
Institut de Recherche sur les
Phénomènes Hors Equilibre

THÈSE
en vue de l’obtention du grade de

Docteur de l’Université d’Aix-Marseille

Discipline : Mécanique et Physique des Fluides

IRPHE

École Doctorale 353

Présentée et soutenue publiquement le 13 octobre 2020
par Pierre Léard

On the interaction between turbulence and
stratification: penetrative convection, internal
gravity waves and large-scale flow generation

Geophysical and Astrophysical applications

Mémoire provisoire

Directeurs de Thèse : Michael Le Bars and Patrice Le Gal

Devant la commission d’examen formée de :

M. Michel Rieutord Université de Toulouse, Professeur Rapporteur
Mme. Chantal Staquet Université de Grenoble, Professeure Rapportrice
M. Stéphane Mathis CEA, Chercheur Examinateur
M. Philippe Odier ENS Lyon, MCF Examinateur
M. Antoine Venaille CNRS, CR Examinateur
M. Michael Le Bars CNRS, DR Directeur
M. Patrice Le Gal CNRS, DR Directeur





Contents

Introduction 1

1 Stratified fluids, internal gravity waves and large-scale flows 3
1.1 Stratified fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Oscillatory motions in stratified fluid . . . . . . . . . . . . . . . . . 7

1.2 Internal gravity waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Propagation properties . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Internal gravity waves in geophysical flows . . . . . . . . . . . . . . 12
1.2.3 Internal gravity waves in stars . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 The effect of rotation: inertial gravity waves . . . . . . . . . . . . . 17

1.3 Interactions of internal gravity waves with their environment . . . . . . . . 17
1.3.1 Mixing and breaking . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.2 Internal gravity waves in a shear flow . . . . . . . . . . . . . . . . . 18
1.3.3 Large-scale flows driven by waves . . . . . . . . . . . . . . . . . . . 21

1.4 The importance of the QBO in the Earth’s atmospheric flows . . . . . . . . 24
1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Multi-modal model for the Quasi-biennial Oscillation 29
2.1 Plumb’s theoretical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1 The Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . 31
2.1.2 Reynolds decomposition . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.3 Analytical expression for the forcing term . . . . . . . . . . . . . . 37

2.2 Past studies using the Plumb’s model . . . . . . . . . . . . . . . . . . . . . 41
2.2.1 Chaotic behaviour of the Plumb’s model . . . . . . . . . . . . . . . 41
2.2.2 Plumb-like models in GCMs . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Our study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.1 A spectrum as forcing . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.2 Numerical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Multi-modal model for the QBO . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Large-scale flow generation by turbulently generated internal gravity
waves 63
3.1 How to drive a QBO from stochastically generated waves ? . . . . . . . . 64

3.1.1 The monochromatic Plumb & McEwan’s experiment . . . . . . . . 64
3.1.2 Waves generation in experiments . . . . . . . . . . . . . . . . . . . 66

i



CONTENTS

3.2 Set-up and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.1 Description of the setup . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.3 Solutions tested to prevent the mixing at the interface . . . . . . . 73

3.3 Internal gravity waves generated by jet turbulence . . . . . . . . . . . . . . 74
3.3.1 Experiment with refilling process . . . . . . . . . . . . . . . . . . . 75
3.3.2 Results of the experiments trying to prevent mixing . . . . . . . . . 86
3.3.3 Index matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4 Numerical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.4.1 Influence of the domain size . . . . . . . . . . . . . . . . . . . . . . 90
3.4.2 Importance of the mode . . . . . . . . . . . . . . . . . . . . . . . . 92

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Penetrative convection in water around its maximum density at 4 ◦C 97
4.1 A brief introduction to penetrative convection . . . . . . . . . . . . . . . . 98

4.1.1 Some theoretical aspects of Rayleigh-Bénard convection . . . . . . . 98
4.1.2 Penetrative convection . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 Experimental and numerical investigation of the 4 ◦C convection in a 3D
geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.1 Description of the experimental set-up . . . . . . . . . . . . . . . . 104
4.2.2 Numerical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3 Description of the flow in the 4 ◦C set-up . . . . . . . . . . . . . . . . . . . 108
4.3.1 Experiment results . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5 Penetrative convection at low Prandtl number 127
5.1 Astrophysical context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.1.1 Importance of penetrative convection in stellar models . . . . . . . 128
5.1.2 Double-diffusive convection . . . . . . . . . . . . . . . . . . . . . . 130

5.2 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2.1 Diffusion of gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2.2 Double-diffusive instabilities in the experiment . . . . . . . . . . . . 134
5.2.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.2.4 Ideas about other measurement techniques . . . . . . . . . . . . . . 137

5.3 Analysis of a preliminary experiment . . . . . . . . . . . . . . . . . . . . . 138
5.3.1 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.3.2 Stratified layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Conclusion 145

Appendices 153

Bibliography 157

ii



INTRODUCTION

The internal structure of stars, Earth’s atmosphere, oceans and core, or even other ce-
lestial objects’ atmospheres share similar characteristics. They are all composed of layers
with different dynamics. Quite often, among these layers, a convective layer is found
to be adjacent to a stably stratified one. Fast chaotic motions animate the convection
while the stratification remains much more quiescent. Yet, the flows within the strati-
fied layer are of importance for the global dynamics and must not be overlooked. The
coupling between the two layers is a key problem in Geophysics and Astrophysics. How-
ever, the very broad range of involved time- and length-scales makes the problem quite
challenging. As an example for the very disparate scales existing in these problems, let’s
consider the Sun. It is aged 4.6 Gy (and will live another 5 or 6 Gy before it turns
into a red giant), has activity oscillations with a period of 11 years observed since the
early 18th, while oscillations as short as 5 minutes are observed at its surface. Regarding
length-scales, convective cell patterns at the Sun surface approximately have the surface
of France (circle with diameter ∼ 1000 km) while the Sun diameter is 1.4× 106 km (100
times larger than Earth’s diameter). Because of these very wide length and time ranges,
the investigation of the long-time evolution of these systems remains inaccessible without
modelling and parameterizing the small-scale dynamics, all the more so when parame-
ters (Reynolds, Rayleigh, Prandtl, Ekman numbers) describing these flows reach extreme
values. The models describing stars evolution, or predicting the evolution of the climate
on Earth depend on our understanding of the diverse mechanisms taking place in those
systems. Thus, focalized studies are needed to improve our knowledge and awareness of
the global impact that small-scale dynamics may have.

To explore the interaction of coupled convective and stratified layers, the direct inte-
gration of the Navier-Stokes equations is prescribed because of the diverse scale ranges.
In consequence, it remains the possibility to either address the problem through reduced
models capturing its fundamentals, or to model the essential ingredients in an experiment.

This manuscript describes the different studies performed in order to enlighten our
understanding of the coupling between a convective layer and a stratified layer. The
first chapter details basic knowledge on stratified fluids and associated internal gravity
waves, with illustrations coming from observations and laboratory experiments. The
Quasi-Biennial Oscillation, a peculiar phenomenon observed in the Earth’s stratosphere
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Introduction

is also presented. The information given there will be of interest throughout the whole
manuscript.

The second chapter describes a theoretical development and numerical integration
of stochastically excited internal gravity waves generating large-scale flows through non-
linear interactions. This model mainly concerns the Quasi-Biennial Oscillation, but may
apply to similar flows taking place in stars and other planets’ atmosphere.

The third chapter introduces an attempt to drive an oscillating large-scale flow, similar
to the Quasi-Biennial Oscillation, in a laboratory experiment with stochastic forcing.
The experiment has the main advantage to be easily compared to the theoretical model
developed. Unfortunately, no oscillating flow was observed.

The fourth chapter concerns our experimental study of penetrative convection in wa-
ter. Penetrative convection, which refers to the interaction of a convective layer with a
stratified layer, is briefly presented. The non-linear equation of state of water allows to
study the coupling between the two layers in a stationary configuration. The flow ob-
served is thoroughly described and compared to numerical simulations with comparable
parameters.

The fifth and last chapter of this manuscript describes a recently designed experiment
focusing on penetrative convection with gases as working fluids. Using gases allows to
lower the Prandtl number by one order of magnitude compared to water. Low Prandtl
numbers are quite relevant for stellar applications but also in order to see the emergence of
large-scale flow from internal gravity wave forcing. This experiment being, at first place,
motivated by stellar application, the astrophysics context is described at the beginning
of the chapter, especially the importance of the overshooting region in stellar models.
The experiment was finalised during the last 6 months of the PhD and only a few test
experiments could be performed, but preliminary results are quite promising.

The redaction of the present manuscript has been greatly facilitated by the help of the
excellent books written by [Sutherland, 2010] and [Vallis, 2017] which detail anything that
need to be known about internal gravity waves and geophysical flows. The recent PhD
works of [Renaud, 2018] helpled my comprehension of the Plumb’s model, and [Alvan,
2014] introduced me into the astrophysics bibliography.
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CHAPTER 1

STRATIFIED FLUIDS, INTERNAL
GRAVITY WAVES AND LARGE-SCALE

FLOWS

Contents
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1.4 The importance of the QBO in the Earth’s atmospheric flows . . . . . 24
1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

In this chapter, we introduce the physical concepts of a stratified fluid through basic
equations and examples. Internal gravity waves will be introduced using some illustrations
of their numerous appearances in geophysical and astrophysical flows. They are driven
by buoyancy forces, as surface waves, but propagate in a continuously stratified medium.
They are known to transport energy and momentum and are able to drive slowly varying
large-scale flows, through non-linear processes. The purpose of this chapter is to give
the reader basic but essential concepts about internal gravity waves properties, through
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Chapter 1. Stratified fluids, internal gravity waves and large-scale flows

a review of literature.
Note that internal gravity waves are sometimes called “gravity waves” or “internal waves”.
The former is avoided due to its confusion with surface waves, which are also driven by
gravity forces but are confined to an interface between two fluids with different properties.
The oscillations are therefore two dimensional. The latter terminology is often used in
the atmospheric community. This may be confusing since “internal wave” only signifies
that the wave propagates within a medium (for example inertial waves in rotating fluids
are sometimes named internal waves). To avoid any confusion, we will name those waves
internal gravity waves, sometimes abbreviated as IGWs.

1.1 Stratified fluids

1.1.1 General description
In Latin, “strata” means layers. One could deduce that a stratified fluid is a fluid composed
of several distinct layers. This is sometimes obvious in artificial stratified fluid. A good
indicative example would be the colourful cocktails served in bars, divided in several layers
of different densities (and colours), as pictured in figure 1.1.

Figure 1.1: Photography of several cocktails. The layers with different colours also have
different densities.

Stratifications in nature are generally continuous, with the density evolving continu-
ously with height. If relatively dense fluid is located below relatively light fluid, the fluid
is stably stratified. On the contrary, if relatively light fluid is located below relatively
dense fluid, the fluid is unstably stratified and convective motions can appear, as it is the
case in boiling water.

Examples of stratified environment can easily be found in geophysical flows. The
stratification in the ocean starts at few hundreds meters deep and is due to the depth
variation of both the temperature and salinity (figure 1.2). Temperature is the most
determinant factor, except near estuaries where fresh water comes into the ocean. In the
Earth’s atmosphere, most weather events take place in the troposphere, which is weakly
stratified in the most part, with local convection occurring during daytime. Convection
is triggered by light rays coming from the Sun and heating the ground. As times goes,
the convective layer becomes thicker. During night time, the convective motions stop
and the troposphere goes back to a stratified state. Located above the troposphere, the
stratosphere is strongly stratified. Commercial planes fly in this layer to avoid updraft
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1.1. Stratified fluids

Figure 1.2: Temperature (thick line) and salinity (dash line) profiles in the ocean at differ-
ent latitudes: poles (a), mid-latitudes (b) and tropics (c). Reproduced from [Sutherland,
2010].

and strong turbulences, which are inhibited by the stratification. The stratosphere is
thermally stratified due to the solar radiation absorption by ozone molecules (figure 1.3).

The Earth’s internal structure is also divided in layers with different properties. Deep
beneath our feet, at ∼ 3000 km down, stands the external part of the Earth’s core. It is
mostly composed of liquid iron and recent evidences [Hirose et al., 2013,Colin and Wong,
2019] suggest that it is partially stratified, either at its inner or outer boundary. The
remaining of the outer core is convective and generates the Earth’s magnetic field.

Other astronomical objects present stratified environments. Stars are divided in sev-
eral layers, each characterised by different properties. The Sun, for example, is composed
of two main layers (left panel of figure 1.4). The innermost is the radiative core which is
stably stratified and where the fusion of hydrogen into helium occurs. Energy in this layer
is transported outward radiatively. The outermost layer is convective and energy is also
transported outwards. Oppositely, massive stars have a convective core and a radiative
outermost layer.

In stably stratified fluids, vertical motions are limited because of the density and
pressure evolution with height: it requires energy to move through a stratification since
fluid will experience a restoring force acting in the direction opposite to displacement
due to buoyancy differences with the environment. Hence, large-scale vertical motions
are inhibited. However, one should not infer that vertical displacement cannot occur in
a stratification: oscillations involving vertical motions are observed in stratified environ-
ments and thus exist in the Earth’s atmosphere, oceans, core and in stars.
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Chapter 1. Stratified fluids, internal gravity waves and large-scale flows

Figure 1.3: Temperature profile in the Earth’s atmosphere. The profile is stable in both
the troposphere and stratosphere. Yet, instabilities locally appear in the troposphere and
convection is triggered. Reproduced from [Sutherland, 2010].

Figure 1.4: Schematic representation of the structure of stars depending on their mass.
Reproduced from [Charbonnel and Talon, 2007].
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1.1. Stratified fluids

1.1.2 Oscillatory motions in stratified fluid
A gravity wave or surface wave is a gravity-driven wave which propagates at the interface
between two fluids. One has inevitably seen the pattern of concentric rings formed by
a small rock thrown at a lake, or the surface waves generated in the wake of sailing
boats. Surface waves make the free surface move up and down due to buoyancy. Fluid
lifted upward is heavier than its surroundings and then falls downward. It overshoots
its equilibrium position due to the inertia accumulated and a restoring force lifts the
displaced surface upward again. The fluid oscillates in space and time in a spring-like
motion.

An internal gravity wave can be pictured as a gravity wave propagating within a fluid
(figure 1.5). In a stably stratified fluid, internal gravity waves can propagate vertically and
horizontally and are not confined to an interface. Just like surface waves, the mechanism
of internal gravity waves can be summed up as follows: in a stably stratified fluid, when
a parcel of fluid is lifted above its equilibrium position, it experiences a downward accel-
eration due to gravity, as it is surrounded by lighter fluid. The parcel falls due to gravity
force and overshoots its equilibrium position because of the inertia gained. It becomes
surrounded by heavier fluid and experiences an upward acceleration due to buoyancy and
moves upward. Inertia makes the parcel overshoots its equilibrium position and so on.

Figure 1.5: Schematic of a fluid particle oscillating around its equilibrium position in a
stratified fluid. The restoring forces involved are the buoyancy force and the gravity force.

In an inviscid fluid, a fluid parcel trapped in an internal gravity wave oscillates around
its equilibrium position at a frequency given by the buoyancy frequency and the dispersion
relation of internal gravity waves (both will be introduced in detail in the next paragraph).
Internal gravity waves need a stably stratified medium to propagate since the buoyancy
forces are the driving mechanism of the oscillation.

Let us consider a stably stratified fluid with gravity pointing downward. The back-
ground density ρbg decreases with height. We consider a fluid parcel of density ρ0 located
at z = z0. This parcel is moved vertically by a small distance δz (figure 1.6). Neglecting
dissipative process, Newton’s second law gives, along the vertical z axis:

ρ0
∂2δz

∂t2
= −g δρ (1.1)

7
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Figure 1.6: Schematic of a fluid parcel, initially at z = z0 and at ρ = ρ0, being displaced
by a small distance δz and surrounded by fluid at a density ρ0 − δρ.

Since δz is small, we can write:
δρ ' −dρbg

dz δz (1.2)

In a stably stratified fluid, density decreases with height: dρbg
dz < 0. Equation (1.2)

indicates the fact that a parcel displaced upward is denser than the surrounding fluid.
This leads to:

ρ0
∂2δz

∂t2
− gdρbg

dz δz = 0 (1.3)

We introduce the buoyancy frequency N (also known as Brunt-Väisälä1 frequency):

N2 = − g

ρ0

dρbg
dz (1.4)

Therefore, combining equation (1.3) with the expression of the buoyancy frequency N
(1.4), we have:

∂2δz

∂t2
+N2δz = 0 (1.5)

Equation (1.5) is the equation of a harmonic oscillator with angular frequency N . Purely
vertical motions oscillate at the buoyancy frequency. However, internal gravity waves
propagate vertically and horizontally. A fluid parcel would oscillate along a diagonal line
l characterised by an angle θ with gravity (see figure 1.7). Newton’s law along this line
can be written:

ρ0
∂2δl

∂t2
= −g δρ cos θ (1.6)

Writing once again the density perturbation as z-derivative of the background density,
i.e. δρ = −dρbg

dz δl cos θ, we have:

∂2δl

∂t2
+N2cos2θ δl = 0 (1.7)

Consequently, a fluid parcel moving in a stably stratified fluid along a line at an angle
θ from the downward gravity oscillates at a frequency given by:

ω = N cos θ (1.8)
1Sir David Brunt (1886–1965) was a Welsh meteorologist, professor at the Imperial College in London.

Vilho Väisälä (1889–1969) was a Finnish meteorologist and physicist and a professor at the University of
Helsinki.
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1.2. Internal gravity waves

Figure 1.7: Schematic of a fluid particle, oscillating vertically at ω = N or oscillating at
ω = Ncos(θ) along a diagonal line.

Equation (1.8) is the dispersion relation of internal gravity waves in an inviscid fluid and
links the frequency of the wave with its direction of propagation θ. The implications of
this relation will be discussed in section 1.2.1 and a more complete dispersion relation,
taking into account dissipative processes, will be derived in chapter 2. Note that if the
stratification is linear, meaning that the density ρbg decreases linearly with height, the
buoyancy frequency N is independent of z.

1.2 Internal gravity waves

1.2.1 Propagation properties
The derivation of the dispersion relation by applying Newton’s law on a fluid parcel may
be intuitive but usually, the dispersion relation is directly derived from the Navier-Stokes
equations. In a two-dimensional, diffusionless and incompressible fluid, they write:

ρ0
Du
Dt = −∂P

∂x
(1.9a)

ρ0
Dw
Dt = −∂P

∂z
− gρ (1.9b)

Dρ
Dt = −w∂ρbg

∂z
(1.9c)

∇ · u = 0 (1.9d)

where ρ is the density anomaly compared to the background density ρbg. In the absence
of any mean flow and considering small amplitude waves (i.e. small u, w and ρ), ad-
vection terms in the material derivatives can be neglected since they are small (they are
proportional to the amplitude squared) compared to linear terms (proportional to the
amplitude). Thus we can replace each D

Dt by
∂
∂t
.

The four coupled differential equations in (1.9) can be written into a matrix form and
solved using matrix algebra. Equations (1.9) can be written:

A


u
w
ρ
P

 = 0 (1.10)
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Chapter 1. Stratified fluids, internal gravity waves and large-scale flows

with A =


∂t 0 0 1

ρ0
∂x

0 ∂t
g
ρ0

1
ρ0
∂z

0 −ρ0
g
N2 ∂t 0

∂x ∂z 0 0

.
The fluid is considered linearly stratified. N , as defined in (1.4), is therefore constant.
Non trivial solutions are defined by detA = 0. Consequently, small amplitude internal
gravity waves can be described by:[

∂tt∇2 +N2∂xx
]
b = 0 (1.11)

b being one the four fields u, w, ρ or P . In practice, b can be any field linearly related to
these four basic fields, such as vorticity or streamfunction. Considering an infinite domain
in both x and z directions, solutions can be written:

b(x, z, t) = Ab e
i(kxx+kzz−ωt) (1.12)

with Ab being the amplitude at the source of the internal gravity wave, kx (resp. kz)
the wavenumber in the horizontal (resp. vertical) direction and ω the angular frequency.
Thus the matrix A becomes:

A =


−iω 0 0 1

ρ0
ikx

0 −iω g
ρ0

1
ρ0
ikz

0 −ρ0
g
N2 −iω 0

ikx ikz 0 0

 (1.13)

Computing detA = 0, we obtain the dispersion relation of the internal gravity waves in
a xz-plane, for an inviscid fluid:

ω2

N2 = k2
x

k2
x + k2

z

(1.14)

If we write θ = tan−1 (kz/kx), we recover the dispersion relation as written in (1.8):
ω = Ncos θ. A consequence of the dispersion relation is that internal gravity waves
cannot oscillate at a frequency higher than the buoyancy frequency (since, at least for
real values of kx and kz, k2

x + k2
z > k2

x). Waves that oscillate at ω = N have their
crests aligned with the z axis, since ω = N implies that kz = 0. As the wave frequency
diminishes, the angle of propagation tilts and becomes parallel with the x axis for very
low frequency ω.

The dispersion relation also implies that the direction of phase propagation k = (kx; kz)
depends on the frequency of the waves. This means that internal gravity waves which
propagate at fixed frequencies have their phase line aligned at a constant angle θ with the
vertical.

Figure 1.8 shows a snapshot of the vertical velocity field generated by a vertically oscil-
lating horizontally-aligned cylinder within a linearly stratified fluid. Since the frequency
of the internal gravity waves is given by the oscillation frequency of the cylinder, the
phase line of generated internal gravity waves must be oriented at constant angle θ given
by the dispersion relation. This results in a cross-shaped wave pattern, often referred as
St Andrew’s cross. The sketch shows the phase and group velocities for each beam. If
one takes a closer look at one of the four beams, one shall see that internal gravity waves
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1.2. Internal gravity waves

Figure 1.8: (Left) Snapshot of vertical velocity field showing internal gravity waves pat-
terns generated by an oscillating cylinder within stratified water. Because the frequency
of oscillations is set by the cylinder, the angle of propagation θ is imposed by the disper-
sion relation (1.8). The resulting pattern is often refered as St Andrew’s cross. Gravity
is pointing downward. Reproduced from [Gostiaux, 2006]. (Right) Schematic illustrating
the St Andrew’s cross pattern and showing the corresponding phase and group velocities.

are characterised by a shear between two crests. Internal gravity waves are also charac-
terised by a phase velocity orthogonal to its group velocity. Moreover, the z-components
of phase and group velocities are always of opposite sign: if the group velocity points
upward, phase crests will go downward.

These features can be derived mathematically from the definition of phase and group
velocities. Phase velocity is by definition:

cp = ω

|k|
k = ω

|k|

(
kx
kz

)
(1.15)

It can pictured as the speed at one would move if one sit on a wave crest.

The group velocity is more delicate to understand. It is yet a quite important concept
since it describes the velocity at which energy is transported by the wave. Phase velocity
and group velocity do not necessarily point to the same direction, so one cannot infer
where energy is transported by looking at crests displacement. Group velocity is given
by:

cg = ∇k ω (1.16)
where ∇k = (∂kx ; ∂kz).
Using the relation dispersion (1.14), we can write the group velocity as:

cg = sign(kx)
N

|k|3

(
k2
z

−kxkz

)
(1.17)

It is straightforward that cp.cg = 0. The phase and group velocities are orthogonal.
We also see that z-components of phase and group velocities are of opposite sign. Indeed,
−sign(kx)×kx is always negative. Therefore, the z-component of group velocity is always
equal to cgz = −K kz with K = N

|k|3 |kx| a positive prefactor.

Generally, when a wave encounters a wall, the angle of incidence is equal to the angle
of reflection, following the Snell-Descartes law. Due to their dispersion relation, internal
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Figure 1.9: (Left) Schematic showing an internal gravity wave propagating towards a wall.
The wave is reflected downward, keeping the same angle θ but with opposite sign for the
horizontal wavenumber. The values of kx and kz may change but still verify the dispersion
relation. (Right) Experience showing the reflection of an internal gravity wave at nearly
the critical angle α = π

2 − |θ|. The wave is reflected both upslope and downslope. Figure
reproduced from [Gostiaux, 2006].

gravity waves exhibit a peculiar reflection mechanism. Indeed, as frequency ω is conserved,
that leaves fixed values of θ for the reflected wave. Left panel of figure 1.9 show a sketch
of an internal gravity wave impacting a surface. To conserve its angle of propagation
θ (fixed by its frequency ω), the wave can only be reflected downward. Note that the
energy is focused after the reflection in this case (crests get closer to each other after the
reflection). A critical angle exists (α = π

2 − |θ|) for which the internal gravity waves is
reflected both upslope and downslope. This is shown in right panel of figure 1.9.

1.2.2 Internal gravity waves in geophysical flows
Observation in the atmosphere and oceans

Various mechanisms give birth to the internal gravity waves observed in the atmosphere.
They are partly generated at the tropopause by the turbulent convective motions of the
troposphere. Figure 1.10 shows satellite observation of an internal gravity wave train gen-
erated during a thunderstorm. In the right panel, a characteristic pattern of concentric
rings can be seen, with the centre located at the position of thunder activity shown in
left panel. During the morning day, the troposphere is stably stratified. It becomes
convective as day goes by and as the sun heats the ground, triggering convective mo-
tions. Sometimes, in very specific atmospheric conditions, internal gravity waves may
form within the troposphere. A quite odd example is the Morning Glory clouds (see
figure 1.11) forming regularly in the northern Australia at low altitude such that glider
pilots can ride the waves.

Internal gravity waves can be generated by winds impinging on topography. Such
waves are named lee waves or orographic waves. They can be observed from satellite ob-
servations as they form a pattern of lenticular clouds in the wake of the mountain. Figure
1.12 shows a famous observation of Lee waves by NASA over the Amsterdam island in
the Indian ocean.

12



1.2. Internal gravity waves

Figure 1.10: Figure reproduced from [Miller et al., 2015]. (Left) Thermal infrared bright-
ness temperature showing a line of thunderstorms in southern Texas. Red and dark
patches denotes deep convection overshooting the tropopause. (Right) Night-glow im-
agery. Bright patches are either light from cities or lightning flashes. A very distinct
pattern of concentric rings emerges from the storm, enlightening the internal gravity
waves formation. Observations are dated 4 April 2014 at 02:15 AM local time.

Figure 1.11: Photography of the Morning Glory clouds taken from an airplane. The
phenomenon occurs at altitude 100 m < z < 2000 m, in a few locations all around
the world. The Morning Glory clouds forming over the southern part of the Gulf of
Carpentaria are the most frequent. Credits for the photography: Wikimedia - Mick
Petroff.

Internal gravity waves are also observed in the ocean, driven either by streams moving
above varying bathymetry, or by surface forcing induced by the wind. Internal gravity
waves can sometimes be observed at the East of Gibraltar strait (see right panel of figure
1.13). They are generated by Atlantic cold water entering the Mediterranean sea and
flowing above the strongly varying bathymetry of the strait (shown on the left panel of
figure 1.13).

Note finally that internal gravity waves are also observed in other planets’ atmosphere,
e.g. in Venus [Fukuhara et al., 2017] and Jupiter [Arregi et al., 2009].
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Figure 1.12: Lee waves observed by the Terra satellite in the wake of the Amsterdam
island in the south of the Indian ocean, on March 26 2015. The wave are observed thanks
to a pattern of lenticular clouds. Source: NASA - https://earthobservatory.nasa.
gov/images/6151/wave-clouds-near-amsterdam-island

Figure 1.13: Internal gravity waves can be observed in the Gilbraltar strait. (Left)
Bathymetry of the Gilbraltar strait. Figure reproduced from [Brandt et al., 1996].
(Right) Observations from the satellite ERS-1, dated from novembre 2006. Credits: ESA
- http://www.esa.int/ESA_Multimedia/Images/2006/11/Strait_of_Gibraltar_as_
seen_by_ERS-1
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1.2. Internal gravity waves

Global Circulation Models and internal gravity waves

The global flows in the Earth’s atmosphere and oceans are simulated numerically with
Global Circulation Models (hereafter GCMs). GCMs are mathematical models which
integrate the Navier-Stokes equations to predict the evolution of the associated flow fields
(velocity, temperature, pressure, humidity, etc.). However, geophysical flows are charac-
terised by very different length- and time-scales. As an example, length-scales for the at-
mosphere range from less than 1 km (which is called the microscale) to > 1000 km (which
is the synoptic scale). Longest wavelengths for planetary waves can reach 10000 km. The
separation for time-scales in the atmosphere is also important with scales of a few days
for a cyclone and 3 − 4 years for El Niño Southern Oscillation (ENSO). Comparatively,
small and fast internal gravity waves have horizontal wavelengths around 1 − 100 km
and associated periods are from fraction of an hour to few hours [Fritts and Alexan-
der, 2003,Alexander, 1996]. For the ocean, the scale separation is also seen with waves
having amplitudes between 10 − 100 m, periods close to an hour and horizontal wave-
lengths of several kilometers, and large-scale oceanic motions having periods going up to
tens of years and wavelengths of thousands of kilometres [Alford et al., 2015]. Hence,
GCMs reproducing the global dynamics over decades have a resolution too coarse to re-
produce satisfactorily the dynamics of small-scale events, such as internal gravity waves.
Nonetheless, accounting for small-scale dynamics is crucial in order to capture large-scale
phenomena adequately (see section 1.3). Therefore, lots of waves are included in GCMs
via parametrisation (some are resolved). A big problematic in geophysical fluid dynam-
ics is to parametrise properly the waves in order to create, within the numerical model,
realistic phenomena.

1.2.3 Internal gravity waves in stars
Internal gravity waves are present and propagate in the radiative zone of stars. They are
a key components of the study of their vibrations. Asteroseismology 2, as it is named, is
the study of vibration modes of stars by measuring luminosity and surface radial speed
fluctuations. Their internal structure affects wave propagation and, therefore, waves
contain information about the medium they travelled through. Thus, by analysing waves
and modes, one can deduce the internal structure of stars.

The star at the centre of our planetary system is particularly observed. The study
of the Sun started in the 17th century with Galilée and Scheiner, but helioseismology
(asteroseismology applied to the Sun - helios is greek for Sun) started in the 1960s with
the detection of the “5-minutes oscillations” [Leighton et al., 1962] corresponding to small
patches of the Sun surface oscillating up and down. Using helioseismology data, [Spiegel
and Zahn, 1992] discovered an intermediate layer, located between the convective and ra-
diative zone: the tachocline. Tachos can be translated by speed and kleinen by gradient.
The tachocline is thus a very thin layer characterised by a strong shear in azimuthal speed
and it deeply affects internal wave propagation in the Sun [Rogers and Glatzmaier, 2006].
The thickness of this layer is 0.01R�, R� being the radius of the Sun.

2The name “astroseismology” is also used, but is much less frequent
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Figure 1.14: The top panels show schematic of the excitation mechanisms: plume ex-
citation (left) and eddy excitation (right). Bottom panels show instantaneous vorticity
fields. High frequency waves are generated by plume incursions (constant phase lines
are inclined) while the eddy excitation generates mostly low frequency waves (horizontal
phase lines). Figure reproduced from [Rogers et al., 2013].

The vibrations measured in stars are generated by different mechanisms:
• a stochastic forcing of internal gravity waves by the convective layer. Two phenom-

ena participate in the wave generation: the fluctuations of the Reynolds stress in the
convective layer and the penetration of the convective plumes within the radiative
layer. The former results in the generation of low-frequency waves [Rogers et al.,
2013]. The latter results in the generation of higher frequency waves (see illustration
of the two mechanism in figure 1.14),

• the κ mechanism. It mainly concerns the intermediate and massive stars. Variations
in the opacity of the star results in variations of the heat flux, resulting in self-
sustaining oscillations,

• the εmechanism. Oscillations are induced by the variations in the energy production
rate by the nuclear fusion reaction in the core,

The stochastic forcing strongly relates to this manuscript, since it involves turbulently-
generated internal gravity waves.

The vibration modes observed at the surface are a combination of pressure modes
(p-mode) and internal gravity wave mode (g-mode). The former have a strong signal
and are therefore easy to observe. However, g-modes are evanescent in the convective
layer and their signals at the star surface is of same order of magnitude as noise. They
are therefore quite difficult to observe. To untangle their signal from background noise is
capital to study stellars’ interiors. Futhermore, waves are also invoked in chemicals mixing
and transport in the Sun. [Charbonnel, 2005, Rogers and McElwaine, 2017]. For these
reasons, internal gravity waves are a key ingredient of stars dynamics. Hence, to entirely
understand their dynamics and their generation by the stochastic excitation mechanism
is crucial in order to improve stellar models.
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1.2.4 The effect of rotation: inertial gravity waves
The rotation of planets and stars affect the properties of the waves, especially if the
rotation frequency is of same order of greater than the buoyancy frequency. Internal
gravity waves, taking into account the rotation, are called inertial gravity waves and their
dispersion relation differs from equation 1.8. In a f -plane approximation, it writes:

ω2 = N2k2
x + f 2k2

z

k2
x + k2

z

(1.18)

where f = 2Ω sin(ϕ) is the Coriolis parameter, Ω being the rotation rate and ϕ the
latitude. The frequency of internal gravity waves affected by the rotation can take values
delimited by: f < ω < N . In Earth’s atmosphere and oceans, f � N .

In this manuscript the effect of rotation will not be considered and we therefore only
consider internal gravity waves.

1.3 Interactions of internal gravity waves with their
environment

As internal gravity waves propagate in a stratified fluid, they interact with the envi-
ronment via the mixing they generate and the momentum, temperature, chemicals, etc.
they transport. The striking example of the Quasi-Biennial Oscillation, a phenomenon
driven by internal gravity waves will be an important part of this manuscript and will be
introduced at the end of this section.

1.3.1 Mixing and breaking
During the internal gravity wave propagation, linear mechanisms damp the wave. Wave
attenuation is mostly due to radiative damping in the atmosphere and viscous dissipation
in the ocean. As mentioned before, internal gravity waves are shear waves. This shear may
create some small-scale mixing along the wave propagation. Since internal gravity waves
are often not resolved in models, mixing is modelled by an eddy diffusivity which is orders
of magnitude higher than molecular diffusion. Turbulent mixing is invoked to explain why
the ocean is stratified. Indeed, considering only thermal diffusivity (κ ∼ 10−7 m2 · s−1)
or salt diffusivity (D ∼ 10−9 m2 · s−1) and assuming a global average vertical velocity
w = 10−7 m · s−1 (compute from a global mean of bottom water production), typical
length scales for the stratification in the ocean would be ∼ 1 m or 10−2 m [Wunsch and
Ferrari, 2004]. These values are a lot smaller than the actual ocean depth. Another
mechanism to transport buoyancy through the ocean is therefore needed: this is the eddy
diffusivity, modelling the turbulent mixing, which typical value is 10−4 − 10−3 m2 · s−1 3.

When non-linearities are involved, waves can become unstable and break or generate
secondary waves [Staquet and Sommeria, 2002]. Those mechanisms induce a strong mix-
ing locally and change the stratification. These non-linear behaviours increase hugely the

3The eddy diffusivity models mixing coming from different phenomena, including, but not only, inter-
nal gravity waves.
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local eddy diffusivity. As a result, density gradients are locally smoothed and vertical
transport of chemicals is enhanced. Internal gravity waves deeply impact the turbulent
mixing in the ocean [Kunze, 2017] and are invoked in the transport of bioelements. [Moore
and Lien, 2007] found that whales gather in very specific location in the China sea, where
internal gravity waves bring high concentration of plankton.

1.3.2 Internal gravity waves in a shear flow

Figure 1.15: Schematic of the mechanism of a critical layer. While propagating in a
vertically sheared, horizontal flow, the wave is Doppler-shifted. At a critical level, ω = 0
and the energy is locally deposited.

