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Abstract

This thesis provides a proof-theoretical investigation of non-normal modal logics. Non-normal
modal logics are modal logics that do not satisfy some of the modal principles of the weakest
normal modal logic K. They have been studied since the very beginning of modern modal
logic, and have found an interest in many areas, such as deontic, epistemic, and multi-agent
reasoning. Moreover, they have been also studied as modal extensions of intuitionistic, rather
than classical, logic.

Non-normal modal logics have been mainly investigated from the point of view of the
semantics. In contrast, their proof theory is not as developed as their semantics.

In this thesis we consider non-normal modal logics based on both classical and intuitionistic
propositional logic, pursuing two general aims: first, concerning non-normal modal logics
based on classical logic, we aim to define proof systems that have “good” computational and
semantic properties, such as providing decision procedures, allowing countermodel extraction
for non-valid formulas, and at the same time suited for theorem-proving. Concerning non-
normal modal logics based on intuitionistic logic, we aim to lay down a general framework
for defining in a uniform way intuitionistic counterparts of classical non-normal modal logics,
but also for capturing some relevant intuitionistic modal systems studied in the literature.

The thesis consists of three main parts. The first part (Chapters 1, 2, and 3) contains a
general introduction to the axiomatisation and semantics of both classical and intuitionistic
non-normal modal logics, as well as a general introduction to sequent calculi, together with a
review of the existing proof systems for these logics.

The second part (Chapters 4, 5, and 6) presents our original results about classical non-
normal modal logics: we first introduce a new semantics for these logics, and then we propose
two new kinds of sequent calculi and investigate their properties. In addition, we also consider
two specific logics, namely Elgesem’s agency and ability logic and its coalitional extension by
Troquard: we provide both a new semantics and calculi for them.

In the third part (Chapters 7 and 8) we define a family of intuitionistic non-normal modal
logics and provide both sequent calculi and their semantic characterisation in terms of neigh-
bourhood models. We also show how known logics from the literature, such as Wijesekera

and Bellin and De Paiva’s systems can be captured within our framework.



Résumé

Cette thése présente une étude de théorie de la preuve des logiques modales non-normales. Ces
logiques sont des logiques modales qui ne satisfont pas certains principes de la logique modale
normale minimale K. Elles ont été étudiées depuis le début de la logique modale moderne
et ont trouvé un intérét dans de nombreux domaines, tels que le raisonnement déontique, le
raisonnement épistémique, ainsi que le raisonnement dans les systémes multi-agents. Elles ont
été également considérées dans le cadre des extensions modales de la logique intuitionniste.

Les logiques modales non-normales ont été principalement étudiées du point de vue séman-
tique. En revanche, leur théorie de la preuve n’est pas aussi développée que leur sémantique.

Dans cette thése, nous considérons des logiques modales non-normales basées sur la logique
propositionnelle classique, ainsi que sur la logique propositionnelle intuitionniste, poursuivant
deux objectifs généraux: D’abord, nous considérons les logiques modales non-normales avec
une base classique et nous visons a définir des systémes de preuve ayant de «bonnes» propriétés
calculatoires et sémantiques, telles que le support de procédures de décision, 'extraction de
contre-modéles des formules non-valides et en méme temps adaptées & 'implantation dans des
démonstrateurs. Concernant les logiques modales non-normales avec une base intuitionniste,
notre objectif est celui d’établir un cadre général pour définir uniformément des versions
intuitionnistes des logiques non-normales classiques, mais aussi pour capturer les systémes
intuitionnistes pertinents étudiés en littérature.

La thése se compose de trois parties principales. La premiére partie (chapitres 1, 2, 3)
contient une introduction générale & I’axiomatisation et & la sémantique des logiques modales
non-normales classiques et intuitionnistes, une introduction générale aux calculs des séquents,
ainsi qu’un état de l'art des systémes de preuve existants pour ces logiques.

La deuxiéme partie (chapitres 4, 5, 6) présente les résultats originaux sur les logiques
modales non-normales avec base classique : nous introduisons d’abord une nouvelle séman-
tique pour ces logiques, puis nous présentons deux types de calculs des séquents et nous étu-
dions leurs propriétés. Nous considérons ultérieurement deux logiques modales non-normales
spécifiques : la logique multi-agent de la «capabilité» d’Elgesem et son extension avec coali-
tions d’agents définie par Troquard, pour lesquelles nous développons & la fois une nouvelle

sémantique et des calculs.
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Dans la troisiéme partie (chapitres 7, 8), nous définissons une famille de logiques modales
intuitionnistes non-normales et nous proposons des calculs des séquents et leur caractérisation
sémantique en terme de modéles avec fonctions de voisinage. Nous montrons ultérieurement
comment des logiques étudiées dans la littérature, telles que les systémes de Wijesekera et

celui de Bellin et De Paiva, peuvent étre capturées dans notre cadre.
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Chapter 1

Introduction

1.1 General aims and motivation

This thesis provides a proof-theoretical investigation of non-normal modal logics. Non-normal
modal logics are called in this way because they do not validate some of the modal principles
of the weakest normal modal logic K. They have been studied since the very beginning of
modern modal logic in the seminal works by C.I. Lewis, Lemmon, Kripke, Scott, Montague,
Segerberg, and Chellas, and have found an interest in many areas. They are applied for
instance in deontic logic, where they are used to handle with conflicting obligations and avoid
many well-known paradoxes, or in epistemic logic, where they offer a (partial) solution to
the problem of omniscience, but are also applied in multi-agent reasoning, reasoning about
games, reasoning about probabilistic notions such as “true in most of the cases”, and so on.

Non-normal modal logics have been mainly investigated from the point of view of the
semantics. In contrast, their proof theory is not as developed as their semantics. Only in
recent years the problem of finding suitable proof systems for this kind of logics has been more
extensively addressed, and up to now the state of the art is not comparable with the one of
proof systems for normal modal logics, for which there exist well-understood proof methods
of many kinds.

Starting with the seminal works by Hilbert, Gentzen, and, for modal logics, Fitting, proof-
theoretical investigations of logics have been carried out with many different purposes. To
mention only two of them, by looking at the form of the proofs one can establish properties
of the logic such as consistency, decidability, interpolation, and so on. Furthermore, suitable
proof systems may be used for practical purposes, such as automated reasoning and theorem
proving.

Depending on the aims, there can be several desiderata on proof systems. Here we are
interested in calculi with the following properties. First, the calculi should provide a clear

syntactic representation of the logics, as an alternative to their axiomatisation. In this respect,
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the rules should have a declarative reading and a semantic interpretation independent from
any procedure. Moreover, similarly to Gentzen’s sequent calculi, logical operators should be
treated with separate left and right rules introducing each a single occurrence of a formula.
Second, the calculi should have good structural and computational properties. Since all
the considered logics are decidable, it should be possible to define a proof search strategy
in the calculi that gives rise to a decision procedure for the respective logic, possibly of
optimal complexity. In this light, we are interested in analytic calculi, meaning essentially
that every derivation of a formula A only employs subformulas of A. In turn, this requires to
define calculi with good structural properties, in particular the structural rules of weakening,
contraction, and cut should be admissible. Moreover, in this case it should be possible to
prove the admissibility of cut by means of a syntactic cut elimination procedure. Finally, we
are interested in developing automated reasoning tools for the considered logics, whence the
calculi should be also suitable for implementation.

Looking at the literature, it must be observed that none of the existing proof systems for
non-normal modal logics is fully satisfactory with respect to these desiderata. The definition
of proof systems satisfying our desiderata is one main goal of this thesis.

Non-normal modal logics have been also studied as modal extensions of intuitionistic,
rather than classical, logic. There are two general motivations for such an analysis. On the
one hand, from a theoretical perspective, there is a mathematical interest in combining these
two different — but related — forms of logics. Moreover, the rejection of classical equivalences
can allow for a finer analysis of the modalities. On the other hand, the combination of intu-
itionistic logic and non-normal modalities turn out to be very adequate for some applications
of modal logic in computer science, such as for instance the formalisation of reasoning with
partial information about concurrent transition systems and reasoning about correctness up
to constraints in hardware verification. In addition, it is also considered for dealing with
contextual reasoning in logic-based knowledge representation.

Despite their interest, the present state of the art of non-normal modal logics with in-
tuitionistic basis only include systems designed for specific applications, such as Nerode and
Wijesekera’s Constructive Concurrent Dynamic Logic and so-called Constructive K. By con-
trast, differently from both classical non-normal modal logics and intuitionistic normal modal
logics, to the best of our knowledge no systematic investigation of non-normal modalities with

intuitionistic base has been carried out so far.

In this thesis we consider non-normal modal logics based on both classical and intuitionistic
propositional logic, pursuing two main aims. First, concerning non-normal modal logics based
on classical logic, we aim to define proof systems for them satisfying our desiderata. As
for many other logics, this cannot be done within the basic framework of sequent calculi.

For this reason, we consider extensions of the basic framework of sequent calculi of two
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kinds: labelled calculi, i.e., calculi defined on a language enriched with labels which express
semantic information, and structured calculi, i.e., calculi where the structure of sequents is
enriched with additional structural connectives, such as the bar “|” of hypersequents. We
show that, despite their fundamental differences, both kinds of formalisms are adequate to
define suitable proof systems for these logics. On the basis of the calculi we also provide
alternative proofs of some fundamental properties of non-normal modal logics such as the
finite model property, decidability, and complexity upper bounds. Moreover, by implementing
the calculi we develop the first automated theorem provers for these logics that provide both
derivations and countermodels. Our calculi (both labelled and unlabelled) are based on an
original reformulation of the neighbourhood semantics of non-normal modal logics, called
bi-neighbourhood semantics, that can be of interest also independently from the proof-theory.

Second, concerning non-normal modal logics based on intuitionistic logic, we aim to lay
down a general framework for defining in a uniform way intuitionistic counterparts of classical
non-normal modal logics, but also for capturing some intuitionistic modal systems of particular
interest already studied in the literature. In order to define these logics we adopt a proof-
theoretic approach: after formulating the relevant principles as sequent rules, we consider
the existence of a cut-free calculus as the criterion for the acceptance of a logic among the
family of the intuitionistic systems. Then, once the logics are defined we investigate them
both semantically and proof-theoretically: we define for them a suitable semantic framework
as well as alternative proof systems with different properties. In addition, on the basis of both
the semantics and the proof systems we establish fundamental properties of these logics such

as decidability and interpolation.

1.2 Structure of the thesis

This thesis consists of three main parts. The first part (Chapters 2 and 3) contains a general

introduction to the logics that we shall study in this work. In particular,

e in Chapter 2 we present the axiomatisation and semantics of the family of classical
non-normal modal logics considered in this work, as well as of two further non-normal
systems, namely Elgesem’s agency and ability logic [47] and its coalition extension by
Troquard [165]. We also present the axiomatisation and semantics of some relevant intu-
itionistic modal logics, in particular Constructive K [14] and Wijesekera’s Constructive

Concurrent Dynamic Logic [170].

e Chapter 3 contains an introduction to sequent calculi and their properties, together with

a review of the existing proof systems for non-normal modal logics.

The second part (Chapters 4, 5, and 6) presents our original results about classical non-normal

3
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modal logics.

e In Chapter 4 we introduce a new semantics for these logics, called bi-neighbourhood
semantics, that generalises their standard neighbourhood semantics. On its basis we
modularly characterise the whole family of the considered classical non-normal modal
logics, as well as Elgesem’s and Troquard’s agency and ability logics [47, 165]. We also
present an embedding of classical non-normal modal logics into monotonic logics with

binary modalities.

e In Chapter 5 we present labelled sequent calculi for the whole family of the classical
non-normal modal logics considered in this work. We prove that all calculi are sound
and complete with respect to the corresponding axiomatic systems. Moreover, we prove
that the structural rules are admissible, most importantly cut. We then propose an
equivalent reformulation of the calculi in the form of tableaux systems. On their basis
we define a terminating proof search strategy that provides a decision procedure for the
derivability problem in the logics. Moreover, we show that from every failed proof it
is possible to directly extract a countermodel of the non-valid/non-derivable formula
in the bi-neighbourhood semantics. Finally, we show that our labelled calculi are of
interest also for automated reasoning: we present a Prolog implementation of these
calculi which provides the first theorem prover that covers these logics in a uniform way

and computes both derivations and countermodels of non-valid formulas.

e In Chapter 6 we present hypersequent calculi for classical non-normal modal logics, as
well as for Elgesem’s and Troquard’s agency and ability logics [47, 165]. The calculi
can be seen as internal as they only employ the language of the logic, plus additional
structural connectives. We show that the calculi are complete with respect to the log-
ics by a syntactic proof of cut elimination. Then, we define a terminating backward
proof search strategy based on the hypersequent calculi and show that it is optimal
for coNP-complete logics. Moreover, we show that from every failed proof it is possi-
ble to directly extract a bi-neighbourhood countermodel of the non-derivable /non-valid
formula. Finally, we present an alternative theorem prover for these logics based on a
Prolog implementation of our hypersequent calculi, and compare its performance with

that of the prover implementing the labelled calculi.

The third part (Chapters 7 and 8) presents our original results about intuitionistic non-normal

modal logics.

e In Chapter 7 we define a family of intuitionistic non-normal modal logics which can be
interpreted as intuitionistic counterparts of the systems of the classical cube. For these

logics we provide both sequent calculi and an equivalent axiomatisation. We prove that
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all these systems are decidable and for some of them we also prove Craig interpolation.
Finally, we define strictly terminating “a la Dyckhoff” calculi for our systems as well as
for further intuitionistic modal logics studied in the literature, such as Constructive K

and Wijesekera’s system.

In Chapter 8 we present a neighbourhood semantic framework that modularly charac-
terises our intuitionistic non-normal modal logics as well as Constructive K and Wi-
jesekera’s system. We also prove that all these systems enjoy the finite model prop-
erty. Moreover, basing on this semantics we present an embedding of intuitionistic non-
normal modal logics into classical logics with multiple non-normal modalities. Finally,
we present a tableaux calculus for a subclass of our intuitionistic logics that allows one
to extract countermodels of non-valid formulas in the neighbourhood semantics defined

in this chapter.

Publications

The main part of the results presented in this thesis have already been presented in the
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[33]

[35]

[36]

[37]

[38]

Tiziano Dalmonte, Nicola Olivetti, and Sara Negri. Non-normal modal logics: Bi-
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in Modal Logic), College Publications, pp. 159-178, 2018.

Tiziano Dalmonte, Sara Negri, Nicola Olivetti, and Gian Luca Pozzato. PRONOM:
Proof-search and countermodel generation for non-normal modal logics. In: Proceedings
of AT*IA 2019 (18th International Conference of the Italian Association for Artificial
Intelligence), Springer, LNAI 11946, pp. 165-179, 2019 (best student paper award).

Tiziano Dalmonte, Charles Grellois, and Nicola Olivetti. Intuitionistic and classical non-
normal modal logics: An embedding. In: TACL 2019, booklet of abstracts, pp. 67-68,
2019.

Tiziano Dalmonte, Charles Grellois, and Nicola Olivetti. Intuitionistic non-normal
modal logics: A general framework. Journal of Philosophical Logic, 49(5) (2020),
pp. 833-882.

Tiziano Dalmonte, Bjorn Lellmann, Nicola Olivetti, and Elaine Pimentel. Counter-
model construction via optimal hypersequent calculi for non-normal modal logics. In:
Proceedings of LFCS 2020 (International Symposium on Logical Foundations of Com-
puter Science), Springer, LNCS 11972, pp. 2746, 2020.
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[39] Tiziano Dalmonte, Bjorn Lellmann, Nicola Olivetti, and Elaine Pimentel. Hypersequent
calculi for non-normal modal and deontic logics: Countermodels and optimal complexity.
arXiv preprint arXiv:2006.05436 (2020), submitted for publication.

[40] Tiziano Dalmonte, Nicola Olivetti, and Gian Luca Pozzato. HYPNO: Theorem proving
with hypersequent calculi for non-normal modal logics. In: Proceedings of IJCAR 2020

(International Joint Conference on Automated Reasoning), part II, Springer, LNAI
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[41] Tiziano Dalmonte, Charles Grellois, and Nicola Olivetti. Proof systems for the logics of
bringing-it-about. In: Proceedings of DEON 2020/2021 (15th International Conference

on Deontic Logic and Normative Systems), to appear.

In particular, in [33] we present the bi-neighbourhood semantics for the systems of the
classical cube (Chapter 4) and their labelled sequent calculi (Chapter 5). In [35] we present
the theorem prover PRONOM based on the Prolog implementation of the labelled calculi
(Section 5.7). In [38] we present the hypersequent calculi for the systems of the classical
cube (Chapter 6), and in [40] we present the theorem prover HYPNO based on these calculi
(Section 6.7). Moreover, in [39] we extend the bi-neighbourhood semantics and the calculi of
[38] to all classical systems containing the axioms T', P, D, and the rules RD;". In [41] we
present the bi-neighbourhood semantics and the hypersequent calculi for Elgesem’s agency
and ability logic and Troquard’s coalition logic (Sections 4.6, 6.5, and 6.6). Furthermore, in
[37] we present the sequent calculi and axiomatisations of intuitionistic non-normal modal
logics (Chapter 7), as well as their neighbourhood semantics (Chapter 8). Finally, in [36]
we present the embedding of intuitionistic non-normal modal logics into classical logics with

multiple non-normal modalities (Section 8.6).
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Chapter 2
Non-normal modal logics

In this chapter, we present general motivations for non-normal modal logics based on sev-
eral possible interpretations of the modalities. Then we present the axiomatisation and the
standard semantics of the classical non-normal modal logics that we shall consider in this
work. Finally, we consider non-normal systems based on intuitionistic logic, and present the

axiomatisation and semantics of some relevant systems.
2.1 Non-normal modalities: what and why

Non-normal modal logics are called in this way because they do not validate some of the
modal axioms and rules of the weakest normal modal logic K. They have been studied since
the very beginning of modern modal logic starting with the seminal works by C.I. Lewis,
Lemmon, Kripke, Scott, Montague, Segerberg, and Chellas [115, 114, 104, 157, 129, 158, 29|
— non-normal modal logics are for instance C.I. Lewis’ modal systems S1, S2, and S3, and
Lemmon’s sytems E2 and E3 —, and since then they have been extensively investigated.

As it is known, part of the success of modal logic is due to the possibility of interpreting
the modalities in many different ways. At the same time, it has been widely recognised
that several of these interpretations are incompatible with normal modalities, in the sense
that their association with some principles of normal modal logics leads to counterintuitive
or even unacceptable conclusions. This is one of the reasons why non-normal modal logics
are considered. Among the several interpretations which are regarded as better described by

non-normal modalities we mention the following examples.

Deontic logic. In deontic logic, formulas of the form OA are intuitively interpreted as “A is
obligatory”, or “It ought to be the case that A”. In the literature, the possibility to represent
obligations by normal modalities has been widely criticised. Here we mention some of the

most typical criticisms.
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Problems for monotonicity. Perhaps the most problematic principle for deontic logic is
the monotonicity principle, which states that if A implies B and A is obligatory, then B
is also obligatory (A — B / OA — OB). To see how this principle can be problematic,
imagine a scenario (inspired by Asimov’s novels) in which humans program some robots
in such a way that they respect the precept that they must protect humanity. Imagine
also that, by automatic reasoning, robots conclude that protecting humanity implies to deny
humans’ freedom, since humans represent a danger for themselves. Following the monotonicity
principle, this conclusion would entail that robots must deny human freedom. But while it
might be desirable to have robots that must protect humanity, it is clearly not acceptable
that they must deny human freedom.

The same structure is at the basis of many paradoxes considered in the literature, such
as the Ross’ paradox [153], the paradox of free choice permissions [153], the good Samaritan

I The latter paradox

paradox [4], and the paradox of gentle murder [59], among the others.
can be formulated as follows (cf. [142]): Consider a legal system containing the rules “Smith
ought not to murder John”, and “If Smith murders John, then Smith ought to murder John
gently” (i.e., in such a way as to cause the least amount of pain). Moreover, assume that
Smith murders John. The second and third premisses entail that Smith ought to murder
John gently. In addition, it is clearly a valid statement that if Smith murders John gently,
then Smith murders John. Then by monotonicity it follows from the last two sentences that

Smith ought to murder John, in contradiction with the first rule.

Problems for agglomeration. In a deontic formulation, the agglomeration principle states
that if someone has two obligations, then she is obliged to do both of them (DA A OB —
O(A A B)). Agglomeration leads to problematic consequences in presence of normative con-
flicts, that is, situations in which an agent ought to do two or more things but cannot do
them all [72]. Normative conflicts are also known as moral dilemmas [113] when the obliga-
tion is generated by some moral commitment of the agent. Typical examples are incompatible
promises: Suppose that Alice has promised Annie to meet her at the pub, but she has also
promised her mother to stay at home, that is, not to go to the pub. If we accept the ag-
glomeration principle, this implies for Alice the obligation to go to the pub and not to go to
the pub, that is the obligation to perform a contradiction. The situation becomes even worse
when agglomeration is combined with monotonicity, as the two principles together lead to the
so-called problem of deontic explosion [72], or the universal obligatoriness problem [84]: since
a contradiction implies every formula, from a normative conflict it would follow that every-
thing is obligatory, so that for instance Alice’s dilemma would imply for her the obligation to
kill her mother.

Problems for necessitation. The necessitation principle states that whatever is valid is

1For a survey of paradoxes raising from the monotonicity principle in deontic logic see McNamara [124].

10
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also obligatory (A / OA). It conflicts with the so-called principle of deontic contingency,
which has been stated in [175] as “A tautologous act is not necessarily obligatory”. The idea
is that an obligation to realise a tautology like “You are morally required to either go to the
pub or not go to the pub” does not make sense [84], or does not express a real prescription
[176]. As an additional drawback, necessitation excludes the possibility of considering “empty
normative systems” [60], that is systems without any obligation, since it implies that at least

all tautologies are obligatory.

Epistemic logic. Epistemic logic interprets OA roughly as “It is known that A”, or “The
agent knows that A”. Under this interpretation, the principles of monotonicity, agglomeration,
and necessitation express each a specific reasoning ability of the considered agent [142]. In
particular, by the agglomeration principle the agent would know that A A B whenever she
knows both A and B, whereas monotonicity expresses the stronger ability of inferring all the
logical consequences of her knowledge. Finally, by necessitation the agent would know all
“truths” (or validities) of the context in which she is involved.

These are very strong assumptions about the reasoning abilities of the agent. In particular,
monotonicity and necessitation express two forms of omniscience (the former one has been
called logical omniscience [89]). The following example is proposed in [18]: Assume that
Peano’s axioms entails Goldbach’s conjecture (something that we actually do not know). In
this case, monotonicity means that if the agent knows Peano’s axioms, then she also knows
that Goldbach’s conjecture is true. An agent with this kind of abilities can be seen as a
perfect reasoner, or as having unbounded reasoning power [130, 166]. As a consequence,
normal modal logics are not adequate to describe fallible epistemic agents, or agents with

human-like abilities.

Logic of agency and ability. Ability logics formalise the notion of ability of agents to
perform some actions, or to obtain certain results. An example is Brown’s ability logic [22, 23],
where OA is interpreted as “There is an action open to the agent, the execution of which would
assure that A would be true”. This interpretation conflicts with the principle of agglomeration.
For instance, by a single move an agent might be able to draw a red card, and she might be
able to draw a black card, but she might not be able to both draw a red card and draw a black
card. A further example is Elgesem’s agency and ability logic [47], also called the logic of
bringing-it-about [165]. This logic provides a formalisation of agents’ actions in terms of their
results: that an agent “does something” is interpreted as the fact that the agent brings about
something, for instance “John does a bank transfer” is interpreted as “John does that the bank
transfer is done”. Elgesem’s characterisation of agency involves a notion of responsibility, so
that an agent cannot realise something that would have happened independently from her

action. From the logical point of view, this corresponds to reject necessitation.
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Majority logic. Majority logic [9, 141] captures the notion of “true in most of the cases”.
A related logic is the logic of high probability [142|, where OA is interpreted as “It is highly
probable that A”. It is easy to see that in majority and high probability logic the agglomeration
principle fails: to give a very simple example, imagine a group of three people where two are
blond, two are tall, but just one is both blond and tall.

Non-normal modal logics offer a (partial) solution to the above difficulties by allowing us
to drop the principles conflicting with the interpretation of the modalities under considera-
tion. For instance, in order to avoid the conclusion that robots are obliged to deny human
freedom we do not necessarily need to reject their obligation to protect humanity. On the con-
trary, we can drop the monotonicity principle and keep the second obligation without being
committed to the first one. Similarly, we might need to describe situations where normative
conflicts are admitted. But this does not imply that we also have to accept obligations to do
something impossible, since by considering non-normal modalities we can drop the principle
of agglomeration.

As we shall see, the principles of monotonicity, agglomeration, and necessitation cor-
respond each to one of the axioms and rules that characterise the basic cube of classical
non-normal modal logics, also called classical cube [110]. The classical cube is a lattice of
eight systems: the weakest one does not satisfy any of the above principle, whereas the other
systems satisfy some of these principles only if the corresponding axioms or rules explicitly
belong to their axiomatisation.

Non-normal modal logics are clearly not restricted to the eight systems of the classical
cube. Depending on the considered interpretation of the modality, it can be worth extending
(some of) these eight systems with additional modal axioms or rules which are relevant for
that specific interpretation. For instance, in epistemic logic one often consider the modal
axioms 4 (DA — O0A) and T (DA — A) (see Figure 2.1, p. 17), which correspond to
relevant assumptions about the properties of knowledge: axiom 4 represents the property of
introspection of epistemic agents (if an agent knows that A, then she knows that she knows
that A), whereas axiom T represents the so-called factivity of knowledge (something which is
known must be true).

Further axioms are of interest in deontic logic. In this context one often considers the
axioms D (-(OAAO=-A)) and P (-O.L), which represent the impossibility of having, respec-
tively, contradicting obligations and self-inconsistent obligations. Axiom P is also significant
for agency logic, where it expresses the impossibility of realising something impossible. Besides

axioms D and P, a relevant rule in deontic contexts is, for any n € N,

—\(A1 VANA An)
—(0A; A ... ANOA,)

RD}
To the best of our knowledge, this family of rules has been only discussed — end rejected —

12



2.1. Non-normal modalities: what and why

by Goble [72], in contrast we are not aware of any (non-normal) deontic system containing
them. The rules RD;, RD¥, RD}, ... have a peculiar interest in deontic logic as they
exclude the possibility of having 2, 3, 4, ... jointly incompatible obligations. Let us consider
the following example, essentially from Hansson [85]: (1) I have to keep my mobile switched
on (as I'm waiting for an urgent call), (2) I have to attend my child schoolplay, (3) being in
the audience of a schoolplay I must keep my mobile switched off. Representing these three
claims by mobile _on, schoolplay, and =(mobile _on A schoolplay), by using rule RDy | it can

be concluded that the three obligations are incompatible:
—(Omobile_on A Oschoolplay A O—(mobile _on A schoolplay))

This conclusion cannot be obtained in any non-normal modal logic without RD; or C (OAA
OB — O(A A B)), even if it contains both deontic axioms D and P.

A further relevant aspect of non-normal modal logics is the possibility to consider axioms
or rules which are incompatible with normal modal logics, in the sense that their addition
to normal systems trivialises the modality or even produces inconsistent systems. Typical
examples are the anti-monotonicity rule and the axiom opposite to necessitation:

A— B

L= D ~0
OB — 0OA ’ T

The anti-monotonicity rule is considered for instance by Dosen [42, 43] in order to provide a
modal characterisation of negation and impossibility in intuitionistic contexts, whereas axiom
—0OT is considered for instance by Elgesem [48] in order to provide a logical characterisation
of agency (cf. Section 2.4).

The solution of considering non-normal modalities has been actually adopted for the design
of a wide range of modal systems. Besides Lewis’ and Lemmon’s systems we can mention the
following illustrative examples. Starting with von Wright’s seminal work [175], where a deontic
system is proposed which rejects necessitation, non-normal modalities have become standard
in deontic logic. A further example is the logic of weakest permission by Anglbereger et
al. [3], in which the modal operator for obligations is non-monotonic, whereas several possible
systems rejecting agglomeration are examined in Goble [72] for handling with the problem of
normative conflicts. Further examples can be found in handbooks devoted to deontic logic
such as [61]. Non-normal modalities have been also extensively considered in epistemic and
doxastic logics, i.e., logics formalising the concepts of knowledge and belief. We can mention as
examples Vardi’s analysis of the problem logical omniscience [166], the epistemic and doxastic
logics in Askounis et al. |9, 105] based on the concepts of weak filters and ultrafilters, the
evidence logics in [16, 17, 13, 117], and the logical characterisation of the epistemic attitudes
of non-omniscient agents in Balbiani et al. [12]

Moving to different contexts, examples of non-normal modal logics are also Brown’s |22, 23]
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and Elgesem’s [47] agency and ability logics, Pauly’s [146] and Troquard’s [165] coalition
logics, alternating-time temporal logic by Alur et al. [2]|, and Parikh’s logic of games [143]
(Elgesem’s and Troquard’s logics are more extensively presented in Section 2.4). Moreover,
non-normal modal logics have been also studied as extensions of first-order logic |7, 27, 100]
and description logics [34, 160].? Furthermore, graded modalities [51, 52| as well as number
restrictions in description logics [11, 90| can be seen as non-normal modalities.

This far-from-exhaustive list of non-normal modal systems witnesses the importance that
non-normal modalities have acquired in the literature on modal logic. In this work we inves-
tigate non-normal modalities from a general perspective, without committing to any specific

choice of axioms or any specific interpretation of the modalities.

2.2 Classical non-normal modal logics as axiomatic systems

We now define the family of classical non-normal modal logics that we shall consider in this
work. By classical non-normal modal logic we understand any logic that extends classical
propositional logic with non-normal modalities. They are distinguished from intuitionistic
non-normal modal logic that in contrast are extensions of intuitionistic logic. We first intro-
duce the language of the logics and some general definitions about axiomatic systems, and

then move to the axiomatisations.

Syntactic preliminaries

Definition 2.2.1 (Language). The language £ of classical non-normal modal logics contains
a set Atm = {p1,p2,ps,...} of countably many propositional variables, and the primitive
connectives L and T (nullary), O (unary), A, V, and — (binary). The formulas of L are

recursively defined as follows:

e p;, I, and T are formulas of £, where p; is any element of Atm.

o If A and B are formulas of £, then (AA B), (AV B), (A — B), and OA are formulas
of L.

We call atomic the formulas of the form p;, L, and T, all others formulas are compound. We
define the additional connectives =, <>, and <, as follows, where A and B are any formulas
of L:

e “A:=(A— 1),

?In particular, in [34] we have defined some modal description logics which can be seen as counterparts of
the systems of the classical cube, and established complexity upper bounds for the satisfiability problem in
these logics. T omit to present them here since they are not entirely in the scope of the present dissertation.
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2.2. Classical non-normal modal logics as axiomatic systems

e (A< B):=((A— B)A(B— A)), and
o OA:=-0-A.

We use the usual conventions on the binding strength of connectives (from strongest to weak-
est): 0,0, =, A, V, —, >, and omit brackets whenever possible. For instance, p1 Apa — psVpy
stays for ((p1 Ap2) — (p3Vpa)). As usual, the connectives L and T stay respectively for “fal-
sity” and “truth”, whereas the connectives O and < are called modalities. The above relation

between the two modalities is expressed by saying that O and < are dual.

For the sake of simplicity, we use the symbol £ to denote both the language and its set of
formulas. In the following, we use A, B,C, D, E and p, q,r as metavariables for, respectively,
arbitrary formulas and propositional variables of £. We use = to denote the identity relation

between formulas. For every formula of £, we define its weight and its subformulas as follows.

Definition 2.2.2 (Weight of formulas). The function wg assigning to each formula A of L its
weight wg(A) is recursively defined as follows: for p; € Atm, wg(p;) = wg(L) = wg(T) = 0;
for o € {A,V,—=}, wg(Ao B) = wg(A) + wg(B) 4+ 1; and wg(OA) = wg(A) + 1.

Definition 2.2.3 (Subformula, strict subformula). For every formula A of £, the set sbf(A)
of the subformulas of A is defined as follows: for p; € Atm, sbf(p;) = {pi}; sbf(L) = {L};
sbf(T)={T}; for o € {A,V,—}, sbf(Ao B) = sbf(A)Usbf(B)U{Ao B}; and sbf(0A) =
sbf(A)U{0OA}. We say that B is a subformula of A if it belongs to sbf(A), and it is a strict

subformula of A if it is a subformula of A and it is different from A.

We also consider the notion of schemata of formulas, which are defined on the basis of

metavariables of formulas in the following way.

Definition 2.2.4 (Schema, substitution, instance). A schema of formulas, or just schema, is
an expression built by following the same grammar of the formulas of £, but on the basis of
metavariables rather than propositional variables of Atm. Moreover, we call substitution any
function ¢ from schemata to formulas of £ such that ¢(p) € Atm, where p is any metavariable
for propositional variables of £, ¢(L) = L, ¢(T) =T, s(AoB) =¢(A)og(B) for o € {A,V,—},
and ¢(OA) = Og(A). Finally, if A is a schema and ¢ is a substitution, then ¢(A) is an instance
of A.

For instance, the formula Opy Aps — p3V(Opj Aps) is an instance of the schema A — BV A,
where the metavariables A and B are replaced respectively by the formulas Op; A ps and ps.
Intuitively, a schema of formulas can be understood as a set of formulas of a certain form,
whose elements are the instances of the schema.

Classical non-normal modal logics are defined in this section in the form of axiomatic
systems. Before presenting their axiomatisation, we recall the basic definitions related to

axiomatic systems.
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Definition 2.2.5 (Axiomatic system). An aziomatic system, also called Hilbert system, is
a set of axiom schemata and rule schemata. An axiom schema is nothing but a schema of
formulas, whereas a rule schema is a pair composed by a set of schemata Ay, ..., A,, called

premisses, and a schema A, called conclusion, and is written

R

where R is the name of the rule. Moreover, letting ¢ be a substitution, if A is an axiom schema,
By .. B,

B

then ¢(A) is an instance of the axiom schema, and if is a rule schema, then
¢(B1) ... <(Bpn)
<(B)

If the intended meaning is made clear by the context, in the following we use the generic

is an instance of the rule schema.

terms aziom or rule to denote either an axiom or rule schema or an instance of the axiom or

rule schema.

Definition 2.2.6 (Derivation of a formula, theorem). Given a system L and a formula A,
a derivation of A in L is a sequence of formulas ending with A in which each formula is an
axiom of L, or is obtained by previous formulas by the application of a rule of L. We say that
A is a theorem of L, or is derivable in L, if there exists a derivation of A in L, in this case we
write Fy, A, or LF A. If in contrast A is not derivable in L we write I/, A. If A is a theorem
of L we might say that L contains A. We denote by Thmy, the set {A € L | L+ A} of the

theorems of L.

A o An in the

Definition 2.2.7 (Derivation of a rule). A derivation of a rule R
system L is a sequence of formulas ending with A in which each formula is an axiom of L, or
a premiss of R, or is obtained by previous formulas by the application of a rule of L. We say

that R is derivable in L if there exists a derivation of R in L, in this case we write by, R.

Definition 2.2.8. Let L and L’ be two axiomatic systems. We say that

o L is consistent if Lt/ 1, otherwise it is inconsistent.

o L is an extension of L' if L D L/, i.e., L is defined by adding some axioms or rules to

the axioms and rules of L.
e L is stronger than L’ (or, equivalently, L' is weaker than L), if Thmy, 2 Thmy,.

o L and L’ are equivalent, written L = L/, if Thmy, = Thmy,.

Definition 2.2.9 (Logic). Given an axiomatic system L, we call logic the set Thmy, of its
theorems. Conversely, given a logic L, we call aziomatisation of L any axiomatic system L’
such that L = Thmy,.
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A< B A— B A L (A A A AR
RE 0A < OB RM 0A — OB RN OA RDy —(0A4; A ... ANOA,) nzl
M O(AAB)—UOA C OAANOB—OAAB) N OT
T ODA—- A 4 0A—0OO0A P -0OL
D —(O0AADO-A) K 0O(A— B)— (0DA— OB)

Figure 2.1: Modal axioms and rules.

With the present approach, logics and axiomatic systems are distinct but strongly related
notions. When no ambiguity arises, in the following we use ‘logic’ and ‘system’ as inter-
changeable terms. Correspondingly, we use L to denote both the axiomatic system and the

underlying logic.

Classical non-normal modal logics

Classical non-normal modal logics are Hilbert-style defined as extensions of classical propo-
sitional logic (CPL) formulated in the language £. For CPL we consider the following

axiomatisation, where the only rule (schema) is modus ponens (M P):

A—(B—A), (A= (B—0C)—= (A= B)— (A= 0)),

A— AV B, B — AV B, (A-C)—-(B—-C)—= (AvB—(0),
ANB — A, ANB — B, A— (B— ANAB), A— B A
1 — A, A= T, AV A, B

Classical non-normal modal logics are then obtained by extending CPL with additional
axioms or rules for the modality O (Figure 2.1). The minimal classical non-normal modal
logic that we consider in this work is logic E, which is defined in language £ by extending
CPL with the congruence rule RE:

A< B

RE OA < OB

Logics containing RE can be called congruential. All other classical systems considered in
this work are extensions of E, whence they all are congruential.® Logic E is also the weakest
system of the so-called classical cube |29, 110| (Figure 2.2), a lattice of eight systems which

are obtained by extending E with any combination of axioms M, C'; and N:

3There exist of course also non-congruential logics, examples are C.I. Lewis’ systems S1 and S2 [115].
Starting with Lemmon [114], non-normal modal logics satisfying rule RE have been often called “classical”
(cf. also [29]). Here we use the term “classical” to denote logics extending classical logic CPL, and we
distinguish classical logics from intuitionistic logics, which are instead extensions of intuitionistic logic IPL.
In any case, all the logics considered in this work contain rule RE, whence no ambiguity should arise.
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MCN (K)
_— , ~

S

M

MN

ECN

EC N
\

E

Figure 2.2: The classical cube.

M O(AAB)— OA, C OAANOB— O(AAB), N OT.

As usual, the possibility to define classical modal logics by means of the only modality O
is due to the interdefinability between O and <. The same systems could be equally defined
by considering the <-versions of RE, M, C'; and N, which are respectively the following:

_AeB
SA e o OA— O(AV B), O(AV B) = CAV OB, oL

It can be shown that different combinations of axioms M, C, and N define different
systems (with the present axiomatisation, a formula among M, C, and N is derivable in a
system of the classical cube only if it explicitly belong to the set of its axioms). This means

that the classical cube contains eight non-equivalent systems. A modal logic is called

e monotonic if it contains axiom M (and non-monotonic otherwise);
e regular if it contains both axioms M and C'; and

e normal if it contains all the three axioms M, C', and N.

Indeed, the system obtained by extending E with axioms M, C, and N coincides with logic
K, the minimal normal modal logic. However, for the sake of simplicity we use the term non-
normal modal logic to uniformly denote all considered logics, including also those containing
all M, C, and N.

