(r) (or RD(r)) which measures the number of data-random pairs. A modified
version of the previous estimator is the following:

1 + ξ̂(r) = NRND

ND(ND − 1)
DD

DR
, (3.26)

where the normalisation term for the DR pair-count now includes all the consid-
ered objects in both samples. This estimator is known as the Davis-Peebles (DP)
estimator (Davis & Peebles, 1983).
A final estimator of note to be presented represents a different approach to the

estimation of the correlation function. Considering our samples to be an association
of the signal data D and R, where the random contribution is removed from
available data: (D −R), the total available pair-counts relating to the signal, to
compare to a random background should thus be the identity (D − R)2 which
considers all the possible association of the samples:

ξ̂(r) =
DD

Nd(Nd−1)/2 −
2DR
NdNr

+ RR
Nr(Nr−1)/2

RR
Nr(Nr−1)/2

. (3.27)

This estimator is called the Landy-Szalay (LS) estimator (Landy & Szalay, 1993)
and presents the advantage of having the minimum variance when considering small
perturbations (ξ � 1) which put it in the place of being the optimal estimator of
the correlation function (Vargas-Magaña et al., 2013).
While the LS estimator is generally set as the estimator of choice in terms

of galaxy clustering, its use is less trivial in the case of the void-galaxy cross-
correlation. Indeed, the LS estimator needs to be provided with a random catalogue
of void positions Rv. The process of creating such a random void catalogue is
not trivial. While some authors use the angular positions and redshift positions
(Achitouv, 2019; Nadathur et al., 2019a), it is not straightforward in our case as our
correlation function relies on the rescaled separation rres = r/rv while considering
non-overlapping voids.
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Two factors have to be taken into account: the random voids have to be non-
overlapping extended objects and the random void catalogue has to be statistically
superior to that of the data. The generation of a proper void radius distribution
in the random sample is thus the problem here. One cannot simply draw a
random radius from the existing radius distribution as it would probably lead to
an overlapping random void distribution. A work-around solution could be to run
the void finding algorithm on a random sample with the same number density
as the data, but then the number of available random voids would not obey the
superior statistics requirement. In addition, Hamaus et al. (2017) argued that the
terms RvRg and DgRv were of negligible effect in the estimation of the two-point
correlation function (2PCF). Therefore the estimator elected is the Davis-Peebles
prescription which writes as:

1 + ξ̂vg(r) = NRgNDv

NDvNDg

DvDg

DvRg

, (3.28)

in the case of the void-galaxy two-point cross-correlation function.

3.2.2.4 Multipole decomposition

Given the existence of galaxy dynamics around voids and their apparent privileged
direction along the LOS, it is straightforward to understand that the isotropy
of the estimated density field surrounding the void centre is perturbed. The
resulting estimated correlation function is thus anisotropic and can therefore be
expressed as a sum of even multipoles moment in the basis of Legendre Polynomials
Ll(µ) (Hamilton, 1992, 1998):

ξs(r, µ) =
∑
`

(2`+ 1)L`(µ)ξ`(r). (3.29)

where µ is the cosine of the angle between the separation vector direction r
and the line-of-sight. The odd multipoles cancel out to infinity (Cai et al., 2016;
Hamilton, 1992, 1998). On the other hand, the only non-vanishing multipoles are
the monopole and the quadrupole. The hexadecapole is expected to be null as
opposed to the galaxy-galaxy correlation function. This is attributed to the fact
that we assume that the void centres are devoid of dynamical effects.
The two-point correlation function thus reduces to:

ξs(r, µ) = L0ξ
s
0(r) + L2ξ

s
2(r), (3.30)
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with first order Legendre polynomials:

L0(µ) = 1, (3.31)

L2(µ) = 3µ2 − 1
2 , (3.32)

and with the multipoles of the correlation being related to Eq. 3.23 by the
following expressions:

ξs0(r) = (1 + β

3 ) ξ(r), (3.33)

ξs2(r) = 2β
3 [ξ(r)− ξ̄(r)]. (3.34)

Expressing the monopole contribution of the correlation function as a difference
between the monopole and its volume averaged counterpart:

ξs0(r)− ξ̄s0 = (1 + β

3 ) [ξ(r)− ξ̄(r)], (3.35)

the multipoles can be reduced to a simple constant through the combination
of Eq. 3.35 and Eq. 3.34, removing all dependence to the real-space correlation
function. Therefore, this constant represents an estimate of the distortion parameter
as presented originally by Cai et al., 2016:

G(β) = ξs2(r)
ξs0(r)− ξ̄s0(r)

(3.36)

= 2β
3 + β

. (3.37)

In practice, the estimated monopole and quadrupole both tend to the mean
density of galaxy/matter ξ(r) = 0 at r →∞, which render the parameter constraint
through the formula 4.43 unreliable. As such, we define the residual as follows:

ε(β) = ξ2 − (ξ0 − ξ̄0) 2β
3 + β

, (3.38)

where ξ0 and ξ2 are the measured quantity of the correlation function.

3.2.3 Parameter estimation
The modelling is a straightforward relation that allows a direct measurement of β
while only requiring a measurement of the multipoles of the void-galaxy correlation
function. To this end, the β parameter is fitted to the data in a frequentist approach
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using a χ2 minimization defined as:

χ2 = εT Ψ ε (3.39)

where ε is the residual given by Eq. 3.38 and Ψ is the precision matrix. It is to be
noted here that the absence of a theoretical prediction regarding the multipoles,
the monopole contribution, ξ0 − ξ̄0

2β
3+β , is used in its stead.

The precision matrix is estimated from the inverse of the covariance matrix.
In practice, one estimates a covariance matrix using a set of Ns mock catalogues
reproducing the data. It is constructed as follows:

Cij = 1
Ns − 1

Nm∑
k=1

(εki − 〈εi〉)(εkj − 〈εj〉), (3.40)

where Ns is the number of realizations, εki is the residual of the mock k in the
bin i and 〈εi〉 is the mean value of εki in the bin i such as:

〈εi〉 = 1
Ns

Ns∑
k=1

εki . (3.41)

Developing Eq. 3.40 by plugging the proper expression of the residual (3.38),
we recover an extended expression of the covariance on a multipole per multipole
contribution basis as prescribed in Cai et al., 2016:

Cij = G2Cij
00 + Cij

22 −GC
ij
02 − C

ij
20, (3.42)

where G = 2β
3+β .

The covariance is then inverted to recover the precision matrix Ψ. However,
when inverting a noisy covariance matrix estimated with a set number of mocks
Ns, it is necessary to correct for a possible bias. Hartlap et al. (2007) and Taylor
et al. (2013) proposed a correcting factor to the covariance matrix to do just that:

Ψ̂ = Ns −Nb − 2
Ns − 1 Ĉ−1, (3.43)

where Nb is the number of bins and Ns is the number of mocks used to estimate the
covariance matrix Ĉ. While Nb � Nm, the bias on the precision matrix remains
pretty low, for example, using a covariance matrix derived from 1000 mocks and 20
bins, the correction factor is about 2%, which is negligible in the case of a survey
like eBOSS.

Another implication of using a set number of mocks and bins to build a covariance
matrix is that the covariance in itself is an estimated quantity that possesses an
uncertainty which causes the precision matrix to be biased. To take that into
account, the parameter error obtained through the minimization procedure is
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rescaled with the following prescription (Percival et al., 2014):

√
m1 =

√√√√ 1 +B(Nb −Np)
1 + A+B(Np + 1) , (3.44)

where Np is the number of parameters fitted, and

A = 2
(Ns −Nb − 1)(Ns −Nb − 4) (3.45)

B = Ns −Nb − 2
(Ns −Nb − 1)(Ns −Nb − 4) . (3.46)

3.3 Investigation of systematics using mocks
We have shown in Sec. 3.1.4 that voids from mocks and data have similar properties,
so we can apply the methodology described in Sec. 3.2 to the mocks in a blind
manner before applying them to the final eBOSS data. We will take the opportunity
to investigate a number of systematic effects. Moreover mocks are necessary
to estimate the covariance matrix of the void-galaxy two-point cross-correlation
function and therefore, estimate the error on our parameter β.

Two types of mocks were used in this framework: EZmocks which are approxi-
mate mocks that reproduce the clustering of the eBOSS DR16 and dedicated to the
estimation of the covariance matrix for each sample (LRGpCMASS, ELG, QSO).
They are also used to test for the methodology choices such as binning, weighting
and void finding choices. The second set of mocks are N-body simulation-based
mocks designed to specifically test the model used to estimate the growth rate of
structure as the simulation of the RSDs is more accurate.

For both types of simulation, the fiducial β is estimated through the theoretical
prediction of f at a given cosmology and redshift and the value of the bias b,
provided by companion papers of the DR16 data release: Bautista et al. (2020)
and Gil-Marín et al. (2020) for the LRGpCMASS EZmocks and the Nseries,
De Mattia et al. (2020) and Tamone et al. (2020) for the ELGs EZmocks and
OuterRim and (Hou et al., 2020; Neveux et al., 2020) for the QSOs EZmocks and
the OuterRim. The use of the estimated bias by the standard galaxy clustering
is necessary as the bias is not quite a controlled parameter in the simulations.

3.3.1 Approximate mocks
The approximate mocks reproducing the data are necessary in order to infer the
covariance of our measurements of the correlation function and the subsequent error
in the parameter constraint. The EZmocks mocks reproduce both the clustering
of the DR16 tracers but also include some observational systematics, along with
having the same footprint and number density as the data. The calibration of
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Table 3.4: Statistics on the distortion parameter fit on the 1000 EZmocks (950 for the
ELG sample) realizations for each eBOSS tracer. The reported 〈βref〉 and
〈σβ〉 are the mean of the Nm individual fit ouput. The χ2 is normalized to
the number of degrees of freedom.

EZmocks βfid 〈βref〉 〈σβ〉 〈χ2〉 |(〈βref〉 − βfid)/βfid|
LRG+CMASS 0.372 0.414 0.072 1.39 11.29%
ELG 0.63 0.521 0.101 1.14 17.3%
QSO 0.403 0.294 0.049 1.76 27%

the clustering of the EZmocks on the data permeates in the comparison of the
clustering of the voids in the data and those in the mocks, as can be seen in
Fig. 3.15. The agreement between mocks and data thus allows us to quantify
eventual systematics in our methodology.

3.3.1.1 Baseline analysis

The pipeline, as depicted in the first section 3.2 is applied to each of the Nm

realizations for all three tracers: ELGs, LRGs and QSOs. For each realization is
obtained an estimate of β, using the covariance build from the (Nm − 1) remaining
mocks. The resulting distributions of the recovered β and their errors are featured
in Fig. 3.10. The error distributions follow that of a Gaussian meaning that those
are well estimated within the fitting procedure. Figure 3.11 presents the best-fitting
residuals and associated β to the quadrupole of the void-galaxy correlation function
for one realization among the thousand EZmocks.
The mean of the estimated β and σβ are quoted in Table 3.4 as reference for

systematics estimate. Results are quoted following the result on the binning
analysis performed in order to optimize the parameter estimation. In the case
of the LPGpCMASS and ELG samples, the recovered β values remain within or
slightly higher than 1σ from the fiducial value, while the QSOs recovered value
presents a more than 2σ deviation. The corresponding relative deviation is 11.3%,
17.3% and 27% for LRGs, ELGs and QSOs, respectively. It is to be noted that
the EZmocks reproduce the data as well as their systematical effect which could
contribute to this deviation, in addition to a possible systematic effect due to the
modelling. The latter will be investigated on N-body mocks in the next section.

Our estimation of β relies on a ratio (difference) between the multipole contribu-
tions, as opposed to a fit of a theoretical prediction. Being a ratio of amplitudes,
any impact on the estimation of the pair count can lead to a shift in the estimation
of the multipoles and subsequent β parameter estimation. To this end, we check
the robustness our β measurements regarding several methodology choices likely to
affect the estimation of the cross-correlation function.
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Figure 3.10: Best-fit parameters for the 1000 realizations of the EZmocks catalogues.
Left panels display the distribution of the distortion parameter β and
right panels display the distribution of the errors of β. The LRGpCMASS,
ELG and QSO EZmocks samples are displayed in the top (a), middle (b)
and bottom (c) panels, respectively.
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Figure 3.11: Quadrupole (ξ2) and the best-fit of the 2β/(3 + β)(ξ0 − ξ̄0) residuals from
one EZmocks catalogue of the LRGpCMASS, ELG and QSO sample
displayed in the top (a), middle (b) and bottom (c) panels, respectively.
Error bars are the diagonal of the covariance matrix from the Ns − 1
remaining mocks.
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3.3.1.2 Impact of the binning

The binning used to estimate the two-point correlation function may bring a change
of amplitude in the estimated monopole and quadrupole. Hence, it is expected to
have an impact on the estimation of β. Each of the Nm realizations is computed
with several binning schemes between 14 and 22 bins at the maximum, thus affecting
the fitting range.
The optimal binning scheme adopted is the one that represents a trade-off

between the relative error on the parameter β defined as β/σβ, which is used
as a reference value and the minimization of the value of the χ2. The resulting
estimations are reported in Table 3.5 in terms of the χ2, relative error, as well as
the deviation from the reference value. Due to the difference in term of number
density and resulting galaxy and void statistics, the number of pairs is different
from one sample to another.
The β values seem to decrease along with the number of bins, which confirms

the expected impact on the β estimations. The χ2 also decreases monotonically
with the number of bins, that is why it cannot be used alone as an indicator for
an optimal binning scheme. It is to be noted that the ELG values quoted in the
Table are different from those quoted in the baseline analysis. This discrepancy
comes from the fact that the catalogue used was not generated with the same
buffer particles density. However, the QSO and LRGpCMASS binning systematics
remained unaffected by such change, so it was considered that this systematic check
could be kept as is in the case of the ELG sample. The sensitivity to the binning
scheme is also dependent on the statistics and footprint. While the LRGpCMASS
and the QSO are the most populated sample, their footprint is different. The LRG
is a combination of both the eBOSS footprint and the BOSS footprint, yielding an
uneven number density throughout the footprint. Hence, when compared to the
QSO sample that presents a similar number of object and a more homogeneous
sample, the LRGpCMASS sample displays greater sensitivity to the binning. The
ELG sample seems less consistent in terms of binning with deviations alternating
from one order of magnitude to another, probably due to its lower statistical power.
While the selected binning scheme for each sample is used for the reference

analysis of the mocks and all tests therein, the effect of the binning scheme on
the estimation of β is taken into account as systematical effect as the largest
deviation from the reference value, which corresponds to 0.02, 0.012 and 0.004 for
the LRGpCMASS, ELGs and QSOs respectively. Those are reported in the total
systematic budget as a deviation percentage from the reference β which represents
a 4.8, 2.3 and 1.3 percent effect respective to the LRGpCMASS, ELGs and QSOs.

3.3.1.3 Impact of the weights

Weights are estimated for each galaxy to mitigate observational systematics such
as the impact of photometry, fibre collisions and redshift selection. These weights
are taken into account in both void finding and correlation function estimation.
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Table 3.5: Impact of the number of bins Nb used for the estimation of the correlation
function and fitting procedure. The χ2 and relative error on β are displayed.
The resulting deviations from the value of reference (in bold) for each sample
are also displayed, with the error quoted as the error on the mean (σ/

√
(N))

EZmocks Nb 〈β〉 〈σβ〉/〈β〉 〈χ2〉 〈β〉 − 〈βref〉
LRG+CMASS 16 0.434 0.177 1.57 0.020± 0.004
LRG+CMASS 18 0.432 0.178 1.51 0.018± 0.004
LRG+CMASS 20 0.43 0.178 1.48 0.016± 0.004
LRG+CMASS 22 0.414 0.180 1.39 -
LRG+CMASS 25 0.426 0.179 1.40 0.012± 0.004
ELG 14 0.508 0.214 1.57 0.011± 0.005
ELG 16 0.498 0.215 1.53 0.001± 0.005
ELG 18 0.497 0.214 1.48 -
ELG 20 0.490 0.217 1.45 −0.007± 0.005
ELG 22 0.485 0.219 1.42 −0.012± 0.005
QSO 16 0.298 0.169 2.04 0.004± 0.002
QSO 18 0.295 0.170 1.98 0.001± 0.002
QSO 20 0.293 0.169 1.89 −0.001± 0.002
QSO 22 0.293 0.169 1.76 -
QSO 25 0.292 0.170 1.66 −0.002± 0.002

Table 3.6: Impact of the FKP weight in regard to the reference β. Quoted error is the
quadratic sum of the error on the mean of both β and βref

EZmocks 〈β〉 − 〈βref〉
LRG+CMASS 0.006± 0.005

ELG 0.012± 0.005
QSO 0.001± 0.002

However, the FKP weights wFKP are weights specifically designed to optimize the
estimation of the amplitude of the clustering in the range of the BAO peak, in
configuration or in Fourier space on the basis of the galaxies representing a Poisson
sampling of the underlying matter field. As the correlation function estimation
relies also on the positions of galaxies, the FKP weights are used in the correlation
function. However, it is not sure how this methodology choice should affect the
clustering of voids. To this end, the cross-correlation function is evaluated with
and without the FKP weights to test for their impact on the estimation of β. The
resulting deviations are transcribed in Table 3.6.
In a conservative approach, the deviation between the reference value and the

mean β are taken as systematics and represent 1.4, 2.3 and 0.7 percent for the
LRGpCMASS, ELG and QSO, respectively. In the case of QSOs, this correction
represents a marginal effect below the percent level. Once again, it seems that the
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Table 3.7: Impact of the correlation function estimator in regard to the reference β.
Quoted error is the quadratic sum of the error on the mean of both β and
βref

EZmocks 〈β〉 − 〈βref〉
LRG+CMASS −0.009± 0.004
ELG 0.017± 0.005
QSO 0.003± 0.002

impact of the FKP weights relies on the available statistics in the sample.

3.3.1.4 Impact of the estimator of the two-point correlation function

The DP estimator is our elected estimator of the two-point correlation function
due to the grey zone that represents the generation of a random void catalogue
in our configuration – the rescaling of the separation in the pair-count estimation.
The LS estimator, however, present different properties of bias and variance in
regard to the estimation of the correlation function (Landy & Szalay, 1993). The
impact of the estimator is, therefore, to be taken into account in the precision on
the parameter β. To this end, a simplified version of the estimator is investigated
as prescribed in Hamaus et al. (2017), as the void random Rv term is negligible:

ξLS(r, µ) ≈ DvDg −DvRg. (3.47)

The resulting deviation between the baseline β, estimated through the DP
estimator and the resulting β estimated from the LS estimator, are recorded in
Table 3.7.

The effect of the correlation estimator on the β estimation represents about 2.2%
for LRG+CMASS, 3.3% for ELG and 1% for QSO.

3.3.1.5 Summary of systematics investigated on the EZmocks

Thanks to the EZmocks were tested several aspects of our methodology in the
form of weights, estimator and binning choices. Table 3.8 shows the total systematic
budget estimated from the EZmocks. The repercussion on the estimation of β
behaves differently from one tracer to another. It is obvious that any methodology
choice that affects the estimation of the two-point correlation function is responsible
for these systematics.

The QSO is the most populated and homogeneous sample in terms of footprint,
yielding a higher number of voids and is the less affected by systematics affecting
the correlation function estimation representing a 1.7% effect on the parameter
error. The LRGpCMASS sample is the most affected by the binning, followed by
the estimator while the FKP is close to the percent effect. The ELG, smallest

102



3.3 Investigation of systematics using mocks

sample in terms of population of voids and galaxies, is the most affected by the
change in methodology and consistently over the different systematics probed.
It seems then that the available statistics, homogeneity and footprint makes

a sample more likely to be affected by our methodology choices. The more the
statistics, the less the methodology choices affect the estimation of the correlation
function and subsequent RSD parameter estimation.

Table 3.8: Systematic error budget estimated with the EZmocks and respective to each
tracer

syst LRGpCMASS ELG QSO
Binning 4.8% 2.3% 1.3%
Estimator 2.2% 3.3% 1%

FKP 1.4% 2.3% 0.7%

3.3.2 N-body mocks
Methodology choices were investigated with the EZmocks and the recovered β
values are consistent with the fiducial β within 1σ except for the QSOs. In order
to properly quantify the deviation from the recovered value of our measurement,
N-body mocks are used. The latter represent systematic free simulations tuned
to each of the tracer samples in term of effective redshift and number density. In
addition, these mocks present a more accurate depiction of the RSD. The pipeline
is applied in the same way as for the EZmocks, with the same binning choices.

3.3.2.1 Baseline analysis

The OuterRim simulation-based N-body mocks are specifically tailored to cor-
respond to the number density of the DR16 samples for QSOs and ELGs. When
considering the galaxy-clustering standard approach (auto-correlation or power
spectrum), OuterRim simulations relay comparable clustering to the DR16 sam-
ple and their attributed EZmocks (Alam et al., 2020b; Smith et al., 2020), it is
thus expected that the clustering between N-body mocks and EZmocks in the
case of the void-galaxy cross-correlation function matches.