Internal gravity waves propagating in a flow with an horizontal velocity U see their
propagation properties altered by the ambient flow. Indeed, the frequency is Doppler
shifted towards lower (resp. higher) frequencies for prograde (resp. retrograde) waves 4.
The Doppler-shifted frequency is:

ω = ±Ω∓ kxU (1.19)

with Ω the absolute frequency of the wave, kx its horizontal wavenumber. The sign ±
depends on the direction of the waves. One can see that, for a critical value of the ambient
flow speed U = ± Ω

kx
, the Doppler-shifted frequency goes to zero ω = 0. Let’s consider

the example shown in figure 1.15. As the prograde wave propagates upward, the mean-
flow increases. Thus the Doppler-shifted frequency lowers and the angle of propagation
becomes more and more horizontal. When the wave reaches the altitude at which U is
equal to the critical value, the frequency is zero and the propagation is purely horizontal.
This location is called a critical layer. At the critical layer, the wave is absorbed and
the energy is given to the ambient flow, resulting in a significant acceleration [Booker and
Bretherton, 1967]. This phenomenon is really primordial for geophysical and astrophysical
context [Alvan et al., 2013]. Figure 1.16 shows the phenomenon of the critical layer
reproduced in a laboratory experiment [Koop, 1981]. The prograde wave propagate in
a shear flow and its trajectory, marked by the shadowgraph photography, illustrates the
tilting of the wave propagation towards the horizontal. Additionally, the reflection of the
retrograde wave when ω = N is also visible.

4A prograde wave is going in the same direction as the mean flow, while the retrograde wave propagates
in the opposite direction as the mean flow.
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Figure 1.16: Shadowgraph photography of a critical layer visualisation in a shear flow.
The cylinder at the centre of the frame is oscillating at a fixed frequency and the vertical
profile of the horizontal velocity in the channel is shown by the dashed line at the right
side of the photography. At the left of the cylinder, the wave propagation is affected by
the shear and tilts horizontally. On the right of the cylinder is also observable the turning
point level, at which the wave frequency reaches ω = N and is thus reflected downward.
Reproduced from [Koop, 1981].

Figure 1.17 is reproduced from [Thorpe, 1975] and shows the different mechanisms
generating internal gravity waves in the ocean, as well as physical concepts applying to
their propagative behaviours such as critical layers and turning point level described in
the next paragraph. It gives a good summary of the concepts introduced in this subsection
and in section 1.2.
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Figure 1.17: This figure from [Thorpe, 1975] sums up generation mechanisms for internal
gravity waves in the ocean, and some of their propagating properties (all are applicable
to atmospheric and stellar flows). About the generation mechanisms, one can see the
turbulent layer at the top of the ocean. The turbulent motions generate internal gravity
waves at the interface with the stratified layer. Turbulence also occurs at the bottom
of the ocean when water flows over an irregular floor, and internal gravity waves are
generated. At the bottom of the ocean, one can also see orographic waves generated by
high topography, very similar to the illustration in figure 1.12. Internal gravity waves
are also generated from Kelvin-Helmoltz instabilities. About the propagating behaviour,
one can see the representation of tunnelling effect when a wave encounter an interface
with an unstratified layer. Part of the wave is reflected, and another part can go through
the unstratified layer and propagate again in the other side of the unstratified layer. We
also see internal gravity wave reflecting when the Doppler-shifted frequency is equal to
the buoyancy frequency N . About wave dissipation, one can see the kinematic viscosity
ν slowly damping the wave. Internal gravity waves encounter a critical layer when the
Doppler shifted frequency goes to 0 (see section 1.3.2). At the critical level, the wave
experiences overturning and energy is dissipated locally. Overturning is also represented
here.
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1.3.3 Large-scale flows driven by waves
Experiments of acoustic streaming

Figure 1.18: Evolution of a large-scale flow induced by acoustic streaming. Snapshots
show different times. The visualisation is made at the interface of two immiscible flu-
ids. The quartz generating ultrasound is located at the centre of the right wall. Figure
reproduced from [Zarembo, 1971].

During their propagation, waves attenuate and exchange momentum with the ambient
flow. Under certain conditions, they can generate and sustain a slowly-evolving large-
scale flow. Large means that there is a length-scale separation between the wave and
the driven flow. In the same way, slowly implies that the flow evolves at time-scales
much larger than the wave time-scale. Very visual illustrations of flows driven by waves
can be found in acoustic streaming experiments (see [Lighthill, 1978] for an introduction
of the topic). Figure 1.18 shows the time evolution of a large-scale flow driven by a
quartz generating ultrasound. Ink is used to mark the streamlines of the two contra-
rotating cells generated. A video of a recent experiment on acoustic streaming can also
be found here: https://www.youtube.com/watch?v=ArpclLD4yP8. The large-scale flow
generation comes from the non-linear term of the Navier-Stokes equations. Hence, wave–
mean-flow interactions exist with many type of small-scale oscillations, including internal
gravity waves, whose specific propagation properties can drive reversing flows.

Internal gravity waves and The Quasi-Biennial Oscillation

In the atmosphere, oscillations of equatorial winds are observed in the stratosphere. This
was observed when, in 1883 [Baldwin et al., 2001], a volcano erupted, throwing ashes in
the stratosphere. The ash clouds were observed to travel from east to west. In 1908, A.
Berson, a German meteorologist, launched balloons and found that winds were blowing
in the opposite direction: they were directed eastward [Süring, 2013]. More advanced ra-
diosonde measurements in the 60s from two independant studies [Reed et al., 1961,Ebdon,
1960] led to the first description of the Quasi-Biennial Oscillation (hereafter QBO). At

21

https://www.youtube.com/watch?v=ArpclLD4yP8


Chapter 1. Stratified fluids, internal gravity waves and large-scale flows

Figure 1.19: Satellite observation of the zonal-mean of azimuthal velocities in the strato-
sphere along the equator, as a function of time and altitude. Note the disruption in the
periodic behaviour in 2016. Figure is from the Merra-2 project.

equatorial latitudes, winds oscillate from westward to eastward, with a period of roughly
28 months. The oscillations extend from 20 km to 40 km in altitude and propagate down-
ward. Wind speeds range is 15–35 m · s−1. Observations of these oscillations by satellite
can be seen in figure 1.19. The striking feature of these observations is the downward
phase propagation of the oscillation and its regularity.

The QBO can be explained by wave–mean-flow oscillations. Lindzen & Holton [Lindzen
and Holton, 1968,Holton and Lindzen, 1972] simulated the oscillation in a one-dimensional
model, using gravity waves as forcing. It was first invoked that large-scale equatorial
waves drive the QBO: westward propagating Rossby waves generating westward momen-
tum and eastward propagating Kelvin waves generating eastward momentum. However,
it was shown years later that these large-scale waves are not energetic enough to drive
the QBO by themselves [Dunkerton, 1997,Ern and Preusse, 2009]. Smaller scale gravity
waves are therefore needed in order to drive the oscillations at the observed amplitude
and period.
In 1977, [Plumb, 1977] simulated QBO with an idealised model, using, as forcing, two
contra-propagating internal gravity waves with the same frequency. If the waves have
enough energy, they can drive an oscillating flow. The reversing mechanism is shown in
figure 1.20. The horizontal axis is a velocity axis, the vertical axis is the z-direction. At the
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Figure 1.20: Reproduced from [Plumb, 1984]. The different panels show the horizontal
flow generated by two contra-propagating internal gravity waves at different times. The
flow goes through different stages and reverses from (a) to (d).

bottom, two waves are generated and propagate upward. They have the same frequency
but opposite directions of propagation (i.e. opposite phase speeds). The key mechanism
is that IGWs have an “anti-diffusive effect”: they give more energy to the mean flow if
they go in the same direction as the mean flow. A prograde wave interacts more with the
mean flow than a retrograde wave. This can be understood with the concept introduced
in section 1.3.2 and figure 1.15. While approaching its critical altitude, the group velocity
of the prograde wave will become more and more horizontal, resulting in an acceleration
of the flow, while the group velocity of the retrograde wave will become more and more
vertical, resulting in a small exchange of energy and thus a slight deceleration for the flow.
The total contribution is an acceleration in the direction of the prograde wave.

In the model, the bottom condition is no-slip: u = 0 at z = 0 and the top condition
is free slip: ∂u

∂z
|z=1 = 0. On 1.20a, the initial mean flow u is shown. Thick empty arrows

represent the energy given to the mean flow u by the wave, and narrow filled arrows
represent the viscous attenuation of the mean flow u. On 1.20a, the +c wave gives its
energy at the bottom of the stratified layer, where the mean flow is positive. On the
opposite, the −c wave goes through the positive mean flow area and deposits its energy
just above. At the height zc where u(zc) = 0, the fluid experiences positive viscous
entrainment from below and negative viscous entrainment from above. However, the −c
wave deposits its energy just above zc, whereas the +c wave deposits its energy far below.
Thus the mean flow u will be forced towards negative values at zc. The height where
u = 0 moves downward through time.

On figure 1.20b, the area where the mean flow was positive has vanished due to vis-

23



Chapter 1. Stratified fluids, internal gravity waves and large-scale flows

cosity 5 and the mean flow is negative along the whole height. The −c wave is attenuated
at the bottom of the stratified layer whereas the +c wave goes through the whole stratifi-
cation and reaches the top where it gives its energy and thus slows locally the mean flow
u. At the top, the mean flow becomes positive (figure 1.20c), and the point where u = 0
moves downward due to the interaction of the +c wave with the mean flow (see how the
−c wave is “stuck” at the bottom). On figure 1.20d, the mean flow has reversed from its
initial condition in 1.20a. This simple model with only two waves as forcing is sufficient to
drive mean flow reversals from an initial mean flow and has been verified experimentally
by Plumb and McEwan in their experiment [Plumb and McEwan, 1978], later confirmed
and extended by [Semin et al., 2018].

These simple and idealistic models, including large-scale planetary waves along with
smaller scale internal gravity waves, are able to drive oscillation of the equatorial zonal
flow. However, even if it is know that the large-scale flow amplitude is set by the zonal
phase speed of the forcing wave, very little is known upon the large-scale flow driven
by a stochastic forcing. Yet, as seen in section 1.2.2, the internal gravity waves in the
atmosphere are driven by various mechanisms and the properties (frequency, wavenumber)
of those waves differ in space and time. This may have an impact on the driven QBO
which is not yet understood.

Large-scale flow in other atmospheres and stars

Flows similar to the Earth’s QBO are observed in others planets. The quasi-quadriennal
(in terrestrial years) oscillation of Jupiter [Leovy et al., 1991] is observed from temperature
measurements in the stratosphere. The equatorial winds in Saturn also oscillate with an
estimated period of 15 years [Fouchet et al., 2008,Guerlet et al., 2018]. Mean zonal wind
profiles from Saturn’s atmosphere are shown in figure 1.21.

In stars, internal gravity waves influence the rotation profile and induce some fluctua-
tions at relatively short time-scales compared to others time scales involved [Rogers et al.,
2012]. Therefore, the rotation of the surface (and thus observable) layers is not represen-
tative of the rotation of the whole star. This phenomenon is invoked to explain why in
some hot stars system (where the radiative layer is the outermost layer), exoplanets seem
to be spin-misaligned with the host star. A flow somehow similar to the Earth’s QBO is
also observed in the Sun [Kim and MacGregor, 2001,Charbonnel, 2005].

1.4 The importance of the QBO in the Earth’s atmo-
spheric flows

The QBO is one of the most important sources of annual variability in the Earth’s at-
mosphere. The QBO filters propagating waves in the stratosphere, depending on the
direction of its phase. In particular, if the QBO is directed westward, Rossby waves, also
propagating westward, encounter a critical layer while propagating towards the equator
and are hence trapped at high latitudes. They propagate high in the stratosphere and

5for some cases e.g. if the wave has significant energy, the positive area does not vanish and the flow
stays in a steady state, with a shear located at the bottom domain, as illustrated in figure 1.20a.
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Figure 1.21: Mean zonal wind profile in Saturn’s stratosphere from Cassini’s temperature
measurements. Taken at 7◦ S (solid lines) and 7◦ N (dashed line). Reproduced from
[Guerlet et al., 2018].

interact with the polar vortex (eastward flow), weaken it and eventually, if the ampli-
tudes of the waves are large enough, a westward flow takes place at the pole and the
stratosphere at the pole warms up rapidly [Baldwin et al., 2001]. This is especially ver-
ified at the Northern hemisphere, where the Rossby wave activity is strong compared
to the Southern hemisphere. The phenomenon is named Sudden Stratospheric Warming
(SSW) [Schoeberl, 1978] and temperatures can increase by 50 ◦C in a few days. This
sudden rise of the stratospheric temperature can perturb the jet stream and this results
in cold snaps in Europe.

Interactions with the El Niño Southern Oscillation (ENSO) phenomenon are also ob-
served: ENSO influences QBO [Taguchi, 2010] by affecting convective motions in the
troposphere and thus affecting wave generation; and QBO affects ENSO [Gray et al.,
1992a, Gray et al., 1992b] by influencing the convective activity in the tropical Pacific.
ENSO is known to strongly impact the climate locally in the Pacific and Indian oceans
as well as landmass nearby. It leads to severe droughts and floods and has tremendous
environmental, social and economical impacts. But ENSO is not confined in the Pacific
regions and its influence spreads globally [Brönnimann, 2007].

Additionally, QBO interacts with the Madden-Julian Oscillation (MJO) [Madden and
Julian, 1971, Zhang, 2005]. The Madden-Julian oscillation is a key feature of the in-
traseasonal variability (30-90 days) in the tropical troposphere and influences the climate
worldwide. It has been found quite recently that boreal winter MJO is stronger than
normal when QBO is directed westward at 50 hPa whereas it is weaker than normal when
QBO is directed eastward at 50 hPa [Yoo and Son, 2016].

In the 80s, it was thought that QBO had a repercussion on hurricane activity in
the North Atlantic ocean [Gray, 1984], with more hurricane activity when the QBO is
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Figure 1.22: Tracks of all hurricane-intensity storm for nine seasons of eastward QBO
phase (left) and nine seasons of westward QBO phase. Much more numerous tracks are
observed when the QBO phase is eastward. Reproduced from [Gray, 1984].

eastward (figure 1.22). The QBO phase was then used to predict the hurricane activity in
the Atlantic. Yet, the mechanism of interaction (an influence of the wind shear in the lower
stratosphere) was not clearly convincing. A more recent study, including data recorded
after the study of [Gray, 1984] shows that although there is a statistical correlation between
QBO and hurricane activity from the 50s to the 80s, this relationship no longer exists
for recent data [Camargo and Sobel, 2010]. The influence of QBO on hurricane activity
remains unclear.

The interaction of QBO with other atmospheric phenomena is also captured in GCMs,
especially the influence of ENSO upon QBO [Schirber, 2015, Serva et al., 2020] as well
as the consequences of the QBO phase on the northern polar vortex [Anstey et al., 2010]
and thus on the northern hemisphere winter climate [Marshall and Scaife, 2009].

In geophysical and astrophysical frameworks, internal gravity waves take an important
place in the global dynamics despite their small length scales and short time scales. They
participate in the transport of energy and momentum, induce mixing locally and are able
to drive flows at larger scale.
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1.5 Conclusion
This introductory chapter summaries basic but essential knowledge on internal gravity
waves. The geophysical and astrophysical contexts were briefly presented and two prob-
lematics appear:

• The GCMs are currently not able to solve for short and small scales such as in-
ternal gravity waves. They are therefore parametrised, while the physics of their
interactions with the global flows (induced mixing and exchange of momentum) is
only partially understood, especially in the case of stochastic forcing. Yet, internal
gravity waves drive the QBO which has strong impacts on the global climate. It is
capital that the QBO is well modelled in GCMs.

• The amount of energy that transfers from the turbulent motion of the convective
layer into the internal gravity waves is still unknown. Fundamental studies to un-
derstand the energy-transfer function are needed.

These two points motivate the necessity to investigate the interaction between a tur-
bulent convective layer, generating stochastically internal gravity waves, and a stably-
stratified layer, in order to build better modelisation of flows in atmospheres, oceans and
stars. This thesis will bring new elements in order to get a better apprehension of the two
problematics above.

The next section will introduce an extension of the Plumb’s model [Plumb, 1977],
in which the forcing is not monochromatic, but is a superposition of waves at different
frequencies, in order to reproduce the stochastic behaviour observed in the atmosphere,
and hence, complete our understanding of the QBO generation.
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The Quasi-Biennial Oscillation is a striking example of large-scale flow driven by in-
ternal gravity wave streaming. The period for the reversing winds is approximately 28
months and has been fairly robust for the past 65 years of observation. This oscillating
behaviour has been explained by wave–mean-flow interactions. A comprehensive review
of the phenomenon and of its implications can be found in [Baldwin et al., 2001].

[Lindzen and Holton, 1968,Lindzen, 1972] first came with a theoretical model repro-
ducing mean-flow oscillations with planetary waves (Rossby and Kelvin waves) forcing.
Based on this preliminary work, [Plumb, 1977] derived a simple model using internal grav-
ity waves as forcing. This model has been studied both numerically [Kim and MacGregor,
2001,Renaud et al., 2019] and experimentally [Plumb and McEwan, 1978,Otobe et al.,
1998,Semin et al., 2016,Semin et al., 2018]. It reproduces very well the main features of
the QBO. Figure 2.1 shows the experimental results of [Plumb and McEwan, 1978] and
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Figure 2.1: (a) Time series of the observed horizontally averaged velocity in the exper-
iment of [Plumb and McEwan, 1978]. Contours are in mm · s−1. (b) Time series of
the horizontally averaged velocity in a 3D DNS. Contours are in m · s−1. The figure is
reproduced from [Wedi and Smolarkiewicz, 2006].

the results of [Wedi and Smolarkiewicz, 2006] reproducing the experimental results in 3D
DNS.

However, these models are limited by their idealised approach: the forcing is monochro-
matic. In Plumb’s model, a monochromatic standing internal gravity wave, corresponding
to two contra-propagating IGWs, is generated at the bottom boundary of a stratified fluid
and propagates upwards. An oscillating large-scale flow then appears if a threshold value
for the forcing parameter is overpassed. In the Earth’s stratosphere, as mentioned in
the previous chapter, the internal gravity waves are generated by various mechanisms.
Therefore, they present different frequencies, amplitudes and wavenumbers. This diver-
sity, currently not captured in the models, may play a major role in the generation of a
large-scale flow.

In section 2.1, we introduce the Plumb’s model equations. Some past studies using
this model are presented in section 2.2. Then, section 2.3 will introduce the numerical
schemes and the different forcing spectra considered in our study. Finally, section 2.4 will
present and discuss our results.

2.1 Plumb’s theoretical model
The aim of this section is to introduce the Plumb’s model and its equations. The Plumb’s
model is derived from the two-dimensional Navier-Stokes equations, using the Boussinesq
approximation and the Reynolds decomposition. Since dissipative processes are the key
ingredient of wave–mean-flow interactions, it is important that they are included in the
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equations. In the atmosphere, the attenuation of the waves occurs through critical layers
and radiative damping while it happens mostly through eddy diffusivity in the ocean. In
the experiments, the attenuation is mostly viscous and/or due to wall friction.

2.1.1 The Navier-Stokes equations

u

Spherical geometry Cartesian periodic
geometry

Figure 2.2: Sketch illustrating the analogy between the QBO geometry (left) and the
2D cartesian geometry (right). The Earth’s curvature is ignored. Consequently, the
equatorial plane (eθ, er) is similar to the 2D periodic geometry (ex, ez)

Our framework is a two-dimensional domain with Cartesian coordinates (ex, ez) (see
figure 2.2). Since QBO occurs at equatorial latitudes, the effect of rotation can be ne-
glected since the Coriolis force effects are weak at the equator and the centrifugal force is
included in the gravity force. The Earth’s curvature is also ignored, since the height of the
stratosphere (∼ 40 km) is small compared to the Earth’s radius (∼ 6400 km). Gravity
points downward such that g = −gez, with ez pointing upward. The fluid is linearly
stratified with constant buoyancy frequency N . We will first consider the inviscid equa-
tions and the dissipative processes will be added later. The inviscid momentum equations
reads:

ρDtu = −∇P + ρg (2.1)
with Dt = ∂t + u · ∇ is the material derivative and ∇ = (∂x; ∂z) is the gradient operator.
u = (u;w) is the velocity vector.

The diffusionless mass equation is:

Dtρ+ ρ∇ · u = 0 (2.2)

The fluid density is given by its equation of state:

ρ = ρ(P, S, T ) (2.3)

Here, T is the temperature field and S is another field affecting the density, e.g. the
salinity in the ocean. These fields follow a typical advection equation:

DtT = 0 (2.4)
DtS = 0 (2.5)
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The Boussinesq approximation

If the density variations are small relatively to a mean density, the dynamical equations
can be greatly simplified using the Boussinesq approximation. This approximation is ac-
curately respected for the oceanic motions.

In the ocean, the variations of the density field δρ are due to three effects:

• the compressibility of water due to the pressure: ∆Pρ = ∆P
c2
s

• the expansion of water due to temperature variations: ∆Tρ = −αTρ0∆T

• the contraction of water due to salinity variations: ∆Sρ = αSρ0∆S

The equation of state given by (2.3) can be linearised by:

ρ = ρ0

[
1− αT (T − T0) + αS(S − S0) + P

ρ0c2
s

]
(2.6)

with cs = 1500 m · s−1 is the sound speed in water, considered as constant. The pres-
sure variations ∆P are modelled by the hydrostatic approximation: ∆P = ρ0gH. If
we consider for the different variations realistic values: H = 104 m, ∆T = 20 K and
∆S = 5 g · kg−1 1, with g = 10 m · s−2, αT = 2 × 10−4 K−1 and αS = 10−3 kg · g−1, we
deduce that the density variations δρ are small (∼ 5%) compared to the reference density
ρ0.
The Boussinesq approximation is also fully relevant for laboratory experiments, consider-
ing thermal or salt stratification. However, it is not applicable to atmospheres and stellar
interiors, which are fully compressible. Those will be studied in the next section.

We write the pressure and density vertical profiles as a sum of the background profile
plus perturbations:

ρ = ρ0 + ρbg(z) + δρ(x, y, z, t) (2.7)
P = p0(z) + δp(x, y, z, t) (2.8)

with |δρ|,|ρbg| � ρ0 and |δp| � p0.

Using (2.7) in (2.1), the momentum equation now reads:

(ρ0 + ρbg + δρ) Dtu = −∇δp− ∂zp0ez − g (ρ0 + ρbg + δρ) ez (2.9)

Considering the hydrostatic equilibrium:

dzp0 = −gρ0 (2.10)

and taking into account |δρ|,|ρbg| � ρ0, i.e. ρ0 + ρbg + δρ ∼ ρ0, we have:

ρ0Dtu = −∇δp− g(ρbg + δρ)ez (2.11)
1g · kg−1 is the typical unit for salinity in water. 1 g · kg−1 meaning 1 g gram of salt for 1 kg of water
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The term gδρ is the buoyancy term, responsible for the existence of internal gravity waves
in a stratified environment. Writing φ = δp+g

∫
ρbgdz′

ρ0
and b = −gδρ/ρ0, we now have:

Dtu = −∇φ+ bez (2.12)

The mass conservation can be written, without any approximation:

Dtδρ+ (ρ0 + ρbg + δρ)∇ · u = 0 (2.13)

At first order, we can approximate (2.13) by:

∇ · u = 0 (2.14)

From the linearised equation of state (2.6) and using p0 = −ρ0gz, we have:

ρbg
ρ0

+ δρ

ρ0
= −αT (T − T0) + αS(S − S0) + −ρ0gz + δp

ρ0c2
s

(2.15)

Considering gDt× (2.15), and writing bbg = −gρbg/ρ0, we obtain:

Dt(bbg + b) = Dt

(
−ρ0gz + δp

ρ0c2
s

)
(2.16)

The right hand side of (2.16) is neglected in the Boussinesq model:

Dt(bbg + b) = 0 (2.17)

Using the fact that Dtbbg = ∂tbbg + u · ∇bbg = w∂zbbg = w∂z
(−gρbg

ρ0

)
= N2w, we can

write the buoyancy equation:

Dtb+N2w = 0 (2.18)
The equations (2.12), (2.14) and (2.18) form the Boussinesq model. It is adapted

to study the motions in the ocean, where the density perturbations and the background
profile are small compared to the mean density. However, this is not the case in the
atmosphere and another set of equations has to be derived.

The anelastic approximation

In the atmosphere and in stellar interiors, the density varies strongly with height and
cannot be written as ρ = ρ0 + ρbg(z) + δρ(x, y, z, t), i.e. as a constant value plus small
variations. Still, the dynamical equations can be simplified using the anelastic approxi-
mation. This model uses the fact that the relative variations of the potential density are
small. The potential density of a particle at a pressure P is the density the particle would
have if brought to a reference pressure P0, in an adiabatic process. The same definition
applies for potential temperature. We will very briefly present the major steps of the
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derivation and give the final set of equations. For a more detailed derivation, one should
read the corresponding section of Vallis’ book [Vallis, 2017].

We will consider the potential temperature, assuming that the air is an idealised gas:

θ = pcv/cp

ρ
(2.19)

with cv and cp being the constant volume and pressure heat capacity of air. The density,
pressure and potential temperature fields are written as a background part plus relatively
small perturbations:

ρ = ρ0(z) + δρ(x, y, z, t) (2.20)
P = p0(z) + δp(x, y, z, t) (2.21)
θ = θ0 + δθ(x, y, z, t) (2.22)

Again the density perturbations δρ are neglected against ρ0 in the left-hand side of the
momentum equation. Using the potential temperature θ, we obtain:

Dtu = −∇ δp

p0(z) + bez (2.23)

with b = −gδθ/θ0.

Equation (2.23) is similar to the momentum equation of the Boussinesq model (2.12).
The major difference is that the buoyancy term is computed from the potential tempera-
ture and not from density itself.

The equation for the buoyancy is:

Dtb+N2w = 0 (2.24)

The mass conservation reads:

∂tδρ+∇ · [(ρ0 + δρ) u] = 0 (2.25)

Keeping the leading order terms, we have the incompressibility equation:

∇ · (ρ0(z)u) = 0 (2.26)

Equations (2.23), (2.24) and (2.26) form an equivalent of the Boussinesq model for
the atmosphere with the buoyancy being defined by the potential temperature instead of
the density. They take into account part of the compressibility effects, but not all: in
particular they filter out acoustic waves.

34



2.1. Plumb’s theoretical model

Dissipative processes

To model wave–mean flow interactions, it is crucial to implement dissipative mechanisms
in the Boussinesq equations. Indeed, those terms allow the transfer of momentum from
the waves to the mean flow.

We first introduce momentum diffusion in the momentum equation:

Dtu = − 1
ρ0
∇p+ bez + ν∗∇2u (2.27)

Here, ν∗ is the dimensioned kinematic viscosity of the fluid. It affects both the mean flow
and the wave field.

The buoyancy field is also affected by diffusive processes (thermal diffusion for ex-
ample) and also by a linear dissipative process. This linear term can model the radia-
tive damping in the atmosphere [Plumb, 1977] or the friction of a solid wall in experi-
ments [Semin et al., 2018].

Dtb+N2w = −γb+D∗∇2b (2.28)

In the atmosphere, the radiative term is dominant while, in the ocean, the wave dissipation
is modelled via the eddy diffusivity discussed in section 1.3, implying that the term D∗∇2b
will be dominant.

In our study, we will only consider diffusive mechanisms to attenuate the wave. There-
fore, the linear term γb will not be considered.

Final set of dimensionless equations

In the typical monochromatic Plumb’s model, the length and time scales used to obtain
the dimensionless equations are the inverse of the wave frequency ω and its attenuation
length l. In our study, as mentioned before, we will consider several waves with different
frequencies and attenuation lengths. Therefore, we cannot choose wave properties as
scales and the usual dimensionless approach does not fit our needs. We will use the
buoyancy frequency N and an arbitrary scale H (we will take the height of the stratified
layer) as time and length scale. The dimensionless momentum equation is:

Dtu = −∇p+ bez + ν∇2u (2.29)

with ν = ν∗

N H2 the dimensionless kinematic viscosity.

The buoyancy equation is:
Dtb+ w = D∇2b (2.30)

with D = D∗
N H2 a dimensionless diffusion coefficient associated with the buoyancy b.

The incompressibility equation still reads:

∇ · u = 0 (2.31)
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2.1.2 Reynolds decomposition
Our interest is to study the interactions of small fluctuations u′, b′ and p′ with large-scale
dynamics u, b and p. To do so, we perform a Reynolds decomposition of our fields. It
consists in writing the different fields as the sum of a horizontally averaged mean part
and a fluctuation part. We have:

u(x, z, t) = u(z, t) + u′(x, z, t)
b(x, z, t) = b(z, t) + b′(x, z, t)
p(x, z, t) = p(z, t) + p′(x, z, t)

(2.32)

The mean part of the different fields does not depend on the horizontal direction x. Using
the Reynolds decomposition in the equations (2.29), (2.30) and (2.31), we will derive the
mean-flow and wave equations.

Mean-flow equations

Horizontally averaging the incompressibility equation (2.31) results in:

∂zw = 0 (2.33)

which implies that w = w(t). In this thesis, we will consider w = 0, corresponding to no
mean penetration at the boundaries. We neglect any large-scale vertical motion.

The horizontal average of the horizontal projection of the momentum equation (2.29)
gives the mean-flow equation:

∂tu− ν∂2
zu = −∂zu′w′ (2.34)

This equation gives the time evolution of the horizontal mean-flow u. The right hand
side term is the z-derivative of the u′w′-component of the Reynolds stress. This term
represents the wave field forcing on the mean-flow. This equation will be numerically
integrated (see section 2.3.2) to solve for the mean-flow. In order to do so, one needs to
know the right hand side term of equation (2.34). Another equation is thus needed to
obtain an expression of the forcing term ∂zu′w′.

The horizontal average of the vertical projection of the momentum equation (2.29)
gives the hydrostatic equation for the mean pressure:

∂zp = (u∇)w + b (2.35)
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Wave equations

The wave equations are obtained by subtracting the mean-flow equations to the general
equations (2.29), (2.30) and (2.31).

∂tu
′ +

[
(u′.∇)u′ − (u′.∇)u′

]
+ u∂xu

′ + w′∂zu+ ∂xp
′ = ν∇2u′ (2.36a)

∂tw
′ +

[
(u′.∇)w′ − (u′.∇)w′

]
+ u∂xw

′ + ∂zp
′ = ν∇2w′ + b′ (2.36b)

∂tb
′ +

[
(u′.∇) b′ − (u′.∇) b′

]
+ u∂xb

′ + w′∂zb+ w′ = D∇2b′ (2.36c)
∂xu

′ + ∂zw
′ = 0 (2.36d)

The bracketed terms are neglected: this is the mean-field approximation described by
[Plumb, 1975] as follows: “the non-linear effects are neglected except where they rep-
resent interactions between waves and the mean-flow”. Here the bracketed terms are
wave-wave non-linear effects.

We compute ∂z(2.36a) - ∂x(2.36b) in order to obtain an equation for the streamfunction
ψ (u′ = ψz and w′ = −ψx).(

∂t + u∂x − ν∇2
)
∇2ψ − uzz∂xψ = −∂xb′ (2.37)

We consider (∂t + u∂x −D∇2)× (2.37). Using the wave equation for buoyancy (2.36c),
neglecting any effect of the vertical variation of the mean buoyancy ∂zb (we assume that
the stratification profile is dominated at any time by the initial profile, ∂zb � N2 with
N2 = 1 with our choice of time-scale) and neglecting once again the bracketed terms in
(2.36c), we have:(

∂t + u∂x −D∇2
) [(

∂t + u∂x − ν∇2
)
∇2 − uzz∂x

]
ψ = ∂2

xψ (2.38)
We will now derive from the linearised wave equation (2.38) an expression for −∂zu′w′.

2.1.3 Analytical expression for the forcing term
Equation (2.38) gives the evolution of the wave field. We will consider the asymptotic
description given by the WKB approximation: the mean-flow u evolves slowly compared
to the fast wave dynamics and the waves propagate in a flow without vertical shear.
Therefore, the time derivative and the z-derivative of the mean-flow are neglected ∂t,zu = 0
(which is verified for cu

N2H2 � 1 and for horizontal wavenumber kx not too large). We
consider a plane-wave solution for the expression of the streamfunction:

ψ = A(z)ei(kxx−ωt) (2.39)
with kx the horizontal wavenumber and ω = Ω− kxu the Doppler-shifted frequency.

We introduce the Doppler-shifted phase speed c = ω/kx = Ω/kx − u and we write the
order 6 wave equation under the following form:

[
c2
(
−k2

x + ∂2
z

)
+ ic

kx
(D + ν)

(
−k2

x + ∂2
z

)2
− Dν

k2
x

(
−k2

x + ∂2
z

)3
]
A(z) = −A(z) (2.40)
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Small dissipation approximation

A final approximation needs to be made to simplify the equations and to get an analytical
expression for the forcing term in equation (2.34). This approximation consists in assum-
ing that the dissipative processes are of second order. We write the kinematic viscosity ν
as εν and the buoyancy diffusivity D as εD, where ε is a small parameter. ε2 terms are
neglected.

c2
(
−k2

x + ∂2
z

)
A(z) + icε

kx
(ν +D)

(
−k2

x + ∂2
z

)2
A(z) = −A(z) (2.41)

We seek a WKB (Wentzel Kramers Brillouin) solution A(z) of the form:

A(z) = A0 e
∫ z

0 (ikz(εξ)+εχ(εξ))dξ (2.42)

This solution expresses the slow modulation of the properties of the waves along the ver-
tical direction. The function kz is the vertical wavenumber and the function χ is the
damping due to dissipative processes. The ε in front of the χ function expresses the small
dissipation assumption.

Leading order solution of 2.41 satisfies:

k2
z = 1− c2k2

x

c2 (2.43)

Equation (2.43) is the inviscid dispersion relation for the internal gravity waves.

At next order, we can have an expression for χ:

ic2εk′z + 2εc2ikzχ+ icε

kx
(ν +D)

(
k4
x + 2k2

xk
2
z + k4

z

)
= 0 (2.44)

That allows to write explicitly an analytical expression for the damping term χ:

χ = d
dz lnk−1/2

z − (ν +D)
2kx (1− k2

xc
2)1/2 c4

(2.45)

Finally, we have an expression for the amplitude function A(z):

A±(z) = A0K(
1−k2

xc
2

c2

)1/4 e
∓i
∫

dξ
(

1−k2
xc

2

c2

)1/2

e
− 1

2kx

∫
dξ ν+D

(1−k2
xc

2)1/2
c4 (2.46)

where ± is + for prograde ω < 0 waves and − for retrograde ω > 0 waves. K is the
constant from the integration of e

∫
dz d

dz lnk
−1/2
z . The bottom condition gives:

A±(z = 0) = A0K

kz(z = 0)1/2 = A0

So K = kz(z = 0)1/2.
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Analytical expression for the forcing term

Now that we have an expression for the streamfunction ψ, we can compute the term u′w′.
We write the streamfunction ψ as:

ψ = Aeikx(x−ct) + A∗e−ikx(x−ct) (2.47)

Then u′w′ is:

u′w′ =
(
∂A

∂z
eikx(x−ct) + ∂A∗

∂z
e−i(x−ct)

)
×
(
− ikxAeikx(x−ct) + ikxA∗e−ikx(x−ct)

)

= −ikxA
∂A

∂z
e2ikx(x−ct) + ikxA∗

∂A

∂z
− ikxA

∂A∗

∂z
+ ikxA∗

∂A

∂z
e−2ikx(x−ct)

(2.48)

Finally:

u′w′ = −ikx
(
−A∗∂A

∂z
+ A

∂A∗

∂z

)
(2.49)

By using the expression for A(z) of equation (2.46), we write:

u′w′
± =− ikx

(
−A±,∗∂zA± + A±∂zA

±,∗
)

=± 2kx|A0|2kz(z = 0)e
− 1
kx

∫
dξ ν+D

(1−k2
xc

2
±)1/2

c4
±

=± 2kx|A0|2kz(z = 0)e−
∫

dξl−1
±

(2.50)

with l−1
± = (ν+D)k3

x

(1−ω2
±)1/2

ω4
±

being the inverse of the attenuation length associated with the
wave. The attenuation length is a slowly-varying function of z.