We denote classical non-normal modal logics by EX, where X stays for the (possibly
empty) list of axioms which are added to the basic system E. However, we adopt the conven-
tion of dropping the letter E from the name of monotonic systems, which are consequently
denoted by MX. In addition, given a system L, we write L* to indicate any extension of L
with some of the axioms considered in this work (thus for instance E* denotes any classical
non-normal modal logic).

Examples of derivations in the systems of the classical cube are displayed in Figure 2.3
(see also Chellas [29] and Pacuit [142]). Observe that the axioms M and N are respectively

equivalent to the rules of monotonicity RM and necessitation RN, in the sense that the
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(MFE RM)

1. A—>B (

2. A< BAA (

3. DA+ O(BAA) (2,RE)
4. OBANA)—-OB (

5. 0OA— OB (

(E U {RM} M)

(ENF RN)

1. A (assumption)
2. ToA (1, CPL)

3. OT<O0OA (2, RE)

4. OT (N)

5. OA (3.4, MP)

(EU {RN} F N)

1. AANB— A (theorem of CPL) 1. T (theorem of CPL)
2. OAAB)—O0OA (1,RM) 2. OT (1, RN)
(MCF K)

1. O A—=B)AOA—-O(A—B)NA) @)

2. A=-B)ANA+— (A—>B)ANAAB (theorem of CPL)

3. O(A—=B)ANA)«O(A—=B)ANAAB) (2,RE)

4. O(A— B)ANAAB)— OB (M)

5. O(A —>B)/\DA—>DB (1,34, CPL)

6. O(A— B)— (0A— OB) (5, CPL)

(K+ M)

1. ANB— A (theorem of CPL)

2. O(AAB — A) (1, RN)

3. O(AANB—A)— (O(AAB)—04) (K

4. DO(AAB)—0A (2,3, MP)

(KFCO)

1. A= (B— AADB) (theorem of CPL)
2. OA— (B—AAB)) (1, RN)

3. O(A— (B AAB)) = (0A 0B AAB) (K)

4. OA 0B AAB) (2,3, MP)

5. OB —AAB)— (OB—0O(AAB)) (K)

6. DOA— (OB — O(AA B)) (4,5, CPL)

7. OAAOB— O(AAB) (6, CPL)

Figure 2.3: Derivations of modal axioms and rules in the systems of the classical cube.
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system E U {RM} is equivalent to M, and the system E U {RN} is equivalent to EN.
Moreover, let the minimal normal modal logic K be defined as usual by extending CPL with
the axiom K and the rule RN. On the basis of the derivations in Figure 2.3 we can observe
that MCN, i.e., the top system of the classical cube, coincides with the logic K, since axiom
K is derivable in MC, N is equivalent to RN, and RE, M, and C are derivable in K.

The systems of the classical cube represent the base of our investigation of classical non-
normal modal logics. In addition to these eight systems we also consider their extensions with
any combination of the axioms T', 4, D, P, and for every n € N, n > 1, the rule RD;’ (see

Figure 2.1). We sometimes refer to the systems containing D, or P, or, for some n, RD;"

, as
deontic systems, since these axioms and rules are of interest in deontic logic. In particular, the
rules RD; have a peculiar interest in deontic logic as they exclude the possibility of having
n obligations that cannot be realised all together. While the rules RD; are entailed by the
axioms D and P in normal modal logics, this is not the case in non-normal modal logics,
therefore they must be considered explicitly. In the following, for every n € N we denote by
ED; " the system E* U {RD; }.

Examples of derivations in deontic systems are displayed in Figure 2.4. It is easy to see
that RD; is derivable in ED{" for every m > n; in the figure we show the case where
n = 2 and m = 3. Notice also that the rule RDIr is equivalent to axiom P. Moreover, it
is also worth remarking that the axioms D and P are equivalent in normal modal logics but
are not necessarily equivalent in non-normal ones. The two axioms become equivalent only
in presence of both M and C. Finally, observe that all D, P, and, for every n, RD;, are
entailed by axiom T. The relations among the systems defined by adding D, P, and RD; to
the systems of the classical cube are displayed in Figure 2.5. As we can see, these principles,
which are equivalent in normal modal logics, define in contrast a rather complex family of

non-normal modal logics.

Decidability and complexity

For every considered logic L we shall address the following derivability problem:
Given a formula A of L, establish whether A is derivable in L.

The derivability problem in a logic L is a decision problem, i.e., a problem that can be
formulated as a yes-no question. A decision problem is decidable if there exists an effective
method answering to the problem correctly; such a method is called decision procedure. In

the following we say that:

e a logic L is decidable if the derivability problem for L is decidable;

e we call decision procedure for L any algorithm solving the derivability problem for L;
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(EDj + RDJ)

1. =(AAB) (assumption)
2. =(ANAADB) (1, CPL)

3. =(DAANDAAOB) (2, RDY)

4. —(OAAOB) (3, CPL)
(EDj - P)

1. =L (theorem of CPL)

2. -0OL (1, RDY)

(EDJ + D)
1. =(AA-A) (theorem of CPL)
2. —=(O0AA-D0A) (1, RDY)

(EP - RDY)

1. ANB—A (theorem of CPL)
2. O(AAB)—0OA (1, RM)

EEN—]I:—) . P)J_ th f CPL (MD - RD3)
o (theorem o ) 1. =(AAB) (assumption)
9. OT+O-L (1, RE)
2. A—-B (1, CPL)
3. —=(O0LAO-1l) (D)
4. OT »-01 (2,3, CPL) 8. BA=D-B (2, RM)
5' aT (N) 4. —~(OBAO-B) (D)
© oL (45, CPL) 5. —=(0AAOB) (34, CPL)
(ECP - RD})
1. =(A1 N ANAY) (assumption)
2. AL A AA, o L (1, CPL)
3. O(A1A..AA,) & OL (2, RE)
4. -OL (P)
5. —0(A4A1 A AAR) (3,4, CPL)
6 DAl VAN DAQ — D(Al AN AQ) ( )
7. OAy AOAs A ... AOA, — O(4; A As) A ... AOA, (6, CPL)
8. OA;A..AOA, - 0O(4; A... AOA,) (7, CPL)
9. —(0A4; A...ANOA,) (5,8, CPL)
(ET + RD;)
1. (AN NA) (assumption)
DAl — A1 (T)
3. 04, — A, (T)
4. OA A...AOA, = Ay A..AA, (2,3, CPL)
5. —O0(A1 A AA) (1,4, CPL)

Figure 2.4: Derivations of modal axioms and rules in deontic systems
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KD =KP = KDJr

MCD = MCP = MCD,} '
ECND = ECNP - ‘

\ \
ECP = ECD; “-. MD:. / \
S \ N . \\\\ : /

Figure 2.5: Diagram of deontic systems (“Pantheon”).

e we call complexity of L the complexity of the derivability problem for L.

Besides derivability, we can also consider the following related notion of deduction from

assumptions:

Definition 2.2.10 (Deduction from assumptions). Given a non-normal modal logic L, we
say that A is deducible from a set of formulas ®, written ® F, A, if there exists a sequence
of formulas ending with A in which each formula is a theorem of L, or belongs to ®, or is

obtained from previous formulas by an application of modus ponens (M P).

The one introduced by the above definition is a notion of local deduction, and must be
distinguished from the different notion of global deduction, which instead allows one to apply
modal rules of inference to the assumptions. For local deduction the following holds for every

classical non-normal modal logic:

Theorem 2.2.1 (Deduction theorem). Let ®, A, and B be respectively a set of formulas of
L and two formulas of £. Then, ® U{A} Fg+ B implies ® Fg+ A — B.

As a consequence of the above theorem, whenever the set of assumptions {A4i,..., 4,}
is finite, the assertion of deducibility {4i,...,A,} FL B is equivalent to the assertion of
derivability Fr, Ay — (... = (4, — B), which is in turn equivalent to -y, A1 A ... A A,, — B.

22



2.3. Standard semantics of classical non-normal modal logics

All classical non-normal modal logics considered in this work are decidable. For some of

them the following complexity bounds are established by Vardi [167]:

Theorem 2.2.2 (Decidability and complexity, [167]). The derivability problem for the logic
E and any its extension with the axioms M, C, N, P, T, 4 is decidable. In particular, it
is coNP-complete for the systems lacking the axiom C, and it is in PSPACE for the systems

containing C.4

The cases excluded from the above theorem of the systems with the axiom D and the
rules RD;P (but without the axiom 4) are covered by a general result by Schréder and Pattin-
son [155] that uniformly states a PSPACE complexity upper bound for all the systems defined

only by non-iterative axioms, i.e., the axioms not containing nested modalities:

Theorem 2.2.3 (Decidability and complexity, [155]). The derivability problem for the logic
E and any its extension with the axioms M, C', N, P, T, D, and the rules RD;! is in PSPACE.

2.3 Standard semantics of classical non-normal modal logics

We now present the standard semantics of non-normal modal logics. We shall consider three
kinds of models: standard neighbourhood models, IV-models for monotonic systems, and

relational models for regular systems.

Standard neighbourhood models

The standard semantic characterisation of classical non-normal modal logics is given in terms
of neighbourhood models [142]. Neighbourhood models are also called minimal [29], or Scott-
Montague, models, from the authors who independently introduced them in [157, 129]. In this
work we call them standard neighbourhood, or just standard. Standard neighbourhood models
are a generalisation of Kripke models for normal modal logics. They replace the binary
relation of Kripke models with a so-called neighbourhood function, which assigns to each
world a set of sets of worlds. Intuitively, the neighbourhood function assigns to each world
the propositions that are necessary/obligatory /etc. in it. Standard neighbourhood models are

defined as follows.

Definition 2.3.1 (Standard semantics). A standard neighbourhood model is a triple M =
(W, N,V), where W is a non-empty set, N is a function W — PP(W) — where P denotes
the powerset, and V : Atm — P(W) is a valuation function for propositional variables of

L. As usual, we call the elements of W possible worlds, and the function N neighbourhood

“In [167] complexity upper bounds for the satisfiability /derivability problem in the mentioned logics are
proved. It is clear that for the logics in coNP this is also a lower bound since they contain CPL. By contrast,
I am not aware of any proof that PSPACE is a lower bound for the non-normal logics with axiom C.
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function. The forcing relation M, w Ik A is defined as follows, where [A]r denotes the set
{veW | M,v kg A}, also called the truth set of A:

M, w g p; ifft weV(p);

Mw g L

M,wlkg T;

Mwlkg ANB  iff M,wlkg A and M, w b4 B;
Mwlkg AVB i M,wlkg Aor M,wlky B;
Mwlkg A= B it M,wlfg Aor M,wlrg B;
M,wlFgy OA iff [AJm € N(w).

From the above definition and the duality between O and <& we can also extract the

following truth condition for diamond formulas:
Miwlbg CA it W\ [A]m € N (w);

or equivalently M, w kg ©A if and only if [-A]ym ¢ N (w). We adopt the standard termi-

nology of possible world semantics:

Definition 2.3.2 (True/satisfiable/valid formula, countermodel, semantic consequence). Let
A be a formula of £. We say that

o A is satisfied by a world w of a model M, or is true in w, if M,w IF A; otherwise we
say that w falsifies A, or A is false in w, and we write M, w Iff A.

A is satisfiable in a model M if there is a world w of M such that M, w I A.

A is valid in a model M, written M = A, if for every world w of M, M,w I A;
otherwise we say that A is false in M, and we write M [~ A. In the second case, M is

called countermodel of A.

A is satisfiable in a class of models C if there are a model M € C and a world w of M
such that M, w I A. Moreover, we say that A is valid in C, written C = A, if for every
MeC, MEA.

e A is a semantic consequence of a set of formulas ® with respect to a class of models C,
written ® ¢ A, if for every M € C and every world w of M, if M,w IF B for every
B € ®, then M, w I+ A.

Definition 2.3.3 (Sound rule). A rule R is sound, or valid, with respect to a model M
(respectively a class of models C) if in case all premisses of R are valid in M (respectively C),

then the conclusion of R is also valid in M (respectively C).
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2.3. Standard semantics of classical non-normal modal logics

As usual, we aim to put in correspondence the notion of derivability () in a given logic

with the notion of semantic consequence (}=) in a certain class of models:

Definition 2.3.4 (Soundness, completeness, characterisation). Given a logic L and a class

of models C, we say that

e L is sound with respect to C if I' b, A implies " |=¢ A.
e L is (strongly) complete with respect to C if I =¢ A implies T" -y, A.

e L is characterised by C (or C characterises L) if L is sound and complete with respect
to C.

The class of all standard models characterises the basic logic E. In particular, it can be
easily verified that the rule RE is sound in every standard model. On the contrary, the
axioms M, C, and N (as well as all other considered modal axioms or rules) are not valid
in standard models. For instance, the following model M = W, N, V), where W = {w},
V(p1) = {w}, V(p2) = 0, and N(w) = {0}, falsifies the formula O(py A p2) — Opy, which is
an instance of axiom M: w - O(py A p) because [p1 Apa] = 0 € N(w), but w I Op; because
[p1] = {w} ¢ N(w), then w | O(p1 A p2) — Op1.

For the extensions of logic E a semantic characterisation in terms of standard models can
be given by considering additional closure properties of the neighbourhood function. The

properties associated to the axioms M, C, and N are the following:

(M) IfaeN(w)and a C S, then S € N(w). (Supplementation)
(C) Ifa,BeN(w),then anpge N(w). (Closure under intersection)
(N) WeN(w). (Containing the unit)

Accordingly, a standard model is supplemented, closed under intersection, or contains the
unit, if it satisfies the corresponding property of supplementation, closure under intersection,
or containing the unit. The semantic characterisation provided by these properties is modular,
in the sense that the models for a system defined by a set of axioms among M, C, and N are
obtained by adding together the conditions corresponding to each axiom.

By considering additional properties of the neighbourhood function one can also provide
a modular characterisation of all systems defined in the previous section. The conditions are

the following:

3

If « € N(w), then w € a.

0 ¢ Nw).

If « € N(w), then W\ a ¢ N(w).

RD}) If aq,...,an € N(w), then ag N ... Nay, # 0.
4) If « € N(w), then {v | a e N(v)} € N(w).

~~ I~ —~ —~
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In the following, for every logic L we denote with C;! the class of standard models for L.

Theorem 2.3.1 (Characterisation, [29]). Logic E* is sound and strongly complete with
respect to the corresponding class of standard neighbourhood models, that is: ® }:C]sat* A if
and only if ® Fg« A.

A proof of the above theorem can be found in Chellas [29] for the systems of the classical
cube and their extensions with the axioms T, P, D, 4; the same proof can be easily extended
to the systems with the rules RD;!.

Definition 2.3.5 (Finite model property). We say that a possible-worlds model is finite if the
set W of the possible worlds is finite. We say that a logic L enjoys the finite model property
if every satisfiable formula in the class of models for L is also satisfiable in a finite model
belonging to the same class, or, equivalently, if every non derivable formula in L has a finite

countermodel in the class of models for L.

Theorem 2.3.2 (Finite model property, [29]). The logics of the classical cube and their
extensions with the axioms T', P, D, and the rules RD; enjoy the finite model property.

For the systems of the classical cube a proof of the above theorem can be found in Chel-
las [29]. The proof can be easily extended to the systems containing T, P, D, and RD; . By
contrast, we are not aware of any proof of the finite model property for the logics with the

axiom 4.

JV-models for monotonic logics

In addition to the one offered by supplemented standard models, an alternative — and simpler
— semantic characterisation for monotonic systems can be given by considering the following
reformulation of the forcing condition for boxed formulas in the standard semantics: in order
to say that a world w satisfies a formula OA we do not require that its neighbourhood contains
exactly the truth set of A, but just that it contains a subset of it. The resulting semantics,

called FV-semantics, is formally defined as follows.

Definition 2.3.6 (IV-semantics). An 3V-neighbourhood model is defined as a standard neigh-
bourhood model (cf. Definition 2.3.1), except for the forcing condition of the boxed formulas,

which is as follows:
M,wlFay OA iff  there is @ € N(w) such that for every v € o, M, v IFgy A.

The above forcing condition can be equivalently rewritten as M, w IF3y OA if and only if
there is o € N'(w) s.t. o C [A] pm. As before, by duality with O we can also obtain the forcing
condition for diamond formulas, which is M,w IF3y ©A if and only if for all « € N(w),
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2.3. Standard semantics of classical non-normal modal logics

an[A]m # 0. Similarly to the standard semantics, extensions of the logic M with axioms C,
N, T, P, D, 4, and rules RD,, can be captured in the 3V-semantics by considering additional

properties of the neighbourhood function. The following result can be found in Pacuit [142].

Theorem 2.3.3 (Characterisation). The logic M is sound and strongly complete with respect
to the class of all 3V-models.

Relational models for regular logics

As it is well-known, relational models provide a semantics for normal modal logics, as they
validate both the rule of necessitation and axiom K. However, starting with Kripke [104],
variants of relational models have been proposed for logics lacking the necessitation rule. In
[104] Kripke introduces relational models with so-called non-normal worlds, with the aim
of characterising a family of Lewis’ and Lemmon’s systems in which necessitation fails or
is validated only in a restricted form. After Kripke’s proposal, relational models with non-
normal worlds have been reformulated in several ways (see e.g. [93, 119]), here we take into

consideration the following definition considered by Fitting [56] and Priest [152]:

Definition 2.3.7 (Relational semantics). A relational model with non-normal worlds is a
tuple M = W, W R,V), where W is a non-empty set of worlds, W C W is the set of
non-normal worlds, R C W x W is a binary relation, and V : Atm — P(W) is a valuation
function for the propositional variables of £. The forcing relation w Ik, A is defined as in

Definition 2.3.1, except for the boxed formulas, for which is defined as follows:
M,wlk. OA iff wé¢ W and for all v € W, if wRv then M, v I, A.

By definition, non-normal worlds falsify every boxed formula. Validity is defined as usual
(cf. Definition 2.3.2): we say that a formula is valid in a model if it is satisfied by all worlds
(no matter if they are normal or non-normal).® It is easy to verify that non-normal relational
models validate the axioms M and C but do not validate the axiom N. Notice also that in
case W' is empty, relational models with non-normal worlds collapse into standard Kripke
models for normal modal logics. In the following, for any relational model and world w we
denote with R(w) the set of worlds v such that wRwv.

® Actually, Priest [152] considers two notions of validity in non-normal relational models: the one considered
here, and a second one according to which a formula is valid if it is satisfied by all normal worlds. The two
notions validate different formulas. In particular, the second definition does not validate the congruence rule
RE. Moreover, it validates the axiom N but does not validate the necessitation rule RN, which therefore are
not equivalent (as a matter of fact, it is considered in order to characterise some Lewis’ systems which are not
congruential, and contain N but do not contain the necessitation rule in the general form). On the contrary,
the definition considered here validates RE and makes equivalent, and both not valid, axiom N and rule RN.
It is to notice that axiom N and rule RN are always equivalent in the presence of RE, so that in particular
they are equivalent in all the systems considered in this work.
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Theorem 2.3.4 (Characterisation, [56]). The logic MC is sound and strongly complete with

respect to the class of all relational models with non-normal worlds.

2.4 Elgesem’s and Troquard’s agency and ability logics

In addition to the family of classical non-normal modal logics defined in Section 2.2, we also
consider two specific non-normal modal logics studied in the literature, namely Elgesem’s
agency and ability logic [47] and its coalitional extension defined by Troquard [165].

Elgesem’s logic, also called the logic of bringing-it-about, represents a standard reference
in the literature on agency logic. It provides a formalisation of agents’ actions in terms of
their results: that an agent “does something” is interpreted as the fact that the agent brings
about something. For instance, “John does a bank transfer” is interpreted as “John brings
it about that the bank transfer is done”. Elgesem’s logic contains two modalities indexed
by agents E; and C; (we adopt the notation of [78|). The former one expresses the agentive
modality of bringing-it-about, whereas the latter one expresses capability: roughly speaking,
Ejycy BankTransfer means that Lucy makes a bank transfer, whereas C,, BankTransfer
means that Lucy can make a bank transfer. Elgesem’s logic is also well-suited for formalising
notions of control, power, and delegation. For instance, “Sara prevents Lucy from making a
bank transfer” will be captured just by Egurq ~Ejyey BankTransfer.

Elgesem’s logic deals with actions of a single agent, who might be a human individual, or
an institution or a group conceived as an indivisible entity. A natural extension of this logic
is to handle groups or coalitions that act jointly to bring about an action. This has been
proposed by Troquard [165] who has developed an extension of Elgesem’s logic to handle
“coalitions™ individuals may gather in coalitions to bring about a joint action. In such a joint
action, each participant must be involved, so that the logic rejects coalition monotonicity:
EyA — Ey A whenever g C ¢’ is not assumed to be valid.

Besides their own interest, in the context of the present work Elgesem’s and Troquard’s
logics represent significative examples of non-normal modal logics as (i) they are even non-
monotonic, and (ii) they are incomparable with normal modal logics, as they contain the axiom
=0T, i.e., the negation of necessitation. In this section, we present their axiomatisation and

their neighbourhood semantics.

Axiomatic systems

Let us formally introduce the axiomatisations of Elgesem’s agency logic and Troquard’s coali-
tion logic, henceforth respectively called ELG and COAL. First, let A = {a,b,c,...} be a
set of agents. The logic ELG is then defined on a propositional language Lg;, that — instead

of O — contains, for every ¢ € A, two unary modalities E; and C;, respectively of “agency” and
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A< B A< B
REE Ao EB REc G Ao CB
Ck E,ANE;B — EZ(A/\B) Qc -C; T
TIE EiA — A P(C —|(C¢J_
IntE@ EZA — (CZA

Figure 2.6: Axiomatisation of Elgesem’s agency and ability logic [47].

“ability”. The formulas of Lf, are defined by the following grammar:
Au=pi | L| T|ANA|AVA|A— A|E;A|CiA,

where p; is any propositional variable in Atm and i is any agent in 4. Formulas of the form
E;A and C; A are respectively read as “the agent ¢ brings it about that A”, and “the agent 7 is
capable of realising A”. The logic ELG is defined by extending classical propositional logic
(formulated in language Lgy,) with the modal axioms and rules in Figure 2.6.6

Because of the presence of axiom ()¢, Elgesem’s logic is strictly non-normal. In this
context, this axiom is used to formalise a peculiar aspect of Elgesem’s account of agency,
namely that agents are considered to realise (bring it about) something only if they are
directly responsible of its realisation. As a consequence, according to Elgesem’s account an
agent cannot realise something that would have been the case also independently from her
action, whence in particular tautologies. To make an example, an agent cannot bring it about
that the Earth revolves around the sun.

Observe that —E; L and —E; T are derivable (respectively from axiom 7T'g, and from axioms
Intge and Qc). By contrast, the axioms C' and T hold only for the modality E, meaning
respectively that if an agent realises two things, then she realises both, and that if A is brought
about by some agent, then it is actually the case that A.

In Troquard’s coalitional extension of Elgesem’s logic [165], called COAL, single agents
are replaced by groups of agents, the aim is to represent what agents do and can do when
acting in coalitions. Correspondingly, the formulas of the language L, of COAL are defined

as follows, where p; is any propositional variable in Atm and g is any subset of A.
Auv=p | L| T|ANA|AVA|A—- A|ESA|C A.

The modal fomulas of L., are then indexed by groups of agents rather than by single agents.
The logic COAL is axiomatically defined by extending CPL with the modal axioms and
rules in Figure 2.7. Apart from F¢ and Int?m, the axioms and rules of COAL are just

A variant of Elgesem’s logic not containing axiom Pc is considered in [78, 108]. All results presented in this
work can be extended to this variant just by dropping the corresponding condition in the bi-neighbourhood
semantics (Section 4.6) and the corresponding rule in the calculus (Section 6.5).
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A< B A< B
REe | AGE,B REc ¢ 4o C,B
Ck EgA/\EgB — Eg(A/\B) Qc ﬂ(CgT
Tg  E,A— A Pc  —C,L
Intl. E4A— C,A Fc —CyA
Inti. EgANEgB — Cgug,(ANB)

Figure 2.7: Axiomatisation of Troquard’s coalition logic [165].

the coalition versions of the corresponding ones in ELG, with agents i replaced by groups
g. The peculiar aspects of group agency are represented in COAL by the axioms F¢ and
I ”t12[<:<c- In particular, the axiom F'c expresses that the empty group cannot realise anything,
whereas the axiom I nt]%(C expresses that if a group realises A and another group realises B,
then by joining their forces they could realise both A and B. Observe that the axiom Intj
is derivable from I nt?m. Nevertheless, we keep it in the axiomatisation, as it is done in [165],
in order to preserve a 1-1 the correspondence between the axioms of COAL and the rules of
the hypersequent calculus the we shall define in Section 6.6, where a specific rule for I nt%:(c

will be needed.

Neighbourhood semantics

Elgesem’s original semantics for the logic ELG is based on selection function models [47]. Here
we consider the alternative neighbourhood semantics given by Governatori and Rotolo [78]. In
this semantics, the models contain two neighbourhood functions NE and NC corresponding
to the two modalities E and C. The two functions are connected by a very simple relation: for
every world w, N'E(w) is included in N'®(w). Moreover, each function satisfies the conditions

corresponding to the E- or C-axioms in the standard semantics (cf. Section 2.3).

Definition 2.4.1 ([78]). A neighbourhood model for ELG is a tuple M = (W, NE N, V),
where W is a non-empty set, V is a valuation function, and for every agent 1, ME and ./\fl-(C

are two neighbourhood functions W — PP (W) satisfying the following conditions:

(CE) If o, B8 € NE(w), then a N B € NF(w). (Qc) W ¢ NE(w).
(Tg) If o € NF(w), then w € a. (Pc) 0 e NE(w).
(Intge)  NifF(w) C NE(w).

The forcing relation I is defined as usual for atomic formulas and boolean connectives, whereas

for E- and C-formulas it is defined as follows:

MywlFEA iff [A] € NE(w).
M,w - CA iff [A] € NE(w).
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2.5. Non-normal modalities with intuitionistic basis

The neighbourhood models for ELG have been reformulated by Troquard [165] in order to
provide a semantic characterisation of the coalition logic COAL. The neighbourhood models
for COAL are as follows:

Definition 2.4.2 ([165]). A neighbourhood model for COAL is a tuple M = (W, /V';E,N;C, V),
where W is a non-empty set, )V is a valuation function, and for every group of agents g, N;E
and N~ are two bi-neighbourhood functions W — P(P(W) x P(W)) satisfying the condi-
tions (Cg), (Tk), (Qc), and (Pc) of Definition 2.4.1 (but with N'® and N'C indexed by groups

g instead of agents i), and also the following additional conditions:

(Fc)  Ny(w)=0.
(Intdc) If o € N (w) and B € NE (w), then an B € NS, (w).

g1Ug2

The forcing relation I is defined as in Definition 2.4.1, in particular:

MwlFEgA iff  [A] € NF(w).
M,wlFCgA iff  [A] € NE(w).

Theorem 2.4.1 (Characterisation, [78, 165]). A formula of Lp, is derivable in ELG if and
only if it is valid in every neighbourhood model for ELG. Moreover, a formula of L..q is
derivable in COAL if and only if it is valid in every neighbourhood model for COAL.

2.5 Non-normal modalities with intuitionistic basis

The study of non-normal modalities is not restricted to the realm of classical logics. On the
contrary, in the literature there exist also different non-normal modal logics with an intuition-
istic basis. The general motivation for studying non-normal modalities with an intuitionistic
basis is twofold. On the one hand, it is mathematically natural to combine these two forms
of logic [161], considering in particular that both of them can be semantically arranged by
means of possible worlds models. Moreover, the rejection of classical equivalences can allow
for a finer analysis of the modalities. On the other hand, an intuitionistic basis is required
for specific applications of modal logic in computer science [170, 50].

Without restricting to non-normal modalities, the study of modalities with an intuition-
istic basis goes back to Fitch [55] in the late 1940s and has led to an important stream of
research. We can very schematically identify two traditions: so-called intuitionistic modal log-
ics versus constructive modal logics. The first tradition originated in the works by Bull [25],
Fischer Servi [53, 54|, Plotkin and Stirling [149], and Ewald [49], and the resulting logics
have been further investigated and systematised by Simpson in his PhD thesis [161]. De-
spite considering different criteria, all three Fischer Servi, Ewald, and Simpson’s aim was to

identify correct intuitionistic analogues of certain classical modal logics. On the other hand,
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constructive modal logics are mainly motivated by their applications to computer science,
such as the type-theoretic interpretations [14, 128] (Curry—Howard correspondence, typed
lambda calculi), verification and knowledge representation [50, 102, 171|, but also by their
mathematical semantics [73| and their deduction systems [151].

Logics with non-normal modalities typically belong to the second tradition. The most
prominent example is perhaps (the propositional fragment of) Nerode and Wijesekera’s Con-
structive Concurrent Dynamic logic (CCDL) [170, 171], a logic for reasoning with partial
information about the states of a concurrent transition system. CCDL is non-normal as it

does not validate the distributivity of diamond over disjunction
Co O(AVB)DOCAVOBT

This logic has also an alternative epistemic interpretation in terms of internal/external ob-
servers proposed by Kojima [102]. Under this interpretation, each possible world w of a model
represents an observer oy, and (A V B) true at w means that o, knows that AV B is true
at some world v. However, this does not entail that o,, can determine which disjunct among
A and B is true at v, thus ©A V OB is not necessarily satisfied at w.

A system related to CCDL is the one known as Constructive K (CK), whose axiomati-
sation is presented in Bellin et al. [14]. This system not only rejects C, but also its nullary

version
Ne <OL D L.

CK has been investigated in the context of type theory by Bellin et al. [14] and Mendler and
Scheele [128]. Moreover, Mendler and de Paiva [126] have proposed a contextual interpretation
of the modal operators in which OA is read as “A holds in all contexts” and ¢ A as “A holds
in some context”.

A further example of intuitionistic logic with a non-normal modality is Propositional Lax
Logic [125, 73, 50]. This is an intuitionistic logic for hardware verification containing a single
modality (), where ()A can be interpreted as “for some constraint ¢, formula A holds under
¢.” A peculiar aspect of this logic is that () satisfies some axioms that are typically associated
to necessity (0), and also other axioms that are typically associated to possibility (¢). But
while (O is normal if seen as a O-modality, it is instead non-normal if seen as a $-modality,
as it validates neither C¢, nor N¢. Finally, further examples of intuitionistic modal logics
rejecting Co are Fitch’s logic [55] and Masini’s system I-2SC [123].

Interestingly, while the axiom C¢ is rejected by all constructive systems, it is instead valid
in all intuitionistic systems. As a consequence, we can identify C¢ as a cut-off point between

the constructive and the intuitionistic tradition.

"In the language of intuitionistic logics we use the symbol O instead of — to stress that the arrow must be
interpreted as an intuitionistic implication.
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Modal axioms and rules of intuitionistic non-normal modal logics

ADCB ADB A
REo 774 S>c OB RMo 575 > OB RBNo 54
ADCB ADB -A
REo 4 Sc OB RMo —5 4538 RBNo —5 4
My O(AAB)D>UOA Mes <SADO(AVDB)
Cn OAAOBDO(AAB) Co <O(AVB)DOCAVOB
Ngn OT Ne —OL

Duality axioms
Duale 0OADC =0O-A Dualng <©A DC -0O-A4
Intuitionistic versions of axiom K

Ko O0O(ADB)D>(DADOB) Ko O(ADB)D(©CADOB)

Figure 2.8: Modal axioms and rules for intuitionistic systems.

Coming back to the systems CK and CCDL, we observe that while they have a non-

normal modality <, they both have a normal O, in particular they satisfy the axioms
Cn OAANOBDO(AAB) Ng OT,

which are the O-counterparts of the axioms C¢ and N¢. The possibility of having O and <
satisfying different principles is a peculiar aspect of intuitionistic modal logics. This depends
on the fact that, similarly to the other connectives, O and < are not interdefinable in these

logics, in particular the duality axioms
Duale OA DC -O—-A Dualp ©ADC -O-A

are not valid. As a consequence, in order to define intuitionistic logics with both modalities
O and < it is necessary to explicitly state the principles which are satisfied by each of the
two. For this reason, differently from classical modal logics, <¢-axioms must be explicitly
considered. For instance, in Figure 2.8 we find the <¢-counterparts of the axioms and rules
that characterise the systems of the classical cube (cf. Section 2.2). In the following, we call
non-normal any intuitionistic modal logic which does not satisfy some of the modal axioms
and rules in the first group of principles of Figure 2.8.

As we can see, in intuitionistic modal logics the O-axioms are not necessarily associated to
their O-counterparts, and vice versa. This justifies the existence of logics that share the same

O- or O-fragment but differ with respect to the other modality. A paradigmatic example is
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offered by the three systems CK, CCDL, and the so-called Intuitionistic K (IK) [161] (we
shall more extensively consider these systems in the next section): while they are equivalent
with respect to O, in each of them the modality < validates different principles.

In addition to the motivations recalled above, an intuitionistic account of non-normal
modalities may be justified by further interpretations of the modalities that would benefit from
the non-interdefinability of O and <. An example might be von Wright’s distinction between
weak and strong permissions [176], also widely discussed by Hansson [83] who distinguishes
explicit and implicit permissions on one side (the strong ones) from tacit permissions on the
other side (weak ones). In general one may require that the permission of A must be justified
explicitly or positively (say by a proof from a corpus of norms) and not just established by
the fact that = A is not obligatory. As an example, a deontic logic where the modalities are

both non-normal and non-interdefinable has been recently proposed in Anglberger et al. [3].

2.6 Intuitionistic versions of logic K

We now present the axiomatisation and semantics of the intuitionistic modal systems IK,
CCDL, and CK. Apart from their specific motivations, in the context of the present work
their interest relies on the fact that, though non-equivalent, they all can be regarded as
intuitionistic counterparts of the same classical logic, namely the minimal normal modal logic
K. Moreover, while they all have a normal modality O, the systems CK and CCDL have a
non-normal <.

Intuitionistic modal logics are defined in the intuitionistic modal language £;, whose for-

mulas are defined by the following grammar:

Au=p; | L|TIANA|AVA|AD A|OA| OA,

where p; is any variable in Atm. In the language £; of intuitionistic logics we use the arrow O
instead of — to stress that it must be interpreted as an intuitionistic implication. In addition,
differently from the language £ of classical modal logics, we explicitly add to £; the symbol
<&, since it is not definable by means of 0. Negation — and double implication DC are defined
as "A:=AD 1L and ADC B:=(ADB)A(BDA).

Axiomatic systems

Intuitionistic modal logics are axiomatically defined as extensions of intuitionistic proposi-

tional logic (IPL), for which we consider the following axiomatisation:

34



2.6. Intuitionistic versions of logic K

TIK CCDL CK
Axiomatisation of IPL Axiomatisation of IPL Axiomatisation of IPL
A A A

0A 0OA DA

0(AD B) D> (0DADOB) 0(AD B) D> (0DADOB) 0(AD B) D> (0DADOB)
0(ADB) D (CADOB) 0O(ADB) D (CADOB) 0(ADB) D (CADOB)
=L 01

O(AV B) D OAV OB

(CADOB)D>O(ADB)

Figure 2.9: Intuitionistic versions of K.

AD(BDA), (AD(BD>(C))D((AD>DB)D(ADC()),

AD AV B, B> AV B, (ADC)D>D((B2>2C)D(AvBDU(0)),
ANBD A, ANBDB, AD(BDANAB), ADB A
1D A, ADT, B '

The systems IK, CCDL and CK are defined by extending IPL with the modal axioms
and rules displayed in Figure 2.9. In the figure we find the original axiomatisations, respec-
tively by Plotkin and Stirling [149], Wijesekera [170], and Bellin et al. [14] (Wijesekera’s
axiomatisation also includes the axiom ¢(A D B) D (0A D ¢B), but this is derivable from
the other axioms, cf. e.g. [161], p. 48). However, the same systems could be equivalently
axiomatised by replacing RNg and Kp with the rule REn and the axioms Mp, Co, and
Np (as the standard derivations are intuitionistically valid, cf. e.g. [127] for the alternative
axiomatisation of CK), whence they all have a normal O.

The systems IK, CCDL and CK have a decreasing strength: IK 2 CCDL 2 CK. In

particular, IK has a normal < as it contains C¢ and N¢ as axioms, and M is derivable:

1. AD(AVB) (theorem of IPL)
2. O(AD(AVB)) (1, RNn)

3. OAD(AVB))D(CADO(AVB) (Kn)

4. OA> O(AVB) (2,3, MP)

Axiom Mg is derivable also in CCDL and CK by the same derivation. By contrast, <
is non-normal in CCDL and CK do to their lack of, respectively, Cc and both C¢ and Ng.
Semantics

All IK, CCDL, and CK have been given a semantic characterisation in terms of relational

models. Relational models for IK have been independently defined by Fischer Servi [54],
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Plotkin and Stirling [149], and Ewald [49] (for a survey of the different approaches that all led
to the same semantics see [161]), whereas relational models for CCDL and CK have been
defined respectively by Wijesekera [170] and Mendler and de Paiva [126]. The definitions are

as follows.

Definition 2.6.1. A relational model for IK is a tuple M = (W, =< R, V), where W is a

non-empty set, = is a preorder over W, R is any binary relation on W, and V is a hereditary
valuation function W — P(Atm), that is

if w < v, then V(w) C V(v).
Moreover the following conditions connecting the relations < and R are satisfied:

(1) If wRv and w =< u, then there is z € W such that v < z and uRz.
(79) If wRv and v < 2, then there is u € W such that w < u and uRz.

@) w Rz (i) uw %o

= = = =
R R

w——- w——v

The forcing relation M, w I A is defined as follows, where v = w holds if and only if w < v:

M, w IF p; it p; € V(w);

Mw lfF L

M,wl- T,

M,wlF AAB iff M,wlF Aand M,w - B;

M,wlFAv B iff MwlkAor M,wlk B;

M,wlFAD B iff forallv>=w, M,vIF A implies M,v I B;

M, wlFOA ift for all v = w, for all w € W, vRu implies M, u |- A;
MowlFOA iff  there is v € W such that wRv and M, v IF A.

Definition 2.6.2. A relational model for CCDL is a tuple M = (W, <, R, V), where W is a
non-empty set, < is a preorder over W, V is a hereditary valuation function W — P(Atm),
and R is a binary relation on W. The forcing relation w IF A is defined as in Definition 2.6.1

for atomic formulas and propositional connectives. For the modal formulas it is as follows:

M,wlFOA iff forall v = w, for all w € W, vRu implies M, u IF A;
M,wlFCA iff  for all v = w, there is u € W such that vRu and M, u I+ A.