The multipoles of the correlation function between voids and galaxies for ELGs
and QSOs are shown in Fig. 3.12 from the OuterRim N-body simulation, and
multipoles for the LRGpCMASS sample are shown in Fig. 3.13 from Nseries
simulations. These simulations differ from EZmocks as can be seen in Fig. 3.12
where the clustering of OuterRim and EZmocks is compared and show some
discrepancies between the two. Therefore, EZmocks cannot be used to estimate
the covariance matrix in the case of the N-body mocks. The estimation of the
covariance matrix for the parameter estimation is thus performed with the Nm
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available pseudo-random realizations of the respective mocks. In addition, the
OuterRim mocks and EZmocks do not have the same underlying cosmology.
Another aspect of the discrepancy between the EZmocks clustering and the

N-body mocks in the case of the ELG and QSO, for which the comparison is
possible, is that the observational effects or the footprint of the sample may have
a higher impact on the density estimation than for the galaxy clustering. The
full box of the ELG OuterRim simulation presents a much higher amplitude in
the density of the wall than the EZmocks, the amplitude of the quadrupole is
more important as well. In the case of the QSO, the amplitude is lower for both
monopole and quadrupole, the latter presenting a less defined feature.

The resulting RSD parameter β estimated and associated error distributions are
shown in Fig. 3.14 for QSOs and ELGs, and in Fig. 3.13 for the LRG sample. It is to
be noted that the error distribution is not exactly Gaussian due to the low amount
of mocks used. This leads to higher uncertainties on the covariance estimation of
the order of 67% , 23% and 20% for the OuterRim ELG, OuterRim QSO and
Nseries LRG, as estimated using the Hartlap prescription in Eq. (3.43). Finally,
the results on the β parameter using N-body simulations are given in Table 3.9.

Table 3.9: Results on the analysis applied to the N-body mocks specific to each tracers.
Quoted βNBref and 〈σβ〉 are the mean over all Nm N-body realizations. The
error on the deviation from the expected fiducial value βfid is taken to be
the error on the mean of the estimated βNBref .

〈βNB
ref 〉 〈σβ〉 βfid 〈β〉 − 〈βfid〉

Nseries LRG 0.447 0.063 0.41 0.037± 0.007 9%
OuterRim ELG 0.629 0.027 0.686 0.057± 0.005 8.3%
OuterRim QSO 0.241 0.037 0.401 0.160± 0.004 39.9%

3.3.2.2 Impact of the modelling

At first, N-body mocks are used to characterize the modelling of the redshift
space distortions in the form of the comparison of the recovered value compared
to the fiducial expected value. In Table 3.9 are given the average βNBref values
extracted from OuterRim and Nseries N-body simulations, which are compared
to their expected fiducial value βfid. These values disagree by more than 5σ, where
σ = σβ/

√
Nm is the error on the mean β value. This implies that the deviation

from the fiducial value should be considered as a systematic error related to the
RSD modelling. The reported deviations are 8.3% for the OuterRim ELGs, 9%
for the Nseries and 39.9% for the OuterRim QSOs.
For the OuterRim ELGs, the 8.3% bias quoted is less than that shown for in

the EZmocks of 17.3%. This may mean that some additional systematical effect
displayed by the EZmocks may not be taken into account here. In the case of the
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Figure 3.12: Averaged monopole (left panels) and quadrupole (right panels) of the
void-galaxy cross-correlation function estimated in the OuterRim based
N-body mocks (black) related to the ELG (top panels) and QSO (bot-
tom panels) DR16 samples. For comparison are drawn multipoles from
EZmocks for ELG (blue) and QSO (yellow). Solid lines are average
values over all realizations of the considered N-body mocks and error bars
or shaded regions are the 1σ errors estimated from the diagonal of the
covariance matrix.

QSO, the deviation is much higher than expected, ceiling to 39.9%, superior to
that hinted in the EZmocks.
The fiducial β is estimated from the predicted growth rate for a given redshift

and cosmology while the linear bias of the galaxies is provided by standard galaxy
clustering measurements. The consequence, as for the EZmocks, is that the
expected β is not quite an independent quantity as there is no fiducial bias. Leads
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Figure 3.13: Top: Averaged monopole (left) and quadrupole (right) of the 84 Nseries
mocks. Error bars are estimated from the diagonal of the covariance
matrix built with the 84 Nseries. Bottom: Distribution of β (left) and
related errors (right) estimated from the Nseries N-body mocks.

to explain this deviation of the modelling, which represents nearly four times the
deviation quoted for the LRG and the ELG, will be investigated later on. But, the
modelling only cannot explain this large a deviation, especially when the modelling
bias seems to be of the same magnitude when considering the ELG and the LRG
samples.

3.3.2.3 Impact of the void centre definition

Through the use of the N-body, the void centre definition is also investigated in
order to validate our use of the barycentre. To this end, the resulting clustering
and estimated β are compared in each of the N-body simulations to confirm that
the barycentre provides the most robust estimation of the void centre in regard to
our analysis. The resulting β and comparison with the reference value which we
take to be those reported in Table 3.9, are displayed in Table 3.10
The use of a different definition of the barycentre incurs a significant shift in

the estimate of β, especially in regard to the study of the OR mocks. While the
βref values are not without systematics, as was shown in above, the change of
void definition does not improve those and actually increase the already existing
systematic effect, up to 50% in the case of the QSO and 24.2% for the ELGs. The
LRG, however, is only affected by an order of 3 to 4% more than when considering
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Figure 3.14: Distribution of β (left) and its associated error (right) estimated from the
OuterRim based N-body mocks for the ELG (top) and QSO (bottom)
samples.

the barycentre.
So, the choice of the barycentre as the void centre definition is the most optimal

in this analysis of redshift space distortions, similarly confirmed in the case of the
LRGs in a companion DR16 void study (see Appendix A, Nadathur et al., 2020b).

3.3.2.4 Impact of the fiducial cosmology

The impact of the fiducial cosmology is also investigated in regard to the estimation
of the RSD parameter. To this end, a different cosmology Ωm = 0.31 is used
in both the void finding and the estimation of the void-galaxy cross-correlation
function. This test is only applied to the Nseries as they are cut-sky mocks,
which makes them easier to treat in terms of the void finding. The ELG and QSO
N-body are both box simulations which renders the void finding non-trivial if one
were to change the cosmology. The geometry of the object positions would be an
elongated box due to the AP effect resulting in a non-optimal placement of the
buffer particles, which would have consequences on the void definition.
The deviation from the reference βref value and that obtained with Ωm is of
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Table 3.10: Estimated β with the circumcentre definition and deviation from the refer-
ence barycentre analysis βref and from the fiducial cosmology. The errors
reported for the β are the mean of the 1σ error from the fit. Those reported
for the deviations are estimated from the error on the mean ( σ/

√
(N) ).

〈β〉 〈β〉 − 〈βref〉 〈β〉 − 〈βfid〉 (∆β)ref (∆β)fid

Nseries 0.465± 0.067 0.018± 0.01 0.055± 0.007 4% 13.4%
OuterRim ELG 0.52± 0.026 0.037± 0.004 0.166± 0.004 18.6% 24.2%
OuterRim QSO 0.199± 0.022 0.042± 0.005 0.20± 0.005 17.4% 50.4%

0.003± 0.010. Thus, the systematic derived from the use of the fiducial cosmology
is inferior to its error. In a conservative manner, the impact of the use of this
fiducial is taken to be the 1σ error, which amounts to a 2.2% relative error on the
β estimation.

3.3.3 Total systematic budget
The systematic budget with approximate and N-body mocks is quoted in its entirety
in Table 3.11 in terms of the relative deviation from the expected fiducial value.
Each of the tracer samples has an associated systematic budget associated. The
systematic estimated attributed to the change of fiducial cosmology in the Nseries
mocks was applied to each tracer sample. The total systematic budget quoted in
the last line of the table corresponds to the addition in quadrature of all systematic
contributions. The dominant systematic error is the one due to the RSD modelling.

Table 3.11: Total systematic budget in terms of relative errors on the β parameter
obtained from tests with mock catalogues for each of the eBOSS tracer.
The total systematic error is the quadratic sum of each contribution.
Type sys in (σβ/β) (%) LRG ELG QSO
Methodology Binning 4.8 2.3 1.3

FKP weight 1.4 2.3 0.7
Estimator 2.2 3.3 1.0

Void
finder Fiducial cosmology 2.2 2.2 2.2
Model RSD modelling 9.0 8.3 39.9
Total (%) 10.8 9.76 40.0
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Table 3.12: Standard deviation of the 1,000 estimated β (β(σ)) and σβ in the mock
density ratio of 10 and 100 configurations for all three tracer samples.

Data samples MDR10 MDR100
– β(σ)/σβ(σ) β(σ)/σβ(σ)
LRG 0.047/0.002 0.024/0.003
ELG 0.022/0.0013 0.012/0.0007
QSO 0.012/0.0004 0.0007/0.0002

3.4 Application on DR16 data
3.4.1 Impact of the buffer thickness on the RSD parameter
Prior to extracting a final measurement of β with our final QSO, ELG and LRG
voids, the impact of the number density of the generated buffer mocks in the void
finding procedure is investigated. As the placement of the buffer particles is done
randomly, it has an impact on the voids found and their number. To properly
estimate the magnitude of this effect, the algorithm is run 1,000 times on the same
galaxy sample. It can be seen that the β value is not unique for each galaxy sample
but distributed around a mean value.
In this context, voids were extracted from the DR16 galaxy samples with two

prescriptions. The first one corresponds to a buffer density of 10n̄g, or mock density
ratio of 10 (MDR 10), the second prescription was 100n̄g (MDR 100).
The resulting standard deviation of both β and their error σβ are quoted in

Table 3.12 for each data sample and each MDR configuration. As can be seen, the
spread of the β distribution is affected by the number density of mocks chosen.
It changes by a factor of ∼ 2 from the MDR100 prescription to the MDR10
prescription. In the case of the spread of the error on the parameter σβ(σ), the
same behaviour seems to be found for both ELGs and QSOs. Therefore, the
prescription of choice was chosen to be 100n̄g to create the void catalogues and
to extract the DR16 growth rate constraints. It is to be noted, however, that in
the case of the LRG, this test was run on the LRG eBOSS only sample (without
the CMASS contribution), but this behaviour seems consistent between the three
tracers so it should remain the same for the LRGpCMASS sample.
No systematic error was attributed to the estimation of β from this study, as

both the error on the mean β value, at the order of 0.05/
√

1000 ' 0.001, and
the standard deviation σβ are negligible. We consider that using the mean β
estimated from the 1,000 estimated void-galaxy correlation functions relays an
unbiased constraint in regard to the positions of the void finder buffer particles.
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3.4.2 Clustering of the DR16 eBOSS voids
This model and subsequent study of the redshift space distortions around voids
was first conducted on a subsample of the DR16 LRGs and QSOs catalogues which
consisted in the DR14 of eBOSS (Hawken et al., 2020). This first foray in the
void-galaxy clustering of the eBOSS LRGs and QSOs samples was shown to be
highly biased by the number density of the galaxies as well as the footprint. The
resulting void number densities provided very large error bars to the estimation
of β in the case of the LRGs. In the case of the QSO, however, the lack of a
quadrupole signal, consistent with 0 within 1σ evidenced a total lack of sensitivity
of RSDs around QSO voids. While the LRGs measurement was not quite a cause
of concern due to the wide range probed by the final estimated parameter, this
near absence of clustering in the QSOs was puzzling.
Indeed, the lack of an RSD signal in the void-galaxy cross-correlation function

was very much consistent with the signal given by random voids which carry nary
a cosmological information. A careful comparison between QSO voids and voids
extracted in a random subsample with the same number density than that of
the data (Cousinou et al., 2019; Hawken et al., 2020) showed to be unable to
discriminate in a clear-cut manner these two species of voids. This study suggested
that the void finding procedure cannot quite prevent from finding ’wrong’ voids
and especially that these voids and the cosmological information they carry can be
deeply affected by a low sampling of the galaxies in a considered comoving volume.
The work presented in this chapter consists in the application of the analysis

to the complete ELG, LRG and QSO samples of the final eBOSS data release.
The void-galaxy two-point cross-correlation function was estimated for each of the
samples, using the voids catalogues presented in Section 3.1.4 using the Davis-
Peebles estimator, as well as for all realizations of their respective approximate
mocks.
Figure 3.15 displays the resulting clustering statistics for each of the tracer in

terms of their monopole ξ0 and quadrupole ξ2 as a function of the separation
between the void centre rescaled by the radius of the voids. The points correspond
to the data while the shaded part shows the dispersion of the measured multipoles
in the approximate mocks, the full line corresponds to the mean of the mocks.
The monopole corresponds to the observed void density profile (or stacked density
profile) of the considered sample which gives this very distinctive behaviour that
is presented to be universal, as mentioned in Section 2.3.1.1. In this case, all of
the considered voids show a non-negligible compensation wall, the most important
being that of the LRGpCMASS sample. The quadrupole in its sole existence
consists in itself as a proof of the anisotropy of the correlation function due to the
velocities of the galaxies. The positive part of the quadrupole corresponds to the
outflow of the galaxies toward the over-density surrounding the void.

In the case of all samples, there is quite a good agreement between the clustering
of the data and that of the mocks. For QSOs, the signal of the quadrupole, even
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Table 3.13: Final results on the RSD parameter β estimated with the separate eBOSS
DR16 samples. β and its statistical error σstat are quoted as the mean of
the 1000 estimation of β and subsequent error distribution for each eBOSS
tracer data, The systematic error σsyst corresponds to the total systematic
error quoted in Table 3.11 applied to our estimate. The total error σtot
corresponds to the aforementioned error added in quadrature.

Data samples 〈β〉 σstat σsyst σtot

LRG 0.415 0.075 0.045 0.087
ELG 0.665 0.107 0.065 0.125
QSO 0.313 0.049 0.125 0.134

though toned down compared to that of the LRGs and the ELGs, is clearly different
from 0, which represent a real improvement compared to the DR14 study. The
accordance between the clustering of the data and that of the mocks is highly
important.

The pipeline, as validated on mocks, was applied to all DR16 samples. For each
sample, in order to take into account the random aspect of the buffer particles in
the void finding, the void finder was run 1000 times on the same galaxy catalogue,
producing 1000 slightly different void catalogues. The void-galaxy cross-correlation
function is then estimated for each of the thousand void catalogues as well as for
the parameter estimation. The best-fit of the cross-correlation function on one
realization among 1000 is shown in Fig. 3.16 for each data sample, inkling to an
overall good agreement of the fitted quantities. The resulting distributions of the
fitted β and estimated errors are displayed in Fig. 3.17. The distributions of β
and their error are effectively narrower than those provided by the EZmocks. The
RMS of the β distribution is clearly negligible in regard to the estimated error on
β, which allows us to conclude that this behaviour does not cause any systematical
shift in the data as it is sufficiently small to be accounted for in the mocks spread.

The final results of the analysis for the DR16 samples are reported in Table 3.13,
where the quoted β are the mean of the thousand β estimated for each tracer
and subsequent mean statistical error estimated in the fit. The systematical shifts
investigated with both the EZmocks mocks and N-body mocks: binning, weights,
estimator, modelling, and fiducial cosmology are added in quadrature to amount
to the total presented in σsyst. The final error estimate σtot is the quadratic sum of
statistical and systematical errors. The modelling systematic shows to be the most
dominant, especially in the case of the QSO sample.

3.4.3 Constraints on the growth rate of structure
The model used for the redshift-space distortions around voids and therefore, to
probe the growth rate of structure, relays a biased estimate β. This parameter
is a ratio of the growth rate of structure and the bias. The relation between the
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Figure 3.15: Multipoles of the DR16 void-galaxy cross-correlation functions of data
compared to the mock catalogues. Left panels show the monopole and
right panels show the quadrupole, both as a function of the separation
distance r normalized to the effective void radius rv. The LRG, ELG and
QSO DR16 samples are displayed in the top (a), middle (b) and bottom
(c) panels, respectively, for the data (circle symbol) and the mean of 1000
EZmocks realizations (solid line). The shaded region shows the standard
deviation of the 1000 mock realizations, and error bars on data are the
square-root of the diagonal elements of the covariance matrix.
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Figure 3.16: Quadrupole (ξ2) and the best-fit of the 2β/(3 +β)(ξ0− ξ̄0) from one DR16
data catalogue of the LRGpCMASS, ELG and QSO sample displayed
in the top (a), middle (b) and bottom (c) panels, respectively. Error
bars are the diagonal of the covariance matrix from the 1000 EZmocks
realizations.
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Figure 3.17: Best-fit parameters for the DR16 data catalogues. Left panels display the
distribution of the distortion parameter β and right panels display the
distribution of the errors of β. The LRG, ELG and QSO data samples are
displayed in the top (a), middle (b) and bottom (c) panels, respectively.
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Table 3.14: Final results on the growth rate estimate from the eBOSS DR16 void
datasets. Mean values and errors on β are taken from Table 3.13. The
presented errors include the systematic component. The reported value
of b1σ8 are taken from clustering analysis in the DR16 companion papers,
for the LRG sample (Bautista et al., 2020; Gil-Marín et al., 2020), the
ELG sample (De Mattia et al., 2020; Tamone et al., 2020) and the QSO
sample (Hou et al., 2020; Neveux et al., 2020). The growth rate constraint
results from applying Eq. 3.48 to these values. The total error quoted for
fσ8 includes the galaxy bias error contribution.

Data samples zeff β b1σ8 fσ8

LRG+CMASS 0.740 0.415± 0.087 1.20± 0.05 0.50± 0.11
ELG 0.847 0.665± 0.125 0.78± 0.05 0.52± 0.10
QSO 1.478 0.313± 0.134 0.96± 0.04 0.30± 0.13

void-galaxy density field is assumed to be linear with the void-matter density field,
in which the bias corresponds to that of the galaxies. However, the bias is itself an
unknown quantity which cannot be estimated independently of f in the modelling
adopted and depends both on the tracer used to probe the density field and its
effective redshift.

3.4.3.1 Estimation of the growth rate of structure

In order to translate the measured quantity in that relevant for cosmological analysis,
one must remove the dependence in the bias. To this end, the measurements of
the linear bias estimated with galaxy clustering standard techniques on the same
samples are used to recover the growth rate at similar redshift. However, standard
galaxy clustering techniques, that is the galaxy autocorrelation and power spectrum,
measure a degenerated bias parameter bσ8, where σ8 is the standard deviation of
the mass fluctuations in a sphere of radius 8h−1Mpc . The growth rate is then
obtained through the following parametrization:

fσ8 = βb1σ8 (3.48)

where fσ8, the growth rate is also considered in terms of σ8, allowing to constrain
the quantity independently from the linear bias b (Song & Percival, 2009).
In the case of the void-galaxy correlation function estimated in redshift space,

however, the bias and the growth rate cannot be yet fitted independently.
To this end, the β estimated for each tracer samples are combined with the

estimated b1σ8 estimated by the galaxy clustering analysis in Fourier and configu-
ration space for each DR16 sample: ELGs (De Mattia et al., 2020; Tamone et al.,
2020), LRGs (Bautista et al., 2020; Gil-Marín et al., 2020) and QSOs (Hou et al.,
2020; Neveux et al., 2020). The estimated β and b1σ8 are combined to obtain
the estimations of the fσ8 in Table 3.14 in which the errors corresponds to the
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total error σtot quoted in Table 3.13 and are combined with the b1σ8 recorded in
Table 3.14 as well. The combination of the errors is done while considering that
both quantities (bias and RSD parameter) are independent. A test was done by
estimating the correlation between the 951 β measured with the EZmocks ELGs
and the associated 951 bσ8 estimated in the standard galaxy clustering framework.
It was found that these two quantities are very lowly anti-correlated r = −0.16,
which leads to an under-estimation of the fσ8 error of the order of ∼ 4%. While
this has not yet been tested on the other DR16 tracers such as the LRGs or the
QSOs, we assume that this behaviour is similar.

The resulting fσ8 and its errors are shown in Table 3.14, along with the estimated
β and effective redshift respective to each sample. The linear bias recovered from
the DR16 companion papers are also quoted.

3.4.3.2 Comparison with the literature

The growth rate of structure in the fσ8 or β parametrisation has been probed
in a wide range of redshift and tracer samples. In this section, the measurement
extracted from the DR16 void-galaxy correlation functions are compared to those
found in the literature.
Figure 3.18 displays the growth rate estimated in the various samples provided

by the SDSS survey across its four stages. Empty markers denote the fσ8 estimate
extracted from void analyses while the associated full markers present the mea-
surements achieved by the standard galaxy clustering analyses (auto-correlation
and power spectrum). The red empty stars represent the measurement of fσ8 at
redshift z = 0.74, z = 0.845 and z = 1.48 for the LRG, ELG and QSO sample
respectively measured in this work, to be compared to the associated galaxy clus-
tering (GC) consensus measurements of the eBOSS DR16 companion papers. It
is to be noted that our measurement of the fσ8 is shifted in regard to the GC
LRG estimate, which is due to the cut applied to our void sample. It causes the
effective redshift of our sample to be higher. Our measurement is also compared to
a measurement of the growth rate of structure in the DR16 eBOSS LRG sample
achieved with a fundamentally different model of the void-galaxy two-point cor-
relation function (Nadathur et al., 2020b). Overall, the agreement between our
measurements and those of the eBOSS DR16 companion papers are in agreement
at the level of 1σ for the LRG and QSO and at a 2σ level in the case of the ELGs.
The estimated growth rates are also displayed for the BOSS DR12 sample, in
three redshift bins for the standard GC consensus analysis (Alam et al., 2017)
and for voids analysis. While Nadathur et al. (2019a) relays a direct estimate of
fσ8, Achitouv (2019) and Hamaus et al. (2017, 2020) apply the same or a similar
model to that conducted in this chapter. As a result, their β estimate are recovered
using the fiducial bias b = 1.85 estimated from the DR12 BOSS sample and σ8 is
computed with the Planck 2018 Λ-CDM cosmology (Aghanim et al., 2020a). This
yields σ8(z = 0.32) = 0.684 and σ8(z = 0.54) = 0.612 for Hamaus et al. (2017),
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fσ8(z = 0.32) = 0.418 ± 0.76 and fσ8(z = 0.54) = 0.407 ± 0.057 for Achitouv
(2019) and fσ8(z = 0.51) = 0.620 ± 0.105 for Hamaus et al. (2020). Finally is
plotted the fσ8 estimated from the main galaxy sample (MGS Howlett et al., 2015)
of the DR7 SDSS (Abazajian et al., 2009). Overall, the ensemble of the SDSS
growth rate measurements, voids and galaxies are all consistent within 1− 2σ.
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Figure 3.18: Growth rate of structure fσ8 in terms of redshift measured in various sam-
ples of the SDSS collaboration. Empty markers display the void constraints
and filled marker the galaxy clustering constraints. Red empty stars rep-
resent the estimation of the growth rate with voids for the LRGs,ELGs
and QSOs in the DR16 sample presented in this chapter (Aubert et al.,
2020). The orange star filled markers represent the result of the consensus
measurements for the LRGs (Bautista et al., 2020; Gil-Marín et al., 2020),
ELGs (De Mattia et al., 2020; Tamone et al., 2020) and QSOs (Hou et al.,
2020; Neveux et al., 2020). Orange empty star represent an additional
measurement of the growth rate with voids with a different analysis (Na-
dathur et al., 2020b). Empty square markers relate to the analysis of
the BOSS DR12 (Achitouv, 2019; Hamaus et al., 2017, 2020; Nadathur
et al., 2019a), filled square markers being the standard consensus DR12
measurement (Alam et al., 2017). Brown circle displays the measurements
of the growth rate in the Main Galaxy Sample (MGS)(Howlett et al., 2015)
in the SDSS DR7 (Abazajian et al., 2009). The dotted line is estimated
Planck 2018 ,Ωm = 0.31,σ8 = 0.81, prediction for the growth rate of
structure.