The forcing term writes:

−
(
∂zu′w′

+ + ∂zu′w′
−) =2A2

0kz(z = 0)l−1
+ kxe

−
∫

dξl−1
+

− 2A2
0kz(z = 0)l−1

− kxe
−
∫

dξl−1
−

(2.51)

with intrinsic prograde frequency ω+ = ω − kxu and retrograde frequency ω− = ω + kxu.

With the analytical expression for the Reynold stress in equation (2.51), one can now
numerically integrate the mean-flow equation (2.34), which we reproduce below:

∂tu− ν∂2
zu = −∂zu′w′

An example of a numerical integration done with the model described in section 2.3
is shown in figure 2.3. Figure 2.3(j) shows the Hovmöller diagram, reproducing the main
features of the QBO: the mean-flow u reverses periodically, with phases propagating
downward. Figures 2.3(a-i) show snapshots of the vertical profile of u at different times.
They correspond to a full oscillating period and are reminesecent of the sketch from
[Plumb, 1984] seen in section 1.3.3.
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Figure 2.3: (a-i) Snapshots of the vertical profile of the mean-flow u. One oscillating
period is represented. (j) Hovmöller diagram showing a longer time evolution, and several
periods.
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2.2 Past studies using the Plumb’s model
Since the fundamental aspects of the QBO theory developed by [Plumb, 1977], several
studies have investigated the model deeply, looking for bifurcations in the dynamics.
Other studies have used Plumb-like models in GCMs. This section briefly introduces
those studies that are relevant for a better understanding of our own approach developed
in section 2.3.

2.2.1 Chaotic behaviour of the Plumb’s model
In 2016, the QBO observations exhibit a disruption in the oscillations of the zonal flow
[Osprey et al., 2016,Newman et al., 2016] (see the QBO observation in chapter 1 figure
1.19). Similar disruptions were also observed for the Saturn’s oscillations [Fletcher et al.,
2017] and quite recently in Jupiter’s atmosphere [Giles et al., 2020]. For the Earth’s
QBO, these anomalies are explained by extra-tropical intense Rossby waves (themselves
due to an extreme El Niño event) interacting with the westward phase of the QBO [Barton
and McCormack, 2017, Li et al., 2020], whereas the contribution of those waves to the
QBO forcing is usually secondary [O’Sullivan, 1997]. Yet, another explanation can be
advanced to explain this irregularity. Recently, the Plumb’s model [Renaud et al., 2019]
was systematically explored to look for bifurcations from periodic to non-periodic regimes.
By varying the Reynolds number of the waves (i.e. changing either the energy of the waves
or their dissipation), it was shown that the Plumb’s model exhibits a route to chaos with
increasing Reynolds number.

Data processing and Poincaré map

In order to visualise the bifurcations from one dynamical regime to another, Poincaré maps
(see figure 2.5d) are useful. To plot this kind of diagram, time is given to the dynamical
system to reach its attractor. After the attractor is reached, the mean-flow oscillates
[15−20] times and the signals of u at two different heights are extracted: u1 = u(z = 0.1)
and u3 = u(z = 0.5). Then, the values of u3 every time u1 = 0 are stored in a set. One
set is saved for each simulation performed with a parameter varying from one simulation
to another. The Poincaré map then shows the stored values as a function of the varying
parameter. The process for our results is illustrated in figure 2.4. Left panel of figure 2.4
shows different Hovmöller diagram corresponding to different dynamical regimes. Middle
panel shows the corresponding signals for u1 (thick black curve) and u3 (red dash curve)
and right panel shows phase-space diagram representing u3 as a function of u1. Each time
the curve crosses the axes u1 = 0, a red dot, indicating the corresponding value of u3 is
plotted. Those red dots are then reproduced in the Poincaré map (shown in section 2.4
for our results and in figure 2.5 for the results of [Renaud et al., 2019]). The cases visible
in figure 2.4 are from our study described in sections 2.3 and 2.4.

Periodic oscillations are characterised by two dots, symmetric about u3 = 0. Frequency-
locked oscillations also exhibit a periodic structure with several frequencies appearing in
the reversing signal: they are characterised by a finite number of dots. Finally, for quasi-
periodic oscillations, the dots do not superimpose (for a great number of reversals, they
would form a continuous line).
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Figure 2.4: (left) Hovmöller diagram for different oscillating behaviours: periodic (top),
quasi-periodic (middle) and frequency-locked (bottom). (Middle) Corresponding mean-
flow signal for u1 = u(z = 0.1) (black dashed) and u3 = u(z = 0.5) (red thick). (Right)
2D phase-space diagram showing u1 as a function of u3. The red dots enlighten the points
{u3(t) | u1(t) = 0}.

A route to chaos in the Plumb’s model

Figure 2.5 shows the results of the systematic study of the model in terms of wave Reynolds
number [Renaud et al., 2019]. The top panels show Hovmöller diagrams of observation
of the QBO (a) and two different dynamical regimes simulated with the Plumb’s model
(b-c).

The bottom left panel shows the route to chaos observed in the Plumb’s model while
increasing Re. The oscillations are periodic for Re−1 = 0.06 and show chaotic behaviour
for the lowest Re−1 values, with passages into quasi-periodic regime (Re−1 = 0.05) and
frequency-locked regime (Re−1 = 0.025), where some periodicity is retrieved.

The right panel shows the dynamical regimes as a function of Re−1 and a damping
parameter α. The parameter α models the competition between two different dissipative
mechanisms for the waves: a linear damping term (modelling the radiative cooling of the
atmosphere) and a diffusive attenuation (see section 2.1.1 for a discussion on the dissipa-
tive mechanisms). When α → 0, the wave attenuation comes from the linear term only.
On the opposite, when α→ 1, the dissipation is mainly diffusive. The coloured field gives
the dynamical regime. Low values of α (in white) correspond to periodic and frequency
locked regimes, while high values (in red) are chaotic regimes. This result shows that
the bifurcation thresholds are affected by the dissipative mechanism considered, but the
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route to chaotic regimes is still observed. These results were confirmed by two dimen-
sional DNS, suggesting that the observed bifurcations are not an artefact of the idealised
Plumb’s model. The existence of these non-periodic regimes could be an explanation for
the QBO periodicity disruption observed in 2016 [Newman et al., 2016,Osprey et al., 2016].

In astrophysics, a model very similar to the Plumb’s model was developed to investi-
gate the flow driven by internal gravity waves in the Sun, especially at the tachocline [Kim
and MacGregor, 2001]. Results (see figure 2.6) show that this model also exhibits dif-
ferent oscillation regimes, depending on the value of the viscous damping ν. The model
was investigated to explain small amplitude periodic variations of the angular velocity
observed at the solar tachocline [Howe et al., 2000]. For high value of viscosity, the model
drives a stationary shear flow, similarly to the tachocline. However, when the viscosity is
decreased, oscillations appear and a route to chaos is observed with decreasing viscosity.
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Figure 2.5: (a) Hovmöller diagram of observations of the QBO. The 2016 disruption is
enlighten by a dash-line. (b-c) Hovmöller diagrams of the oscillations obtained using the
Plumb’s model. The oscillations are in a periodic regime (b) and frequency-locked regime
(c). Λ is the wave attenuation length and T is the characteristic timescale of mean-flow
reversals. (d) Poincaré map of the systematic exploration in term of Re of the Plumb’s
model. c is the wave zonal phase speed. (e) 2D Poincaré map showing the exporation in
Re and α. The colourfield represents empirically the dynamical regime of the oscillations,
with white colour corresponding to periodic and frequency-locked regimes, blue colour is
quasi-periodic regimes and red is chaotic regimes. Reproduced from [Renaud et al., 2019].
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Figure 2.6: (A1-A5) Time evolution of u at a given height. (B1-B5) Phase-space diagram
with the values of u taken at two different heights. (C1-C5) Frequency power spectrum for
the signals shown on the first column. The kinematic viscosity ν decreases from the first
row (ν = 3 × 109 cm2 · s−1) to the last row (ν = 108 cm2 · s−1). Reproduced from [Kim
and MacGregor, 2001].
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Figure 2.7: (Left) Time-height cross section of the monthly mean zonally averaged zonal
winds. Winds are plotted in intervals of 10 m · s−1. Colour field shows the wave forcing.
Red (resp. blue) corresponds to eastward (resp. westward) acceleration. The numerical
model used is the Whole Atmosphere Community Climate Model (WACCM). 61 waves are
launched uniformally spaced in the range [−c0; c0], with c0 = 30 m · s−1 and dc = 1m · s−1.
The horizontal wavenumber kx = 2π

1000 km−1 is constant for each wave. Reproduced from
[Xue et al., 2012]. (Right) Time-height cross section of the zonally averaged zonal wind
from a stochastic internal gravity waves parameterisation. The numerical model used is
the LMDz GCM. Absolute phase speeds are randomly chosen in the range [1; 50] m · s−1

and horizontal wavenumbers are chosen in the range [0.02; 1] km−1. Reproduced from
[Lott et al., 2012].

2.2.2 Plumb-like models in GCMs
The QBO has a significant impact on weather events. As mentioned in chapter 1, it
may affect hurricane activity in the Atlantic ocean. It deeply modulates the northern
hemisphere winter climate, acts on the MJO and is also connected to ENSO. Additionally,
recent studies have used GCMs to model the effects of the QBO on the climate system.
It was found that the atmospheric response to sea ice loss is enhanced depending on the
phase of the QBO [Labe et al., 2019] and that trace gas levels at the Earth’s surface
were affected by the QBO [Ray et al., 2020]. Consequently, it is hugely important that
the QBO features are well reproduced in GCMs, in order to predict precisely the time
evolution of the global dynamics. QBO is also considered as a metronome of atmospheric
dynamics, and its presence as a proof of validity of a given model.

However, as mentioned in section 1.2.2, the GCMs resolution is too coarse to resolve
small length-scale and short time-scale motions. Therefore, the QBO is generated via
numerical models which are similar to the Plumb’s model (WKB approach to compute
a momentum flux associated with the wave field, which gives momentum to the ambient
mean-flow). The waves are parametrised in order to drive a QBO which reproduced the
actual QBO in terms of amplitude and period. Basically, at each time step, a finite
number n of waves are generated. Their properties (amplitude, wavenumber, frequency,
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direction) are set randomly and they propagate for certain time ∆t given by their the
dissipative mechanisms considered. Some results [Lott et al., 2012,Xue et al., 2012] are
reproduced in figure 2.7.

Yet, the parameterisation of the waves is not trivial [Song et al., 2007] and the sensi-
tivity of the GCM results regarding the vertical resolution is still discussed [Anstey et al.,
2016,Yu et al., 2017]. The Plumb’s model needs to be investigated to fully understand
the effect of a multi-wave forcing on the QBO properties in order to refine the QBO
generation in GCMs. The QBO initiative project (QBOi [Butchart et al., 2018,Bushell
et al., ]) compares the QBO generated in 17 different models in order to improve the QBO
modelling. Here, we return to the essentials of the problem and investigate the Plumb’s
model with a multi-modal forcing.

2.3 Our study
In the ocean and atmosphere, internal gravity waves are generated stochastically, with
various amplitude, frequencies and wavenumbers. Spectra from observations are repro-
duced in figure 2.8 for the ocean and in figure 2.9 for the atmosphere. They both show a
wide distribution of frequencies. Therefore, the classical monochromatic Plumb’s model
seems inadequate to study real wave driven flows, such as QBO, or the similar oscillations
observed in Saturn or Jupiter.

Figure 2.8: Power spectrum of the vertical displacement of an isotherm in the ocean. The
line shows a −2 slope for reference. The −2 slope is generally observed and theoretically
modelled in [Garrett and Munk, 1971]. Initial study is from [Cairns and Williams, 1976].
The figure is reproduced from [Garrett and Munk, 1979]. The waves are here affected by
the rotation and decrease drastically for ω < f (see chapter 1).
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Figure 2.9: Averaged vertical velocity spectra, each mesured for 12 hours in the lower
stratosphere. Frequencies are in cycles per second and energies in (m2 · s−2)/(cyc · s−1).
The dashed lines show a −1 slope for reference. Reproduced from [Fritts and Chou, 1987].

2.3.1 A spectrum as forcing

To account for the stochastic excitation present in nature, we consider a frequency spec-
trum for the forcing, instead of the usual monochromatic forcing in the Plumb’s model.
The horizontal wavenumber kx is constant for all waves and we only consider a spectrum
of frequencies in order to limit our study to the influence of ω. Wave amplitudes differ
for each wave considered in the forcing spectrum.
Different spectra were considered:

• a Gaussian spectrum (figure 2.10a), characterised by a mean value ω0 and a standard
deviation σ. The total energy of the forcing Etot is distributed among a frequency
bandwidth [ωmin−ωmax]. Frequencies with dE/dω < 10−4×max(dE/dω) were not
considered in the forcing spectrum. Thus, ωmin (resp. ωmax) is the lowest (resp.
highest) frequency considered, with at least 0.01% energy of the most energetic
wave. A small standard deviation is equivalent to a monochromatic forcing. The
three parameters ω0, σ and Etot will be systematically explored in section 2.4.

• Spectra inspired from homogeneous turbulence, with and without rotation (figure
2.10b). Spectrum without rotation is flat from ωmin to a cut-off frequency ωc, then
the energy drops as ω−5/3. In the presence of rotation, the energy drops as ω−3 after
the cut-off frequency.

For all cases considered, only the wave self-interactions are accounted for: all other
wave–wave interactions are neglected.

48



2.3. Our study

(a) (b)

Figure 2.10: (a) Gaussian spectrum characterised by the mean frequency ω0, the standard
deviation σ and the total energy Etot. (b) Turbulent spectra without rotation (red dashed
curve) and with rotation (black thick curve). Both are characterised by their cut-off
frequency ωc and the total energy Etot.

Relation between energy and amplitude

In the equations described in section 2.1, the forcing term depends on the amplitude of the
streamfunction ψ. In our study, we want to keep the total energy in the wave spectrum
constant from one case to another. Therefore, a relation between wave amplitude and
energy is needed.

In a Boussinesq fluid, with no background horizontal flow, the kinetic energy per unit
of mass is written Ek = 1

2 |u|
2. If we consider small amplitude waves and horizontally av-

erage over one wavelength, we can demonstrate that the mean available potential energy
〈Ep〉 is equal to the mean kinetic energy 〈Ek〉.

To compute the available potential energy, we use a fluid parcel argument. Let’s
consider that the fluid has constant buoyancy frequency at an arbitrary level, denoted
z = 0. The background density near z = 0 is given by ρ(z) ≈ ρ0(1 − z

H
), where H is a

local density scale height. We compute the difference of potential energy when two parcels
of fluid at z = ±δ exchange their location with each other.

∆Ep = gρ0 [(1− δ/H) (−δ) + (1 + δ/H) δ]
− gρ0 [(1 + δ/H) (−δ) + (1− δ/H) δ]

= 4ρ0g
δ2

H

(2.52)

Thus, the available potential energy for one fluid parcel is ∆Ep/2. Writing g/H = N2

and 2δ = ξ, we write
Ep = 1

2ρ0N
2ξ2 (2.53)

We compute a horizontal average over a wavelength of the kinetic and available po-
tential energies. The vertical displacement ξ can be written ξ = Aξ cosϕ, with ϕ =
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kxx+ kzz + ωt. Thus, the horizontal average of available potential energy is:

〈Ep〉 = 〈12ρ0N
2ξ2〉

= 1
2ρ0N

2A2
ξ〈cos2ϕ〉

= 1
4ρ0N

2A2
ξ

(2.54)

The horizontal averaged kinetic energy is 〈Ek〉 = 〈12ρ0(u′2 + w′2)〉. Using the fact
that w′ = ∂ξ

∂z
, the polarisation relation Au′ = − kz

kx
Aw′ and the inviscid dispersion relation

ω = N cos(θ) with θ = tan−1(kz/kx), we can write u′ = −N sin(θ)Aξsin(ϕ) and w′ =
N cos(θ)Aξsin(ϕ). Then, we write:

〈Ek〉 = 〈12ρ0(u′2 + w′2)〉

= 1
2ρ0〈N2sin2θA2

ξsin2ϕ+N2cos2θA2
ξsin2ϕ〉

= 1
2ρ0N

2A2
ξ〈sin2ϕ〉

= 1
4ρ0N

2A2
ξ

(2.55)

We see that 〈Ep〉 = 〈Ek〉. Thus, the total average energy is:

〈E〉 = 2〈Ek〉 = 2〈Ep〉 (2.56)

In order to compare the different cases, we need to keep the total energy injected at
z = 0 equal to the same value. Let’s consider the horizontally averaged energy per unit
of mass for one frequency:

〈Eω〉 = 2〈Ek〉 = 〈|u′|2〉 (2.57)
with u′ = (u′, w′), u′ = ∂ψ

∂z
and w′ = −∂ψ

∂x
. We write ψ = A0cos(kxx+kzz+ωt) = A0cos(ϕ),

with A0 a function of ω. Then:

〈Eω〉 = 〈(u′2 + w′2)〉

= 〈
(
∂ψ

∂z

)2

+
(
−∂ψ
∂x

)2

〉

= 〈A2
0k

2
zsin2(ϕ) + A2

0k
2
xsin2(ϕ)〉

= A2
0
k2
x

ω2 〈sin
2(ϕ)〉

= 1
2A

2
0
k2
x

ω2

(2.58)

The energy we want to keep constant through studies is the total energy contained in
the considered spectrum of waves, i.e.:

〈E〉 = 〈
∫
Eωdω〉 = 1

2

∫
k2
x

A2
0(ω)
ω2 dω (2.59)
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2.3.2 Numerical model
The mean-flow equation (2.34) is numerically integrated with a semi implicit/explicit time
scheme using finite differences. Time scheme is an order 1 Euler scheme and the Laplacian
term is solved via an order 2 centred finite differences scheme. At each time step, the
forcing term ∂zu′w′ is computed from equation (2.51) at a time t. Then, the mean-flow
u(z, t+ δt) is calculated by adding the effect of the divergence of the Reynolds stress and
viscosity. We use a no-slip boundary condition at the bottom, u|z=0 = 0, and a free-slip
boundary condition at the top ∂u

∂z

∣∣∣
z=1

= 0. The influence of the top-boundary condition
will be discussed in section 2.4.

Singularities appear in the forcing term expression (2.51) when ω± → 0 or ω± → 1.
The former case physically corresponds to a critical layer. Numerically, critical layers
are treated as follows: if the mean-flow reaches a value higher than 0.95 ω/kx at a given
height zc, the momentum contained in the waves is deposited at the grid point below
zc and the forcing terms for z > zc are set to 0. The latter case corresponds to a wave
whose Doppler-shifted frequency is close to the buoyancy frequency. This is treated as
in the critical layer case, with the condition now being |ω±| > 0.95. The choice of the
0.95 pre-factor allows to have a δt reasonably large without affecting the results. A lower
value would increase the computation errors. A larger value would impose to consider
very small time steps to solve the critical layer precisely.

Viscosity and diffusivity are set to experimental values for salty water, as in experi-
ments [Semin et al., 2018]. Using the laboratory experiment parameters of [Semin et al.,
2018], we have H = 0.41 m (the height of the stratified layer) and N = 2.16 s−1. The
dimensionless dissipation constants are ν = 2.8× 10−6 and D = ν/700. Thus, viscosity is
the main dissipative mechanism for both the large-scale flow and the waves.

Note that D only appears in the wave attenuation while ν appears in both the wave
attenuation and the mean-flow dissipation.

There are three main numerical parameters in our simulations: the time step δt, the
grid spacing δz and the number of frequencies in the forcing spectrum Nω. We ran
convergence studies to choose the values of these parameters. We ran simulations with
Etot = 10−5 or Etot = 2 × 10−6 and for two standard deviations σ = 10−4 and σ = 10−1.
Simulations are run for ∼ 15 reversal times. The results for these convergence calculations
are presented in appendix.

We use δz = 1/2000 for all simulations. A total number of frequencies Nω = 20
was found to be satisfactory for all cases. These frequencies were separated by ∆ω =
(ωmax − ωmin)/Nω. δt was adjusted for each study: we chose δt = 1 for the σ and ω0
systematic studies, while δt was set to either 0.1, 0.5 or 1 depending on the value of Etot
for the energy systematic study.
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2.4 Multi-modal model for the QBO
This article, currently in review for Physical Review Letters, sums up the results of our
study of the Plumb’s model using a stochastic forcing. The article gives the reader a
reminder of the context and introduces the essentials of the model. Then the results
showing the systematic exploration of the Gaussian forcing, and comparison with “tur-
bulent spectra” forcings, are presented and discussed.
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The Quasi-Biennial Oscillation (QBO) of stratospheric winds is the most striking example of
mean-flow generation and reversal by the non-linear interactions of internal waves. Previous studies
have used an idealized monochromatic forcing to investigate the QBO. Here we instead force a
more realistic continuous wave spectrum. Unexpectedly, spreading the wave energy across a wide
frequency range leads to more regular oscillations. We also find that different forcing spectra can
yield the same QBO. Multi-modal wave forcing is thus essential for understanding wave—mean-flow
interactions in nature.

Internal gravity waves (IGWs) are ubiquitous in geo-
physical and astrophysical flows, e.g. in Earth’s oceans
[1], atmosphere [2, 3] and core [4], as well as in stellar in-
teriors [5–7]. IGWs extract momentum from where they
are excited and transport it to where they are damped
[8]. In the Earth’s stratosphere, these waves are known
to drive oscillations of the zonal winds at equatorial lat-
itudes, with a period of nearly 28 months. This phe-
nomenon, known as Quasi-Biennial Oscillation (QBO),
affects, e.g., hurricane activity in the Atlantic ocean [9],
and the winter climate in Europe [10, 11]. Similar rever-
sals are observed in the atmosphere of other planets of
the Solar system [12, 13]. The QBO is a striking exam-
ple of order spontaneously emerging from a chaotic sys-
tem [14], similar to magnetic field reversals in dynamo
experiments [15] or large-scale, mean flow reversals in
Rayleigh-Bénard convection [16].

Atmospheric waves are excited by turbulent motions
in the troposphere and propagate in the stratosphere,
leading to zonal wind reversals. Lindzen and Holton
[17, 18] first proposed the QBO is due to wave–mean-
flow interactions, which Plumb [19] used to construct
an idealized model. The model considers the interaction
of two counter-propagating gravity waves with the same
frequency, wavelength, and amplitude (i.e., a standing
wave), with a mean-flow. This model was realised exper-
imentally using an oscillating membrane at the bound-
ary of a linearly-stratified layer of salty water [20–23].
The experiments can drive oscillating mean-flows simi-
lar to the QBO, as predicted by the Lindzen and Holton
theory. More recently, [24] simulated the Plumb model
numerically to explain the 2016 disruption of the QBO
[25, 26]. Although they find regular oscillations in the
mean-flow at low forcing amplitudes, the mean-flow be-
comes quasi-periodic, and eventually chaotic as the forc-
ing amplitude increases. Atmospheric forcing amplitudes
are in the chaotic mean-flow regime, suggesting that the
Plumb model must be refined to explain the QBO.

Because of its influence on weather events, it is cru-
cial that the period and amplitude of the QBO are accu-
rately modelled in Global Circulation Models (GCMs).
Due to their relatively coarse resolution, GCMs cannot
compute small time- and length-scale motions like IGWs.

Therefore, IGWs are parameterised in order to generate
a realistic QBO. Some GCMs are able to self-consistently
generate the QBO [27, 28], which is considered a key test
of a model’s wave parameterization. The dependence of
the QBO on vertical resolution and wave spectrum prop-
erties is not yet understood [29–31].

Direct numerical simulations have found mean-flow os-
cillations generated by a broad spectrum of IGWs self-
consistently excited by turbulence [14]. The influence of
the forcing on the large-scale flow oscillations could not
be studied extensively, because it is expensive to run 2D
simulations for long integration times. Only a Plumb-
like one-dimensional model can realistically allow for a
systematic exploration.

Despite the existence of a broad spectrum of waves
in nature, only [32] has studied multi-wave forcing. Al-
though he only used three different forcing spectra, he
found the QBO period is affected by the choice of spec-
trum. In this letter, we consider a wide class of wave
spectra in the Plumb model. We find that forcing a
broad frequency range produces regular mean-flow os-
cillations, even when the forcing amplitude is so large
that monochromatic forcing produces a chaotic mean-
flow. This suggests multi-modal forcing is an essential to
understand wave–mean-flow interactions.

MODEL

Mean-flow evolution is determined by the spatially-
averaged Navier-Stokes equations [33]. We define the
horizontal mean-flow u; overbar indicates horizontal (x)
average. Gravity points in the −z direction, and the ve-
locity fluctuations are (u′, w′). Then

∂tu− ν∂zzu = −∂zu′w′ (1)

where ν is the kinematic viscosity. The mean-flow is
forced by the Reynolds stress term on the right-hand side
of (1). In the Plumb model, the Reynolds stress comes
from the self-interaction of IGWs. We excite the waves
at the bottom boundary z = 0, and propagate the waves
through a linearly-stratified domain characterized by a
fixed buoyancy frequency N . We non-dimensionalize the



2

problem by setting the top boundary at z = 1 and set-
ting N = 1. Wave damping leads to vertical variation in
the Reynolds stress, driving the mean-flow. Conversely,
the waves are Doppler-shifted by the mean-flow, chang-
ing their propagation and damping.

We consider a superposition of plane waves ψi =
Ai(z)e

i(kxx−ωit), where ψi is the streamfunction, kx the
horizontal wavenumber, and ωi the angular frequency.
Assuming a time-scale and length-scale separation be-
tween the fast, short vertical scale IGWs, and the slowly
evolving, long vertical scale mean flow, we use the WKB
approximation to derive an expression Ai(z) in terms of
the wave forcing spectrum. We also make use of the fol-
lowing approximations. We take the “weak” dissipation
approximation, assume the background stratification is
constant in space and time, and neglect wave-wave non-
linearities, except when they affect the mean flow; see
details in [34] and Supplementary Materials A.1. Unlike
the classical model which uses the hydrostatic approx-
imation [19, 34], we solve the full vertical momentum
equation for the wave, which allows for high-frequency
IGWs. We neglect Newtonian cooling but consider diffu-
sion of the stratifying agent (with diffusivity D), which
is relevant for both laboratory experiments and the Di-
rect Numerical Simulations described below. The inverse
damping lengthscale is given by

l−1i =
1

2kx
× ν +D

(1− k2xc2i )
1/2

c4i
(2)

where ci = ωi∓kxu
kx

; ∓ accounts for the wave direction

of propagation. The right-hand side of (1) is written as a

sum of independent forcing terms
∑

i F̃i(z), where F̃i(z)
is related to the amplitude Ai(z) for each wave.

The classic Plumb model considers a single value of ω,
kx, and forcing amplitude A(z = 0). To account for the
multi-modal excitation of waves in natural systems, we
consider excitation by multiple frequencies with different
forcing amplitudes. The kinetic energy of the waves is
given by Etot =

∫
(dE/dω)dω, and we force the waves

so the energy density dE/dω is a Gaussian in frequency
centered at ω = ω0 with a standard deviation σ. We
discretize this spectrum with Nω standing waves of fre-
quency {ωi} with frequency-spacing ωi+1−ωi = ∆ω. The

forcing amplitude is Ai =
√

2(dE/dω)∆ω
ω2

i

k2
x

. Our results

depend only on dE/dω, not on the amplitudes of the in-
dividual modes (which vary with Nω). We only consider
a single value of kx = 4π. This general forcing spec-
trum allows us to study the transition from monochro-
matic forcing (σ → 0) to multi-modal forcing (white
noise in the limit σ → ∞). We consider the dimen-
sionless dissipation ν = 2.8 × 10−6 and D = ν/700, es-
timated from laboratory experiments [23]; we explored
the ranges ω0 ∈ [0.1; 0.55], σ ∈ [10−4; 3 × 10−1] and
Etot ∈ [7 × 10−7; 10−5]. For comparison with previ-
ous monochromatic studies [19, 24], the wave forcing
Reynolds number of each individual wave goes up to

∼ 100, which is comparable to the range explored in [24].
We initialize u with a small amplitude sinusoid. Bound-
ary conditions for the mean-flow are no-slip (u = 0) at the
bottom and free-slip (∂zu = 0) at the top (z = 1). The
waves freely propagate out of the domain’s top bound-
ary without reflection. Section A.2 of the Supplementary
Materials describes our spatial and temporal discretiza-
tion, and demonstrates numerical convergence of our sim-
ulations.

We investigated the influence of top boundary con-
ditions (BCs) on the mean-flow evolution using two-
dimensional direct numerical simulations of the Navier-
Stokes equations [35, 36]. We found the top BCs only
marginally influence the period and amplitude of the os-
cillations, and do not affect their dynamical regime (see
Supplementary Materials C). We thus focus on results
from our 1D model, which allows for the systematic ex-
ploration of a larger parameter space. The vertical ex-
tent of the simulation domain also does not qualitatively
change our results, even though some high-frequency
waves have attenuation lengths greater than the domain
height (see Supplementary Materials D).

RESULTS

We first investigate the influence of the forcing band-
width on the mean-flow evolution, varying the standard
deviation σ of our Gaussian excitation spectrum, but
fixing the central frequency and total energy. Figure
1 shows that for narrow Gaussian distributions 10−4 6
σ < 10−2, the system produces frequency-locked oscilla-
tions, with slow oscillations in the upper part of the do-
main and fast oscillations in the bottom part (Figure 1e).
The frequency power spectrum for σ = 3× 10−4 (Figure
1h) shows peaks at these two frequencies (f0 and f0/2),
as well as at harmonic/beating frequencies. Frequency-
locked regimes are characterised by a signal with two or
more frequencies whose ratios are rational.

At σ ≈ 10−2, the oscillations transition from a
frequency-locked regime to a quasi-periodic regime (Fig-
ure 1d, g). A second bifurcation to periodic oscillations
occurs at σ = 5 × 10−2, with only one dominant fre-
quency (plus harmonics) appearing in the corresponding
spectrum (Figure 1f). Forcing spectra with wide band-
widths lead to more organised, QBO-like states.

A wide bandwidth forcing spectrum is more compli-
cated and includes more frequencies; naively this would
lead to chaotic mean-flows. However, a wider spectrum
also excites higher frequency waves. High-frequency
waves experience less damping than low-frequency waves,
so they can propagate higher in the domain. Because the
QBO reversal occurs at the top, we hypothesize the pe-
riod and regularity of the oscillation is determined by
the highest frequency wave above a threshold amplitude
(See Supplementary Materials e). At fixed wave forcing
amplitude, higher frequency waves correspond to more
regular oscillations with longer periods (Figure 2a). Fur-
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FIG. 1. Mean-flows generated by a Gaussian forcing spectrum with standard deviation σ, central frequency ω0 = 0.2 and
total kinetic energy Etot = 2 × 10−6. (a) Example forcing spectra: σ = 1 × 10−1 in brown, σ = 2.8 × 10−2 in purple and
σ = 3×10−4 in green. (b) Poincaré map: each dot is the value of the flow u (z, t) at z = 0.5 (denoted u3) when u (z = 0.1) = 0.
Periodic oscillations are represented by two points, symmetric about u3 = 0 (more details in Supplementary Materials B). The
asymmetry for the points below σ ∼ 10−2 is due to the initial condition. (c-e) Hovmöller diagrams of the mean-flow u for
different σ. (f-h) Amplitudes of the temporal Fourier transform taken at z = 0.25 for each Hovmöller diagram. Frequencies are
normalised by the frequency of maximum amplitude f0, indicated by the dark blue line. The dark red line shows f = f0/2,
and the other vertical lines represent harmonics.

thermore, the amplitude of the mean-flow is larger when
forced by higher frequency waves, because the phase ve-
locity is larger. This means the amplitude of the mean-
flow is larger for the periodic oscillations forced by a wide
spectrum (Figure 1b).

Figure 2 shows Poincaré maps for simulations forced
with different central frequencies ω0, at fixed total en-
ergy Etot (see Supplementary Materials B for details of
this calculation). We used either a narrow distribution
(σ = 10−4) or a broad distribution (σ = 10−1). The
top panel (σ = 10−4, very close to monochromatic forc-
ing) shows a transition from periodic oscillations to non-
periodic oscillations at ω0 = 0.184. There is a second
bifurcation at ω0 = 0.22 leading to periodic oscillations.
The amplitude of the oscillations rises with ω0 because
the phase velocity increases. The Poincaré map for vari-
able ω0 (Figure 2) is qualitatively similar to the Poincaré
map for variable σ (Figure 1b), suggesting that the pri-
mary effect of increasing σ is to put more power into
high-frequency waves. Note, the frequency of the second
bifurcation to periodic oscillations changes with domain
height because the forced wave has a viscous attenuation

length greater than our domain height. However, the pe-
riodic oscillations for large σ are not due to the finite
domain size (Supplementary Materials D). The bottom
panel of Figure 2 (σ = 10−1, wide spectrum) shows pe-
riodic oscillations for all ω0. Once again, we find that a
wide forcing spectrum with many frequencies will almost
always generate regular, periodic oscillations.

In Figure 3, we plot Poincaré maps for different forc-
ing amplitudes, with fixed ω0 and σ. The top panel
(σ = 10−4, very close to monochromatic forcing) qual-
itatively reproduces the results from [24]. As the am-
plitude of the monochromatic forcing increases, periodic
oscillations bifurcate into frequency-locked oscillations
(Etot ≈ 1.4 × 10−6), and then again into quasi-periodic
or chaotic oscillations (Etot ≈ 2.4× 10−6). On the other
hand, when forcing with a wide spectrum (σ = 10−1,
bottom panel), we only find regular periodic oscillations.
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FIG. 2. Poincaré maps using the same method as Figure 1b
for simulations with different ω0, with Etot = 2 × 10−6 and
σ = 10−4 (top) or σ = 10−1 (bottom). The inset zooms in
on the frequency range ω0 ∈ [0.18; 0.22] to show the transi-
tions between periodic, frequency-locked, and quasi-periodic
regimes.

DISCUSSION

Our study demonstrates that a broad spectrum
of IGWs can generate regular mean-flow oscillations.
Whereas large-amplitude monochromatic forcing often
generates chaotic mean-flows [24], forcing a broad spec-
trum of waves consistently generates periodic mean-flows,
similar to what is observed in the Earth’s atmosphere.
The mean-flow evolution appears to be determined by
high-frequency waves which can propagate higher, and
control the mean-flow’s reversal. We hypothesize the dis-
ruption observed in 2016 [25, 26] is due to intense events
which focused significant energy into waves with similar
frequency and wavenumber. Those waves could then trig-
ger non-periodic reversals for a short time, as suggested
by [24].

We have run several simulations with forcing spec-
tra more representative of turbulence. In these simu-
lations, we assume dE/dω is constant for ω < ωc, and
decreases as a power-law for ω > ωc. We tested an ω−5/3

power-law corresponding to Kolmogorov’s law and Tay-
lor’s “frozen turbulence” hypothesis, and an ω−3 power-
law corresponding to the energy cascade observed in ro-
tating turbulence. In both cases, the waves drive periodic
mean-flow oscillations.