Finally, relational models for CK are defined by Mendler and de Paiva [126] by enriching
Wijesekera’s models for CCDL with inconsistent, or “fallible”, worlds, i.e., worlds satisfying
1.
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Definition 2.6.3. A relational model for CK is a tuple M = (W, =<, R, V), where W is a
non-empty set, < is a preorder over W, V is a hereditary valuation function W — P(Atm),
and R is a binary relation on W. For every formula A of £;, the forcing relation w IF A is

defined as in Definition 2.6.2, except for L, for which it is defined as follows:

if M,w IF L, then for every v, w < v or wRwv implies M, v IF L;
if M,w IF L, then for every propositional variable p € Atm, M, w I+ p.

Relational models for IK, CCDL, and CK preserve the hereditary property of intuition-
istic Kripke models (see Simpson [161] and Wijesekera [170]):

Proposition 2.6.1 (Hereditary property). Let M = (W, =<,R,V) be a relational model for
IK, CCDL, or CK. Then for every world w € W and every formula A of L;, if M,w IF A
and w < v, then M, v I- A.

On the basis of the above proposition we can observe the following.

Proposition 2.6.2. Let M = (W, =<,R,V) be a relational model for IK. Then for every
world w € W and every formula A of L;,

M,wlFCA iff  for all v = w, there is u € W such that vRu and M, u I+ A.

Proof. M,w |- GA iff (by Proposition 2.6.1) for every v = w, M,v I GA iff (by Defini-
tion 2.6.1) for every v = w, there is u € W such that vRu and M, u I+ A. O

On the basis of Proposition 2.6.2, we see that the relational models for IK, CCDL, and
CK are organised into a clear hierarchy: the relational models for CCDL are the particular
cases of the relational models for CK without inconsistent worlds (i.e., worlds satisfying ),
whereas the relational models for IK are the particular cases of the relational models for
CCDL satisfying the conditions (i) and (¢7) in Definition 2.6.1 connecting the relations <
and R. As a consequence, from the point of view of the relational semantics CCDL can
be seen as the simplest logic among these three systems, since the definition of its relational
models neither needs to resort to non-standard objects such as inconsistent worlds, nor it
requires specific connections between the two relations < and R. It is therefore interesting to
notice that the extensions of CCDL are less studied than those of IK and CK. Indeed, while
several extensions of IK and CK have been studied both semantically (see e.g. [54, 161, 1])
and proof-theoretically (see e.g. [64, 162, 127, 6, 86, 144]), we are not aware of any analogous
investigation of possible extensions of CCDL.

In addition to the relational models, Kojima [102] defines neighbourhood models for
CCDL as follows:
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Definition 2.6.4. A Kojima neighbourhood model for CCDL is a tuple M = (W, X, N, V),
where W, < and V are as in Definition 2.6.2, and A is a neighbourhood function W —
P(P(W)) such that w < v implies N(v) € M(w), and for all w € W, N(w) # 0. The forcing

relation I is defined as in Definition 2.6.2, except for modal formulas, for which is as follows:

Mywlb, OA iff for all @ € N(w), a C [A]u;
Mywlk ©CA it for all @ € N(w), an [AJm # 0.

Theorem 2.6.3 (Characterisation, [54, 170, 126, 102]). The logics IK, CCDL, and CK are
sound and complete with respect to the corresponding relational models. Moreover, CCDL

is sound and complete with respect to Kojima’s models.
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Sequent calculi and their properties

In this work we aim to investigate non-normal modal logics from a proof-theoretic perspective.
With proof theory we understand the study of logics from the point of view of their proof
systems. An essential part of proof theory is represented by the so-called structural proof
theory, which originated with the works by Hilbert and Gentzen and consists in studying the
proofs as mathematical objects, with the aim of establishing their structure and properties.

Proof-theoretical investigations of logics can be motivated by many different purposes. To
mention just two general aims, on the one hand, by looking at the form of the proofs one
can establish properties of the logic such as consistency, decidability, interpolation, and so
on. On the other hand, suitable proof systems may be implemented and used for automated
reasoning and theorem proving.

Besides the axiomatic systems already introduced in Chapter 2.2, in this work we shall
mainly concentrate on sequent calculi, although other formalisms such as tableaux calculi
will be also considered. In this chapter, we start to deal with sequent calculi for non-normal
modal logics. We begin with some general definitions that will serve us throughout this thesis.
We then present a list of desirable properties of proof systems. These properties shall be
considered throughout this work in order to evaluate the different calculi taken into account.
Finally, we make a brief account of the existing proof systems for classical and intuitionistic

non-normal modal logics, and concentrate more in detail on their Gentzen calculi.

3.1 Sequents and sequent calculi
In this section we introduce the formalism of sequent calculi and give some general definitions
that will serve us throughout the thesis.

Definition 3.1.1 (Multiset). A multiset is a list without order, i.e., a structure where the
number of occurrences of its elements counts but their order does not count. The multiset

containing the formulas Ay, Ao, ..., and A, is written Ay,..., A,. Multisets of formulas are
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CHAPTER 3. SEQUENT CALCULI AND THEIR PROPERTIES

denoted by capital Greek letters I'; A, 3, 11, Q. Given a multiset I', we sometimes consider

its support set(I'), i.e., the set of its elements disregarding multiplicities.

In the following, if ' is the multiset A1, ..., A,,, we denote by OI" the multiset OA1,...,0A,,.
If not differently specified, in the following when we write OI' we implicitly assume that T"

contains at least one formula.

Definition 3.1.2 (Sequent). A sequent is an expression of the form
I'= A,

where I and A are finite multisets of formulas. I and A are called respectively the antecedent
and the succedent of the sequent (or, respectively, the ‘left-hand side’ and the ‘right-hand
side’ of the sequent). We say that a sequent is in language £ if all formulas occurring in the

sequent belongs to L.

Sequents represent in the object language the metalinguistic notion of derivability from
assumptions. Symbol = represents the consequence relation, comma (,) on the left represents
metalinguistic conjunction, and comma on the right represents metalinguistic disjunction.
Thus, the sequent I' = A can be read as “from the set of assumptions in I' it follows at least

one formula in A”.

Definition 3.1.3 (Formula interpretation). We call formula interpretation a function int

from sequents in language £ to formulas of £ such that
T = A)" = AT = VA,

where A A4y,..., A, and \/ Ay, ..., A, are abbreviations for, respectively, A; A ... A A, and
A1V ...V Ay, and A0 and \/ ) are interpreted respectively as T and L.}

We also consider the following semantic interpretation of sequents.

Definition 3.1.4 (Valid sequent). Given a sequent I' = A, we say that

e ' = A is satisfied by a world w of a possible-worlds model M if in case w I+ A for every
formula A € T, then w I+ B for some formula B € A.

e I' = A is valid in a possible-worlds model M, written M = I' = A| if it is satisfied by
every world of M.

!Provided that £ contains the connectives A,V,—. Notice that the definition of function int is not fully
precise because of the asymmetry between multisets, where order of formulas does not count, and conjunctions
(resp. disjunctions), where the order counts. More precisely, (I' = A)™* should be defined as AT’ — \/ A/,
where TV and A’ are sequences of formulas corresponding respectively to T' and A. Then (I' = A)™ is
well-defined modulo logical equivalence (cf. [164]). Here we consider the standard “rough” definition as it is
more intuitive and sufficient for the purposes of this work.
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M = A TS A RTT=74a
L I'NA,B= A R I'=AA I'=BA
AT, ANB= A A T = AAB,A
INNA= A I'B=A R I'= A B A
ILAVB= A VTS AVB.A
L = AA I''B=A R I'N'A= B,A
TA—>B=A 7 T=A4-BA

Figure 3.1: Rules of G3cp.

e I' = A is walid in a class of models C, written C =T = A, if it is valid in every model
of C.

We extend to sequents the following notions already introduced for formulas of L.

Definition 3.1.5 (Complexity of sequents). We define the complezity of a sequent Ay, ..., A,, =
By, ..., By as wg(Aq)+...4+wg(Ay) +wg(B1)+...+wg (B, ), where wg is the weight of formulas
as defined in Definition 2.2.2.

Definition 3.1.6 (Meta-sequent, substitution, instance). A meta-sequent is a pair I' = A,
where I' and A are finite multisets of schemata of formulas rather than multiset of formu-
las. If Ay,..., A, = By,..., By, is a meta~sequent and ¢ is a substitution from schemata to
formulas of £, then ¢ is extended to Ay, ..., 4, = Bi,..., By, as ¢(A1, ..., A, = Bi,...,By,) =
(A1), ..s5(An) = <(B1),...;5(Br). The result of the substitution is called instance of the

meta-sequent.
We now introduce sequent calculi, which are defined as sets of sequents rules as follows.

Definition 3.1.7 (Sequent calculus, sequent rule, initial sequent). A sequent calculus is a
set of sequent rules. A sequent rule is an ordered pair composed by a (possibly empty) set
of meta-sequents I'y = Aq,...,I';, = A, called premisses, and a meta-sequent I' = A, called

conclusion. A sequent rule is written

R ' = A I,= A,
= A ’
where R is the name of the rule. If 1= A T :> A I'n = An is a rule and ¢ is a substi-
tution, then Cr=A1) o ('n=An) is an instance of the rule. Instances of the
s(I'=A)

conclusion of a rule with zero premisses are called initial sequents, or axioms.
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I'= A
A=A

= A T A A= A = A AA

Lwk 7F:>A,A LCtr—F,A:A RCtr—F:A,A

Rwk

I'=AA A=A
I'=A

cut

Figure 3.2: Structural rules and the cut rule.

As an example, the rules in Figure 3.1 define the sequent calculus G3cp for classical

propositional logic [164]. As usual, we distinguish the rules of sequent calculi in two kinds:
e logical rules (cf. Figure 3.1), which introduce logical symbols, and
o structural rules (cf. Figure 3.2), which handle with the structure of sequents.

In addition, we consider the rule cut, which has a prominent role in structural proof theory.

For every logical rule, we call

o principal formula the formula occurring in the conclusion and containing the logical

symbol introduced by the rule;

e active formulas the formulas occurring in the premiss(es) which are subformulas of the

principal formulas;

e context the formulas in I', A, that is, the formulas which are untouched by the rule.

For instance, in the rule LA, A A B is the principal formula, A and B are the active formulas,
and I' and A are the context. The logical rules are distinguished into left and right rules
(except for init), depending whether the principal formula occurs in the antecedent or in the
succedent of the conclusion.

The structural rules are called weakening and contraction. As the logical rules, they are
distinguished into a left and a right rule. The principal formula of Lwk and Rwk is the formula
which is introduced by the rule application, whereas the principal formula of Lctr and Rctr
is the formula which is deleted by the rule application. Finally, the principal formula of cut,
i.e., the one which is deleted by the application of the rule, is also called cut formula. As for
logic formulas, the formulas in I'; A are the context.

The rules of weakening, contraction, and cut correspond each to some property of the
classical consequence relation. In particular, left weakening corresponds to monotonicity of
F, which means that if a formula is derivable from a set of assumption I', then it is derivable
from any extension of I'. Left contraction corresponds to the fact that every assumption can
be used an arbitrary (finite) number of times. Finally, the cut rule reflects the fact that

derivations can be done stepwise by going through “auxiliary lemmas”.
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We consider the additive version of cut, i.e., the version in which the two premisses share

the same contexts I, A. Alternatively, one can consider the multiplicative formulation

= AA I A= A
I,I'= A,A

cut’ ;
in presence of weakening and contraction the two formulations are equivalent.

We now introduce the terminology related to derivations in sequent calculi.

Definition 3.1.8 (Derivation, endsequent, height). A derivation in a sequent calculus G is
a finite tree labelled with sequents such that the leaves are labelled by initial sequents, and
each sequent at a node different from the leaves is obtained by the sequent(s) in the node(s)
immediately above it by an application of a rule of G. The sequent labelling the root is called
endsequent, or root sequent. We define the height of a derivation as the lenght of longest path

(i.e., the maximal number of nodes) between the endsequent and a leaf of the derivation.

Definition 3.1.9 (Derivable sequent). A sequent I' = A is derivable in G if there exists a
derivation in G with I' = A as endsequent, in this case we write Fq ' = A. We sometimes

write F, I' = A to denote that I' = A is derivable with a derivation of height at most n.

I = Al I, = An

Definition 3.1.10 (Derivable rule). A rule is derivable in a

' A
sequent calculus G if there exists a derivation of I' = A in G such that every leaf is labelled

by an initial sequent or by a sequent among I'y = Ay, ....,T,, = A,,.

Definition 3.1.11 (Admissible rule). A rule I = Ay T : A Lo = An

sequent calculus G if in case all premisses I'y = Aq, ..., I, = A, are derivable in G, then
/ /
ﬁ is hezght_

preserving admissible if in case the premiss IV = A’ is derivable with a derivation of height

is admissible in a
the conclusion is also derivable in G. Moreover, a single-premiss rule

n, then the conclusion I' = A is derivable with a derivation of height at most n.

Notice that every derivable rule is also admissible, but not vice versa. Notice also that
in case a rule R is admissible in G, then the set of sequents derivable in G U {R} (i.e., the
calculus G extended with the rule R) coincides with the set of sequents derivable in G (that

is, the rule R does not expand the set of the sequents that are derivable in G).

1= Al I, = An

Definition 3.1.12 (Invertible rule). A rule R L A is invertible in a
sequent calculus G if in case the conclusion is derivable in G, then the premisses I'y = Ay,
.., I'y = A, are also derivable in G. Moreover, R is height-preserving admissible if in case
I" = A is derivable with a derivation of height n, then I'y = A4, ..., I';, = A,, are derivable
with derivations of height at most n. We say that a calculus is invertible if all rules of the

calculus are invertible.
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'Mi=A ... T,=A,
I'=A
are admissible.

Observe that a rule is invertible if and only if all rules

I'= A I'= A
N=A 777 Th= A,
An advantage of sequent calculi with respect to Hilbert systems is that in the former kind

of proof systems it is much easier to find derivations. Derivations in sequent calculi can be
constructed essentially in two ways. One can proceed top-down, starting with initial sequents
and applying rules in the attempt to obtain the wanted sequent. But one can also proceed
bottom-up, starting with the wanted sequent and applying rules backward in the attempt of

ending up with initial sequents. We consider the following definitions.

Definition 3.1.13 (Backward proof search, failed proof). We say that a rule R is backwards
applicable to a sequent I' = A if [' = A is the conclusion of an instance of R. We call backward
(or root-first, or bottom-up) proof search for I' = A the construction of a derivation tree from
the root to the leaves such that the root is labelled by the sequent I' = A, and the branches
are expanded by applying at each step a backwards applicable rule. We call proof of I' = A
the tree generated by a backward proof search for I' = A. A proof where some leaves are not

initial sequents and that cannot be further expanded is called failed proof.

It is easy to see that a finite proof of I' = A where all leaves are initial sequents is a
derivation of I' = A.

3.2 Internal and external calculi

In the previous section we have defined the basic framework of sequent calculi. In the following,
we call proof systems of this form Gentzen calculi. Several extensions of Gentzen calculi have
been proposed in the literature in order to define proof systems for many logics. The resulting
systems can be schematically distinguished into two categories: (i) Calculi that enrich the
language of sequents: the language is enriched with labels which are used to import semantic
information into the calculus. (ii) Calculi that enrich the structure of sequents: the calculi
contain additional structural connectives (i.e., in addition to the sequent arrow “=" and
the comma “”); typical examples are “|” and “[ ]”, which are used to represent respectively
sequences (or multisets) of sequents (called hypersequents, see e.g. [10]) and trees of sequents

(called nested sequents, see e.g. |24, 150]). In the following, a calculus is called

e internal, if it only employs the language of the logic, possibly with additional structural

connectives;

o cxternal, if it is defined in an extended language with respect to the language of the

logic.
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Internal and external calculi

Init Nz:p=z:p A LL

I''z:Azx:B=A

LA

RT

Iz:ANB= A
F'=z:AA Iz:B=A

zx:1l=A l=axz:T,A
R '=sx:AA I'=sx:BA

A '=sx:AANBA
Nez:A==xz:BA

L= Tz A>B=A

Iz:0A 2Ry, y: A= A
Ix:0A4,2Ry = A

R T, A5BA

IaRy=y:AA ()
I'=sx:04A v

RO

Figure 3.3: Labelled sequent calculus for K (Negri [133]).

To give an example, we consider the following well-known sequent calculi for the minimal
normal modal logic K. The first one is the Genzten calculus for K (see for instance Wans-
ing [169]), which is defined by extending the calculus G3cp for classical propositional logic
(Figure 3.1) with the following modal rule K:

Y = B

K oY = 0B,A

(1% >0).

We call the resulting calculus G3.K. The calculus is internal as the sequents contain only
formulas of £. The second example is the labelled calculus by Negri [133] (Figure 3.3) — we
call it LS.K —, in which the language of £ is extended with a set of world labels x,y, z, ...,
and the symbol R. The calculus internalises the Kripke semantics for logic K: formulas of
the form x : A express the forcing relation x I A, whereas R represents the binary relation
between worlds. The propositional rules are just the rules of G3cp enriched with world labels,
whereas the rules LO and RO directly derive from the forcing condition of boxed formulas in
the Kripke semantics (in rule RO the label y must satisfies the eigenvariable condition, i.e.,
it must not occur in the conclusion). Although they are different formalisms, the two calculi

are equivalent, in particular both are proof systems for logic K, in the sense that, for every

AeL,

Fk A iff Fask = A iff FLsk = x: A for every x.

It is worth remarking that the distinction between internal and external calculi is more
an intuitive, operational classification rather than a formal one. Moreover, in some cases
derivations in internal and external calculi are essentially isomorphic structures. Starting
with Fitting [57] and Goré and Ramanayake [76], this has been shown for several modal logics
and kinds of proof systems by means of constructive translations of derivations in one calculus
into derivations in the other. Further examples are Ciabattoni et al. [31], Girlando et al. [69],

Lellmann and Pimentel [109, 110], and Pimentel [147].
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3.3 Desirable properties of sequent calculi: a discussion

Since their introduction by Gentzen [66, 67|, sequent calculi have revealed very strong tools
for the investigation of logics. Depending on the specific aims, a calculus might be required
to satisfy some relevant properties. We discuss here some relevant properties that shall be
considered throughout this work. For each calculus presented in this work we shall analyse

which of these properties it satisfies.

Syntactic and semantic completeness. Given a logic L and a calculus G, the minimal
requirement to consider G as a proof system for L is that derivability in G coincides with

derivability in L, in the sense that
FeI'= A iff |—L/\F—>\/A.

More precisely, we say that G is sound with respect to L if the left-to-right direction of the
above equivalence holds, and it is complete with respect to L if the right-to-left direction
holds. Thus, G is a calculus for L if it is sound and complete with respect to L.

A possible way to prove that a calculus G is complete with respect to a logic L consists
in showing, first, that all axioms of L are derivable in G (i.e., if A is an axiom of L, then the
sequent = A is derivable in G) and, second, that all rules of L are admissible in G (i.e., if

Ar A o = A is admissible in G). In this

An is a rule of L, then the rule .
way, for every formula B derivable in L the corresponding sequent = B will be derivable in

G. If this is the case, we say that the calculus is syntactically complete with respect to the
axiomatisation.

In this respect, the rule of modus ponens has a particular relevance among the rules of
Hilbert systems defined in Chapter 2.2. Typically, modus ponens is simulated in sequent
calculi by means of the rule cut (with auxiliary applications of structural rules if needed). As

an example, the following instance of M P:

A A— B
B

MP

is simulated by the the following derivation in G, where the sequents A = A, Band A, B = B

can be shown derivable for every A, B:

L kﬂ
R‘l’(" A=A B A= A B A,B=B L
R = A WKAS B A> B A>B A=DB -
w = A, B A= B
cut
=B

As a consequence, in order to be syntactically complete with respect to an axiomatic
system, it is crucial that a sequent calculus contains the rule cut, either as an explicit rule or

as an admissible one.
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A sequent calculus may be complete not only with respect to an axiomatic system, but
also with respect to a semantics. We say that the calculus G is sound and semantically
complete with respect to a class of models C if the sequents that are derivable in G coincide

with the sequents that are valid in C, that is:
FeI'= A iff EFel' = A.

Semantic completeness can be proved directly by showing, first, that every derivable sequent
is valid (whence the calculus is sound) and, second, that every non-derivable sequent is not
valid (whence the calculus is complete; cf. countermodel extraction below). Alternatively,
semantic completeness may be also proved indirectly by showing that the calculus is complete
with respect to an axiomatic system, which is in turn known to be complete with respect to

the semantics.

Admissibility of structural rules. As we have seen, the structural rules and cut play a
decisive role for the syntactic completeness of the calculi. At the same time, however, most of
the “good” properties of the sequent calculi depend on the fact that the calculi do not contain
these rules explicitly, that is, that the structural rules and cut are not part of their definition.
These two needs can be reconciled by defining the calculi without the structural rules and
cut and proving that these rules are admissible (equivalently, one can define the calculi with
these rules and show that they are eliminable). For this reason, a main concern of structural
proof theory consists in investigating the admissibility of this kind of rules.

In some cases, the admissibility of cut can be proved by means of a syntactic cut elimi-
nation procedure. By cut elimination we intend an effective procedure which transforms any
derivation of a sequent I' = A possibly containing some applications of cut into a derivation
of the same sequent in which the rule cut is not used. This procedure provides a constructive
proof of the admissibility of cut in the considered calculus. Analogous (and, for the calculi
considered here, simpler) procedures can be applied to prove the admissibility of weakening
and contraction. As usual, we call cut-free (respectively contraction-free) any calculus which

does not contain explicitly the rule cut (respectively the rules Lctr and Rctr).

Analyticity. We say that a rule is analytic if all the formulas occurring in the premis(es)
are subformulas of some formulas occurring in the conclusion. Moreover, we say that a rule
is strictly analytic if all the formulas occurring in the premis(es) are strict subformulas of
some formulas occurring in the conclusion (cf. Definition 2.2.3), and in addition the premisses
have a smaller complexity than the conclusion (cf. Definition 3.1.5). Correspondingly, we say
that a calculus is analytic (respectively strictly analytic) if all rules are analytic (respectively
strictly analytic).

To make an example, the calculus G3.K in previous section is strictly analytic, because so

are all its rules, i.e., the propositional rules and the rule K. In contrast, the labelled calculus
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LS.K is not analytic, as the premisses of LO and RO contain formulas which do not occur in
the conclusion. Nonetheless, LS.K is analytic with respect to language L (i.e., disregarding
world labels and symbol R), although not strictly analytic, since the formula OA which is
principal in LO occurs also in the premiss.

An immediate consequence of analyticity is the following: all formulas appearing in the
derivation of a sequent are subformulas of the sequent itself. As we shall see, analyticity
is a key property for the analysis of derivations in sequent calculi, and has in turn relevant
consequences, such as the possibility of getting an immediate proof of consistency and ensuring

the termination of backward proof search.

Terminating proof search. We are interested in using the calculi to establish the deriv-
ability /validity of formulas in the corresponding logics. To this purpose we shall consider
backward proof search procedures in the calculi (cf. Definition 3.1.13). In general, we say
that a proof search procedure is terminating if every proof generated by it is finite, and we
say that a calculus is terminating if it allows for the definition of a terminating proof-search
procedure.

It is easy to see that root-first proof search in a strictly analytic calculus like G3cp or
G3.K is terminating. This depends on the fact that the complexity of sequents is reduced by
any backward application of a rule, and since sequents are finite structures their complexity
cannot be reduced indefinitely.

On the contrary, termination of root-first proof search is not ensured if the calculus is not
analytic. For instance, in the labelled calculus LS.K the rule LO can be applied indefinitely

because of the copy of the principal formulas into the premiss:

x:0p, 2Ry, y :p,y :p,y:p=>y:pVq

z:0p,aRy,y:p,y:p=y:pVg

x:0Op,aRy,y:p=y:pVgq
z:0Op,cRy=y:pVyq

LO

LO

LO

However, by considering restrictions to backward rule applications it might be nonetheless
possible to define more refined proof search strategies that ensure termination and at the
same time preserve the completeness of the calculus. For instance, in the example above one
could consider a clause stating that LO is not applied to x : Op and xRy if y : p already
occurs in the left-hand-side of a sequent in the proof, thus allowing only the first application

of LO and preventing the subsequent ones.

Decision procedure by single proofs. The application of a terminating proof search
procedure to a sequent I' = A has two possible outcomes: either it provides a derivation of

the sequent, or it returns a failed proof. In the first case we know that I' = A is derivable,
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since we have a derivation of it as the result of proof search. By contrast, in the second case
it is not necessarily guaranteed that I' = A is not derivable.

As a matter of fact, in some cases backward proof search might be sensitive to the order
in which the rules are applied. That is, given a sequent I' = A, there might exist sequences of
bottom-up rule applications which provide a derivation of it, and different sequences which do
not provide any derivation. For instance, consider the following proofs of Op = O(pV q) V Ogq
in G3.K. The first proof is failed, as the top sequent p = ¢ is not an initial sequent and no

rule is backward applicable to it, whereas the second one has success.

—— 5 Init
Op = O(p V q),Oq

Op= O(pVq),O
PP =DV Vg Dpp=> D(;pv qfﬁ)v qu

Rv

If this is the case, then the sequent is derivable (since a derivation exists), but it is actually
derived only if the rules are applied in a right order. This means that in such a calculus a single
failed proof is not enough to guarantee that a sequent is not derivable. As a consequence, in
order to ensure the non-derivability of a sequent we need to reason over the whole space of
possible derivations: a sequent is not derivable if all proofs of it are failed.

However, there are also calculi in which a single failed proof is sufficient for ensuring the
non-derivability of a sequent. The crucial requirement is that all rules of the calculus are
invertible. If this is the case, then for every derivation of a sequent I' = A from assumptions
' = Ay, .., Ty = A, it holds that I' = A is derivable if and only if all assumptions
' = Ay, ..., I, = A, are derivable. We consider as examples the following proofs of
z:0p=z:0(pVq) Vg in LS.K. Since the calculus is invertible, the outcome (i.e., either
failure or success) is the same for every proof, in particular, differently from the proofs in
G3.K, is not relevant which formula among O(p V ¢) and Og in the right-hand side of the

conclusion is firstly processed.

z:0p, 2Ry, x :p, xRz, z2:p=2:p,2:¢Y:q Init o
z:0p,aRy,x:p,aRz,z:p=2:pVqy:q LO x:Op, 2Ry, y:p=y:p,y:q,x:0gq I};\I;
z:0p, xRy, x:p,aRz=z2:pVq,y:q RO z:0Op, 2Ry, y:p=>y:pVaqux:Oq Lo
z:0Op,xRy,z:p=x:0(pVq),y:q Lo r:0Op,xRy=y:pVg,x:0Oq RO
z:0p,eRy=2:0(>ppVq),y:q x:0Op=2a:0(pVqg),z:0q
z:0p=x:0(pVgq),z:0q RE z:0p=x:0(pVqg) Vg

z:0Op=x:0(pVq)VOq

As a consequence, terminating proof search in a fully invertible calculus provides a direct
decision procedure for the respective logic: given a formula A, every application of the proof
search procedure to the sequent = A ends after a finite number of steps and reveals whether

A is derivable or not.
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Optimal decision procedure. If a calculus allows for a decision procedure for the logic, we
are interested in establishing the complexity of the procedure, which is optimal if it coincides

with the complexity of the derivability problem in the logic.

Direct countermodel extraction. As we have seen, in some cases a single failed proof for
a sequent I' = A can ensure that the sequent is not derivable. We say that the calculus allows
for direct countermodel extraction if in addition the failed proof provides sufficient information
to define a countermodel of I' = A. To make a simple example, consider the following failed
proof in LS.K:

z:0p,aRy,y:p=y:q
r:0Op, xRy =1y:q
z:Op=z:0q RO
Sz:Op>0Og R—

LO

By considering the standard semantics reading of sequents that interprets as true the formulas
in the left-hand side of sequents, and as false the formulas on their right-hand side, basing on
the information provided by the proof we obtain the relational model M = (W, R, V), where
W = {z,y}, R(z) = {y}, R(y) = 0, V(p) = {y}, and V(¢) = 0, which is a countermodel of
Op — Ogq.

The decision procedures determined by terminating calculi allowing for direct counter-
model extraction from failed proofs are constructive, since every answer to the derivability
problem is certified either by a derivation, in the positive case, or by a countermodel, in the

negative one.

Modularity. A family of calculi is defined modularly if the calculi for the stronger systems
are defined by adding rules to the calculi for the weaker systems, without modifying the basic
rules. For instance, labelled calculi for logics KT, K4, and S4 can be defined simply by
extending the basic calculus G3.K with the rule refl, or the rule trans, or both rules refl and

trans below, respectively (cf. Negri [133]):

q 2Rz, ' = A ; 2Rz, xRy, yRz, T = A
re '=A rans TRy, yRz, T = A

Separate left and right rules. In the Gentzen calculus G3cp every connective is handled
by a left and a right rule. Moreover, the rules introduce only a single occurrence of the
principal connective. This kind of rules offer a declarative and purely syntactic account of the

meaning of the connectives independent from any procedure.

Semantic interpretation. We are interested in establishing connections between syntactic
formalisms and the semantics. For this reason, sequents and rules should have a semantic

interpretation in the models of the logic.
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E A=1B B= A M A=B N = A
I''OA = 0OB,A I''OA=0B,A I'=0A4,A
Y= B {B = A} sex MC Y= B
I,0¥ = 0B,A oYX = 0B,A

Figure 3.4: Modal rules of Gentzen calculi for the systems of the classical cube.

3.4 Gentzen calculi for classical non-normal modal logics

In this section, we present Gentzen calculi for classical non-normal modal logics, and briefly
discuss their properties. Gentzen calculi for the systems of the classical cube - except for
EN and ECN - are defined by Lavendhomme and Lucas [107], the remaining cases are easy
extensions and can be found in Indrzejczak [99] and Lellmann and Pimentel [110]. In [107]
sequents are defined as pairs of sets, so that contraction is embedded into their structure.
Here we consider the more common formulation with multisets. Moreover, differently from
[97, 110], we formulate the modal rules with contexts in the conclusion in order to embed
weakening in their application. The calculi G3.E* are defined by extending G3cp with the

modal rules in Figure 3.4 in the following way:

G3.E := {E}; G3.M = {M}; G3.EC = {C}; G3.MC := {MC};
G3.EN := {E,N}; G3.MN :={M,N}; G3.ECN :={C,N}; G3.MCN := {MC,N}.

Recall that if OI' occurs in a rule schema, we implicitly understand that I' contains at
least one formula, thus differently from the rule K on page 45, in the rules C and MC we have
|3 > 1 (thus in particular MC is not the same rule as K).

The definition of the calculi is not modular since we need to modify the rule for O de-
pending whether the logic is monotonic or contains the axiom C. The rules C and MC are
the generalisation of the rules E and M to n principal formulas (instead of just one) in the
left-hand-side of the conclusion. Observe that, differently from E and M, the rules C and MC
introduce an arbitrary number of boxed formulas by a single application. The rule C has in
addition a variable number of premisses which depends on the number of principal formulas
in the rule application: if the rule handles n boxed formulas, then it has n premisses. An
alternative way of looking at C and MC is to consider them as infinite sets of rules, each set
containing a standard rule for any n > 1.

The calculi are proved syntactically complete with respect to the corresponding systems,

in particular the structural rules can be proved admissible:

Theorem 3.4.1 (Completeness, [107, 97, 99, 110]). The structural rules and cut are admis-
sible in the Gentzen calculi G3.E* for the logics of the classical cube. Moreover, the calculi

are syntactically complete with respect to the corresponding systems.
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The calculi G3.E* are strictly analytic, i.e., the complexity of the premisses of every rule
is smaller than the complexity of the conclusion. As observed in the previous section, this has
several good consequences, such as the possibility of getting an immediate proof of consistency
and ensuring the termination of backward proof search.

By contrast, a drawback of calculi G3.E* is that the modal rules are not invertible.
This can be easily seen by considering, e.g., the following instance of the rule M, where the
conclusion is derivable but the premiss is not:

r=p
O(pAgq),0Or = Op

Notice that the conclusion is derivable by chosing a different instance of M with O(p A ¢) and
Op as principal formulas:

NS init

PANg=1p RA

D(pAg),Br = Op

The non-invertibility of the modal rules is due to the fact that the context is deleted by their
backward application. Essentially, when we backward apply a modal rule to a sequent, we
have to guess a correct pair, or set, of modal formulas to which the rule is applied. As a
consequence, the possible failure of a derivation is not necessarily due to the non-derivability
of the sequent, but can be the consequence of a wrong choice of formulas in the application
of the modal rules. As observed in the previous section, proof search in a non-invertible
calculus requires to reason over the whole space of possible derivations. In such a calculus,
proof search requires some form of backtracking that in case of a failed proof allows one to
go back to the application of some modal rule and try to apply an alternative rule or to
apply the same rule on different modal formulas. This should be repeated until a derivation
is obtained or all possible applications are examined. The need of such a control is reflected
into the complex proof search procedure defined in [107]. Furthermore, even when the non-
derivability of a sequent is ensured, it is not obvious how to use the calculi to extract a
countermodel. This difficulty is made clear also by the need of the additional use of analytic
cut in the countermodel construction proposed in [107].

Extensions of calculi G3.E* to the systems with axioms T, 4, D, P are investigated in
[97, 99, 110, 139, 140|. The calculi are defined by the rules in Figure 3.5. Similarly to the
basic rules for O, some of the axioms have more than a corresponding rule depending whether
the logic contains M and C, as summarised in Table 3.1.

For some combinations of axioms, additional rules are needed in the calculus in order to
ensure cut elimination. In particular, for combinations of axiom D with axioms M or N we
also need the rule P (notice that axiom P is derivable both from D and M and from D and
N), and for the combination of D with 4 we need the rule MD4 in the monotonic case and

the rule MCD4 in the regular case.
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A=A P A= A B = = A, B 4 OA= B B =04
T,0A= A T,04= A D—Toa0B=A T,0A= 0B,A
A B= I = {= A, B} scx,Ben Y=

b Pi

MD+ o408 A D .05, Ol = A PTov=2a
OA= B 0YX = B A, 0B = 3,000 =

MiToa-oBa MY Toz—ooBa MMATaiopoa MPAT s onsa

Figure 3.5: Rules of Gentzen calculi for the extensions of the classical cube.

N T P D 4 /N T P D 4
E|N T P D 4 M |N T P MD M4
EC|N T CP CD 7 MC|N T CP CP MC4

Table 3.1: Gentzen calculi for the extensions of the classical cube.

Theorem 3.4.2 (Cut admissibility). The rule cut is admissible in G3.ET*, G3.EP*, G3.ED",
and G3.M4*.

The above result is proved in [137] for G3.MCT, in [97, 99] for the extensions of G3.E
and G3.M with T, D, and 4, and in [139, 140| for the calculi of the classical cube extended
with P and D. All the remaining cases are found in [110].

Observe that G3.E4 is excluded from the calculi listed in the above theorem. As a matter

of fact, the rule cut is not admissible in G3.E4, as it is shown by the following example.

Example 3.4.1. The sequent Op = OOOp is derivable in G3.E4 U {cut}, but it is not
derivable in G3.E4 without cut. The derivation with cut is as follows:

Op = Op Op = Op Odp = O0Op O0p = Odp

Op = O0p O0p = OOUp
Rwk op=oop, 0o0p Op, O0p = ooOp Lwk
Op = O00p cut

Let us now try to derive bottom up the sequent without using cut. At the first step the only
backward applicable rules are E and 4. By applying E we obtain the premisses p = OOp
and O0p = p, both non derivable as they are neither initial sequents nor conclusions of any
rule. By applying 4 instead of E we obtain Op = OOp and O0p = Op. The first premiss is
derivable. Concerning the second premiss, again we can apply either E or 4, obtaining either

Op = p and p = Op, or OOp = p and p = OOp, all of them non derivable.

As it is shown in [99], cut is instead admissible in G3.ET4. By contrast, Gentzen calculi
for non-monotonic systems with both axioms C' and 4 are not investigated at all. A C-version
of the rule 4 would very likely feature the same problem displayed in Example 3.4.1, but in

this case it is not obvious how to obtain cut free calculi even in presence of the rule T.

93



CHAPTER 3.

Concerning the structural rules, only in [139, 140] the admissibility of contraction is explic-
itly investigated. It can be shown that contraction is admissible in most calculi, however there
are some problematic cases. A first difficulty arises when one tries to give a purely syntactic
proof of admissibility of contraction in the calculi with the rules for axiom D. This difficulty
depends on the fact that these rules have (at least) two principal formulas in the left-hand
side of the conclusion. For instance, suppose that a derivation contains an application of
contraction to a boxed formula which is derived by an application of D:

A A= = A A
INOA,OA= A
I''oA= A

Lctr

In such a situation, a standard proof of admissibility of contraction would require to reverse
the order of the rule applications: we must first contract the premisses, and then apply D.
However, the application of contraction to the sequents A, A = and = A, A would give A =
and = A, which are not premisses of D, whence D would not be applicable anymore. The
solution adopted in [140] consists in adding one of the following two rules to the calculus,
depending whether the rules are formulated for the axiom C:

A= = A , 2= {= A}acx
[,04= A D [,0% = A

D/

These rules solve the problem described above by allowing one to directly obtain the sequent
I',0A = A from the premisses A = and = A. Notice however that they are never applicable
in consistent calculi, whence they do not extend the set of derivable sequents.

A calculus in which contraction is not admissible is G3.MT, as the following example

shows.

Example 3.4.2. The sequent O(p A =Op) = is derivable in G3.MT U {Lctr}, but it is not
derivable in G3.MT without Lctr.

p,"Op=p
pAﬁ@ﬁﬁpLA
O(p A O =0 p=-UOp
D((p/\ -0 2)9)’]9—4] p:> L= P,_‘Dp = L=
D p),p, ~Up A?Wqﬁgju

O(p A —=Op),p A —Op =
O(p A =Op), O(p A —~0Op) =
O(p A —Op) =

O(p A =Op) =

Lctr

On the left we have a derivation of O(p A —-Op) = in G3.MT U {Lctr} (with an application of
Lctr). By contrast, on the right we have a failed proof for O(pA—Op) = in G3.MT. The proof
is failed because the top sequent p = Op is not derivable, as it is neither an axiom nor the
conclusion of a rule of G3.MT. Notice that at each step we have applied the only backwards

applicable rule, which means that there exists no alternative possible choice of backward rule
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applications which provides a derivation of the sequent (this example is considered in Goré [74]

in the context of tableaux calculi for the logic KT).

Nonetheless, admissibility of contraction in G3.MT can be recovered by replacing the
rule T with the following one:

oA, A= A
rodA= A

/

Given a rule of this form the calculus is not strictly analytic anymore, whence rough bottom-
up proof search does not terminates. However, it is possible to regain the termination of proof

search by considering straightforward detections of redundant applications of the rule T'.