Figure 3.19 compiles all the measurements of fσ8 outside the SDSS collaboration.
The upper panel displays the entirety of the measurements of fσ8 with both galaxy
clustering and void-galaxy clustering. The previous growth rate estimation on the
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SDSS data samples are displayed with the same color codes as in Figure 3.18, with
the exception of the DR12 BOSS CMASS sample. The comparison is thus extended
to 6dFS (Beutler et al., 2012), GAMA (Blake et al., 2013), WiggleZ (Blake et al.,
2011a), VIPERS (Pezzotta et al., 2017) and FastSound (Okumura et al., 2016).
Along with the galaxy clustering estimation are also added the subsequent void
estimation in the 6dFGS sample (Achitouv et al., 2017) and in the VIPERS survey
(Hawken et al., 2017).

It is to be noted that the measurements displayed seem consistent with the
Λ-CDM model Planck 2018 prediction. However, at higher redshift, z ≥ 0.6, the
spread of the estimated fσ8 is larger.

In the lower panel of Figure 3.19 are shown the void only constraints, included in
the upper panel as well. The numerous estimation of the fσ8 values in the BOSS
DR12 sample at high redshift display a spread in the variety of the model used to
constrain the growth rate of structure as well as the void finding algorithm used.
However, the estimated fσ8 remains consistent between the various modelling
used. It is to be noted that the recovered estimate of the growth rate relies on the
fiducial bias value and predicted σ8 at these redshifts, in the absence of a linear
bias estimation. In the case of the LRG eBOSS DR16, we find good agreement
between the fσ8 recovered in this work and that extracted with a different RSD
model (Nadathur et al., 2020b).
The disparity in the available growth rate measurements does not allow yet to

discriminate against a Λ-CDM scenario. The growth history presented here suffers
from the comparison between different analyses and sample considered as well as the
lack of measurement between 0.9 and 1.4. Future surveys such as Euclid (Amendola
et al., 2018; Laureijs et al., 2011) and DESI (DESI Collaboration et al., 2016a,b)
are expected to provide the data enabling to fill the missing information at these
redshifts.

3.4.4 Discussion
The systematic study which has been a prime focus of this work evidences a strong
impact of both RSD modelling and methodology on our RSD parameter error. This
systematic error can be envisioned along three major axes that will be discussed
below.

3.4.4.1 On the methodology

A major aspect of the systematic studies concerned the methodology choices such as
the binning choice, estimator and the FKP weights with the EZmocks respective
to each tracer. These systematic effects mostly impact the estimation of the
correlation and underlying pair-counts that are used to estimate it. These will, as
such, affect the amplitude of the monopole and quadrupole.
A salient feature of our methodology lays in the parameter estimation which
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Figure 3.19: Upper panel: Comparison of the estimated growth rate of structure
fσ8 recorded in varied galaxy samples and subsequent voids. Filled
black markers represent the various surveys estimation,6dF (Beutler et
al., 2012), GAMA (Blake et al., 2013), WiggleZ (Blake et al., 2011a),
VIPERS (Pezzotta et al., 2017) and FastSound (Okumura et al., 2016),
in addition to the SDSS void (empty marker) and galaxy (black tracer)
constraints presented in Fig. 3.18 and reference therein. The estimated
fσ8 with voids in 6dF (Achitouv et al., 2017, magenta hexagone) and
VIPERS (Hawken et al., 2016, blue triangle) are also displayed. The
dotted line is estimated Planck 2018 prediction for the growth rate of
structure. Lower panel: Comparison of the estimated growth rate of
structure fσ8 using void-galaxy clustering only, the same values as in the
upper panel are reported.
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uses the residuals defined in Eq. 3.38 as an alternative to the ratio which directly
removes the contribution of the real-space correlation function in our modelling.
As a consequence, our parameter estimation relies on the direct comparison of the
amplitudes of the monopole and quadrupole of the correlation function. Any modi-
fication in the latter’s estimation has a non-negligible impact on the estimated RSD
parameter. The methodology choices investigated induced statistical fluctuations in
the estimation of the void-galaxy two-point correlation function, which resulted in
a varied estimation of the β parameter. These may be mitigated with an additional
parametrization of the ξvg(r), the true underlying void-galaxy correlation function
- at the risk of absorbing cosmological information, discarding the fitting procedure
of the residuals. This kind of systematic may thus be mitigated by the use of both
a theoretical modelling of the true underlying void-matter density field, which has
yet to be investigated or a higher statistic. While an empirical function is available
to model δvg(r), it is defined by a large number of free parameters which may
absorb the cosmological signal.
These fluctuations, however, mostly concern the EZmocks ELG and LRG

samples leading to a total systematic effect of 5.5% for the LRG and 4.6% for the
ELGs and lowers to 1.8% in the case of the QSO sample. Hence, it seems that the
sensitivity to the methodology choices may also be correlated to both uniformity
and number density of the sample. The QSO sample provides the largest void
and galaxy statistics among the three tracers and seems to be less affected by the
methodology choices. The LRG quotes the largest deviation (5.5%) while having a
superior statistics to the ELGs. The sample results in the addition of the eBOSS
LRG targeted and the high redshift tail of the DR12 BOSS CMASS LRGs, this may
lead to some unaccounted for uneven density patches within the survey footprint
thus affecting our measurement. The systematic effect quoted by the ELGs, in this
regard, may be attributed to the statistic of the sample.

3.4.4.2 On the RSD modelling

The dominating source of systematic on our parameter estimation appears from the
tests of the RSD modelling on N-body simulations. While spectacular in the case of
the QSO (39.9% ! ), the systematic shown for the LRGs and ELGs remains below
the 10% level. This necessitates considering the model used for the estimation of β.

Parametrization of the fit: As mentioned earlier, the RSD model employed here
allows the recovery of the RSD parameter with an amplitude ratio that we fit
with the residuals defined in Eq. 3.38. This parametrization supposedly remove
any dependence on the true underlying void-matter density field δ(r), assuming
a linear bias relation of the form ξ(r) ∼ bδ(r). This model has been used in two
independent studies of the BOSS DR12 sample (Achitouv, 2019; Hamaus et al.,
2017), yielding similar results consistent with a Λ-CDM scenario, as seen in the
previous section. Fitting the residuals in order to estimate β might not provide
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an unbiased estimate as the amplitudes of the monopole and quadrupole can be
derailed by statistical fluctuations.

As such, the β estimation should be reconsidered to include a parametrization of
the two-point correlation function, such as the void density profile mentioned in
Section 2.3.1.1. This empirical formula would allow the comparison of the measured
data vector with a theoretical data vector and to have a more robust estimation of
β. Such a parametrization is currently under investigation. A second way to recover
a model data vector to compare to would be to recover the true correlation function.
The latter can be estimated with the transverse to the line-of-sight correlation
function w⊥(r) and the use of the inverse Abel transform as shown in (Pisani et al.,
2014), as was done in Hamaus et al. (2020).

Linear bias assumption: While doubt can be cast on the redshift space distortions
model adopted, another consideration has to be taken into account: the linear bias
assumption. A key assumption of the model adopted is the supposed linear relation
between the void-galaxy correlation function and the underlying void-matter field
which is encoded in a linear scale independent bias. It follows that the systematic
shifts attributed to the model depend on this assumption as well. However, the
true bias relation in regard to the δvg(r) remains unknown.

As a result, the combined effect of galaxy sampling and void finding, which have
not yet been quantified as well as the linear bias assumption may be at cause
here. Such biasing could be linear and scale-independent but have an altogether
different value when concerning voids. The resulting systematic shift would thus
be wrongly quantified. If we consider our measurements as plotted in Figure 3.18,
the additional systematics accounted in the errors of our DR16 points drive our
measurements to be consistent with the reported value of the standard galaxy
clustering technique (especially in the case of the QSOs).

Incomplete model: Last but not least, the model used for estimating the RSD
parameter may be incomplete. Recently, Hamaus et al. (2020) considered a
modification of our baseline model with the inclusion of two marginalization
parameters M and Q. The former accounts for the eventual contribution of
Poisson voids which affects the amplitude of the correlation function and the latter
accounts for void selection effects. While still within the bound of the presented
model, systematics may be controlled with such parameters.
The very validity of this model has been decried in regard to its building

assumptions, detailed in 3.2.2.1, that are, in summary, void-galaxy pair-count
conservation between redshift space and real-space, radial distributed velocity
around the void and lack of dynamic at the centre of the void itself (Chuang et al.,
2017; Nadathur & Percival, 2019). At the root lies the problem of finding voids
within redshift-space tracers thereby imparting a dynamical compound to the void
centre.
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3 Probing cosmology with dynamical distortions around voids

A new model advocated by Nadathur & Percival (2019) is an expansion of
our model without discarding the products ξ(r)δ(r) and ξ(r)∆(r) in Eq. 3.21, on
the basis that the terms are not negligible. The result is the appearance of a
noticeable feature in the quadrupole of the correlation function in the form of a
dent. Such a feature has not been noticed in our measured quadrupole. While this
model, under the correct circumstances provides quite tight constraints, it does
rely on calibration from N-body simulations and the estimation of the real-space
correlation function through a procedure of reconstruction of the density field.
This results in the analysis of a quite different subset of voids. Our RSD model
and subsequent optimizations remain the most appropriate in the context of the
analysis of redshift-space voids, which was similarly confirmed in Nadathur et al.
(2020b).

3.4.4.3 on the QSO sample

This QSO sample represents the farthest clustering sample to this day allowing to
probe deeper in time for the growth rate and ensuing implications on the properties
of dark energy. However, the RSD analysis applied to both EZmocks and N-body
simulation, emphasize a large systematic shift in the measurement of the RSD
parameter, which cannot be solely attributed to the modelling of the RSD adopted.
Indeed, the ELG and LRG samples display an 8.3% and a 9% deviation, while
the QSO sample evidences a 39.9% deviation. It follows that the RSD model may
account for 10% maximum, leaving the remaining 30% deviation measured to be
explained.

The QSO sample has a fundamental peculiarity, compared to the galaxy samples,
that could provide some hints on the reason for such a large systematic shift. Indeed,
its redshift range is quite wide compared to the other two samples, spanning from
0.8 to 2.2. In combination with the number of objects available in the catalogue,
the QSO sample is quite sparse.

The systematic shift is present in both type of mocks: N-body and approximation,
although the OuterRim simulation results seem to be quite extreme. The major
differences between both relate to the footprint covered and their nature as cubic
simulations at a unique redshift z = 1.433 for the OuterRim and an evolutive
redshift, data like, in the case of the EZmocks with a similar effective redshift of
∼ 1.45. Both mocks present a similar number density and conserve the same radius
properties.
Considering the EZmocks, tailored to be comparable to the data, the number

density varies over the redshift range. While a mean density of the sample is
considered to infer the properties of the voids, they can still exhibit a redshift
dependent behaviour in conjunction with their varying number density. It seems
that this redshift evolution mitigates the systematic shift in regard to the fiducial
expectation, lowering it to 27%. instead of 39.9% in the case of the N-body.
The subsequent systematic shift observed in the evaluation of the β parameter

122



3.4 Application on DR16 data

could thus be interpreted as the consequence of a too low density of tracers at the
redshift considered, leading to a loss of the RSD signal.A similar loss in signal was
evidenced in the QSO sample of the DR14 eBOSS sample, leading to an estimation
of the RSD parameter consistent with nullity (Hawken et al., 2020).

Although the DR16 QSO sample is much more populated and displays a signif-
icant quadrupole, it is still possible that the clustering amplitude of the QSO is
too low to identify RSD sensitive voids, in opposition to Poisson voids which tend
to have a null quadrupole (Cousinou et al., 2019). A seeming confirmation comes
from the fact that the BAO reconstruction algorithm could not be applied to the
QSO sample due to its sparsity (Ross et al., 2020). While the revolver algorithm
does not apply any smoothing scale when performing the Voronoi tessellation, it is
still dependent on the tracer density.

A proper answer concerning this systematic shift is still under-investigation, but
if it is indeed due to the sparsity, the RSD modelling should be re-considered to
include a mitigation parameter in order to recover the underlying growth rate
signal.
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4 Probing cosmology with
geometrical distortions of voids

4.1 The Alcock-Paczynski test
Voids are sensitive probes of cosmology through distortions processes. Indeed, as
seen in Chapter 2, their definition and ’observation’ is dependent on the density
field evolving around them. As such, any distortions of the surrounding density
field is likely to permeate the definition of voids and subsequently, their shape. A
first kind of distortion was described in Chapter 3, due to the dynamics of the
galaxies in the vicinity of the voids. A second one, of geometrical nature, depends
directly on the present-day value of cosmological parameters: the Alcock-Paczynski
effect. Void shapes, in this respect, have long been properties of interest when
aiming to constrain cosmology through the use of geometric distortions.

4.1.1 Definition and theoretical approach
The Alcock-Paczynski (AP) effect is a purely geometric effect resulting from the
expansion of the Universe (Alcock & Paczyński, 1979). Let us consider an object
with known symmetry properties, a sphere representing an ideal case. The symmetry
axis can be considered in two directions : the line-of-sight (LOS) and the direction
transverse to the LOS. In a general definition, the Alcock-Paczynski effect relies on
the breaking of the symmetry axis (isotropy) due to the use of a wrong cosmology
when going from redshift space to comoving space.

The symmetry axis of the known object can be formalised in terms of ∆z, the
extent of the spherical object along the line-of-sight and ∆θ its angular extent,
transverse to the line-of-sight. It follows that ∆z is quite dependent on the expansion
compared to ∆θ. However, our knowledge of the shape of the object takes its root
in the comoving reference frame, which yields the following relations :

∆r⊥ = DA(z)∆θ, (4.1)

∆r‖ = c∆z
H(z) , (4.2)

where ∆r⊥ and ∆r‖ are the extent of the object in the transverse direction and
in the direction of the LOS, respectively. DA(z) is the transverse comoving distance
as defined in section 1.1.4, which, in the event of a flat Universe, reduces to the
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4.1 The Alcock-Paczynski test

radial comoving distance Dc(z). H(z) is the Hubble parameter or expansion rate.
The redshift z for which this relation is considered is taken to be that of the object.

Assuming that the symmetry relation of the object is known in terms of the axis
ratio imposes:

∆r‖
∆r⊥

= η, (4.3)

where η is the true axis-ratio of the object. In the case of a spherical object in
real-space, this relation simply becomes :

∆r‖
∆r⊥

= 1. (4.4)

This last relation allows us to recover the general definition derived by (Alcock
& Paczyński, 1979) of what is called the Alcock-Paczynski parameter FAP , in the
case of a spherical object:

∆z
z∆θ = H(z)DA(z)

cz
. (4.5)

In practice, as the shape of the object is known in comoving coordinates, its
measurement requires to convert the observational positions (RA,Dec, z) into their
comoving counterparts. To this end, the input cosmology used in the transformation
of the redshift into the comoving distance is called the fiducial cosmology. The
difference between the true underlying cosmology of our Universe and the fiducial
cosmology used to convert distances breaks the symmetry of the object, leading to
a value η different from 1 in Eq. 4.3. This deviation from unity is used to verify that
the fiducial cosmology does not match the true cosmology and therefore constitutes
a reliable test for finding the true cosmology: this is called the AP test.
One can thus probe the cosmological parameters through the use of a fiducial

cosmology when estimating r‖ and r⊥. The distortion effect spurring from the
fiducial quantities can be accounted for with the a-dimensional quantities:

α⊥ = ∆rtrue⊥

∆rfid⊥
= DA(z)true

DA(z)fid (4.6)

α‖ =
∆rtrue‖

∆rfid‖
= H(z)fid

H(z)true , (4.7)

where the contributions of ∆z and ∆θ disappear. The α⊥ and α‖ thus indicate the
distortions that occur in the transverse and parallel direction to the LOS.
When measuring the shape of a known symmetrical object in terms of its axis-

ratio in a fiducial comoving coordinate system, ∆r‖
∆r⊥

, we actually directly quantify
a departure from symmetry caused by the use of a fiducial cosmology. We call this
quantity the ellipticity :
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4 Probing cosmology with geometrical distortions of voids

ε = H(z)trueDA(z)true
H(z)fidDA(z)fid (4.8)

The application of the AP test simply needs the knowledge of the true symmetry
properties of the object: ∆rtrue

‖
∆rtrue

⊥
, and a fiducial cosmology in order to estimate the

truth value of the cosmological parameters. This straightforwardness makes it a
powerful probe of cosmology.

4.1.2 Application on galaxy surveys
The proper application of the AP test thus depends on the object of interest and
the estimation of the symmetry properties. A wide range of objects has been
proposed as interesting Alcock-Paczynski candidates.

4.1.2.1 First forays in the Alcock-Paczynski test

When Alcock and Paczynski first proposed the eponym test, in 1979, their ap-
plication generally targeted the only known spherical like structures that were
observed in the Universe: clusters. However, while those were definitely observed,
the lack of statistics did not allow for a consistent and unbiased constrain. The
test was not considered for a few years until Phillipps (1994) suggested to apply it
to quasars pairs, which through the cosmological principle should be isotropically
distributed. This application was later considered for galaxy pairs (Jennings et al.,
2012; Marinoni & Buzzi, 2010).

Following the same basis of isotropic and homogeneous statistical of matter,
the auto-correlation function or power spectrum of galaxies were also considered
as candidates for the application of the Alcock-Paczynski test (Ballinger et al.,
1996; Blake et al., 2011b; Li et al., 2015; López-Corredoira, 2014; Matsubara &
Suto, 1996). In addition to galaxies, a variety of tracers are available to measure
the statistical properties of matter. The application of the AP test has also been
considered between Ly-α correlation of neighbouring quasar pairs (Hui et al., 1999;
McDonald & Miralda-Escudé, 1999), the power spectrum of clusters (Kim & Croft,
2007) as well as the power spectrum from 21cm sources (Nusser, 2005).

4.1.2.2 The Alcock-Paczynski test on voids

The first proposal to use voids as candidates for the AP test comes from Barbara
Ryden (Ryden, 1995), in order to probe the deceleration parameter and thus the
effect of a possible non-zero cosmological constant. This idea was born from the
numerous void studies on the growth and shape of voids (see 2.3.2 and references
therein) which indicate that voids tended towards sphericity. Thus, knowing both
the voids location and their extent, defined by the boundary galaxies, the AP test
could be applied in perfect conditions. However, several obstacles prevented the
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achievement of a successful constraint. On the one hand, the proposed methodology
concerned the application of the AP test on individual void shapes defined from
the distribution of galaxies. But the individual shapes are in fact not necessarily
spherical, which does not allow to obtain constraints by this way. Moreover, the
study was carried out on an early survey of galaxies with low statistics, the number
of voids studied appeared to be too small and the number of detected galaxies
was not large enough to accurately define the void walls. Finally, the effect of the
peculiar motions of galaxies surrounding the voids is degenerate with the AP effect
(Simpson & Peacock, 2010), complicating the extraction of the AP signal. The
application of the AP test on objects such as voids was therefore postponed until
the arrival of large galaxy surveys.
The interest for the application of the Alcock-Paczynski test on voids was

rekindled with the pioneering work of Lavaux & Wandelt (2012), in which was
stated that voids, on average, could be considered as standard spheres. While voids
can have different shapes and sizes, the cosmological principle actually tells us that
there is no reason for these voids to be oriented in a specific privileged direction.
As a consequence, a large number of voids stacked onto the others should not
have a privileged direction. Therefore their shape should be spherical, on average,
whenever and wherever in the Universe. This stack can be considered a standard
sphere. They further argued that, thanks to this property, the application of the
Alcock-Paczynski test would enable to compete with the standard BAO constraints.