-0.03 -0.02 -0.01 0 0.01 0.02

10
-6

10
-5

FIG. 3. Poincaré maps using the same method as Figure
1b for simulations with different Etot, with ω0 = 0.2 and
σ = 10−4 (top) or σ = 10−1 (bottom).

We find that different forcing spectra can lead to the
same mean-flow evolution. For example, the top panel
of Figure 4 shows a Hovmöller diagram for the ω−5/3

spectrum with total energy Etot = 2.5 × 10−6. It is
quantitatively similar to the Hovmöller diagram of Fig-
ure 1c, obtained with a Gaussian forcing and 20% less
energy (oscillation periods differ by 4.5% and amplitudes
by 15%). The ω−3 spectrum with Etot = 2.8× 10−6 also
generates a similar mean-flow (bottom panel of Figure
4; oscillation periods are equal and amplitudes differ by
14%). Since multiple wave spectra can produce the same
mean-flow oscillations, reproducing the Earth’s QBO in
a GCM does not mean the IGW parameterization is cor-
rect.

Our simulations use parameters similar to laboratory
experiments of the QBO [20, 23]. In the atmosphere,
wave attenuation also occurs via Newtonian cooling,
which we did not include in our simulations. Besides, the
forcing is stronger and viscosity is weaker. Waves deposit
their energy either via critical layers (which we include
in our model), or via breaking due to wave amplification
from density variations. Our calculations show the mean-
flow period and amplitude is set by high-frequency waves
with large viscous attenuation lengths. Although many
more atmospheric waves have small viscous attenuation
lengths, high-frequency waves are still more important
than low-frequency waves because they do not encounter
critical layers. Thus, we believe high-frequency waves
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FIG. 4. Hovmöller diagram of the mean-flow u in simulations
with different forms of the forcing spectrum. In the top panel,
dE/dω is constant up to ωc = 0.2, and decreases as ω−5/3 for
higher frequencies; the total energy is Etot = 2.5 × 10−6. In
the bottom panel, dE/dω is constant up to ωc = 0.23, and
decreases as ω−3 for higher frequencies; the total energy is
Etot = 2.8× 10−6.

likely play a key role in setting the QBO properties, just
as they are important in our simulations.

In conclusion, this letter shows that the frequency
spectrum of internal gravity waves plays a key role in
the generation and properties of periodic large-scale flow
reversals like the QBO. Although we studied general fre-
quency spectra, we limited our investigation to a single
wavenumber. Future work should also include the wide
range of horizontal wavenumbers (10−1000 km) observed
in the atmosphere, including low-frequency, planetary-
scale waves which may also be an important source of
momentum for the QBO [37]. Additionally, the study of
the QBO in a fully coupled, convective–stably-stratified
model system by [14] showed that accounting for only the
energy spectrum in a Plumb-like model is not sufficient
to reproduce the realistic reversals; it also requires in-
formation about higher order statistics. Clearly, reliable
parameterization of this climatic metronome in GCMs
still demands additional work.
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2.4. Multi-modal model for the QBO

Discussion over the top conditions and confinement
The following subsections are from the supplementary materials of our submitted publi-
cation to Physical Review Letters.

Top boundary conditions

The high-frequency forced waves have viscous attenuation lengths larger than the domain
size. These waves are affected by the vertical size of the domain and the top boundary
condition. In our idealised Plumb-like 1D model, we use a stress-free boundary condition
for the mean-flow (∂zu = 0), and a radiation boundary condition where waves flow out of
the domain. Here we explore other top boundary conditions.

We compute two-dimensional Direct Numerical Simulations (DNS) using the open
spectral solver Dedalus [Burns et al., 2016, Burns et al., 2019]. We solve the following
equations:

∂tu− ν∇2u+ ∂xP = −(u · ∇)u (2.60a)
∂tw − ν∇2w + ∂zP − b = −(u · ∇)w (2.60b)

∂tb−D∇2b+ w = −(u · ∇)b (2.60c)
∇ · u = 0 (2.60d)

where b is the buoyancy, P the pressure, and ∇ = (∂x, ∂z). The geometry is two dimen-
sional and periodic along the horizontal axis. We use nz = 256 Chebyshev polynomial
functions in the z direction and nx = 32 complex exponential functions in the x direction.
We use ν = 2.8 × 10−6 and D = ν/7, representative of thermally stratified water. To
compute nonlinear terms without aliasing errors, we use 3/2 padding in both x and z.
For timestepping, we use a second order, two stage implicit-explicit Runge-Kutta type
integrator [Ascher et al., 1997], with time steps O(10−2). Waves with random phases
are forced at the bottom domain by setting velocity and buoyancy perturbations at the
boundary. We use a forcing spectrum given by Etot = 2 × 10−6, ω0 = 0.2, Nω = 20 with
either σ = 10−1 or σ = 2.8× 10−2.

We tested four different top boundary conditions:

• (i) No-slip: u|z=1 = 0 and w|z=1 = 0.

• (ii) Free-slip: ∂u
∂z

∣∣∣
z=1

= 0 and w|z=1 = 0.

• (iii) Buoyancy damping layer for 1 < z < 1.5 to damp the waves but not the
large-scale flow. We implement this by adding a damping term in the right-hand
side of equation (2.60c), −bf(z)/τ where f(z) = tanh((z − 1.15)/0.05) + 1)/2
is a z-dependent mask, and the damping timescale τ = N−1 = 1 in our non-
dimensionalization.

• (iv) Layer with N = 0 between 1 < z < 1.5. Specifically, we use N(z) = (1 +
tanh((z − 1)/0.05))/2.

In (iii) and (iv), boundary conditions at the new domain top boundary z = 1.5 were
no-slip.
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Figure 2.11: Hovmöller diagrams of the horizontal mean-flow driven by a multi-wave
forcing for different top boundary conditions in our 2D numerical model. The forcing
spectrum is gaussian centred at ω0 = 0.2 with standard deviation σ = 10−1 and total
energy Etot = 2 × 10−6. This corresponds to the wide forcing spectrum case shown in
figure 1 of main text. In the top panels, the computational domain goes to z = 1.

In figures 2.11 and 2.12 we plot Hovmöller diagrams for simulations with two different
values of σ. In both cases, we find that the top boundary condition does not strongly
affect the mean-flow evolution. We find the same dynamical regimes as in the 1D model.
Therefore, using a 1D model with an easy to implement top boundary condition, such
as free-slip, does not alter the results. The free-slip condition for u that we use in our
1D simulations should be physically similar to having a layer with N = 0. A layer with
N = 0 is model for the mesosphere, which is weakly stratified (N2 ∼ 0) compared to the
stratosphere (N2 6= 0). While wave reflection occurs at the interface, we find that in our
1D simulations, at most ∼ 10% of the total wave energy reaches the top domain and is
lost. This study of top boundary conditions suggests this does not qualitatively affect the
results.
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Figure 2.12: Same as Figure 3, but with a Gaussian forcing spectrum with standard
deviation σ = 2.8× 10−2.

Domain height

In the main text we show that as the forcing spectrum becomes broader, at fixed energy,
the mean-flow transitions from quasiperiodic to periodic. This could be due to the exci-
tation of high-frequency waves whose attenuation length is much larger than the domain
height. Using the forcing spectrum parameters of the first figure presented in the PRL
article, we do find that the transition occurs at larger and larger σ as the domain size
increases. For those parameters, the periodic mean-flow oscillations appear to be dictated
by waves with large attenuation lengths. However, this is not always the case. Here we
preset simulations with ω0 = 0.15 and Etot = 5 × 10−6. For these parameters, we find
the transition from quasiperiodic to periodic oscillations occurs at σ ∼ 2.5 × 10−2. This
is lower than the transition value in Figure 1 of the main text, where we used the larger
value of ω0 = 0.2. In this case, all forced waves have attenuation lengths smaller than the
domain height. Thus, the top boundary is not required for periodic mean-flow oscillations
at large σ.
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Figure 2.13: Poincaré map for simulations with different σ, with ω0 = 0.15 and Etot =
5 × 10−6. The transition from quasiperiodic to periodic reversals occurs at a value of σ
where all forced waves have an attenuation length smaller than domain height.

2.5 Conclusion
We investigated the Plumb’s model considering a multi-wave forcing. Surprisingly, our
results show that considering many different waves for the forcing can drive periodic os-
cillations, whereas gathering the same amount of energy into a monochromatic forcing,
drives non-periodic oscillations, i.e. oscillating signals characterised by several frequen-
cies. Also, it turns out that different spectra can drive oscillations with similar properties.
This is hugely important for GCMs in which the wave are parameterised in order to drive
QBO. Moreover, the QBO is used as a benchmark for the GCMs, whereas we saw that
driving the right QBO does not imply that the wave properties were chosen rightly.

However, many assumptions and approximations are done to develop the Plumb’s
model. Even if experiments [Plumb and McEwan, 1978,Semin et al., 2018] and numerical
simulations [Wedi and Smolarkiewicz, 2006] confirm the validity of the monochromatic
model, a systematic investigation, either numerical or experimental, could be interesting
to confirm our results. Indeed, it is known that the weak dissipation assumption tends to
overestimate the damping of low frequency waves [Lecoanet et al., 2015] and neglecting
wave–wave interactions may not be appropriated. Moreover, only the stratified layer is re-
solved and the wave forcing is parameterised. The coupling between the wave-generating
mechanisms and the internal gravity waves are not solved and very little is currently
known on the energy transfer function from the turbulent layer to the generated internal
gravity waves. Simulating a whole domain reproducing the complex dynamics occurring
at the interface is needed.

The next chapter will introduce an experiment designed to generate mean-flow rever-
sals from turbulently-generated internal gravity waves, aiming to reproduce and complete
the results observed in this chapter.
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The Plumb’s model [Plumb, 1977], derived from the preliminary work of [Lindzen and
Holton, 1968], has successfully reproduced the main features of the QBO, both numeri-
cally [Plumb, 1977,Saravanan, 1990,Renaud et al., 2019] and experimentally [Plumb and
McEwan, 1978,Otobe et al., 1998,Semin et al., 2018]. Even if the model was extended in
GCMs [Lott and Guez, 2013] and in our work described in the previous chapter to account
for the stochastic generation of internal gravity waves in the Earth’s atmosphere, there is,
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to the best of our knowledge, no experiment that managed to drive oscillating mean-flows
from a multi-wave forcing. We present here our up-to-now unsuccessful attempts.

This chapter will introduce in section 3.1 the original Plumb & McEwan’s experiment
[Plumb and McEwan, 1978], which reproduced the features of the QBO. Then, our multi-
wave experiment, in a geometry reminescent of the original set-up [Plumb and McEwan,
1978], is presented in section 3.2. The different results are shown and discussed in section
3.3 and a numerical investigation conducted in order to solve some unanswered questions
is described in section 3.4.

3.1 How to drive a QBO from stochastically gener-
ated waves ?

3.1.1 The monochromatic Plumb & McEwan’s experiment

Figure 3.1: Sectional view of the set-up of [Plumb and McEwan, 1978] showing the annular
cylinder geometry (a) and the rubber membrane at the bottom (b).

The Plumb & McEwan’s experiment successfully generates a reversing horizontal flow
from a standing gravity wave forcing, using an oscillating membrane to generate waves in
a stratified environment. The oscillating membrane, divided in 16 moving pieces, gener-
ates two contra-propagating waves, with the same frequency. In order to experimentally
reproduce the QBO, Plumb and McEwan had the bright idea to use a cylindrical shell
as geometry (see figure 3.1 showing a sectional view of the set-up). Neglecting the radial
variation due to the narrow gap between the walls, the geometry can be considered as
2D (eθ, ez) and is periodic in the eθ direction, with gravity pointing in the −ez direction.
Neglecting Earth’s curvature (the stratosphere is thin compared to the Earth’s radius),
this geometry has the relevant features to mimic the QBO phenomenon along the equator.
Besides, Coriolis force cancels out at the equator and thus, rotation is not needed in the
experiment in order to model QBO. Generated at the bottom of the tank, the wave group
velocity is directed upward (hence energy is transported upward) and an oscillating flow
appears. The results are in a good agreement with the analytical model derived in [Plumb,
1977] (shown in figure 3.2a), confirming the validity of the model. Only one period could
be visualised because the oscillatory motion of the membrane locally mixed the fluid. At
some point, the stratification was destroyed near the membrane and the internal gravity
waves could not propagate anymore.
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(a) (b)

Figure 3.2: (a) Contour of horizontally averaged horizontal velocity for the experiment
(left) and for the analytical model (right). Amplitude of the forcing is ε = 8 mm and its
frequency is ω = 0.43 s−1. Reproduced from [Plumb and McEwan, 1978]. (b) Parameter
space showing the transition between stable (i.e. no mean-flow) and unstable (i.e. mean-
flow) regions. Using the salt MgCl2 for stratification allows to reach higher values of N
while NaCl gives small N . 1/Λ1 is the Reynolds number associated with the wave. 1/Λ2 is
a Reynolds-like number associated with the wall friction for the wave. Tricritical denotes
the transition from subcritical to supercritical. Reproduced from [Semin et al., 2018].

The experiment was later reproduced and improved [Semin et al., 2018] in order to
visualise a greater number of periods. Salty fluid was continuously injected at the bottom
and the corresponding volume was removed at the top, where the forcing membrane is
located (the set-up from [Semin et al., 2018] is turned upside down compared to the one
of [Plumb and McEwan, 1978]). The linear stratification was thus replenished during a
long period of time, up to 18 hours. The aim was to investigate the nature of the bifurca-
tion of the large-scale flow emergence. Two salts (MgCl2 and NaCl) were used, resulting
in different buoyancy frequencies N . For large values of N , the wave attenuation is mostly
due to the fluid viscosity while for small values of N , the attenuation comes from wall
friction. The bifurcation from stable to unstable states is either subcritical or supercritical
depending on the dissipative processes involved (supercritical if the wave attenuation is
mostly in the bulk, subcritical if the wave attenuation is induced by wall friction. See
figure 3.2b). The bifurcation from stable state to oscillating periodic behaviour in the
Plumb’s model was also studied theoretically [Yoden and Holton, 1988].

Note that the Plumb & McEwan experiment was also reproduced in 1998 by [Otobe
et al., 1998]. The results, including films of the oscillating flow, are accessible at the
following URL: http://www2.nagare.or.jp/mm/98/otobe/index.htm.

These experiments successfully drove reversing mean-flows from monochromatic forc-
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ing. Hence, we will reproduce this annular cylinder geometry in our set-up and adapt
the forcing to our needs. With a review of laboratory experiments studying internal
gravity waves, we now discuss several ways to generate internal gravity waves randomly,
reproducing the stochastic wave generation in the stratosphere.

3.1.2 Waves generation in experiments
Topographic generation

It is possible to mimic the generation of orographic waves by moving the top or bottom
boundary of a tank, with regularly spaced reliefs attached to the boundary. The tank is
filled with stratified fluid. The boundary is moved horizontally and internal gravity waves
are generated. This configuration, studied by [Aguilar et al., 2006], is similar to a flow
above topography in the atmosphere or above bathymetry in the ocean.

Figure 3.3: (Left) Vertical time series of ∂tN2 for the small (left) and large (right) am-
plitude hills and for the cases Fr < 1 (top) and Fr > 1 (bottom), with Fr = Ukx

N
the

Froude number. U is the speed of the moving boundary, kx the wavenumber associated
with the hill pattern. One sees that the wave field is much more coherent for Fr < 1.
Reproduced from [Aguilar et al., 2006]. (Right) Scheme of the oscillating membrane,
reproduced from [Delisi and Dunkerton, 1989], and an example of a wave field generated
by an oscillating membrane, reproduced from [Semin et al., 2016]. The field shows the
phase ϕ0 of the wave component. Black: ϕ0 = 0 and white: ϕ0 = π.

The left panel of figure 3.3 shows the internal gravity wave field generated by mov-
ing hills at the bottom of a stratified fluid. For equivalent Froude numbers Fr = Ukx

N
,

the small amplitude hills generate less intense waves than the high amplitude hills. The
wave field is less coherent for Fr > 1 but waves are still generated. The frequency and
wavenumber of the generated waves are set by the speed U of the moving boundary and
by the wavenumber associated with the hill pattern. Because the wave properties are
directly linked to the topography, orographic waves in the atmosphere are rather pre-
dictable and can be implemented quite precisely in GCMs. By considering e.g. a fractal
bathymetry generated by a 3D printer, this generation technique could allow to excite
spatially stochastic wave; however they would all have the same time dependence so we
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have not pursued this idea yet.

As previously described, several experiments used an up-and-down moving bound-
ary to generate internal gravity waves [Plumb and McEwan, 1978,Delisi and Dunkerton,
1989, Semin et al., 2016]. In these experiments, the tank is a cylindrical shell, and the
moving boundary is composed of 16 or 32 pieces of a flexible membrane which can individ-
ually be moved up and down by a piston. The right panel of figure 3.3 shows a schematic
representing a top view of the membrane and an example of generated wave field in the
cylindrical shell.

Those mechanisms are not easy to set up in an experiment, even to generate monochro-
matic waves. They require a precise control of the devices displacing the boundary and
they would be quite challenging to adapt in order to generate waves stochastically. Note
finally the wave-maker developped by [Gostiaux et al., 2007] which is more easy to im-
plement: this would allow some temporal stochastic wave generation but with a given
spatial geometry.

Waves driven by plumes and convection

In the Earth’s atmosphere, a significant part of the internal gravity waves is generated by
the turbulent convection taking place in the troposphere. The mechanical oscillator effect
(see section 1.2) can be used to easily generate internal gravity waves. A single buoyant
plume can generate a wave field [Ansong and Sutherland, 2010]. The plume forms in a
homogeneous layer and then penetrates in a stratified layer until it reaches its neutral-
density altitude. Waves are generated at the cap of the plume and are characterised by
very narrow frequency and wavenumber ranges (see figure 3.4 where the phases line are
almost aligned). The plume then spreads horizontally, like a gravity current.

The wave field generated by penetrative convection can be experimentally studied.
The transient investigation of these dynamics by [Michaelian et al., 2002] shows that
waves at different frequencies are generated. The set-up consists in initially stably strat-
ified water heated from below in order to trigger convection. The convective layer then
generates waves in the upper stratified layer. The convective layer grows in time and
eventually at some point the whole tank is convective. Therefore, convection seems to
be a good candidate to stochastically generate internal gravity waves. This topic will be
described in details in the next chapter.

Other mechanisms exist to generate waves such as devices that create a shear (see [Gos-
tiaux, 2006]) or an oscillating solid within a stratified layer (remember the St Andrew’s
cross described in chapter 1). Since the wave properties are directly linked to the object
typical dimension and velocity, they all generate waves with a finite number of frequencies
and wavenumbers. Moreover, the wave generation is also deterministic. These mecha-
nisms would be quite challenging to adapt in order to generate waves stochastically.

To us, the best and easiest way to have a stochastic generation of waves is to use
a turbulent layer, like in the atmosphere, to generate the waves. Different manners to
drive turbulence exist, such as Von Kármán turbulent flow using rotating disks [Ravelet
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Figure 3.4: (Left) Field of ∂tN2 at different times showing the wave field generated by
the penetration of the buoyant plume. (Right) Schematic of the experiment. Reproduced
from [Ansong and Sutherland, 2010].

et al., 2004, de la Torre and Burguete, 2007,Ravelet et al., 2008,Monchaux et al., 2009,
Gay et al., 2018], grid turbulence [Shy et al., 1997,Antonia et al., 1998] and convection
[Deardorff et al., 1969,Michaelian et al., 2002] for example. The internal gravity wave field
generated by a turbulence induced by an oscillating grid was studied both experimentally
and numerically by [Dohan and Sutherland, 2005]. As said above, waves generated by
penetrative convection will be developed in the next chapter. For the experimental study
described here, we chose to use a turbulent layer created by several jets to force the
internal gravity waves. It is possible to easily control some jet properties, such as the
flow rate. Doing so, we are able to have a certain control upon some of the turbulence
properties, hence having a control on the wave spectrum.

Turbulence by jets

In order to explore a large range of behaviours between monochromatic forcing and com-
pletely randomly generated waves in our experiment, we generate a turbulent layer using
several jets with controlled location, mean flow rate and flow rate fluctuation in time.
Therefore, we create a turbulent layer superimposed to a large-scale periodic oscillation,
in order to control the properties of the internal gravity waves generated, but with an
important part of noise, coming from the energy cascade.
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Free turbulent round jets were vastly studied in fluid dynamics, especially in the
aerospace community. One can read for instance the review from [Ball et al., 2012] or the
book on turbulent flow by [Pope, 1962]. In a nutshell, turbulent jets are characterised by
an universal opening angle of 11.8◦, giving 23.6◦ from one side to opposite side. It follows
that the relation between the jet radius R and the downstream distance x is:

R(x) = tan(11.8◦)x = 1
5x (3.1)

Turbulent jets also exhibit a Gaussian transverse shape. Therefore, the longitudinal speed
can be written as:

u(x, r) = umax(x) exp
(
− r2

2σ2(x)

)
(3.2)

where umax(x) is the maximum speed at the centreline and therefore depends on the
downstream position x and σ(x) is the standard deviation related to the spread of the jet.
From statistics, 4σ is the width for a Gaussian that encompasses 95% of the area under
the curve. We write 4σ ≈ 2R.

The main issue of generating waves with a turbulent layer above (or below) the strat-
ified layer of interest is the mixing occurring at the interface. The turbulence will slowly
penetrate in the stratified layer. The height of the turbulent layer and its density will
increase over time, while the stratified layer height will decrease. The interaction of a
turbulent jet impacting an interface with a fluid at a higher density (typically fresh wa-
ter above salty, not stratified, water) had been investigated in numerous studies [Baines,
1975,Cotel et al., 1997,Shrinivas and Hunt, 2014,Herault et al., 2018,Herault et al., 2017],
Yet, the entrainment of a turbulent jet impinging an interface is still not well understood
as shown in figure 3.5. The entrainment rate is linear for large Froude numbers. The
scaling law is either ∼ Fr2 or ∼ Fr3 for small Froude numbers. [Herault et al., 2018]
suggests that the surface waves excited by the jet impact on the interface play a major
role in the entrainment.

In our experiment, it is crucial that the entrainment rate is as low as possible. The
turbulence induced by the jet will slowly mix the stratified layer. It is necessary that the
height of the stratified layer remains unchanged for a long time, long enough for a poten-
tial large-scale flow to emerge and reverse. Moreover, if the turbulent layer grows larger,
the turbulence at the interface will decrease in intensity over time (since the distance
between the jet exits and the interface will increase), and so will the generated waves.
Ideally, we do not want the properties of the system to change over time. The problem
is that we also need a layer turbulent enough to generate internal gravity waves stochas-
tically. We need to find the right balance between the transfer of energy at the interface
from turbulence into waves, and the entrainment rate which destroys the stratified layer.

The next section will introduce in details our setup, in a geometry reminiscent of
[Plumb and McEwan, 1978], and the different solutions tested in order to prevent the
mixing at the interface.
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Figure 3.5: Entrainment rate as a function of the Froude number. The dashed curve
represents the model suggested by [Herault et al., 2018], the black lines are from [Shrinivas
and Hunt, 2014]. The figure displays data from different studies. Reproduced from
[Herault et al., 2018].

To the best of our knowledge, the internal gravity wave field generated by a turbulent
jet impinging an interface with a stratified layer remains unstudied, both numerically and
experimentally.

3.2 Set-up and methods

3.2.1 Description of the setup
The tank used is reminiscent of the one from [Semin et al., 2018]. It consists in two
cylinders of respective diameter d1 = 40 cm for the outer cylinder and d2 = 20 cm for
the inner cylinder (figure 3.6). The gap of the obtained cylindrical shell is δ = 10 cm.
Total height is H = 60 cm. For practical reasons, these two cylinders are placed in a
rectangular tank whose dimensions are 50× 50× 75 cm3. The different volumes (outside
the outer cylinder, the cylindrical shell and inside the inner cylinder) are all connected
and filled with salty water.

At the top, a circular plate allows to place the nozzle exits for the turbulent jets. It
is made of 12 regularly-spaced holes with a wavelength λx = 16 cm similar to the one
from [Semin et al., 2018]. Each hole is connected to a device that equally divides the
flow coming from a pump via the system described in figure 3.7. Basically, one every two
holes are connected to distributor #1. The remaining holes are connected to distributor
#2. The two distributors are connected to two different pumps, which can be controlled
individually, allowing to have different amplitude or period for the two pumps, or to im-
pose a phase lag. The pumps take water from the top of the tank, ∼ 10 cm above the
nozzle exits, in order to attenuate their effects on the turbulent layer. In our experiments,
we modulate the flow rate of each pump with a sinusoidal shape. The period is set at
T = 20 s and the phase lag at ϕ = 180◦. The motivation of this choice is to impose a large-
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Figure 3.6: Schematics of the double cylinder set-up. The zone of interest is the gap
between the two cylinders, which is equivalent to a 2D periodic geometry. The gap
between the two cylinder is δ = 10 cm and the total height is H = 60 cm, similar to the
dimensions of [Semin et al., 2018]. The circular plate at the top allows to place several
nozzles to create the turbulent layer. On the left, the laser sheet and camera positions
are visible.

scale circulation which is similar to the forcing in [Plumb, 1977,Semin et al., 2018] which
remain to this day the only experiment to drive a QBO-like flow. In our set-up, turbulent
motions at all scales coming from the energy cascade will add up to this large-scale forcing.

Figure 3.7: (Left) Photography from the top of the experiment, showing the circular
plate, the tubes and the two distributors (in black) which equally divide the flow in 6
tubes each, for a total of 12 tubes. (Right) Schematic of the circular plate. The red exits
are connected to distributor #1, the blues ones are connected to distributor #2.

To fill the tank, we place 25 cm of fresh water in the bottom. Then, we use the
double-bucket technique described in [Oster, 1965] to create the stratification below the
fresh water. We use two buckets of ∼ 100 L each to fill 45 cm the tank with salty stratified
fluid. The top of the stratified layer is at the density of fresh water, in order to avoid a
density jump. For the experiments, the filling of the experimental tank with the double
bucket was slowly pursued during the experiment in order to keep the interface at the
same height, following the method of [Semin et al., 2018]. Indeed, the mixing induced by
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Figure 3.8: (a) Typical density profile for the experiments, before the jets are turned
on. The corresponding buoyancy frequency is N = 0.21 Hz. (b) Time evolution of the
interface depth for an experiment. The interface location reaches lower and lower position
at early times. When the tendency decelerates, we re-start the filling with the double-
bucket in order to stabilise the position of the interface. Here, the re-filling process started
at t ∼ 45 min. Once the refilling velocity and the mixing at the interface balance, the
interface remains at a steady position located at z = 21 cm.

the turbulence makes the stratified layer decrease in size over time.
Figure 3.8a shows the density profile for one of the experiments. Density measurements

are made every 5 cm, starting just above the interface. The interface is easily visible due to
the refractive index gradient. The profile is linear in the stratified layer, initially starting
at z = 27 cm. The bottom field of view for the acquisitions is located at z = 0 cm. From
this linear profile, we can compute the Brunt-Väisälä frequency:

N = 1
2π

√
−g
ρ0

∂ρ

∂z
= 0.21 Hz (3.3)

Figure 3.8b shows the time evolution of the interface position. After approximately
45 min, the stratified water filling was started again in order to maintain the interface
at a fixed position z = 21 cm. Since the mixing is very important when the interface is
too close to the jet exits, it is not possible to maintain the interface at the initial depth
z = 27 cm for a long time, because our buckets have a finite volume. We thus have
to compromise between the duration of the experiment and the position (the higher the
better) of the interface.

3.2.2 Measurements
Particle Image Velocimetry (PIV) was used to study the turbulence inside the top layer
and the wave dynamics in the stratified layer. The fluid was seeded with particles of
diameter 10 µm coated with silver in order to have a better laser reflection. The small di-
ameter of the particles gives small sedimentation speeds which is crucial for the long-time
measurements in the stratified layer. The tank is illuminated with a 532 nm continuous
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laser. The laser plane is placed vertically and is tangent to the virtual cylinder of diameter
d3 = d1+d2

2 (see figure 3.6). Two camera are used. A Nikon D5500 filming at 60 fps with
a resolution of 1280 × 720 pixel2 is used to visualise the turbulent layer. A Point Grey
camera at 2 fps with a resolution of 2048× 2448 pixel2 is filming the stratified layer. All
data are processed with DPIVSoft2010 [Meunier and Leweke, 2003] with 32 × 32 pixel2
interrogation areas and 50 % overlap. The entrainment of the salty fluid from the strat-
ified layer by the convective layer blurs the captured frames at the interface and PIV
algorithms cannot compute the corresponding velocity vectors.

3.2.3 Solutions tested to prevent the mixing at the interface
Even if we slowly refill the tank with stratified water in order to keep the interface at a
steady position, mixing occur at the interface and a density jump appears between the
turbulent and stratified layers. As we will see in section 3.3, we think that this density
jump is highly problematic in our experiment since it affects wave generation. Therefore,
it became necessary to limit the mixing by other means that the re-filling process, so the
density jump could not appear. The density jump generation process is schematised in
figure 3.9.

Figure 3.9: Time evolution (from left to right) of the density profile. Initially the density
profile is constant in the top layer ρ = ρi and is linearly increasing with decreasing z in
the bottom layer. Once the jet are turned on, the top of the stratified layer is entrained
by the jets. The density of the top layer slightly increases and the interface is lowered at
a new location z = zi + ∆z. Once the re-filling process is on, the interface, previously
displaced downwards by the mixing, is now displaced upward, up to its original position.
The black lines show the density profile at each time. The red dashed lines show the
initial density profile.

73



Chapter 3. Large-scale flow generation by turbulently generated internal gravity waves

Figure 3.10: Photography of the hydro-gel spheres. Four dry spheres are visible on the
left and three spheres after water absorption are visible on the right.

To limit the entrainment at the interface, several solutions were tested. The first
one was to lower the turbulence intensity by using a fluid more viscous than water. An
industrial oil, named UCON, miscible with water, was added in the convective layer
only. The mixture was composed of 70 % of distilled water and 30 % of UCON oil. That
results in a dynamical viscosity µ 100 times higher than the viscosity of water with similar
density ρ. The second solution was to add a physical membrane at the interface. Different
membranes were tested:

• hydro-gel spheres. The spheres absorb ambient water and are then at a density close
to the ambient fluid (see figure 3.10),

• a neoprene membrane,

• a latex membrane,

• a very thin plastic membrane.

In the end, our tests to prevent the mixing at the interface and to favour low-frequency
waves did not reach the aimed purpose. They are briefly discussed at the end of the next
section.

3.3 Internal gravity waves generated by jet turbu-
lence

Several experiments were conducted with different periods and different flow rates for the
pumps. They all gave very similar results so only one experiment is thoroughly described
in section 3.3.1. Results using membranes and hydro-gel spheres are quickly described
and discussed in section 3.3.2. Lastly, results from an experiment focusing on the interface
dynamics are discussed in section 3.3.3.
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Figure 3.11: (a) Instantaneous velocity field. (b) Time-averaged velocity field over a 2
min acquisition time.

3.3.1 Experiment with refilling process
Jet structure

The maximum flow rate for the pumps is 8 l ·min−1. The imposed sinusoid modulates the
flow rate between 12% and 25% of the maximum flow rate, with a period of T = 20 s and
a phase lag between the two pumps of ϕ = 180◦. We use a period and wavelength for the
large-scale forcing similar to the ones from [Semin et al., 2018], where these parameters
drive an oscillating flow. We add a stochastic noise via the jet turbulence to see if it affects
the QBO-like flow generation. The velocities at the exit of the jets are not accessible
with PIV because particles move too fast for the 60 fps acquisition. Maximum recorded
velocities reach 15 cm · s−1. Therefore, given the diameter of the holes of djet = 1 cm,
the Reynolds numbers for the experiment is close to Re = 1500. The jet is thus weakly
turbulent. The structure of the jet is displayed in figure 3.11. The left panel shows
an instantaneous field at a random time. One jet is visible in the camera frame. The
right panel shows the time average. The origin for the experimental figures presented in
this chapter is the bottom left corner of the field taken in the stratified layer (it will be
specified if the origin is different). Thus, the interface is located at z ∼ 21 cm and the jet
is centred at x = 10 cm.

The instantaneous field presents small vortices within the jet. For both panels, the
jet spreads horizontally at z = 23 cm, where it is deviated by the interface with the

75



Chapter 3. Large-scale flow generation by turbulently generated internal gravity waves

0 20 40 60 80 100 120

-8

-6

-4

-2

0

Figure 3.12: Vertical velocity signal at a single point located at x = 10 cm and z = 27 cm.
One can notice the imposed period of T = 20 s.

stratified layer. In that layer, the velocities are much smaller. The time-averaged jet
presents strong coherent downward structure with upward velocities surrounding the jet
while in the instantaneous field, the vertical upward motions are less present. Both the
instantaneous and mean fields show that the jet penetrates deeper in the stratified layer
at its centre.

It is important to keep in mind that the jet does not blow continuously and is mod-
ulated by a sinus shape. The imposed sinus of period T = 20 s can be seen in figure
3.12. The vertical velocity, taken at a single point at the centre of the jet at z = 27 cm,
oscillates from ∼ 0 cm · s−1 to ∼ 5 cm · s−1 with a period of 20 s. When the jet in the
camera field of view is at its lowest flow rate, the two adjacent jets, not visible in the field
of view, are at their maximum flow rate. They create an upward flow and the vertical
velocities observed with the camera at these times have very low amplitude and can even
reach positive values, whereas the jet observed is still directed downwards.

From the mean profile of figure 3.11, we extract horizontal profiles at different depths,
represented by different colors in figure 3.13. One sees the radius increase of the jet.
As the maximum velocity decreases, the Gaussian shape of the jet becomes wider and
wider. Another striking feature of this figure is that the maximum velocity at each depth
is located at different horizontal position x, whereas the jet is initially vertical. Indeed,
it is shifted towards increasing x as the jet goes deeper. This deviation is explained by
a horizontal large-scale flow quickly appearing in the turbulent layer. This large-scale
flow is present in all our experiments, and always going in the same direction i.e. in the
positive x direction. Despite our efforts, we did not manage to remove this large-scale
flow. However, its amplitude (∼ 0.1 cm · s−1) is relatively small compared to the velocity
of the jet (a few cm · s−1). The large-scale flow only deviates the jets towards positive x.

Figure 3.14a shows the inverse of the maximal amplitude wm at each height, renor-
malised by the exit velocity w0. The exit velocity is not accessible via the PIV measure-
ments. It is theroetically computed from the imposed flow rate, when the sinusoid reaches
its maximum value. One can see that the velocity is almost constant between z = 33 cm
and z = 27 cm. Then, the velocity decreases. Theoretically, the decrease is linear with
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Figure 3.13: Horizontal profiles of vertical velocities at different depths. The color indi-
cates the depth, with dark purple located at the top of the jets and yellow located just
below the interface. The red line with crosses shows the position of maximal downward
velocity at each height. The position is shifted to the right at mid heights.

respect to z, with a slope of 5 [Pope, 1962]. Here, the evolution trend is not linear. This
difference can be explained by the fact the jet may not have reached its asymptotic regime
but also by the presence of the interface, stopping the jet expansion brutally, or also by
interactions with neighbour jets.

Figure 3.14b shows the evolution of the radius R of the jet as a function of depth z.
The radius is taken at the xr position where w crosses the w = 0 horizontal axis (see
figure 3.13). Then the radius is computed from R(z) = x0(z)− xr(z), where x0(z) is the
position where w reaches its maximum at the z location. As seen in figure 3.13, it differs
at each height, shifting toward +x direction with increasing depth. As seen in equation
(3.1), the radius should evolves in R(z) = 1

5z. Here, it increases in 1
8 , until it reaches

the stratified layer. Again, the asymptotic regime is perhaps not reached and the 1/5
slope may not apply here. Also, the presence of the interface and the neighbour jets may
confine the jet and affect the evolution of the radius.