3.5 Further proof systems for classical non-normal modal log-

ics: state of the art

The proof theory of non-normal modal logics is not as developed as its semantics. Although
a Gentzen calculus for a non-normal modal logic — in particular for the logic MCT — can be
found already in Ohnishi and Matsumoto [137] in the 1950s, and the first tableaux calculus
for the logic M goes back to Fitting [56] (where the logic M is called U) in the 1980s, only
in recent years the problem of finding suitable proof systems for non-normal modal logics
has been more extensively addressed. Up to now the study of proof systems for non-normal
modal logics does not have a state of the art comparable with the one of proof systems for
normal modal logics, for which there exist well-understood proof methods of many kinds.
Moreover, the existing proof systems cover mainly monotonic logics, whereas non-monotonic
logics have been more neglected despite their interest. We make here a brief account of these
proof systems.

Besides Fitting’s tableaux, further tableaux calculi for the logic M are defined in Hansen [82],
where they are also extended to Pauly’s coalition logic [146], as well as in Governatori and
Luppi [77]. In the latter work, the extensions of M with the axiom C and both axioms C' and
N are also treated.

The first calculi covering also non-monotonic systems are the Gentzen calculi by Lavend-
homme and Lucas [107] that we have presented in the previous section. As we have seen,
Lavendhomme and Lucas’ calculi have been extended beyond the classical cube by Indrze-
jezak (97, 99|, Orlandelli [139, 140|, and Lellmann and Pimentel [110]. Indrzejczak’s calculi
have been also reformulated as prefixed tableaux in Indrzejczak [98].

Fully modular proof systems for the whole classical cube are proposed by Gilbert and
Maffezioli [68] in the form of labelled sequent calculi. The calculi are based on an embedding
of non-normal modal logics into normal multimodal logics given by Kracht and Wolter [103]

and Gasquet and Herzig [65]. This embedding allows one to design calculi by importing the
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(multi)relational semantics into the calculus by converting semantic conditions into rules in the
way of Negri [133] and Vigano [168] (cf. the labelled calculus for logic G3.K in Figure 3.3).
The same embedding of non-normal modal logics into normal multimodal logics is at the
basis of the display calculi for monotonic systems proposed very recently by Chen et al. [30].
Semantic based labelled sequent calculi for the whole classical cube are also proposed in
Negri [131]. As a difference with the calculi by Gilbert and Maffezioli, Negri’s calculi directly
import into the rules the standard neighbourhood semantics rather than the multirelational
one. These calculi represent the starting point for the definition of our labelled calculi in
Chapter 5.

Not only labelled calculi, but also structured calculi have been investigated for non-normal
modal logics. In Lellmann and Pimentel [109, 110], so-called linear nested sequent calculi are
modularly defined for the whole classical cube as well as for the extensions of monotonic
systems with the axioms P, D, T, 4, and 5. Moreover, in Lellmann [111] a nested sequent
calculus for Brown’s ability logic [22] is proposed. This logic contains two modalities [¥V] and
[3V], the former is a normal K-modality whereas the latter is non-normal, in particular the

fragment with the only modality [3V] coincides with the logic M.

3.6 Gentzen calculi for intuitionistic non-normal modal logics

We now consider proof systems for intuitionistic non-normal modal logics. Several proof
systems have been proposed for the logic IK and some extensions. For example, nested
sequent calculi are proposed by Galmiche and Salhi [63, 64|, Strakburger [162], and Marin
and Strakburger [120, 121|, whereas a labelled natural deduction systems is defined by Simp-
son [161]. Moreover, IK is also covered as a particular case by the more general calculi for
bi-intuitionistic tense logic presented in Goré et al. [75].

There are in contrast less proof-theoretic investigations of the constructive systems CK
and CCDL. Nonetheless, cut-free Gentzen calculi for both logics are defined respectively
by Bellin et al. [14] and Wijesekera [170]. In addition to the Gentzen calculi, further proof
systems have been defined for CK. In particular, a focused 2-sequent calculus is defined in
Mendler and Scheele [127], and a nested sequent calculus is proposed in Arisaka et al. [6].
Both calculi cover also extensions of CK with (intuitionistic versions of) additional axioms
among 1T, D, 4, 5, and B. Furthermore, focused sequent calculi for a constructive version
of logic S4 (i.e., an extension of CK with intuitionistic counterparts of axioms T and 4) are
defined in Heilala and Pientka [86], and similar calculi for a constructive version of logic S5
are defined in Park et al. [144].

We now present the Gentzen calculi for CK and CCDL. These calculi are defined in
[14] and [170] as extensions of a suited calculus for intuitionistic logic. Here we take as base

calculus the Gentzen calculus G3ip from Troelstra and Schwichtenberg [164], which is defined

o6



3.6. Gentzen calculi for intuitionistic non-normal modal logics

"Tr=p HIT=A TTsT
I'NA,B= A '=A TI=8B
LA RA
TLANB= A IT=AAD
I'NA= A I'B= A I' = A; .
T AVE = A RViT =2, va, =12
L NA>B=A I'B=A R I'NA= 1B
- TLA>B= A °T=AoOB
Figure 3.6: Rules of G3ip.
Y =B = A A= B
MCo [,0% = OB No += 04 Mo [,0A= OB
N A= W >2,B=C c >,B=
T OA= A [,0x,oB=oC U“T,03,0B= A

Figure 3.7: Modal rules of Gentzen calculi for CCDL and CK.

by the rules in Figure 3.6 (this is not the one considered in [14, 170]). Our choice of G3ip
is motivated by the fact all structural rules are admissible in this calculus. G3ip is the
single-succedent version of the calculus G3cp for classical logic: in G3ip the right-hand-side
of sequents can contain at most one formula. This requires to replace the rule RV with two
rules Rv; and RV, one for the left and one for the right disjunct of the principal formula.
In addition, in order to ensure the admissibility of contraction, the rule L O is formulated in
such a way that the principal formula A D B is kept into the left premiss. The structural

rules of G3ip are formulated as follows:

I'= A

Ll =4 _I'= I'NAJA= A r=A A= A
A=A

cut

Lwk I'= A ctr A=A o= A

Rwk

For the intuitionistic calculi we consider the multiplicative formulation of cut. This choice
is motivated simply by the fact that the proofs of cut elimination are cleaner with this for-
mulation, since they do not require auxiliary applications of the structural rules. As in the
classical case, in the presence of weakening and contraction the multiplicative formulation of
cut is equivalent to the additive formulation

r=4 A=A
'=A
Gentzen calculi for CK and CCDL are defined by extending G3ip with the modal rules

in Figure 3.7 in the following way:

cut

G3.CK := {MCq, No, Mo, W}, G3.CCDL := {MCg, No, Mo, W, No, strCl.
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As for the classical calculi, differently from [14, 170] we add the contexts in the conclusion
of the modal rules in order to embed weakening in their application. The rules MCh and Ng
are the single-succedent versions of the rules MC and N of the classical calculi (see Figure 3.4),
whereas the rules Mo and N¢ are the single-succedent versions of the ¢-counterparts of the
rules M and N. Furthermore, the rule W (we call it this way from “Wijesekera”) corresponds
to the axiom K. Differently from [14, 170|, we require that |X| > 1, for this reason we must
explicitly consider the rule M in addition to W (Mg is in contrast a particular case of W if
|X| = 0 is allowed). Finally, the rule strC does not correspond to any axiom of CCDL, but it

is needed for cut elimination, as it is shown by the following example.

Example 3.6.1. The sequent Op, O—p = is derivable in G3.CCDL U {cut} \ {strC}, but it
is not derivable in G3.CCDL \ {strC} without cut. The derivation with cut is as follows:

p,p= 1L L= N
Op,0op=<L <Ol= ¢
Op, O=p = cut

In contrast, in the absence of cut the only backward applicable rule to Op, &—p = is No, but
its premiss —p = is not derivable. Finally, the sequent is trivially derivable by strC:

—p =
Tprop = St

The following result can be obtained by straightforwardly adapting the proofs in [14, 170]:

Theorem 3.6.1 (Completeness). The structural rules and cut are admissible in G3.CK and
G3.CCDL. Moreover, the two calculi are syntactically complete with respect to CK and
CCDL, respectively.
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Chapter 4
Bi-neighbourhood semantics

In this chapter, we present an alternative semantics for classical non-normal modal logics,
that we call bi-neighbourhood semantics. First, we define bi-neighbourhood models for all
classical non-normal modal logics considered in this work, and prove soundness and com-
pleteness of every system with respect to the corresponding class of models. Then, we analyse
the relations between the bi-neighbourhood semantics and the standard semantics presented
in Chapter 2, providing mutual transformations of models of the two kinds. We also define
a bi-neighbourhood semantics for Elgesem’s and Troquard’s agency and ability logics. Fi-
nally, basing on the bi-neighbourhood semantics we show a syntactic embedding of classical
non-normal modal logics into monotonic logics with dyadic modalities. Bi-neighbourhood
semantics shall be the reference semantic framework in this work: it is at the basis of the
design of our labelled calculi, and it is also the framework considered for the extraction of

countermodels both from external and from internal calculi.

4.1 Bi-neighbourhood models

As recalled in Section 2.3, classical non-normal modal logics are characterised by standard
neighbourhood models, and further semantics exist for monotonic and regular systems. Here
we introduce an alternative semantics, that we call bi-neighbourhood semantics.
Bi-neighbourhood semantics differs from the standard one with respect to the neighbour-
hood function. Instead of a set of neighbourhoods, worlds in bi-neighbourhood models are
equipped with a set of pairs of neighbourhoods, that we call bi-neighbourhood pairs. The
intuition is that the two components of a pair provide, so to say, “positive” and “negative”

support for a modal formula. Bi-neighbourhood models are formally defined as follows:

Definition 4.1.1 (Bi-neighbourhood semantics). A bi-neighbourhood model is a triple M =
(W, N,V), where W is a non-empty set, V is a valuation function Atm — P(W), and N
is a function W — P(P(W) x P(W)), that we call bi-neighbourhood function. The forcing
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CHAPTER 4. BI-NEIGHBOURHOOD SEMANTICS

relation M, w IFy; A is defined as in Definition 2.3.1 except for the modality, for which the

clause is as follows:

M wlky,; DA iff  there is (o, 8) € N(w) s.t. o C [A]Jpm S W\ 5.

By duality with O we then obtain the following forcing condition for diamond formulas:
M, w Ik A if and only if for every (o, 8) € N(w), [Alm Na # 0 or [AJyy N W\ B # 0.

Observe that the standard models (cf. Definition 2.3.1) can be seen as the particular
cases of bi-neighbourhood models in which the components of all pairs are complementary.
Moreover, it is easy to see that in classical logics the forcing condition for boxed formulas
can be rewritten as M,w Ik, OA if and only if there is (a,8) € N (w) such that o C
[A]m and 8 C [-A]aq. Thus, bi-neighbourhood semantics essentially decomposes the forcing
condition for boxed formulas of the standard semantics into two components, both of them
monotonic (cf. Definition 2.3.6). This suggests a possible reduction of non-monotonic logics
into monotonic logics with dyadic (binary) modalities, we develop this intuition in Section 4.7.
In the following, we simply write w |- A and [A], i.e., without stating explicitly the model
M and the kind of semantics (by the subscripts bi, st, 3V, or r), if these are made clear by

the context.

Motivation

To give an intuition of the bi-neighbourhood semantics, we present two examples based on
two different possible interpretations of 0. Firstly, let us consider an interpretation of OA
like “A is lawful”, or “A complies with the law”, where A intuitively represents some action or
activity. We can say that in some cases actions or activities are ruled by specific legislations
composed by two kinds of norms: obligations and prohibitions. In such a situation, an
activity (described by the proposition A) is considered lawful (OA) if it fulfills all obligations
and does not break any prohibition. A similar legislation can be described by a pair («, f3)
of respectively obligations and prohibitions. The fact that the elements of bi-neighbourhood
pairs are not required to be complementary might reflect that obligations and prohibitions
usually do not exhaust the possible actions. On the contrary, there is usually the possibility
of making choices among things that are neither obligations, nor prohibitions. For instance,
a bartender must issue receipts (obligation) and must not serve alcohol to underage people
(prohibition), but she is free to decide whether or not to serve pastis in her bar. In addition,
different activities might be regulated by different norms, thus justifying the possible existence
of more bi-neighbourhood pairs. For instance, the norms ruling bartending are not the same

as the ones ruling, say, the management of a hospital.!

!Clearly, this interpretation would conflict with the idea of Standard Deontic Logic (SDL, see e.g. [124])
that obligations and prohibitions are interdefinable (A is prohibited if and only if —A is obligatory). However,
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4.1. Bi-neighbourhood models

The same structure can be found in completely different contexts. Imagine this time that
a detective must solve a murder. Usually, a detective has two kinds of available information:
things that are known to have happened (for instance, the victim has been killed with a
knife) and things that are known not to have happened (for instance, the murderer did not
enter the room through the main door). In such a situation, an explanation of the murder
(described by the proposition A) is considered plausible (OA) if it explains all ascertained
facts without requiring that something already ruled out should have happened (it explains
how the murderer can have killed the victim with a knife without entering the room through
the main door). In this context, different bi-neighbourhood pairs might represent different
sources of information, for instance different witnesses.

In general, bi-neighbourhood semantics might be used to represent under-determined sit-
uations. While standard semantics can represent contexts where all information is explicitly
given (for instance, all possible solutions to the murder are explicitly presented, or all lawful
activities are fully described), bi-neighbourhood semantics can represent more liberal con-
texts, where all solutions are accepted which are consistent with the available information.
As we shall see, the bi-neighbourhood semantics is also more suitable than the standard se-
mantics for extracting countermodels from failed proofs in (different kinds of) sequent calculi.
In particular, it is more suited for dealing with the partial information provided by the failed

proofs.

Bi-neighbourhood models for extensions

As we shall see, the class of all bi-neighbourhood models characterises the basic logic E. In
order to give a characterisation to the other systems we must consider additional properties
of the bi-neighbourhood function. The semantics is defined modularly for all systems, which
as usual means that each axiom has a corresponding semantic condition. We consider the

following definition, which is needed to formulate the semantic condition for axiom 4.

Definition 4.1.2. Let M = (W, N, V) be a bi-neighbourhood model, and «, 3 C W. We
define W*(a, 8) and W~ (o, B) as follows:

WH(a, B) = {v | (@, 8) € N(v)}; and
W (o, B) = {v | for all (v,0) e N(v),and # 0 or fN~y#D}.

Intuitively, W (a, 3) is the set of worlds containing the pair (c, ) in their neighbour-
hood, whereas W™ («, 8) is the set of worlds such that all their bi-neighbourhood pairs are
incompatible with («, 3) (in particular, since aNd # 0 or BN~ # (), the pairs in W™ (a, 8) and

it might be worth considering contexts where obligations and prohibitions are not assumed as interdefinable.
As an example, the logical analysis of a normative code where obligations (prescriptions) and prohibitions are
not interdefinable can be found in Gulisano [80].
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CHAPTER 4. BI-NEIGHBOURHOOD SEMANTICS

(v, 8) do not make the same boxed formulas true). We now present the semantic conditions

corresponding to the considered modal axioms and rules.

Definition 4.1.3 (Semantic conditions for extensions). Let X be any modal axiom or rule
among M, C, N, T, P, D, RD;}, and 4. The semantic condition (X) corresponding to X in

the bi-neighbourhood semantics is as follows:

=z

If (o, 8) € N(w), then g = 0.
There is @« C W such that for all w € W, (a, ) € N (w).
If( ,B), (7,0) € N(w), then (an~,BUJd) € N(w).
If (o, 8) € N(w), then w € a.
If (0, 8) € Aw), then @ # 0.
If (o, B), (7,8) € N(w), then aNvy # @ or BNJ # 0.
If (
IE (

~ O

D+> a1, 51) (Oén,ﬁn) S N( ) then oy N... N, # 0.

a, B) € N(w), then there is (v,d) € N( ) sty CWH(a, 8) and § € W (o, B).

/\/\/\/%/-\/\/-\/\

N
SN—

For every subset S of the above conditions, we call S-model any bi-neighbourhood model
satisfying all conditions in S. For instance, a MC-model is any bi-neighbourhood satisfying
both (M) and (C). The class of bi-neighbourhood models for a given non-normal modal logic
L is determined by the conditions corresponding to the axioms of L. We denote by Ci’f the

class of bi-neighbourhood models for L.

Possible alternative semantic conditions are examined in Section 4.4. It can be interesting
to notice that some of these conditions have a clear meaning under the interpretations of OA
proposed above. For instance, under the deontic interpretation of OA as “A is lawuful”, the
condition (N) expresses the existence of a legal system which does not state any prohibition,
whereas (M) expresses the stronger statement that prohibitions are never stated at all. More-
over, the condition (P) states that every legislation must contain at least some obligation,
and (RD;") states that every n legislations have some common obligations.

In addition, we can observe that the bi-neighbourhood semantics for monotonic systems
reduces to the JV-semantics (Definition 2.3.6) as the condition [AJapq € W\ S of the sat-
ifaction clause of boxed formula is trivially satisfied in M-models, having 5 = () for ev-
ery bi-neighbourhood pairs (o, 3). We shall more widely explore the relations between bi-
neighbourhood and standard models in Section 4.3. Now we provide a direct proof of sound-
ness and completeness of classical non-normal modal logics with respect to the corresponding

bi-neighbourhood models.
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4.2. Soundness and completeness

4.2 Soundness and completeness

We prove that classical non-normal modal logics are sound with respect to their bi-neighbourhood

models.

Theorem 4.2.1 (Soundness). Every classical non-normal modal logic E* is sound with re-

spect to the corresponding class of bi-neighbourhood models: If ® Fg+ A, then ¢ ’:cg,‘* A.

Proof. We show that every axiom or rule X is valid in bi-neighbourhood X-models.

(RE) Assume M | A + B, that is [A] = [B]. We have: w |- OA iff there is (o, 8) € N(w)
such that « C [A] C W\ B iff a C[B] C W\ S iff wIF OB. Then M |= OA < OB.

(M) Let M be a M-model and assume w |- O(AA B). Then there is («, ) € N(w) such that
a C[AANB]CW\0. Then a C [A] € W\ 0, which implies w IF OA.

(N) Let M be a N-model. By condition (N) there is («,0) € N (w). Since trivially o C
[T] S W\ 0, we have w - OT.

(C) Let M be a C-model and assume w |- OAAOB. Then there are (a, 8), (7,0) € N (w) such
that a C [A] C W\ B and v C [B] € W\ . By condition (C) we have (a«N~, 5UJ) € N(w),
where aNy C[A]N[B] =[AAB] C (W\B)N(W\J) =W\ (BU6). Then w I- O(AA B).

(T) Let M be a T-model and assume w |- OA. Then there is (o, 8) € N (w) such that
a C [A] €W\ B. By condition (T), w € «, thus w I+ A.

(P) Let M be a P-model and assume by contradiction that w IF OL. Then there is (o, 3) €
N (w) such that « C [L] €W\ . Thus a = {), against condition (P). Therefore w IF —O.L.

(D) Let M be a D-model and assume by contradiction that w IF OA A O—=A. Then there are
(e, B), (7,9) € N(w) such that o C [A] C W\ g and v C [-A] C W\ . Then an~y = 0 and
BN =0, against condition (D). Therefore w I =(0A A O-A).

(RD;') Let M be a RD;f-model and assume M | —(A1A...AAy,), that is [A1]N...N[A4,] = 0.
By contradiction, assume also w |- OA; A ... A OA,. Then there are (i, 1), ..., (an, Bn) €
N (w) such that a; C [A1] CSWN\ B1, ...y an € [An] €W\ By. Then [aq] N ... N [an] = 0,
against condition (RD;). Therefore w IF =(0A; A ... A OA,).

(4) Let M be a 4-model and assume w |- OA. Then there is (o, 3) € N(w) such that
a C [A] € W\ B. By condition (4), there is (v,5) € N(w) such that v € W' (e, ) and
§ C W (a, ). We show that WF(a, 8) C [OA] € W\ W (e, ), which implies v C [OA] C
W\ 4, whence w |- OOA: If w € W (a, 3), then («, 3) € N(w), which implies w I OA. If
instead w € W™ («, 3), then for all (y,0) € N(w), yN B # D or § N # B, that is v £ [A] or
d Z W\ [A], therefore w IF ~OA. O
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We now prove that classical non-normal modal logics are strongly complete with respect
to the corresponding bi-neighbourhood models, that is ® ):C%i* A implies ® Fg« A. The

proofs are based on the canonical model construction. We adopt the usual terminology:

Definition 4.2.1 (Maximal consistent sets). For every logic L in language £ and every set

® of formulas of £, we say that

o & is L-consistent if ® by, L, and

e & is L-mazximal consistent (or just L-maximal) if it is L-consistent and for every formula
Aof L,if A ¢ ®, then ®U{A} is not L-consistent.

We denote by Maxy, the class of all L-maximal consistent sets of formulas of £, and for every
formula A we denote by 1A the set {® € Maxy, | A € ®}.

Before defining canonical models, in the following Lemmas 4.2.2 and 4.2.3 we recall some
basic properties of maximal consistent sets. The proofs are standard and can be found in any
modal logic handbook, e.g. Chellas [29].

Lemma 4.2.2 (Lindenbaum lemma). If ® ¥y, A, then there is ¥ € Maxy, such that ® C ¥
and A ¢ V.

Proof. (Sketch) Let By, By, Ba, ... be an enumeration of all formulas of £. We construct a

chain Wg, Wy, Wy, ... of sets of formulas of £ as follows:

Uy = U {_\A}
T B v, U{B,} if ¥, U{B,} is L-consistent;
Kan v, otherwise.

Moreover, we define ¥ := .-, Vn. By the construction of ¥ we have ® C ¥. We show that
¥ is L-maximal. First, ¥y, is_ L-consistent: By contraposition, if ® U {-A} kg, L, then by
the deduction theorem (Theorem 2.2.1), ® g, =A — 1 = ——=A, then ® g, A, against the
hypothesis. Moreover, by the condition of construction it follows that, for every n € N, if ¥,
is L-consistent, then W, is L-consistent; therefore ¥, is L-consistent for every n € N. It
follows that ¥ is L-consistent. Now, let C' be any formula such that C' ¢ ¥. Then C = B;
for some B; in the enumeration of formulas. This means that at stage ¢ of the construction,
U; U {B;} is L-inconsistent. Since ¥; C ¥, we have that ¥ U {B;} is L-inconsistent. Thus ¥
is L-maximal. Finally, since ¥ is L-consistent and - A € ¥, it follows that A ¢ U. O

Lemma 4.2.3. Let ® be an L-maximal consistent set. (a) For all A€ £, A€ ® or -A € ®.
(b)) If Uy, Aand O C @, then A € . (¢) If b, A <> B and OA € @, then OB € . (d)
NAAB)=1AN1B. (¢) NAV B) = 1A U1B. (f) tAC 1B iff Fy, A — B. () 1A = 1B iff
L A < B.
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Proof. (a) By contradiction, assume A ¢ ® and —A ¢ ®. Then by definition, ® U {A} by, L
and ® U {-A} g, L. By Theorem 2.2.1, 1, A — L = —=A, and ® b, A — L. Therefore,
® |y, L, against the consistency of ®.

(b) If Uty Aand ¥ C @, then @ Fy, A. Thus, if “A € &, -y, AAN—A, then ® Fy, L, againt
the hypothesis. Therefore A ¢ &, and by (a), A € ®.

(c) Since L contains rule RE, b, OA <» OB. Then by (b), OA <+ OB € ®. By contradiction,
assume OB ¢ ®. Then by (a), -O0B € ®. Thus ® ty, -0OA, that since OA € ® implies
® Fy, 1, against the hypothesis.

(d) Let ¥ be any L-maximal set. If U et(A A B), i.e., AANB € U, then ¥ 1, A A B, thus
Uty Aand Uy, B. By (b), A€ ¥ and B € ¥, that is ¥ €A N 1B. The other direction is

analogous. (e) is similar to (d).

(f) If 1A C 1B, then by Lemma 4.2.2, {A,—-B} Fy, L, otherwise there would be an L-
maximal set containing A and =B, that is TA € 1 B. Therefore F, A A —-B — 1, which
implies Fr, A — B. (g) is immediate from (f). O

In order to prove completeness of classical non-normal modal logics we consider the follow-
ing definition of canonical model. In the definition of canonical models, the bi-neighbourhood
function is defined in different ways for monotonic and non-monotonic systems. The need
for this distinction is not a peculiarity of the bi-neighbourhood semantics, since an analogous
situation arises in the completeness proof with respect to the standard semantics (cf. [29]).

Canonical models are defined as follows.

Definition 4.2.2 (Canonical model). Let L be a classical non-normal modal logic. The
canonical model for L is the tuple My, = (WL, N, VL), where Wy, = Maxy,; for every p € L,
VL(p) = {® € WL | p € ®}; and for every ® € Wy,

N (®) = {(tA, WL\ 1A) | DA € D} if L is non-monotonic.
a {(1A,0) | DA € &} if L is monotonic.

Lemma 4.2.4. Let L be a non-normal modal logic, and My, = (Wy,, N, V1) be the canonical
model for L. Then if L is non-monotonic we have (1A, Wi\ TA) € NL(®) if and only if
OA € @, and if L is monotonic we have (T4, () € N, (®) if and only if OA € ®.

Proof. If L is non-monotonic: The right-to-left direction holds by definition of N1, (®). For the
other direction: Assume (14, Wr\ 14) € N1 (®). Then there is OB € ® such that 1B =1A.
By Lemma 4.2.3 (g), b1, B <> A, and by Lemma 4.2.3 (¢), DA € ®. For monotonic systems

the proof is analogous. O

Lemma 4.2.5 (Truth lemma). Let L be a non-normal modal logic, and M, be the canonical

model for L. Then for every formula A of L,
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My, 1A ifand only if A€ ®.

Proof. By induction on A. For A = p the claim holds by definition of Vy,. For A = L, by
definition ® ¥ L, and by consistency of ®, L ¢ ®. For A = T, ® IF T and by maximality
of &, T € . For A = Bo C, with o € {A,V,—}, the proof is immediate by applying
the inductive hypothesis and the properties of maximal consistent sets. For A = OB, we
distinguish between the monotonic and the non-monotonic case. If L is non-monotonic we
have: If OB € @, then (1 B,WL\ 1B) € Ni(®). By i.h.,, 1B = [B], then ® I OB. If
® |- OB, then there is (1C, W\ 1C) € NL(®) such that 1C C [B] € 1C and OC € .
By i.h. 1C = 1B, and by Lemma 4.5.2, OB € ®. If instead L is non-monotonic we have: If
OB € @, then (1B,0) € Ni,(®). By i.h. 1B = [B], then ® I+ OB. If ® |- OB, then there is
(1C,0) € N1, (®) such that $C C [B] and OC € ®. By i.h. 1C C 1B, and by Lemma 4.5.2,
1, C — B. Then by RM, g, OC — OB, thus OC — OB € &, therefore OB € . O

Lemma 4.2.6 (Model lemma). Let L be a non-normal modal logic, My, be the canonical
model for L, and X€ {C, N, T, P, D, RD;, 4}. If L contains X, then My, is a X-model.

Proof. We only consider non-monotonic systems, for monotonic systems we just need a slight

simplification of this proof.

(C) Assume (1A, W\ 14), (1B, W\ 1B) € N (®). Then by Lemma 4.5.2, OA, 0B € . By
closure under derivation DA A OB € ®, and since ® contains axiom C, O(A A B) € ®. Then
(T(AA B), WL\ 1(A A B)) = (tAN 1B, WL\ TAUWL\ 1B) € NL(®).

(N) OT € ® for all ® € Wy,. Then (1T, Wi\ 1T) € N(®), where Wi\ 1T = 0.
(T) Assume (1A, WL\ 14) € NL(®). Then OA € ®. By axiom T, A € ®, that is ® € 1A.

(P) Assume (TA, WL\ T4) € NL(®). Then OA € ®. If 1A = (), then 4 = 11, which implies
OL € ®, against the fact that =01 € ® and & is L-consistent. Therefore 1A # 0.

(D) Assume (TA, Wi\ 1A4), (1B, W\ 1B) € N1,(®). Then OA,0B € ®. By axiom D and the
consistency of ® it follows t/y, B <+ =A. Then 1B € 1=A, or 1=A € 1B, that is fA N 1B # ()
or Wi\ TAN Wi\ 1B # 0.

(RD;) Assume (TA1, Wi\ TA41),...,(T A, WL\ TA,) € NL(®). Then OA4y,...,04, € P.
By RD;" and the consistency of ® it follows I/, —=(A; A ... A A,). By Lemma 4.2.2 (b, d),
there is U € Wi, such that Ay A ... A A, € U. Then ¥ € 1(A; A ... A A,), which implies
tA NN 1A, # 0.

(4) Assume (1A, WL\ TA) € NL(®). Then OA € ®, and since ® contains axiom 4, OOA € P.
Thus (104, WL\ T0A4) € NL(®). We show that (i) 10A = WT(14, WL\ TA4) and (ii)
Wi\ 104 = W (1A, Wi\ 14), whence My, is a 4-model. (i) ¥ € 104 iff OA € U iff
(TAWL\ T4) € NL(D) iff U € WI(TAWL\ T4). (ii) ¥ € Wi\ 10A iff OA ¢ U iff
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(1A, Wi\ 14) ¢ N, () iff for all (1B, Wi\ 1B) € NL(T), 1B # 1A, that is tBNWL\ 14 # 0
or AN WL\ 1B # 0, iff U € W~ (14, Wi\ 14). O

Theorem 4.2.7 (Completeness). Every classical non-normal modal logic is strongly complete
with respect to the corresponding class of bi-neighbourhood models, that is: If ® ):C,bj A, then
Oy, A

Proof. Assume & t/f, A. Then by Lemma 4.2.2, there is an L-maximal consistent set W such
that ® U {—-A} C ¥. By definition, ¥ is a world in the canonical model My, for L, and
by Lemma 4.2.6, My, € C%. Finally, by Lemma 4.2.5, My, ¥ I B for all B € ®, and
Mzy,, ¥ | A. Therefore ® béc]bj A. O

4.3 Relations with the standard semantics

According to the results presented in the previous section, classical non-normal modal logics
are characterised by their bi-neighbourhood models. Moreover, as recalled in Chapter 2.3,
they are also characterised by their standard models. We can conclude that the two semantics

are equivalent:

Theorem 4.3.1. A formula is valid in a class of bi-neighbourhood models if and only if it is

valid in the corresponding class of standard models.

However, it is also worth showing this equivalence directly by model transformations.
These transformations have also a practical interest: in the next chapters, given a failed proof
in a sequent calculus for a classical non-normal modal logic, we shall extract a countermodel
of the non-derivable formula in the bi-neighbourhood semantics. Then, by applying the
transformations below to the extracted bi-neighbourhood countermodel we can also obtain

an equivalent countermodel in the standard semantics.

From standard to bi-neighbourhood models

Given a standard model, an equivalent bi-neighbourhood model can be obtained as follows.

Proposition 4.3.2. Let Mgy = W, Ny, V) be a standard model, and M;; = W, Ny, V) be
the bi-neighbourhood model defined by taking the same W and V and, for all w € W,

{(a, W\ @) | @« € Ngp(w)}  if Mg is not supplemented.

Nbi(w) = { {(a’m ’ a € Mt(w)} if Mg is supplemented.

Then, for every formula A of £ and every w € W, My;,w IF A if and only if Mg, w IF A.
Moreover, for every X € {M, C, N, T, P, D, RD;, 4}, if Mg satisfies the condition

corresponding to X in the standard semantics, then My; is a bi-neighbourhood X-model.
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Proof. The equivalence is proved by induction on A. The basic cases A = p, L, T are trivial
since the evaluation V is the same in the two models, and the inductive cases of boolean
connectives are straightforward by applying the induction hypothesis. We consider the case
A =0B. If Mg is not supplemented we have: My, w IF OB iff ([Bpi;, W \ [Bllsi) € Npi(w)
iff [B]p € Not(w) iff (i.h.) [B]st € Ng(w) iff Mg, w IF OB. If Mg, is supplemented we
have: My;, w |- OB iff there is («, ) € Np;(w) such that o C [B]y; iff & € Ng(w) and (i.h.)
a C [B]st iff (by supplementation) [B]st € Ngt(w) iff Mg, w IF OB.

Now we show that N, satisfies the right properties. For axiom M the proof is immediate
by definition of AVp;. For the following conditions we just consider the non-supplemented case,

the supplemented case is an easy simplification.
(N) W, 0) € Npi(w) because W € Ngi(w).

(C) If (a, W\ @), (B, W\ B) € Npi(w), then a, 8 € Ng(w), that implies NS € Ng(w). Thus
(anBW\ (anpP)) =(anNB,W\aUW\ B) € Ny(w).

(T) If (a, W\ @) € Nppi(w), then o € Ng(w), thus w € a.
(P) If (a, W\ ) € Npi(w), then a € Ng(w), thus o # 0.

(D) If (a, W\ @), (B,W\ B) € Npi(w), then a, 3 € Ng(w). Thus S # W \ «, that implies
anpf#0or W\anW)\ g #0.

(RD;D) If (a1, W\ )y -, (i, W\ i) € Npi(w), then g, ..., iy € Nt(w), thus agN...New, # 0.

(4) If (a, W\ @) € Npi(w), then a € Ny (w), therefore {v | a € Ng(v)} € Ng(w). Thus by
definition ({v | @ € Ng(v)},{v | a@ ¢ Ng(v)}) € Npi(w). In addition, {v | @ € Ng(v)} =
Wi (o, W\ @) — since a € Ny(v) iff (a, W\ a) € Ny;(v). Moreover, {v | a ¢ Ny(v)} =
W, (a, W\ «) — since o ¢ N (v) iff for all § € Ny (v), a # B iff for all (B, W\ ) € Ny;i(v),
a # B iff for all (8, W\ B) € Nyi(v), an(W\B) #0or W\a)Ng #0iff v e W, (a, W\ ).
Thus My, is a 4-model. O

From bi-neighbourhood to standard neighbourhood models

Fo the opposite direction we propose two transformations: a more general one, and a “finer”
one which is relativised with respect to a set of formulas. The general transformation is as

follows.

Proposition 4.3.3. Let My, = (W, Ny, V) be a bi-neighbourhood model, and Mg =
(W, Nst, V) be the standard model defined by taking the same W and V and, for all w € W,

Nat(w) = {y CW | there is (a, B) € Np;(w) such that « T~y C W\ S}.
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Then, for every formula A of £ and every w € W, Mg, w IF A if and only if My;, w IF A.
Moreover, for every X € {M,C, N, T, P, D, RD;, 4}, if M, is a bi-neighbourhood X-model,

then Mg; satisfies the condition corresponding to X in the standard semantics.

Proof. The proof of equivalence of the two models is by induction on A. As before, we only

consider the inductive step where A = OB. We have: Mg, w IF OB iff [B]s € Ny (w) iff

(i.h.) [B]pi € Not(w) iff there is (o, 8) € Np;(w) such that a C [B]y; € W\ S iff Mp;, w I+ OB.
Now we prove that Mg; satisfies the right properties.

(M) Let My; be a M-model, and assume v € Ny (w) and v € 0. Then there is (o, ) € Ny;(w)
such that « €y C W\ . Thus o € § € W\ ), which implies § € Ny (w).

(N) Let Mp; be a N-model. Then there is (a,0) € Np;(w). Since « € W C W\ 0, by
definition W € Ny (w).

(C) Let My; be a C-model, and assume 7,8 € Ng(w). Then there are (a1, 31), (a2, B2) €
Npi(w) such that ay €y C W\ B, ag €5 C W\ B2. By condition (C), (a1 Nz, 81 U By) €
Npi(w), where a;Nag € yN4d, and yN§ C W\ B1NW\ B2 = W\ B1UB2. Then yNd € Ng(w).

(T') Let My, be a T-model, and assume y € Ny (w). Then there is (o, 3) € Np;(w) such that
a Cy C W)\ S. By condition (T), w € a, then w € .

(P) Let My; be a P-model, and assume by contradiction that () € N (w). Then there is
(a, B) € Npi(w) such that « C ) C W\ 3. Thus a = (), against condition (P).

(D) Let My; be a D-model, and assume by contradiction that v, W\ v € Ng(w). Then there
are (aq, 1), (ag,B2) € Npi(w) such that a7 € v C W\ B, aa CW\ v C W)\ B2. Then
a3 Nag = 0 and B N By = ), against condition (D).

(RD;") Let Mp; be a RD;-model, and assume v, ..., v, € Ngt(w). Then there are (a1, 51), -, (an, Bn) €
Npi(w) such that a; € C W\ B; for all 1 <14 < n. By condition (RD}'), a1 N ... N ay, # 0.
Then v, N ... Ny, # 0.

(4) Let My; be a 4-model, and assume v € Ny (w). Then there is («, 3) € Np;i(w) such that
a C v C W)\ B. By condition (4), there is (v,8) € Npi(w) such that v € WH(«,8) and
§ € W (a, B). We show that (i) WH(a, 8) C {v | v € Ns(v)} and (ii) {v | v € Nx(v)} C
W\ W (a, ), which imply v C {v | v € Ng(v)} C W\ 9, thus {v | v € Ng(v)} € Ng(w).
(i) If v € WH (o, B), then (a, B) € Npi(v), thus v € Ngt(v). (ii) If v € Ngi(v), then there is
(o, ) € Npi(v) such that o/ €y C W\ . Then o/ NS =0 and f' N = . Therefore
v W (a,f). O

Observe that, on the basis of the above transformation, elements of bi-neighbourhood
pairs can be also seen as lower and upper bounds of neighbourhoods of standard models. For
the non-monotonic case, a finer transformation can be also given by considering a set S of

formulas which is closed under subformulas.
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Proposition 4.3.4. Let My; = (W, Ny;, V) be a bi-neighbourhood model and S be a set of
formulas of £ closed under subformulas. We define the standard model Mg = (W, Ny, V)
with the same W and V and by taking, for all w € W,

Nst(w) = {[[C]]bz ‘ OC € § and My;, w IF DC}

Then for every formula A € S and every world w € W, Mg, w IF A if and only if My;, w IF A.
Moreover, (N) if OT € S and My; is a N-model, then My contains the unit; (C) if
OA,O0B € S implies D(AA B) € § and My, is a C-model, then Mg is closed under intersec-
tion; (T/P/D/RD;") If My; is a T/P/D/RD;f-model, then My, satisfies the corresponding
condition in the standard semantics; (4') if A € S implies OOA € S and My, is a 4-model,

then Mg satisfies the condition corresponding to axiom 4 in the standard semantics

Proof. The equivalence is proved by induction on A. The basic cases are immediate. If
A = BoC, where o € {A,V,—}, the claims holds by applying the inductive hypothesis since
B,C € S because S is closed under subformulas. If A = OB, then B € § and, by i.h.,
[B]st = [Blpi- Thus Mg, w IF OB iff [B]st € Ng(w) iff [B]p; € Ngt(w) iff there is OC € S
such that [C]p = [B]p and Mg, w IF OC iff Mg, w |- OB.

(N) Let My; be a N-model. Then My;,w IF OT. Since OT € S, by definition [T]y = W €
Nt (w).