Following this work, the AP test was first applied on voids by Sutter et al.
(2012a) according to the method developed by Lavaux & Wandelt (2012). The
Alcock-Paczynski test was then applied on the DR9 release (Sutter et al., 2014c)
and DR12 CMASS sample (Mao et al., 2017). Recently, the application of this test
on voids found in 21cm map simulations was also investigated (Endo et al., 2020).
All of the works stated above consider a stack of voids as an object.

4.1.2.3 Void stacking

In order to properly define a stack of voids, and thus, our standard sphere candidate,
it is necessary to have an algorithm able to extract voids from a given sample of
galaxies without imparting any shape to the considered void, in addition to returning
their positions, their scale and their defining tracers. As most void identifiers rely
on the assumption of a fiducial cosmology, the methodology proposed by Ryden
(1995) cannot be applied formally. However, by measuring the shape of the standard
sphere defined by the found voids, one can directly probe cosmological parameters
and the dark energy equation of state through the relation in Eq. 4.8. Depending
on the cosmology adopted, the void stack can either be elongated (Ωfid

m < Ωtrue
m ) or

flattened along the line of sight (Ωfid
m > Ωtrue

m ).
To this end, the void stacking is a primordial step in the application of the

AP test. It consists in piling up voids so that they share a common centre and
transforming their coordinates so that their LOS directions are aligned. The voids
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4 Probing cosmology with geometrical distortions of voids

boundaries are defined through their member galaxies.
Considering a void position xv and one of its member particle position vector xp,i,

both in comoving frame. The LOS is defined by that of the void. The positions
are brought back to their position relative to the void centre:

∆xp,i = xp,i − xv. (4.9)

These relative coordinates are then rotated so that the z-direction is aligned
with the LOS, corresponding to that of the void centre: (∆x⊥,∆y⊥,∆z‖), where
the centre of the coordinate frame corresponds to the void centre. Finally, the
coordinates are rescaled by the radius of the void rv. This last step enables to define
the stack without diluting the AP signal through the stacking of voids of differing
sizes. This process is reiterated for each void in the sample and each member
galaxy pertaining to the considered void. Although in this chapter, we consider
the application of the Alcock-Paczynski test on an object resulting on a stacking
procedure of voids, it is to be noted that the study of the two-point correlation
function between voids and galaxy can be considered as a stack, sensitive to the
same effects.

4.2 Choice of the estimator of the Alcock-Paczynski
distorsion

The distortion induced by the Alcock-Paczynski effect is oriented along the line-of-
sight. As such, a spherical object should find itself flattened or elongated along this
direction. In order to estimate this deviation and thus, underlying true cosmology
of the universe, we consider the stack of voids as a distorted sphere along the
line-of-sight: a spheroid.

As such, the ellipticity of a stack is defined as the amount by which is the stack is
distorted along the line-of-sight, that is to say the ellipticity quantifies the distortion
from unity where unity corresponds to a sphere1. This ellipticity as shown above is
directly dependent on the cosmology adopted to transform redshifts into comoving
coordinates. Sphericity is thus attained when the fiducial cosmology and the true
underlying cosmology agree. Hence, an essential step of the Alcock-Paczynski test
lies in the estimation the ellipticity of the stack and its sensitivity to the distortion
of the stack along the LOS.
In this section, I present the definition of several possible estimators of the

ellipticity and apply them on a toy simulation of distorted spheres. The results are
then compared in order to qualify each method and decide on the most appropriate
estimator of the ellipticity of a stack.

1Such an ellipticity is not to be mistaken with the one used in the definition of the ellipsoidal
model e ; which tends to 0 when reaching sphericity. This e is generally used to qualify the
shape of an individual void.
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4.2.1 Ellipticity Estimators
In this part, two estimators of the ellipticity of a void stack are presented. The
first estimator is based on the fitting of the galaxy positions surrounding the voids
with the parametric equations of an ellipsoid. This method was initially proposed
by Lavaux & Wandelt (2012) and Sutter et al. (2012a) to be applied directly on
the density field. The second estimator does not consider the contour of the shape
but is sensitive to the asymmetry between two perpendicular axes. This is known
as the inertia tensor and has already been applied to voids in previous studies of
the Alcock-Paczynski test (Mao et al., 2017; Sutter et al., 2014c).

In the following, we assume that the coordinate system has as origin the centre
of all the stacked voids and that each particle of the void, i.e. each member galaxy
of the void, is positioned at coordinates (x, y, z) with respect to the void centre.

4.2.1.1 Ellipsoidal model

A common way to model a void stack is that of the ellipsoid. It is considered that
a stack of voids that is transformed into a fiducial real space (as opposed to true
real space) will be spherical on average. The Alcock-Paczynski effect, induced by
the use of a fiducial cosmology, will cause an elongation or a contraction of the
structure. The void stack is supposed to have 3 directions, of which only one is
aligned with the line-of-sight. As such, we can consider that the shape of the void
stack will be consistent with an ellipsoid for which the parametric equation is as
follows :

(x− ν)2

a2 + (y − µ)2

b2 + (z − υ)2

c2 = 1, (4.10)

where a, b, c are the half-axis of the ellipsoid, ν, µ, υ the coordinates of the centre
of the ellipsoid and x, y, z the coordinates of the points at the surface of this
ellipsoid, defined as:

x = a cos θ sinφ,
y = b sin θ sinφ,
z = c cosφ.

(4.11)

In this framework, ν, µ, υ would be the centre of the void stack at coordinates:
(0, 0, 0) and the x, y, z positions that of the galaxies defining the void stack. The
half-axis of the ellipsoid (a, b) should be consistent with the angular directions of
the stack, while c represents the half-axis along the LOS.

4.2.1.2 Parametric definition of the ellipticity

From the parametric equation, we can define an ellipticity estimator as follows :
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ε =
√

2 c2

a2 + b2 . (4.12)

If we extend the model to the case of a spheroid, where both angular components
have equal contributions, that is to say, a = b. The subsequent ellipticity reduces
to:

ε =
√
c2

a2 . (4.13)

4.2.1.3 Inertia tensor approach

While still being in an ellipsoidal model of a void stack, another non-parametric
method can be applied to the positions of the galaxies in the void stack: the
inertia tensor. This estimator has already been used in previous applications of
the Alcock-Paczynski test (Mao et al., 2017; Sutter et al., 2014c).
The inertia tensor is by definition an estimator of the distribution of mass (or

mass tracers) around a rotation axis for a given solid. In its general form, the use of
the inertia tensor imposes no specific shape to the solid considered. The moments
of inertia are computed by the sum of the masses pertaining this system in regard
to the rotation axis considered, that is to say, the sum of the masses defining the
system weighted by the distance to the considered axis.
Considering our void stack as a solid in which matter is positioned around its

centre along the three dimensions (x, y, z) (or rotation axis), where z corresponds
to the line-of-sight, its total inertia tensor can be expressed through the following
tensor:

I =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 , (4.14)

where the diagonal elements are the moment of inertia of the stack, that is the
sum of the mass defining the system weighted by the distance to the considered
rotation axis. The off-diagonal elements are called the product of inertia, they
measure the imbalance of the mass distribution in the body. The total contributions
in the 3D inertia tensor for a void stack can thus be computed as follows:

I =



∑
imi(y2

i + z2
i )

∑
imixiyi

∑
imixizi

−∑imiyixi
∑
imi(x2

i + z2
i )

∑
imiyizi

−∑imizixi −∑imiziyi
∑
imi(y2

i + x2
i )

 . (4.15)

As our stack takes its root at the centre of our coordinate system, the considered
mass mi is only that of the galaxies. In practice, we consider the galaxies to be all
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equivalent so that mi = 1, but it is also possible to consider the mass to be that of
the combined systematic weights of the galaxies, as done by Mao et al. (2017) for
the CMASS BOSS sample, or the weights presented in 3.1.2.3. The pertinence of
the inertia tensor in the shape measurement is found in the fact that it measures
the diagonal distributions of the masses, those allowing to discern a preference of a
rotation axis over another.

In the case of the Alcock-Paczynski effect, preference of one axis over the other
two – the z-axis or LOS (in the case of an elongation of the stack) or the x/y-axis
(the angular contributions, in the case of a contraction of the stack) – is expected
from the use of a wrong fiducial cosmology. As such, the inertia tensor is highly
relevant in this type of study pertaining to the shape of the stack of voids.

In the framework of the ellipsoidal model of the stack, the inertia tensor eq. 4.15
is defined as purely diagonal in which each of the moments of inertia is related to a
value of the half-axis of the ellipsoid (as defined in eq. 4.10):

Ixx = m
5 (b2 + c2), (4.16)

Iyy = m
5 (a2 + c2), (4.17)

Izz = m
5 (a2 + b2). (4.18)

with m = V ρ. The volume of the considered ellipsoid is V = 4
3πabc, and ρ is the

constant density within the ellipsoid.The ellipticity as defined in 4.13 can thus be
recovered through the following combination:

ε =
√
Ixx + Iyy − Izz

Izz
, (4.19)

and plugging in the formulae of each moment of inertia, the above equation
reduces to:

ε =

√√√√ 2∑i z
2
i∑

i x
2
i + y2

i

. (4.20)

4.2.2 Basic simulations of void stacks
In the previous sections, I presented two formulations of the estimators of the
ellipticity that can be applied to a stack of voids, or any deformed object of
known symmetry properties, in order to measure a deviation caused by the Alcock-
Paczynski effect. Both are based on the key assumption that a void stack deformed
by the use of a wrong fiducial cosmology can be thought of as an ellipsoid or
spheroid. Prior to any application to mock data or data itself, it was decided to test
these estimators on a simple toy Monte Carlo model. The goal of this procedure
was to test the robustness of the estimator depending on several conditions, such as
the dispersion of the particles in regard to the void centre, the distribution of the
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particles around the voids or the number of particles defining an individual void.
All these conditions may bias the estimation of the ellipticity of the void stack.

The first step is thus to investigate the sensitivity of our ellipticity estimators on
an ellipsoid which reproduces some properties of the void stack. The properties are
the following:

– A void stack is constituted of an ensemble of Nv individual voids,

– Each individual void is constituted of a number Np of galaxies,

– The density of the total number of galaxies around the centre of the void
stack is diffused. As such, there is a dispersion (or shell thickness) to be taken
into account: σr

Two sets of mock stack generator were produced allowing control on the following
aspects of the stack:

– The values of the half-axis a, b, c which drive the input ellipticity,

– The number of ellipsoids to simulate, each ellipsoid being related to a void,

– The number of particles defining each individual ellipsoid,

– The dispersion of the particles from the surface of the ellipsoid in %, σr.

Their difference relies on the way to draw the distribution of particles on the
shell of the ellipsoid and their subsequent positioning around the void centre. For
both simulations, we position the stack’s centre at coordinates (0, 0, 0), and the
particles at coordinates (x, y, z) with arbitrary units.

4.2.2.1 Simulation I - Inhomogeneous distribution of points cloud

Voids galaxies are drawn along an ellipsoidal distribution around the void centre
with defined half-axis (a, b, c), following the parametric equations of the ellipsoid
defined in Eq. 4.10. The points are first defined by their parametric definition
(4.11) for which a, b, c are fixed while φ and cosθ are drawn uniformly between
0 <= φ < 2π and 0 <= cos θ < 1 respectively.

For each particle, in order to place the particles in a uniform and homogeneous
manner on the surface of the ellipsoid, we apply a Metropolis-Hastings method
taking into account the surface element of an ellipsoid, defined as follows:

dS = sinφ
√
c2 sinφ2(a2 sin θ2 + b2 cos θ2) + a2b2 cosφ (4.21)

At each step, the couple (θ, φ) drawn for a given a, b, c, is used to compute the
associated element of surface dSsim. dSsim is then compared to a random variable
dSrand ; dSrand being a value drawn in a uniform distribution between 0 and the
maximal surface element dS(φ = π, θ = π/2, a, b, c). Two conditions were applied
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to the dSsim : the first one is that it must lower than dSmax, the second one, in
the Metropolis-Hastings framework is that dSsim > dSrand. If the conditions are
not respected, the couple (θ, φ) is rejected and a new couple is drawn. If the
couple (θ, φ) obeys the condition, the corresponding coordinates xi, yi, zi are used
to determine the position of the ith particle on the surface of the ellipsoid.

After simulating the positions on the surface on the ellipsoid in a homogeneous
and uniform manner, we must apply a deviation from the surface to the positions
following a given standard deviation σr. For this reason, we compute the vector N
normal to the tangent passing by the point Xi. The components of this vector are
defined by the derivative of the parametric equation of the ellipsoid (4.10) :

N(x, y, z) = (2xi
a2 ,

2yi
b2 ,

2zi
c2 ) (4.22)

After normalisation, we obtain the normed vector orthogonal to the surface of
the ellipsoid n. This vector is multiplied by a value dr drawn in the Gaussian law
G(0, aσr) for which the standard deviation corresponds to a percentage σr of the
value of the axis a, b or c, depending on the simulated ellipsoid.

This deviation from the surface of the ellipsoid is then added to the parametric
coordinates simulated previously:

x = a cos θ sinφ+ drx

y = b sin θ sinφ+ dry

z = c cosφ+ drz.

(4.23)

The Metropolis-Hastings continues until the desired number of particles to define
a void is reached. It is reiterated as many times as the number of voids simulated.
The output of the stack simulation is shown in Fig 4.1 for an ellipsoid of

(a = 40, b = 40, c = 45) defined with 4000 voids with varied Np following the
distribution of Np of the CMASS sample. The stack thickness encoded in σr
is varied in the range 0.01% to 0.35%, up until all of the volume is populated.
The stack thickness is well taken into account although the relation is not linear.
Limitations to the simulation can be perceived as the stack’s thickness increases:
the density seems to shift toward the coordinate centre along the z-axis. The stack
is also much larger along the z coordinate axis, compared to that of the d-axis as
the thickness increases. The simulation is considered inhomogeneous because the
transformation applied to the coordinate system (4.23) conserve neither uniformity
nor homogeneity of the point picking, rendering the stack anisotropic.

4.2.2.2 Simulation II - Homogeneous distribution of the probability density
function of points cloud

This second simulation relies on the distortion of a given sphere. The initial
placement of the particles is first drawn on the unit sphere. The fundamental
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Figure 4.1: Simulated stack in the range of dispersion σr in the range 1% to 35%
deviation using Simulation I with a Metropolis Hastings scheme and added
perturbation of the point picking at the surface of the ellipsoid.

difference here is that the thickness of the stack intervenes directly in the generation
of the radial component of the points considered instead of an added perturbation
normal to the surface of the ellipsoid.

The volume of the simulated individual ellipsoid V = a3, where a is the half-axis
of the ellipsoid simulated along the transverse direction of the LOS, instead of
the direct radial component. The volume of the ellipsoid is drawn in a gaussian
distribution G(a3, σra

3) where the width of the gaussian is dependent on the shell
thickness parameter σr. We take a = b so that we simulate a spheroid. The radial
component of the sphere is then recovered through:

r = 3
√
G(a3, σra3), (4.24)

yielding points distributed in a shell where the density of the point picking follows
a Gaussian distribution. The sphere is then distorted along the z-axis, taking
the ellipticity defined in 4.12 (or 4.13 in the chosen configuration) in a linear
transformation:

rz = ε 3
√
G(a3, σra3). (4.25)

It is to be noted that the σr quoted here is of different nature than that of the
previous simulation. While it still relates to the thickness of the stack, it represents
here a volume dispersion while in the first simulation it was directly related to the
radius.
The resulting stacks are shown in Fig. 4.2 with the same initial conditions as

the previous simulation in Fig. 4.1, that is : Nv = 4000 ellipsoid simulated with
(a, b, c) = (40, 40, 45) and an Np distribution drawn from that of the CMASS DR12
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Figure 4.2: Simulated stack in the range of dispersion σr in the range 1% to 100%
deviation using the Simulation II with a gaussian point picking on the
volume of the ellipsoids

sample. The relation between the thickness of the stack σr and its resulting aspect
is much more straightforward. The simulation is deemed homogeneous due to the
density of points within the shell being controlled by the gaussian volume drawing
and subsequent inference of the radial component. This allows prospecting over a
range of 1% to 100% deviation of the thickness of the stack in the ellipsoid.
Both simulations are useful in assessing the robustness of our estimators. An

inhomogeneous cloud of points could highlight a bias in the estimator, while the
homogenous distributions would correspond to the most optimistic conditions of a
stack of voids.

4.2.3 Measuring the ellipticity
The simulated stacks above are used to qualify our estimators depending on the
number of particles defining the void and the thickness of the stack. The coordinates
of the particles around the stack centre are known, as well as their associated
property that is the number of particles defining them. A first approach was
to investigate the number of particles used to define the void. Previous Alcock-
Paczynski analyses (Lavaux & Wandelt, 2012; Mao et al., 2017; Sutter et al.,
2012a, 2014c) considered all of the particles defining the void stack in order to
estimate the ellipticity, thus giving more importance to voids defined with a large
number of particles. The goal of this study is to investigate whether the deviation
from sphericity of the stack can be recovered when considering a void per void
approach: that is to measure the distortion on the individual voids, thus removing
the influence of the void’s extent and Np.

To test both procedures, stacks are simulated with a varied thickness, depending
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4 Probing cosmology with geometrical distortions of voids

on the simulation. The stacks are generated with 4000 individual ellipsoids, each
being defined by a set number of particles, Np. In order to test for a possible
dependency of the ellipticity measurement in the Np parameter, we vary the number
of particles in the range: Np = [10, 15, 20, 25, 50, 75, 100].

4.2.3.1 Parametric fit

In order to estimate the ellipticity of the void stack with the parametric approach
as given by Eq. 4.12, one must determine the values of the half-axis defining the
ellipsoid. To this end, we fit the parametric equation of the ellipsoid defined in
Eq. 4.10 with the following two-step procedure:

– A first global fit is applied which consists in minimizing the following expres-
sion:

χ2 =
Ntot∑
i

(
√
x2
i

a2 + y2
i

b2 + z2
i

c2 − 1)2 (4.26)

which is nothing else than the minimization of the distance of a point to the
centre of the ellipsoid (0, 0, 0) for which each of its coordinates is normalized
by the corresponding half-axis. The vector (xi, yi, zi) corresponds to the
cartesian coordinates of the ith particle among the Ntot defining the stack. In
this first fit, we obtain a primary approximation a0, b0, c0 of the half-axis of
the ellipsoid. These allow us to measure the global variance of the distance of
the particle to the centre of the stack:

σ2
stack = Var(

√
x2

a2
0

+ y2

b2
0

+ z2

c2
0

). (4.27)

This variance takes on the role of global error in the second part of the fit.

– The second step consists in applying the fitting procedure on a void per void
basis, taking into account the global dispersion of the distances of the particles
to the centre of the stack. The χ2 expression to minimize takes the following
form:

χ2 =
Npart∑
j

(
√
x2
j

a2 +
y2
j

b2 +
z2
j

c2 − 1)2/σ2
stack, (4.28)

where (xj, yj, zj) corresponds to the cartesian coordinates of the jth particle
among the Np particles defining the void considered.

After fitting the (a, b, c) axes to each individual ellipsoid, an individual ellipticity
is computed respective to each mock void following the parametric definition of
the ellipticity (4.12). The stack ellipticity is then evaluated as the mean of the
individual ellipticities.
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4.2 Choice of the estimator of the Alcock-Paczynski distorsion

Fig. 4.3 shows the deviation of the measured ellipticity of the stack in regard
to that of the expected ellipticity as a function of the stack thickness squared,
σ2
r . Both panels illustrate the deviation between the expected ellipticity and the

ellipticity measured through the fitting procedure presented above. Panel 4.3a
displays the resulting deviation in the case of the Simulation I where a near linear
relation between the deviation from the expected ellipticity and the thickness of the
stack can be noted for a number of particles definition the void superior to twenty.
Panel 4.3b corresponds to the Simulation II. As we can see, the more the particles
define the void, the less biased is the estimate of the ellipticity. The bias seems to
be stable for the stack populated by voids with a higher number of particles. It
remains below 4% for voids with more or equal to twenty particles.

The errors estimated for this measurement corresponds to the standard deviation
of the recovered ellipticity in one stack. It is to be noted that they are, as such,
underestimated. Nevertheless, it surely would not affect the bias seen in with the
fit of the ellipsoid.
On a void per void basis, it seems that recovery of the ellipticity is strongly

unreliable when considering voids defined with a low number of particles. This
sensibility to a low number of particles is somehow expected and illustrates the
impact of the sampling. The less populated is the void, the less it is resolved and
the resulting shape may differ significantly from the initial ellipsoid. As such, it
seems that one needs to consider voids defined by a number of particles superior
to 20. However, the recovery is still affected by the stack thickness and density
distribution as the inhomogeneous ellipticity distribution shows an increasing bias.

4.2.3.2 Inertia Tensor

The estimation of the ellipticity with the inertia tensor is straightforward. One only
needs the (x,y,z) coordinates of the member particles respective to the individual
void and measure the inertia tensor following the formula given by Eq. 4.20 on a
void per void basis, allowing to recover Nv estimates of the ellipticity. The total
ellipticity of the void stack is taken to be the mean of the individual ellipticities,
thus negating the impact of the number of particles.