Figure 3.15a shows the vertically- and time-averaged power spectral densitiy (PSD)
with respect to horizontal wavenumber kx. It is computed from PSDs at each time and
each depth within the turbulent layer. The profile obtained shares similar slope with
turbulent jets described in [Fellouah and Pollard, 2009], for both the horizontal and
vertical velocities. Figure 3.15b shows the frequency PSD, computed at each point and
then spatially averaged. The vertical and horizontal velocity PSDs exhibit similar trends.
Energy peaks at f = 5 × 10−2 Hz, corresponding to the 20 s period imposed to the jets.
Then the energy decreases, with a slope slightly less steep than the −5/3 Kolmogorov’s
law.
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Figure 3.14: (a) Inverse of the maximal velocity at a given height wm(z/d), normalised by
the exit velocity w0. (b) Evolution of the radius R(z).The theoretical slope for a turbulent
free jet is 1/5. Here the experiment value, shown by the red dashed line, in the presence
of the stratified layer is 1/8 for the linear part.

10
0

10
1

10
-4

10
-2

10
0

(a)

10
-2

10
0

10
2

10
-2

10
-1

10
0

10
1

(b)

Figure 3.15: (a) Power spectral density of the horizontal (blue) and vertical (red) veloc-
ities as a function of the horizontal wavenumber kx. Different slopes characterising the
spectrum for turbulent jets [Fellouah and Pollard, 2009] are reproduced in dashed lines.
(b) Power spectral density of the horizontal (blue) and vertical (red) velocities as a func-
tion of the frequency f . The dashed line shows the −5/3 slope for reference. The vertical
dashed line indicates the frequency of the forcing 5× 10−2 Hz.

Stratified layer

The stratified layer is initially ∼ 40 cm deep. Yet, due to the entrainment at the interface
with the turbulent layer, the height of the stratified layer slowly decreases in time, since
the interface is displaced downwards. The field captured by the camera is approximately
23 cm high and 20 cm width. The jet impact is located in the middle of the frame, at
x ∼ 10 cm. The interface is also captured since we are interested in the coupling between
the turbulent and stratified layers. Initially located at the very top of the captured images,
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Figure 3.16: (a) Velocity vector field in the stratified layer. The red cross shows the point
where the velocity is extracted to plot figure 3.16b. Note that the camera framerate is
too small to solve for the velocity field in the upper turbulent layer. (b) Vertical velocity
w signal at x = 10 cm and z = 16.5 cm. (c) Spatio-temporal graph for w at z = 16.5 cm
along an horizontal line. Maximum velocities are approximately 2 mm · s−1.

and since it is displaced downwards in time, the interface moves within a few centimetres
at the top of the captured images and stops at z ∼ 21 cm. Figure 3.16a shows an
instantaneous field in the stratified layer. Horizontal and vertical motions are seen and
are the signature of internal gravity waves propagating in the stratified layer. Maximum
velocities for the waves are a few millimetres per second.

Figure 3.16b shows a 5-minutes temporal signal of vertical velocities at the point
x = 10 cm and z = 16.5 cm, highlighted by the red cross in figure 3.16a. The oscillating
behaviour of the vertical velocity is obviously noticeable. Yet, the forcing period T = 20 s
does not particularly stand out, suggesting that we indeed generate waves with several
frequencies. A spatio-temporal diagram is shown in figure 3.16c. It shows the time
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Figure 3.17: Power spectral density for the horizontal velocity u (a) and the vertical
velocity w (b). They are computed at each x abscissas for z = 16.5 cm, and then
horizontally averaged, from a one hour long signal. The buoyancy frequency N = 0.21 Hz
is indicated by the red dashed line. (c) The ratio PSD(u)/PSD(w) (black) fits very well
the polarisation relation of internal gravity waves (u/w)2 = (N/ω)2 − 1 (red) between
0.05 Hz < f < N , showing the motions observed at these frequencies are mostly internal
gravity waves.

evolution of the vertical velocity along a horizontal virtual line located at z = 16.5 cm.
One sees that the waves appear along the whole width of the camera field. The observed
period is again close to the imposed period T = 20 s with a superimposition of shorter
period waves.

Spectra are computed for the horizontal velocity u and the vertical velocity w. They
are computed at z = 16.5 cm, at each x location from a one hour long signal. The PSDs
are then horizontally averaged and results are displayed in figures 3.17a and 3.17b. Figure
3.17a shows a significant amount of energy at very low frequencies. This is the signature
of a large-scale flow which will be detailed later. Then the energy drops at f ∼ 10−3 Hz.
At f = 10−2 Hz, the energy increases with frequency until f ∼ 10−1 Hz. A high energy
peak can be seen at f = 5 × 10−2 Hz. It corresponds to the frequency of the sinusoidal
forcing of the jets. Peaks at higher frequencies are harmonics. The energy then drops for
f > 2.1 × 10−1 Hz corresponding to the cut-off for frequencies higher than N , a charac-
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teristic of internal gravity waves. The PSD for the vertical velocity in figure 3.17b reaches
lower values at low frequencies compared to figure 3.17a. The PSD is almost constant
for 3 × 10−3 Hz < f < 3 × 10−2 Hz. The PSD then increases until frequency reaches
f ∼ 2.1× 10−1 Hz, which corresponds to the buoyancy frequency. The peak and harmon-
ics corresponding to the forcing are also visible. Figure 3.17c shows the ratio of the two
spectra with the dispersion relation plotted in red. The good agreement between the ex-
perimental values and the theoretical prediction for frequencies between 0.05 Hz < f < N
shows that the motions observed at these frequencies are mostly internal gravity waves.

Figures 3.18 and 3.19 show the horizontally-averaged PSDs for horizontal and vertical
velocities, computed at each height. The PSD for the horizontal velocity (figure 3.18)
exhibits a lot of energy at low frequencies. It attenuates with depth. Between f =
2 × 10−3 Hz and f ∼ 8 × 10−3 Hz, almost no energy appears in the spectra at any
height. Between f = 10−2 Hz and f = 2× 10−1 Hz, energy is present but at much lower
levels compared to the corresponding range in the jet spectrum (see figure 3.15b, where
log10(PSD) > −1 for f < 2.1 × 10−1). The peaks associated with the periodical forcing
and its harmonics are also visible. The cut-off at f = N is also seen. However, one could
have expected to see a wave attenuation depending on the frequency f (see [Lecoanet
et al., 2015] for example). Indeed, the dispersion relation links the pulsation of the wave
with its angle of propagation ω

N
= cos(θ). θ is the angle between gravity and the group

velocity direction (perpendicular to the wavevector). For low (resp. close to N) frequency
waves, θ → π/2 (θ → 0) and therefore the energy propagates almost perpendicular to
the gravity, i.e. horizontally (resp. vertically). Therefore, we expect frequencies close
to N to propagate deeper than frequencies small compared to N . This dependence of
the attenuation on the wave frequency is not clearly visible here (except for frequency
close to 10−2 Hz) and most of the waves seem to reach the bottom of the tank. We have
thus excited eigenmodes of the system. It is yet important to note that the attenuation
length depends on the horizontal wavenumber kx and there is no reason to believe that
waves at different frequencies share the same kx. This could hide the attenuation length
dependence on the frequency on figures 3.18 and 3.19.

We see in figure 3.18 that a lot of energy is present in low frequency horizontal mo-
tions. That may be the trace of a slowly-varying horizontal flow in the stratified layer.
We horizontally and window-time average (in order to filter out the wave signal) the
horizontal velocity and plot its evolution through time, at every depth. Results for the
averaged horizontal velocity u are displayed in figure 3.20a and in figure 3.20b for the
vertical velocity.

Figure 3.20a shows that a horizontal flow takes place in the stratified layer. It is di-
rected towards negative x and is present in the whole depth of the stratified layer. Starting
at t ∼ 600 s, a positive horizontal flow appears. It is likely due to the viscous entrainment
of the top of the stratified layer by the large-scale flow of the turbulent layer described in
the previous section. Even if the typical velocities are small (∼ 0.5 mm · s−1), it is quite
surprising that the strong shear between the flow in the stratified layer for z < 18 cm
and the entrainment of the top of the layer is visible for quite a long time (more than an
hour, see figure 3.22). The measurements of the flow in the stratified layer started 10 min
after the jets are turned on. At the very beginning, the mixing is very important and the

81



Chapter 3. Large-scale flow generation by turbulently generated internal gravity waves

Figure 3.18: PSDs of the horizontal velocity u in the stratified layer, at each height. The
grey line shows the buoyancy frequency N = 0.21 Hz. The horizontal stripe at z ∼ 10 cm
is likely due to tape patches which are located at this height.

Figure 3.19: PSDs of the vertical velocity w in the stratified layer, at each height. The
grey line shows the buoyancy frequency N = 0.21 Hz.
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(a) (b)

Figure 3.20: Time series of horizontal averaged and window-time averaged (∼ 150 s)
horizontal velocity (a) and vertical velocity (b).

interface is rapidly displaced. At t ∼ 2200 s, the interface (above the red patch of veloc-
ity) moves upwards. This is because, at that time, we started the re-filling of the tank,
in order to have an almost constant-in-time depth for the interface. Figure 3.20b is only
displayed here to compare the magnitude of the velocities. u is two orders of magnitude
higher than w. The beginning of the sustain of the stratification is also visible, with w
having small positive values at all height after t ∼ 2200 s.

To ensure that the waves play a role in the generation of this horizontal mean-flow, we
compute from our experimental data the term −∂z(u′w′), which is the forcing term in the
theoretical model described in chapter 2. Since the mean-flow u displayed in figure 3.20a
shows small variations in time, we show in figure 3.21, the vertical profile of u, −∂z(u′w′)
and Ewaves = u′2RMS +w′2RMS averaged in time over the duration of acquisition #1, i.e. one
hour, in order to reduce the noise / signal ratio. u′ (resp. w′) denotes the horizontal (resp.
vertical) velocity fluctuations and is computed by subtracting the temporal averaged to
the total field u (resp. w) calculated by the PIV algorithm.

The blue line shows the vertical profile of the normalised mean flow u and the red line
shows the vertical profile of the z-derivative of the Reynolds stress −∂z(u′w′). The dashed
green line shows the profile of the wave energy in order to represent the attenuation of
the wave field with depth. The profile for the forcing term is a bit noisy since we took the
derivative of an experimental signal, but it gives insightful information on the wave forcing
in our experiment. One sees that, when the mean-flow is positive at z ∼ 20 cm, −∂z(u′w′)
is also positive. That means that the waves force the mean-flow towards positive values at
this height, corresponding to the model described in the previous chapter. The positive
part of the mean-flow is thus viscously entrained by the turbulent layer and forced by
waves. From z = 0 cm to z ∼ 18 cm, the mean-flow is negative. At z = 18 cm, where
the mean-flow changes sign, −∂z(u′w′) suddenly reaches negative values, indicating that
the waves now force the mean-flow in the −x direction. We see that the waves force the
mean-flow in the +x direction near the interface and in the −x direction below.

Hence, we now look at the long time evolution (several hours) of the horizontal mean-
flow u and the horizontal velocity power spectrum density PSD(u). Figure 3.22 shows
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Figure 3.21: Vertical profile of the time-averaged and normalised mean-flow u in blue,
z-derivative of the Reynolds stress −∂z(u′w′) in red and uRMS in dashed-green, for acqui-
sition #1.

the corresponding measurements for the second acquisition in the top panel, and a third
acquisition in the bottom panel. Acquisition #2 starts few minutes after the ending of
acquisition #1, which is displayed in the previous figures. Acquisition #3 starts few
minutes after acquisition #2. We notice that for acquisition #2 (top panel of figure
3.22), much less energy is present in the range [10−2 − 2 × 10−1] Hz, corresponding to
the wave signal. The peak at the forcing frequency and harmonics are still visible. The
spatio-temporal diagram for u shows that the negative mean-flow slowly disappears. For
acquisition #3, the wave signal is again less energetic compared to acquisition #2 and
the negative mean-flow u has completely vanished. It seems that, through time, the
generation of internal gravity waves is much less efficient, resulting in less transported
energy in the stratified layer. Therefore, the horizontal mean-flow seen at early time in
figure 3.20a slows down and eventually vanishes, since the waves which drive it are less
and less energetic. We have obviously checked that no large scale mixing of the stratified
layer has taken place and that the buoyancy frequency at the end of experiment (end of
acquisition #3) is still constant and about the same as during acquisition #1.

Figure 3.23a shows the vertical velocity signal at x = 10 cm and z = 16.5 cm for
acquisition #3. The 20 s period of the forcing obviously appears and it is quite more
visible here compared to figure 3.16b. This illustrates that, for acquisition #3, the mag-
nitude of internal gravity waves has decreased compared to acquisition #1, in which the
internal gravity waves signal was of the same order of magnitude of the oscillation due to
the forcing.

Figure 3.23b shows the vertical profile of u, −∂z(u′w′) and Ewaves averaged in time
over the duration of acquisition #3, and re-scaled by the maximum value of each of their
quantities during the acquisition #1, in order to compare the evolution of the magnitude
of these quantities over time. We see that the negative part of u has disappeared and
the flow is now completely positive. Also, the forcing term and the energy in the waves
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Figure 3.22: (Top) PSD of horizontal velocity u (left) and time series of u (right) for ac-
quisition #2, starting at the end of acquisition #1. (Bottom) Same figures for acquisition
#3, starting at the end of acquisition #2.

has drastically diminished, except within the few centimetres at the top of the stratified
layer, corroborating the fact that the wave generation is less and less efficient over time.

The stratified layer is animated by internal gravity waves and a horizontal large-scale
flow, with a strong shear near the interface with the turbulent layer. This large-scale flow
is partly driven by wave forcing, and partly entrained viscously by the turbulent layer.
The energy transfer into the waves seems to decrease over time, while the mean-flow slowly
vanishes. During the experiment, the jets locally mix the two layers, creating a density
jump at the interface which becomes bigger and bigger over time. We suppose that the
increasing density jump affects the wave generation by decreasing the energy transfer
across the interface. Moreover, a part of the energy from the turbulent layer is visible in
the stratified layer in high-energetic peaks that correspond to the forcing frequency and
harmonics. This mode does not attenuate with height while wave attenuation is a key
process for large-scale flow apparition (see previous chapter). Since, less energy is present
within the waves and the mode does not attenuate, less energy can go to the large-scale
flow. The large-scale flow thus slowly decreases in amplitude and vanishes after some
time, even if oscillations are still visible in the stratified layer.
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Figure 3.23: (a) Vertical velocity signal w at x = 10 cm and z = 16.5 cm. The 20 s
period forcing is remarkably visible, compared to the signal at the exact same position
as acquisition #1, seen in figure 3.16b. (b) Vertical profile of the time-averaged and
normalised mean-flow u in blue, z-derivative of the Reynolds stress −∂z(u′w′) in red and
uRMS in dashed-green, for acquisition #3.

3.3.2 Results of the experiments trying to prevent mixing
Since we believe that the mixing induced by the turbulent layer slowly decreases the
energy transfer to internal gravity waves, several protocols were tested (see section 3.2.3)
to limit the mixing. The results were not convincing and are very briefly described here.

Hydro-gel spheres

Hydro-gel spheres are small balls that absorb the ambient fluid. They reach a diameter of
∼ 1 cm and have a density close to the fluid they have absorbed. The aimed purpose was
to have balls at a density larger than the density of the turbulent layer, and lower than
the density at the top of the stratified layer. Doing so, the hydro-gel balls would stay
at the interface and reduce the mixing by the turbulent layer, but would still let some
energy pass in the stratified layer.

In practice, the hydro-gel balls are always at a slightly higher density than the sur-
rounding fluid and continuously exchange with the ambient fluid. Therefore, even if
initially the balls have a density lower than the density of the top of the stratified layer,
they become a little denser than the fluid after some time. The balls then slowly sink
in the stratified layer. Eventually, all the hydro-gel balls sink to the bottom of the tank,
leaving the interface “unprotected”. Due to the sinking motion of the balls, and the fact
that, after some time, mixing between the two layer appears, this experiment did not
solve the mixing issue.

Solid deformable membranes

Coming back to the idea of having a solid barrier between the two layers, we tried to make
a solid but deformable membrane and to place it at the interface between the two layers.
The jets, alternatively activated as described before, would push locally the membrane,
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generating the internal gravity waves in the stratified layer. Despite the different ways
tested to attach the membranes to the cylinders or the different materials used to create
the membrane, we did not succeed in making a membrane which would be flexible enough.
Indeed, if the membrane is attached to the cylinders, it did not move at all. Even for
a membrane made from a plastic bag with the pumps set at their maximum flow rate.
Therefore, no internal gravity waves were generated when using a membrane.

UCON oil

The last solution tested was to increase the viscosity of the fluid in the turbulent layer,
in order to generate a less turbulent layer with the jets, resulting in a less important
mixing. In the studied configuration with a viscosity 100 times larger than water, i.e.
ν = 10−4 m2 · s−1, the upper layer was not turbulent enough at early stages to generate
internal gravity waves. As time goes, the upper layer and the stratified layer mix, and
the viscosity of the upper layer decreases. Therefore, the layer becomes more turbulent
and waves are generated. The problem is that the mixing also increases and eventually a
density jump appears. The spectra observed in the stratified layer is similar to the spectra
of figure 3.23a with some energy visible at low frequencies and a few very energetic peaks
corresponding to the forcing frequency and harmonics.

Despite our efforts, we did not succeed in preventing the mixing and the apparition
of a density jump at the interface. The problem is that, at some moment, this density
jump becomes too important and the energy going from the turbulence into the waves is
tremendously diminished, thus greatly restricting the possibility to see a large-scale flow
appear.

3.3.3 Index matching
A last set of experiments was conducted, focusing on the flow at the interface, in order to
see the peak emergence and to qualitatively visualise how energy transfers into the waves.
The problem of studying the interface dynamics is that salt affects both density and re-
fractive index. Therefore, a gradient in salt also results in a gradient for the refractive
index and the mixing taking place at the interface gives blurry frames, where the PIV
particles are not distinctly discernible. The variation of the refractive index is problem-
atic for the acquisition. To capture the most light possible with the camera, we need to
open the diaphragm of the lens as much as possible. This results in a very thin depth of
field. Therefore, it is possible to have either the turbulent layer in focus, or the stratified
layer. But having both layers in focus is not an option. Closing the diaphragm would
increase the depth of field, but would also considerably decrease the luminosity of our im-
age, and PIV algorithms would have trouble to compute the right results from the images.

To deal with this issue, we use an experimental technique named index matching. The
idea is to use another fluid mixed in the experimental fluid to correct its refractive index.
Here, we use ethanol to mix with water [Hannoun, 1985,Daviero et al., 2001]. The refrac-
tive index increases with increasing salt or ethanol concentration. However, the ethanol
also affects the density. The fluid density decreases with increasing ethanol concentration.
Because the evolution of the density and refractive index on the concentrations of ethanol
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(a) (b)

Figure 3.24: PSDs for the horizontal velocity u (a) and vertical velocity w (b). The
interface is located at z ∼ 5 cm.

and salt are known, it is possible to determine the right concentrations of ethanol and
salt to use. We fill one of two buckets with salty water. The second one is filled with
water and ethanol, with a refractive index equal to the one of the first bucket. Then
we use the double bucket technique in order to have the desired stratification N with a
constant refractive index. The process to determine the right concentrations is described
in [Daviero et al., 2001].

We set the pumps at a flow rate similar to those used in previous experiments and we
run experiments for 2 minutes, recorded at 60 fps, with the Nikon camera centred on the
interface. The height of the frame is ∼ 11 cm. We see ∼ 6 cm of the turbulent layer and
∼ 5 cm of the stratified layer. The acquisition is started as soon as the jets are turned on,
unlike the previous experiments, in which it was a few minutes after. The origin (0, 0) is
taken at the bottom left of the camera frame.

Figure 3.24 shows the frequency PSDs for a 2-minute acquisition for the horizontal
velocity u (figure 3.24a) and for the vertical velocity w (figure 3.24b). The most striking
feature is the absence of the peak and its harmonics at the frequency of the forcing
f = 5× 10−2 Hz, suggesting that it takes some time for this peak to appear in the tank.
The sudden decrease of energy density with height is visible at z ∼ 5 cm, where the
interface is located. The buoyancy frequency is N ∼ 0.2 Hz. Energy is present at all
frequencies below N and a small peak is visible around 5× 10−2 Hz, but not as energetic
as in the previous spectra seen above. Energy is also present at z = 4 cm at frequencies
f > 0.2 Hz. It may be explained by the mixing occurring at the interface where the
buoyancy frequency N may strongly vary locally. For the vertical velocity spectra (figure
3.24b), the energy is mostly present at frequencies close to the buoyancy frequencyN . The
energy at f > 0.2 Hz and z = 4 cm is also visible here. Energy for the band [0.1− 0.2] Hz
reaches its lowest values at z = 4.5 cm and then increases inside the stratified layer. The
interface stops the vertical motion of the jets but nearly vertical waves are still generated
in the stratified layer. The decrease in energy at the interface is much more brutal in the
vertical velocity spectra compared to the horizontal velocity spectra. This illustrates the
deviation of the initially vertical jet into horizontal streams at the interface. We also see
the signature of this deviation through the increase of energy in the horizontal velocity
spectra, just above the interface.
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Figure 3.25: (Left) Oscillations for 5 minutes during acquisition #3 taken along an hori-
zontal line located deep in the tank at z = 7 cm, displayed in dashed red line in the right
panel. (Right) Snapshot at a given time of the frequency and direction filtered vertical
velocity w in the stratified layer. Only frequencies f = 5× 10−2 Hz and left propagating
waves are shown here. The waves angle θ is in agreement with the dispersion relation of
internal gravity waves: θ = cos−1(ω/N) = 75.5◦, while the measured value is θ = 76.6◦.
The interface is highlighted by a black thick line at z ∼ 21 cm.

Basically, at early time, some of the energy present in the turbulent layer is transferred
into the stratified layer. A whole spectra of waves is generated from low frequency waves
ω/N < 0.1 to high frequency waves ω/N ∼ 1. Since at early times, the peak at f =
5× 10−2 Hz is not visible, but appears later in time, we wonder if the peak is not a mode
of internal gravity waves bouncing at the bottom boundary (keeping in mind that there is
∼ 20 cm of stratified water between the bottom of the tank and the bottom of the camera
field for the previous experiment). Indeed, waves at this frequency are generated and
barely attenuated (figure 3.18). Moreover, if we frequency filter the signal in acquisition
#3 in order to only see the oscillations at f = 5 × 10−2 Hz, we see waves propagating
at the bottom of the tank (figure 3.25), while energy is only visible at the peak. We
thus conclude that the wave f = 5 × 10−2 Hz reaches the bottom of the tank, bounces
back up and forms an oscillating standing mode in the whole layer. The existence of
this mode poses a question: is it possible to generate a large-scale flow in the stratified
layer oscillating as a global mode, if the wave energy is focused in the frequency of the
mode ? The mode does not attenuate with height (see spectrograms of figure 3.22) while
attenuation is needed in order to drive a large-scale flow from waves (see previous chapter).
This question is numerically investigated in the next section.

3.4 Numerical approach
Using Dedalus, we investigate several points that are left unclear with the experimental
study. Is it possible to drive a large-scale flow if a global mode manages to form in the
tank ? Since the waves reach the bottom of the tank (at least at early times), does the
limited height prevent the apparition of a large-scale flow ?

We investigate these questions using Dedalus. The equations solved are the same as
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in chapter 2. They are non-dimensionalised by the depth of the stratified layer H and the
buoyancy frequency N . They are reproduced below:

∂tu− ν∇2u+ ∂xP = −(u · ∇)u (3.4a)
∂tw − ν∇2w + ∂zP − b = −(u · ∇)w (3.4b)

∂tb−D∇2b+ w = −(u · ∇)b (3.4c)
∇ · u = 0 (3.4d)

where b is the buoyancy, P the pressure, and ∇ = (∂x, ∂z). The geometry is two dimen-
sional and periodic along the horizontal axis. We use nz = 256 Chebyshev polynomial
functions in the z direction and nx = 64 complex exponential functions in the x direc-
tion. We use ν = 2.8 × 10−6 and Pr = 7, representative of water considering thermal
diffusion instead of salt diffusion. To compute nonlinear terms without aliasing errors,
we use 3/2 padding in both x and z. For timestepping, we use a second order, two
stage implicit-explicit Runge-Kutta type integrator [Ascher et al., 1997], with time steps
O(10−2). Waves with random phases are forced at the bottom by setting velocity and
buoyancy perturbations at the boundary. Top boundary condition is no slip. Note than
this numerical set-up is upside down compared to the experimental one, with the waves
generated at the bottom boundary.

3.4.1 Influence of the domain size
In the experiments, the domain height H is finite and the attenuation length of the
waves l is not small compared to H. Therefore, waves bounce at the bottom bound-
ary and propagate back up. We wonder if this effect can influence the large-scale flow
generation. We run three simulations with the exact same forcing: two monochromatic,
contra-propagating waves are generated at the bottom (numerical simulations are turned
upside down compared to the experiment, in which the forcing is at the top), with am-
plitude A0 = 18 × 10−5, frequency ω = 0.2 and horizontal wavenumber kx = 12.8. The
simulations only differ by their domain height. Firstly we run a simulation with total
height H∗ = 1 (figure 3.26a). Then we shorten the domain height and use H∗ = 0.5 for
the first simulation (figure 3.26b) and H∗ = 0.1 for the second simulation (figure 3.26c).
The colorbars are the same but the total time is shorter for the H∗ = 0.1 case.

For the H∗ = 1 and the H∗ = 0.5 cases, no large-scale flow is seen at early times. At
the beginning, waves are created at the bottom boundary and propagate upward in the
stratified layer. It takes some time for the waves to reach the top of the domain and even
more time to create a large-scale flow. However, at t ∼ 3000 the large-scale flow appears
and quickly begins to reverse. The oscillating regime is quasi-periodic.

For the H∗ = 0.1 case, again, no large-scale flow is seen at early times. It appears at
t ∼ 1000. However, in this case, it does not reverse through time. This steady horizontal
flow is characterised by a shear between a layer moving in the +x direction and a layer
moving in the −x direction, located at z ∼ 0.075. This steady solution can appear in
the Plumb’s model for some cases. In the schematic from [Plumb, 1984], for the two first
steps (shown in figure 3.27), the passage from (a) to (b) is not trivial and suggests that
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a b

c

Figure 3.26: Hovmöller diagrams for H∗ = 1 (a), H∗ = 0.5 (b) and H∗ = 0.1 (c). The
other parameters are the same for the two cases.
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Figure 3.27: Schematic of the oscillations driven by two contra-propagating waves. Re-
produced from [Plumb, 1984].

viscosity plus the −c waves can “destroy” the layer of positive velocity located in the
bottom domain. For some forcing parameters and kinematic viscosity, it is not the case
and the flow remains blocked in the steady state displayed in (a), as seen in figure 3.26c.

The domain height H∗ influences whether or not the large-scale flow oscillates. For
small H∗, the waves bounce on the top of the domain and create a large-scale flow which
does not oscillate. In the opposite, a large domain height the typical oscillating large-scale
flow to emerge. This dependence on the domain height H∗ is quite well apprehended by
the fact that, in order to appear, the oscillations need that to extract momentum from the
waves and thus, waves need to attenuate. Yet, if the height is too small compared to the
wave attenuation length, the waves cannot give enough momentum to the large-scale flow,
and the flow does not reverse. Additionally, if a wave reaches the top and bounces with a
significant amount of remaining energy, it will force the flow at the top of the domain, and
will force less and less as it propagates downward and the theory described in the Plumb’s
model cannot be applied. It thus means that our experimental set-up is not deep enough
to excite a QBO. A question nevertheless remains: why it is sufficiently deep in Semin’s
experiment [Semin et al., 2018], which is about the same size and considers equivalent
waves ?

3.4.2 Importance of the mode
From the experiment described in section 3.3.1, a mode seems to appear at least at long
time in the stratified layer (see figure 3.22). The frequency 5× 10−2 Hz, corresponding to
the forcing frequency, appears over the whole depth of the stratification and shows little
attenuation with depth and even seems to reinforce at z = 5 cm compare to the values
at z > 5 cm. Since the wave attenuation is crucial for the emergence of a large-scale flow
(see chapter 2), we wonder if a large-scale flow can emerge if the forcing waves excite a
mode of the domain. To answer this question, we use Dedalus to solve the equations (3.4).
At early times, we subtract the horizontal flow u from the velocity field u. The idea is to
remove any large-scale contribution and to let the mode develops at early times. Then,
once the mode is present, we stop subtracting u and see if a large-scale flow emerges from
the existing mode. Results for the same parameters as in figure 3.26 are displayed in
figure 3.28.

The left panel shows the results for H∗ = 0.5 and the right panel shows the results for
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Figure 3.28: Hovmöller diagrams for H∗ = 0.5 (left) and H∗ = 0.1 (right). The other
parameters are the same for all cases.

H∗ = 0.1. We see that at early stages t < 3000, there is no large-scale flow. Horizontally
averaging the mode leads to u = 0. However, as soon as we stopped to remove the large-
scale contribution at t ∼ 2500, the mode is destabilised and vanishes (observable in figure
3.29 for the H∗ = 0.5 case), letting the place to the reversing large-scale flow. For both
cases, we find results equivalent to figure 3.26, meaning that the presence of the mode at
early times does not prevent a large-scale flow to emerge.

2D snapshots for the H∗ = 0.5 case are shown in figure 3.29. The panel (a) shows
the waves propagating in the stratified layer. In panel (b), the waves have reached the
top of the domain and the mode has appeared. The snapshot (c) is taken few time steps
after we stopped subtracting u. One can see that the mode is destabilised. In panel (d),
the mode has disappeared and we see that the waves are affected by the large-scale flow:
waves propagating in the +x direction (in blue) are attenuated at z < 0.05 while red
propagating in the −x direction (in red) are attenuated above at 0.1 < z < 0.2. The
large-scale flow has emerged and is affecting wave propagation: the mode cannot remain
in the layer and the oscillations take place. Therefore, if a mode appears at some point in
the stratified layer, it will not prevent the emergence of a large-scale flow, if the conditions
in order to drive the flow are met. We also show in figure 3.30 the RMS of the horizontal
velocity u for H∗ = 0.5. In figure 3.30a, the mode is visible for t < 2500. Then, it dis-
appears and the oscillating large-scale flow appears. We see the apparition of the mode
in figure 3.30b, focusing on time t < 1500. The wave propagation is noticeable: it takes
time for the waves to reach the top of the domain. The bouncing on the top boundary
and the reflection downwards is also noticeable. The nodes of the mode, visible by darker
colors passed t = 500 appear at the top first, and then at lower and lower altitude with
time: the node at z = 0.1 appears after the one at, e.g., z = 0.25.

Figure 3.31 shows 2D snapshots at different times to see the evolution of the flow for
H∗ = 0.1. Again, we see the mode appearing at early time (figure 3.31a). Then, it is
destabilised when we stop subtracting the mean-flow u (figure 3.31b). Finally, in figure
3.31c, the waves are Doppler-shifted by the mean-flow seen in figure 3.28c and the waves
propagating in the +x direction are attenuated at the bottom whereas the −x waves reach
the top of the domain. Figure 3.31d shows the RMS of the horizontal velocity u. Again,
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a b

dc

Figure 3.29: 2D snapshots of the horizontal velocity field u at different times for the
H∗ = 0.5 case. (a) t = 360 (b) t = 2160 (c) t = 3360 (d) t = 4500.

(a) (b)

Figure 3.30: (a) Time series of the RMS of the horizontal velocity u, displayed in a log
scale. (b) Same figure for t < 1500 in order to visualise the mode apparition.

the mode appears at early times and is destroyed when we stop subtracting the mean-flow.

We thus conclude that, in our experiment, it is not the presence of a global mode that
prevents the formation of QBO if it should take place. It is thus probably the excitation
process that makes the different behaviour between our system and Semin’s [Semin et al.,
2018].
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a b

c d

Figure 3.31: 2D snapshots of the horizontal velocity field u for the H∗ = 0.1 case at time
t = 1570 (a) t = 2985 (b) and t = 4400 (c). Times series of the RMS of u (d).

3.5 Conclusion
In this chapter, we have introduced our set-up to experimentally study the results found in
the previous chapter with the extended Plumb’s model. We have designed an experiment
reproducing the geometry of the famous Plumb & McEwan’s experiment. Yet, the forcing
is not an oscillating membrane but a superposition of jets, for which we can tune the flow
rate and impose a phase lag if necessary. The issue of the diminishing depth of the
stratified layer over time was solved by continuously injecting dense fluid at the bottom
of the tank, constantly rebuilding the stratification as in [Semin et al., 2018].

Our results show that, at early time, waves are generated and propagate in the strati-
fied layer. A horizontal large-scale flow appears in the whole stratified layer with a shear
at the interface. This flow is partly due to wave forcing, and a part of it is also viscously
entrained by the large-scale flow in the convective layer. However, rapidly the mixing in-
duced by the jets creates a density jump at the interface. This density jump affects wave
generation. Over time, less and less energy is present in the waves and the large-scale flow
decreases in magnitude and eventually vanishes, with only the +x part remaining, forced
at the same time by some wave attenuation and viscous entrainment by the turbulent
layer.
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Some experiments were conducted, trying to stop the mixing at the interface, while
still generating internal gravity waves stochastically. Sadly, our efforts remain vain and
our numerous attempts did not succeed to stop the mixing.

Some points remained unclear with the experiments. Energy is mostly present at
high frequencies (so waves are confined in the tank) and a mode appears in the stratified
layer. Both effects do not fit in the Plumb’s model approach and it is a possibility
that they prevent the emergence of a QBO-like flow. It is also surprising that with
similar geometry and fluid properties, the wave propagation differs a lot from the previous
monochromatic experiments [Plumb and McEwan, 1978,Otobe et al., 1998,Semin et al.,
2018] . Despite the different generation mechanism which brings the density jump issue,
the horizontal wavenumber kx might also differ from the theoretical one. We expect to
have a wavenumber set by the gap between two jets: kx = 2π

λ
with λ = 2πR/6 where

R = 15 cm is the radius of the circle where the nozzle exits are located. It is possible that
the wavenumber is smaller, resulting in a larger dissipation length. Since the view field is
limited, we cannot measure small horizontal wavenumbers.

The numerical investigation using Dedalus addressed the questions of the height and
mode influence upon mean-flow generation. The domain height H has an effect on the
oscillating behaviour of the large-scale flow. However, the mode does not prevent the
apparition of the large-scale flow.

The set-up described in this chapter does not seem to be appropriate to generate waves
during a long period in order to generate an oscillating large-scale flow. The interface
properties change through time and affect wave generation. Therefore, a better way to
generate a QBO-like flow from stochastically generated waves would be to work on a
stationary experiment, without any density jump at the interface. This can be achieved
by using a peculiar property of water and the corresponding experiment will be presented
in the next chapter.
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PENETRATIVE CONVECTION IN
WATER AROUND ITS MAXIMUM
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Water has a quite unusual property: its equation of state, relating density to tem-
perature, is non-linear and reaches a maximum at T ∼ 4 ◦C. Thanks to this feature, we
can study penetrative convection in water around its maximal density with a continuous
density profile between the convective and stratified layers. By cooling the bottom of a
tank at 0 ◦C and leaving the free surface at the top at air temperature, one would see
water convecting at the bottom of the tank while the upper part remains thermally strat-
ified. This system seems particularly appropriate to mimic the troposphere–stratosphere
interaction, in which the convective motions of the troposphere strongly interact with the
stratosphere located above.