(C) Assume «, 3 € Ng(w). Then there are DA, 0B € S such that a = [A]w, 8 = [Blu,
and My, w I OA, My;,w I+ OB, that is My;,w IF OA A OB. Since My, is a C-model
we have My, w IF O(A A B). By the properties of S, O(A A B) € §. Then by definition
[A A B]pi € Not(w), where [A A By = [Allps N [Bloi = a N .

(T) Assume « € Ng(w). Then a = [A]p; for some A such that OA € S and My;, w |+ OA.
Since My; is a T-model, My;, w IF A, that is w € [A] = a.

(P) Assume by contradiction that () € Ny (w). Then there is OA € S such that My, w I- OA
and [A]y; = 0 = [L]p. Thus My, w IF OL, against the soundness of axiom P with respect

to P-models.

(D) Assume a, W \ @ € Ng(w). Then there are DA, 0B € S such that a = [A]y, W\
a = [B]p, and My;,w IF OA, Mp;,w |- OB. Then [A]ly; = W\ [Blsi = [~B]w, that is

My, w IF O-B, against the soundness of axiom D with respect to D-models.

(RD;}) Assume oy, ..., € Ng(w). Then there are DAy, ...,0A4, € S such that a; = [A;]p;
and My;,w IF OA; for every 1 < i < n, that is My;,w IF OA; A ... AOA,. Then My,
=(0A; A ... ANOA,), and since My; is a RD; -model, My; = —(A1 A ... A Ay,), that is [A;]p N
N [AR]e = a1 NNy, # 0.
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(4) Assume « € Ng(w). Then a = [A]y; for some A such that OA € S and My, w IF OA.
Since My, is a 4-model, Mp;, w I OOA. In addition, O0A € S. Thus [OA]y; € Ng(w), where
[OAs = [BALs: = {v | [Alst € Nst(v)} = {v [ [Albi € Nit(v)} = {v | @ € Nst(v)}- O

The transformation in Proposition 4.3.4 is a proper refinement of the one in Proposi-
tion 4.3.3. Indeed, the definition of Ng(w) in the latter transformation could be equivalently

rewritten as

Ngt(w) = {y C W | there is (a, 8) € Np;(w) such that « €y C W\ § and
v = [C]p; for some OC € S}.

That is, instead of adding to N (w) every set v lying between the elements of a pair (a, 8) €
Npi(w), as it is done in the first transformation, we only add those sets that coincide with
some relevant truth sets of formulas, thus obtaining smaller models from the point of view of
the neighbourhood function. For the monotonic case, an analogous result could be obtained
by considering, for every w € W, the supplementation of Ng(w) in Proposition 4.3.4, i.e.,

1(w) = {a € W | there is OC € S such that My;,w IF OC and [C]y C o). However in
this case the advantage of the finer transformation is not as relevant as is the non-monotonic

case.

From bi-neighbourhood to relational models

As recalled in Section 2.3, regular logics, i.e., the logics containing both axioms M and C,
have also a relational semantics (cf. Definition 2.3.7). We conclude this section by presenting

transformations of finite bi-neighbourhood MC-models into equivalent relational ones.

Proposition 4.3.5. Let My; = W, N, V) be a finite MC-model, and let A" (w) denote the
set {a | (o, 0) € N(w)}. We define the relational model M, = (W, W' R, V) with the same
W and V and by taking W' = {w € W | N'1(w) = 0}, and for all w € W, R(w) = N (w).
Then for every formula A of £ and every w € W, My;,w IF A if and only if M,,w I- A.
Moreover, if My; is a N/P /T /4-model, then M, is a relational model for MCN/P /T /4.

Proof. The equivalence is proved by induction on A. The basic cases are straightforward
since the two models share the same evaluation of atomic variables, and the inductive cases
of boolean connectives are easy by applying the inductive hypothesis. We just consider the
case A = OB: My, w |- OB iff there is o € N (w) s.t. a C [B]w iff NN (w) C [B]y; and
(since M is a finite MC-model) N (w) € N (w) iff w ¢ W' and (by i.h.) R(w) C [B], iff
M, wlFOB.

The model conditions are proved as follows.

(Normality) If M;; is a N-model, then for every w € W there is (a,0) € N(w), that is
NY(w) # 0. Then Wi = ).
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(Seriality) Assume w € W\ W' Then by condition (C), (NN (w),0) € N(w), thus by
condition (P), NN (w) # 0. Then R(w) # 0.

(Reflexivity) Assume w € W\ W?. Then by condition (C), (NN (w),0) € N(w), thus by
condition (T), w € AN (w). Then w € R(w), that is wRw.

(Transitivity) Assume wRv and vRz, where w,v,z € W\ W’ Then v € NN (w) and
z € NNY(v). By condition (C), (NN (w),d) € N(w), then by condition (4), there is (v, ) €
N(w) such that v € WA (w),0) = {y | (NN (w),0) € N(»)}. So NN (w) C v,
then v € {y | (NN (w),0) € N(y)}, that is (NN (w),0) € N(v). This implies N (v) C
NN (w), thus z € N (w), therefore wRz. O

4.4 Alternative semantic conditions

For some of the considered modal axioms, it is possible to find alternative conditions that
equally provide a characterisation of the axioms in the bi-neighbourhood semantics. We

present in this section some examples of possible alternative conditions.

Proposition 4.4.1. The conditions (M) and (M’) below are equivalent, that is, a formula A

of L is valid in the class of all M-models if and only if it is valid in the class of all M’-models:

(M) If (o, B) € N(w), then g = 0.
(M) If (o, B) € N(w), « C v and § C 3, then (v,0) € N (w).

Proof. We show that given a M-model we can define an equivalent M’-model, and vice versa.
The considered transformations preserve conditions (N), (C), (T), (P), (D), (RD;)), and (4).
First, let M = (W, N,V) be a M-model. We define the model M’ = (W, N’,V) by taking
the same W and V, and, for all w € W, N'(w) = {(a, D) | there is (3,0) € N (w) s.t. 8 C a}.
It is easy to see that M’ is a M’-model. We show by induction on A that M,w |- A if
and only if M’ w |- A. We only consider the inductive case A = OB as the other cases are
immediate. We have: M’ w I OB iff there is («, ) € N'(w) such that « C [B]ay iff there
is (8,0) € N(w) such that 8 C « iff, by i.h., 8 C [B]am iff M, w IF OB. Moreover, it is easy
to see that the model conditions are preserved. For instance, assume M is a P-model and
(a,0) € N'(w). Then there is (3,0) € N(w) such that 8 C a. By condition (P), 5 # (). Then
a # (.

For the opposite direction, let M = W, N,V) be a M'-model. We define the model
M* = (W, N*V) by taking the same W and V, and, for all w € W, N*(w) = {(a,0) |
there is 8 C W s.t. (o, 8) € N(w)}. Then M* is a M-model. We show that M*,w I+ A
if and only if M,w I- A for all A € L. We consider only the case A = OB. We have:
M* w I+ OB iff there is (o, 0) € N*(w) such that & C [B]am+ iff there is S such that
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(ar, B) € N(w) iff, by condition (M), (e, ) € N(w), and by i.h., a C [B]p iff M, w IF OB.

As before, it is easy to show that the transformation preserves the model conditions. O

As remarked in Section 4.1, the condition (M) reduces the bi-neighbourhood semantics to
the JV-semantics for monotonic logics (cf. Definition 2.3.6). By contrast, M’-models can be
put in correspondence with supplemented standard models (cf Section 2.3), in the sense that
supplemented standard models can be seen as the particular cases of M’-models in which all
bi-neighbourhood pairs are complementary.

A further example of alternative conditions are the following ones for axiom 4.

Proposition 4.4.2. The conditions (4) and (4’) below are equivalent in non-monotonic mod-
els (i.e., models not satisfying condition (M)), that is, a formula A of £ is valid in the class of
all non-monotonic 4-models if and only if it is valid in the class of all non-monotonic 4’-models.

Moreover, the conditions (4) and (4m) below are equivalent in M-models:

(4)  If (o, B) € N(w), then there is (7v,8) € N(w) s.t. ¥ € W (, 8) and § € W (o, B).

(4)  If (a, B) € N(w), then (W (a, B), W (a, 8)) € N(w).
(4m) If (o, B) € N(w), then (W (a, B),0) € N (w).

Proof. Let us consider the conditions (4) and (4') in non-monotonic models. We show that
given satisfying one condition, it is possible to define an equivalent model satisfying the
other condition. First, every 4’-model is also a 4-model, so there is nothing to do. For the
other direction, let M = (W, N, V) be a 4-model. We define the model M’ = (W, N, V)
by taking the same W and V, and, for every w € W, N'(w) = {(«, ) | there is (v,d) €
N (w) such that ¥ € « and 6 C 6}. Then M’ is a 4-model: if (o, 8) € N'(w), then there
is (v,0) € N(w) such that v C o and § C 3. By (4), there is (¢,{) € N(w) such that ¢ C
WH(v,68) and ¢ € W (v,d). It is easy to verify that Wt (y,d) € W' (a, B), and W (v,6) C
W' (a, 8). Thus € € W' (a, 8), and ¢ € W '(«, 8), which imply (W1 (, 8), W '(a, B)) €
N (w). We now show that, for every A € L, M’,w Ik A if and only if M, w I A. As usual, we
only consider the inductive case A = OB. If M’ w I+ OB, then there is (a, 8) € N (w) such
that a C [BJar € W\ B. By definition, there is (v,d) € N(w) such that v C « and § C .
Then v C [B]ar € W\ 6. Moreover, by i.h., [B]ay = [B]m. Therefore M, w |- OB. For the
oter direction, if M,w I OB, then («, ) € N(w) such that o C [B]ar ih. [Blm €W B.
Thus (a, 8) € N'(w), therefore M, w I OB. For the equivalence of conditions (4) and (4m)

in M-models, the proof is a simplification of the one just given for the non-monotonic case. [

As a last example, it can be shown in an analogous way that the following conditions
are equivalent with respect to the validity of formulas, whence they equally characterise the

axiom [V:
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(N)  There is & C W such that for all w € W, (a,0) € N (w).
(N')  For all w € W, there is & C W such that (o, 0) € N(w).
(N”) For all w e W, W, 0) € N(w).

4.5 Bi-neighbourhood models for axiom 5

It would be interesting to extend the bi-neighbourhood semantics so to cover further systems
defined by additional standard modal axioms. In this section, we consider the systems E5

and M5, i.e., the extensions of E and M with the axiom
5 -0OA— O-0OA.

We present completeness results for these systems, as well as mutual transformations with
standard models analogous to the ones in Section 4.3.

Similarly to the axioms T and 4, the axiom 5 is of interest in epistemic logic, where it
expresses the so-called negative introspection: If the agent does not know that A, then she
knows that she does not know that A. The reason for treating E5 and M5 separately from the
other systems is that their completeness proof needs a different definition of canonical model
than the one in Definition 4.2.2. Furthermore, this definition does not seem to be adequate
for most of the other considered axioms, we let open the problem of finding a characterisation
of extensions of E5 and M5 with further axioms.

Analogously to conditions (4’) and (4m) in previous section, in order to define bi-neighbourhood

models for 5 we distinguish between the monotonic and the non-monotonic case:

Definition 4.5.1 (Semantic conditions for axiom 5). We call 5-model any bi-neighbourhood
model satisfying the condition (5) below. Moreover, we call Mbm-model any bi-neighbourhood

M-model satisfying the condition (5m) below.

(5)  If (e, W\ ) ¢ N(w), then (W (a, W\ a), W (a, W\ ) € N(w).
(5m) If (o, 0) & N(w), then (A~ (a, 0),0) € N(w).

We now prove that the systems E5 and M5 are sound and complete with respect to the

corresponding classes of bi-neighbourhood models.

Theorem 4.5.1 (Soundness). Logics E5 and M5 are sound with respect to 5 and M5m-

models, respectively.

Proof. We only show that axiom 5 is valid. Let M be a 5-model and assume w I+ -OA.
Then for every «, 8 such that o C [A] € W\ 3, it holds (a, 8) ¢ N (w). Thus in particular
([A], [-A]) ¢ N(w). By condition (5), (W~ ([A], [-A]), W ([A], [-4])) € N (w). Moreover,
W ([A], [-A]) C [-O0A] and W ([A], [-A]) C [OA], then w I O-0A. For (5m) the proof

is analogous. O
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In order to prove the completeness of E5 and M5 we consider an alternative definition of

canonical model, that following Chellas [29] we call largest canonical model.

Definition 4.5.2 (Largest canonical model). The largest canonical model for L is the tuple
My = W, Np, VL), where W, and Vi, are as in Definition 4.2.2, and Np, is defined as

follows:

{la, WL\ o) |a CSWLF\ {(TA, WL\ TA) | OA ¢ &}  if L is non-monotonic.

NL(®) = { {(a,0) | « CWL}\ {(14,0) | DA ¢ @} if L is monotonic.

Lemma 4.5.2. If ® is a E5-maximal set (respectively M5-maximal set), then OA € ® if and
only if (1A, Wgs\ TA) € Ngs(®) (respectively (14, 0) € Nms(P)).

Proof. If DA ¢ &, then by definition (14, Wgs\ 14) ¢ Ngs(®). If (14, Wgs\ 14) ¢ Ngs(P),
then there is B € L such that 1B =14 and OB ¢ ®. By Lemma 4.2.3 (g), Fgs B < A, and
by Lemma 4.2.3 (¢), OA ¢ ®. For M5 the proof is analogous. O

On the basis of the above lemma, similarly to Lemma 4.2.5 we can prove that for every
formula A of £ and every E5-maximal (respectively M5-maximal ) set ®, A € ® if and only
if Mgs,® IF A (respectively My, @ IF A). Moreover, the following holds.

Lemma 4.5.3 (Model lemma). The largest canonical model for E5 (respectively for M5) is
a 5-model (respectively a M5m-model).

Proof. Assume (o, W\ a) ¢ Ngs(®). Then there is A € £ such that « =14 and OA ¢ &. By
Lemma 4.2.3, -0A € ®, and by axiom 5, O-0A € ®. Thus (1-0A4,10A4) € Ng5(®). In the
same way as in the proof of Lemma 4.2.6 point (4) we can prove that 104 = W (14, Wgs\ 1
A) and Wgs\ 104 = W (14, Wgs\ 14). Therefore (W~ (o, Wis \ a), W (o, WEs \ a)) €
Nes(P). O

Then, in the same way as for Theorem 4.2.7 we can prove the following theorem.

Theorem 4.5.4 (Completeness). The logics E5 and M5 are strongly complete with respect

to the class of all 5-models, and the class of all Mbm-models, respectively.

We can also extend to E5 and M5 the model transformations presented in Section 4.3. As
shown in Chellas [29], the axiom 5 is characterised in the standard neighbourhood semantics

by the following condition
(5) If a ¢ N(w), then {v | a ¢ N(v)} € N(w).

Given a standard model for E5 or M5, an equivalent bi-neighbourhood model can be

obtained as follows.
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Proposition 4.5.5. Let My = (W, N4, V) be a standard model satisfying the condition
corresponding to the axiom 5 in the standard semantics, and let My; = (W, Ny, V) be the
bi-neighbourhood model defined on the basis of Mg; as in Proposition 4.3.2. Then My, is a

5-model if Mg is not supplemented, and it is a 5m-model if M, is supplemented.

Proof. (5) Assume (o, W\ ) ¢ Npi(w). Then o ¢ N (w). By the condition corresponding
to axiom 5 in the standard semantics, {v | @ ¢ Ng(v)} € Ng(w). Thus by definition ({v |
a ¢ Na()}, {v | @ € Nou(v)}) € Npi(w). We show that {v | a € Ny(v)} = W(a, W\ a),
and {v | o ¢ Ny (v)} = W (a, W\ ). We have o € Ny (v) iff (a0, W\ @) € Ny;(v) iff v €
W (o, W\ ). Moreover, a ¢ Ny (v) iff for all v € Ny (v), a # v iff for all (v, W\ ) € Nyi(v),
a# v, thatisaNW\y#0or W\any #0iff v e W, (a, W\ a). For the monotonic case

the proof is analogous. O

For the opposite direction, given a bi-neighbourhood model for E5 or M5 we obtain an

equivalent standard model as follows.

Proposition 4.5.6. Let M;; = (W, Ny;, V) be a bi-neighbourhood 5- or 5m-model, and let
Mgt = (W, Ngt, V) be the standard model defined on the basis of My; as in Proposition 4.3.3.

Then Mg, satisfies the condition corresponding to 5 in the standard semantics.

Proof. Assume a ¢ Ng(w). Then in particular (a, W\ a) ¢ Np;(w), thus by condition (5),
(W, (e, W\ ), Wi (a, W\ @) € Nyi(w). We show that Wi (a, W\ a) C {v | a € Ny(v)},
and W, (e, W\ a) C {v | o ¢ Ny(v)}, which implies {v | o ¢ Ny(v)} € Ng(w). If
v € Wi(a, W\ @), then (a, W\ a) € My;(v), then o € Ny (v). If v € W, (o, W\ @), then for
all (7,9) € Npi(v), and # D or W\any # 0, then v € a or « € W\ 6, therefore o ¢ Ny (v).

For the monotonic case the proof is analogous. O

4.6 Bi-neighbourhood semantics for agency and ability logics

In this section, we define the bi-neighbourhood models for Elgesem’s agency and ability logic
ELG [47] and its coalition extension COAL by Troquard [165] (see their axiomatisations

and their neighbourhood semantics in Section 2.4).

Definition 4.6.1. A bi-neighbourhood model for ELG is a tuple M = (W, NE NE V),
where VW is a non-empty set, V is a valuation function, and for each agent ¢, /\/iIE and /\/i(C are
two bi-neighbourhood functions W — P(P (W) x P(W)) satisfying the following conditions:

(Ce)  If(,f),(7,0) € NF(w), then (a Ny, BUS) € N (w).
(Tg) If (o, B) € NE(w), then w € a.

(Qc)  If (o, B) € NF(w), then 3 # 0.

(Pc) If (a, B) € N (w), then o # 0.

(Intrc) N (w) C N (w).
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The forcing relation IF is defined as usual for atomic formulas and boolean connectives, whereas
for E- and C-formulas it is defined as follows:

M,wlFE;A iff  there is (o, 8) € NE(w) s.t. o C [A]m S W B.

M,w - C;A iff  there is (o, 8) € NF(w) s.t. a C [AJpm S W\ B.

As we shall see in Chapter 6, the bi-neighbourhood semantics for ELG will be convenient
for the extraction of countermodels of non-valid formulas from failed proofs in sequent calculi.
However, this semantics can also suggest an account of agency in terms of conditions enabling
or preventing the realisation of actions, represented respectively by the elements a and 3 of
bi-neighbourhood pairs. According to this interpretation, the conditions (P¢) and (Qc), i.e.,
a # () and 8 # 0, correspond to the fact that the results of actions can always be enabled
(it is not possible to realise a contradiction) and prevented (it is not possible to realise a
tautology). Notice also that, because of the validity of —=E; T and of the axiom T'g, formulas
of the form E; A are never valid in models for ELG, thus providing a semantic counterpart of
the idea that actions can be always prevented.

As for classical non-normal modal logics (see Chapter 4) we can prove that ELG is sound

and complete with respect to its bi-neighbourhood models.

Theorem 4.6.1 (Soundness and completeness). A formula A of Lg, is derivable in ELG if
and only if it is valid in all bi-neighbourhood models for ELG.

Proof. As usual, the proof of soundness amounts to showing that all axioms are valid and all
rules are validity-preserving. For axioms Cg, Tr, Pc, and for rules REg, REc we can refer
to the proof of Theorem 4.2.1. For Q¢ and Intgc the proof is as follows. (Q¢) Assume by
contradiction that w I- C;T. Then there is (o, 8) € N(w) such that « C [T] C W\ 8.
Thus = 0, against condition (Q¢). Therefore w I+ -C;T. (Intgc) Assume w |k E;A. Then
there is (a, ) € NF(w) such that o C [A] € W\ B. By condition (Intgc), (o, 3) € NE(w),
therefore w I+ C; A.

Completeness can be proved by the canonical model construction as it is done in Chapter 4
for classical non-normal modal logics. We define the canonical model for ELG as the tuple
W, NE,NE, V), where W is the class of ELG-maximal sets, V(p) = {® € W | p € &}, and
for every i € A and X € {E,C}, N¥(®) = {(1A,W\ 1A4) | X;4 € ®}. We can prove that
® |- A if and only if A € @, (cf. the proof of Lemma 4.2.5), and that the canonical model
is a bi-neighbourhood model for ELG. We only show that it satisfies the conditions (Qc)
and (Intgc), for the other conditions we refer to the proof of Lemma 4.2.6. (Qc) Assume
(tA, W\ 1A4) € NE(®). Then C;A € ®. If 1A = W, then 1A = 1T, which implies C;T € ®,
against the fact that =C; T € ® and ® is ELG-consistent. Therefore T A # W, that is
W\ 14 # 0. (Intgc) Assume (o, 3) € NE(®). Then there is E;A € ® such that o =14
and 8 = W\ 1TA. Since E;A — C;A € ® and ® is closed under derivation, C;A € ®. Thus
(TA, W\ 14) = (o, B) € NE(®). O
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It is easy to see that by applying the transformations in Section 4.3 to the bi-neighbourhood
models for ELG it is possible to obtain equivalent models in the standard semantics for ELG
defined in Governatori and Rotolo 78] (cf. Section 2.4).

We now consider the bi-neighbourhood models for COAL.

Definition 4.6.2. A bi-neighbourhood model for COAL is a tuple M = <W,N5E,N;C,V),
where in particular for every group of agents g, ./\/'gE and N, g(C are two bi-neighbourhood func-
tions satisfying the conditions (Cg), (Tg), (Qc), and (Pc) of Definition 4.6.1 (but with N'®
and NVC indexed by groups g instead of agents ), and also the following additional conditions:

(Fe) N (w) = 0.
(Intd.) If (o,pB) € /\/;E1 (w) and (7v,9) € N;EQ (w), then (e« N~v,BUJ) € ./\/'g(C (w).

1Ug2

The forcing relation I is defined as in Definition 4.6.1, in particular:

M,wl-EgA iff thereis (a,8) € N (w) s.t. a C [AJpm CSW )\ B.
M,wl-C4A iff thereis (o, ) € ./\/’;C(w) st.a C[AJm SWN B

Theorem 4.6.2 (Soundness and completeness). A formula A of L, is derivable in COAL
if and only if it is valid in all bi-neighbourhood models for COAL.

Proof. Essentially, we need to reformulate and extend the proof of Theorem 4.6.1. For the
soundness we show the validity of axioms F¢ and Int2.. (Fc) Assume by contradiction that
w Ik CyA. Then there is (o, 8) € Nj(w) such that a C [A] € W\ 8. Thus N (w) # 0,
against condition (Fc). Therefore w - =CyA. (Int3:) Assume w I- E;y AAE,, B. Then there
are (a, ) € Ng(w) and (v,9) € ./\@EQ(w) such that o C [A] C W\ B and v C [B] C W\ 0.
Then by condition (IntZ), (N, BUS) € j\/'g((iug2 (w), where a Ny C[AAB] C W\ (BUJ).
Therefore w - Cy,g,(A A B).

For completeness, we define the canonical model for COAL as the tuple <V\/,./\/éE N, ;C V),
where W is the class of COAL-maximal sets, V(p) = {® € W | p € ®}, and for every
g C Aand X € {E,C}, NF(®) = {(1A, W\ 14) | X,4 € ®}. We can prove that ® |- A
if and only if A € ®, (cf. the proof of Lemma 4.2.5), and that the canonical model is a
bi-neighbourhood model for COAL. Here we only show that it satisfies the conditions (Fc)
and (Int?:). (Fc) By contradiction, assume (14, W\ TA) € NQ()C(@). Then CyA € @, against
the fact that =CypA € ® and ® is COAL-consistent. Therefore /\/(,()C (@) = 0. (Int}c) Assume
(a,8) € Ni(w) and (v,0) € Ngo(w). Then there are Eg A, Eg, B € ® such that a =14,
B =W\ TA, v =tB, and 6 = W\ 1B. Since Eq ANEgB — Cyu4,(A N B) € &, we have

Cgyug (A A B) € @. Thus (1(A A B), W\ (A A B)) = (aNy,BUS) € N, (D). O
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4.7 An embedding into monotonic dyadic logics

As observed in Section 4.1, the bi-neighbourhood semantics decomposes the forcing condition
for boxed formulas of the standard semantics into two monotonic components. In this section,
we show that the same argument can be also reformulated syntactically in the form of an
embedding of classical non-normal modal logics into logics with a dyadic monotonic operator.
The argument is as follows.

Let us consider a modal extension of CPL, that we call Ma, formulated in a propositional
modal language Lo containing a dyadic modality © instead of O, whose formulas are defined

by the following grammar, where p; is any variable in Atm:
Au=pi | L| TIANA|AVA|A— A|Q(A/A),
We define the system Mgy by extending CPL (formulated in language L) with the modal

rule

A C B D
Mo -3 A7) > 9(C/D)

On the basis of RM o, in the systems My the modality © is monotonic on both two arguments,
in particular the two formulas O(A A C/B) — Q(A/B) and O(A/B A C) — Q(A/B) are
derivable.

In addition, we also consider the following translation 1 : £ — Lo of the formulas of the

language L of classical non-normal modal logics into formulas of Lo:

T(p;) = pi, for every p; € Atm;

Ao B)=1(A)o1(B), for o € {A,V,—};
1(BA) = O(1(A)/= 1 (4)).
We show that the logic E can be simulated by Mg by means of the above translation, in
the sense that a formula A of L is derivable in E if and only if 1(A) is derivable in My. We

present the embedding only for the basic logic E, but the same argument could be extended

(
(
(M) =T;
(
(

to the other systems of the classical cube by considering extensions of Mo with the axioms

O(A/B) = Q(A/L) (for systems with axiom M);
O(T/L) (for systems with axiom N);
Q(A/B)ANQ(C/D) — Q(ANC/BV D) (for systems with axiom C).

The left-to-right direction of the claim (if A is derivable in E, then {(A) is derivable in M2)
is proved directly by considering derivation in Hilbert systems, whereas the opposite direction

is proved indirectly by a standard semantic argument, for which we need the following lemmas.
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Lemma 4.7.1. My is sound with respect to bi-neighbourhood models under the following
evaluation I of formulas of Lo, which is defined as IF; (Definition 4.1.1) for A = p;, L, T, BA
C,BVvC(C,B — C, and for O-formulas is as follows:

M w ko Q(B/C) iff there is (a, 8) € N (w) such that a C [B]aq and 8 C [Cum.

Proof. As usual, we have to show that all axioms of My are valid and that the rules of My
preserve the validity. We only consider rule RM¢: Assume that the premisses A — C and
B — D are valid and that w |- O(A/B). Then there is (o, 3) € N (w) such that o C [A] and
B C [B]. By the validity of the premisses, [A] C [C] and [B] C [D], which imply o C [C]
and 8 C [D]. Then w IF Q(C/D). O

Lemma 4.7.2. Let M = (W, N,V) be a bi-neighbourhood model. Then for every w € W
and every A € L, w IFy; A if and only if w IFo T(A).

Proof. By induction on A. The proof is immediate for A = p;, L, T, BAC, BV C,B — C.
We consider the case A = OB: w I OB iff there is (a, 8) € N(w) s.t. a C [B]y CW\ B iff
(i.h.) there is (a, 8) € N(w) s.t. a C [1(B)]o SW\ B iff a C [{(B)]o and 8 C [~ 1 (B)]o
it w o O(H(B)/~ 1 (B)). n

Theorem 4.7.3 (Embedding). For every formula A of L,
E F A if and only if Mg F (A).

Proof. From left to right, assume E - A. The proof is by induction on the height h of the
derivation of A in the system E. If h = 0, then A is an instance of an axiom of CPL. It is
immediate to verify that T(A) is an instance of the same axiom, whence it is derivable in Ma.
If h > 1, we consider the last rule applied in the derivation, which is either M P or RE. If the
last rule applied is M P, then A is obtained from formulas B and B — A occurring in the same
derivation at a smaller height. By i.h., {(B) and {((B — A)) = 1(B) — (A) are derivable in
My, then by M P, 1(A) is derivable in M. If the last rule applied is RE, then A has the form
OB — 0OC, and is obtained from formulas B — C' and C' — B occurring in the derivation at
a smaller height. By i.h., {((B — C)) = 1(B) — {(C) and {((C — B)) = 1(C) — {(B) are
derivable in Ma. By propositional reasoning, - 1 (B) — — 1 (C) is derivable. Then by RM¢
we obtain O(1(B)/= 1 (B)) = Q(1(C)/=1(C)) = 1(A).

For the opposite direction, assume by contraposition that E I/ A. Then by the com-
pleteness of E with respect to bi-neighbourhood models (Theorem 4.2.7), there are a bi-
neighbourhood model M and a world w of M such that w |f4; A. By Lemma 4.7.2; this
implies w o 1(A), therefore by Lemma 4.7.1, My I/ 1(A). O
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4.8 Discussion

In this chapter, we have provided an alternative semantic characterisation of all classical
non-normal modal logics considered in this work. The semantics is based on so-called bi-
neighbourhood models, these can be seen as a generalisation of standard neighbourhood mod-
els. As a difference with standard models, worlds in bi-neighbourhood models are equipped
with pairs of neighbourhoods, rather than single neighbourhoods. Bi-neighbourhood seman-
tics essentially decomposes the forcing condition for boxed formulas of the standard seman-
tics into two monotonic components. Elements of bi-neighbourhood pairs can be also un-
derstood as lower and upper bounds of neighbourhoods in standard models. In general,
bi-neighbourhood models can be used to represent reasoning with partial information. In
this chapter, we have proved soundness and completeness of every system with respect to the
corresponding bi-neighbourhood models, both directly by the canonical model construction
and indirectly by mutual transformations with standard neighbourhood models. Moreover,
we have partially extended the semantics to the systems containing the axiom 5, and we
have also given a characterisation of Elgesem’s and Troquard’s agency logics in terms of bi-
neighbourhood models. Finally, basing on the bi-neighbourhood semantics we have presented
a syntactic embedding of classical non-normal modal logics into dyadic monotonic logics.

In future work, it would be worth extending the bi-neighbourhood semantics to combi-
nations of axiom 5 with the other axioms considered in this work, as well as to systems
containing additional standard modal axioms, such as B, 2, and Sahlqvist formulas. Con-
sidering the first task, it seems that neither the smallest nor the largest canonical model are
adequate. Similarly to Chellas’ completeness proof for ET5 in the standard semantics [29],
one probably needs to consider specific definitions of canonical model for every combination.

It is clear that the structure underlying the bi-neighbourhood semantics, i.e., essentially
sets of pairs of neighbourhoods, can have an interest also independently from the systems
considered in this work. For instance, we have seen in the previous section that it can be
used to characterise systems with dyadic modalities, as it allows one to express forcing con-
ditions like, e.g., M, w |- Q(A/B) if and only if there is (o, 3) € N(w) s.t. o C [A]am and
B C [B]m. A similar structure is considered by Gulisano [80] in order to characterise dyadic
non-normal modalities for the representation of conditional obligations and prohibitions. The
same structure can be generalised for considering not only pairs of neighbourhoods but also
arbitrary tuples of neighbourhoods. Models based on tuples of neighbourhoods are consid-
ered for instance by Calardo et al. [26, 28| in order to provide a semantic characterisation
of a n-ary non-normal modal operator used for the representation of reparative obligations
and preferences in social choice theory. In addition, in future work it would be interesting to
investigate whether the bi-neighbourhood semantics can be suitable to model relevant notions

involving positive and negative sides of information, such as the notion of bipolarity discussed
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in [44]. Similarly, the bi-neighbourhood semantics could be also of interest in evidence log-
ics [16, 17, 13, 117|, where a bi-neighbourhood pair could be seen as representing a source of
information providing positive and negative evidence about a proposition.

As a further remark, we notice that the bi-neighbourhood semantics can recall Kracht and
Wolter’s [103] simulation of non-normal modal logics by means of normal multimodal logics.
In particular, this simulation is based on a translation of modal formulas OA into formulas
of the form <1(02A4 A O3-A), which recalls the forcing condition of boxed formulas in the
bi-neighbourhood semantics. The same similarity can be observed between the 3V-semantics
(cf. Section 2.3) and Kracht and Wolter’s simulation of monotonic logics by means of normal
bimodal logics, which is based on a translation of OA into formulas of the form ¢105A. We do
not think that this simulation can reduce in any way the interest of non-normal modal logics
in general (exactly like Godel’s translation of intuitionistic logic into modal logic S4 does not
reduce the interest of intuitionistic logic; moreover, non-normal modal logics without axiom C
have a weaker complexity than normal modal logics), and of the bi-neighbourhood semantics
in particular. On the contrary, it would be interesting to study whether these similarities can
be used to transfer results from the semantic level to the syntactic one, and vice versa.

We shall see in the next chapters that the bi-neighbourhood semantics offers significant ad-
vantages for the proof theory. On the one hand, labelled calculi based on the bi-neighbourhood
semantics have a better behaviour in terms of modularity and termination of proof search.
On the other hand, countermodels are easily and more efficiently extracted in this semantics

rather than in the standard one, both from external and from internal calculi.
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Chapter 5

Labelled calculi

In this chapter, we define labelled sequent calculi for all classical non-normal modal logics
considered in this work. We prove that all calculi are sound and complete with respect to the
corresponding axiomatic systems; in particular, completeness is proved by means of a syntactic
proof of cut elimination. Then, we propose an equivalent reformulation of the calculi in the
form of tableaux systems. Basing on the tableaux calculi we define a terminating proof search
strategy that provides a decision procedure for the derivability problem in the corresponding
logics. Moreover, we show that from every failed proof it is possible to directly extract a
countermodel of the non-derivable formula, both in the bi-neighbourhood semantics and, for
regular logics, also in the relational semantics. Finally, we present a theorem prover for
non-normal modal logics computing both derivations and countermodels based on a Prolog

implementation of our labelled calculi.

5.1 Labelled sequents and rules

The labelled sequent calculi LS.E* are defined in the extended language L;,,. We define
the language L4, by considering two denumerable (and disjoint) sets WL = {z,y, 2, ...} and
NL = {a,b,c,...}, respectively of world labels and of neighbourhood labels, and a distinct
element 7 ¢ WL, NL. On the basis of the neighbourhood labels and 7 we build two kinds of

neighbourhood terms (or just terms), i.e., positive and negative terms, as follows:

Definition 5.1.1 (Neighbourhood terms). Positive neighbourhood terms are defined by the

following grammar:
t,su=al|T|ts| J(1),

where a is any neighbourhood label, and ts is the multiset union of the terms t and s.

Furthermore, if ¢ is a positive term, then ¢ is a negative term.
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Observe that only positive terms can be joint for building complex terms, and that the
operation of overlining a term cannot be iterated: it can be applied only once for turning a

positive term into a negative one. For instance, a.J(7bJ(c)) and aJ(7bJ(c)) are terms, whereas

aJ(tbJ(c)), aJ(TbJ(c)), and @ are not. We use ¢, s, (respectively ¢,3,T) as metavariables for
positive (respectively negative) terms. Moreover, we use t as a metavariable for terms ¢ or ¢,
no matter if positive or negative.

The exact interpretation of neighbourhood terms is given by the realisations in Definition
5.1.5. Intuitively, ¢ and ¢ represent the two members of a bi-neighbourhood pair. Moreover,
the terms 7 and 7, as well as the complex terms of kinds ¢s and J(t), are used to import into
the calculus the semantic conditions corresponding to some specific axioms, and in principle
they are not needed in the calculi lacking the corresponding rules. In particular, 7 represents
the empty set of worlds, and it is used to express the semantic condition for the axiom N.
Terms ts and ts respectively represent the intersection of the sets represented by t and s, and
the union of the sets represented by ¢ and 3, and are used to import the semantic condition
for the axiom C. Finally, if ¢t and # correspond to the sets o and 3, then J(t) and J(t)
respectively represent the sets W («, ) and W™ (a, B3) (cf. Definition 4.1.2).

On the basis of the world labels and neighbourhood terms, we define the labelled formulas

of the extended language L;4 as follows:

Definition 5.1.2 (Labelled formulas). The labelled formulas of £;,;, have the forms
pu=a: At A|tIF Az et |t

where A is any formula of £, z is any world label, and t is any (positive or negative) neigh-

bourhood term.

The semantic interpretation of labelled formulas is given in Definition 5.1.5. Intuitively,
x : A means that = forces A, t IF¥ A (respectively t IF> A) means that every world in t
(respectively some world in t) forces A, x € t means that x is a world in the neighbourhood
t, and t > z means that the pair (¢,t) is a bi-neighbourhood of z.

Sequents are defined as usual as pairs I' = A of finite multisets of formulas, however in

order to ensure admissibility of cut they must satisfy some restrictions.

Definition 5.1.3 (Sequents of LS.E*). A sequent of LS.E* is a pair I' = A, where I" and A
are finite multisets of formulas of L4, that respect the following conditions: (1) A contains
only formulas of the kinds 2 : A, t F¥ A and t IF? A (whereas I' may contain any kind of
formula of L;44); (2) If T’ is non-empty, then all world labels and all neighbourhood labels

occurring in A occur also in I'.! (3) If T is empty, then A contains only formulas of the kind

! A neighbourhood label a occurs in (or belongs to) a labelled formula ¢ (set of formulas, sequent) if there
is a (positive or negative) term containing a in ¢.
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x : A, and all these formulas are labelled by the same world label z. (4) If x € ¢t is in I, then
there is a world label y such that ¢ > y is in I

The calculi LS.E* are defined by the rules in Figure 5.1, where the notations (y!) and (a!)
express the eigenvariable condition: the world label y must be fresh (i.e., it must not occur in
the conclusion) in the application of the rules R 7, LIF3, J, P, Dy, Do, and for every n € N,
D;", whereas the neighbourhood label a must be fresh in the application of LO.

In analogy with the calculi for normal modal logics based on relational semantics [133, 168|
(cf. Section 3.2), the calculi have separate left and right rules for logical constants which are
meaning conferring and directly derive from the semantic explanation of logical constants in
the bi-neighbourhood semantics. The propositional rules and the rules for local forcing are
standard. The first ones are G3-style rules (see Figure 3.1) enriched with world labels, whereas
the second ones reflect the interpretation of symbols IFY and I as, respectively, universal and
existential forcing. Moreover, the rules for box directly derive from the satisfaction clause of
boxed formulas in the bi-neighbourhood semantics. Notice that in contrast to the labelled
calculi based on the relational semantics, in these calculi the left-box rule has an eigenvariable
condition whereas the right-box rule has not. This is due to the fact that the forcing condition
for the boxed formulas is expressed in the (bi-)neighbourhood semantics by an existential claim
(whereas in the relational semantics it is expressed by an universal claim).

The set composed by the propositional rules, the rules for local forcing, and the rules for
box, defines the calculus LS.E for the basic classical non-normal modal logic E.