Figure 4.4 shows the deviation of the measured ellipticity of the stack in regard to
the expected ellipticity as a function of the squared stack thickness σ2

r . Both panels
show the deviation between the expected ellipticity and the ellipticity measured
through the inertia tensor procedure presented above. Panel. 4.3a shows the
resulting deviation in the case of the Simulation I. In this case, the inertia tensor
presents an offset of more than 1%, regardless of the number of particles, which
decreases with the stack thickness. As the estimated errors correspond to the error
on the mean of the 4000 estimated ellipticities, they are underestimated. It seems
then that this bias of the inertia tensor is not quite dependent on the number of
particles used to define the void. The inertia tensor systematically underestimates
the ellipticity in the inhomogeneous simulation.
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Figure 4.3: Deviation of the measured ellipticity of the stack through the ellipsoid
fitting procedure in regard to that of the expected ellipticity as a function
of the stack thickness square σ2

r . Each line colour corresponds to a set
number of particles used to define the void, ranging from 10 to 100. Top:
deviation measured with an inhomogeneous stack generation or Simulation
1. Bottom: deviation measured with an homogeneous stack generation or
Simulation 2.

In the case of simulation II, shown in Fig. 4.3b, the bias remains below 2% overall
and presents an around 1% deviation from the expected value in the case of a low
number of particles and below 0.5% as we consider more highly populated void.
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4.2 Choice of the estimator of the Alcock-Paczynski distorsion

Considering the under-estimation of the error, it is again possible, as with the
Simulation I, that the number of particles has less of an impact on the estimation
of the ellipticity. On a void per void basis, the use of the inertia tensor shows a
higher bias in the case of Simulation I, although its evolution in regard to the stack
thickness is not strong. On the other hand, the deviation in the case of Simulation
2 does not seem to be sensitive to the stack thickness, nor quite to the number of
particles.
Independently of the methodology considered, the bias decreases significantly

with the number of particles defining the voids and the subsequent stack. This hints
to the fact that the application of the inertia tensor of the whole stack may mitigate
such a bias. The inertia tensor seems less sensitive to the number of particles
defining the voids, whereas the ellipsoid fitting procedure requires well-defined voids
(and as such, more populated) to have a significant estimation of the half-axes.

4.2.3.3 Semi-realistic case

Voids, in a stack of data or mocks, are not defined by a set number of particles,
the distribution of such particles is actually much wider. The estimation of the
ellipticity of a void stack with a varied number of void particles was applied to
the stacks displayed in Fig.4.1 and Fig.4.2, on a void per void basis, and on a
whole stack approach. The latter consists in fitting the parametric equation of
the ellipsoid or computing the inertia tensor on all the particles of the stack. To
this end, the stack was simulated with 4000 voids in the same range of thickness,
respective to Simulation I or Simulation II. To each void was associated a number
Np randomly drawn from the Np distribution extracted from the DR12 data, after
void finding. The minimal number of particles allowed in the ellipsoid definition is
set to Np = 10.
Figure 4.5 shows the deviation from the expected ellipticity for both types of

stack simulation in regard to the stack thickness. The right panel 4.5a displays
the deviation expected for ellipticity for the inhomogeneous simulation. We can
see that the void-per-void fit applied to the stack becomes more and more biased
up to 5% deviation from the expected ellipticity. The application of the fit to the
whole stack displays a similar behaviour, reach up to 7% deviation, albeit with a
reduced statistical error. In the case of the inertia tensor, whether it is applied
void-per-void or to the whole stack, there is a near-constant bias slightly higher
than 2% regardless of the stack thickness. As a consequence, in the case of an
unknown distribution of the galaxies around the centre, the inertia tensor seems to
be more appropriate, even though the presence of a 2% bias may occur. But, this
could be taken into account in the systematic error budget.

The left panel 4.5b shows the deviation from the expected ellipticity in regard to
the stack thickness in the case of the homogeneous simulation. In this configuration,
the stack thickness ranges from 0% to 100% deviation of the thickness ellipsoid.
The bias on the estimation is below 2% for every fitting method. For the fit of
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Figure 4.4: Deviation of the measured ellipticity of the stack, estimated through the
inertia tensor, in regard to that of the expected ellipticity as a function of
the stack thickness square σ2

r . Each line color corresponds to a set number
of particles used to define the void, ranging from 10 to 100. Top: deviation
measured with an inhomogeneous stack generation or Simulation 1. Bottom:
deviation measured with an homogeneous stack generation or Simulation 2.
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Figure 4.5: Deviation from the expected ellipticity in regard to the stack thickness
in the case of the inhomogeneous simulation (left) and the homogeneous
simulation (right). In blue is shown the void per void fit, in green the fit
applied to the whole stack. The void per void inertia tensor is shown in
red and the whole stack inertia in black. The displayed errors correspond
to the 1σ dispersion from 500 realizations of each simulation.

the ellipsoid on a void per void basis, the estimated ellipticity seems to deviate at
larger σr along with the error on the estimated ε. The fit applied to the void stack
displays no bias, however, the dispersion on the measured ellipticity increases along
with the stack thickness. The inertia tensor in the void per void case displays a
constant bias of ∼ 0.25%, while its application to the whole stack incurs no bias.
It is to be noted that the estimated errors remain constant in regard to the stack
thickness.
From the comparison of the behaviour of the fit with that of the inertia tensor,

it seems the inertia tensor has a near-constant bias that can be modelled and
eventually corrected in the case of an inhomogeneous distribution of the galaxies
in the stack. Its bias is thus less than that of the ellipsoid in an inhomogeneous
setting. The behaviour of the ellipticity depending on the simulation conditions
puts to light the fact that our point distribution may not be as homogeneous as
simulation II. As such, when we consider an extreme case, the inertia tensor seems
to be more appropriate than the fit of the ellipsoid to estimate the ellipticity of our
stack. The application of the ellipsoid fit on the whole stack may be applicable,
but, the inertia tensor seems to relay a more precise estimation at higher stack
thickness.
This experiment shows two things:

– The void per void ellipticity estimation might not be the best method to
estimate the ellipticity of a stack regardless of the particles. It may be biased,
which, in the event of a large statistic, may prevent the AP test from making
stringent constraint.

141



4 Probing cosmology with geometrical distortions of voids

– The inertia tensor seems to be the best estimator of the ellipticity of a stack
as it is more stable and less prone to varying biases.

4.3 Idealistic void stack and sensitivity to the AP
effect

In the previous section, we tested two parametrizations of the ellipticity estimator
and found that the less biased estimator should be the inertia tensor, making it the
most appropriate to measure the ellipticity of our stack. Such performances were
tested on ellipsoidal cloud of points distributions containing next to no cosmological
signal.
In this section, I present a study of our full Alcock-Paczynski pipeline on a

simulation of an idealistic stack of voids in a given cosmology in order to quantify
the strength of the Alcock-Paczynski effect as well as test our estimator in semi-
realistic conditions.
The main goal of this simulation is to test the sensitivity of a void stack to the

Alcock-Paczynski signal. In addition to the void stacking procedure, the pipeline
simulated has to take into account the ”observational” peculiarities of our void
that we obtain from our void finding algorithms as well as their void properties:
the void density profile, the number of particles, the redshift considered and finally
the radius.

4.3.1 Void stack generation
4.3.1.1 General assumptions

The first step of our simulation is to mimic a stack of voids. Such simulation relies
on simplistic assumptions in regard to the stack: a void stack should be spherical
in comoving real-space. As such, the initial distances of the particles relative to
the stack centre are set to be defined by the true cosmology. These assumptions
originate from the cosmological principle from which we infer that a stack of voids
can be considered as a standard sphere.

4.3.1.2 Simulating the distribution of particles

Following the general assumptions of the stack, the particles are simulated in regard
to the void centre. The stack generation samples points on the surface of a unit
sphere in a uniform and homogeneous manner. The radial component, however, is
no longer generated with the method presented either in Sim-I or Sim-II, as we
want the particles around the void centre to follow an empiric formulation of the
void density profile, as defined in equation 2.6 in section 2.3.1.1 that is recalled
here:
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4.3 Idealistic void stack and sensitivity to the AP effect

δ(r) = δc
1− (r/rv)α
1 + (r/rv)β

where δc is the density contrast, an indicator of the under-density level of the
void, rs is the scale at which the density profile crosses the average δ(rs) = 0 density
threshold, and α and β govern the shape of the surrounding wall and the slope of
the profile. Finally, rv is the radius of the void.

In order to be able to take such expression as a probability distribution function,
we use an Inverse transform sampling method which consists in linking the cumu-
lative probability distribution function (CDF) to a random variable g. The CDF is
defined as follows :

CDF[r] =
∫ −∞
−∞

f(x) dx, (4.29)

where f(x) is the probability distribution function (PDF) of interest. In this
case, the PDF is defined as :

f(x) = δ(r) + 1∫−∞
−∞ δ(r) + 1 dx

, (4.30)

where δ(r) + 1 allows to have a positively defined probability, and the integral
in the denominator normalizes the density profile in order to have a probability
between 0 and 1. This step is necessary in order to have a cumulative function that
corresponds to the requirements of the validity domain of the CDF: CDF ∈ [0, 1].
The CDF thus gives us the cumulative distribution function for a given interval of
r.
The resulting CDF and associated variable r are interpolated, such that, when

drawing a uniform sample of randoms value between [0, 1], one can obtain the r
associated.

Fig. 4.6 displays the initial void density function in its normalized form input in
the simulation along with the resulting particles density profile of the simulated
stack.
Voids found by zobov-based algorithms such as vide and revolver return

voids member galaxies. Therefore, we possess the knowledge of the number of
particles defining the voids and the subsequent number of particles distribution.
To comply to our ambitions of creating a semi-realistic simulation, in line with our
void finding algorithm, the number of galaxies defining each void is also sampled to
correspond broadly to that found in the void catalogue output. The PDF chosen is
that of a log-normal distribution which is generally defined as:

f(x, σ) = 1
xσ
√

2π
exp (ln x− µ)2

2σ2 , (4.31)

where x is the random variable of interest, µ the mean of the distribution and σ its
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Figure 4.6: Input normalized density profile (in red) as defined by Eq. 4.3.1.2 for which
the adopted parameters are given in the legend, and the recovered density
profile from the simulated void particles (in blue) for one realization of the
stack generator.

standard-deviation.
After comparison with catalogues found in mock data, the log-normal distribution

was found to be consistent with the following parametrization:

F (Np) = |Kf(0, 1)| (4.32)

where K is an arbitrary positive constant which accounts for the spread of the
log-normal distribution. The distribution defined by Eq. 4.31, is centered on µ = 0
with a dispersion of σ = 1 and taken as an absolute value in order to obtain integer
and positive values. Fig. 4.7 shows the resulting distribution, drawn from the
log-normal parametrization with an arbitrary K = 48 value. This distribution is in
general agreement with that of one catalogue of the EZmocks.
After sampling Np separation distances, r, particles are placed in a sphere

surrounding the void with component cos θ and φ. At the end of the stack generation,
we thus have the (xij, yij, zij) coordinates of the ith among Np,j member galaxy of the
jth generated void among Nv, defined with respect to the void centre. A resulting
stack at this stage, can be seen in Fig.4.8.
All these coordinates follow the void density distribution defined earlier. It is

to be noted that the separation distances generated are not in h−1Mpc but are
considered as rescaled by the void radius rv. The latter is drawn from a normal
distribution distribution N (µ = 40, σ = 20), with an added condition Rv ≥ 0.
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Figure 4.7: Input normalized density profile (in red) as defined by Eq. 4.3.1.2 and
recovered density profile from the simulated void particles (in blue) for one
realization of the stack generator.

The radius and the number of particles rv are generally linked when considering
the void finding routine, but, as the relation between those two quantities is not
explicit, nor trivial, I do not take this feature into account when generating the
semi-realistic stack.

4.3.1.3 Disposition in the sky and input of fiducial cosmology

From the void generation procedure is obtained a spherical stack which follows
an arbitrary void density profile of the form defined in Eq.4.3.1.2. Each void
is associated with a set of particles as well as a radius. In order to recover the
positions of the particles in comoving space, the voids are first disposed in the
observational coordinate frame (RA,DEC, z). Each of these quantities is evaluated
from a random uniform distribution of the whole sphere in the case of the angular
coordinates and in a set uniform interval [zmin, zmax] of redshift z.

The comoving coordinates for each void are then computed for a given flat ΛCDM
cosmology that is set to be the true underlying cosmology of our mock stack:

(Ωm = 0.31,ΩΛ = 0.69) (4.33)

Through the knowledge of the galaxy positions respective to the void centre along
with its attributed void radius, the comoving equivalent of the galaxies position can
be recovered, using the transpose rotation matrix of our void stacking procedure.
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Figure 4.8: A 2D stack of one realization of the void stack generation routine. Nv =
10000 voids are generated.

From the comoving coordinates and our knowledge of the true cosmology defined in
4.33, the redshift of the galaxies as well as their right ascension and declination are
recovered, providing the stack in (RA,DEC, z) for galaxies and voids alike. The
radius of the void is also recovered in terms of a ∆z in order to modify the radius
according to the fiducial cosmology of interest.

In brief, this simulation allows the generation of a mock stack of voids following
a given density profile which has approximately the same characteristics as those
from voids found with a zobov-based algorithm. The particles positions and thus,
the stack, can be controlled by picking the redshift range of interest.
Some of the assumptions used to simulate the stack generally stem from visual

comparison with the output distributions procedure of our void finding algorithm.
For the purpose of simulating a semi-realistic void stack and testing our Alcock-
Paczynski procedure, these choices are deemed sufficient.

4.3.2 Simulating the AP test
After generation a void stack with Nv = 5000 in the redshift range: 0.43 − 0.7
and the recovery of the particle positions in the sky, the Alcock-Paczynski effect is
input through the stacking procedure.
Galaxies and voids are stacked in comoving space using a flat ΛCDM fiducial

cosmology to convert their positions and radius to the fiducial comoving space. For
each void, the line-of-sight is defined to be its position and the member galaxies
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4.3 Idealistic void stack and sensitivity to the AP effect

are rotated so that their LOS corresponds to their respective voids. In this new
coordinate frame (x̃, ỹ, z̃) in h−1Mpc , z̃ is the direction of the line-of-sight while
(x̃, ỹ) correspond to their transverse counterpart. Finally, the coordinates are
rescaled by the radius of the void in the newly adopted cosmology. The ellipticity of
the stack is then estimated using the ensemble of the particles defining it through the
use of the inertia tensor estimator, as validated in the previous section. The goal of
this simulation is to investigate the methodological aspects of the Alcock-Paczynski
test and their influence on the parameter recovery.

The stacking procedure is applied to the stack using a fiducial cosmology which
is varied in the range Ωfid

m = 0.1 to Ωfid
m = 0.9. Stacking with a different cosmology

from that defined to recover the particle positions in sky coordinates enables
to introduce the Alcock-Paczynski effect. For each of the considered fiducial
cosmology, the simulation performs 1000 realizations of both the void stack and
stacking procedure.
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Figure 4.9: Top : Measured ellipticities through the inertia tensor in regard to the cos-
mology adopted. Shaded regions show the values from the 1000 realizations
of the stack. Blue dots corresponds to the mean over all the realizations.
Errors are taken to be the standard-deviation of the 1000 realizations.
Bottom : Deviation εmeas− εexp in terms of the fiducial cosmology adopted.
Errors are the error on the mean of the 1000 realizations.

The resulting signal is shown in the upper panel of Fig. 4.9 where the mean
ellipticity estimated from the total of the realizations is clearly in agreement with
the theoretical signal. The lower panel of Fig. 4.9 shows the deviation from the
expected value at the considered fiducial cosmology. The errors quoted in the
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sub-panel are the errors on the mean of the realizations. Looking at the deviation
from the theory in more details, however, although it is quite negligible (� 1%),
a trend can be seen at large deviations of the fiducial cosmology for which the
deviation rises to 0.2%. While not quite expected, this effect could either come
from the stacking procedure or from the strong AP distortion induced. The latter
causing the isotropy of the stack to break. However, it is considered that the
deviation at large Ωfid

m can be neglected for the purpose of testing our pipeline.
Once the ellipticity is recovered using the inertia tensor, the true is estimated

cosmology through a χ2 minimisation procedure defined as follows :

χ2 = (ε− H(z)trueDA(z)true
H(z)fidDA(z)fid )2/σ2

ε , (4.34)

where z is taken as the mean redshift of the stack.
As we have at our disposal 1000 realizations, the fit is performed on each estimated

ellipticity εi with the standard-deviation of the 999 remaining realizations taken as
σε. The resulting estimated Ωm are shown in Fig 4.10. From the upper panel, it
can be seen that the estimated Ωm is generally consistent with the simulation true
cosmology within 1σ, except for the most exotic values of the fiducial cosmology that
are 0.8 and 0.9. The consequence of the deviation in the estimation of the ellipticity
can be seen in the lower panel of Fig. 4.9. Indeed, this deviation permeates in
the estimation of Ωm : while the deviation remains below the percent level up
until Ωfid

m ∼ 0.5, it then increases up to 2% for the largest Ωm. A small 0.2% error
on our estimator of the ellipticity can yield a near 2% error on the cosmological
parameter.
This primary analysis is considered as a baseline for the following tests on the

sensitivity of the simulation to our methodology choices.

4.3.3 Sensitivity
While the simulation displays a deviation from the expected signal for larger
deviations of the fiducial cosmology in regard to the true cosmology, the simulated
AP effect is still present. For this reason, it is possible to test several aspects of
our methodology such as the stacking procedure and orientation of the particles
around the void centre, the impact of the normalization of the voids stack by the
void radius as well as the position of the void centre and selection cuts.

4.3.3.1 Stacking methodology

Our void-particle re-alignment technique relies on the rotation of the galaxy posi-
tions in regard to the void centre. The latter’s position is set as the line-of-sight
for each individual void and their member galaxies are repositioned accordingly.
The influence of the stacking routine is then tested using another methodology

of re-alignment along the LOS. It relies on the use of the (σ, π) coordinate system,
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Figure 4.10: Top : Recovered Ωm through the inertia tensor in regard to the cosmology
adopted. Shaded regions shows the values from the 1000 realizations of
the stack. Blue dots corresponds to the mean over all the realizations.
Errors are taken to be the standard-deviation of the 1000 realizations.
Bottom : Deviation Ωmeas

m −Ωexp
m from the true cosmology in terms of the

fiducial cosmology adopted. Errors are the error on the mean of the 1000
realizations.

aka, (r⊥, r‖), which are commonly used in the estimation of the 2PCF, setting the
LOS in between the void centre and the considered galaxy.

To this end, the stack is generated as presented in 4.3.1 with the sole difference
of using (σ, π) at the stacking step in order to recover the AP estimation. The
resulting deviations from both the expected signal and baseline signal are shown
in Fig. 4.11. The deviation on the whole Ωfid

m range in regard to the theory is
situated between 0.05% and 0.15%. When comparing with the baseline analysis on
the bottom panel, it is clear that while the (σ, π) stacking methodology is more
strongly biased for the low Ωm range, which is closer to the fiducial cosmology, it
tends to be less biased on the high end of the Ωm range.
Considering this behaviour, we maintain our primary stacking method as the

choice stacking methodology. Although, it seems clear that, in the event of our
simulation not being at fault for this slight bias, one should not stray too far from
exotic guess parameters not to bias the cosmological results.
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Figure 4.11: Top: Deviation of recovered signal in regard to the expected theoretical
signal in % as a function of Ωfid

m . Bottom : Same but in regard to the
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4.3.3.2 Void centre definition

The void centre definition is a non-negligible quantity when considering void science.
To test the impact of its definition on our measure, the void centre is re-computed
as the geometrical barycentre of the member particle of the void. This re-evaluation
is performed after computing the positions in the new cosmology, meaning that
the void centres are then affected by the change in cosmology as well.
The resulting offset incurred by this change is plotted in Fig. 4.12, in regard

to the theory and to the previous void definition. The deviation in regard to the
theory remains similar to the baseline analysis and below 0.2%. Comparison with
the baseline shows that the new definition of the void centre measurement does not
quite affect the measurement of the ellipticity, and remains compatible within 2σ.

4.3.3.3 Stack normalisation

A last aspect of the void stacking procedure is whether to consider the positions
of the galaxies in h−1Mpc , thereby mixing the different scales of the void. In the
baseline analysis, the separation between the voids and their respective particles
is rescaled by the radius of the considered void in order to consider the profile of
the void stack without losing any information on the overall shape by a loss of
information from the larger voids.
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Figure 4.12: Top: Deviation of recovered signal in regard to the expected theoretical
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baseline measured signal. Quoted errors represent the error on the mean
of the expected deviation σε/

√
Nreal

The ellipticity of the stack was evaluated without re-scaling the separations to
test for the impact of such a choice. The resulting deviation from theory and the
baseline are shown in Fig. 4.13. Again, the bias incurred by this change does not
alter the general deviation from the theory, which is confirmed when comparing
with the baseline. The latter case presents, however, a stronger deviation from the
baseline than the one seen with the change of definition of the void centre. At low
Ωfid
m , the baseline and no-normalization cases seem to agree within 2σ, at higher

Ωfid
m ≥ 0.6, a stronger deviation can be noticed.

4.3.3.4 Considered volume

It was been advertised in previous work which measured the shape of the void
stack (Mao et al., 2017; Sutter et al., 2014c) that the optimal volume considered
would be that of a sphere Rmax ≤ 0.7R. With the simulation, we investigate the
impact of choosing such cut on the AP parameter measurement, depending on the
cosmology. To this end, a cut value rcut is applied to the radial distance of the
particles. The minimal value is set to be 0.7R and varied up until 3R. A final value,
taken to be vary large 10R, corresponds to the case where no particles contribution
is discarded on the basis of its distance to the centre.
Fig. 4.14 displays the resulting estimation of the ellipticity of the stack ε as a

function of the fiducial cosmology used. The use of the cut tends to flatten the
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Figure 4.13: Top: Deviation of recovered signal in regard to the expected theoretical
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estimated stack shape greatly affecting the signal recovery. The imposition of a
volume in which is measured the signal can cause a deviation of more than one
percent, in perfect conditions, on the recovered signal (depending on the fiducial
cosmology adopted). Regardless of the cut adopted, the ellipticities measured all
converge to the true cosmology expectation ε = 1 thus enabling the recovery of the
true cosmology.