Section 4.1 will introduce general concepts of thermal convection and describe the
particular case of penetrative convection with past studies as illustration. Section 4.2
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will give insight on the experimental set-up and on its associated numerical investigation.
Lastly, section 4.3 will detail the results obtained with the experiment and numerical
simulation. The work presented in this chapter has been published in Physical Review
Fluids [Léard et al., 2020].

4.1 A brief introduction to penetrative convection

4.1.1 Some theoretical aspects of Rayleigh-Bénard convection
General description

Convection is the heat transfer due to fluid motion. It results from the competition
between buoyancy forces and diffusion (thermal diffusion κ and momentum diffusion ν).
A simple demonstration of convection is to boil water in a pan. The water at the bottom
will rise due to buoyancy forces created by the hot surface below the pan, while the water
at the free surface will exchange heat with the air above, cool down and hence sink in
the pan. This system will be sustained as long as there is a temperature difference ∆T
sufficiently large between the top and the bottom boundary. Convection can also occur if
one vertical wall is set at a different temperature than the other boundaries. The typical
Rayleigh-Bénard convection (figure 4.1) corresponds to a system where a temperature
difference is imposed between the top and bottom boundaries.

g

Figure 4.1: Schematic of the principle of Rayleigh-Bénard convection. The fluid is heated
from below (∆T > 0) and gravity points downward. The convection is triggered if the
buoyancy forces can overpass the dissipative mechanisms.

Since the first experiment of Bénard in 1901 [Bénard, 1901] and the theoretical mod-
elling of Lord Rayleigh in 1916 [Lord Rayleigh, 1916], convection has been and still is a
vastly investigated topic. Studies have described the different regimes of turbulence as a
function of the Rayleigh number Ra (a dimensionless number representing the balance be-
tween buoyancy forces and dissipative processes, hence representing convection intensity).
The topic is studied for its industrial applications but also for its fundamental aspects,
especially the evolution of the convective heat flux with respect to Ra [Castaing et al.,
1989,Chavanne et al., 1997,Chavanne et al., 2001]. It is particularly investigated in the
geophysical community since, as we have seen in the very beginning of this manuscript, the
Earth’s core, oceans and atmosphere are animated with convective motions. Therefore,
convection in presence of rotation is particularly of interest [Rossby, 1969,Stevens et al.,
2009,Brun and Toomre, 2002] as well as more exotic systems such as convection in the
presence of a melting boundary [Favier et al., 2019,Purseed et al., 2020], of a magnetic
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field [Libchaber et al., 1982], or convection in the compressible regime [Menaut et al.,
2019].

Equations

Convection is described by the Navier-Stokes equations, non-dimensionalised by the length
scale H, the temperature difference ∆T and the time scale H2/κ. The equations, consid-
ering the Boussinesq approximation described in chapter 2, are:

1
Pr

Du
Dt = −∇P +Ra(T − T0)ez +∇2u (4.1)

DT
Dt = ∇2T (4.2)

∇ · u = 0 (4.3)

These equations are governed by two dimensionless numbers: the Rayleigh number Ra =
αTg∆TH3

κν
, with αT the thermal expansion coefficient, and the Prandtl number Pr = ν

κ
.

As already mentioned, the Rayleigh number describes the balance between the buoyancy
forces which are the key mechanism for driving convection and the dissipative processes
(heat and momentum diffusivities). Threshold values Rac exist for the Rayleigh number
and allow to predict if the system will convect or not. The values are Rac = 1707.76
for rigid boundaries, Rac = 657.51 for free boundaries and Rac = 1100.65 for rigid-free
boundaries [Chandrasekhar, 1961]. If Ra > Rac, the buoyancy forces dominate and
convection appears, with more or less intensity depending on the values of Ra and Pr.

The Prandtl number Pr is the ratio between the characteristic time of thermal diffu-
sion H2/κ and momentum diffusion H2/ν. For large Prandtl numbers, the inertia term
becomes negligible and the convection is a balance between buoyancy forces and dissi-
pation. For small Pr, viscous effects are negligible and the convective motion persists
thanks to inertia even if the buoyancy forces have vanished due to the fast temperature
diffusion.

In the atmosphere, the tropopause is a free boundary. The troposphere and the
stratosphere interact at the interface and the upward plumes of the convection enter in the
stratosphere. This particular case of convection is called penetrative convection. It also
takes place in stellar interiors, at the interface between the convective and radiative layers.
It has been investigated in experimental and numerical studies, with or without rotation,
and in different geometries (periodic Cartesian [Augustson and Mathis, 2019, Couston
et al., 2020] or spherical shell [Dietrich and Wicht, 2018] for astrophysical and geophysical
applications). We detail the results of some of these studies.
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4.1.2 Penetrative convection
Penetrative convection in experiments

The laboratory experiment of [Deardorff et al., 1969] investigated this mechanism. The
tank was filled with temperature-stratified water, so the tank is initially stratified from
bottom to top boundaries. At t = 0, the tank is heated from below and convection starts.
Temperature measurements allowed to describe the time evolution of the temperature
profile and heat flux. [Michaelian et al., 2002] re-investigated this set-up using coupled
thermal and PIV measurements in order to investigate the coupling between convection
and the internal gravity waves generated. The wave frequencies change through time as
shown in figure 4.2. Low frequency waves are contained close to the interface while higher
frequency waves propagate to the top of the tank. The experiment stops when the whole
tank is convective and the stratified layer no longer exists. This transient system is not
suited for the investigation of large-scale flows driven by waves.

Figure 4.2: Frequency variations with time for an experiment with N = 0.90 s−1. Each
line represents the time evolution of the frequency corresponding to different peaks in the
frequency spectrum. All peak frequencies increase with time, at different rates. Repro-
duced from [Michaelian et al., 2002].

Townsend [Townsend, 1964] introduced an original set-up to investigate penetrative
convection in a stationary system. The equation of state of water is non-linear with a
maximum density at around 4 ◦C (International Equation of State of Seawater, 1980):

ρ(T ) = 999.842594 + 6.793952.10−2T − 9.095290.10−3T 2 + 1.001685.10−4T 3

−1.120083.10−6T 4 + 6.536332.10−9T 5.
(4.4)

with T the temperature in ◦C and ρ the density in kg ·m−3.
Thus, Townsend covered the bottom of a tank with ice and maintained the upper boundary
at about 25 ◦C. The fluid is then convective in the lower part of the tank, between the
isotherms 0 ◦C and 4 ◦C, with a mean temperature of T ∼ 3.2 ◦C. The upper part of the
tank is stably stratified, between 4 ◦C and the imposed top temperature 25 ◦C (see the
density profile in figure 4.3, shown between T = 0 ◦C and T = 15 ◦C and computed from
the equation of state of water displayed in equation 4.4). As long as the heat flux remains
constant, the interface position does not change location, and the buoyancy frequency
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Convective

Stably stratified

Figure 4.3: Evolution of the density with respect to temperature for water, between
T = 0 ◦C and T = 15 ◦C, in order to visualise the maximum density reached at T = 4 ◦C
(red dashed line). If T = 0 ◦C is imposed at the bottom boundary, the density profile is
unstable between T = 0 ◦C and T = 4 ◦C and stable between T = 4 ◦C and T = 15 ◦C.

in the stratified layer does not vary either. Using temperature and dye measurements,
internal gravity waves were observed close to the maximum penetration height.

A similar set-up was studied in a laminar flow with low Rayleigh number [Le Gal,
1997]. A hexagonal pattern was observed in the convective layer and the upper layer was
viscously entrained by the convective rolls.

Recently, experimental studies [Perrard et al., 2013,Le Bars et al., 2015] re-investigated
the turbulent 4 ◦C convection in a quasi-2D geometry (see figure 4.4a), with coupled tem-
perature (local probes) and velocity measurements (field measurements with PIV). The
temperature and density profiles are constant in the convective layer and the temperature
linearly increases with height in the stratified layer. [Perrard et al., 2013] reported the
existence of an intermediate layer, named “buffer layer”. In this layer cohabit convective
motions and internal gravity waves. Water at 0 ◦C has approximately the same density as
water at 8 ◦C. Therefore, fluid at initially 0 ◦C can rise up to the 8 ◦C isotherm (neglect-
ing dissipative mechanisms), while the fluid is stratified between 4 ◦C and 8 ◦C. Internal
gravity waves were observed (figure 4.4b) and studied [Le Bars et al., 2015], showing that
only waves with frequencies close enough to N could reach the top of the stratified layer.
However, the energy is mostly concentrated in low frequency waves which attenuate close
to the interface, corroborating the results from [Michaelian et al., 2002]. The 2D geometry
of the set-up does not allow for any oscillating horizontal large-scale flow to develop in
the stratified layer.

Penetrative convection in numerical studies

Direct numerical simulations [Lecoanet et al., 2015] investigated penetrative convection in
a fluid with a non-linear equation of state, in a 2D geometry, periodic along its horizontal
direction. The density dependency upon temperature is modelled with a quadratic law
δρ

ρ0
= −αT (T − T0)2, with T0 = 4 ◦C, the maximum density temperature. Convection

takes place in the bottom of the tank and a stratified layer is located above. Spectra of
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Figure 4.4: (a) Photography of the experimental set-up. Water is cooled down from below
at 0 ◦C. The tank is convective in its bottom half and stratified in its upper half. (b)
Internal gravity waves generated in the stratified layer by the convection located below.
The signal is frequency filtered at f = 0.06 Hz with N = 0.07 Hz. Only right propagating
waves are displayed. Reproduced from [Le Bars et al., 2015].

waves at different heights were plotted. They suggest that the weak dissipation limit for
internal gravity waves discussed in chapter 2 tremendously overestimates the dissipation
for low frequency waves. The study also suggests that, in this configuration, internal
gravity waves are generated by the Reynolds stress in the convective bulk below the in-
terface, rather than by the displacement of the interface, placed at the T = 4 ◦C isotherm.

Similar studies were conducted in 2D and 3D geometries, periodic along their horizon-
tal directions [Couston et al., 2017,Couston et al., 2018a,Couston et al., 2018b,Couston
et al., 2020]. The density anomaly was modelled by a piecewise linear relation:

ρ(T ) = −αTT =
{
−T T > 0
ST T < 0 (4.5)

with S a free parameter that controls the stiffness of the stratification. The fluid is then
convectively unstable for T > 0 and stably stratified for T < 0. T = 0 is the temperature
of maximum density. Large (resp. small) values of S result in a strong (resp. weak) strat-
ification. The dynamics of the convective layer in 2D was thoroughly described [Couston
et al., 2017] showing the influence of S. The long-time evolution investigation of the 2D
geometry reveals that an oscillating horizontal large-scale flow appears in the stratified
layer [Couston et al., 2018a], driven by the internal gravity waves generated by the convec-
tive layer (see figure 4.5). Results show that the emergence of the oscillating large-scale
flow depends on the value of the Prandtl number. Large-scale flow emergence is compro-
mised for Pr > 1. The dynamics in the 3D geometry were investigated with [Couston
et al., 2018b] and without [Couston et al., 2020] rotation. The large-scale flow generation
could not be studied since these kind of simulations cannot be run for long-enough time.
The 3D geometry, coupled with the need of small time step to solve the fast convective
motions, results in very expensive simulations.

The 2D DNS of [Couston et al., 2018a] showed that oscillating horizontal mean-flows
can emerge from turbulently-generated internal gravity waves (figure 4.5) in a configu-
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Figure 4.5: DNS results from [Couston et al., 2018a]. (A) and (B) show 2D snapshots of
the vertical velocity w at t1 = 2.21 and t2 = 2.24. Time is non-dimensionalised by the
thermal diffusivity time. The solid line shows the horizontally averaged horizontal velocity
u. The interface between the convective and stratified layers is located at z = 0.68. (C)
shows the time evolution of the horizontally averaged flow u(z, t). In the stably stratified
layer, u oscillates from positive values to negative values, with downward propagating
phase, in a QBO-like oscillating flow. The Prandtl number is Pr = 0.2 and the effective
Rayleigh number (based the effective height of the convective layer) Raeff = 4× 107.

ration with a fluid characterised by a non-linear equation of state. Therefore, the 4 ◦C
convection with water seems to be a good candidate to drive QBO-like flow from a stochas-
tic forcing.

In the two following sections, we introduce our experimental 3D set-up to investi-
gate penetrative convection in a steady regime, using the non-linear equation of state of
water. The convection properties, internal gravity wave generation and large-scale flow
emergence will be investigated with PIV measurements. A numerical simulation, with
parameters close to the experiment, is also performed to answer remaining questions from
the experiment. The description of the set-up and numerical model in section 4.2 and the
presentation of the results in section 4.3 are a reproduction of the corresponding parts of
our article pubished in Physical Review Fluids [Léard et al., 2020].
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4.2 Experimental and numerical investigation of the
4 ◦C convection in a 3D geometry

4.2.1 Description of the experimental set-up

The set-up consists in a cubic tank whose lateral boundaries are made of 2 cm thick
acrylic walls. The bottom boundary is a chrome plated copper plate in which refrigerated
fluid is forced to circulate. The top boundary is a commercial, transparent electric heater.
The tank inner dimensions are 32 × 32 cm for the horizontal section and H = 20 cm in
height. Preliminary experiments were conducted in this cubic geometry. Eventually, a
cylinder of outer diameter D = 29 cm and thickness e = 0.4 cm was added inside the
cubic tank, to reproduce the axisymmetric geometry of [Plumb and McEwan, 1978,Semin
et al., 2016,Semin et al., 2018], which seems prone to the development of large-scale flows.
We are interested in the flow within the cylinder: the fluid in the gap between the cylinder
and the cubic tank follows a similar dynamics and thus imposes to the working fluid a
(close to) no-flux lateral boundary condition.

The temperature of the bottom boundary is controlled by water circulating in the
copper plate. Water is cooled down by a thermal bath with a fixed temperature set at
−1.25 ◦C. Due to thermal losses in the pipes alimenting the copper plate, bottom tank
temperature is 0.2± 0.05 ◦C. Plate thickness and circulation circuit were optimised so as
to ensure a uniform temperature over the whole plate. At the top boundary, the heater
is set at a temperature of 35 ◦C. Its temperature control is custom made: a PT100 probe
measures the heater temperature in real time, driving through a feed-back loop the input
power injected in the heater. This is a very simple and inexpensive system to impose a
temperature while having a transparent top boundary, allowing visualisation and velocity
measurements by PIV. Nonetheless, it is necessary to point out that the temperature
over the heater area is not perfectly homogeneous. Temperature is maximal at the centre
where T ∼ 38 ◦C, while the edges are indeed at the requested T = 35± 0.1 ◦C. This in-
homogeneity of the top temperature by δT = 3 ◦C induces slow convective motions below
the heater, in a ∼ 2 cm high layer. By performing an experiment where the whole fluid is
stably stratified with an overall temperature gradient similar to the one in the stratified
layer studied here, but above the density reversal at 4 ◦C (i.e. bottom boundary set at
10 ◦C and top boundary at 70 ◦C), we have checked that those top convective motions
have no significant impact on the dynamics of the two-layer system. It is also important
to say that despite the thick acrylic wall and the intermediate fluid layer between the
cylinder and the tank, the working region is not fully thermally insulated on the sides.
Nevertheless, our fully stratified, test experiment has shown no motion within the fluid
driven by these lateral losses.

The equation of state of water is non-linear with a maximum density close to 4 ◦C.
Thus, due to the imposed temperature at top and bottom boundaries, the bottom part
of the tank, between 0 ◦C and 4 ◦C, is convectively unstable (see figure 4.6). Cold plumes
detach from the bottom plate and rise in the tank due to buoyancy. Reciprocally, “hot”
fluid sinks from the 4 ◦C interface due to gravity. While convective motion takes place in
the lower layer, the upper part of the tank, between 4 ◦C and 35 ◦C, is stably stratified,
with an assumed linear temperature profile at equilibrium. The temperature is indeed
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linear for an ideal case without thermal losses, assuming that the stratified layer has a
bottom boundary at fixed temperature 4 ◦C and top boundary at 35 ◦C (i.e. constant
diffusive flux through the whole layer). However, the density profile is not linear, due
to the non-linear equation of state of water. Stratification is characterised by the Brunt-
Väisälä frequency N∗ = 1

2π

√
− g
ρ0

∂ρ
∂z
. Because of the non-linear equation of state, N∗ is not

constant with depth, as shown in figure 4.6. For simplicity, we also use below the global
buoyancy frequency defined as N = 1

2π

√
− g
ρ0

∆ρ
∆z , where ∆ρ is the global density contrast

within the stratified layer of depth ∆z.

Figure 4.6: 2D sketch of the tank. A cylinder (light grey shaded area) is placed in a larger
cubic tank. The system is cooled down at the bottom at 0 ◦C and heated up at the top
at 35 ◦C. The bottom half is convective with an almost constant density, apart from the
bottom boundary layer. The upper half is stably stratified and waves are generated due
to the fluid motions in the convective layer. The graph on the right shows the theoretical
profile for the buoyancy frequency N∗. It is computed considering a linear temperature
profile and the equation of state of water (4.4). The dashed line is the global buoyancy
frequency N calculated on the stratified layer. The various length scales are the cylinder
diameter D, the vertical extent of the tank H and the vertical extent of the convective
layer h. δ is the minimal width between the outer square tank and the inner cylinder.
The x, y and z-velocity components are noted u, v and w respectively.

Before starting the experiment, the bath and the heater are allowed to reach their
assigned temperature. Then, the upper half of the tank is filled with water stratified in
temperature from 4 ◦C to 35 ◦C, using the double bucket technique [Oster, 1965]. The
bottom half is filled with water with a temperature close to 4 ◦C. This filling process is used
to avoid tremendously long transient before reaching steady state by thermal diffusion.
Typically, we fill the tank at the end of a day and start the measurements the next day
in order to let the system reach its equilibrium state over night. Each experiment then
lasts four days, with no change in the location of the interface. Note that this steady
interface position is the result of the heat budget equilibrium between the convective heat
flux extracted from the bottom plate, the diffusive heat flux through the stratified layer,
and the lateral heat losses.

To perform PIV measurements, particles are chosen as small as possible and with
a density as close as possible to water density in order to avoid their sedimentation in
the stratified layer over the long duration of the experiment. We use fluorescent orange
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polyethylene micro-spheres whose size ranges from 10 µm to 20 µm and density is 1.00±
0.01 g/cc. The fluorescent property allows us, with a high pass filter on the camera,
to remove any laser reflection, significantly enhancing the images quality. The tank is
illuminated with a green laser 532 nm. Power is set at 1 W. We perform side view PIV to
measure convection and IGWs spectral characteristics, and top view PIV to observe the
large scale flow and its fluctuations over time. The camera used for the side view PIV
is a HiSense Zyla 2560 × 2160 pixels recorded on 12 bits. Acquisition rate is 2 Hz with
100 ms exposure time. Typical acquisition time for spectral characteristics is 50 min.
For the top view, we use a Point grey camera 1920 × 1080 pixels on 8 bits. Exposure
time is 1 s, acquisition rate 0.1 Hz and acquisition time 8 hours. Captured movies are
processed either by the DantecDynamics software DynamicStudio for the side view or by
DPIVSoft [Meunier and Leweke, 2003] for the top view. Both are resolved into 32 × 32
pixels boxes with 50% overlapping.

Side view PIVs are performed in the middle of the tank at y = 16 cm in a laser sheet
crossing the cylinder along its diameter. This is the case for all figures shown in the (x, z)
plane and thus not mentioned in the results section. The vertical fields (see an example
in figure 4.7) do not show the whole (x, z) plane (where the origin (0, 0) is located in
the bottom left corner of the cubic tank): it was indeed chosen to zoom in, in order to
have the best resolution for the very weak motions in the stratified layer. The interface
between the layers is localised between 11 cm 6 z 6 12 cm. Typical Rayleigh number
for the convection based on this depth is Ra = 7 × 107, and the global Brunt-Väisälä
frequency is N = 1.35× 10−1 Hz.

(a) (b)

Figure 4.7: (a) Instantaneous velocity field. An ascending plume is visible at x = 150
mm, and transported by the large-scale circulation. (b) Large-scale circulation in the
convective layer obtained by time-averaging velocities over a 50 minutes signal. The
large-scale circulation is a counter clockwise cell. No inversion of the circulation has been
seen in our experiment. The velocities under z = 10 mm are noisy and thus not shown
here. Maximum instantaneous velocities are 2.5 times bigger than the maximum averaged
velocities. The left edge of the cylinder is located at x = 19 mm and the centre of the
cylinder is at x = 160 mm. Approximately 40 mm of the right side of the cylinder is not
captured with our PIV measurments.

To observe the large-scale flow, horizontal views at different heights are performed.
A linear translation axis platform from Igus, driven by home-made software, is used to
automate the process. With two mirrors, one fixed at the exit of the laser head and the
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other fixed on the translating platform, it is possible to sweep along one direction with
the laser sheet. We typically make measurements during 15 s in each of 11 successive
planes separated by 0.5 cm. The full scan duration is about 3 min, and is repeated during
at least 8 hours.

The cylindrical geometry described here differs from the cylindrical shell geometry
in [Plumb and McEwan, 1978, Semin et al., 2016, Semin et al., 2018]. We first tried to
work in that annular geometry by adding a second, smaller cylinder in our cubic tank.
Three different gap sizes were tested but none showed any interesting dynamics. Indeed,
the convection was too confined in the shell to provide an efficient chaotic excitation, and
IGWs did not propagate well within the stratification, attenuated quite fast by wall fric-
tion. During these tests, we observed the most interesting dynamics within the innermost
cylinder, so we decided to use that geometry. The point of the cylindrical shell geometry
is that it is a close analogue to the equatorial band of the stratosphere where QBO takes
place. By working in a cylinder, the geometry analogy is lost but the physics of the
problem remains the same, still a priori allowing for large-scale, reversing, axisymmetric
horizontal flows.

4.2.2 Numerical model
To complement the experiments, we also performed Direct Numerical Simulations (DNS)
of the same configuration. We solve the Navier Stokes equations using a non-Oberbeck
Boussinesq model. The density variations are consider small compared to the reference
density ∆ρ

ρo
� 1. Therefore, density fluctuations only appear in the buoyancy force.

However, temperature variations affect the value of the thermal expansion coefficient to
account for the non-linear equation of state of water. Variations of the thermal diffusivity
κ and kinematic viscosity ν are neglected. Governing equations are given in dimensionless
form by:

∂u
∂t

+ u · ∇u =−∇P + Pr∇2u− PrRa θ2ez (4.6)
∂θ

∂t
+ u · ∇θ = ∇2θ (4.7)

∇ · u = 0 (4.8)

where we used the depth H of the container as a unit of length, the thermal diffusive
timescale H2/κ as a unit of time and the difference between the bottom and the inversion
temperature T0 − Ti as a temperature scale. These equations are characterised by the
Prandtl number Pr = ν/κ, the global Rayleigh number Ra = αTg(T0 − Ti)2H3/(νκ) and
the imposed dimensionless top temperature θtop = (Ttop − Ti)/(T0 − Ti). Note that the
quadratic temperature term in the momentum equation is a direct consequence of the
non-linear equation of state of water given by equation (4.4), which is approximated in
our model by the quadratic equation ρ(T ) ≈ ρ0(1 − αT (T − Ti)2). The coefficient αT
is not the usual thermal expansion coefficient but has a unit of ( ◦C)−2 and is given by
αT ≈ 8.1× 10−6( ◦C)−2 (see also [Lecoanet et al., 2015]).

We consider a cylindrical fluid cavity of diameter D = 3H/2 as in the experiments.
Both horizontal plates are assumed to be no-slip and with fixed temperature. The side
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wall is assumed to be no-slip and perfectly insulating. This is of course not the case in
the experiment, for which lateral heat losses are inevitable and top temperature is not
exactly constant, but the objective is to check whether the conclusions drawn from the
experimental results are robust and do not depend on these effects. Since the experiment
runs with water, we use Pr = 7. The Rayleigh number of the experiment is Ra = 7× 107

while its dimensionless top temperature is θtop = −7.75. If we were to run the simulation
with these parameters, the interface will be located very close to the top boundary. It is
not the case in the experiment because of the lateral heat losses, which tend to reduce
the effective Rayleigh number. For that reason, and instead of taking into account these
losses as in [Lecoanet et al., 2015], we kept the insulating lateral boundaries and use the
slightly adjusted parameters Ra = 107 and θtop = −11 instead, which leads to an interface
located approximately at z ≈ 120 mm, as in the experiment. The Rayleigh number could
not be lowered under 107 in order to keep the convective flow turbulent enough, thus we
had to increase the top temperature to have the interface located at z ≈ 120 mm.

We perform DNS of equations (4.6)-(4.8) using the spectral element solver Nek5000
[Fischer et al., 2017]. The global geometry is decomposed into hexahedral elements, with
vertical refinement close to the horizontal boundaries and around the mid-plane where the
inversion isotherm is expected to be located. Velocity, buoyancy and pressure variables are
represented as tensor product Lagrange polynomials of order N and N−2 based on Gauss
or Gauss-Lobatto quadrature points. The total number of grid points is given by EN3

where E is the number of elements. For all the results discussed in this paper, the number
of elements is E = 8960 and we use a polynomial order of N = 11. Numerical convergence
was checked by increasing the polynomial order N . Time integration is performed with
a third-order mixed implicit-explicit scheme. The simulations are initialised with a small
amplitude buoyancy perturbation and a temperature profile varying linearly between the
top and bottom boundaries. Simulations are run until a quasi-steady state is reached,
after which data is accumulated to compute statistics.

4.3 Description of the flow in the 4 ◦C set-up

4.3.1 Experiment results
Convection

PIV side view is used to quantify horizontal and vertical velocities in the convection zone.
Examples of vertical velocities measured at one point in a given location are shown in
figure 4.8, for both ascending cold and descending hot structures. Measurements are con-
sistent with the numerical simulations [Lecoanet et al., 2015,Couston et al., 2017] showing
intense, localised, cold rising plumes and more diffusive descending plumes. Moreover,
these structures are advected by a large-scale circulation encompassing the whole convec-
tive layer, as shown in figure 4.7.

Spectral analysis is performed to extract power spectral density (PSD) from the ve-
locity signals. Figure 4.9 shows the PSD of the convection vertical velocity w. For the
two panels, the spectrum is flat with a lot of energy for low frequencies, then the energy
drops above some cut-off frequency. Left panel of figure 4.9 shows the vertical velocity
PSD at a single point close to the top of the convective layer. A small peak can be seen
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Figure 4.8: Time evolution of the vertical velocity w within: (a) upward plumes at x = 200
mm, z = 45 mm, (b) downward structures at x = 100 mm, z = 95 mm.
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Figure 4.9: PSD for the vertical velocity fluctuations. (a) PSD computed at a single point
x = 100 mm, z = 95 mm (signal shown in figure 4.8 right). The plume forcing frequency
can be seen around f = 10−2 Hz (red dashed line). (b) PSD spatially averaged over the
whole convective cell in the measured (x, z) plane (all points above z = 10 mm and below
z = 110 mm).

close to f = 10−2 Hz. This is the quasi-periodic signal of the plumes dropping from
the top thermal boundary layer. The theoretical characteristic time of convection can be
computed from [Howard, 1966]:

τ = h2

πκ

(
∆T

∆Tlocal
× Rac

Ra

)2/3

(4.9)

with h the height of the convective layer, κ the thermal diffusivity, ∆T the temperature
difference between the top and bottom of the convective domain, ∆Tlocal the temperature
difference between the top and bottom of the thermal boundary layer, and Rac the critical
Rayleigh number. The critical Rayleigh number in the presence of free and solid interfaces
and for fixed temperature is Rac = 1100.65. For our experiment, the characteristic time
is τ = 96 s, thus characteristic frequency is 1/τ ∼ 10−2 Hz, which is close to the observed
peak in the left panel of figure 4.9. At frequencies lower than this characteristic frequency,
the spectrum is flat. This is explained by the combined effect of the randomness of the
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plumes (see figure 4.8) and of the slow fluctuations of the large-scale circulation. Right
panel of figure 4.9 shows the PSD of vertical velocities, averaged over the whole convective
cell in the (x, z) plane. It shows a similar trend, with a lower cut-off frequency compared
to right panel spectrum. Actually, the plumes signal is more localised and less intense on
average than the large-scale circulation signal, which hence dominates the space-averaged
PSD.

The probability density function (PDF) of the vertical velocities in the whole con-
vective layer P(w) is computed and shown in figure 4.10. It is normalised such that∫

P(w)dw = 1. The PDF describes important features of the convection: it is skewed
towards positive values, with positive velocities reaching higher magnitude than negative
velocities, i.e. the ascending plumes are stronger than the descending structures. How-
ever, the central part of the PDF is close to gaussian profile. The distribution obtained
here is in good agreement with the probability density function computed in an idealised
2D numerical model by [Couston et al., 2017]. Note that this asymmetry is specific to
our model, for which the usual upside-down symmetry in Boussinesq Rayleigh-Bénard
convection is broken.
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Figure 4.10: Probability density function of the vertical velocities in the convective layer.
All PIV points under z = 110 mm have been used to compute the PDF.

Buffer layer

An intermediate layer (we name it the buffer layer in the following) is present between the
convective layer and the stratified layer. As mentioned before, it was previously reported
in the quasi-2D 4◦C convection experiment by [Perrard et al., 2013]. The buffer layer is
a very specific location supporting simultaneously convective overshooting motions and
IGWs, as observed with PIV measurements.

To complete the description of the buffer layer of [Perrard et al., 2013] now using
velocity measurements, we plot in figure 4.11 the spatio-temporal graph of the horizontal
average of the horizontal velocity u. The graph exhibits a strong shear around z = 120
mm. Since the fluid is going in opposite directions above and below z = 120 mm with
a sharp interface, viscous entrainment by the convective layer is excluded. A special
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4.3. Description of the flow in the 4 ◦C set-up

Figure 4.11: Time evolution of the horizontal average of the horizontal velocity, noted uX .
Red (resp. blue) regions correspond to mean flow going towards the right (resp. left).

kind of thermal coupling might explain the observed dynamics, as sketched in figure 4.12.
Indeed, when a cold ascending plume from the convection zone reaches the interface and
overshoots in the buffer region, its associated velocity perturbation dissipates more rapidly
than its temperature perturbation. Due to gravity, the distorted part of the buffer region
wants to sink back to its initial state (pictured by the green arrows), while the fluid above
the buffer layer moves towards the impact point of the plume to take the place of the
falling water (pictured by the red arrows).
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Figure 4.12: Sketch of the thermal coupling between the convective and buffer layers. On
the left, a cold plume moves upwards towards the interface between the two layers. On
the right, isotherms are deflected due to the impact.

This mechanism works when the velocity perturbation of the plume at the interface dis-
sipates more rapidly than the thermal perturbation, hence for a Prandtl number Pr > 1.
One might expect the shearing zone to decrease in size and amplitude when thermal diffu-
sion increases (i.e. when the Prandtl number decreases), since the overshooting rising cold
plume will then equilibrate thermally during its ascent more rapidly. This may explain
why no interfacial shear was reported in the systematic numerical study of [Couston et al.,
2017,Couston et al., 2018a] where Pr 6 1. Global temperature field measurements (using
e.g. Temperature Dependent, Laser Induced Fluorescence) are now required to confirm
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or infirm the proposed model, but those are beyond the scope of the present study. Note
that by extension, we call “buffer layer” in the following the region including the T = 4 ◦C
to T = 8 ◦C overshooting region and the shear region. In the experiment, the shear region
extends from z = 120 mm to z ≈ 135 mm.

Internal gravity waves

Figure 4.13: Velocity fields showing IGWs propagating. (Top) Velocities in (x, z) plane.
The signal is frequency-filtered to enhance the visualisation of oscillatory motions: only
frequencies between 0.02 and 0.03 Hz are shown, propagating at an angle of roughly 75 ◦
with the vertical. The angle of propagation is the angle between the constant phase line
and the vertical. (Bottom) Velocities in (x, y) plane located at z ≈ 125 mm. In the
(x, y) plane, IGWs take the form of oscillating rings. Note that this figure is from a
previous experiment without any internal cylinder and is therefore only displayed here as
an illustration of the IGWs seen from above.

The convective motions induce a Reynolds stress at and below the interface which
generates IGWs propagating in the stratified area [Lecoanet et al., 2015]. An example
is shown in the top panel of figure 4.13. The vector field has been frequency filtered in
the band [0.02− 0.03] Hz to isolate a single propagating wave train. We can measure an
angle close to θ ' 75◦ between constant phase lines and the vertical. This observation
is in good agreement with the inviscid dispersion relation ω = ±Ncos(θ), which relates
the frequency and the propagation angle of IGWs. Indeed, at z = 120 mm, N ∼ 0.1 Hz,
thus θ = cos−1

(
ω
N

)
= 78.5 ◦. The motion within the stratified area is a superimposition

of many such IGWs oscillating at different frequencies.
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4.3. Description of the flow in the 4 ◦C set-up

To further investigate the waves signal, waves spectra are plotted in figure 4.14, show-
ing the power spectral density of oscillatory motions within the stratified layer at every
height, averaged horizontally for each height. The grey line is the theoretically computed
buoyancy frequency profile. Figure 4.14 shows that energy is present in a wide frequency
band, from the lowest measured frequencies to the buoyancy frequency N . Low frequency
motions f < 4× 10−3 Hz are very intense and propagate high in the stratified layer. Mo-
tions with frequency ranging from 4× 10−3 Hz to N are less intense, but still propagate
into the stratified layer. Motions propagating at frequencies higher than the buoyancy
frequency N are greatly attenuated after a centimetre as IGWs of frequency larger than
N are evanescent. The weak signal at low frequencies above z = 180 mm comes from the
convective motions due to the non-homogeneous heating at the top. These motions are
confined at the very top of the experimental container.
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Figure 4.14: (Left) Power spectral density of the absolute velocity
√
u2 + w2 above the

convective layer. The grey curve shows the theoretical buoyancy frequency profile, as-
suming a linear profile for the temperature, from 4 ◦C to 35 ◦C. (Right) Two selected
profiles (taken at frequencies shown by dashed lines on the left graph) of the re-scaled
PSDs by the PSD at the top of the convective layer, i.e. z = 120 mm (noted PSDo). The
PIV measurements are performed for 50 minutes and results (using the pwelch Matlab
function) are horizontally averaged at each height to obtain the averaged power spectral
density.

Right panel of figure 4.14 shows two vertical profiles of the PSD re-scaled by the
PSD at the top of the convective layer (z = 120 mm), taken at two different frequencies.
The energy decrease is quite similar between z = 120 mm and z = 140 mm for both
frequencies. However, for z > 140 mm, the energy for the higher frequency decreases
slower than the energy for the lower frequency. This dependence of the attenuation length
regarding the frequency of the signal is a characteristic of IGWs. Indeed, the dispersion
relation of IGWs relates the frequency and the wave vector direction. Moreover, energy
propagates perpendicularly to the wave vector for IGWs (i.e. group and phase velocities
are perpendicular). The closer toN the wave frequency ω is, the more horizontal the phase
propagates, hence the more vertical energy propagates. High frequency waves are thus
capable of transporting energy to high altitudes before being damped. On the opposite,
waves with low frequency compared to N propagate energy almost horizontally, and are
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thus attenuated before reaching high altitudes. At frequencies f < 4× 10−3 Hz, a lot of
energy is seen and the attenuation length does not depend on the frequency. There is no
reason why IGWs should disappear below a certain frequency, but we would expect to
see the attenuation length to keep decreasing with decreasing frequency. We thus deduce
that IGWs at frequencies f 6 4 × 10−3 Hz are hidden in the energy spectrum by some
very energetic large-scale slowly-varying flow, which we will describe below.