Modular extensions of the basic system are obtained by means of rules manipulating
only labels, of which there are two kinds: First, the rules for neighbourhood terms fix the
meaning of 7 and of the complex terms which are needed for some extensions. Furthermore,
every modal axiom or rule has corresponding rules in the calculus which directly derive from
the semantic conditions associated to the modal axioms in the bi-neighbourhood semantics
(Definition 4.1.3). The only exception are the rules for 4, which are build on the basis of the
alternative conditions (4') and (4m) in Proposition 4.4.2.

For every classical non-normal modal logic E*, the corresponding labelled sequent calculus
LS.E* is defined according to the table in Figure 5.2. Essentially, for each modal axiom X
we just need to consider the corresponding rule X in the calculus. The only exceptions are
the axiom D, which is covered by the two rules D1 and Da, and, for every n, the rule RD;",
which is covered by the rules DZ* for every 1 < i < n. In both cases this choice of rules is
required for ensuring the admissibility of contraction. Observe in particular that the rule D
corresponds to the semantic condition ((),) ¢ N (w), which is satisfied by every D-model.

We can show that the characteristic axioms of classical non-normal modal logics are deriv-
able in the labelled calculi containing the corresponding rules. As a preliminary step, we need

to show that initial sequents init can be generalised to arbitrary labelled formulas ¢ that can
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Propositional rules

init LL

RT

z:p,I'=Ax:p z: L,I'=A F=Az:T
L z:Ax:BT=A R '=sAx: A I'=sAx:B
NTZTAANBT = A 4 T=>Az:ANB
L '=Az:A z:B,I'=A R z: A=A x:B
- r: A= B T'=A — '=Az:A—B
Rules for local forcing
ctx: AtIFN AT = A ct,I'=Ay:A
Ly S R L ()
etk AT = A I's AtlE" A
ety AT=A ct,T=Az: At A
L2 L= (") RIFE 1
tiH AT = A zet, = AtlIF= A
Rules for box
L0 a>z,alF AT =AalF A (al)
z:0AT = A @
t>z, I =Az:04,tIF A t>z,tF AT = A, z:04

RO ‘bzl = Az OA

Rules for neighbourhood terms

d ret,x€s,xets, = A __xzetrets, = A zesxets,I = A
ec rzets,I'= A dec zcts, = A
=0 X t>z,ze J(it), I = A

reETL= zeJO), I = A
_yetyes,zeJ(t),s>z, = A yet,yes,xe J(t),s>z, L= A

T>x, = A

xeJ(t),s>z, T =A

Rules for the classical cube and further extensions

(y!)

ts>ax,t>x,s>x, = A

t>xz,s>x, = A

teazyet,l'=A N =A (@inTUA) C t>az,s>a,l = A
) )

T t>z,xet,l = A t>z,yet,I' = A W) Jt) >zt z, T = A
t>z, = A t>z, = A ¥ t>a, = A
>z, .ty >x,yEty, ..,y Etpn, ' = A

D ! >1

" t>x, ..ty >x, = A @) (n21)
t>x,yet, I = A t>z,yet,'= A |

D, (")

t>z, = A
D t>x,s>x,yc€t,yes,'=A t>z,s>x,yet,yes, = A W)
2 .

Figure 5.1: Rules of labelled sequent calculi LS. E*.
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5.1. Labelled sequents and rules

LS.E := {propositional rules} U {rules for local forcing} U {rules for box}.

LS.M* := LS.E* U {M}. LS.EP* := LS.E* U {P}.

LS.EN* := LS.E* U {N, 7%}. LS.ED* := LS.E* U {Dy, Dy}.

LS.EC* := LS.E* U {C, dec, dec}. LS.ED}" := LS.E* U {D{, D7, ..., D;}.
LS.ET* := LS.E* U {T}. LS.E4* := LS.E* U {4, J, J}.

Figure 5.2: Labelled sequent calculi LS.E*.

occur in both sides of sequents. The proof is based on the following definition of weight of

labelled formulas.

Definition 5.1.4 (Weight of labelled formulas). The weight wg(¢) of a labelled formula ¢
of the form = : A, t IFY A or t IF2 A is the pair (wg(f(#)),wg(l(¢))), where f(¢) and I(¢)
are, respectively, the £ formula A and the world label or neighbourhood term occurring in ¢.
We define wg(z) =0, wg(a) = 1, wg(ay...an) = wg(ay) + ... + wg(ay), wg(J(t)) = wg(t) + 1,
wg(t) = wg(t). Moreover, we define wg(L) = wg(T) = wg(p) = 0, wg(A o B) = wg(A4) +
wg(B) + 1 for o € {A,V,—}, and wg(OA) = wg(A) + 1. For labelled formulas ¢ of the form
x €tort>az we establish wg(¢) = (0,0). We consider weights of formulas lexicographically

ordered.

Proposition 5.1.1. Every sequent of the form ¢,I" = A, ¢ is derivable in LS.E*, where ¢ is

any formula that can occur in both sides of sequents.

Proof. By induction on the weight of ¢. If wg(¢) = (0,0), then ¢ has the form x : p, or z : L,
orz: T. Then ¢,I' = A, ¢ is an initial sequent. If wg(¢) = (n,m), with n > 0 or m > 0,
then by Definition 5.1.3, ¢ has the form t IF¥ A, or t - A, or z : B o C with o € {A,V, =},
or z : OB. We show some illustrative cases. If ¢ =t IF¥ A the derivation is as follows, where
y: Ay et,tlFY AT = A,y : Ais derivable by i.h. because wg(y : A) < wg(t IF¥ A).

y:Ayet,tlF" AT =Ay: A
yettiFm AT =Ay: A
tIFY AT = AtIFY A

LIFY
RIFY

If =z : B A C the derivation is as follows, where z : B,z : C,T' = A,z : B is derivable
by i.h. because wg(z : B) < wg(z : BAC).

v:B,x:C,I'=A,x:B x:B,x:C,F#A,x:C’R
z:B,x:C.I'=A,x:BANC A
x:BANC,T'=A,x:BANC

LA

If ¢ = x : OB the derivation is as follows, where a > z,a IFY B,T' = A,z : OB,a IF>
B,alF" B is derivable by i.h. because wg(a IF¥ B) = wg(a |- B) < wg(z : OB).

91



CHAPTER 5. LABELLED CALCULI

a>z,alF" B, = A,z:0B,alF? B,al-" B a>z,alF" B,alF? B,T = A,z:0B,al- B
a>z,alF" BT = A,z:0B,alF B
z:0B,I'= A/jz:0B

RO

O

The derivations of the characteristic axioms and rules of classical non-normal modal logics
are displayed in Figure 5.2. For the derivation of rule RE we assume that y : A, T’ = Ay : B
and y: B,I' = A,y : A are derivable in LS.E* for every world label y, and for the derivation
of rule RD;} we assume that y : Ay,y : As, ...,y : Ay, = A is derivable in LS.ED}™ for
every world label y.

We now show that the calculi LS.E* are sound with respect to the corresponding classes
of bi-neighbourhood models. In order to interpret the labelled sequents in bi-neighbourhood
models we first need to interpret the world labels and the neighbourhood terms. For this

purpose we introduce the notion of realisation.

Definition 5.1.5 (Realisation). Given a bi-neighbourhood model M = (W, N, V), a realisa-
tion is a pair of functions (p, o), where p : WL — W, and ¢ : NT — P(W). Moreover, o

satisfies the following conditions.

e o(7) =0; and o(7) = « for a set a such that («, ) € N(w) for all w € W.

e o(ts) =o(t)No(s); and o(ts) = o(t) Uo(s).
o o(J(1)) = WH(a(t),o(1)); and o (J(1)) = W (a(t), 0()).
Moreover, for systems containing the rules for M and 4 we add the following condition:

e If M is a M4m-model, then o(t) = 0 for every negative term ¢.

Definition 5.1.6 (Semantic interpretation). For every formula ¢ of L4, the relation M =,

¢ is defined by cases as follows.

ME,,zet iff p(x)eo(t).

ME,cax: A iff M, p(x) - A.

M, tIFY A iff  for every w € o(t), M,w I A.
M,stIFF A iff  there is w € o(t) such that M, w I- A.
ME,st>a it (o(t),0(t) € N(p(x)).

Then, given a sequent I' = A we stipulate that M =,, I' = A if in case M |=, ; ¢ for every
formula ¢ in I', then M =, , 9 for some formula 1 in A. Moreover, we say that I' = A is
valid in M if for every realisation (p,0), M =,, ' = A.

Theorem 5.1.2 (Soundness). If I' = A is derivable in LS.E*, then it is valid in the corre-

sponding class of bi-neighbourhood models.
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yea,y:Ba>z,alt" A=z:0BalF? Ay: A

yea,y:Ba>z,allt’ A=z:0B,alt> A ZIFH
(RE) alF¥ Ba>z,alFY A=z :0B,alF A LiF
v y:Aycaa>zall’ A=z:0BalF Ay:B
LI;IFV yeaa>zaltY A=z:0Balt’ A,y: B
avz,alFY A=z:0B,alF> A,a: B
RO
avz,alFY A=z :0B,alF> A
r:0A=2:0B
wy:Ay:BycaalFY ANB=y:A,..
LLH/—\V Yy AANBy€a,alFY ANB=y: A, ..
(M) RILY wy€aallY ANB=y: A, .. Y Ea,yrAja> = [AIFH
nalY ANB=alFY A, .. el Aa>z= ..
az,alFY AANB=xz:0A4,alF> ANB RO
z:0(AAB)=z:0A4
—0
R LY Tox,yET=x:0T,y:T TP,y ET,y: T =2:0T 7|:H—3
(N) T>r=x:07,7:T T2, 7 T=¢:0T RO
T>r=x:0T N
= x0T
R 3 wyYETy: A=>alF? Ay Al ...,yeg,yi:B,:EIF? B,y: B, ... R L3
L yEay:A=alF? A .y €Eby:B,=>bIF B,... __
wy€aby:Ay:B=al3 A bl B,... LA dec
,y€abjy: ANB=al3 AbIF3 B, ...
©) wnablF3 AANB=al3 AbIF B, ... LI-
Ly:Ajy:B=2:0AAB),y: A wwy:Ajy:B=z:0AAB),y: B
R\ LY oy Ay:By€a,yEbycabaltY A blFY B=y:AAB,...
L Yy Ay€ayEbycaballkY AbIFY B=>y:AAB,..
dec ey €ayebycabalFY AbIFY B=y:AAB,..
RV oy €abalFY A bIFY B=y: AAB,...
cnalFY AbIFY B=ablFY ANB, ...
ab>x,a>x,alkY Ab>a,blFY B=x:0AAB),al? A,bIF> B
a>z,alFY Ab>x,blFY B=2:0(AAB),alF? A,bIF? B o

a>z,alFY Az : 0B =2:0(AAB),al-? A
z:0A,z:0B=z:0(AAB)
z:0AANOB=z:0(AAB)

LO
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. v LA =3 L1l
z:Az€aa>zalr’ A=z AalF A LY y:lycaa>zalt’ L=>alk’ L L
v — .3
(T) re€a,abz,allk" A=az:Aal-" A (P) yeaaszall’ L=>alF L
v EEE —
a>z,alF’ A=x:Ajal-" A Lo avz,alt’ L=alF? L
r:0A=x:A r:01l =
(D)
L y:Aycayebaszalt’ A bz bl mA=y: A, .. Ly Ayeayeb=allt A DI A,y A R
LY y:Ay:-Aycaycbaszalt’ Ab>az bl —A= ... wycayeb=altP AbIFP —Ay:Ay:-A RIE3
LY y:Aycayeba>zallr’ Ab>z,blF A= .. wyEmyeb=alk? AbIF —Ay: A R L3
yeayebarsz,alt’ A bz, blFY A= .. Ly€gyeb=alr> AbIFE -A
a>aab  Abp o b ~A=>a AbIE A | :
a>z,alb’ Az:0-A=alt’ A o
z:0A,z:0-A= L
r:O0ANO-A= A
YiAL Y A, Y€ AL, Y € ny @1 D> Ty ey > Tyar F Ary e an FY Ap = L
Xn
YE AL, ..., Y € An, Q1 > Ty.yap D> T, a1 I+ A1, .y an I A, = ... D+
+
(RDY) a1 B> Tyeyan & 2,01 FY Ar,oyan FY Ap = a1 IF2 Ay, yan F2 Ay
LOxn
x:0A,..,z: 04, =
LAXn
r:0A1 AN ... NOA, =
Lzt A=z AL w2t A=z AL
RI-3 ——— LY
ez AzE€Eb=bIF AL ez E€EbBIFY A=z A, L
LH—V p— p— R‘FH
wnz€a,z€balFY A=bIF3 A, .. 2 €T, zEbLIFY ATl A, ... _
(4) vy €J(a),b>y,bIFY AjalFY A=alF? ADIFT A, . .
— O
vy €J(a),y:0A,alFY A=alF? A, .. 5
LI+
v dJ(@)IFF 0AalFY A= Gl A, ...
RO cnabyalFY A= y:0A4,alF A, .. LalF? Aja>y=y:0A4,alF> A, ..
wna>y,y € J),alFY A=y :0A,alF3 A, ...
g Y€ J(a),alFrY A=y :0A,alF3 A, ..
R+
wnalFY A= J(a) IFY DAa IF3 A ... R
O

J@)>za>z,alk’ AT = A,z:00A4,alF A
a>z,altY AT =Az:004,al> A
z:0AT = A,z:00A

Figure 5.2: Derivation of modal axioms and rules

94



5.1. Labelled sequents and rules

Proof. We show that the initial sequents are valid and that every rule is sound in the corre-
sponding class of models. The cases of propositional rules are standard. We consider R IF¥ as

an example of rule for local forcing, and then we show the proof for the modal rules.

(RIFY) Assume the premiss y € t,I' = A,y : A valid, M =50 I, and, by contradiction,
M ¥, o ¢ for every ¢ in A and M &, , t IF¥ A. Then there is w € o(t) such that M, w I A.
Since y is fresh in the application of R IF¥, we can extend p to p’ by choosing p/(y) = w. Then
M =y oy € tand, since y is not in I', M |=, , I'. By the validity of the premiss, M =, , ¢
for some ¢ in A, or M =, , y : A. In the first case, M =, , ¢ because y is not in ¢. In the

second case, p/(y) = w I A. Then we have a contradiction.

(LO) Assume the premiss valid and M =, , « : OA,I". By definition there is a pair (o, 3) €
N(p(z)) such that o C [A] € W \ 5. Since a is fresh in the application of LO, we can
extend o to o’ by choosing ¢/(a) = a and /(@) = B. Thus M =, a > z,a IF¥ A and
M ¥, @l A. Moreover, since a is not in I', M =, T'. By the validity of the premiss
we have either (i) M [, @ IF2 A, or (1) M [, ¢ for a formula ¢ in A. (i) gives a

contradiction, then (¢7) holds. Thus, since a is not in ¢, we have M =, , ¢.

(RO) Assume the premisses valid and M |=, , t > x,I". By the first premiss we have M =, ; ¢
foragin A,or M=, z: 04, or M=, t IFY A. In the first two cases we are done. In the
third case, consider the following two alternatives. (i) o(t) N[A] = 0, and (i7) o(t) N [A] # 0.
If (), then since o(t) C [A] and (o(t),o(t)) € N(p(z)), we have M =, , x : OA. If (i), then
M [z, TIF7 A, thus by the second premiss M [, , ¥ : DA or M =, , ¢ for a ¢ in A.

(7) For every M, p, o we have M [£, , x € T, since by definition ¢(7) = . Then z € 7,T' =
A is valid.

(dec) Assume the premiss valid and M |=,, x € ts,I. Then p(z) € o(ts) = o(t) No(s).
Therefore M |=,, x € t,x € s. Then by the validity of the premiss we have M =, ¢ for a

formula ¢ in A.

(dec) Assume the premisses valid and M |=,, = € ts,T. Then p(z) € o(fs) = o(t) U o (3),
that is p(z) € o(t) or p(z) € 0(5). Thus M |=p, x € t or M =,, © € 5. Then by the
validity of the premisses we have M =, , ¢ for a ¢ in A.

(J) Assume the premiss valid and M |=,, « € J(t),I'. Then p(z) € o(J(t)). By definition,
this means (o(t),0(t)) € N(p(z)). Thus M |=,, ¢t > x. Then by the validity of the premiss
we have M |=,, ¢ for a ¢ in A.

(J) Assume the premisses valid and M =, , x € J(t),s > z,I'. Then (0(s),0(3)) € N(p(z)),
and p(z) € W (o(t),0(t)), that is for all (v,0) € N(p(z)), o(t)Nd # O or o(t) Ny # 0.
Then in particular o(t) N o(5) # 0 or o(t) No(s) # O, that is there is v € W such that

v € o(t) and v € 0(3), or v € o(t) and v € o(s). Since y is fresh we can extend p to
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¢’ by choosing p'(y) = v. We then have M =y, y € t,y € 5,2 € J(t),s > z,I" or

MEysy €ty e s,xe J(t),s > . By the validity of the premisses this implies
M =y, ¢ fora ¢ in A, and since y is not in ¢, M =, , .

(M) For every M, p,o we have M [&,, t > x,y € t, otherwise we would have (o(t),o(%)) €
N(p(x)) and p(y) € o(t), against condition (M). Then ¢t > z,y € t,' = A is valid.
)

(N) Suppose M is a N-model. Moreover, assume the premiss 7 > z,I' = A valid and
M =, I'. By condition (N), and due to the definition of o(7), there is a pair (o, §) € N (p(z))
such that o = o(7). Thus M |=,, 7 > «, then by the validity of the premiss M =, , ¢ for a
¢ in A.

(C) Suppose M is a C-model. Moreover, assume the premiss valid and M =, , t > 2,5 > «,T".
Then (o(t),o(t)),(c(s),0(5)) € N(p(x)). By condition (C), (o(t) N a(s),o(t) Uc(s)) €
N(p(x)), that is (o(ts),o(ts)) € N(p(z)). Then by the validity of the premiss we have
M E,s ¢ fora¢in A.

(T) Suppose M is a T-model. Moreover, assume the premiss valid and M |=,, t > z,T".
Then (o(t),0(t)) € N(p(x)). By condition (T), p(z) € o(t). Thus M =, = € t, and by the
validity of the premiss, M =, ¢ for a ¢ in A.

(P) Suppose M is a P-model. Moreover, assume the premiss valid and M |=,, t > ,I". Then
(o(t),o(t)) € N(p(x)). By condition (P), there is w € o(t). Since y is fresh we can extend p
to p’ by choosing p'(y) = w. Then M =, , y € t and, since y is fresh, M =, , t > z,T'. By
the validity of the premiss, this implies M =, , ¢ for a ¢ in A. Then, since y is not in ¢, we
also have M =, , ¢.

(D1) Suppose M is a D-model. Moreover, assume the premisses valid and M |=,, t > z,T".
Then (o(t),o(t)) € N(p(x)). As a consequence of condition (D) we have that (0,0) ¢ N (p(x),
that is, there is w € W such that w € o(t) or w € o(¢). Since y is fresh we can extend p to p/
by choosing p'(y) = w. Then depending on the case we have M =y, y€tor M=y, y €t
and, since y is fresh, M =y, t > z,I. By the validity of the premisses we then obtain
M =y, ¢ fora ¢ in A, and since y is not in ¢, M =, , .

(D2) Suppose M is a D-model. Moreover, assume the premisses valid and M =, , t > z,s >
x,T. Then (o(t),0(t)),(c(s),0(5)) € N(p(z)). By condition (D), there is w € W such that
w € o(t)Na(s) or w € o(t) No(5). Since y is fresh we can extend p to p’ by choosing
¢’ (y) = w. Then depending on the case we have M |=,,y€t,ycsor M=y, y€t,y€s
and, since y is fresh, M =, , t > x, s > x,T'. By the validity of the premisses we then obtain

My ¢ fora¢in A, and since y is not in ¢, M =, 5 ¢.

(D;f) Suppose M is a RD; -model. Moreover, assume the premiss valid and M |=,, t; >
Zy .ty > 2, Then (o(t1),0(81)), ..., (c(tn),c(tn)) € N(p(z)). By condition (RD;!), there
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is w € W such that w € o(t1) N ...No(t,). Since y is fresh we can extend p to p’ by choosing
P (y) =w. Then M =y, y € t1,...,y € t,, and, since y is fresh, M =, , t1 >z, ..., t, > z,T.
By the validity of the premiss we then obtain M =, , ¢ for a ¢ in A, and since y is not in
¢, M =p o ¢

(4) Suppose M is a 4-model. Moreover, assume the premiss valid and M =, t > z,T’. Then
(o(t),o(t)) € N(p(x)). If M is not a M-model, then by condition (4'), (¥ (a(t), 0 (f)), W (o(t),0(t))) €
N (p(x)), whereas if M is a M-model, then by condition (4m), (¥ (o(t),0(t)), D) € N(p(x)).

In both cases (o(J(t)),o(J(t))) € N(p(z)), since o(J(t)) = 0 in Mdm-models. Thus M =, ,
J(t) > x. Then by the validity of the premiss, M =, ¢ for a ¢ in A. O]

Observe that all rules are also sound in standard models in which ¢ is interpreted as the
complement of ¢, with the exception of rule M, which is incompatible with such an inter-
pretation. In what follows, we prove the main structural properties of our labelled calculi,
most importantly admissibility of cut, from which we obtain the syntactic completeness of

the calculi.

5.2 Structural properties and syntactic completeness

In this section we investigate the structural properties of the labelled calculi LS.E*, in partic-
ular we show that the structural rules of weakening, contraction and cut are admissible. As
a preliminary step, we consider the following operations of substitution of world labels and

substitution of neighbourhood terms, and show that they preserve derivability of sequents.

Definition 5.2.1 (Substitutions of world labels and neighbourhood terms). Substitution of

world labels is defined as follows:

if z ==,
ER S

Moreover, the operation of substitutions of a positive term for a neighbourhood label inside

a term is recursively defined as follows:

t ifb=a,

yhae  TWD=T I = 60

a(t/b) = {

(J(s))(t/b) = J(s(t/b)); 5(t/b) = s(t/b).

Substitutions of world labels and of neighbourhood terms are extended to formulas of L4

and to multisets of formulas in the obvious way, for instance (x : A)(y/z) = z(y/z) : A,

(sIFY A)(t/b) = s(t/b) IFY A; and (¢1, ..., pn)(y/)2) = 1(y/2), ..., pn(y/2).
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Recall that a rule %ﬁ, is height-preserving admissible if in case the premiss I' = A

is derivable, then the conclusion IV = A’ is derivable with a derivation of at most the same
height. We write F, I' = A to denote that I' = A has a derivation with height at most n.

We might sometimes abbreviate “height-preserving” with “hp-".

Proposition 5.2.1. Substitution of world labels and substitution of neighbourhood terms
are height-preserving admissible in LS.E*, that is, for every x,vy,a,t, if H, I' = A, then
Fn D(z/y) = A(z/y), and F, T'(t/a) = A(t/a).

Proof. The two claims are proved by induction in the height n of the derivation of I' = A. If
n =0, then T' = A is an initial sequent or a conclusion of M or 7%. Then it is easy to verify
that both I'(z/y) = A(z/y) and I'(t/a) = A(t/a) are initial sequents or conclusions of M or
70 If n > 1, we consider the last rule applied in the derivation of I' = A. In most cases the
proof is straightforward, we show as examples the cases where the last rule applied is R IF¥
or P for the substitution (z/y), and LO, C, dec, dec, or J for the substitution (¢/a).

e The last rule applied is R IF¥. If 3 does not occur in I' = A, then the substitution (z/y)
is vacuous and I'(z/y) = A(z/y) is derivable with height n by hypothesis. If instead y occurs

in the conclusion we have

zet,I'= Az A
I'=AtF A

RIFY

Since z is fresh in the application of R IF¥ and y occurs in the conclusion, z is different from
y. In order to avoid clash of variables we use the inductive hypothesis twice and make two
applications of hp-substitution to the premiss: the first one is to replace z with a world label u
different form x and fresh with respect to the conclusion. The second one is to replace y with
x. Since label u is fresh, we can successively apply R IFY and derive T'(z/y) = A/(z/y),t IF¥ A.

e The last rule applied is P. If y does not occur in I' = A, then the substitution (z/y) is
vacuous and I'(z/y) = A(z/y) is derivable with height n by hypothesis. If instead y occurs

in the conclusion we have

t>z,uet,I"= A
t>2,I"= A

Since z is fresh in the application of P and y occurs in the conclusion, z is different from y.
We proceed as before: first we replace v with a world label v different form z and fresh with
respect to the conclusion. Then we replace y with . Since label v is fresh, we can successively
apply P and derive t > z(z/y),I"(z/y) = Az /y).

e The last rule applied is LO. If a does not occur in I' = A, then the substitution (¢/a)
is vacuous and I'(t/a) = A(t/a) is derivable with height n by hypothesis. If instead a occurs

in the conclusion we have
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bz, bIFY AT = A bIF A
rz:O0AT = A

Since b is fresh in the application of LO and a occurs in the conclusion, b is different from a.
By using the inductive hypothesis twice we make two applications of hp-substitution to the
premiss. The first one is to replace b with a label ¢ fresh both with respect to the conclusion
and with respect to ¢, in order to avoid clash of variables in case b occurs in t. The second
one is to replace a with t. Since label c is fresh, we can successively apply LO and derive
x:OAT(t/a) = A(t/a).

e The last rule applied is C.

sr>x,s>x,r>x = A
s>x,r>o, V= A

C

By inductive hypothesis (s7)(t/a) > x, s(t/a) > z,r(t/a) > z,I'(t/a) = A(t/a) is derivable
in n—1 steps. Since (sr)(t/a) = s(t/a)r(t/a), we can apply C and obtain s(t/a) > z,7(t/a) >
z,I'(t/a) = A(t/a).

e The last rule applied is dec.

res,zer,zresr,I'=A
rzesr,IV= A

By inductive hypothesis x € s(t/a),z € r(t/a),z € (sr)(t/a),I’(t/a) = A(t/a) is deriv-
able in n — 1 steps. Since (sr)(t/a) = s(t/a)r(t/a), we can apply dec and obtain = €
sr(t/a), I (t/a) = A(t/a).

e The last rule applied is dec.

dec

res,resr,IV= A rer,zesr,I"=A ___
resr, V= A dec

By inductive hypothesis x € 5(t/a),z € 57(t/a),I"(t/a) = A(t/a) and = € F(t/a),z €
57(t/a),I"(t/a) = A(t/a) are derivable in n — 1 steps. Since 57(t/a) = s(t/a)r(t/a), we can
apply dec and obtain z € 57(t/a),T'(t/a) = A(t/a).

e The last rule applied is J.

s>z,x e J(s),I"=A
s>z, IV = A
By inductive hypothesis s(t/a) > =,z € (J(s))(t/a),T(t/a) = A(t/a) is derivable in n — 1
steps. Since (J(s))(t/a) = J(s(t/a)), we can apply J and obtain s(t/a) > z,I'(t/a) =
A(t/a). O

Lemma 5.2.2. The following rules of left and right weakening are height-preserving ad-
missible in LS.E*, where 9 is any formula such that I' = A, respects the restrictions of
Definition 5.1.3:
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I'= A
o, I'= A

I'= A

Lk T=A9

Rwk

Proof. For both rules the proof is by induction on the height n of the derivation of the premiss.
If n = 0, i.e., the premiss is an initial sequent or a conclusion of M or 72, then the conclusion
is an initial sequent or a conclusion of M or 72, If n > 1, we consider the last rule applied in
the derivation, let it be R. We modify the derivation as follows: first we apply the inductive
hypothesis to the premiss of R, and then we apply R. For rules with fresh variable conditions
we might need to apply height-preserving substitution of world labels or neighbourhood terms
to the premiss of R before applying the inductive hypothesis. For instance, we consider the
derivation below on the left, where y is fresh as a condition for the application of P, and
D represents the derivation of t > z,y € t,I' = A. The derivation on the left is converted
into the derivation on the right, where z is a fresh world label different from y, and D(z/y)

represents the derivation obtained from D by replacing all occurrences of y with z.

D D(z/y)
% v
th,yEt,FjAP t>z,zet, = A
fbal=A © 7 i Atbrzetl=A Lwk
y: At>a,T=A " y:At>a,T = A

Lemma 5.2.3. All rules of LS.E* are height-preserving invertible.

Proof. For cumulative rules, i.e., rules where all formulas occurring in the conclusion also
occur in the premiss(es), height-preserving invertibility is an immediate consequence of the
height-preserving admissibility of weakening. For non-cumulative rules, i.e., the propositional
rules and R IFY, L IF2, and LO, the proof is by induction on the height of the derivation of the

conclusion. We show as an example the proof for LO. We have to show that

r:0A4,T=A
a>z,alFY AT =Aal- A

is height-preserving admissible. The proof is by induction on the hight n of the derivation
of z : DA T = A. If n =0, then a > z,a IF" A, T = A,a IF? A is an initial sequent or a
conclusion of M or 72. If n > 1 we consider the last rule application R in the derivation of
z:0A T = A. If z : DA is not principal in R, then we first apply the inductive hypothesis
to the premiss of R and then we apply R. If instead x : OA is principal, then R is LO, and

we have

bz, bIFY AT = AbIF A Lo
r:0A4 = A
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with b is fresh in the application of LO. Then by height-preserving substitution of neighbour-
hood terms we replace b with a and obtain a derivation of height n —1 of a > z,a IF7 A,T =
Aal-? A. O

Proposition 5.2.4. The following rules of left and right contraction are height-preserving
admissible in LS. E*:

¢, 0,1 = A I'=A¢,¢

LCtrma Rctr F:>A,¢

Proof. We simultaneously prove height-preserving admissibility of Lctr and Rctr by mutual
induction on the height of the derivation of their premiss. Let R be Lctr or Rctr. If the
derivation of the premiss of R has height n = 0, i.e., the premiss is an initial sequent or a
conclusion of M or 7, then the conclusion is an initial sequent or a conclusion of M or 7.
If n > 1, then let R’ be the last rule applied in the derivation of the premiss of R. If the
contracted formula ¢ is not principal in the application of R, then we modify the derivation
by first applying the inductive hypothesis to the premiss(es) of R’ and then applying R'. If
in contrast ¢ is principal in the application of R’, we distinguish two cases according whether
R’ is a cumulative rule.

e If R’ is a cumulative we consider the following subcases. (i) If R’ different from Do
and D;f, then we modify the derivation by first applying the inductive hypothesis to the

premiss(es) of R’ and then applying R'. (ii) If R is Dy we have
t>z,t>zr,yet,yet, Il = A tex,t>zyet,yct, ' = A

tox,t>x, = A
tez,I'= A

Do

Lctr

We transform the derivation as follows, with two applications of the i.h. to each premiss and

an application of Dy instead of Da:

th,th,yEt,yEt,FjA t[>x7t>x7y€¥7yeial—‘:A
t>xz,yet,I' = A t>x,yet, ' = A
t>xz, ' = A

Letrx2

Letrx2

D¢

(iii) If R is D;} we proceed similarly to Dy by considering the rule D).

e If instead R’ is a non-cumulative rule, then we modify the derivation by first considering
the height-preserving invertibility of the premiss(es) of R’, then applying the inductive hy-
pothesis, and finally applying R’. For instance, consider the case where the last rule applied
in the derivation is LO. We have:

r:0A4a>z,alF A T=Aal- A
r:0A4,z:0A = A
r:0A4,T=A

Lctr

The derivation is converted as follows:
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z:0A,a> z,alF" AT =>Aal-? A
a>z,alFY Aja> z,alFY AT = AalF Aal- A
a>z,alFY AT =AalF A

r:0A4T=A Lo

invLO
ctrx3

O

We now move to prove the admissibility of the following cut rule, where ¢ is any formula
of L4 that can occur on both sides of sequents (notice that every application of cut preserves

the restrictions on sequents of Definition 5.1.3).

'=A9¢ o, I'= A
r=A

cut

Theorem 5.2.5 (Cut elimination). The rule cut is admissible in LS.E*.

Proof. Given a derivation of a sequent possibly containing some applications of cut, we show
how to remove any such application and obtain a derivation of the same sequent without cut.
The proof is by double induction, with primary induction on the weight of the cut formula
and secondary induction on the cut height. We recall that, for any application of cut, the cut
formula is the formula which is deleted by that application, while the cut height is the sum
of the heights of the derivations of the premisses of cut. On the basis of Definition 5.1.3, cut
formulas can only be of the kinds « : A, t ¥ A and t IF? A, since formulas of kinds = € t
and ¢ > x never occur in the right-hand side of sequents. As usual, we consider several cases
depending how the premisses of cut have been derived.

(i) At least one of the two premisses of cut is derived by a zero-premiss rule, i.e., init,
LL, RT, 7%, or M. If a premiss is derived by init, LL, or RT, then the proof is standard. For

instance, if the right premiss is derived by RT we have:

RT

F'=Axz:T,¢ o, '=Ax:T
cut

F'=Axz:T

where the conclusion of cut is derivable by RT. The situation is similar if the left premiss is

derived by RT and the cut formula is not x : T. If instead the cut formula is  : T we have:
RTI‘:>A,:U:T z: T, '=A
'=A

Then we must consider the last rule applied in the derivation of z : T,I' = A and cut x : T

cut

away from its premiss(es). The situation is analogous to the point (éi.73) below so we do not
show any example.

If a premiss of cut is instead derived by 7 or M, observe that the cut formula is not = € 7,
or x €t,or t > x, since these formulas do not occur in the right-hand side of sequents. Then

the conclusion of cut is derivable by 7 or M. For instance if we have
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_ = M
t>z,yet,I'= A0 d),tbm,yet,F:Act
— u

t>x,yet,'=A

where the conclusion of cut is derivable by M.
(74) None of the premisses is derived by a zero-premiss rule. We distinguish three subcases.
(7i.1) The cut formula is not principal in the last rule application in the derivation of the
left premiss of cut. As an example we consider the case where the rule last rule applied is N.

We have the derivation on the left, which is converted into the derivation on the right.

o, = A
ol = A4 Tz, = A ¢ >z, o, = A Lwk
= A¢ o, '=A ~ cut
cut >z, ' = A

I'= A

I'= A

Notice that having both I' = A, ¢ and ¢,I"' = A derivable, and since the calculus is sound,
we have that T' U A is non-empty. By Definition 5.1.3, if T' # (), then z occurs in T, and
if ' = (0, then = occurs in A. Then the last application or N is possible because the side
condition z € I"' U A is satisfied.

(i.74) The cut formula is not principal in the last rule application in the derivation of the
right premiss of cut. As an example we consider the case where the last rule applied is LO.
We have:

boa>z,alFY AT = AalF A Lo
z:0AT = A0 ¢,z :0A T = A
r:0A4T = A

cut

The derivation is converted as follows, with an application of height-preserving invertibility

of LO and an application of cut with smaller height.

z:0A4T=A¢
a>z,alF’ AT =Aal- A ¢ ba>z,alFY AT = Aal- A
a>z,alFY AT = Aal- A

r:0A4,T=A

invLO

cut

LO

premisses of cut. There are four subcases.
e The cut formula is of the form x : AANB,orz: AV B, or x : A — B. The proof is
standard. For instance if we have
I'=sAx: A I'=sAx:B z:Azxz:BT=A

I'=Az:ANB r: ANB,T = A
= A

RA LA

cut

then the proof is converted as follows, with two applications of cut with a cut formula of

smaller weight:
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I'=Az: A
Lka:B,FiA,x:A z:Azxz:BT=A
I'=Azxz:B z:B,T=A cut
cut '=A

e The cut formulais t IF¥ A. The derivation is as follows, where D represents the derivation

of the sequent z € t,y € t,I' = A,y : A.

D
V
retyct, = Ay: A zettF Az AT = A
RIFY LIFY
ret,l = AtIF A rettlFM AT = A .
cu

rzet,I'= A

with  fresh in the application of R IFY. The derivation is converted as follows, where D(z /%)

represents the derivation obtained from D by replacing all occurrences of y with x.

D(z/y)
\Vj L zet,I' = At A
L TEtTEtT>Aa:A e cta AT =AtH A zetth Az: AT = A .
T et T = Az A etz AL = A cu
cut
ret,I'= A

The new derivation contains two applications of cut, the first one has a smaller height and
the second one has a cut formula of smaller weight.
e The cut formula is t IF? A. We have:

D
%
ret,T = At Az A ret,yety: A=A
RI- e e LI
zet,l = At A thAzetT=A o
cu

ret,I'= A

with y fresh in the application of L IF?. The derivation is converted as follows:

D(z/y)
tF A zet, I = A Ruk v
¢ zet,T = At Az: A tF A zet,T=Az: A W ret,ret,r: A=A L
cu ret,I'=Axz: A ret,r: A=A tctr
ret, T = A cu
e The cut formula has the form z : OA. We have:
v D
t>ax, = Az:0A4,tIF" A v,
RDE t>x, I AT = A, z:04 a>z,alFY Atz T=AalF A
toz,I'= A,x:04 z:OAt>z,I'= A

t>z,I'= A cut
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with a fresh in the application of LO. The derivation is converted as follows, where the
application of cut is replaced by four applications of cut, each of them with a smaller height

or with a cut formula of smaller weight.

t>xz,z: 04T = A

Rwk
Cttl>x71":>A,x:DA,tll—VA t>z,z: 04T =AtIF A W
u
Rk t>a, I = At A
N s e T = AL AT A
D(t/a) :
v : t>z,x: 04T = A
: (oo il Az:OAT A
L tea,tFY Ate T = AT A >z, & 54,
o  to @t AT AT A D b2 IF AT = A,z:0A .
Ccu — — Ccu
t>z, T =ATIF A t>z,tIFF AT = A .
t>x, = A cu
O

Having shown that cut is admissible in LS.E*, we can prove the syntactic completeness

of the calculi with respect to the corresponding axiomatic systems.

Theorem 5.2.6 (Syntactic completeness). If A is derivable in E*, then = x : A is derivable
in LS.E* for every world label z.

Proof. We have to show that all axioms of E* are derivable in LS.E*, and that all rules
of E* are admissible in LS.E*. For propositional axioms we can consider their standard
derivations in G3-style calculi, whereas the derivations of the modal axioms and rules are
displyed in Figure 5.2. For the derivation of rule RE we assume that y : A, T' = Ay : B
and y : B,I' = A,y : A are derivable for every world label y, and for the derivation of rule
RD;} we assume that y : A1,y : Ag, ...,y : Ap, T = A is derivable for every y. Finally, M P is
simulated by cut in the usual way (cf. Section 3.3). O

5.3 Further admissible rules

We have seen that the structural rules and cut are admissible in LS.E*. In this section, we
present further admissible rules, namely the rules for the modality ¢ and some simplified
rules for O that turn out to be admissible in monotonic calculi.