4.4 Application of the AP test on data like
catalogues

In the previous sections, we validated our pipeline which aims to measure the
Alcock-Paczynski effect on a void stack alone. Before any application on the data
and various samples (such as the eBOSS DR16 samples), the procedure is tested on
a low number of Patchy mocks Nm = 100 reproducing the clustering and statistics
of the north galactic cap of the BOSS DR12 CMASS sample. This test aims to
confront the AP procedure on realistic data and to characterise its sensitivity to
the AP signal before any attempt to constrain the cosmology.
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Figure 4.14: Top: Estimated ellipticity in function of the fiducial cosmology with
varying volume cuts, circles denotes the estimated measurement for a
given cut. Bottom: Deviation in percent from the expected ellipticity, the
gray area represents the zone within 1% deviation.

4.4.1 Reference analysis
We find voids with the void finding algorithms presented in section 2.2.3, with a flat
Λ-CDM with Ωm = 0.31. The void finder returns the voids barycentre positions
along with their associated particles. The AP pipeline is applied as explained
previously. The ellipticity of the stack is then estimated through Eq. 4.20, as it
was shown to be the most robust estimate out of the envisioned estimators.

Through the simulation, it was possible to check several methodology choices
to validate the recovery signal. In this case, we consider the standard stacking
approach (as opposed to the (σ, π) approach), without Rcut as it seems to bias the
estimation of the ellipticity.
Two major aspects of the void stack definition could not be tested in the

simulation: the impact of Np, the number of particles defining the void and Rv the
void radius. Both quantities, in reality, display a dependent behaviour : small voids
tend to be defined by a low amount of particles, and conversely, the larger voids are
those that are more defined. This relation can be seen in Fig. 4.15 which displays
the distribution of the number of particles as a function of their corresponding
radius. The figure was truncated at Np = 800 for clarity but the largest voids
counts 1200 member particles. This dependency is expected as the volume is
defined as the sum of the individual volumes enclosing the particles during the void
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finding stage. This relation needs to be investigated as the largest voids, although
they should tend toward sphericity (Nadathur, 2016), could bias the shape of the
stack in regard to the less defined voids. In reverse, voids defined by a low number
of particles are more numerous and tend to have more complex shapes.
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Figure 4.15: Distribution of the number of particles Np in regard to the corresponding
void radius Rv for one mock among the 100 used in this investigation

The pipeline is run on all available voids in each of the Nm mocks, without
applying any cuts. The baseline ellipticity is averaged over all mocks and the 1σ
dispersion is recovered, yielding:

〈ε〉 = 0.9904± 0.0046. (4.35)

This ellipticity will be used to compare to the recovered ellipticity in the two
following subsections.

4.4.1.1 Impact of the number of particles

For the same baseline, that is the catalogues found with Ωfid
m = 0.31, the pipeline

is run using several sets of cuts in order to study the impact of the number of
particles of the void considered in the stack. No additional cut is applied in this
context.

First were applied open cuts on the sample, that is, without bounding the number
of particles between both lower and upper boundary. A larger number of cuts are
investigated in the lower boundary as it represents most of the statistics, while the
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upper boundary is chosen loosely. Table 4.1 quotes the impact of the cuts on both
the void statistics and estimated ellipticity.

The low boundary cut does not have a major impact on the estimation of ε. In
comparison with the reference ellipticity (4.35), the subsequent deviation remains
below the 1σ error added in quadrature. This is also shown with the deviation of
the ellipticity in regard to the expected ε which remains stable between −0.83%
and −0.87%.

While the cut can affect quite significantly the number of voids stacked, Np > 100
cuts out 62% of the voids, the ellipticity of the stack doesn’t seem affected. The
dispersion of the ε in the mocks does not show a large increase of the error considering
the loss of statistics presented by the application of the N cut

p . On the contrary,
the impact of adding an upper boundary condition to the stacking of populated
voids does not greatly affect the statistics of the stacked voids. Nevertheless, the
effect of adding such a boundary can be noted in the estimation of the ellipticity
that increases along with the number of cut voids. However, this variation remains
within 1σ of the baseline analysis. The effect of the number of particles can be
considered negligible.

Table 4.1: Statistics recovered while investigating the impact of an open cut (no upper
or lower boundary) on the number of particles defining a void. Np cut gives
the value(s) for which a void is excluded for the stack. N cut

v is the number
of cut voids regarding in comparison to the whole sample. The min and max
radius of the void are given in h−1Mpc . 〈ε〉 is the mean ellipticity recovered
from the 100 catalogues along with the 1σ dispersion. The deviation from the
estimated baseline is quoted in 〈εbase〉, with the errors added in quadrature
and ∆ε relay the deviation from the expected ellipticity.

N cut
p N cut

v Rmin −Rmax 〈ε〉 〈ε〉 - 〈εbase〉 ∆εexp

Np ≥ N cut
p

10 3.3% 13.8− 195.3 0.9904± 0.0046 0.0± 0.0065 −0.85%
20 12.3% 17.2− 126.5 0.9905± 0.0047 0.0001± 0.0065 −0.85%
30 21.3% 20.1− 126.5 0.9906± 0.0047 0.0002± 0.0065 −0.83%
40 29.6% 22.5− 125.1 0.9906± 0.0048 0.0002± 0.0066 −0.83%
50 36.9% 24.7− 125.1 0.9906± 0.0049 0.0002± 0.0067 −0.83%
100 62.8% 33.3− 125.1 0.9903± 0.0059 −0.0001± 0.0075 −0.87%

Np ≤ N cut
p

600 0.4% 11.8− 191.9 0.9908± 0.0048 0.0004± 0.0066 −0.81%
400 2.3% 11.8− 185.4 0.9915± 0.0042 0.0011± 0.0062 −0.74%
200 13.99% 11.8− 171.5 0.9922± 0.0045 0.0018± 0.0064 −0.67%

In addition to imposing either a lower or an upper boundary to the number of
particles, closed cuts are investigated as well. For the lower boundary are considered
the minimal number of particles which do not cut more than ∼ 20% of voids out of
the sample while are considered all the upper boundaries investigated above. The
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resulting statistics are shown in Table 4.2, in which are considered all association
of a minimal and maximal number of particles.
Considering a low and high boundary to the number of particles defining the

stack voids affects the radius range of the considered voids. The variation of the
estimated ellipticity remains quite consistent when considering the same upper
boundary but varying the lower boundary. This implies that the inclusion of highly
populated voids can drive the estimation of the ellipticity. The dispersion of the
estimated ellipticity over all Nmocks = 100 seems impacted by the voids selected
through the lower boundary, which is consistent with the diminution of the statistic
incurred by such choices. As for the previous cuts considered, the deviation from
the estimated baseline for the whole stack remains within 1σ. The effect of the
cuts does not greatly influence the estimation of the ellipticity.

Table 4.2: Same as Table 4.1 but considering a closed cut with an upper and lower
boundary that are quoted in N cut

p .
N cut
p N cut

v Rmin −Rmax 〈ε〉 〈ε〉 - 〈εbase〉 ∆ε
10-200 18% 14.1− 170.5 0.9923± 0.0045 0.002± 0.0064 −0.66%
10-400 6.4% 14.1− 184.5 0.9915± 0.0042 0.0012± 0.0062 −0.74%
10-600 4.5% 14.1− 191.1 0.9909± 0.0048 0.0005± 0.0066 −0.81%
20-200 27% 17.5− 100 0.9925± 0.0047 0.0021± 0.0065 −0.64%
20-400 16% 17.5− 115 0.9917± 0.0043 0.0013± 0.0063 −0.73%
20-600 14% 17.5− 122 0.991± 0.0049 0.0006± 0.0067 −0.8%
30-200 36% 20.3− 191.9 0.9927± 0.0047 0.0023± 0.0066 0.62%
30-400 24% 20.3− 185.4 0.9918± 0.0044 0.0014± 0.0063 0.72%
30-600 23% 20.3− 171.5 0.991± 0.0049 0.0007± 0.0067 0.79%

4.4.1.2 Impact of the radii considered

While the number of particles is at the core of the definition of the stack, it is the
impact of the radius that is generally considered regarding the void definition.
Firstly, the radius is common to any void finder which is not the case for the

number of particles. Secondly, the size of voids is more indicative of their likeliness
to be affected by systematical effects such as the peculiar velocities (both linear and
non-linear)(Hamaus et al., 2014a; Pontzen et al., 2016) and to their tendency toward
sphericity. Thirdly, considering a large void that is defined with a (reasonably) low
amount of particles, it is more likely to truly correspond to an under-density in the
sample. In the opposite case, a small void defined by a large number of particles
may very well be a local minimum within an over-dense region.
It is generally accepted that voids below the mean tracer separation (m.p.s),

defined as m.p.s = (n̄)−1/3, are more likely to be subjected to non-linear effects
which could bias the measurement. In this part, we investigate the impact of the
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sizes of the stacked voids on the ellipticity considered. The mps is estimated to be
∼ 17 h−1Mpc .

Table 4.3 displays the open cuts considered which consist in discarding the small
radius with three selection cuts: the mean radius R̄v, the median radius R̃v and
twice the m.p.s. The statistic ,when discarding the small voids, is seriously depleted,
as expected in the case of cutting at the mean or median values of the radius. The
range of particles corresponds to the widest range available in the sample. All cuts
result in discarding voids below Np < 10. Overall, the estimated ellipticities display
a similar behaviour: the deviation from the baseline is within 1σ and the deviation
from the expected ellipticity is about 1%.

Table 4.3: Statistics recovered while investigating the impact of an open cut (no upper
or lower boundary) on the radius of the stacked voids. The first column Rv
cut corresponds to the adopted cuts, Np gives the minimum and maximum
values of the number of particles defining the voids. In parenthesis are given
the evaluated values of the cut in h−1Mpc averaged over the 100 mocks.

Rcut
v N cut

v Nmin
p −Nmax

p 〈ε〉 〈ε〉 - 〈εbase〉 ∆ε
> 2mps (34) 32.8% 10− 1027 0.9889± 0.0049 −0.0015± 0.0067 −1%
> R̄v(42) 54.3% 19− 1027 0.9870± 0.0054 −0.0031± 0.0071 −1.2%
> R̃v(40) 50% 17− 1027 0.9873± 0.0054 −0.0034± 0.0071 −1.2%

As for the selection in terms of particles, we apply more stringent cuts to the
void selection prior to the stacking procedure. Two bins are considered : a bin
of thickness 1σRv which is about 15 h−1Mpc and 2σRv which corresponds to 30
h−1Mpc . The quoted results from the selection cuts are reported in Table 4.4. The
severity of the cuts applied has repercussions on the dispersion of the ellipticities,
most notably in the 15 h−1Mpc sized bin. The estimation of the ellipticity seems
also quite affected by the different cuts, but, compared with the baseline analysis
(without any cuts), there is no significant deviation.

To conclude, it seems that the quantity of interest to stack the voids should be the
radius. While the number of particles may have some impact on the measurement,
as it translates a certain level of definition of the voids, discarding voids in terms
of their radius may be more relevant in this analysis. Indeed, cutting out small
radii may relieve our stack from voids subjected to non-linear effects, more likely
to be found at small scales regardless of the number of particles defining them.
Considering the radius, we consider three cuts as candidates for the estimation

of the ellipticity of the void: 2m.p.s > Rv > σRv(34− 49) , R̄v > Rv > σRv(42− 57)
and R̃v > Rv > σRv(40− 55). While they tend to discard a lot of the statistic, they
seem to be the closest to the expected Alcokc-Paczynski distortion value.
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Table 4.4: Same as Table 4.3 but in the case of a binning approach on the radius of the
stacked voids. The first column Rv cut corresponds to the adopted cuts, Np

gives the minimum and maximum values of the particles defining the voids.
The quoted error for the ellipticity corresponds to the 1σ dispersion in the
mocks. As an indication R̄v = 42 , R̃v = 40 ,2mps = 34 and σr = 15, in
h−1Mpc , evaluated with the average over Nmocks.

Rcut
v N cut

v Nmin
p −Nmax

p 〈ε〉 〈ε〉 - 〈εbase〉 ∆ε
2mps− σRv 72% 10− 259 0.9993± 0.0087 0.0089± 0.0098 0.04%
2mps− 2σRv 46% 10− 472 0.9955± 0.0052 0.0051± 0.0069 −0.34%
R̄v − σRv 71% 20− 369 0.9952± 0.0063 0.0048± 0.0074 −0.37%
R̄v − 2σRv 58% 20− 605 0.9903± 0.0059 −0.0001± 0.0078 −0.86%
R̃v − σRv 54% 17− 345 0.9958± 0.0061 0.0054± 0.0076 −0.31%
R̃v − 2σRv 69% 17− 578 0.9908± 0.0057 0.0004± 0.0074 −0.81%

4.4.2 Fiducial cosmology matters
While testing the validity of the pipeline, it was shown previously that the ellipticity
recovery was well below the percent regardless of the fiducial cosmology used.
Although the deviation from the expected ε features an increase at larger values of
the fiducial cosmology, those are considered not to be dominant in regard to the
other systematics of the mock data sample.

Before performing any parameter determination from the reference analysis and
picking the cut of interest among the three candidates chosen above, the sensitivity
in regard to the change of fiducial cosmology is investigated. The formulation of
the AP test implies that a signature deviation should be recovered in respect to a
given redshift and a given fiducial cosmology.

Due to several systematic effects, such as the effect of redshift space distortions
in the vicinity of the stacked voids, it is expected of the signal to appear flattened
to some extent (Cai et al., 2016). Such a flattening was not quite seen in the case
of the reference analysis.

4.4.2.1 Baseline analysis

The void finder is run on the same Nmocks = 100 used to perform the estimation of
the previous section in a wide range of fiducial cosmology 0.1 ≤ Ωfid

m ≤ 0.9. The
purpose of such an investigation is to ascertain whether the parameter measured in
the baseline analysis is a valid ellipticity measurement in the application of the AP
test. If yes, then the pipeline should detect a significant variation of the ellipticity
as a function of the fiducial cosmology.

Table 4.5 reports the ellipticities extracted from the pipeline ran on all 100 mocks
for nine input fiducial cosmologies in both void finder and stacking procedure. The
input ellipticities display no variation at all in regard to the fiducial cosmology.
With the toy simulation, the expected signal was easily recovered with nearly
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Ωfid
m 〈εbaseline〉
0.1 0.9883± 0.0049
0.2 0.9898± 0.0050
0.31 0.9904± 0.0046
0.4 0.9906± 0.0047
0.5 0.9911± 0.0049
0.6 0.9912± 0.0046
0.7 0.9914± 0.0046
0.8 0.9916± 0.0047
0.9 0.9916± 0.0049

Table 4.5: Ellipticities in the baseline analysis in regard to the input fiducial cosmology
Ωfid
m . The reported values and error are taken as the average ellipticity over

all hundred mocks and the error is the 1σ standard-deviation.

negligible effects at large Ωfid
m . In this case, no hint of variation can be seen.

With the analysis applied in the previous section, it was shown that the impact
of considering the radii and number of particles did not affect the measurement
significantly, as such, the use of cuts in this case would not help to discern any AP
signal.
However, some aspects were tested with the toy simulation that we re-consider

here that may allow us to unearth an AP signal:

– Void centre: The void finder revolver provides two void centre definitions,
the barycentre and the circumcentre. In the RSD chapter, it was shown that
the circumcentre was more sensitive to the effect of the change in fiducial
cosmology.

– Stacking methodology: In our pipeline, the galaxies are rotated so that the
z-direction is aligned with the LOS, which corresponds to that of the voids.
The σ − π (or r⊥ − r‖) is another way to estimate the positions of the stack
particles.

– Radial cut: We’ve seen in the simulation that constraining the volume consid-
ered to measure the ellipticity may bias such a measurement. However, when
considering several cuts and varying cosmology, all converge toward the true
underlying cosmology.

The effect of the first two can be seen in Fig. 4.16, it is clear that neither the
stacking procedure nor the definition of the void centre is at cause in the absence
of an Alcock-Paczynski signal. The signal is flat in all the configuration despite
the presence of a significant offset from the other two configurations in the case of
the void centre definition.
The third item which corresponds to the use of a radial cut to bound the

estimation of the ellipticity in a given volume is displayed in Fig. 4.17. The use
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Figure 4.16: Estimated ellipticity from the mean of the mocks for several configurations:
the blue full line is the baseline analysis whose values are reported in
Table 4.5, in red is the σ − π stacking method and in green corresponds
the pipeline ran with a different void centre definition. The grey dashed
line displays the theory for comparison. The quoted errors display the 1σ
dispersion of the mocks.

of a radial cut greatly affects the estimation of the ellipticity of the void stack.
Nevertheless, no sign of convergence toward a specific ellipticity can be seen. A
variation in regard to the fiducial cosmology becomes more noticeable as the radial
cut passes the rcut ≤ 1 threshold. The variation remains of the order of 1.5%,
which is too low to consider it likely to be an AP signal.

The consequence of this analysis is that, despite the promise shown by the toy
simulation in terms of constraining power, the application of the Alcock-Paczynski
test to mocks (and subsequently to data) is not quite possible solely using the
real-space theory. The effect of peculiar velocities may be too important for such
an analysis.

4.4.2.2 Alcock-Paczynski signal in the literature

While the qualification of both the estimator and the pipeline was thoroughly
tested against a toy simulation, a major bias in the present analysis was the
assumption that the peculiar velocities in the stack would not significantly influence
the measurement. As a consequence, it has to be admitted that while the standard
sphere assumption may be true when considering voids in real-space, that may not
be the case in redshift-space.
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Figure 4.17: Estimated ellipticity from the mean of the mocks for several radial cuts
(listed in the legend). The dashed line shows the theoretical expectations.
The quoted error corresponds to the 1σ dispersion of the mocks.

Indeed, the elongation/contraction due to both linear and non-linear velocities
may change the shape of individual voids. In a similar analysis, Mao et al. (2017)
considered the fact that the peculiar velocities may change the shape of the volume.
As a result, they use the inertia tensor estimator in concurrence with an added
parameter ecut, used to change the volume in which the ellipticity is measured.
Provided a set of coordinates (x, y, z) where z corresponds to the LOS, the ellipticity
will be considered in a volume of radius:

r =
√
x2 + y2 + ( z

ecut
)2. (4.36)

This parameter is varied up on a wide range of values and the ellipticity of the
stack is taken to be the value ecut at which the estimated ellipticity through the use
of the inertia tensor ε is equal to ecut. This enables to probe a variety of ellipsoidal
volumes, instead of considering only spherical volumes, in the event where a radial
cut is applied.

For comparison to our analysis, we apply the same pipeline on the hundred Nm

mocks used previously and display the result in Fig. 4.18. The baseline analysis
and that including the ecut shows no significant sensitivity to the AP signal.

As for the baseline, we investigate the impact of the radial cut on the estimation
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Figure 4.18: Estimation of the ellipticity using the inertia tensor. In blue is the baseline
analysis reported in Table 4.5, in red the analysis performed with the
prescription of Mao et al. (2017).

of the ellipticity of the stack in concurrence with the ecut parameter. The resulting
ellipticities shown in Figure 4.19 display quite a different behaviour depending on
the cut. At high rcut, the behaviour is consistent with that found in the baseline
analysis. In the range rcut = 1.2 to rcut = 0.9, the signal appears very noisy which
may denote a disappearance of the signal in this range. At low rcut ≤ 0.8, a
significant AP signal is recovered and appears quite flattened, which is consistent
with the previous findings of Mao et al. (2017) and Sutter et al. (2014c).

The AP signal is recovered through the use of the inertia tensor in combination
with the ecut value. The errors displayed are quite important in comparison to the
baseline analysis, probably due to the interpolation scheme used to recover the
estimated ellipticity of the void stack. The flattened appearance can be attributed
to the peculiar velocities which in the interior of the voids tend to contract the
shape along the LOS (Cai et al., 2016). A similar dampening of the ellipticity
of the void stack was noted by Endo et al. (2020) when considering the shape in
redshift-space, even though their sensitivity to the AP signal in this configuration
is surprising as they report no significant cut on the volume considered while
measuring the inertia tensor.
However, as it is, it is not so straightforward to constrain the cosmological

parameters. Mao et al. (2017) circumvented this problem through the use of mock
catalogues in both real and redshift space, applying the same rcut which enabled
to map the flattening of the Alcock-Paczynski signal from redshift to real space.
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Figure 4.19: Estimation of the ellipticity using the inertia tensor and the ecut parameter.
The dashed line represent the theoretical expectations. The errors quoted
come from the 1σ deviation over all the mocks. The rcut = 1.2 is below
the y-axis range and has been cut out for visibility.

Endo et al., 2020 proposed a calibrating function, required to be run on simulation
prior to the application of the Alcock-Paczynski test.