More than one order of magnitude separates the buoyancy frequency and the fastest
large-scale flow fluctuations. The large-scale flow penetrates deep into the stratified layer.
It globally decreases in amplitude with height, but with some local increases at z ∼ 125
mm (i.e. close to the interface between convective and buffer layers) and z ∼ 145 mm.
The IGWs signal can be seen between f = 4 × 10−3 Hz and the buoyancy frequency. A
peak that reaches the top of the stratified layer is seen around f = 1.2 × 10−2 Hz, i.e.
the same frequency as the convective forcing discussed in section 4.3.1. It corresponds
to the strong excitation provided by the cold rising and hot sinking turbulent plumes.
However, left panel of figure 4.14 also shows a sudden drop of the energy at frequencies
f > 1.2 × 10−2 Hz. Indeed, wave attenuation is strong at these frequencies, even if they
are close to (but below) the buoyancy frequency N . Actually, energy dissipation also
depends on the norm of the wave vector squared. There is no reason that all excited
waves have the same wave vector norm; one could even expect that fastest waves are
excited by fastest, hence smallest convective patterns, and are thus also at smallest scale:
they then dissipate more rapidly.

Large-scale flow in the stratified layer

Figure 4.14 shows an important amount of energy at low frequencies which has been
interpreted as the signature of a large-scale slowly-varying flow in the stratified layer.
We will now investigate the nature of these fluctuations to see if they relate to reversals
similar to the QBO.

Figure 4.15 shows horizontal vector fields at the same depth at different times. In figure
4.15(a), the flow goes counter-clockwise inside the cylinder. Figure 4.15(b) shows that
two contra-rotating vortices with a smaller amplitude typical velocities have appeared.
Figure 4.15(c) shows a mostly clockwise rotating flow, where one of the preceding eddy
pairs has nearly disappeared. The large-scale flow thus evolves drastically over time. A
criterion is computed to extract a typical mean velocity from those fields that accounts
for the “direction” of the large-scale flow: as illustrated in figure 4.16, we compute a mean
azimuthal velocity, taken along a ring centred in the cylinder. Other criteria to extract a
representative value for the large scale flow direction have also been tested, including: the
mean vorticity over the cylinder area, the average of the azimuthal velocity over several
rings with different radii, and the azimuthal velocity averaged over thick rings. They all
give similar results for the large-scale flow measurement.

In order to investigate the vertical phase propagation of the reversals, and thus, to
compare the reversal dynamics observed to a QBO-like phenomenon, the setup has been
equipped with a linear translating platform that allows us to perform horizontal laser
sheet sweeping along the vertical. Horizontal velocities are measured in a horizontal
plane, every 5 mm from the top of the convective layer z = 110 mm to the middle of the
stratified layer z = 160 mm. Any trace of downward phase propagation of the reversals,
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Figure 4.15: Horizontal velocity vector fields in the stratified layer at different times. The
laser sheet is located at z = 150 mm. The large-scale flow reverses from (a) to (c). Time
between (a) and (c) is approximately half an hour. Maximum velocities are 0.1 mm/s.
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Figure 4.16: Criterion used to extract a significant value for the large scale flow and its
direction: the azimuthal velocity is averaged over the ring shown in red.

as observed on the QBO on Earth [Baldwin et al., 2001] and on the historical Plumb
experiment [Plumb, 1977, Semin et al., 2018], would be a significant evidence for QBO-
like phenomenon in the experiment. For recall, the phase propagation of the reversals
due to IGWs non-linear interactions is theorised as follows: an IGW propagating in a
stratified layer with a horizontal phase velocity in the same direction as the existing base
flow propagates upward until reaching a critical height zc, where it deposits all its energy
locally. At z = zc, the flow accelerates. Thus the critical height where the flow is intense
enough to damp the wave is lowered. As time goes on, this critical height moves towards
the location where the waves are emitted. Here, the waves are emitted at the bottom of
the stratified layer. We would expect a downward phase propagation if the reversals are
driven by IGWs non-linear interactions.

We performed long time experiments (around 8 hours). Typical results extracted
from the criterion described above are shown in figure 4.17. Blue patches (resp. red
patches) represent large-scale flow going counter clockwise (resp. clockwise). The present
measurements mainly confirm the interpretation of figure 4.14 for the lowest frequencies:
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Figure 4.17: Reversals of the large-scale flow. z = 115−120 mm is the convective / buffer
layers interface. Ascending plumes often perturb the buffer layer flow. The velocity
was measured at 11 heights, marked by each tick in the vertical axis of the figure, and
interpolated in between. The slope of the black dot lines represent the viscous coupling
phase velocity.

the large-scale flow is horizontal and extends over the whole depth of the stratified layer
with an amplitude attenuated with height, and exhibits slow reversals. Additionally,
some intense events at z = 110 mm are directly related to penetrative plumes from the
convection. Reversals times range from 400s to 1800s. However, no downward phase
propagation of the reversals is observed. On the contrary, the reversals seem to occur
along the whole stratification height at the same time, or even with a steep upward phase
propagation. Since the phase propagation is not towards the location where the waves are
emitted, the reversals are unlikely to be driven by the non-linear interactions of IGWs.
However, as seen in the previous section, IGWs propagate in the stratified layer and carry
energy. Therefore, they give energy to the large-scale flow through non-linear interactions.
Yet, the process is not dominant in the reversals dynamics.
Since the reversals observed in figure 4.17 do not have a downward phase propagation, we
look for other mechanisms than the QBO mechanism to explain the reversals. Two other
mechanisms can be investigated. The first one relies on a specific convective dynamics
within the overall stratified layer driven by horizontal gradients related to imperfect top
and side boundary conditions. The second mechanism relies on viscous coupling with the
underlying convective and buffer layers.

Our fully stratified reference experiment described in section 4.2 precludes the first
scenario. Indeed, setting the bottom boundary at 10 ◦C and the top boundary at 70 ◦C,
no motion is observed for the bottom 3/4 of the tank. In this test-experiment, the top
1/4 of the tank is animated by convective motions due to the non-homogeneous top heat
source (in the standard 4 ◦C experiment, where Ttop = 35 ◦C, only ∼ 2 cm are affected by
the convection at the top of the tank, because the non-homogeneity of the heat source is
less important for lower temperature, thus the horizontal convection is weaker). However,
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these are inefficient to generate waves below and to drive any large-scale flow observable
away from the top region.

This leaves viscous entrainment as a possible driving mechanism. The dotted lines on
figure 4.17 show a theoretical viscous time, computed from the time for viscous entrain-
ment to drive 20% of the horizontal velocity at z = 115 mm to z = 160 mm, starting
from a base state flow at rest. The 20% value corresponds to the measured value of the
large scale flow at z = 160 mm compared to the value at z = 115 mm (noted ub). The
theoretical viscous entrainment time is given by t = z2

4 ν erf−2
((

u
ub
−1
)) . The reversals occur

in a time scale comparable with this theoretical viscous time. The similarity between the
slope of the dashed lines and the slope of the upward phases suggests that reversals are
driven viscously.

Figure 4.18: Velocity vector fields in the horizontal plane. Different columns represent
different sweeping cycles t∗ (one sweeping cycle corresponds to the 11 steps needed to go
from the lowest position z = 110 mm to the highest position z = 160 mm). Different
rows represent different heights within the same sweeping cycle: first row is the top of the
convection z = 110 mm, second row is in the buffer layer z = 120 mm and third row is in
the stratified layer z = 145 mm. Convective plumes are easily noticeable on the first row
fields.

However, the existence of the buffer layer and its associated intense shear, with oppo-
site horizontal velocities compared to the convective layer below (see figure 4.11) precludes
direct viscous coupling between the convective and stratified layers. Besides, no reversal
has been observed in the convective region. We thus propose a thermal coupling between
the convective and buffer layers, associated with a viscous coupling between the buffer and
stratified ones. To further quantify this possibility, figures 4.18 and 4.19 show horizontal
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Figure 4.19: Same as figure 4.18 but for different sweeping cycles. Note that in this set
of velocity fields, the buffer and stratified layers are less correlated than they are in figure
4.18.

velocity fields at different heights and at different times. For each of the columns shown,
first row is the mean flow in the convective layer at depth z = 110 mm, second row is
the mean flow in the buffer layer at depth z = 120 mm and third row is the mean flow
in the stratified layer at depth z = 145 mm. The correlation coefficients through time
between (i) the convective and buffer layers, (ii) the buffer and stratified layers, and (iii)
the convective and stratified layers have been computed. It consists in a scalar product
of the velocity vector for each position at two different heights rescaled by the product of
the norm of the velocity vector at the two heights, i.e.:

Rij = R(xi, yj) = u(xi, yj, z1)× u(xi, yj, z2) + v(xi, yj, z1)× v(xi, yj, z2)
(u(xi, yj, z1)2 + v(xi, yj, z1)2)1/2 × (u(xi, yj, z2)2 + v(xi, yj, z2)2)1/2

This gives a correlation coefficient Rij for each PIV position in the horizontal plane. The
global correlation coefficient R is computed by spatially averaging the local correlation
coefficients.

Results are shown in figure 4.20. The convective and buffer layers are negatively
correlated: the correlation coefficient is most of the time close to R = −0.5. This can also
be seen at all times in figures 4.18 and 4.19, where horizontal velocities in the convective
and buffer layers have opposite direction. A diverging flow coming from an impinging
plume in the convective zone corresponds to a converging flow in the buffer layer towards
the impact zone, hence confirming the thermal coupling mechanism described in section
4.3.1. This converging flow may lead either to a clockwise or anticlockwise azimuthal
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Figure 4.20: Velocity correlation between the three layers. Dashed black lines are the
−0.5 and 0.5 values. Correlation coefficient are window-averaged over 10 min to smooth
the curve.

mean flow, depending on the details of the chaotic excitation from the convective plumes.
The correlation coefficient between the convective and stratified layers can be positive or
negative, and is anyway most of the time less than 0.2, in absolute value. The correlation
coefficient between the buffer and stratified layers shows a lot of temporal variations.
However, it remains always positive. At a given time, the large-scale flow in the stratified
layer may switch between a regime strongly dominated by the buffer layer (see also figure
4.18), and a second regime where the flow in the stratified layer is quite different from
the flow in the buffer layer (see also figure 4.19).

We thus conclude that the stratified layer is globally viscously driven by the buffer
layer. However, the stratified layer exhibits additional complexities. These might be due
to IGWs interacting with the large-scale flow. The results from Couston et al. [Couston
et al., 2018a] show that the lower the Prandtl number, the more regular the QBO. In the
experiment, the Prandtl number is close to Pr = 7: the typical associated QBO-type flow
is irregular, with low amplitude. We thus propose that large-scale flow driven by IGWs
non-linear interactions superimposes on the viscously driven flow, but remains secondary.
We do not know at this point how to disentangle those two potential contributions from
the available data.

4.3.2 Numerical results
The experimental results are not fully sufficient to explain, with complete certainty, the
origin of the buffer layer and of the large-scale flow observed in the stratified layer. In
addition, the effects of the lateral heat losses and top temperature heterogeneity are
difficult to distinguish. To answer these questions, 3D DNS of a configuration similar
to our experiments are performed, reproducing the 4 ◦C convection but with idealised
boundary conditions (i.e. no flux on the sides, and fixed temperature at the top and
bottom). As mentioned in section 4.2.2, the Rayleigh number Ra and Ttop are tuned so
that the interface depth in the experiment and the numerical simulation are similar. We
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(a) (b)

Figure 4.21: (a) Instantaneous velocity field. An ascending plume is visible at x =
230 mm. (b) Large-scale circulation in the convective layer obtained by time-averaging
velocities over a 50 minutes recording. The large-scale circulation is a counter clockwise
cell. Maximum instantaneous velocities are 3 times bigger than the maximum averaged
velocities.

have Ra = 107 and Ttop = 48 ◦C. All the numerical simulations are run dimensionless,
but results are shown in dimensional values. The length scale is H = 200 mm, the
vertical extent of the whole domain (hence diameter is D = 300 mm), the timescale is

the thermal diffusive time τ = H2

κ
= 0.22

1.5 10−7 = 2.67 × 105 s, and the temperature is

given by the dimensionless temperature θ = T − Ti
T0 − Ti

, where T, Ti, T0 are respectively the
dimensional temperature, the inversion temperature of the equation of state (i.e. 4 ◦C),
and the bottom temperature (i.e. 0 ◦C). Results for convection and wave analysis are
computed from a (x, z) vertical plane located along a cylinder diameter. Results for the
mean-flow study are computed from (x, y) horizontal planes taken at each height.

Large-scale circulation in the convection zone and buffer layer

Figure 4.21 shows that a large-scale circulation takes place in the convective layer. It
consists of a cell filling the whole convective layer, and exhibits no reversal over the whole
course of the simulation. The fluid rotates counter clockwise in the vertical plane. This is
qualitatively consistent with the mean flow observed in the experiment and shown in the
right panel of figure 4.7. As in the experiments, a counter current exists on the top of the
convective layer at z = 120 mm, creating a strong shear and demonstrating the existence
of a buffer layer in the numerical simulation as well.

The space-time diagram of the mean horizontal flow shown in figure 4.22 confirms
it. Observing the buffer layer in the absence of side thermal losses and top temperature
heterogeneity is an additional argument accounting for the fact that it is not an artefact
driven by imperfect experimental conditions. We also observe that the flow within the
convection stays positive through time at the bottom and negative at the top. This is
evidence of the steady large scale circulation taking place in the convective layer. Some
events appear at t > 1.42 × 105 s and are interpreted as quasi-reversal of the large-scale
circulation.

120



4.3. Description of the flow in the 4 ◦C set-up

0 10 20 30 40 50

0

40

80

120

160

200

2 4 6 8 10

90

100

110

120

130

Figure 4.22: (Left) Horizontal average of the horizontal velocity u over a vertical cross-
section in the middle of the tank. The buffer layer can be seen above z = 120 mm. A
stationary large-scale circulation is present in the convective layer, even if it appears quite
perturbed at the end of the signal. (Right) Temperature profiles along the z-axis.

The temperature profile along the z axis is also plotted on the right panel of figure 4.22.
The figure shows a temporal and horizontal average of the temperature field (black thick
curve), two temporal averages at two different positions x = 14 mm (left side of the tank
- dashed grey) and x = 277 mm (right side - dotted grey) and an instantaneous profile
at x = 145 mm (middle of the tank - thick grey with crosses). The thermal boundary
layer can be seen, between z = 0 mm and z = 10 mm. Then, between z = 10 mm and
z = 100 mm lies a layer of constant temperature T ∼ 2.8 ◦C. Between 100 mm 6 z 6
115 mm, the temperature profile evolves from constant to linear for z > 115 mm. The
T = 4 ◦C (respectively T = 8 ◦C) isotherm is located at z = 110 mm (resp. z = 120 mm).
Note that the temporal average of the temperature profiles are different on the left and
right sides of the tank. Indeed, the constant temperature height goes to z = 90 mm for
the left side whereas it goes to z = 115 mm for the right side. This suggests that the
convective / buffer layer interface does not lies at one height over the whole tank but is
a function of time and space. This is very likely due to the large-scale circulation. Thus,
the thermal coupling described in 4.3.1 will likely occur at different heights, depending
on time and horizontal position.

The thermal coupling as schematised in figure 4.12 can be found in the numerical
simulation. This is represented in figure 4.23. An upward plume impacting the convective
/ buffer layer interface is seen. The isotherms ranging from T = 4 ◦C to T = 11 ◦C are
deflected upward, due to the plume bringing cold fluid upward. On the contrary, the
isotherms T = 12 − 14 ◦C are deflected downward by the converging flow. Isotherms at
T > 15 ◦C remain horizontal. After the impact on the interface, the plume is deflected
outwards. One could expect the fluid above the impact to be viscously entrained by this
outward deflection. However, as observed in figure 4.23 for the simulation and figures
4.18-4.19 for the experiment, the fluid above the interface is going towards the plume,
i.e. in the opposite direction of the fluid below, hence explaining the observed shear (see
figure 4.12). The time evolution of these dynamics is shown in figure 4.24.

Figure 4.24 shows the time evolution of the horizontal velocity u in the shear layer
at z = 128 mm and the time evolution of the vertical velocity w in the convective layer
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Figure 4.23: Velocity field and temperature isotherms at the end of an upward plume
impact on the interface.

Figure 4.24: (Left) Spatio-temporal diagram of the horizontal velocity u at z = 128 mm.
(Right) Spatio-temporal diagram of the vertical velocity w at z = 108 mm. The event at
t ≈ 1.052× 105 s is shown in figure 4.23.

at z = 108 mm. Comparing the two panels of figure 4.24 shows that upward plumes
are concomitant with converging horizontal velocities towards the plume impact. Indeed,
the spatio-temporal diagram of w exhibits local strong upward plumes. These plumes,
as suggested by the dashed black lines, are correlated in time and space with converging
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horizontal velocities. For instance, an upward plume is seen at x ≈ 220 mm and t ≈
1.043× 105 s. At the same horizontal position and time, the positive horizontal velocity
becomes stronger and the negative horizontal velocity patch increases in size to reach
x ≈ 220 mm. The converging horizontal velocities event occurs a short time after the
impact of the plumes. Thus, it can be concluded that the plume induces the converging
flow, as suggested by our explanation in section 4.3.1.

Internal gravity waves
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Figure 4.25: (Left) Power spectral density of the absolute velocity
√
u2 + w2 in the buffer

and stratified layers. The grey curve shows the buoyancy frequency profile computed from
the spatial and temporal average of the temperature field. (Right) Two selected profiles
(taken at frequencies shown by dashed lines on the left graph) of the re-scaled PSDs by
the PSD at the top of the convective layer, i.e. z = 118 mm.

PSDs are computed in the stratified and buffer layers and are plotted in figure 4.25. As
for the experiment (figure 4.14), numerical results show oscillatory motions at different
frequencies attenuated with height. Experimental results (figure 4.14) and numerical
results (figure 4.25) show strongly similar dynamics: most of the energy is present at low
frequencies (f < 3× 10−3 Hz). The motion with frequencies ranging from 3× 10−3 Hz to
N are less intense, and almost no energy is seen at frequencies f > N .

Right panel of figure 4.25 shows two selected vertical profiles (shown by the white
dashed line on the left panel figure) of the the PSD re-scaled by the PSD at z = 118 mm.
The energy for the higher frequency (f = 1.4×10−2 Hz) decreases slower than the energy
for the lower frequency (f = 5.0×10−3 Hz). This is, like experimental results, in agreement
with the dispersion relation of IGWs. The overall behaviour of waves spectra is similar
in experiment and numerical simulation, with an attenuation length independent of the
frequency in the low-frequency signal thus confirming a viscous coupling origin of the
large-scale flow, and increasing when the frequency goes towards N in the wave domain.

Large-scale flow within the stratified layer

Similarly to what has been done for the experimental data, figure 4.26 shows the mean
azimuthal velocity over the whole height of a virtual cylinder of radius r = 140 mm. We
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Figure 4.26: Spatio-temporal diagrams of the azimuthal averaging of the azimuthal ve-
locity over a virtual ring of radius r = 140 mm. The bottom figure is a zoom on the
stratified zone, delimited in the top figure by the black square. The slope of the black
lines shows the theoretical viscous diffusive time.

observe reversals within the convective layer (z < 120 mm), which are not systematically
correlated with the signal in the stratified layer. The mean velocity in the stratified layer
also exhibits reversals. They are characterised by an upward phase propagation from
the buffer zone at z = 120 mm, as shown in the zoom (bottom panel of figure 4.26).
The phase velocity seen in figure 4.26 is in good agreement with the theoretical time for
viscous propagation t = z2

4 ν erf−2
((

u
ub
−1
)) . This corroborates the fact that the reversals

observed within the stratified layer are viscously driven from the dynamics occurring in
the buffer layer, as it has been seen for the experiment. Reversal time ranges from 300 s to
1500 s. Those reversal times are similar to the experimental ones, though slightly shorter
(numerical reversals are ∼ 20% faster than experimental reversals).
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4.4 Conclusion
The 4 ◦C convection experiment, originally performed by [Townsend, 1964], has been re-
investigated using long-term PIV measurements in a vertical cross-section, and in several
horizontal cross-sections within the stratified layer. This last type of measurements has
allowed to investigate the long-term horizontal mean flow in the stratified layer. Exper-
iments have been complemented by direct numerical simulations. The first result is the
confirmation, in 3D and with ideal boundary conditions, of the presence of a buffer layer,
including an overshooting region as first observed by [Perrard et al., 2013], and a shear
region. We have argued that the buffer layer is driven by thermal coupling with the con-
vection, due to the non-linear equation of state of water, and that this mechanism is a
priori related to a Prandtl number larger than one. The second result is that the buffer
layer viscously drives slow reversals of the horizontal large-scale flow within the stratified
layer.

Additionally, IGWs at different frequencies propagate in the stratified layer. They
likely interact with the horizontal large-scale flow, and probably also produce a reversing
flow, which superimposes to the viscously driven one. From [Couston et al., 2018a], we
know that the Prandtl number has a strong influence on this QBO-like mechanism: the
lower the Prandtl number, the stronger the amplitude of the QBO. In water, Pr ∼ 7,
and the expected amplitude of the large-scale QBO flow is weak, hence dominated by the
viscous driving.

Figure 4.27: Horizontal average of the horizontal velocity u over a vertical cross section
in the middle of the numerical domain for Pr = 0.1.

It is straightforward to change the Prandtl number in the numerical simulation of our
set-up. We have thus run a second simulation with the same Rayleigh number Ra = 107

and top temperature θtop = 11 but with Pr = 0.1. In this simulation, as shown in figure
4.27, no buffer layer is observed, but signatures of a QBO like mechanism are visible,
marked by downward phase propagation of the reversals of the large-scale flow. This
configuration thus deserves a more systematic study in the future.

Experimentally, it is possible to work with Pr ∼ 0.7 by using gases as working fluids.
The next chapter will introduce another experiment focusing on penetrative convection in
a transient state with SF6 and air in order to work with a lower Prandtl number compared
to the 4 ◦C convection, which would increase our chance to observe a QBO-like flow in
the stratified layer.

125





CHAPTER 5

PENETRATIVE CONVECTION AT LOW
PRANDTL NUMBER

Contents
5.1 Astrophysical context . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.1.1 Importance of penetrative convection in stellar models . . . . 128
5.1.2 Double-diffusive convection . . . . . . . . . . . . . . . . . . . 130

5.2 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2.1 Diffusion of gases . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2.2 Double-diffusive instabilities in the experiment . . . . . . . . . 134
5.2.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.2.4 Ideas about other measurement techniques . . . . . . . . . . . 137

5.3 Analysis of a preliminary experiment . . . . . . . . . . . . . . . . . . 138
5.3.1 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.3.2 Stratified layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

In Nature, internal gravity waves driven flows, whether they are oscillating or not,
are observed in planets’ atmospheres and in stars, i.e. in fluids characterised by Prandtl
numbers Pr 6 1 (Pr ∼ 0.7 for the Earth’s atmosphere, Pr ∼ 10−8 in the Sun’s convective
zone). According to [Couston et al., 2018a], the Prandtl number has a significant impact
on the oscillating mean-flow emergence, with less and less QBO-like flow signature with
increasing Pr. Therefore, our experiments described in the previous chapters may not be
suited to drive this kind of flows since the working fluid was water (Pr ∼ 7 for thermal
stratification and Pr ∼ 700 for salt). In this chapter, we introduce a newly designed
experiment, reproducing penetrative convection with gases as working fluids in order to
reach low Prandtl numbers (Pr ∼ 0.7). We use two gases, air and sulfur hexafluoride.
Sulfur hexafluoride (SF6) is a non-toxic gas generally used for its excellent electrical in-
sulator properties. Its density is approximately six times larger than the density of air
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(ρSF6 = 6.04 kg ·m−3 and ρair = 1.18 kg ·m−3 at T = 298 K and P = 1013 hPa). To
experimentally study penetrative convection, SF6, because of its large density, is used
in the bottom, convective layer, and air is located above. A stratification in chemical
composition then rapidly forms because of the diffusion of the two gases. However, the
visualisation of the flow in air and SF6 is quite challenging. The PIV technique, which
works excellently in liquids, is less suited for measurements in gases when velocities in-
volved are small because common tracer particles have a relatively large sedimentation
speed. Moreover, since we work with two different gases, double-diffusive instabilities
can take place during the experiment, with the combined effects of chemical and tem-
perature diffusions. Yet, these instabilities are relevant for massive star or planetary
interior dynamics, where semi-convection participates in the global dynamics [Merryfield,
1995,Kellogg, 1991]. This chapter will focus on the astrophysics problematic developed
in 5.1. Section 5.2 will detail the experimental set-up, the measurement techniques tested
so far, and will give ideas for others experimental measurements that could be of inter-
est. Finally, section 5.3 will present the analysis of one preliminary experimental movie,
visualising the convective and stratified layers.

The experiment presented here is a new set-up, born out of a collaboration between
M. Rieutord and IRPHE, and has been built during the last year of my PhD. The density
measurement could not be performed so far because the pressure sensors are not installed
in the tank yet. Measuring velocities in gases is quite a challenge and preliminary tests
were required to come up with a relevant visualisation technique. What is introduced in
the following is the promising start of the project.

5.1 Astrophysical context
Penetrative convection deeply affects star evolution by locally mixing chemical species and,
as seen earlier in the manuscript, generating internal gravity waves in the radiative zone.
The overshooting region can also contain double-diffusive phenomena since gradients of
temperature and chemical composition are locally mixed. Hence, the dynamics operating
in the small region contained between the two layers are essential. This section will present
the problematic of penetrative convection in the astrophysical context and introduce the
basic concepts of double-diffusive convection.

5.1.1 Importance of penetrative convection in stellar models
The time evolution of stars in only known through models. Some of them study the global
dynamics of the star, and others focus on a specific phenomenon and look at smaller scales.
The same is true for time-scales, with models investigating dynamic scales (e.g. convective
turnover time) and other investigating the long-time evolution of stars.

The current models studying the long-time dynamics have difficulties to properly re-
produce turbulent flows. This relatively imprecise implementation of those flows may
explain that the recent observations of chemical abundance or differential rotation speeds
are not well represented in models. Figure 5.1 shows the time evolution of a star in the
Hertzsprung-Russell diagram computed from different numerical models. One sees that
the models all predict different evolutions for the star’s life.
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Figure 5.1: Evolutionary tracks for a M = 20M� with M� being the Sun mass. The
evolutionary track follows the evolution of the luminosity L as a function of temperature
(linked to the color of the star) Teff . This kind of diagram, named Hertzspreung-Russel
diagram, is used to represent the broad population of stars. Note that the temperature
is represented on the x axis with decreasing values from left to right. Reproduced from
[Martins and Palacios, 2013].

The particular case of overshooting / penetrative convection 1 is poorly modelled. That
is a major issue due to the impact this phenomenon has on star dynamics. Penetrative
convection is invoked to explain the mixing taking place at the border of the convective
layer. For example, in massive stars in which nuclear burning occurs in the convection
zone (located at the core), overshoots can bring nuclear fuel from the radiative layer
back into the convective layer and feed the burning. This extends the lifetime of main-
sequence stars [Maeder, 1975, Rosenfield et al., 2017]. For the Sun, overshooting can
explain the transport of lithium out of the convection zone into the core [Andrássy and
Spruit, 2013,Baraffe et al., 2017]. The overshooting zone may also be of importance for
the solar dynamo [Parker, 1975,Nordlund et al., 1992].

So far, the key process that drives mixing during an overshoot is not well understood
and therefore, the parametrisation of the phenomenon within models is not appropriate.
Different studies using global models [Briquet et al., 2007,Lovekin and Goupil, 2010,Guen-
ther et al., 2014] have tried to predict the depth and position of the overshoot region but

1The terms penetrative convection and overshooting are quite often interchanged. Penetrative con-
vection is used when local mixing is produced by the intrusion of convective plumes within the stratified
layer. Overshooting denotes the intrusion of plumes, but without any information on the entrainment
involved. Since the density profiles before and after the intrusion are rarely known, both terms are used
to name the intrusion of plumes into the stratified layer, without any quantitative implications on the
mixing.
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gives contradictory predictions. Others [Hurlburt et al., 1994,Brummell et al., 2002] have
focused on the basis of the problem and studied only the penetrative convection phenom-
ena. But these simulations are far from the parameter values expected for stars and only
give hints on the dynamics involved. Besides, their numerical cost limits the investigation
to a small parameter range and a model could not be constructed from the numerical
results. Recent LES [Kitiashvili et al., 2016, Pratt et al., 2017] suffer the same limited
parameter range issue.

Moreover, internal gravity waves are generated at the interface between the convec-
tive and stratified zones, i.e. in the overshooting region. A correct implementation of
internal gravity waves in numerical model is crucial since they transport angular momen-
tum [Press, 1981,Schatzman, 1993,Zahn et al., 1996,Aerts et al., 2019]. Internal gravity
waves are also invoked in the lithium transport and chemical mixing problematics [Char-
bonnel, 2005, Rogers and McElwaine, 2017], can explain the differential rotation of the
layers [Rogers et al., 2012] and influence the time-variations of the tachocline in the Sun
(the Shear Layer Oscillation) [Kim and MacGregor, 2001, Talon et al., 2002, Talon and
Charbonnel, 2005].

The overshooting region is strongly mixed by penetrating plumes, wave generation
and a potential shear layer. The temperature and chemical composition gradients are
affected by the mixing involved and locally, double-diffusive processes can appear.

5.1.2 Double-diffusive convection
A particular case of convection can occur when both thermal and compositional effects can
drive buoyancy forces. It is called thermochemical or double-diffusive convection [Turner,
1974,Huppert and Turner, 1981] and has been vastly investigated, especially due to its
importance in ocean dynamics (where salt and temperature gradients can drive thermo-
haline convection). It is also of interest in star and planet’ interiors where a chemical
composition gradient cohabits with a temperature gradient. In the experiment that will
be described in section 5.2, we study penetrative convection with two gases (SF6 and air)
as working fluids and double-diffusive convection can take place.

Unlike Rayleigh-Bénard convection in which diffusivities have a stabilising effect,
double-diffusive convection is driven by diffusive processes. The key mechanisms of
double-diffusive convection is the time-scale difference between the molecular diffusion
rate of the temperature and compositional fields. Their ratio is called the Lewis number:

Le = κ

D
(5.1)

with κ and D the thermal and compositional diffusivities. The Lewis number is esti-
mated close to 100 for oceans [Stern, 1960] and giant planets [Stevenson and Salpeter,
1977] and reach 1000 for metallic planetary cores [Braginsky and Roberts, 1995]. In our
experiment, the Lewis numbers are much smaller: 2.22 for the air and 0.33 for the SF6
(κair = 2.2× 10−5 m2 · s−1, κSF6 = 3.3× 10−6 m2 · s−1 and D = 10−5 m2 · s−1)
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Figure 5.2: Schematics illustrating the double-diffusive convection mechanisms, with
fingering convection (top) and oscillatory diffusive convection (bottom). Reproduced
from [Garaud, 2013].

Double-diffusive convection occurs when the global contribution of the two fields gives
a stably-stratified density profile, but one of the two fields has a destabilising effect. In
this case, and due to the different rates for the diffusivites, vertical motions can develop.
Two different mechanisms are identified, depending on whether the slow diffuser has a
stabilising or destabilising effect. They will be described in a heat/salt system in the
following.

Fingering convection

When the slow diffuser (salt) is unstable, fingering convection appears (see top panel of
figure 5.2). When a parcel of hot and salty fluid is displaced downward by a perturbation,
it becomes surrounded by cold fresh fluid. Because thermal diffusion operates faster
than salt diffusion, the parcel equilibrates thermally with its surrounding and loses heat,
whereas it retains its salinity. The parcel is thus denser than the surrounding fluid and
sinks deeper in the tank. The same reasoning applies for a initially cold and light parcel
of fluid displaced upward. Therefore, initially small perturbations are amplified by the
destabilising effect of thermal diffusivity and give rise to ascending or descending fluid
called fingers because of their narrow horizontal scale.

Oscillatory diffusive convection

When the slow diffuser is stabilising, oscillatory diffusive convection occurs (see bottom
panel of figure 5.2). When a fresh and cold parcel of fluid is displaced downwards, it
retains salinity and equilibrates thermally. Since the salinity background is here stable,

131



Chapter 5. Penetrative convection at low Prandtl number

Heated stainless 
steel plate

Thermostated 
copper plate

Polystyrene plate

Water buckets 
and mist-makers

(x8) 

Metal bar with 
regularly-spaced 
pressure sensors

Figure 5.3: 3D sketch of the set-up. The heating plate is located at the bottom with the
nine heating plates being stuck under. At the top, the cooling plate is thermally isolated
from the exterior with polystyrene plate. Below the heating plate and above the cooling
plate are placed water buckets containing the mist-makers.

the parcel becomes lighter than the ambient fluid and thus experiences an upward accel-
eration. When it comes back to its original position, the parcel is still lighter than the
ambient fluid, because of the heat gained. It then overshoots to reach a higher equilibrium
position, where the parcel loses heat with the ambient fluid, hence becoming denser and
experiencing a downward acceleration. This oscillatory process repeats over and over. In
astrophysics, oscillatory diffusive convection is called semi-convection.

In the overshooting region occur several fast events which have a deep influence on
star evolution. Mixing is induced by penetrative convection and can transport fuel for
the nuclear reaction. Internal gravity waves are generated and affect global dynamics at
large time- and length-scales. It is crucial that the local and short-time scale dynamics
of the penetrative convection are well captured in order to refine the numerical models.
The next section will introduce our newly designed experiment to investigate penetrative
convection in gases. Working with gases instead of water has the advantage to lower
the Prandtl number by one order of magnitude compared to water and reach a Prandtl
number Pr ∼ 0.7, which is a relevant value for atmospheric and astrophysical applications
and allows to experimentally reach Pr < 1.

5.2 Experimental set-up
The tank is rectangular with dimensions 85× 85× 150 cm3. At the bottom of the tank is
placed a stainless steel plate with dimensions 75×75 cm2 and thickness e = 2 mm. Below
this plate are attached 9 heating silicone patches with dimension 25× 25 cm2, presented
in figure 5.4. The patch temperatures are controlled with two power supplies through
a feedback loop: a thermocouple measures the temperature at the patch location and
adjusts the input power into the patch. The central patch is individually controlled, the
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Figure 5.4: Photography of the heating silicone plates attached to the bottom of the
stainless steel plate. The central plate is linked to a power supply and the 8 others to
another power supply, in order to control the central plate individually.

others are powered by one single supply and are thus grouped together. At 110 cm above
the heating plate stands a copper plate, delimiting the top domain of our experiment. This
copper plate is linked to a thermostated bath and we impose a temperature T = 23 ◦C,
approximately the room temperature.

Below the heating plate and above the cooling plate are placed small buckets filled
with distilled water. We use mist-makers, placed into these buckets in order to seed the
tank with small water drops. For the mist-makers located at the top, water drops slowly
fall in the tank, since they are denser than air. Two ventilators are placed below the
heating plate in order to bring the mist created by the bottom mist-makers above the
plate, i.e. in the area of interest for the experiment. A 3D drawing of the set-up is
displayed in figure 5.3.