Rules for ¢

Analogously to the axiomatic systems, the labelled calculi LS.E* are defined by considering

only the rules for O, and not the rules for &. Nonetheless, the rules for ¢ could be equivalently
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obtained by converting the satisfaction clause of diamond formulas in the bi-neighbourhood

semantics into sequent rules. The resulting left and right rules for < are as follows:

t>z,x: CAtIF AT =A  tpozz:CAT=>ATIF A
t>x,z: CAT = A

LS

a>z,alF’ AT =Aal-? A (a)
T = A,z:0A @

RO

It is easy to verify that LO and RO are sound in the bi-neighbourhood semantics. Basing
on the admissibility of cut and the definition of GA as —0-A, we now show that the rules
LS and RO are admissible in LS.E*. The rule RO can be shown admissible as follows.

az,alFY AT=Aal® A
avz,alF  AjalFY AT =AalF? A
avz,alF” AyalF’ =AT = AalF2 A,alF -4

Lwk

Rwk

yeAy:Aavz,all AjalbY mAT=Aalk> -A,y: A
yeAy:Aazalt’ AallY —A,y: AT = Aalk® -A

v
yeAy:Aazalk’ Aol mAT=Aal> -4 ;"F
alF? Ajaz,alF AjalFY mA T = Aalk® -A LI
az,alFY AjalFY mA, T = Aalk® -A cut
a>z,alF’ mAT=AalF Aalk -A
a>xz,alk’ “AT = Aal-? —A cut
r:0-AT=A
F=A,z:=0-4
Moreover, the rule LO can be shown admissible as follows.
Lk t>z,z:-0-A,T=ATIF A t>z,yety:—Ay: AT Az:-0-A4,T = A,z:0-4 LY
Rk t>z,tIF Az ~0-4,T = ATIFY 4 t>z,ycty: AtIF Ax:-0-A,T = A, z:0-4 L
t>a, i Az ~0-A,T = ATIFY A,z : O-A t> 2, IF 2ATIFY Az —0-A,T = A,z: 0-A4
to o il —Az: O-AT=Az:0A cut
t>z, il —AT = Az:0-A z: -0-4 :
@ t>a,tlFF AT =Az:0-A4 cut
RIL3 t>a,c:-0-Ayet,T=AtF Ay: Ay:-Az:0-4 t>z,z:-0-AtF AT=A Rwk
RILY t>a,z:-0-Ayet, I = At Ay:-Az:0-4 t>z,z:—0-AtIF AT =AtIF A Rwk
t>zx:-0-A,T = AtIF At —A z: 0-A4 t>z,x:-O0-AtIH AT = AtIF Az:0-A4

cut

t>a,o:-0-AT= At Az:0-4

t>z, 0= At Ag:0-Az: -0-4
toa T = AL Az:0-A R
t>z, = Ax:0-4
t>x,x:0-AT = A

RO

-
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Simplified rules for monotonic systems

In Negri [131], labelled calculi for monotonic logics are defined by considering alternative
rules for O expressing the forcing condition of boxed formulas in the dV-semantics. The rules,

rewritten with the present notation, are as follows:

a>z,alFY AT = A (a) RO t>z, I =Az:04,tIF A
z: 04T =A @ m t>z,I'= A,z:0A4

LOm

It can be shown that the rules LOm and ROm are sound both in 3V-models and in bi-
neighbourhood M-models. In the first case, formulas ¢ > x must be interpreted as o(t) €
N (p(z)), whereas in the second case they must be interpreted as (o(¢),0) € N(p(x)) (in both
cases the interpretation of ¢ > z is different from the one given in Definition 5.1.5).

Here we show that the rules LOm and ROm are derivable in our monotonic calculi LS. M™.
We also show that our rules LO and RO are derivable from LOm, ROm and M. Therefore, in

presence of rule M, our basic rules for O and the above monotonic rules for O are equivalent.

e LO is derivable from M and LOm:

M (a, A
a>zyca,y:Aalk’ AT = A :3y¢ )
a>z,alFY AT=Aalk A a>z,alF? AalFY AT = A ;
cu
a>z,alF’ AT = A L0
¢:O0AT = A m
e LOm is derivable from LO:
a>z,alFY AT = A
v —3 Rwk
a>zalF” AT=Aal-" A
r:0AT = A
e ROm is derivable from M and RO:
= M A
t>zyet,y: A=A x:04 Li—(g¢ )

t>z,I'=A,z:04,t: A t>x,tIF AT = A, z:0A4 RO
t>x,I'= A z:0A4

e RO is derivable from ROm:

t>z,I'=Ax:0A4,t: A
t>xz,I'=Az:0A4
t>z,I=Az: 04T A t>z,tlF AT = A z:0A
i>oT = Az:0A

ROm
Rwk

cut
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The calculus obtained by adding the monotonic rules for box LOm and ROm to the propo-
sitional rules and the rules for local forcing is an alternative calculus for logic M. We can show
that cut is admissible in this calculus (cf. [131]), the proof is essentially a simplification of the
one of Theorem 5.2.5. This calculus has the advantage of not requiring negative terms at all,
by contrast, in this way the definition of the calculi is not modular between the monotonic

and the non-monotonic case.

5.4 Tableaux calculi and decision procedure

In this section, we present a reformulation of the labelled sequent calculi LS.E* in the form
of labelled tableaux calculi, except for the calculi containing the rules for axiom 4 which are
considered later in Section 5.6. We then define a simple terminating proof search strategy in
the tableaux calculi that provides a decision procedure for the corresponding logics.

We point out that all results presented in this and the next sections could be equivalently
achieved by using the sequent calculi LS.E*. However, since the calculi LS.E* have all the
rules invertible they can be naturally looked as tableaux systems. This alternative formulation
has the advantage of offering a simpler formalism to display failed proofs and derivations. As
a matter of fact, since the backward applications of the sequent rules preserve the context as
well as some principal formulas, the proofs in our sequent calculi quickly become very large, by
contrast the replication of formulas is avoided in the tableaux formulation that we consider in
the following. Moreover, we now consider refinements of some rules which avoid the creation
of unnecessary neighbourhood terms (see the rules =Op, dect, dect, Ct below). Although
these refined rules would break the possibility to give a direct proof of cut elimination in the
sequent calculi, they are still adequate to build countermodels, whence to prove the semantic
completeness of the calculi. Finally, the tableaux systems allow us to encode a terminating
proof search strategy in a straightforward way. We see all this in the following.

The tableaux calculi LT.E* are defined by the rules in Figure 5.3, as summarised in
Figure 5.4. For the propositional connectives and O, the calculi contain a “positive” and a
“negative” rule, that correspond respectively to left and right rules of sequent calculi. More-
over, the zero-premisses rules of sequent calculi are reformulated as closure conditions of
tableaux branches, in order to express these conditions we use a special symbol f. Observe
that, as a difference with the rule C of the sequent calculus, the rule Ct builds n-ary neigh-
bourhood terms directly from n atomic terms. Analogously, the rules dect and decy directly
decompose n-ary terms into n atomic terms. As we shall see, while a stepwise decomposition
of neighbourhood terms (as it is done by dec and dec in the sequent calculus) is needed for
obtaining a syntactic proof of cut elimination, this is not necessary for a proof of semantic
completeness by countermodel extraction for non-valid formulas. We consider the following

definitions.
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Rules of the basic calculus LT.E
z: A
x: L T
inite “‘“;A Lr = R
:-(A— B
AT z A‘,/L\lB $:ﬁ(A/\B) N r:A— B =7 v ( — )
T AT —A|z:-B v:-A|z:B x: A
I'ZB X xX . . . l‘ZﬁB
z:0A x:-0A
tIFY A Ot ab>x (al) t>x '
|P’T‘i%§ alk* A TTyet [ yer @
' al-’ —A y: A y: A
Rules for neighbourhood terms
q T Ea..an
oy LET et T € 9o x € ay.-a,
T f : T ea | .. |zean
T € ap
Rules for extensions
bew B t > t >
— . X Xz |
MTLEt Nt - (z in B) Tr et Pr yet (")
th>x
a1 > x t>x
: t>z s>z tn, >
: Dir ————(y) D - ! o BT
Cp—n 7 Toyet|yet &) Dor yet yet ) Dir yet ")
T a1 a, > yes | yes
Yy Etn

Figure 5.3: Rules of labelled tableaux calculi LT.E*.

Definition 5.4.1 (Tableau, derivation). Let ® and A be respectively a set of n labelled

formulas of L, and a formula of L.

e A tableau for ® in LT.E* is a tree such that the first n nodes starting from the root
are labelled each by a different formula of ®, end every succedent node is obtained by
the application of a rule of LT.E* to formulas occurring in the same branch at smaller
depths.

e A branch of a tableau is closed if it contains f, otherwise it is open. A tableau is closed

if all its branches are closed.

e A branch B can be closed if there exists a closed tableau obtained by expanding B with
applications of rules of LT.E*.
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LT.E :— {propositional rules, ', O, -Og}. LT.ET*:= LT.E* U {Tt}.

LT.M* .~ LT.E* U {Mr}. LT.EP* .- LT.E* U {Pr}.
LT EN* .= LT.E* U {NT, ?Q)T}- LT.ED* .= LT.E* U {DlTa DQT}.
LT.EC* :— LT.E* U {Cr, decr, decr). LT.ED{* .= LT.E* U {D}r | 1< m < n}.

Figure 5.4: Labelled tableaux calculi LT.E*.

1. —(O(A A B) —» OA)
2. z:0(AAB) (1, =)
3. z:-0A (1, —\—>T)
4. ab>x (2, Or)
5. alF" AAB (2, O7)
6. al-’ =(AAB) (2, Or)
/
7. alF?-A (3,4, -O7)
8 yea (7, 1) 7. G A (3,4, -Op)
9. y:-A (7, IF=1) 3 cg (7, IFp)
10. y:AAB (5,8, IFy) Coyea T
9. Y A (7, I+ T)
11. y: A (10, AT) £ (4, 8, M)
12. y:B (10, Ar) & T
f (9, 11, initt)

Figure 5.5: Derivation of axiom M in LT.M.

o A derivation of ® in LT.E* is a finite closed tableau for ®.

e A derivation of A € L is a derivation of xg : —A.

As an example, in Figure 5.5 it is displayed a derivation of axiom M in the calculus LT.M.
Since the tableaux calculi LT.E* are essentially a reformulation of the sequent calculi LS.E*,

it is possible to prove the following result:

Theorem 5.4.1 (Syntactic equivalence). For every formula A of £, A is derivable in LT.E*
if and only if A is derivable in E*.

We omit cumbersome details. The idea is that every derivation in the sequent calculus
LS.E* can be transformed into an equivalent derivation in LT.E*. The transformation is
easy as there is a 1-1 correspondence between rule applications in sequent proofs and rules
applications in tableaux proofs. The only exceptions are the rules C, dect, and dect, which
correspond to multiple consecutive applications of the analogous rules in the sequent calculus,
and the rule —O, which correspond to an application of RO and a subsequent application
of RIFY or LIF?. Notice that because of the invertibility of the sequent calculi LS.E*, a
derivation in LS.E* can be always converted into an equivalent derivation where the rule

applications are ordered in a suitable way (e.g., applications of C are conveniently grouped so
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to correspond to an application of Cp). Furthermore, by the same argument, or by a direct
proof analogous to the one of Theorem 5.1.2, we can also prove that the calculi LT.E* are
sound with respect to the bi-neighbourhood models for E*.

We are interested in using the tableaux calculus LS.E* to define a decision procedure for
the logic E*. To this aim, it is useful to characterise the branches that can belong to a proof

of xg : —A.

Definition 5.4.2 (Adequate branch). Let B be a branch of a proof in LT.E*. We say that
B is adequate if it satisfies the following conditions: () If a neighbourhood label a occurs in
B, then there is exactly one world label x such that a > x is in B, and there is exactly one
formula A such that a IF¥ A in B. (ii) a IF¥ A is in B if and only if @ IF¥ —A is in B. (44i) If
tIFY A is in B, then t is an atomic term a or @ different from 7, 7. (iv) If a...a,, > x is in B,
then a; > z, ..., a, > z are in B. (v) If aj...a, or @i...a, occurs in B, then all atomic terms

ai, ..., @y occur in B.
Lemma 5.4.2. Every branch of a proof of A in LT.E* is adequate.

Proof. The branch consisting only in the formula xzy : = A is adequate. Moreover, it is easy
to verify that all rules of LT.E* preserve the adequacy of branches, that is, if a branch is

adequate, then its expansion by the application of any rule of LT.E* is also adequate. O

We now define the proof search strategy for formulas A of £ in LT.E*. Starting with
xo : A, the strategy essentially amounts to applying the rules of LT.E* as much as possible
but avoiding redundant rule applications, where the application of a rule can be considered
redundant if, roughly, it only adds information which is already contained by the branch.
Redundancy of rule applications is formally defined by relying on the following notion of

saturation.

Definition 5.4.3 (Saturated branch). Let B be a branch of a tableaux proof for xy : A
in LT.E*. The saturation conditions associated to the application of rules of LT.E* are as
follows. (inity)  : Bisnotin Bor z: -Bisnotin B. (L) x: Lisnotin B. (=TT) x: =T
isnot in B. (Ar) If x: BAC isin B, then x : B and x : C are in B. (-At) If z: =(BAC)
is in B, then  : =B or x : =C is in B. (IF'7) If tIF¥ B and = € t are in B, then x : B is in
B. (Og) If z : OB is in B, then for a neighbourhood label a, a > z, a IF¥ B, and @ IF¥ —B
are in B. (—Or) If x : =0OB and ¢ > x are in B, then there is a world label y such that y € ¢
and y : ~B arein B,ory € t and y : B are in B (M) t > z is not in B or y € ¢ is not in B.
(N) If 2 is a world label occurring in B, then 7 >  is in B. (7%1) 2 € 7 is not in B. (Cy) If
aj > x, ..., ap > x are in B, then there is s > z in B such that set(s) = set(a;...a,). (decrt)
If £ € ay...ap is in B, then = € ay, ..., € a, are in B. (dect) If © € @1...ay, is in B, then for
some 1 <i<n,ze€qisinB. (Tp)Ift>xisin B, then x € tisin B. (Pp) If t > z is in
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B, then there is a world label y such that y € ¢ is in B. (Dy) If ¢ > « is in B, then there is
a world label y such that y € t isin B, or y € t is in B. (Do) If t > x, s > = are in B, then
there is a world label y such that y € t and y € s are in B, or y € t and y € 5 are in B. (D;/'1)
Ifty > x, ..., t, > x are in B, then there is a world label y such that y € t1, ..., y € t,, are in
B.

We say that B is saturated with respect to an application of a rule Ry if it satisfies the
saturation condition (Rt) for that particular rule application, and that it is saturated with
respect to LT.E* if it is saturated with respect to all possible applications of any rule of
LT.E*.

Observe that every saturated branch is not closed. The proof search strategy in LT.E* is

then defined as follows.

Definition 5.4.4 (Proof search strategy, failed proof). Given a formula A of £, a proof of
A in LT .E* is constructed as follows. Firstly, the root node is labelled with xg : =A. Then,
every branch of the proof is expanded by backward applications of rules of LT.E* in the
respect of the following two conditions: (i) No rule can be applied to a closed branch. (ii)
The application of a rule in a branch is not allowed if the branch is already saturated with
respect to that particular rule application. A branch is expanded until there are no possible
additional rule applications in the respect of conditions (i) and (ii). We call failed proof of
A any tableau for A which is constructed in accordance with the strategy and contains some

saturated branch, i.e., some branch that is open and that cannot be further expanded.

We now prove that every tableau built in accordance with the strategy is finite. The proof
consists in showing that every tableau built in accordance with the strategy can contain only
finitely many labels, and that as a consequence it can contain only finitely many labelled

formulas.

Definition 5.4.5. Let B be a branch of a proof of zy : A in LT.E*. We denote by n(i) the
formula at the node of B at depth 4, and, for every world label  and neighbourhood term t,
we denote by d(x) (respectively d(t)) the smallest i such that x (respectively t) occurs in n(%).
We define three relations <1 C WL x NT, <9C NT x WL, and <,C WL x WL as follows:

t =1t # 7 and for some i € N, d(t) =i and n(i) =t > x;
r—1t iff t=17 and z = xo;

t=tand z — t.
t—ox iff forsomeieN,d(r)=1iandn(i)==zc¢ct.
T <y iff for some term t, x <> t and t <o .

We say that x generates t if if x <1 t, that t generates x if t <9 x, and that = generates y if
T <>y y. We denote by T, the graph determined by x¢ and the relation <.
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Lemma 5.4.3. Given a branch B of a proof for g : A in LT.E* built in accordance with the
strategy, we have that (a) the graph T, determined by x¢ and the relation <, is a tree with

root xp, and (b) every world label occurring in B is a node of Ty,.

Proof. (a) As immediate consequences of the definitions we have that x1 <1 ¢t and z9 <1 t
implies 1 = x2, and t; —9 y and to <o y implies t; = to, thus x; <, y and 2 — ¥
implies 1 = x9. Moreover, x <, y implies d(z) < d(y), therefore x <, y implies y />, .
(b) By complete induction on d(z). If d(x) = 1, then = x¢, thus z is in T, by definition.
If d(z) > 1, then z is a world label occurring in B different from zy. Then z is introduced
in B by a formula x € t where t is a preexisting term in B, thus t <2 z and d(t) < d(z). In
turn, t is introduced in B by a formula ¢ > y, where y is a preexisting term in B, thus y < t
and d(y) < d(t). It follows y <, x and d(y) < d(z). By inductive hypothesis, y is in Ty,

therefore x is also in Ty,. O

Lemma 5.4.4. Given a branch B of a proof for g : A in LT.E* built in accordance with the

strategy, every branch of the tree T, determined by the relation <, is finite.

Proof. For every world label x occurring in B, we define its modal degree as md(z) =
max{md(A) | z : A is in B}. We prove that x <, y implies md(y) < md(z). Since md(z)
is finite, this implies that every branch of 7, is finite.

Assume that y : A is in B, and © <, y, that is there is t such that x <1 t <9 y. We
prove by induction on the depth of the node of B labelled by y : A that md(A) < md(z).
Notice that y : A can be obtained in the tableau by: (i) an application of a propositional rule,
or (ii) an application of ~Or, or (iii) an application of IF7.

(i) If y : A is obtained by an application of a propositional rule, then y : A is obtained
from a formula y : B occurring in B at a smaller depth, where B has the same modal degree
of A. Then by inductive hypothesis md(A) = md(B) < md(zx).

(ii) If y : A is obtained by an application of —Or, then it is obtained from formulas
z : -0OB and s > z, with A = =B or A = B. Since y is fresh in the application of —Or,
s <2 y, then s = t. Moreover, since x <1 t = s, by Definition 5.4.2 (i), z = 2. Then x : -0OB
is in B, therefore md(A) < md(z).

(iii) If y : A is obtained by an application of IF¥, then it is obtained from formulas s IF7 A
and y € s. By Definition 5.4.2 (iii), since s IF¥ A is in B we have s = a or s = @ for some
atomic term a. Then since y € s is in B we have the following possibilities: s <9 ¥y, or
bi...by, <o y and s = b;, or by...b, <9 y and s = b;, or s > y is in B. If s < y, then s = t,
thus <1 s. Then s IF¥ A is obtained from a formula z : OB, with A = B or A = —~B. Then
md(A) < md(x). If by...b, <2 y or by...b, <2 y, then z <1 by...b, or x <1 by...by,, thus
by...b, > x is in B. By Definition 5.4.2 (iv), b; > x is in B, then x <1 s. As before, x : OB
is in B, with A = B or A = =B. Then md(A) < md(z). If s > y is in B, then s > y is
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obtained together with s IFY B and 5 IFY =B by an application of O to a formula y : OB.
Then A = B or A = —B. Since y : OB occurs in B at a smaller depth, by i.h. we have that
md(A) < md(OB) < md(x). O

Lemma 5.4.5. Given a branch B of a proof for zy : A in LT.E* built in accordance with the
strategy, the tree 7, determined by the relation <, has finitely many branches. Moreover,

every world label occurring in B generates finitely many neighbourhood terms.

Proof. We show that (a) every world label generates finitely many neighbourhood terms, and
(b) every neighbourhood term generates finitely many world labels. It follows that every world
label generates finitely many world labels.

(a) First, a world label = generates finitely many (positive) atomic terms a. Indeed, a
is generated by x by means of an application of Oy to a formula x : OB. By its saturation
condition, rule Oy can be applied to  : OB at most once. Moreover, all formulas OB such
that x : OB is in B are subformulas of the formula A at the root of the tableau, whence
they are finitely many. Furthermore, if x generates n atomic terms, then by the saturation
condition of Cr it generates at most 2 — 1 (positive) complex terms.

(b) A term ¢ generates a world label y by an application of a rule among —Or, Pp, Dy,
Dor, and D;f, to a formula ¢ > z, or a pair t > z, s > z, or a tuple t I> z,81 > @, ..., 8, >
(all of them with the same world label ). By the saturation conditions, every rule among
O, Py, D11, Do, and D 1, can be applied only once to the same formula ¢ > z, or pair
t>x, s> x,ortuplet > x,s1 > x, ..., S, > z. Then the problem is reduced to counting how
many of these formulas can occur in B. But by (a), we know that the world label x generates

finitely many terms, then the formulas of the form r > x occurring in B are finitely many. [

Theorem 5.4.6 (Termination of proof search). Every branch of a proof of x : =A in LT.E*
built in accordance with the strategy is finite. Thus, for every formula A the proof search
procedure in LT.E* is terminating. Moreover, every branch of the proof is either closed or

saturated.

Proof. Let B be a branch of a proof of x : =A. By Lemmas 5.4.4 and 5.4.5 and K&nig’s Lemma,
tree T, determined by the relation <, is finite. Moreover, by Lemma 5.4.3, every world label
occurring in B also occurs in 7T, then B contains finitely many world labels. Furthermore,
by Lemma 5.4.5, every world label generates finitely many neighbourhood terms, then B also
contains finitely many neighbourhood terms. In addition, the formulas of £ occurring in B are
subformulas (or negated subformulas) of A, whence they are in a finite number. Considering
that only finitely many labelled formulas can be built by combining finitely many world labels,
neighbourhood terms, and formulas of £, and that multiple occurrences of the same labelled
formulas are prevented by the saturation conditions of the rules of LT.E*, we conclude that
the branch B is finite. 0l
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5.5 Countermodel extraction and semantic completeness

In the previous section we have defined a terminating proof search strategy in LT.E* that
for every formula of £ provides either a derivation or a failed proof. Here we show that from
every saturated branch of a failed proof it is possible to directly extract a countermodel of
the non-derivable formula. It follows that LT.E* is semantically complete with respect to
the corresponding bi-neighbourhood models, since every non-derivable formula is not valid.
Countermodels are defined in the bi-neighbourhood semantics, however for regular logics we
show that it is also possible to directly extract countermodels in the relational semantics.

Given a failed proof for A, a bi-neighbourhood countermodel of A is defined as follows.

Definition 5.5.1 (Countermodel extraction). Let B be a saturated branch of a failed proof
of A in LT.E*. On the basis of B, we define the bi-neighbourhood model M = W, N, V) as

follows:

e W = the set of world labels occurring in B.

e For every term aj...an, G1...G, occurring in B, where every a; is a neighbourhood label

or T,
Qgy.an ={x €W |z €ay,..,z €a, are in B}, and
Ogar ={r €W |z €arisin B, or ..., or x € @, is in B}.

e For every x € W, N(z) = {(ow, ) | t > x is in B}.

e Foreverype L, V(p) ={z € W |z :pisin B}.

We prove the following lemma.

Lemma 5.5.1. Let B be a saturated branch of a failed proof of A in LT.E*, M be the model
defined on the basis of B as in Definition 5.5.1, and (p, o) be the realisation defined by taking
p(z) = x for every world label x occurring in B, and o(t) = ay for every neighbourhood term

t occurring in B. Then for every ¢ € L4,
if ¢ is in B, then M |=,, ¢.

Moreover, for every X € {M, C, N, T, P, D, RD; }, if LT.E* contains the rules for X, then
M is a bi-neighbourhood X-model.

Proof. First, notice that function o is well-defined: by saturation of 70¢, ¢(7) = az = 0, and
by saturation of N, 7 &> « is in B for all x occurring in B, then by definition (a, ) € N (z) for

all x € W. Moreover, for t = aj...a,, and s = b;...b,,, we have o(ts) = aus = Qay . apby.. by =
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Qgy N o Ng, N, NN, = Qay.an Ny b, = @ Nas =o(t)No(s), and o(ts) = az; =

o =agrU..Uag;UagU...Uag—= agrma, U5 = agUas = o(t) Uo(3).

ai...anbi...bm

The first claim (truth lemma) is proved by cases and by induction on the weight of ¢.
(¢ =t > z) By definition, (o(t),0(t)) = (ou, a7) € N(z), then M =, t > .

(p =z €t) Let t = aj...an. Then by saturation of dect, = € ay, ..., ¢ € a, are in B. Then
by definition p(z) = x € aq,...a, = ¢ = 0(t), thus M |=,, x € t. If t = @y...a,, the proof is

analogous by considering saturation of decr.

(¢ =z : p) By definition, p(x) = = € V(p), then p(x) IF p, thus M =, = : p.

(¢ = x : —p) By saturation of inity, x : p is not in B, then = ¢ V(p), then p(z) IF —p, thus
ME,oz:p.

¢p=x:T)p(x)IFT,then M |=p,z:T.

¢ =z :—T) By saturation of =T, x : =T is not in B.

(
(
(¢ =« : L) By saturation of Lp, z: L is not in B.
(p=a:-1L) p(z) IF-L, then M =, , x : =L

(

¢ = x : BAC) By saturation of Ap, 2 : B and « : C are in B. Then by ih. M |=,, z: B
and M =,,2:C. Thus M =,,2: BAC.

(¢p =z : =(B AC)) By saturation of -Ap, z : =B isin B or x : =C is in B. Then by i.h.
ME,;z:=7Bor ME,,z:-C. Thus M |=,, z: =(BAC).

(0 =2:BVCzx:B— Cux:~(BVC),z: (B — C)) Similar to (¢ =z : BAC) or
(p=z:-(BAC)).

(¢ =t IF” B) Since the branch B is adequate, by Definition 5.4.2 the term t is atomic. Then
for any & € ax, « € t is in B. Thus by saturation of IFVp, 2 : B is in B, and by i.h., z IF B.
Therefore M =, , tIF¥ B.

(¢ = x : OB) By saturation of Oy, there are a > z, a IF¥ B, and @ IFY =B in B. Then by
definition (ag,az) € N(z), and by i.h., oy C [B] and ag C [-B]. Thus z |- OB, therefore
ME,sz:0B.

(¢ = x : -OB) Assume (v,d) € N(z). Then there are terms t,t such that v = oy, 6 = oy,
and ¢t > x is in B. Thus by saturation of —Ox, there are y € t and y : =B in B, or there are
yetandy: Bin B. Byih,y€a;and ylF =B, or y € oy and y IF B. Then oy Z [B], or
[B] € W\ ;. Therefore z I OB, so M |=,, x : “OB.

We now show that M satisfies condition (X) if LT.E* contains the rules for the axiom or
rule X.
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(M) Assume (v,9) € N(x). Then there are terms ¢, ¢ such that oy =, oy = 0, and ¢t > x is
in B. Let t = ay...a,,. Then since B is adequate, by definition a; > z, ..., a, > x are in B.

Thus by saturation of M, there is no y such that y € @; is in B. Then agr—a; = 6 = 0.

(N) By saturation of N, for every z in B, 7 1> x is in B, then (a,, aF) € N (x). Moreover, by
saturation of 70, there is no y € T in B, thus a7 = 0.

(C) Assume (71,01), (72,92) € N(x). Then there are terms aj...a,, and by...b,, such that
Qay..an = Vs Qarman = 01, Qb by = V2, ¥ 5 = 02, and a1...an > x, b1..by, > @ are in B.
By definition of adequate branch, a; > x and b; > x are in B for every 1 <7 <n, 1 <j <m.
By saturation of C, t > z is in B for a term ¢ such that set(t) = set(ay...anb1...by,). Then

(Oét, a{) = (aal---anbl---bnwaal...anbl...bm) = (aal,..an N,y by s Yaran Y abl...bm) - (71 N 72751 U
52) S N(l‘)
(T) Assume (v,d) € N(z). Then there is a term ¢ such that oy = v and ¢ > = is in B. By

saturation of T, x € t is in B, then x € oy = 7.

(P) Assume (v,d) € N(x). Then there is a term ¢ such that oy = v and ¢ > x is in B. By
saturation of P, there is y such that y € t is in B. Then y € oy = v, thus v # (.

(D) Assume (v1,01), (72,02) € N(2). If 41 # 72 or §; # d2, then there are terms ¢, s such that
ap = Y1, o = 01, g = 72, oz = 02, and ¢t > x, s > x are in B. Thus by saturation of Do,
there is y such that y € t and y € s are in B, or y € t and y € 5 are in B. Then y € a; and
Yy € as, or y € a7 and y € az, therefore v1 Ny # 0 or §; N2 # 0. If instead v; = 2 and
01 = 02, then there is a term ¢ such that oy = 1, a; = 01, and ¢t > x is in B. By saturation
of Dy, there is y such that y € t is in B, or y € t is in B. Thus 1 # 0 or 1 # 0.

(RD;Y) Let (71,01), -+ (Ym, Om) be any m < n different bi-neighbourhood pairs belonging to
N (z). Then there are terms ty,...,t,, such that t; > z, ..., ¢, > x are in B, and for every
1 <i<m, a;, = and az; = §;. By saturation of rule D;\. T (that by definition belongs to the
calculus LT.ED; ™), there is y such that y € t1, ..., y € t,,, are in B. Then y € ay; N ... N v,
thus oy NNy, =41 N Ny # 0.

Although not necessary for calculi laking the rules for 4, we can also show that in the
monotonic case the interpretation of every negative term turns out to be empty, i.e., not only
the interpretation of the negative terms ¢ such that ¢ > x is in B for some z: If ay...a,, is in B,
then by definition of adequate branch there is x such that a; > «, ..., a, > x are in B. Then

by saturation of M, there is no y such that y € a; for some 1 < i < n, thus agz—7=0. O

As a consequence of this lemma we can prove that the calculi LT.E* are complete with

respect to the corresponding class of bi-neighbourhood models.

Theorem 5.5.2 (Semantic completeness). If A is valid in every bi-neighbourhood X-model,
then A is derivable in LT.EX*.
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1. z:-(O(pAgq)— Op)
2. z:0(pAq) (1, = =)
3. z:-0Op (1, =—T)
4. ab>zx (2, Or)
5 alF"pAg (2, Or)
6. @l —(pAq) (2, Ot)

7. y€a (3, 4, -0O7) \

. M| =

8 Y P (37 47 VT) 7 yEa (37 4’ _‘DT)

9. yp/\q (5777|F T) 8 yip (34ﬁDT)

10. y:p (9, Ar) 9 Y

, y:=lprg (6,7 1F1)
1. y:q (9, Ar)
f (8,10, inity) pd AN
10. y:=p (9, 7Ar) 10. y:—g (9, ~AT)
f (8,10, initT) saturated

Figure 5.6: Failed proof of axiom M in LT.E.

Proof. If A is not derivable in LT.EX™, then it has a failed proof containing a saturated
branch B. By Lemma 5.5.1, we can construct an X-model M satisfying all labelled formulas
occurring in B. Then, since x : —A is in B, in particular we have M,z IF —A, whence
M,z If A, therefore A is not valid in the class of all X-models. O

Observe that the combination of termination of proof search and countermodel extraction
from failed proofs (Theorem 5.4.6 and Lemma 5.5.1) provides an alternative proof of the
finite model property for the considered classical non-normal modal logics, that is, every non-
derivable /non-valid formula has a finite countermodel. We now present two examples of failed
proofs in the tableaux calculi and the bi-neighbourhood countermodels extracted from their
saturated branches. We also present the standard models obtained by the transformation in

Proposition 4.3.4.

Example 5.5.1 (Axiom M is not derivable in logic E). In Figure 5.6 we find a failed proof
of O(p A q) — Op in LT.E. The countermodels are as follows.

Bi-neighbourhood countermodel. Following Definition 5.5.1, from the saturated branch we
obtain the following bi-neighbourhood model My; = W, Ny, V): W = {z,y}. Nyi(z) =
{(ag,az)} = {(0,{y})} and Ny (y) = 0. V(p) = {y} and V(q) = 0. Then M,; is a counter-
model of O(pAgq) — Op: x IF O(pAq) because ) C [pAg] =0 C W\{y}, but z | Op because

Ir] = {v} € W\ {y}.

Neighbourhood countermodel. We consider the set S = {O(pAg) — Op, O(pAq), Op, pAg, p, q}

of the subformulas of O(p A ¢) — Op. By applying the transformation in Proposition 4.3.4 to
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the bi-neighbourhood model My;, we obtain the standard model Mg = (W, Ny, V), where
W and V are as in My,;, and Ny (z) = {0}, since Ng(z) = {[p A ¢]m,, } and [p A g]m,, = 0.

Example 5.5.2 (Axiom K is not derivable in logic EC). In Figure 5.7 we find a failed proof
of O(p — ¢q) — (Op — Og) in LT.EC. The countermodels are as follows.

Bi-neighbourhood countermodel. Following Definition 5.5.1, from the saturated branch we
obtain the following model My; = W, Ny, V): W = {x,y,z}. V(p) = 0 and V(q) = {y}.
Nbi(y) = MZ(Z) = 0. Nbl(x) = {({Z}v ®)7 (07 {y})}a because sz(x> = {<O‘av az), (abv O‘E)? (aab7 O‘E)}ﬂ
and g = {2}, 05 =0, a4, = 0, a = {y}, awp =0, o = {y}. We have z IF O(p — ¢) because

{2z} Clp—ql =W CW\D; and z I Op because § C [p] = 0 C W\ {y}; but z I Oqg
because {z} Z [q] = {y} and [¢] = {y} € W\ {y}, whence z I} D(p — ¢q) — (Op — Oq).
Observe that My, is a C-model since ({z} N0, 0 U {y}) = (0, {y}).

Neighbourhood countermodel. By logical equivalence we can restrict the considered set of

formulas S to {O(p — ¢), Op,0¢,p — ¢,p,q,0((p — ¢) Aq),0(pAq)}. By the transformation
in Proposition 4.3.4, from My; we obtain the standard model Mg = (W, N, V), where W
and V are as in My, Nat(y) = Nst(2) = 0, and Nat(2) = {[p = dlm,is [P]a, [0 A dlm,, b =
{w, 0}

Relational countermodels for regular logics

As recalled in Section 2.3, in addition to the different kinds of neighbourhood semantics,
regular logics (i.e., MC and its extensions) have also a relational semantics (see Defini-
tion 2.3.7). Moreover, we have seen in Section 4.3 that every finite bi-neighbourhood MC-
model can be transformed into an equivalent relational model (see Proposition 4.3.5). Thus,
in principle one could obtain relational countermodels of non-valid formulas by first extract-
ing bi-neighbourhood models from failed proofs in LT.MC*, and then converting the bi-
neighbourhood models into relational ones. However, we now show that it is also possible
to directly extract the relational countermodels from the failed proofs in LT.MC*. To this

purpose we consider the following notion of maximal terms.

Definition 5.5.2 (Maximal term). Let B be a saturated branch of a failed proof in LT.MC*,
and let ¢ and x be respectively a neighbourhood term and a world label occurring in 5. We
say that t is mazimal for x if the formula ¢ > z is in B, and for every term s such that s > =z
is in B, set(s) C set(t).

We observe that, if present, the maximal term for x in B is unique: assume ¢ and r are
two distinct maximal terms for . Then set(t) = set(r) = {ay, ..., a, } for some neighbourhood

labels aq, ..., a,. Thus, both terms are generated by an application of Ct to a; > «, ..., a, > x.
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19.

f

1. z:-(0(p—q) — (Op — Og))
2. z:0(p—q) (1, m—7)
3. z:-(Op— 0Og) (1, " =)
4. x:0p (3, " =)
5. x:-0q (3, m—=71)
6. a>x (2, Or)
7. alF"p—gq (2, OT)
8. alt" =(p—q) (2, OT)
9. b=z (47 DT)
10. bIF'p (4, Or)
11. bIF —p (4, Or)
12. ab>x (6,9, Cr)
/
13. yeab (5, 12, =O7)
14. y:-q (5, 12, =O)
15. y€a (13, dect) 13. yeab (5,12, -O1)
16. ye€b (13, decr) 14. y:q (5, 12, =0O7)
17. y:p—gq (7,15, IF') /
v
18. y:p (10, 16, IF1) P (13, o)
/ AN 16. y:-(p—q) (8,15, F 1)
y:—p (17, =) 19. y:q (17, —71) 17. y:p (16, = —T) (%)
(18, 19, init) f (14, 19, initT) 18. y:—q (16, =—)
f (14, 18, initT)
)
15. yeb (13, decr)
16. y:-p (11,15, 1F"1)
N
/ 17. ze€a (5, 6, ~OT)
18. =z:¢q (5, 6, -OT)
17. z€a (5, 6, ~Or) 19. z:=(p—q) (8,18, IFr)
18. z:—gq (5, 6, -OT)
19. zipoq (717, IFp) 20. z:p (19, = —71)
’ ' T 21. z:—q (19, =—T)
pd AN £ (18, 21, initr)
20. z:—p (19, —71) 20. z:q (19, =)
saturated f (18, 20, initr)

Figure 5.7: Failed proof of axiom K in LT.EC.



5.5. Countermodel extraction and semantic completeness

But one term is necessarily generated before the other one, then the generation of the second

is prevented by the saturation condition of Cr

Lemma 5.5.3. Let B be a saturated branch of a failed proof for A in LT.MC*. Then, (a)
for every world label z occurring in B, if there are formulas s > z is in B, then there is a
maximal term for x in B. Moreover, (b) if LT.MC* contains the rules for N, then for every

worl label x occurring in B there is a maximal term for x in B.

Proof. (a) Assume that s; > x, ..., s, > x are in B. By termination of proof search, there
are only finitely many formulas of the form s > z in B. It is easy to see that, by saturation
of rule Cr, there is a term ¢ such that set(s;), ...,set(s,) C set(t) and ¢t > x is in B, whence t
is maximal (b) By saturation of rule N, for every world label x occurring in B, 7 > x is in B.

Then by (a) there is a maximal term for x in 5. O

Definition 5.5.3 (Relational countermodel). Let B be a saturated branch of a failed proof
of A in LT.E*. The relational model M, = (W, W! R, V) is defined as follows:

e W, V, and, for every term t in B, oy, are defined as in Definition 5.5.1.
e Wi = {x € W/| there is no term ¢ such that ¢ > z is in B}.

e xRy iff y € aisin B for every a € set(t), where t is the maximal term for z in B.

Lemma 5.5.4. Let B be a saturated branch of a failed proof of A in LT.E*, and M, be
the model defined on the basis of B as in Definition 5.5.3. We define the realisation (p, o) by
taking p(x) = x for every world label z in B, and o(t) = o for every term t in B. Then for
every ¢ € Ligp, if ¢ is in B, then M, =, , ¢. Moreover, if LT.MC"* contains the rules for
axiom N, then M, is a standard Kripke model for the normal modal logic K; if LT.MCN*
contains the rule for axiom T, then the relation R is reflexive; and if LT.MCN™ contains a
rule among P, D, and RD;’ (which are equivalent in LT.MCN™), then R is serial.