The main cause of concern in the application of the AP test lies in its seemingly
volume-dependent effect. For one, the disappearance of the signal when considering
the entirety of the stack is a surprise which has never been noted before. The volume
dependence at low radii can be understood as the impact of the peculiar velocities
in the vicinity of the void that, through linear theory, are directly dependent in
the volume-averaged density profile. It could be that changing the considered
volume of the void stack may change the intensity of the effect of the peculiar
velocities, leading to a different amount of flattening. But this effect has to be
further investigated before extracting a proper cosmological constraint.
While the Alcock-Paczynski test on voids was hailed as a groundbreaking cos-

mological probe (Lavaux & Wandelt, 2012), it appears that its application is still
crippled by the existence of peculiar velocities in the vicinity of the void. A possible
way to get around the lack of modelling of the redshift-space Alcock-Paczynski test
could be the use of the two-point correlation function between voids and galaxies.
The latter can be considered as a stacking methodology, and, in combination with a
modelling of the redshift-space distortions around voids, could allow disentangling
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the AP effect from the RSDs.
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Conclusion
In recent years with the increase of statistics of both redshift and photometric sur-
veys, voids have been pushed into the headlights as promising probes of cosmology.
The analysis of their defining properties such as their shape, size and distribution
of matter around them have shown to be sensitive to several key questions of
the cosmological context. Among them, the main mystery lies in the existence of
a dark sector, composed of dark matter and dark energy, the latter responsible
for the late-time acceleration of the expansion of the Universe. Voids have been
considered to be interesting environments to probe the late-time cosmic acceleration
due to their nature of under-dense objects. They should thus be dominated by this
component of the Universe which appears to be everything but massive.
This thesis aimed to investigate the potential of voids to constrain the nature

of the late-time cosmic acceleration. This nature is of two forms: a time-varying
dark energy component that would remain within the context of GR and a possible
modification of the laws of gravity formulated in Einstein equations.
The first aspect of my work consisted in testing General Relativity in the

framework of the eBOSS collaboration. To this end, I extracted voids from three
galaxy samples: Emission Line Galaxies, Luminous Red Galaxies and Quasi-Stellar
Objects at three different epochs using void finding algorithms. These void finding
algorithms were compared in order to validate the void finding procedure prior to
its application on data. This study allowed to define selection cuts to mitigate
the edge contamination brought by the void finding algorithm itself. The voids
found were then used to measure the void-galaxy cross-correlation function in
order to study the redshift-space distortions (RSD) and extract a constraint on
the RSD parameter β. Through the use of mocks, I estimated the impact of
several methodology choices, as well as the RSD model used, on the accuracy
of the measurements. The subsequent systematic effects evaluated proved to be
dominant when considering the RSD model. While this cast doubts on its validity,
its formulation remains, for now, the best option when considering voids found
in redshift space. Nevertheless, such strong systematic effects show that a lot of
systematics have yet to be properly identified and mitigated in the context of void
science.

In a second analysis, I investigated the application of the Alcock-Paczynski (AP)
test on void stacks. Voids, due to the cosmological principle, are assumed to be
spherical in average. This statistical property enables to consider voids stacks
as standard spheres on which the AP test can be performed by measuring the
axis-ratio of the stack. Candidate estimators of this ellipticity were tested against
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toy simulation to find the most optimal: the inertia tensor. The sensitivity of
the estimator was then tested with a more realistic simulation of a distorted void
stack, devised to encode some of the void properties extracted with the vide
and revolver algorithms: the number of galaxies defining a void and a void
density profile. The simulated AP effect was recovered with high accuracy. When
confronted with mock data, the devised inertia tensor did not perform well. A
modification of its parametrization allowed to recover the AP signal revealing a
volume-dependent behaviour when applying the analysis in redshift space. Such
behaviour needs to be properly modelled and understood prior to the application
of the Alcock-Paczynski test without calibration methods. It also remains to be
seen if the signal recovery displays a volume dependence in real-space as well.

The work carried out in this thesis, probing dynamical and geometrical distortions
around voids emphasised several limitations of the void science. The main limitation
can be found in the lack of theoretical modelling of the void two-point statistics.
Such a model would enable both to gain a strong constraining power on cosmology
but also to investigate the validity of the assumptions adopted when analyzing the
void clustering statistics such as the linearity of the bias and its estimation.

A second limitation consists in the estimation of the systematics pertaining to
voids. While most void works have been carried out on N-Body simulations, the
study of the void-galaxy correlation has been extensively studied in real conditions.
However, the impact of the void finding process and the systematics of the galaxies
on parameter estimation has yet to be properly studied while it is paramount to
an unbiased cosmological constraint. I consider the work presented in this thesis
as a first step toward such characterization and plan to extend this further with,
for example, the improvement void stack. With more realistic features, it could
provide a test ground to ascertain systematical effects.
With the coming large-scale spectroscopic surveys such as DESI and Euclid,

tens of thousands of voids are expected to be found. It follows that the analysis
techniques have to be refined and the systematic to be mastered to allow voids to
reach their full potential as discriminating cosmological probes.
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Résumé Substantiel

La cosmologie moderne
La cosmologie porte sur l’étude des lois qui gouvernent l’Univers que nous habitons
dans le but de comprendre son origine et son évolution. A l’heure actuelle, notre
description de l’Univers est guidée par un modèle standard de la cosmologie. Ce
dernier repose sur des fondements théoriques et observationnels.

Un Univers en expansion
Les fondements du modèle standard de la cosmologie reposent sur un cadre théorique
fourni par la Relativité Générale formulée par Albert Einstein. Celle-ci est contenue
dans un ensemble d’équations qui lient les contributions énergétiques de notre
Univers à sa géométrie. Afin de retrouver la formulation de notre modèle standard,
deux fondements sont nécessaires :

– Notre Univers obéit au principe cosmologique. Ce dernier énonce qu’il n’y a
ni position ni direction privilégiée dans l’Univers. Il est donc homogène et
isotrope.

– Notre Univers est en expansion, comme l’ont découvert Vesto Slipher, Edwin
Hubble et George Lemaître dans la première moitié du XXe siècle.

Ces deux fondements peuvent être encodés dans la définition de la métrique de
notre Univers et permettent la résolution des équations d’Einstein. L’évolution de
l’Univers peut alors être décrite par un ensemble de paramètres qui décrivent la
contribution énergétique de l’Univers ainsi que leur expansion.

Le modèle Λ-CDM
L’observation de plusieurs phénomènes astrophysiques comme les vitesses de rota-
tion des galaxies et les supernovae de type Ia ont permis des avancées majeures
dans l’inventaire du contenu de l’Univers. Il est ainsi apparu que notre Univers
était dominé par deux substances : la matière noire, une substance massive mais
invisible à nos détecteurs et l’énergie noire qui serait responsable de l’accélération
de l’expansion de l’Univers qui est subie actuellement.

Les observations les plus récentes de plusieurs sondes cosmologiques ont convergé
vers une description de l’Univers avec le contenu suivant :
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Ωm = 0.3111± 0.0056 (4.37)
ΩΛ = 0.6889± 0.0056 (4.38)
Ωk = 0.001± 0.002. (4.39)

L’Univers peut donc être considéré comme plat et dominé par le secteur sombre.
L’existence de ce secteur sombre reste néanmoins un mystère non-résolu dans la
cosmologie. Si des réponses peuvent être cherchées du côté de la physique des
particules dans le cas de la matière noire, la nature de l’énergie noire est considérée
comme une conséquence cosmologique. Il pourrait s’agir d’une quantité évoluant
dans le temps tout en respectant le cadre donné par la Relativité Générale : l’énergie
noire dynamique ou bien, elle pourrait être une conséquence d’une modification
des lois de la gravité à grande échelle. Un des enjeux majeurs de la cosmologie
moderne est donc de caractériser la nature de l’énergie noire.

L’apport des structure cosmiques
Les structures cosmiques sont une preuve de la particularité de la distribution de
matière à grande échelle. Cette dernière ressemble à une toile cosmique formée de
filaments, de noeuds, de murs et de vides cosmiques. Afin de comprendre notre
Univers et plus spécifiquement, l’énergie noire, l’observation et la modélisation de
la toile cosmique est primordiale car elle contient à la fois des informations portant
sur les paramètres cosmologiques mais aussi, des possibles traces d’une modification
des lois de la gravité.

Un cadre peut être donné dans la théorie linéaire en considérant que cette toile
prend sa source dans les fluctuations de densité de l’Univers jeune. La croissance
des structures peut être alors comprise comme une conséquence des processus
concurrent que sont l’intéraction gravitationnelle et l’expansion de l’Univers au fil
du temps.
L’information sur la croissance des structures est encodée dans le taux de

croissance des structure :

f := d lnD+

d ln a , f ≈ Ωm(a)γ (4.40)

Ce dernier est donc la dérivée logarithmique de la fonction de croissance D+
en fonction du facteur d’échelle de l’Univers a et nous donne le taux auquel les
structures grandissent. Il est aussi paramétré simplement par l’équation située à
droite. Dans ce cas, l’indice γ est prédit dans le contexte de la Relativité Générale
avec une valeur de 0.545. La mesure du taux de croissance des structures est donc
un test de la validité de la théorie d’Einstein et permettrait de trouver des réponses
sur l’origine de l’accélération de l’expansion de l’Univers.
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Les vides cosmiques dans la structure à grande
échelle
C’est à la fin des années soixante-dix que la distribution spécifique de la matière
à grande échelle a été découverte. Celle-ci a été accompagnée de l’observation de
vastes régions dépourvues de galaxies : les vides cosmiques. Dès lors, un des enjeu
de la cosmologie a été de comprendre comment ces grandes étendues de vides se
sont formées ainsi que les processus qui leur ont permis d’atteindre des tailles si
importantes.
L’existence de ces vides cosmiques provoque un changement de paradigme sur

la vision de la distribution de la matière à grande échelle et remet en cause les
modèles de formation des structures déjà observables à l’époque comme les amas
ou groupes de galaxies. Elle mène aussi au développement des premiers relevés
spectroscopiques de galaxies qui sont maintenant au premier plan de la cosmologie
actuelle.

Extraction et définition
Le développement des relevés de galaxies a permis de tracer la toile cosmique avec
une précision croissante et de mettre en lumière les zones sous-denses de notre
univers.

Pour ce faire, il est nécessaire de développer des techniques d’extraction de vides
dans les échantillons de galaxies car les vides, étant dépourvus de matière, sont des
objets qui ne sont pas observables de manière directe.
Ces algorithmes sont généralement appelés void finder2. La pluralité de ces

techniques se rassemblent autour de trois aspects fondamentaux: premièrement,
l’estimation de champs de densité, deuxièmement, l’identification des zones de
sous-densités et troisièmement, la caractérisation de ces sous-densités en tant que
vides cosmiques.

Ces algorithmes ont été développés avec différentes définitions du vide cosmique
et peuvent être classés dans trois catégories. Tout d’abord les algorithmes à critère
de densité qui entre en jeu dans la définition du vide, une sous-densité n’étant
considérée comme un vide que si son niveau de sous-densité est inférieure à un
seuil donné. Ensuite, les algorithmes géométriques, dont la construction de la
sous-densité repose sur des transformations géométriques comme la tessellation
de Voronoi ou bien une partition de l’espace comme des sphères ou des grilles.
Finalement, des algorithmes dynamiques qui reconstruisent et identifient les sous-
densités à partir du champ de vitesse.

Chaque type d’algorithme a ses avantages et inconvénients, en fonction du type
de données, de la géométrie du sondage ou de l’utilisation cosmologique que l’on
souhaite en faire. Plusieurs études comparatives de void finder ont été menées,

2en français : trouveur de vides
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elles confirment que les vides trouvés sont localisés autour des mêmes régions
(sous-denses), même si leur forme, centre et taille peuvent être différents. Il en
résulte que la définition des vides reste intimement liée à l’algorithme utilisé pour
le trouver.

Durant ma thèse, deux algorithmes ont été utilisés pour trouver des vides: vide
et revolver. Ces deux algorithmes sont basés sur l’algorithme zobov (ZOne
Bordering on Voidness), qui se compose de deux étapes. Dans un premier temps,
la tessellation de Voronoi permet de reconstruire le champ de densité localement
en construisant une cellule autour de chaque galaxie. L’inverse du volume de cette
cellule représente une estimation locale de la densité. En rassemblant les cellules
adjacentes les plus volumineuses, il est donc possible de construire une première
approximation des sous-densités locales du champ de matière tracé par les galaxies.
Dans un second temps, la transformée de Watershed est appliquée ce qui équivaut
à mesurer les différents niveaux de sous-densités permettant de rassembler les zones
et de définir ainsi les vides cosmiques.
Les algorithmes vide et revolver présentent l’avantage d’être adaptés aux

échantillons de données qui présentent une géométrie généralement complexe en
vertu des masques et sélections appliquées. Les contours des relevés sont non-
triviaux et sont pris en compte avant d’appliquer la tessellation et transformation
de Watershed afin de garantir l’extraction de vides à l’intérieur du relevé.
A l’issue de ces deux procédés, il est alors possible de définir les vides et d’en

extraire les propriétés comme la position de leur centre, leur taille et leur forme.

Les vides cosmiques
Les vides cosmiques se caractérisent par leur qualité de zones sous-denses. Etant
des objets occupant un volume très important dans les structures à grande échelle,
ils sont définis par certaines propriétés.

Croissance des vides

Comme pour le reste des grandes structures, l’origine des vides est attribuée à
l’existence de fluctuations de densité dans l’Univers primordial. Ces sous-densités
auraient crû pour devenir les vides cosmiques observés aujourd’hui. Au fil de
l’expansion, les dépressions dans le champ de densité deviennent de moins en moins
denses et s’étendent. Cela a pour conséquence de générer un profil de la répartition
de la matière autour du vide, le profil de densité du vide, caractéristique des vides
cosmiques. Marqué par une sous-densité minimale en son centre, le vide présente
un profil de densité qui croît jusqu’à former un mur avant de diminuer vers la
densité moyenne de l’Univers.

Les vides cosmiques participent au cours de leur croissance à celle de la structure
à grande échelle qui les abrite. Ils se forment de manière hiérarchique. Les grands
vides sont attribués à la fusion de proto-vides et leur expansion concurrente est
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considérée comme la source des murs se formant entre les vides.

Propriétés

Au-delà de leur nature sous-dense, les vides cosmiques se caractérisent par certaines
de leur propriétés. Ces dernières évoluent dans le temps de concert avec l’expansion.
Deux propriétés principales sont utilisées pour définir les vides : leur taille et leur
forme.
La taille des vides est généralement indiquée par convention comme un rayon.

En réalité, il sous-entend le volume enclos dans la sous-densité, en se plaçant
dans le cadre où le volume est assimilé à celui d’une sphère. La taille des vides a
toujours représenté un intérêt majeur en cosmologie car selon les tailles atteintes
aux différentes époques, il est alors possible de discriminer entre différents modèles
cosmologiques.
La forme des vides représente également un intérêt en cosmologie. Dans les

premières études des vides cosmiques, il a été considéré que les vides évolueraient
au cours du temps vers un état de sphéricité. En réalité, les vides ne sont pas
tout à fait sphériques et, bien que l’estimation de leur forme soit dépendante de
l’algorithme utilisé pour définir les vides, il a été montré que leur forme pouvait
dépendre de la cosmologie.

Les vides et la cosmologie
Bien que les propriétés des vides puissent être utilisées pour contraindre la cosmolo-
gie, les vides cosmiques peuvent être analysés sous plusieurs aspects afin d’obtenir
des informations sur les problématiques de la cosmologie actuelle comme l’énergie
noire. De par leur nature, ils sont considérés comme des environnements idéaux
pour étudier les propriétés de l’énergie noire.
Ainsi, les vides sont aussi sensibles à l’étude du clustering3 des galaxies autour

d’eux, mais peuvent aussi être analysés au regard des effets de lentillages gravita-
tionnels ou en considérant des effets de distorsions géométriques, connus sous le
nom d’effet Alcock-Paczynski dont il sera parlé plus en détail plus loin.

Enfin les contraintes cosmologiques avec les vides cosmiques sont complémentaires
aux techniques standard utilisées en cosmologie avec les galaxies et peuvent ainsi
aider à briser des dégénérescences entre les paramètres cosmologiques.

Contraindre la cosmologie avec les distorsions
dynamiques des vides
Les vides cosmiques étant sensibles à l’effet de la dynamique des galaxies envi-
ronnantes, ils permettent de contraindre le taux de croissance des structures. Au

3Le clustering est la manière dont les objets se rassemblent du fait de leur propriété massive
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cours de ma thèse, j’ai étudié les vides cosmiques issus des échantillons de galaxies
observées par le relevé extended Baryon Oscillation Spectroscopic Survey (eBOSS)
dans le cadre du relevé Sloan Digital Sky Survey (SDSS).

Sloan Digital Sky Survey : Cartographier l’Univers
Le relevé SDSS a démarré sous l’égide de James Gunn afin de relever les positions des
galaxies de manière systématique et de cartographier la distribution de la matière
dans la structure à grande échelle. Depuis le début des années 2000, le relevé a
connu plusieurs phases qui ont largement contribué à notre compréhension actuelle
de la cosmologie. Les premières étapes ont permis la détection de l’empreinte des
oscillations acoustiques de baryons dans la statistique à deux points des galaxies.
Puis succéda le projet Baryonic Oscillation Spectroscopic survey (BOSS) dédié
à la mesure précise de cet effet dans des échantillons de galaxies lumineuses
rouges permettant d’atteindre une contrainte fine des paramètres cosmologiques.
Finalement, la dernière étape de ce relevé dédié à la cosmologie a été le sondage
eBOSS démarré en 2014 et achevé en 2020 avec la publication des dernières données
(la Data Release) DR16.

Le relevé eBOSS

Durant ces cinq années ont été relevés des milliers de spectres pour quatre popula-
tions d’objets différentes. Les galaxies comptent trois populations: les Galaxies
Lumineuses Rouges (LRG), les Galaxies à Raies d’Emissions (ELG) et les objects
quasi-stellaires (QSO) ou quasars. Ces échantillons sont situés à des redshifts de
zLRG = 0.6 , zELG = 0.8 et zQSO = 1.45 en moyenne et possèdent des propriétés
différentes. Les LRG sont des objets plus massifs et particulièrement nombreux à
bas redshift. Les ELG sont des galaxies très actives du point de vue de la formation
d’étoiles en leur sein et sont très nombreuses aux redshifts supérieurs à 1. Enfin,
les QSOs sont les objets les plus lointains et se répartissent en deux populations au
sein du relevé eBOSS, les quasars destinés au clustering et les quasars destinés à
l’étude de la forêt Lyman-α.
Les échantillons d’intérêt pour l’étude des vides sont les distributions discrètes

des galaxies. Leurs positions sont utilisées pour extraire les vides. Avec celles-ci sont
aussi fournis des poids pour pondérer les systématiques observationnelles, qu’elles
soient d’origine astronomique avec le poids photométrique wsys, instrumentale avec
le poids dû aux collisions de fibres wcp, ou encore issue de la détermination du
redshift des galaxies wnoz. Enfin, un poids est attribué aux galaxies à partir de
leur densité en redshift afin d’optimiser l’estimation des statistiques à deux points
dans le cadre de la mesure des oscillations acoustiques de baryons. En plus des
échantillons de données sont fournis des mocks qui reproduisent les propriétés
statistiques des différents échantillons : les EZmocks dans le but d’estimer la
variance de la statistique à deux points. Un second type de mocks a aussi été
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développé à partir de simulations N-corps dans le but de caractériser les analyses
appliquées aux données.

Extraction des vides dans eBOSS

A partir des échantillons de galaxies sont extraits les vides cosmiques. Une première
étude a été menée pour comparer les vides trouvés avec les algorithmes vide et
revolver. A partir de 500 mocks ont été extraits des vides afin de qualifier
l’impact de la génération de fausses particules qui enclosent le volume du relevé.
Ces dernières sont primordiales pour estimer le volume du relevé et a fortiori, le
volume des cellules de Voronoi. Les deux algorithmes ne génèrent pas ces particules
de la même manière. Une étude comparative de ces deux algorithmes permet alors
de procéder à des choix de sélection des vides.

L’impact majoritaire étudié est la disposition des fausses particules générées par
les void finders autour des bornes en redshift qui sont de 0.55 à 1.055 dans les
mocks considérés. Deux choix ont été étudiés, une distribution plus large que les
bornes en redshift entre 0.4 et 1.2 appelé wide et une distribution étroite ayant les
mêmes bornes que l’échantillon 0.55 et 1.05 appelée narrow. Cette étude a révélé
l’impact non négligeable de la disposition de ces fausses particules sur l’estimation
des volumes et des positions des galaxies. Une distribution wide a tendance à
mener à une contamination des vides jusqu’au coeur de l’échantillon tandis qu’une
distribution narrow entraine une contamination des vides situés près des bornes
en redshift seulement. La contamination se trouve généralement dans les petits
vides dans le cas narrow, tandis que dans le cas wide, il peut aussi être noté une
propension à trouver des vides plus grands.

Au-delà du comportement différent entre vide et revolver face à la disposition
des fausses particules, les vides trouvés au coeur de l’échantillon dans le cas narrow
sont similaires, avec une propension pour l’algorithme vide à trouver des petits
vides supplémentaires.

Afin d’enlever la possible contamination sur les bornes en redshift de la distribu-
tion de vides, quatre coupures ont été étudiées dans les deux configurations wide
et narrow afin de couper les vides dont le volume dépasse les bornes en redshifts.
La première configuration s’est montrée plus sensible aux coupures que la seconde.
Parmis les quatres coupures étudiées, celle selectionnée correspond au meilleur
compromis entre l’atténuation de la contamination et le nombre de vides coupés.
L’algorithme choisit pour extraire les vides dans les échantillons DR16 est

revolver. Bien que vide et revolver soient semblables, ce dernier présente
l’avantage de prendre en compte les poids de correction des galaxies. Des choix
supplémentaires de sélections ont été opérés, notamment sur le nombre de particules
ainsi que la proximité des vides par rapports aux bords du survey (angulaire
également).