Typically, to set up an experiment, we fill approximately 20 cm of the bottom of the
tank with pure SF6. The remaining is initially pure air, but a stratified layer of air and
SF6 rapidly forms above the pure SF6 layer. This layer is stably stratified with a stable
gradient of chemical composition (heavy SF6 below light air) and an unstable gradient
of temperature (hot gas below cold gas) when the heating is turned on. The top cooling
plate is set at T = 23 ◦C, the air temperature. Then we proceed to fill the tank with
water drops. To seed the entire tank, we turn on the mist-makers at the top of the tank
and wait for the drops to sink in the tank, so that water particles are present in the whole
height. The bottom mist-makers are only used to re-seed the bottom convective layer
later on, if needed. Once the tank is seeded, we turn on the heating at the bottom plate,
and convection starts in the bottom layer. At the interface between the convective and
stratified layers occurs a strong mixing of the two gases because of the convective motion
but also by diffusion. Above the stratification, pure air is slowly convective because of a
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Pure SF6
Convective

Air + SF6
Stratified in temperature (unstable) 

and composition (stable)

Pure air
Convective 

Ttop = 23°C

Tbot = 40-45°C

Figure 5.5: Schematic of the experiment. Note that fingering instabilities are observed
at the interface between the layer of pure air and the stratified layer during the seeding
process. Instabilities disappear once the seeding is stopped and are not observed during
the experiment.

small ∆T between the top cooling plate and the interface with the stratified layer. This
third and last layer rapidly disappears because of gas diffusion and the second layer of
stratified air and SF6 takes the whole height. The flows taking place in the tank once the
heating is turned on are represented in figure 5.5.

5.2.1 Diffusion of gases
During the whole experiment duration (including the filling and seeding steps), gas diffu-
sion will occur and smooth the interface. The length scale over which the two gases are
mixed is:

h =
√
Dt (5.2)

where D ∼ 10−5 m2 · s−1 is the coefficient associated with the diffusion between air and
SF6. This results in a typical length scale l = 1 cm for a given time t = 10 s or 10 cm for
about 15 min. The diffusion between gases is quite fast and will impact the dynamics in
the experiments.

5.2.2 Double-diffusive instabilities in the experiment
At the interface we have a stable chemical composition gradient ∂zC and an unstable
temperature gradient ∂zT . Yet, it is important to notice that that air has Le > 1 whereas
SF6 has Le < 1. Consequently, the slow diffuser is different for the two gases: it is the
chemical diffusion for air and temperature diffusion for SF6. We can thus expect to see
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both double-diffusive instabilities in the tank. So far, none of the instabilities have been
observed during an experiment, only during the seeding of the tank (probably because
of the diffusion of the water drops). A theoretical criterion can be computed to know if
double-diffusive instabilities can take place. However, it relies on the gradient of temper-
ature and chemical species. These quantities are not yet accessible in our experiment.

5.2.3 Measurements
Particle Image Velocimetry

To measure the flow within the tank, we use PIV with water drops as fluid tracers.
The water particles are denser than air and SF6, but the sedimentation speed remains
slow compared to the motion observed so the tracer is adequate for PIV measurements.
The seeding with water particles has another advantage (compared to oil particles for
example): it does not create a deposit on the tank walls, so the upkeep of the set-up is
not an issue. Yet, the tracer is not perfect. The main issue with using water particles
as tracer is that the particle properties change through time. The water drops tend to
agglomerate: the particle concentration diminishes while their size increases. Moreover,
since particles are made of water, and we bring heat into the tank through the heating
plate at the bottom, the water tends to evaporate and the particles disappear over time,
which is problematic for long-time measurements. Since the humidity of the air in the
tank increases, we also have the problem of condensation forming on the tank wall which
poses visualisation issues. This has been solved by heating the wall where the camera
is placed, preventing condensation to form. However, this solution is not ideal since it
brings heat in the system through one side wall and it breaks the configuration symmetry.
Moreover, it is not possible to seed the tank while the experiment is on, since the seeding
process very likely affects the flow dynamics.
Yet, we succeeded in seeding both layers with a concentration in particles suited for PIV
algorithm. The water particles last a few minutes in the tank. There is a sweet spot in
time of about 2 min when the particles are large enough to be visualised properly in the
camera field, and when the particle concentration is still high enough to fill the camera
field. It starts few minutes after the tank was completely filled with water particles.
We launch the experiment (turning on the heating) and acquire PIV frames during this
moment. The acquisition is 1 min long, acquired at 100 fps with a camera resolution
of 2560 × 1600 pixel2. With a 50 mm focal length, the view field is 26 cm wide and
42 cm high. We use a continuous laser with 532 nm wavelength and set at 2 W power.
A stacking of 10 PIV frames, without any tracer in the convective layer is displayed in
figure 5.6. The interface is clearly visible because of the hight contrast between the two
layers. Fast motions and mixing are visible at the interface, with parts of the stratified
(and thus seeded) fluid being entrained into the convection.
The buffer memory of the camera being limited, we can only record ∼ 1 min at 100 fps.
For the internal gravity waves, the framerate can be lowered and acquisitions longer than
one minute should be easily reachable. Up to 5 minute recordings may be performed in
the stratified layer. However, the seeding process is, at the moment, the limiting factor
for our visualisations. Still, we can probably increase the particle lifetime by working
at lower temperatures in the tank, hence diminishing the evaporation speed. Moreover,
preliminary tests show that we may adjust the size of the particles in the mist by adding
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Figure 5.6: Stacking of 10 PIV frames. Here, the convective layer at the bottom is not
seeded and convective motion cannot be measured. The stratified layer is seeded suitably
for PIV. The interface is enlightened by the high contrast between the two layers. One
sees at the bottom centre that the convection entrains a part of seeded fluid, illustrating
the mixing taking place at the interface. It is also noticeable that the movements near the
interface are much faster (the particles form lines that illustrate their trajectories during
0.1 s) than the ones taking place up in the stratified layer.

UCON oil and/or surfactant in the water buckets, in which are placed the mist-makers.
We noted that the particle size is more suited for PIV and their lifetime is extended to
tens of minutes when UCON oil is used.

Density profile

Two metal bars with regularly-spaced pressure sensors are placed in the tank along side
walls. One has 10 sensors with a 10 cm gap between two sensors. The second one has 10
sensors with a 2 cm gap. The first bar allows to know the density vertical profile along
the whole domain, while the second one gives precise measurements of the density profile
at the interface location. The second metal bar can be easily lifted up or down so that
the interface upward drift can be followed over time. The pressure sensors measure the
total pressure with a precision of 1 Pa. If we look at the hydrostatic pressure P = ρgH,
∆H = 1 m results in ∆P = 10 Pa for pure air and ∆P = 60 Pa for pure SF6. Therefore,
the pressure profile would give insight about the evolution of the density profile in the
tank. Unfortunately, the pressure sensors could not be tested during experiments so far,
but the hydrostatic density profile could be measured in pure air.
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5.2.4 Ideas about other measurement techniques
Flow visualisation : Molecular Tagging Velocimetry

Molecular Tagging Velocimetry (hereafter MTV) is a flow visualisation technique using
two pulsed lasers and one camera. A single beam is shot from the first laser (the “write”
laser). A chemical process is triggered by an optical excitation along the laser beam,
resulting in a new chemical species which could be distinguished from the surrounding
fluid due to their fluorescence. For a single simple shot, the newly created species will
form a line discernible from the rest of the fluid. The second laser (the “read” laser)
will allow to follow the displacement of this line, with correlation algorithms. For 2D
measurements, optical devices are used to form a grid pattern in the region of interest.
The displacement and deformation of this grid over time then give precise measurements
about the 2D velocity field in the area. The experimental apparatus and other information
are described in literature [Gendrich and Koochesfahani, 1996,Gendrich et al., 1997,Stier
and Koochesfahani, 1999].

The main advantages of MTV over PIV is: (i) the problem of seeding particle sedi-
mentation no longer exists, (ii) the tagging can be repeated over and over by shooting
with the write laser. The major issue we have with PIV is that the seeding disappears
over time, and it is not an option to keep seeding during the experiment. Therefore, long
time measurements cannot be performed with PIV at the moment. That is problematic
to investigate for low frequency waves and have statistically converged results. But this
is especially troublesome if we want to study large-scale dynamics. Indeed, those would
happen on time-scale much larger than the waves dynamics, probably of the order of the
hour. MTV visualisation allows to bypass this issue, since the tagging can be simply
performed again and again, and it does not affect flow dynamics.

Sound speed measurements
Another way to measure density profiles is to measure the sound speed and temperature
at different heights. With these measurements, it is possible to deduce the value of ρ
locally. In any fluid, the sound speed writes:

cs =

√√√√(∂P
∂ρ

)
S

=
√

1
χSρ

(5.3)

with χS the coefficient of isentropic compressibility. For perfect gases, we have:

γ = χT
χS

(5.4)

with γ the Laplace coefficient, and χT = −1
V

(
∂V
∂P

)
T
the isotherm compressibility coefficient.

Using the perfect,gas relation PV = nRT , we write χT = 1
P
.

The sound speed thus writes:

cs =
√
Pγ

ρ
(5.5)

ρ is the density of the fluid and writes ρ = m
V
. In our case, we have two gases with different

concentration xair and xSF6 . The density can thus be written ρ = xairρair + xSF6ρSF6 . For
an ideal mixing of two perfect gases, we have

ρ = MP

RT
(5.6)
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with M = xairMair + xSF6MSF6 . We know Mair and MSF6 and we have xair = 1− xSF6 .

Besides, the Laplace coefficient can also be written γ = CP
CV

with CP (resp. CV ) the
heat capacity at constant pressure (resp. volume). As for the molar mass M , we can
write the heat capacities of the gas mixture as:

CP = xairCP,air + xSF6CP,SF6 CV = xairCV,air + xSF6CV,SF6

Finally, the sound speed in a air and SF6 mixture writes:

cs =

√√√√ RT (xSF6CP,SF6 + (1− xSF6)CP,air)
(xSF6CV,SF6 + (1− xSF6)Cv,air) (xSF6MSF6 + (1− xSF6)Mair)

(5.7)

In this equation, if we measure the sound speed cs and the temperature T , the only un-
known is xSF6 . The equation, which is a second order polynomial, can thus be analytically
solved and gives the concentration in SF6 at the position of the measurement.

The derivation is not exact since we assumed that air and SF6 are perfect gases. But
this simple relation, along with a calibration performed in mixture of air and SF6 with
known concentration and temperature, in order to see the dependence of cs on the mixture
concentrations, could allow to access a relatively precise estimation of the density profile.
Piezoelectric sensors were bought to test these measurements. The idea is to impose a
current to one of the two piezoelectric sensors, which will behave like an emitter. The
emitter will vibrate at a given frequency set by its geometry. A second piezoelectric,
serving as a receptor, will vibrate due to the pressure wave received and will thus generate
an electric signal. By measuring the phase lag ∆t between the two signals, and by knowing
the distance ∆l between the two sensors, one can measure the sound speed. Unfortunately,
this method could not be implemented so far.

5.3 Analysis of a preliminary experiment
This section introduces the analysis of our preliminary experiments. Here we explore the
internal gravity wave field generated by the convection and the evolution in time of the
interface position in order to address the specific issues of the overshooting zone, developed
in section 5.1. For the data analysed, the camera is centred horizontally in the tank and
the bottom edge of the camera frame is placed a few centimetres above the heating plate
in order to avoid laser reflection into the camera lens. The interface position varies with
time because of the mixing from the convective motion and diffusion.

5.3.1 Interface
The interface cannot be followed by density measurements yet. Hence, we capture its
displacement by looking at the time evolution of the horizontally averaged RMS of the
horizontal velocity measured by PIV. Velocities are much larger in the convective layer
compared to wave velocities. We expect a sharp decrease of the RMS values at the
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Figure 5.7: Horizontally averaged RMS of the horizontal velocity u, plotted as a function
of altitude z and time t. The colourful region at the bottom shows the convective motion
while the black area above shows the stratified layer, where velocities are much smaller
than the ones present in the convective layer. The Rayleigh number, based on an averaged
height and total ∆T = 17 ◦C, is Ra = 1.2× 108.

interface between the two layers. Figure 5.7 shows the averaged RMS as a function of
time and altitude. The interface is located at z ∼ 11 cm at t = 0 s and ends at z ∼ 14 cm
at t = 54 s. The position of the interface does not rise continuously with time: one
sees that the RMS reaches high vertical positions (z = 16 cm) at t = 33 s while few
seconds later, the interface is located at z = 14 cm. These short time-scale fluctuations
of the interface are explained by rising plumes from the convection overshooting within
the stratified layer above and then falling back in the convective layer. However, if we do
not take into account these fast fluctuations, the interface position rises with time overall.
We chose an arbitrary threshold of urms = 0.5 cm · s−1 to set the interface.

We compute an average position for the first 5 s and the last 5 s of our acquisition.
We find that the interface rises of ∆z = 2.75 cm during ∆t = 54 s. Yet, diffusion acts on
both direction of the interface and the front created by diffusion would grow upward and
downward in our set-up. Here, the mixing induced by convection only create the upward
front. Therefore, the effective ∆z created by convection is ∆z = 2 × 2.75 = 5.5 cm.
The “effective diffusion” coefficient associated is Deff = ∆2

z

∆t
= 5.6× 10−5 m2 · s, which is

560% larger than the mutual gas diffusivity D ∼ 10−5 m2 · s−1. Longer measurements are
needed to see how the mixing rate changes over time.

5.3.2 Stratified layer
Internal gravity waves are observed in the stratified layer. A snapshot of a vorticity field,
in which waves are visible, is displayed in figure 5.8. Examples of temporal signals are
displayed in figure 5.9a. Vertical velocity signals are plotted at three different locations
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Figure 5.8: 2D snapshot of the y-component of the vorticity field in the stratified layer.
A wave pattern is clearly visible at the bottom.

chosen randomly and displayed in the right panel. The signals are oscillating in a sinu-
soidal way around w = 0 cm · s−1, indicating that these are wave motions. One sees that
the amplitude of the oscillations is larger for the signal taken at the lowest altitude (blue
curve, z = 15 cm), suggesting that wave amplitude attenuates with height, as expected.
Additionally, the blue curve oscillates faster than the two others. This is more noticeable
in figure 5.9b which displays the spectrum for each signal. The peak in the spectrum is
reached at a higher frequency at the bottom of the stratification compared to to the top.
This is surprising since we would expect that high frequency waves propagate high in the
tank whereas low frequency waves stay at the bottom of the stratified layer. We thus
would expect fast oscillations with superimposed slower oscillations at the bottom with
only fast oscillations visible at the top of the domain.

Spectra at different heights are plotted in figure 5.10 for the horizontal velocity u and
in figure 5.11 for the vertical velocity w. They are computed over the whole duration of
the signal (54 s) even if, as seen in figure 5.7, the system is not in a steady state. The
spectra may be hard to interpret in the vicinity of the interface, where the fluid is initially
stratified and is slowly mixed over time.

Yet, the contrast in power density is striking between the convective layer and the
stratified layer, in both figures. The interface is approximately located at z ∼ 13 cm,
with very high power density values below. The convective motions are intense compared
to the wave motion. In the spectra for u in figure 5.10, one can notice an increase in
power density at z = 10 cm for the lowest frequencies. This is caused by the deviation of
rising plumes by the interface. At this height, the plumes rise vertically and are deflected
horizontally by the stratified layer. Oscillatory motions are seen for both components of
the velocity in the stratified layer. Additionally, we observe a drop in energy for frequencies
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Figure 5.9: (a) Time signals of the vertical velocity w at three different locations: x =
11 cm and z = 15 cm (blue), x = 8 cm and z = 29 cm (green), x = 13 cm and z = 37 cm
(orange). The quiver in the right panel shows the three different locations, marked with
crosses with corresponding colors. (b) Corresponding spectra for each velocity signal.

f > 0.6−0.8 Hz in the stratified layer. That may indicate that the buoyancy frequency in
this experiment is approximately N = 0.6− 0.8 Hz, since we expect that internal gravity
waves are evanescent if they have a frequency higher than N . Spectra for the vertical
velocity (figure 5.11) shows a very intense peak close to f ∼ 0.8 Hz, indicating that high
frequencies dominate the oscillations in the stratified layer. These high frequency waves
propagate high in the tank and have a magnitude similar to the one observed in the
convective layer at the same frequencies.

Additionally, the cut-off frequency is lower at the top of the captured domain com-
pared to the bottom of the stratification. This suggests that the vertical density profile is
not linear, and that the buoyancy frequency is therefore not constant with height. This
also explains why, in figure 5.9a, the fast oscillations visible at the bottom of the tank were
not visible at the top. Due to N decreasing with height, faster oscillations are reachable
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at the bottom of the stratification compared to the top.

Figure 5.10: Power Spectral Density of the horizontal velocity u. Spectra are computed
at each location and then horizontally averaged, from a 54 s acquisition.

Figure 5.11: Power Spectral Density of the vertical velocity w. Spectra are computed at
each location and then horizontally averaged, from a 54 s acquisition.

Even if the total acquisition time is relatively short (54 s), we can horizontally and
time average the horizontal speed to visualise a potential horizontal mean-flow. The
profile is displayed in figure 5.12a. We see that the mean flow is positive at the bottom
and goes to negative value between 8 cm < z < 13 cm. This is likely the signature of
the convective cell, with a rising plume close to the center of the camera frame. The
rising plume is deflected to the left as it encounters the interface, resulting in negative
horizontal velocity. Positive horizontal flow is located at the bottom to close the convective
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cell. However, just above the convective layer, one sees a positive mean-flow, resulting
in a shear close to the interface. Due to the very short acquisition time, it is difficult
and too early to deduce anything from this feature. It could be driven by waves, due to
thermal losses at the tank walls, coupled with motions in the convective layer. Yet, seeing
this shear between the two layers at Pr ∼ 0.7 is quite intriguing and deserves a special
attention in future experiments.

About the energy transfer from convection to waves, we plot in figure 5.12b the vertical
profile of u2

RMS + w2
RMS, averaged over 54 s. The energy is significantly higher in the

convective layer z < 12 cm compared to the stratified layer. The ratio between the
almost constant energy value reached between 20 cm < z < 30 cm and the peak in energy
just above the interface is 0.02, suggesting that ∼ 2% of the convection energy goes into
the wave. At z > 30 cm, the energy decreases exponentially.
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Figure 5.12: (a) Horizontally and time averaged horizontal velocity u, shown as a function
of the height z. (b) Time averaged profile of u2

RMS + w2
RMS. The decrease in energy

at the interface z ∼ 12 cm is quite visible. Energy is then almost constant between
20 cm < z < 30 cm. The energy then drops exponentially.
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5.4 Conclusion
This chapter briefly introduced our new experiment studying penetrative convection with
gases as working fluids, in order to reach low Prandtl number dynamics. The study of
the entrainment at the interface is of particular interest for star modelling, due to the
importance of the mixing on star lifetime. Also, working with low Prandtl number would
increase our chance to observe an oscillating QBO-like flow according to [Couston et al.,
2018a]. Yet, the current geometry needs to be adapted in order to be axisymmetric and
long-time measurements need to be performed.
Nonetheless, our first results are quite encouraging. Once density measurements are
accessible, and once the seeding process is mastered, we should be able to investigate the
flow at various Rayleigh numbers and various buoyancy frequencies, and also to quantify
the entrainment at the interface.
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In this manuscript, we have broached some aspects of the interaction between turbulence
and stratification. Through theoretical development and numerical integration, as well
as experiments, we have adressed the issue of internal gravity wave and large-scale flow
generation. This last section of the manuscript will briefly summarize our results and will
in particular give thoughts and insight on the future investigations which could be lead
from our findings.

Multi-modal model for the QBO
We showed that, in a 1D model, multi-modal forcing in a finite stratified domain favors
the emergence of periodic reversals for the horizontal mean-flow. Additionally, forcing
spectra with different characteristics can lead to very similar mean-flow oscillations. We
related these results to the use of a similar model in GCMs. Finding the right features
(amplitude and period) for the oscillations does not imply that the underlying forcing is
correct.

Yet, the numerous approximations made for the analytical development of the model
have to be reminded when interpreting our results, even if the monochromatic model is
well reproduced in experiments [Plumb and McEwan, 1978,Otobe et al., 1998,Semin et al.,
2018]. The study from [Couston et al., 2018a] also suggests that taking into account the
distribution of energy is not sufficient, and higher order statistics should be considered to
properly reproduce the effect of turbulently-generated waves.

However, by its simplicity and easiness to run on everyday-computer, the multi-modal
model derived in this thesis from the work of [Plumb, 1977] allows a systematic exploration
of the numerous parameters of the problem that cannot be performed with DNS. We have
explored the influence of considering different frequencies for the waves. The influence
of horizontal wavenumbers is still an open question. In the Earth’s stratosphere, the
QBO is generated by a wide range of wavenumbers, from small-scale internal gravity
waves (O(10 km)) to large-scale planetary waves (Rossby and Kelvin waves, O(1000 km)).
Taking into account this disparity in the model is some work that should be done to
increase our comprehension of the mechanism. Moreover, even if we understand that
considering rotation would break the symmetry of the problem, which is crucial for the
reversals to appear, it may be interesting to run the model with small Coriolis parameter
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f to really understand how the Earth’s rotation impact the momentum exchange between
the waves and the mean-flow at latitudes close to the equator.

Besides, the model can, with relative easiness, be relaxed from one approximation:
the weak dissipation approximation, which overestimates the wave attenuation at low
frequencies. The analytical derivation of the forcing term becomes a bit tedious, but the
final expression obtained gives a better description for the low frequency wave attenuation
[Lecoanet et al., 2015]. Some preliminary computations have been performed, in the
monochromatic case. The first striking result is that, because of the lower attenuation at
low frequency, momentum exchange mainly occurs through critical layers in the model,
whereas viscous attenuation was sufficient to damp the wave with the “weak” dissipation
assumption.

The jet experiment

We unsuccessfully tried to generate an oscillating flow from turbulently-generated internal
gravity waves in salty water. Jets were used to create a turbulent layer. Unfortunately, the
mixing occurring at the interface was too strong and rapidly, a density jump appeared at
the interface. We think that this density jump tremendously affects the wave generation
by lowering the energy transfer from the turbulent layer to the stratified layer and by
promoting the emergence of a global mode over the whole depth. Even if, at early times,
a mean-flow is observed, it quickly disappears, as the forcing waves diminish in intensity.

The effect of the density jump on the wave generation is not quantified yet. Nonethe-
less, an experiment with one single jet impacting an interface with a stratified layer of
constant N could validate our theory. One only needs to vary the density jump at the
interface ∆ρ with fixed Reynolds number Re for the jet. By measuring the wave field at a
given depth, one could verify whether or not the density jump affects the wave generation.
Varying Re with fixed ∆ρ would also be an interesting study.

On the experimental generation of a QBO-like flow from multi-wave forcing, our set-up
does not seem to be ideal. Perhaps that using a higher tank to give space for the waves
to attenuate would be enough to see an oscillating mean-flow since we have numerically
seen that the domain height has an influence on the QBO emergence. Yet, this would not
solve the mixing issue.

A solution would be to expand upon the existing experimental set-ups [Plumb and
McEwan, 1978,Otobe et al., 1998,Semin et al., 2018] for the monochromatic case, and to
adapt the forcing to control individually each piston that moves the membrane. Doing
so, it could be possible to generate waves with different frequencies and wavenumbers.
Additionally, it would allow a smoother transition from the monochromatic study to
multi-wave study than our jet experiment. Indeed, controlling each piston would grant
the possibility to consider two different frequencies, then 3, etc. in order to increment
the complexity of the forcing step by step. Stratification mixing would still occur in this
set-up, close to the oscillating membrane. Yet, the problem can be solved by constantly
pouring some salty water near the membrane to rebuild the stratification [Semin et al.,
2018].
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Penetrative convection with water

The non-linear equation of water allows us to study penetrative convection in a station-
ary configuration. The flow observed has been thoroughly described. Along with the
convective motions and internal gravity waves generated stands a thermal coupling at
the interface that drives a third intermediate layer, which viscously entrains the strat-
ified layer located above. A numerical simulation with parameters comparable to the
experiment corroborates these observations.

The Prandlt number for water is Pr = 7 and [Couston et al., 2018a] showed that
high Prandtl number fluids do not go along with QBO-like flow generation. Thus, the
non-emergence of these kinds of flow in the experiment may not be surprising.

Despite that no QBO-like flow appears, the convection in water around 4 ◦C has
one huge interest: it allows to study the dynamics in a quasi-stationary two-layer system.
Coupled PIV/LIF measurement would give access to coupled velocity / temperature mea-
surements, allowing for a better understanding of the mixing occurring at the interface
and the transport in the stratified layer. Additionally, the existing set-up is relatively
small and could easily be studied in the presence of rotation. Again, coupled PIV/LIF
measurements would allow us to understand the impact of rotation on the temperature
transport within the stratified layer.

Moreover, additional numerical simulations can also be performed to investigate the
effect of the rotation and of the Prandtl number on the dynamics.

Penetrative convection with gases

This newly designed experiment is still work-in-progress, but the first obtained results are
quite encouraging and suggest that, if we succeed in making longer visualisations of the
flow, investigations with varying Rayleigh number Ra and buoyancy frequency N could
be performed. Also, once density measurements are accessible, the entrainment at the
interface by penetrative convection could be quantified.

To improve flow visualisation, two ideas come to mind. The first one is to use PIV
with more appropriate seeding particles. Using the mist-makers with water mixed with
chemicals could allow to control the size of the seeding particles, but also to increase their
lifetime by limiting the evaporation. The second one is to implement MTV measurements
for the experiment (see a short description in chapter 5). However, this experimental
technique would be quite challenging to implement in the set-up, due to its complexity.

Since Prandtl numbers in stars are much lower than Pr = 0.7, it could be interesting
to study penetrative convection in fluids with very low Prandtl numbers. Liquid metal
are characterised by Pr ∼ 0.02 and have been used in Rayleigh-Bénard convection studies
[Fauve and Libchaber, 1981, Libchaber et al., 1982, Fauve et al., 1984, Chiffaudel et al.,
1987] and liquid sodium allows to reach Prandtl as low as Pr = 0.006 [Kek and Müller,
1993]. However, the Rayleigh numbers reached remained relatively low Ra = 103 − 105

and other experimental issues appear when working with these fluids: 2D and 3D velocity
measurements are hardly accessible in liquid metal, and liquid sodium was heated at
550 K in [Kek and Müller, 1993] to reach low Prandtl number values.
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On the effect of the Prandtl number on mean-flow generation
The effect of the Prandtl number on QBO emergence seems unclear at first look. The
study of [Couston et al., 2018a] shows that in flows with Prandtl number higher than 1,
QBO-like flows do not appear, while the experiment of [Plumb and McEwan, 1978,Otobe
et al., 1998, Semin et al., 2018] successfully drove a QBO in salty water, i.e. with a
compositional Prandtl number (often refered as Schmidt number) Pr = 700. This may
seem contradictory, but it may be just in appearance. Perhaps, the Pr effect applies to
the wave generation and not to the QBO generation. Since the wave generation process
differs from [Couston et al., 2018a], in which waves are driven by convective plumes,
compared to the experiments, in which waves are directly forced by a moving boundary,
the Prandtl effect is not contradictory.

From our study of penetrative convection in water (Pr = 7), we have seen a specific
thermal coupling that drives the flow near the interface, in what we named the buffer
layer. The numerical investigation performed at Pr = 0.1 has shown that this coupling
disappears when the Prandtl is low enough. That means that the flow dynamics within
the zone where the waves are generated is somehow controlled by the Prandtl number.
This coupling cannot appear in the experiment of [Plumb and McEwan, 1978,Semin et al.,
2018] in which the waves are directly generated by the moving membrane, and not by
a turbulent flow. Therefore, the Prandtl number affects the dynamics where the waves
are generated and therefore, very likely affects the wave properties. Through its effect on
wave generation, the Prandtl number indirectly affects QBO emergence. This reasoning
is only intuitive at the moment but could be checked in 2D DNS in a configuration sim-
ilar to [Couston et al., 2018a] by measuring the internal gravity waves amplitude in the
stratified layer, while varying the Pr number and keeping fixed the Ra number.

We can compare the experiments presented in the manuscript to start to investigate
the Pr effect on wave generation. Figure 5.13 shows the spectrogram for the experiments
presented in chapters 3, 4 and 5. First row is the penetrative convection with water,
second row is the jet experiment and third row is the penetrative convection in gas. One
sees that for the 4 ◦C experiment (Pr ∼ 7), the waves signal is mostly at low frequency
compared to the buoyancy frequency and is therefore mostly visible in the u spectra
(5.13a). The spectra are continuous across the interface. In comparison, the spectra for
the jet experiment show a sudden drop in energy at the interface. It is especially noticeable
for the vertical velocity w (figure 5.13d). The gas experiment stands out by the intensity
of the waves generated. On the spectra for the vertical velocity (figure 5.13f), one sees that
the energy at f ∼ 0.6 Hz has about the same magnitude in the convective layer and in the
wave signal. For the two other experiments, a sharp decrease in magnitude was observed
between the convective/turbulent layer and the waves. Additionally, the spectrograms for
the gas experiment do not exhibit a sudden drop at the interface location, like it does for
the jet experiment.

Comparing the penetrative convection experiments in water (Ra ∼ 7× 107) and gases
(Ra ∼ 1.2 × 108), we argue that the Prandtl number Pr may play a role in the wave
generation. The plumes penetrate higher in the stratified region for the gases (low Pr)
than they do for water. This difference results in low frequency wave with relatively
little energy for the water experiment and energetic high frequency waves for the gas
experiment. The jet experiment could lead us into thinking that high Prandtl numbers
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create a stiff interface which completely separates the convective layer from the stratified
layer by making a sudden drop in energy at the interface, because the jets cannot penetrate
the stratification. Yet, this is likely an effect of the density jump created over time and we
cannot conclude that the Pr number has a role here. Further studies using our gas set-up,
coupled with systematic numerical simulations, will help deciphering these various effects.
Clearly, the dynamics of coupled convective / stratified systems, their various effects, and
their planetary / stellar applications deserve more studies. And for those studies, only
combination of theoretical approach, numerical simulation, experiments and observations
will allow significant progress.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Spectrogram as a function of frequency f and height z for the 4 ◦C penetrative
convection experiment: horizontal velocity u (a) and vertical velocity w (b); the turbulent
jet experiment with index matching: horizontal velocity u (c) and vertical velocity w (d);
penetrative convection with gases: horizontal velocity u (e) and vertical velocity w (f).
The colorbars, horizontal axis and vertical axis have different ranges for the different
experiments. The buoyancy frequency has been plotted except for the gas convection in
which the density profile remains unknown. The figures for the turbulent jets (c-d) are
turned upside down for an easier comparison.
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Numerical convergence of the multi-modal model
A numerical convergence study was performed for the model described in chapter 2 in
order to find the best grid, time and spectrum spacings for our study. Figure 6.1 shows
the mean-flow frequency and mean amplitude at four different heights (z = 0.1, z = 0.25,
z = 0.5 and z = 0.75) as a function of the three numerical parameters δt, δz and Nω for
the case ω0 = 0.2, σ = 10−4 and Etot = 2 × 10−6 (the narrow Gaussian case of the σ
systematic study presented in section 2.4).

Top panel of figure 6.1 shows convergence as δt → 0. Comparing results for δt = 1
and δt = 0.05 shows that frequencies differ by < 1.7% and the flow amplitudes differ by
< 1.5%. Other convergence studies were conducted for δz (see middle panel of figure 6.1)
and Nω (bottom panel of figure 6.1) to determine their best values for the systematic study
in σ (displayed in figure 1 of the article submitted to Physical Review Letters displayed in
section 2.4). Convergence studies with σ = 10−1 are displayed in figure 6.2 (with ω0 = 0.2
and Etot = 2× 10−6).
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Figure 6.1: Mean-flow properties for ω0 = 0.2, σ = 1 × 10−4, and Etot = 2 × 10−6.
Convergence study for δt (top), δz (middle), and Nω (bottom).
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Figure 6.2: Mean-flow properties for ω0 = 0.2, σ = 1 × 10−1, and Etot = 2 × 10−6.
Convergence study for δt (top), δz (middle), and Nω (bottom).
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Abstract: Coupled dynamics between turbulent and stratified layers are often encountered in
geophysical and astrophysical flows, for example in the Earth’s atmosphere, oceans and core, but
also in stars. Due to the large space- and time-scale difference between the phenomenon involved
in the two layers, their interaction is sometimes overlooked. Still, the turbulent motions enhance
mixing at the interface and generate internal gravity waves which propagate in the stratified
layer. Those waves extract energy from the convective layer and distribute this energy along their
propagation path. They also carry chemicals and bio-elements. Therefore, the comprehension
of the coupled dynamics of a turbulent layer interacting with a stratification one is essential in
order to build reliable models predicting the long-time evolution of those flows. Our first study
focuses on the large-scale flow generation by internal gravity waves forcing. A striking example
of such flow is the oscillation of equatorial winds in the Earth’s stratosphere (Quasi-Biennial
Oscillation), with a mean period of 28 months. An analytical model, inspired from previous
studies, is derived to explain why the oscillations are almost periodic while the excitation comes
from waves with various frequencies and wavenumbers. We find that, in a finite domain, multi-
modal forcing favours periodic oscillations. Then, we introduce three different experimental
set-ups, focusing on the interaction of a turbulent layer with a stratified one. The internal
gravity waves generation is particularly looked at, and we also investigate any large-scale flow
emergence. One of these experiments uses salty water to build the stratification and water jets
to create the turbulent layer. The two others investigate the dynamics of penetrative convection.
The first one uses the non-linear equation of state of water, to allow the study of penetrative
convection in a stationary configuration. The second one uses gases as working fluids, in order to
lower the Prandtl number, which is interesting for astrophysical and atmospheric applications.

Résumé : L’étude du couplage entre une couche turbulente et une couche stratifiée a un intérêt
particulier pour les écoulements géophysiques et astrophysiques, par exemple pour l’atmosphère,
les océans et le cœur de notre planète, mais aussi pour les étoiles. L’interaction entre ces deux
couches est trop souvent négligée car les échelles de temps et de longueur qui les caractérisent sont
très différentes. Pourtant, les mouvements de la couche convective brassent le fluide au niveau
de l’interface, provoquant un mélange continu des espèces en présence. De plus, l’agitation créée
par ces mouvements génère des ondes internes de gravité. Ces ondes redistribuent une partie
de l’énergie de la couche turbulente dans la couche stratifiée, dans laquelle elles se propagent.
En outre, ces ondes peuvent aussi transporter température et espèces chimiques. Elles ont donc
une grande influence sur la dynamique globale du système. Il paraît naturel de chercher à ap-
profondir notre compréhension des différents phénomènes régissant l’interaction entre couches
stratifiée et turbulente, dans le but d’améliorer les modèles numériques prédisant l’évolution des
étoiles ou de notre atmosphère. Au début de cette thèse est présenté un modèle numérique étu-
diant la génération d’écoulements grande échelle par le forçage d’ondes internes de gravité. Un
exemple de ce type d’écoulement est l’oscillation, avec une période de 28 mois, des vents équato-
riaux dans la stratosphère terrestre. En nous fondant sur d’anciens modèles étudiant le forçage
de ce type d’écoulement par une onde monochromatique, nous complétons ces études passées
en prenant en compte diverses fréquences dans notre spectre de forçage. Nous trouvons que
dans un domaine fini, un forçage contenant un large spectre de fréquences favorise l’apparition
d’oscillations périodiques. Le reste de la thèse présente trois dispositifs expérimentaux étudiant
l’interaction entre turbulence et stratification. Dans le premier, la stratification est créée par
un gradient de concentration en sel dissous dans l’eau, et la turbulence vient de l’interaction de
plusieurs jets d’eau. Le second utilise le fait que la densité maximale de l’eau soit atteinte à
4°C. Grâce à cette propriété, le phénomène de convection pénétrante peut être étudiée dans un
système stationnaire. La dernière expérience s’intéresse aussi à la convection pénétrante, mais
en utilisant des gaz, afin de travailler à des nombres de Prandtl plus bas, ce qui a un intérêt
particulier pour les applications atmosphériques et astrophysiques liées à notre étude.
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