Les vides ont été extraits dans chacun des échantillons de galaxies : ELG, LRG
et QSO ainsi que leur mocks respectif. Les propriétés des vides et échantillons de
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Table 4.6: Propriétés des catalogues de vides identifiés dans les catalogues eBOSS DR16
et leur EZmocks associés. Ng représente le nombre de galaxies, Nv et Nv,cut

sont le nombre moyen de vides extraits avant et après coupure respectivement
accompagné de leur écart-type calculés avec les 1000 mocks et catalogues de
données. zeff est le redshift effectif du catalogue de vides après sélection et
smax est la séparation maximale entre une paire vide-galaxie utilisée dans
l’estimation de la fonction de corrélation.

Echantillon Ng Nv Nv,cut zeff smax Aire (deg2)
EZmocks
ELG 173,736 2, 210± 35 1, 895± 37 0.847 3.60 1,170
LRGpCMASS 380,190 4, 305± 54 2, 850± 47 0.740 3.52 9,493
QSO 343,700 5, 449± 53 4, 321± 52 1.478 3.52 4,808
Data sample
ELG 173,736 2, 097± 5 1, 801± 5 0.847 3.60 1,170
LRGpCMASS 377,458 4, 228± 11 2, 814± 12 0.740 3.52 9,493
QSO 343,708 5, 451± 8 4, 347± 9 1.478 3.52 4,808

galaxies sont résumés dans le tableau 4.6

Distorsions dans l’espace des redshifts et modélisation
Les vides et les galaxies sont soumis aux effets dynamiques à l’origine du processus
de formation et de croissance des structures. De ce fait, la position des galaxies en
redshift se retrouve contaminée par ces effets dynamiques, introduisant un décalage
supplémentaire dans le redshift. Ces effets se manifestent par l’introduction de
distorsions du champ de matière mesurées, aussi connues sous le nom de redshift
space distortions (RSD).

Ces effets dynamiques dépendent de l’échelle sondée et sont généralement caté-
gorisées en deux contributions :

– Linéaire : La contribution linéaire des RSD est attribuée au processus au
coeur de la formation des structure. Elle correspond à des vitesses dirigées
vers le centre des structures, dans le cas de structures sur-denses et des vitesses
dirigées vers l’extérieur des structures dans le cas des sous-densité comme les
vides cosmiques. Ces vitesses sont une conséquence du processus de croissance
des structures. Elles modifient l’aspect visuel des structures qui peuvent
apparaître comme allongée ou contractée le long de la ligne de visée : l’effet
Kaiser.

– Non-Linéaire : Les effets non-linéaires interviennent généralement dans les
processus d’effondrement non-linéaire des sur-densités. Cela introduit des
déformations à plus petites échelles sous formes d’élongations, aussi connues
sous le nom d’effet Finger-of-god.
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Les vides ont l’avantage d’être considérés comme des objets plus linéaires que
les galaxies ou autre marqueurs de sur-densité. Par conséquent, les contributions
dynamiques principales sont linéaires. Ils sont donc d’intérêt majeur pour la
cosmologie, car ces vitesses dépendent du taux de croissance des structures f ,
prédit dans le contexte de la Relativité Générale.
Dans le cadre des vides, la mesure du taux de croissance des structures se fait

grâce à la fonction de corrélation croisée entre les vides et les galaxies qui consiste
à compter le nombre de paires vides-galaxies à une séparation s dans un volume
donné. En considérant une conservation du nombre de paires vides-galaxies entre
l’espace réel et l’espace des redshifts, il est possible de modéliser la fonction de
corrélation théorique en faisant intervenir le taux de croissance des structures :

ξ(s, µ) = ξ(r) + β

3
¯ξ(r) + fµ2(ξ(r)− ¯ξ(r)). (4.41)

Dans ce cas, la relation entre le champ vide-matière estimé ξ(r) et le vrai champ
vide-matière sous-jacent est considérée comme étant linéaire. La décomposition de
cette fonction en polynôme de Legendre permet de faire apparaitre une relation
simple entre le monopole, qui estime le profil de densité du vide et le quadrupole,
qui contient l’information dynamique autour du vide:

G(β) = ξs2(r)
ξs0(r)− ξ̄s0(r)

(4.42)

= 2β
3 + β

, (4.43)

où β est f/b, le quotient du taux de croissance des structure et le biais des galaxies.
L’analyse porte donc sur l’estimation de ce β et l’extraction d’une contrainte sur
le taux de croissance des structures dans les trois échantillons de galaxies : ELG,
LRG et QSO.

Etude des effets systématiques
Avant de pratiquer l’estimation du β dans les données, les choix de méthodologies
ainsi d’éventuels effets systématiques sont testés sur les EZmocks et les mocks
basés sur des simulations à N-corps correspondant à chaque traceur.
Avec les EZmocks sont testés les choix méthodologiques que sont le binning4,

l’estimateur de la fonction de corrélation croisée ainsi que l’utilisation des poids
FKP. Les deux premiers peuvent influer sur l’amplitude des monopoles et des
quadrupoles de la fonction de corrélation et peuvent modifier le signal RSD. Les
poids, quant à eux, sont utilisés pour optimiser le signal dans l’analyse standard de
la fonction de corrélation à deux points des galaxies. L’utilisation de ces poids dans

4Echantillonage choisi pour l’estimation de la fonction de corrélation
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le calcul de la fonction de corrélation à deux points entre les vides et les galaxies
n’est donc pas optimisé. Le choix a été fait de les utiliser et l’impact de ce choix
est étudié.

Avec les simulations à N-corps sont étudiés les effets systématiques liés au modèle
utilisé pour contraindre le taux de croissance des structures ainsi que l’impact de
la définition du centre du vide et finalement, le choix de la cosmologie fiducielle. Il
est apparu que le choix du barycentre pour contraindre le taux de croissance des
structures avec le modèle considéré est optimal.

Les déviations entre les valeurs attendues dans les simulations et les paramètres
RSD β estimés sont utilisés comme systématiques. Dans le cas des EZmocks,
c’est la déviation par rapport à l’analyse de référence qui est reportée comme effet
systématiques. Ces effets et leurs intensités sont reportés dans le tableau 4.7.

Table 4.7: Budget systématique total en terme des erreurs relatives sur le paramètre
β obtenues à partir des tests dans les mocks pour chacun des traceurs
eBOSS. L’erreur systématique totale est la somme quadratique de chaque
contribution.
Type sys in (σβ/β) (%) LRG ELG QSO
Méthodologie Binning 4.8 2.3 1.3

Poids FKP 1.4 2.3 0.7
Estimateur 2.2 3.3 1.0

Void
finder Cosmologie Fiducielle 2.2 2.2 2.2
Modèle Modèle RSD 9.0 8.3 39.9
Total (%) 10.8 9.76 40.0

Il apparaît que les effets systématiques les plus importants se trouvent dans
l’estimation du paramètre β pour chaque échantillon avec un effet dominant dans
le cas de l’échantillon des quasars d’une hauteur de 40%.

Analyse des DR16
Après avoir estimé les différents effets systématiques dans les mocks, la fonction de
corrélation vide-galaxie est calculée pour chacun des échantillons considérés. Pour
chaque échantillon, mille catalogues de vides sont extraits afin de tenir compte de
l’impact des fausses particules générées lors de la recherche des vides. Le paramètre
β est alors estimé pour chaque fonction de corrélation et c’est la valeur moyenne
des mille β mesurés qui est considérée comme notre mesure pour chaque échantillon.
Ces valeurs sont reportées dans le tableau 4.8.

Afin de pouvoir estimer le taux de croissance des structures, il est nécessaire de
connaître le biais linaire associés à chaque échantillon de galaxies b. En pratique,
ce biais est estimé dans les analyses de l’autocorrelation des galaxies. Le taux de
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Table 4.8: Résultats finaux sur le paramètre RSD β estimé dans les différents échantil-
lons eBOSS DR16. β et son erreur statistiques σstat sont reportés comme
étant la moyenne des 1000 estimations de β et ses erreurs dans chaque échan-
tillon. Les erreurs systématiques σsyst correspondent à celles reportées dans la
budget systématique total appliqué à notre estimation de β. L’erreur totale
σtot est la somme quadratique des contributions systématique et statistique.

Echantillon 〈β〉 σstat σsyst σtot

LRG 0.415 0.075 0.045 0.087
ELG 0.665 0.107 0.065 0.125
QSO 0.313 0.049 0.125 0.134

Table 4.9: Résultats finaux sur l’estimation du taux de croissance des structure dans
les vides de eBOSS DR16. Les β et leur erreur sont les moyennes des 1000
estimations de β et leur erreur. Les erreurs cités prennent en compte l’erreur
systématique. Les valeurs reportées de b1σ8 proviennent des analyses de
clustering des échantillons DR16 pour les LRGs (Bautista et al., 2020;
Gil-Marín et al., 2020), les ELGs (De Mattia et al., 2020; Tamone et al.,
2020) et les QSOs (Hou et al., 2020; Neveux et al., 2020). La contrainte sur
le taux de croissance des structures résulte de la combinaison entre le β et
bσ8 et son erreur inclut l’erreur du biais des galaxies.

Echantillon zeff β b1σ8 fσ8

LRG+CMASS 0.740 0.415± 0.087 1.20± 0.05 0.50± 0.11
ELG 0.847 0.665± 0.125 0.78± 0.05 0.52± 0.10
QSO 1.478 0.313± 0.134 0.96± 0.04 0.30± 0.13

croissance des structures est donc obtenu en utilisant les mesures issues de l’analyse
de la statistique à deux points de chaque traceur au sein de la collaboration eBOSS.
Le paramètre β est alors transformé en fσ8 ou f est le taux de croissance des
structures et σ8. Le taux de croissance estimé à partir des vides cosmiques est cité
dans le tableau 4.9.

Les contraintes finales du taux de croissance des structures présentées précédem-
ment sont reportées dans la figure 4.20 avec un ensemble non-exhaustif des con-
traintes sur fσ8 réalisées ces dernières années. A l’heure actuelle, la dispersion de
ces estimations ne permet pas de mettre en évidence une déviation par rapport
au modèle standard de la cosmologie. Les mesures effectuées à travers l’étude des
vides restent en accord avec les estimations provenant des techniques d’analyses
standard.
Pour conclure cette partie, bien que l’analyse des vides soit prometteuse pour

obtenir des contraintes complémentaires du taux de croissance des structures, la
présence d’éventuels effets systématiques se montre non-négligeable. Dans le cas
des quasars, l’origine d’une déviation si importante par rapport à la valeur attendue
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Figure 4.20: Panel supérieur: Comparaison des taux de croissance des structure fσ8
estimé dans différents échantillon de galaxies et vides. Les marqueurs
noirs pleins représentent les différents relevés, 6dF (Beutler et al., 2012),
GAMA (Blake et al., 2013), WiggleZ (Blake et al., 2011a), VIPERS (Pez-
zotta et al., 2017) et FastSound (Okumura et al., 2016). Les marqueurs
vides représentes les contraintes provenant de vides et les marqueur pleins,
les galaxies. La ligne pointillée est la prédiction du taux de croissance des
structure issue des résultats Planck 2018 Panel inférieur: Comparaison
des estimations de taux de croissance des structure fσ8 à partir de l’étude
de la fonction de corrélation vide-galaxie seulement.
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dans la simulation reste incertaine. Elle ne peut néanmoins pas être attribuée au
modèle de RSD adopté. Afin d’obtenir les contraintes cosmologiques les plus fines
possible, il est donc primordial de mener une étude poussée des effets systématiques.

Contraindre la cosmologie avec les distorsions
géométriques des vides
Les RSD représentent une distorsion provenant de la dynamique en jeu dans la
croissance des structures et permet de déceler une éventuelle modification des lois de
la gravité. Un autre aspect de la contrainte cosmologique de l’énergie noire repose
sur l’estimation de son équation d’état. Une manière d’achever cette contrainte est
de mesurer les distances des objets qui en dépendent comme dans le cas du test
Alcock-Paczynski.

Le test Alcock-Paczynski
Le test Alcock-Paczynski (AP) est un test purement géométrique de la cosmologie.
Il repose sur la connaissance de la forme d’un objet possédant des propriétés de
symétrie, dont un exemple parfait est une sphère. L’étendue de la sphère peut
alors être considérée le long de deux axes majeurs : la ligne de visée et la direction
transverse à la ligne de visée qui sont définis comme suit :

∆r⊥ = DA(z)∆θ, (4.44)

∆r‖ = c∆z
H(z) , (4.45)

où DA(z) est la distance de diamètre angulaire, H(z) est le paramètre de Hubble.
∆θ correspond à l’étendue angulaire de l’objet considéré et ∆z à son étendue le
long de la ligne de visée.
La vraie cosmologie sous-jacente de notre Univers n’étant pas connu, il est

nécessaire d’utiliser une cosmologie fiducielle pour estimer les distances et les
propriétés des vides. Cela a pour conséquence de déformer la relation de symétrie
de la sphère : l’effet Alcock-Paczynski.
Cette déformation est alors quantifiable par le rapport des axes de symétrie de

la sphère, corrigée par l’usage de la cosmologie fiducielle :

ε = H(z)trueDA(z)true
H(z)fidDA(z)fid . (4.46)

ε est généralement appelé ellipticité.
Le test Alcock-Paczynski consiste donc simplement à mesurer les axes de symétrie

d’un objet dans une cosmologie donnée pour en déduire la cosmologie sous-jacente

179



de notre Univers.
Les vides, bien qu’étant individuellement de formes disparates, peuvent être

considérées, lorsqu’ils sont empilés les uns sur les autres en grand nombre, comme
étant un objet sphérique. Ils deviennent de cette manière des objets de choix pour
la contrainte cosmologique avec le test Alcock-Paczynski.

Détermination du meilleur estimateur
Pour appliquer le test AP, il est primordial de définir un estimateur de l’ellipticité
robuste et non biaisé. Pour cela, deux approches ont été testées. La première
consiste à considérer un empilement (stack) de vides comme étant une ellipsoide
du fait de l’effet AP. Une ellipsoide est définie par trois axes de symétrie de valeur
a, b et c. En considérant l’axe aligné avec c comme étant colinéaire avec la ligne de
visée. L’ellipticité peut être alors définit comme :

ε =
√

2c2

a2 + b2 (4.47)

Cette ellipticité peut ainsi être mesurée en ajustant les galaxies définissant un stack
de vides avec les axes d’une ellipsoides.
La deuxième approche repose sur l’utilisation du tenseur d’inertie. Ce dernier

permet d’estimer les axes préférentiels de symétrie d’un solide. En considérant
le stack comme une ellipsoide, l’ellipticité peut alors être déterminée comme une
association des moments d’inertie du stack qui se réduit à :

ε =

√√√√ ∑
i 2z2

i∑
i x

2
i + y2

i

. (4.48)

Dans cette expression, (xi, yi, zi) donnent les coordonnées de la ième particules
définissant le stack.

Pour tester ces estimateurs, deux simulations de stack ont été développées. Les
deux simulations génèrent un nombre fini d’ellipsoide pour reproduire un stack de
vides. Les simulations diffèrent dans la disposition des galaxies sur le pourtour des
ellipsoides. L’une place les particules sur la surface d’une ellipsoide et impose une
épaisseur en introduisant une déviation gaussienne de la position des particules par
rapport à la surface de l’ellipsoide. Ce processus, cependant, cause une génération
des points non-homogène dans la coquille d’ellipsoide. La seconde méthode repose
sur la génération d’une coquille sphérique dont la distribution en volume est
gaussienne. Les coordonnées radiales sont ensuite inférées de la distribution de
volume et une distorsion selon la coordonnées z est ajoutée. Ce processus permet
une population du stack plus homogène.
En testant les performances des deux estimateurs sur ces simulations, c’est le

tenseur d’inertie qui semble le plus à même de fournir une estimation de l’ellipticité
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la moins biaisée, comme on peut le voir dans la figure 4.21.
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Figure 4.21: Déviation de l’ellipiticé mesurée par rapport à l’ellipticité attendue en
fonction de l’épaisseur du stack considéré dans le cas de la simulation
non-homogène (à gauche) et homogène (à droite). En bleu est montré
l’estimation de l’ellipticité issue de l’ajustement vide par vide de l’équation
de l’ellipsoide, en vert le même ajustement appliqué à l’ensemble des
particules du stack. Le tenseur d’inertie estimé vide par vide est montré
en rouge et le tenseur d’inertie appliqué sur l’ensemble du stack est en
noir. Les erreurs affichées correspondent à la dispersion à 1σ estimée à
partir de 500 réalisations de chaque simulation.

Sensibilité à l’effet AP
Après avoir fait le choix du tenseur d’inertie comme estimateur de référence pour
mesurer l’ellipticité du stack, on procède à la caractérisation de sa sensibilité à
l’effet AP.
Pour ce faire, une simulation idéaliste d’un stack de vides est mise en place.

Celle-ci repose sur plusieurs hypothèses : le stack en espace réel est sphérique,
la distribution de densité suit le profil de densité caractéristique des vides et les
vides simulés sont définis par un rayon et un nombre de particules semblables
aux vides extrait grâce aux algorithmes vide et revolver. Après génération
du stack, les positions des vides et des galaxies sont transformées dans l’espace
observable (redshift, ascension droit et déclinaison) à partir d’une cosmologie dite
’vraie’. L’effet Alcock-Paczynski est alors introduit par l’utilisation d’une cosmologie
différente dans la procédure d’empilement des vides. La Figure 4.22 montre la
sensibilité de l’estimateur à l’effet AP. Une déviation du signal peut être notée
à l’utilisation d’une cosmologie fiducielle supérieure, elle reste néanmoins bien
inférieure au pourcent et négligeable au voisinage de la vraie cosmologie.
La sensibilité à l’effet AP peut être alors testé suivant plusieurs configurations

en changeant la méthode d’empilement, en recalculant le centre des vides avec les
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Figure 4.22: Haut : Ellipticités (à gauche) et Cosmologie (à droite) mesurées en fonction
de la cosmologie fiducielle adoptée. Les régions ombragée montre les valeurs
issues des 1000 réalisations du stack. Les points bleus correspondent à la
moyenne sur l’ensemble des réalisations. Les erreurs sont prises comme
étant l’écart-type des 1000 réalisations. Bas : Déviation des quantités
mesurées par rapports aux quantités attendues en fonction de la cosmologie
fiducielle attendue.

coordonnées comobile estimées à partir de la cosmologie fiducielles. Dans ces cas-là,
la déviation par rapport au signal attendue reste dans le même ordre de grandeur
et bien inférieur au pourcent. Le volume considéré pour mesurer l’ellipticité est
aussi varié. Dans ce cas, la mesure du signal est grandement affectée mais une
convergeance des mesures vers celle de la vraie cosmologie peut être notée.

Application sur des mocks
Après avoir confirmé la sensibilité de notre procédure d’estimation de l’ellipticité
d’un stack de vides, celle-ci est appliquée sur 500 mocks. Dans un premier temps,
l’impact de la sélection en termes de leur nombre de galaxies et leur taille est étudié.
Ces deux grandeurs influent peu sur l’estimation du signal avec des variations
inférieures au pourcent.
La sensibilité au signal AP est alors étudiée dans les mocks en extrayant les

vides cosmiques en faisant varier la cosmologie fiducielle. Les ellipticités mesurées
dans ce cas ne présentent aucune variation en fonction de la cosmologie fiducielle
adoptée. Le changement de définition de vide ou de méthode de stacking ne
montrent aucune influence sur la récupération du signal AP. Enfin, le changement
de volume considéré n’atteste aucune convergence vers une valeur précise de la
cosmologie.
Afin de retrouver le signal AP, l’estimateur de l’ellipticité est modifié pour

modifier le volume considéré. Au lieu de mesurer l’ellipticité dans un volume
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sphérique, elle est estimée dans une série de volumes ellipsoidaux. Bien qu’un signal
AP soit détecté, il n’est pas en accord avec le signal théorique. De plus, la variation
de la valeur du volume considéré influe grandement sur ce signal et change son
amplitude. Il s’en suit que le signal Alcock-Paczynski dépend du volume considéré,
mais est aussi grandement affecté par les effets dynamiques des distorsions dans
l’espace des redshift.
La contrainte cosmologique par le biais du test Alcock-Paczynski seulement

nécessite alors une modélisation des effets de distorsions dans l’espace des redshifts.
De plus, la dépendance de ce signal en terme du volume considéré doit être comprise.

Conclusion
Pour conclure, ma thèse a porté sur l’étude des vides cosmiques dans le but de
contraindre la cosmologie sous deux aspects différents. L’un porte sur l’étude de la
dynamique des galaxies autour des vides qui permettraient de trouver des traces
d’une éventuelle modification des lois de la gravité, l’autre porte sur l’étude de
la forme de stacks de vides qui seraient sensible à l’effet Alcock-Paczynski. Ce
dernier permet de contraindre directement les paramètres cosmologiques ainsi que
l’équation d’état de l’énergie noire.

La contrainte du taux de croissance des structures grâce aux vides est prometteuse,
cependant, des effets systématiques sont à déplorer et nécessite des tests accrus sur
la validité des vides et des modèles appliqués. Concernant le test Alcock-Paczynski,
au-delà de l’effet des distorsions dans l’espace des redshifts, la dépendance en volume
du signal AP représente un second challenge. Ces effets doivent être proprement
modélisé et compris avant de pouvoir appliquer une analyse Alcock-Paczynski qui
ne repose sur aucune calibration.
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