Proof. The truth lemma is proved by induction on ¢. In most cases the proof is the same as

for Lemma 5.5.1. Here we only consider modal formulas.

(¢ = z : OB) By saturation of O, there is a neighbourhood label a such that a > z, a IF7 A
and @ IFY —A are in B. Then by Lemma 5.5.3 there is a maximal term ¢ for z in B, and by
definition a € set(t). Now assume xRy. By definition of R, y € a is in B. Then by saturation
of IFVp, y: Ais in B, and by i.h., y I- A. Therefore z IF OA.

(¢ = x : =OB) If there is no formula s > z in B, then by definition € W?, thus x | OB.
Otherwise, let t = aj...a,, be the maximal term for x in B. Then ¢ > z is in B. By saturation

of =0, there is y such that y € ¢t and y : =B are in B, or y € t and y : B are in B. But the
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second possibility is excluded by saturation of Mp. Then by saturation of dect, vy € aq, ...,
Y € an are in B, thus xRy. But by i.h., y I =B. Therefore z I+ -0OB.

The model properties are shown as follows.

(W? = () By saturation of N, for every world label 2, 7 > x is in B. Then by definition
(Reflexivity) By Lemma 5.5.3 (b), there is a maximal term for = in B, let it be ¢. Then ¢ > x

is in B, and by saturation of T, x € t is in B. Then by saturation of dect, x € a is in B for

every a € set(t), thus xRz.

(Seriality) Assume LT.MCN* contains rule Py, and let ¢t be the maximal term for z in B.
Then ¢ > x is in B, and by saturation of Py, there is y € ¢ in B. Then by saturation of decr,
y € a is in B for every a € set(t), thus 2Ry. The proof is similar if LT.MICN* contains the
rules for D or RD;'. O

As for the bi-neighbourhood semantics, we obtain the following completeness theorem.

Theorem 5.5.5 (Semantic completeness). If A is valid in every relational model for MC or
MCN*, then it is derivable in LT.MC or LT MCNX*, respectively.

We conclude this section by presenting two examples of failed proofs of axiom 4 in the
calculi LT.MC and LT.MCNT and the countermodels directly extracted from the saturated

branches.

Example 5.5.3 (Axiom 4 is not derivable in MC). In Figure 5.8 we find a failed proof of
Op — O0p in LT.MC. We obtain the following countermodels.

Bi-neighbourhood countermodel. Following Definition 5.5.1, from the saturated branch we
obtain the following bi-neighbourhood model My; = (W, N, V): W = {z,y}, V(p) = {y},
N(y) =0, and N(x) = {(aq,0z)} = {({y},0)}. We have z I Op because {y} C [p] € W\ 0;
but y If Op because N (y) = 0, then {y} £ [Op], thus z [ OOp.

Relational countermodel. If in contrast we consider Definition 5.5.3 we obtain the relational
model M, = W, W' R, V), where W and V are as in My;, W' = {y}, and R(z) = o, = {y}.
Then z IF Op because zRw implies w = y, and y |- p. Moreover, since y € W?, by definition

y I Op. Then since xRy we have x If OOp.

Example 5.5.4 (Axiom 4 is not derivable in MCNT). In Figure 5.8 we find a failed proof
of Op — O0p in LT.MCNT. We obtain the following countermodels.

Bi-neighbourhood countermodel. Following Definition 5.5.1, from the saturated branch we
obtain the following bi-neighbourhood model My, = W,N,V): W = {x,y,z}, V(p) =
{z,y}, N(@) = {(aq; aq), (ar, a7), (aar, agr)} = {({z,9},0), {z,9,2},0)}. N(y) = N(z) =
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{(ar,a7)} = {({{z,y,2},0)}. We have z I Op because {z,y} C [p] = {z,y} € W\ . But

y Iff Op and z I Op because {x,y,z} Z [p]. Then z If O0p because {z,y} Z [Op] = {z}. It
is easy to verify that M is a MCT-model.

Relational countermodel. If in contrast we consider the construction in Definition 5.5.3 we
obtain the relational model M, = (W, W/ R, V), where W and V are as in My;, W' = {0},
R(z) = agr = {z,y}, and R(y) = R(z) = ar = {z,y,2}. Then x IF Op because zRw implies
w=zorw=y, and z IF p and y IF p. But z If p, then y If Op, therefore z If OOp. Notice

that M, is a relational model for MCINT, and it is not transitive since xRy, yRz, but not
TRz.

Observe that in the Examples 5.5.3 and 5.5.4 above, the relational models directly ex-
tracted from the saturated hypersequents are the same models that we obtain by applying

the transformation in Proposition 4.3.5 to the bi-neighbourhood models.

5.6 Tableaux calculi for logics with axiom 4

In this section, we conclude the presentation of our labelled tableaux calculi by considering
the calculi for the systems with axiom 4. Differently from the tableaux calculi presented in
previous sections, at present we have not obtained a direct proof of semantic completeness of
these calculi with respect their bi-neighbourhood models. Here we prove that these calculi are
semantically complete with respect to their standard semantics. As before, the proof consists
in showing how to directly extract countermodels from failed proofs.

For every logic E4*, we define the corresponding labelled tableaux calculus LT.E4* by
extending LT.E* (cf. Figure 5.3) with the rules in Figure 5.9, namely the rules for 4 and the
rules for complements. The rules for 4 are just the tableaux reformulation of the correspond-
ing sequent rules in Figure 5.1. In addition, the rules for complements cmp~r and cmpyp
respectively express that positive and negative terms must be disjoint, and that their union
must coincide with the whole set of world labels, and are used to force the interpretation of
negative terms as complements of the positive ones. While these rules can be shown admissi-
ble in the calculi without the rules for 4, at present we could not prove the same in presence
of the rules for 4, for this reason we add them explicitly to the calculi.

In order to prove the semantic completeness of the calculi LT.E4* we extend the list of
saturation conditions in Definition 5.4.3 with the conditions for the rules for complements

and for axioms 4.

Definition 5.6.1 (Saturated branch). Let B be a branch of a tableau in LT.E4*. The

saturation conditions associated to the rules for 4 are as follows: (cmpnp) € t and x € ¢ are
not both in B. (cmpp) z €tisin Bor x € tisin B. (4p) If t > x is in B, then J(t) > z is
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LT.MC
1. :-(0p— DOp)
2. x:0p (L, =—)
3. x:-0O0p (1, ~—r)
4. ab>zx (27 DT)
5. alF'p (2, Or)
6. al-¥ —p (2, Or)
. =4 \
7 yea (37 47 T) 7 yEea (37 4, ﬁDT)
8 y:-0Op (3, 4, _‘DT) .
: . 8 y:Op (3,4, -Op)
9. y:p (5,7, IF'T) f (4,7, M)
saturated o
LT.MCNT
1. :—(0p— DOp)
2. z:0p (1, ~=m)
3. :-00p (1, = =)
4. a>zx (21 DT)
5. alF'p (2, Or)
6. al-¥ —p (2, Or)
7. T>T (N
8. ar>zx (4a 7, CT)
9. x€ar (8’ TT)
10. =z €a (9, decr)
11. zer (9, decr)
12. x:p (5, 10, I
13. year (3,8, -0Op) \
. -0 -
14. y p (3,8, T) 13. year (3,8, -0T)
15. yea (13, decr) )
14. y:Op (3,4, -Or)
16. yer (13, dect) f (8, 13, M)
17. y:p (57 15, H_VT) o
18. 7>y (Nt)

19. zer (14,18, -0Or)

20. z:-p (14,18, -0Or)

21. 717Dz (NT)
saturated

19. ze7 (14,18, -O7)
20. z:p (14,18, -Of)
f (193 ?QT)

Figure 5.8: Failed proofs of axiom 4 in LT.MC and LT.MCNT.
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Rules for axiom 4

x € J(t)
t>z x € J(t) = s>
4p LT v € J{) 7. !
TJ(t)Dx T t>x Toyet yet

Yyes YyES

Rules for complements

ret

_ B .
cmpyp ——— (2,t in B
CmpnT%et ot x€t|x€t( )

Figure 5.9: Rules of labelled tableaux calculi LT.E4*
in B. (Jp) If # € J(t) isin B, then ¢t > z is in B. (Jp) If z € J(t) and s > x are in B, then
there is y such that y € t and y € s are in B, or y € t and y € s are in B.
We say that B is saturated with respect to LT.E4* if it is saturated with respect to all
possible applications of any rule of LT.E4*.

Then, from every saturated branch in LT.E4* we can directly extract a standard coun-

termodel as follows.

Definition 5.6.2 (Neighbourhood countermodel). Let B be a saturated branch of a failed
proof of A in LT.E4*. The standard neighbourhood model M = (W, N,V) is defined as

follows:
e W and V are defined as in Definition 5.5.1.
e For every t occurring in B, ay = {x € W |z € t is in B}.
o N(z)={ay |t >z isin B}.

Lemma 5.6.1. Let B be a saturated branch of a failed proof of A in LT.E4*, and M be
the model defined on the basis of B as in Definition 5.6.2. We define the realisation (p, o) by
taking p(z) = x for every world label z in B, and o(t) = o for every term t in B. Then for
every ¢ € Ly, if ¢ is in B, then M =, , ¢. Moreover, M satisfies the condition for axiom 4
in the standard semantics, and for every X € {C, N, T, P, D, RD; }, if LT.E4* contains the
rules for X, then M satisfies the condition associated to X in the standard semantics (cf. the

semantic conditions in Section 2.3).

Proof. First, we show that oy = W \ «;. By saturation of cmpy, € t and = € ¢ are not
both in B, thus oy Nag = 0. Moreover, by saturation of cmpnp, © € tisin Bor z € tis in B,
thus a; Uag = W.

For the first claim (truth lemma) we can refer to the proof of Lemma 5.5.1. We prove that

M satisfies the condition for axiom 4 in the standard semantics: Assume that v € A/ (z). Then
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there is a term ¢ such that oy = v and ¢ > z isin B. By saturation of 4, J(t) > x is in B. Then
by definition, o(J(t)) € N(x). We show that o(J(t)) ={y |t e N()} ={y |y e N(y)}: If
y € o(J(t)), where o(J(t)) = o), then y € J(t) is in B. Thus by saturation of J, t > y is
in B. Then a; € N(y). Now assume a; € N (y). Then there is a term s such that s > y is in
B, and as = ay. By saturation of 4, J(s) &> y is in B. Moreover, assume by contradiction
that y ¢ o(J(t)). Then y € J(t) is not in B, and, by saturation of cmp ., y € J(t) is in B.
Thus by saturation of J, there is a world label z such that z € t and z € Sarein B, or z € £
and z € s are in B. In both cases oy # a5, which gives a contradiction.

Finally, for the other model conditions the proof is essentially a simplification of the one

in Lemma 5.5.1, we present as examples the following two cases.

(N) By saturation of N, 7 > z is in B for every z in B. Then «, € N(z). Moreover, by

saturation of FQT, there is no y € 7 in B. Then o= = (), therefore a,, = W.

(D) Assume by contradiction v € N(z) and W \ v € N(z). Then there are terms ¢, s such
that oy = v, as = W\ v, and t > z, s > x are in B. By saturation of rule Do, there
is y such that y € t, y € s arein B, or y € ¢, y € 5 are in B. Then y € a; N ag, or
yeagNas= W\ )N (W\ as). Then ag # W \ oy, which gives a contradiction. O

On the basis of the above lemma we obtain the following result in the standard way.

Theorem 5.6.2 (Semantic completeness). If A is valid in all standard neighbourhood models
for E4*, then A is derivable in LT.E4*.

5.7 Implementation

The labelled calculi presented in this chapter are not only useful for a proof-theoretical analysis
of classical non-normal modal logics, but are also suitable for implementation. Not many the-
orem provers for non-normal modal logics have been developed so far, here is a brief account:
In Giunchiglia et al. [71] optimal decision procedures are presented for the whole classical
cube; these procedures reduce a validity/satisfiability checking in the logics to a set of SAT
problems and then call an efficient SAT solver. For this reason they probably outperform any
(implementation of) specific calculi for these logics, but they do not provide explicitly deriva-
tions, nor countermodels. A theorem prover for the logic M based on a tableaux calculus is
presented in Hansen [82]. This system also handles more complex Pauly’s coalition logic [146]
and Alternating Time Temporal logic by Alur et al. [2|, and it is implemented in ELAN, an
environment for rewriting systems. Finally, Lellmann [111] presents a Prolog implementation
of Brown’s ability logic [22], a non-normal modal logics containing two modalities [¥V] and
[3V], where the fragment with only [3V] coincides with the logic M.
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In this section, we present a Prolog implementation of our labelled sequent calculi LS. E*
for the systems of the classical cube. We call it PRONOM (theorem PROver for NOn-normal
Modal logics).2 PRONOM implements both the proof search and the countermodel extraction
in the labelled calculi: given an input formula, it firstly searches for a derivation, then in
case of failure it produces a countermodel of it. PRONOM comprises a set of clauses, each
of them implementing a sequent rule or an initial sequent of LS. E*. The proof search is
provided for free by the mere depth-first search mechanism of Prolog, without any additional
ad hoc mechanism. In this section we present a description of the implementation without
considering its performance. We postpone the analysis of the performance to Section 6.7,
where a different theorem prover for the same logics is presented.

PRONOM represents a sequent with Prolog lists Spheres, Gamma and Delta. Lists Gamma
and Delta represent the left-hand side and the right-hand side of the sequent, respectively.
Elements of Gamma and Delta are labelled formulas, implemented by Prolog lists with two,

three or four elements, as follows:
e standard formulas are pairs [x,f], where x is a label and f is a formula;

e formulas of the form either x € ¢t or x € ¢ are triples [x,0,t] (respectively [x,1,t]),
where x is a label and t represents term t; the inner value, either 0 or 1, is used to

distinguish between positive and negative terms, ¢ and ¢, respectively;

o formulas of the form ¢ IF? A, or t IFY A, or £ IF7 A, or t IF¥ A are represented by
quadruples [exists,t,0,a], [forall,t,0,a], [exists,t,1,a], [forall,t,1,a], re-

spectively.

The list Spheres contains pairs of the form [x,Items], where Items is the list of terms ¢ such
that ¢ > x is in the sequent. Symbols T and | are represented by constants true and false,

~

respectively, whereas connectives —, A, V, —, and O are represented by -, ~, 7, ->, and box.

Propositional variables are represented by Prolog atoms. As an example, the Prolog lists
[ [x,[t]] ]

[ [y,1,t], [y,al, [forall,t,0,a"b] ]
[ [exists,t,1,a"bl, [x,box(a)] ]

are used to represent the sequent
t>z,yct,y: A,tIF ANB=1tIF AAB,z: OA.

Given a formula of £ represented by the Prolog term £, PRONOM executes the main

predicate of the prover, called prove, whose only two clauses implement the functioning of

2PRONOM is available for free usage and download at http://193.51.60.97:8000/pronom/ .
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PRONOM: the first clause checks whether the formula is valid and, in case of failure, the
second one computes a countermodel. In detail, the predicate prove first checks whether the

formula is valid by executing the predicate:
terminating_proof_search(Spheres,Gamma,Delta,ProofTree,RBox,RExist,LAll).

This predicate succeeds if and only if the sequent represented by the lists Spheres, Gamma
and Delta is derivable. When it succeeds, the output term ProofTree matches with a repre-
sentation of the derivation found by the prover. Further arguments RBox, RExist, and LA1l
are used to control the application of the cumulative rules RO, RIF?, and L IFY in order to
avoid redundant rule applications. For instance, by a backward application of rule RO to a
sequent of the form ¢ > z,I' = A,z : OA, both principal formulas ¢ > z and x : OA are
copied into the premisses. Therefore, in order to ensure termination of proof search we need to
prevent further applications of the same rule to the same formulas, whence we need to control
the applications of RO. Such a control is made by means of the list RBox, which contains
triples of the form [x,a,t] that are used to keep trace of the pairs of formulas to which RO
has been already applied. Thus, the application of RO is restricted by instantiating a Prolog
variable T such that [X,A,T] does not belong to RBox. The lists RExist and LA1l are used
in analogous ways in order to control the applications of, respectively, R IF and L IFY.

To make an example, in order to test whether the sequent
x:O0AANBVC)=2x2:0(AAB)V(AAC))
is derivable in E, we query PRONOM with the goal:

terminating proof_search([x, [ 1], [[x, (box (a =~ (b 7 ¢)))1], [[x, (box
((a”b) ? (a” c)))I], ProofTree, [ 1, [ 1, [ 1.

Each clause of terminating_proof _search implements an axiom or rule of the sequent calculi
LS.E*. To search for a derivation of a sequent I' = A, PRONOM proceeds as follows. First,
if ' = A is an initial sequent, then the goal will immediately succeed by using one of the

following clauses:

terminating_proof_search(Spheres,Gamma,Delta,tree(axiom, [Spheres,Gamma,Delta] ,no,no),_,_,_):-
member ([X,A],Gamma) ,
member ([X,A] ,Delta),!.
terminating_proof_search(Spheres,Gamma,Delta,tree(axiom, [Spheres,Gamma,Delta] ,no,no),_,_,_):-
member ([_,false] ,Gamma),!.
terminating_proof_search(Spheres,Gamma,Delta,tree(axiom, [Spheres,Gamma,Delta] ,no,no),_,_,_):-

member ([_,true],Delta),!.
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If in contrast I' = A is not an initial sequent, then the first applicable rule will be chosen. For
instance, if Spheres contains an element [X, List] such that List contains T, representing
that ¢ > x is in the left-hand side of the sequent, and Delta contains a formula [X,box A],
representing that x : OA is in the right-hand side of the sequent, then the clause implementing
the RO rule will be chosen, and PRONOM will be recursively invoked on the premisses of such
a rule. PRONOM proceeds in a similar way for the other rules. The ordering of the clauses
is such that the application of the branching rules is postponed as much as possible. As an

example, the clause implementing RO is as follows:

1. terminating_proof_search(Spheres,Gamma,Delta,
tree(rbox,LeftTree,RightTree) ,RBox,RExist,LA1l):-

member ([X,box A],Delta),

member ([X,Sp0£fX] ,Spheres),

member (T, Sp0fX) ,

\+member ([X,A,T] ,RBox),
1

L)

~N o o W N

terminating_proof_search(Spheres,Gamma, [[forall,T,0,A] |Delta],
LeftTree, [[X,A,T] |RBox] ,RExist,LAll),

8. terminating_proof_search(Spheres, [[exists,T,1,A] |Gamma] ,Delta,

RightTree, [[X,A,T] |IRBox] ,RExist,LA1l).

Line 5 implements the restriction on the application of the rule described above, and is used
in order to ensure termination of proof search: given an instantiation of the Prolog variable
T, the rule is applied only if it has not been already applied with the same T and the formula
x : OA in the current branch, that is, [X,A,T] does not belong to RBox. Since the rule is
invertible, Prolog cut ! is used in line 6 in order to block backtracking.

When the predicate terminating_proof_search fails, whence the initial formula is not
valid, PRONOM extracts a countermodel from a saturated branch. The countermodel is

computed by executing the predicate:
build_saturate_branch(Spheres,Gamma,Delta,Model ,RBox,RExist,LA11).

This predicate has the same arguments as terminating_proof_search, except for the fourth
one: here the variable Model matches a description of an open branch obtained by applying
the rules of the calculi to the initial formula. Since the very objective of this predicate is
to build a saturated branch in the sequent calculus, its clauses are essentially the same as
the ones for the predicate terminating_proof_search, however the rules introducing a new
branch in the backward proof search are implemented by pairs of (disjoint) clauses, each one
representing an attempt to build a saturated branch. As an example, the following clauses

implement the saturation in presence of a formula x : OA in the right-hand side of a sequent:

1. build_saturate_branch(Spheres,Gamma,Delta,Model,RBox,RExist,LALl): -
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2. member ([X,box A],Delta),
3. member ( [X,Sp0£fX] ,Spheres),
4. member (T, Sp0£X),
5. \+member ([X,A,T] ,RBox),
6. build_saturate_branch(Spheres,Gamma, [[forall,T,0,A] |[Delta],Model,
[[X,A,T] IRBox] ,RExist,LA1l).
7. build_saturate_branch(Spheres,Gamma,Delta,Model,RBox,RExist,LAll): -
8 member ([X,box A],Delta),
. member ( [X,Sp0£fX],Spheres),
10. member (T, Sp0£X),
11. \+member ([X,A,T] ,RBox),
12. build_saturate_branch(Spheres, [[exists,T,1,A] |Gamma] ,Delta,Model,

[[X,A,T] |IRBox] ,RExist,LA1l).

PRONOM will first try to build a countermodel by considering the left premiss of the rule RO,
corresponding to recursively invoking the predicate build_saturate_branch on the premiss
introducing ¢ IF¥ A in the right-hand side of the sequent in line 6. In case of failure, the
saturation process is completed by considering the right premiss of RO introducing 7 IF? A by
the recursive call of line 12.

Clauses implementing initial sequents for the predicate terminating_proof_search are
replaced by the last clause, checking whether the current sequent represents an open and
saturated branch.

build_saturate_branch(Spheres,Gamma,Delta,model (Spheres,Gamma,Delta),_,_,_):-
\+instance0fAnAxiom(Spheres,Gamma,Delta) .

instanceOfAnAxiom(Gamma,Delta) : -member ([X,A] ,Gamma) ,member ([X,A] ,Delta),!.
instanceOfAnAxiom(Gamma,_) : -member ([_,false],Gamma),!.

instanceOfAnAxiom(_,Delta): -member ([_,true] ,Delta),!.

Since this is the very last clause of the predicate build_saturate_branch, it is considered
by PRONOM only if no other clause/rule is applicable, therefore the branch is saturated. The
auxiliary predicate instanceOfAnAxiom checks whether the branch is open by proving that it
is not an instance of an axioms. The third argument matches a term model representing the
countermodel extracted from the lists Spheres, Gamma, and Delta.

The implementation of the calculi for extensions of E is very similar: given the modularity
of the calculi LS.E*, the systems implementing the extensions are easily obtained by adding
clauses for both the predicates terminating_proof_search and build_saturate_branch
corresponding to the additional rules of the extensions under consideration. For instance, the
implementation of logic M contains the following additional clause corresponding to rule M:

terminating_proof_search(Spheres,Gamma,Delta,tree(m),_,_,_):-
member ([_,List],Spheres),

member (T,List),

member ([_,1,T],Gamma),!.
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5.8, Discussion

For logic M we give both the modular version in Figure 5.1 and an optimised version
containing the rule ROm instead of RO (see Section 5.3). For the extensions of M we only

propose the simpler version with ROm.

5.8 Discussion

In this chapter, we have presented semantic-based labelled calculi for the whole family of
classical non-normal modal logics considered in this work, i.e., the basic logic E and all its
extensions with combinations of the axioms M, C, N, T, P, 4, and the rules RD;". The
calculi are based on the bi-neighbourhood semantics, their language contains labels which are
used to import semantic information into the calculus. In particular, the rules for O directly
derive from the forcing clause of boxed formulas in the bi-neighbourhood semantics, whereas
the rules for the extensions are given by expressing the properties of the bi-neighbourhood
function in the corresponding models. The definition of the calculi is fully modular: for every
extension of E, the calculus is obtained simply by adding the rules corresponding to the
additional axioms, without any modification of the basic calculus.

We have firstly presented labelled sequent calculi, for which we have proved the admissi-
bility of the structural rules and cut. As a consequence, we have obtained a syntactic proof of
completeness of the calculi with respect to the axiomatic systems. As far as we know, these
are the first cut-free calculi for the logic E4 and its extensions without the axioms M or T

Then, we have proposed a reformulation of the calculi in the form of labelled tableaux
systems, and for every system not containing the rules for 4 we have defined a terminating
proof search strategy. Moreover, we have shown that from every saturated branch of every
failed proof it is possible to directly extract a (finite) countermodel of the non-valid formula in
the bi-neighbourhood semantics, and for regular logics also in the relational semantics. This
provided an alternative proof of the finite model property of classical non-normal modal logics,
and at the same time also a constructive proof of their decidability, since for every formula
the procedure returns either a derivation, if the formula is derivable/valid, or a countermodel,
if the formula is not valid.

As pointed out, the tableaux reformulation of the calculi is not strictly necessary, as the
same results could be also obtained with the sequent calculi. However, while the sequent
calculi have the advantage to allow for a purely syntactic proof of the admissibility of some
rules, such as the simplified rules for monotonic systems LOm and ROm (cf. Section 5.3) and
cut, thus also allowing for a purely syntactic proof of the completeness of the calculi, the
tableaux calculi offer a cleaner formalism to display derivations and failed proofs.

Furthermore, we have considered tableaux systems for the logics with axiom 4, and we have
shown that the calculi containing the rules for 4 as well as cmp~y and cmp - are complete

with respect to the corresponding standard models. In particular, from every failed proof one

131



CHAPTER 5.

can directly extract a standard countermodel of the non-derivable formula.

Finally, we have presented the prover PRONOM, a Prolog implementation of our labelled
sequent calculi for the systems of the classical cube. The prover implements both the proof
search and the countermodel extraction. To the best of our knowledge, PRONOM is the
first theorem prover that provides derivations and countermodels for all the systems of the
classical cube. In future work we plan to extend the prover so to cover all systems treated in
this chapter.

We conclude this chapter by briefly discussing two main open problems. A first problem
concerns the possibility to define a terminating proof search strategy for the tableaux calculi
with the rules for axiom 4. These calculi contain the rules for neighbourhood terms of the
form J(t). Intuitively, these terms can be understood as representing truth sets of nested
modal formulas, i.e., if a represents the truth set of A, then J(a) represents the truth set of
OA. Given a term t, the rule 41 always allows one to build the complex term J(¢), whence the
calculi are in principle not terminating. For a terminating proof search strategy we therefore
need to block the creation of terms of the form J(¢) in a suitable way. The basic intuition is
that the creation of terms J(¢) must be bounded by the modal degree of the root formula,
that is, no term U(t) should be needed in the proof of a formula A with modal degree

n—1.In addition,nfor an exhaustive treatment of the systems with axiom 4 we also aim to
directly extract bi-neighbourhood countermodels of non-valid formulas by avoiding the use of
rules cmpp and cmpy, thus directly proving the semantic completeness of the calculi with
respect to the bi-neighbourhood semantics.

A second problem concerns the possibility to further extend our labelled calculi to non-
normal modal logics defined by additional modal axioms. Since the calculi are based on the
bi-neighbourhood semantics, this firstly requires to find suitable bi-neighbourhood models for
these systems. Nonetheless, the definition of the labelled calculi is not necessarily straightfor-
ward even when the models are found. A paradigmatic case is the one of logic E5: although we
have given a semantic characterisation of E5 with bi-neighbourhood models (cf. Section 4.5),
we have not found yet a cut-free labelled calculus for this systems. We aim to search for a

suitable labelled calculus for this system, as well as for other extensions, in future work.
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Chapter 6
Hypersequent calculi

In this chapter, we present some hypersequent calculi for all the systems of the classical cube
and their extensions with the axioms T', P, D, and, for every n > 1, the rule RD;’. The calculi
are internal as they only employ the language of the logic, plus additional structural connec-
tives. We show that the calculi are complete with respect to the corresponding axiomatisation
by a syntactic proof of cut elimination. Then, we define a terminating root-first proof search
strategy based on the hypersequent calculi and show that it is optimal for coNP-complete
logics. Moreover, we show that from every saturated leaf of a failed proof it is possible to
define a countermodel of the root hypersequent in the bi-neighbourhood semantics, and for
regular logics also in the relational semantics. We then present hypersequent calculi for two
specific classical non-normal modal logics, namely Elgesem’s agency and ability logic [47] and
its coalition extension proposed by Troquard [165]. Finally, we present a second theorem
prover for non-normal modal logics based on a Prolog implementation of our hypersequent
calculi, and compare its performance with that of the prover obtained by the implementation
of the labelled calculi.

6.1 Blocks, hypersequents and rules

In order to define our calculi we extend the structure of sequents in two ways. First, we
establish that sequents can contain so-called blocks in addition to formulas of £. Second, we

use hypersequents rather than simple sequents. We consider the following definitions.

Definition 6.1.1 (Blocks, sequents, hypersequents). A block is a structure (X), where X is
a finite multiset of formulas of £. A sequent of HE" is a pair I' = A, where I' is a finite
multiset of formulas and blocks, and A is a finite multiset of formulas. A hypersequent is a

finite multiset of sequents, and is written
F1:>A1|...|Fn:>An.
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H.E := {propositional rules, LO, RO}. H.M := {propositional rules, LO, ROm}.
H.EN* := HE* U {N}. H.MN* := HM* U {N}.

H.EC* .= HE* U {C}. H.MC* := HM* U {C}.

H.ET* := HE* U {T}. HMT* := HM* U {T}.

H.EP* .= H.E* U {P}. H.MP* .= HM* U {P}.

H.ED* := H.E* U {Dy, Dy}. H.MD* := HM* U {D{, D3 }.
H.ED," := HE* U {D;| 1 <i <n}. H.MD; " := HM* U {D}| 1 <i <n}.

Table 6.1: Hypersequent calculi H.E*.

Given a hypersequent H =T1 = Ay | ... | ), = A, we call components of H the sequents
I = Al, ey 'y = A,

” of hypersequents represents a meta-logical disjunction of valid

Intuitively, the symbol ¢|
sequents. Observe that blocks can occur only in the antecedent of sequents (and not in the
succedent). Both blocks and sequents, but not hypersequents, can be interpreted as formulas

of L. The formula interpretation of sequents is as follows:
(A1, ey Apy ()1, oy () = B,y .oy B) = AN ANAZNDOASIALAOANE,, — B1V...VBy.

By contrast, there is no formula interpretation of hypersequents. The reason is that non-
normal modalities are not strong enough to express the structural connective “|”. In principle,
a formula interpretation of hypersequents would be possible in a richer language containing
a normal S5-modality, see e.g. Avron [10]. This can be compared with the nested calculi in
[111], where the connective “[ |’ for nesting is translated into a normal K-modality.

The semantic interpretation of sequents and hypersequents is as follows.

Definition 6.1.2 (Valid hypersequent). We say that a sequent S is valid in a possible-worlds
model M (written M = S) if for every world w of M, M,w I- i(S). We say that a
hypersequent H is valid in M if for some component S of H, M = S.

For every logic E*, the corresponding hypersequent calculus H.E* is defined by a subset
of the rules in Figure 6.1, as summarised in Table 6.1. The rules are given in their cumulative,
or kleene’d, versions, i.e., the principal formulas or blocks are copied into the premiss(es). The
propositional rules are just the hypersequent versions of kleene’d rules of sequent calculi.

We make clear that the hypersequent structure is not needed to obtain a sound and
complete calculus for the logics under investigation, as it is shown by the Gentzen cal-
culi discussed in Section 3.4. Moreover, it can be checked that whenever a hypersequent
' = Ay |...| T, = A, is derivable, then there is some component I'; = A; which is
derivable. The choice of both cumulative rules and the hypersequent structure is motivated
by the possibility of directly obtain countermodels of non-valid formulas. In particular, the

hypersequent structure allows us to make all rules invertible. In this respect, observe that
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6.1. Blocks, hypersequents and rules

Propositional rules

MG T = A e isa Gr=T.A
L G|T,A—-B=AA G|TA— B,B= A R G|T,A= B,A— B,A
- GIT,A->B=A T GT=A—>BA
 GITANBAB= A oy CIT=AANBA  GIT=BANBA

NTTGIT,ANB= A A GIT=ANB,A
, GILAVB A=A  GITAVBB=A o, CIT=ABAVEA
v GIT,AVB= A VTG T=AVBA

Modal rules for the classical cube

G|T,04,(A) = A RO G|, (X)=0B,A|X=1B {G|T,(Z) = 0B,A| B= A} scx

G|T,04= A G|T,(¥)=0B,A
o CIT.() = DB A|S= B G|T(T)= A G| T, (), (I, (S,1) = A
m G|T,(T) = 0B, A G|T=A G|T, (), () = A

Modal rules for extensions

G|T,(2),2=A GIT,(E) =A% = L GIT, (1), (S0) > A 51,0, 8, =

GIT, (%) = A GIT, (D) = A n G T, (50, () = A

G ‘ L, <Z>7 <H> = A | 2,11 = {G I L, <Z>’ <H> =A | = AaB}AeZ,BEH
G|T, (%), ) = A

Do

GII,&Z)=A|X= {G|T,(Z)=A| = A} scs
G|IT,(Z)=A

D,

Figure 6.1: Rules of hypersequent calculi H.E*.

backward applications of the rules RO, ROm, P, Dy, Dy, and D,/ create new components, but
the principal component in the conclusion is kept into the premiss in order to let potential al-
ternative rule applications still possible. As observed in Section 3.3, the full invertibility of the
calculus entails that the order of the rule applications in the construction of the proofs is not
relevant, that is, modulo the order of rule applications every formula has a single derivation,
or a single failed proof. Furthermore, cumulative rules allow us to keep all information about
the branch at each step of backward proof search. As we shall see, this entails that every
saturated leaf of every failed proof contains all information needed to define a countermodel.

Similarly to the propositional connectives, the boxed formulas are handled in the calculus
by separate left and right rules. Observe that the rule RO has a non-fixed number of premisses,
but for every application of RO the number of the premisses is determined by the cardinality of

the principal block (¥). The rule ROm is a right rule for O which replaces RO in the definition
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of monotonic calculi. Apart from the distinction between monotonic and non-monotonic
calculi, the calculi are modular; in particular, extensions of H.E and H.M do not require
to modify the basic rules for O, and are simply defined by adding the rules corresponding
to the additional axioms. Every axiom has a corresponding rule, with the only exceptions
of the axiom D and the rules RD; : axiom D needs both D; and Dy in the non-monotonic
case, whereas it needs D and Dj in the monotonic case. Moreover, the rules RD; need D;,
for every 1 < m < n. Concerning the calculi H.MD* and H.ED{", this choice of rule is
required in order to ensure the admissibility of contraction. Analogously, the rule D; seems
required in the non-monotonic calculi H.ED* in order to give a purely syntactic proof of
admissibility of contraction (however we do not dispose of any concrete example showing that
D; is necessary for the admissibility of contraction, this leaves open the problem whether the
calculus is complete also without this rule). For the axiom D a similar solution is adopted in
[140] in the context of standard Gentzen calculi. However, differently from the rule given there
(see the rule D" in Section 3.4 of this thesis), our rule Dy is in principle applicable. Moreover,
as we shall see in the countermodel extraction, the rule D; is the syntactic counterpart of the
property (0,0) ¢ N (w), which is satisfied by every bi-neighbourhood D-model.

Blocks have a central role in all modal rules. Notice that the only rule which expands
blocks is C, so that in the absence of this rule the blocks occurring in a proof for a single
formula contain only one formula. The possibility of collecting formulas by means of blocks
allows us to avoid rules with n principal boxed formulas, in contrast to the rules C e MC of
Gentzen calculi (see Section 3.4). As we shall see, by using blocks we can also easily define
the bi-neighbourhood function when building countermodels from failed proofs.

Derivations of modal axioms and rules are displayed in Figure 6.2. Notice that the simula-
tions of the rules make use of the external weakening rule Ewk, which we show to be admissible
in Proposition 6.2.1. In the derivations we implicitly make use of the following lemma, which

states that initial hypersequents can be generalised to arbitrary formulas.
Proposition 6.1.1. G | ', A = A, A is derivable in H.E* for every A,T', A, G.

Proof. By induction on A. If A =p, 1, T, then G |, A = A, A is an initial hypersequent,
whence it is derivable. If A = B A C' we consider the following derivation
G|TIBANC,B,C= B,BAC,A G|TI,BANC,B,C=C,BANC,A R
GIT,BAC,B,C = BAC,A A
G|T,BANC=BAC,A

LA

where the premisses are derivable by i.h.. The cases A = BV C or A = B A C are analogous.
If A = 0B we consider the following derivation
G|T,0B,(B)=0B,A|B=1B G|T,0B,(B)=0B,A|B=1B RO
G |T',0B,(B) = 0OB,A
G|I',O0B = 0B,A
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6.1. Blocks, hypersequents and rules

A=DB B=A Ewk
OA,(A)=0B|A=1B OA,(A)=0B|B=A RO

DA, (4) = OB
0A= 0B

Ewk

(RE)

OAAB),(ANB)=0A|AANB,A,B= A
OAAB),(ANBYy=0A|AANB=A
O(AAB),(AANB)=0A
O(AAB)=0A

(M=0T|T=>T (M=0T|T=T
(V) (Ty=0T
=0T

RO

w({A,By=0AAB)|A,B=ANB «|AANB= A ..|ANB=1B RO
OAAOB,0A4,0B,(A),(B),(A,B) = 0(AAB)
OAAOB,0A4,0B,(A),(B) = 0(AAB)
OAAOB,0A,0B,(A)= 0(AAB)
OAAOB,0A4,0B = 0O(AAB)
OAAOB = 0O(AAB)

LO
LA

OA, (A), A= A oL {L)=]L=
(T) 0A, (A) = A (P) oL, (L) =
0A=4 F 01—

OAANO-A,04,0-4,(A),(-4)=>|A=A OAANO-A,04,0-4,(A), (-4A)y= | A=A -
OANO-A,04,0-4,(A),(-A)=|A,-A= OAANDO-A,04,0-4,(A4), (4= | = A,-A D
O0AAO-A,04,0-4, (A), (=A) =
OAANO-A,0A4,0-4, (A) =
OAAO-A, 04, 0-4=
OAANDO-A =

-

2

Lo
LA

Ay Ay =
OA A ... ADOA,,OA;,....,0A4,, (A1), ... (As) = | AL, ..., A, =
(RD}) OA; A ... AOA,, OA;,....,0A4,, (A}, ..., (A,) =
OAL A ... ADOA,, 0OA,,.. 0OA, =
OA; A...ANOA4, =

Ewk
Dy

LA x n
LA X n

Figure 6.2: Derivations of modal axioms and rules.
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where the premisses are derivable by i.h.. O

We can prove that the hypersequent calculi are sound with respect to the corresponding

bi-neighbourhood models.
Theorem 6.1.2 (Soundness). If H is derivable in H.EX™, then it is valid in all X-models.

Proof. The initial hypersequents are clearly valid. We show that all rules are sound with
respect to the corresponding bi-neighbourhood models. For propositional rules the proof is

standard, we just consider the modal rules.

(LO) Assume M =G | I',OA,(A) = A. Then M =G, or M =T,04,(A) = A. In the
first case we are done. In the second case, M |= i(I',0A4, (A) = A) = (I, 04,04 = A),
which is equivalent to i(I',0A = A).

(RO) Assume M =G |T,(X) = OB, A|Y=Band MG |T,(¥)=0B,A|B=A
for all A € ¥. Then (i) M | G, or (ii)) M = T',(X) = OB, A, or (iii) M = ¥ = B and
MEB= Aforal Ae X If (i) or (ii) we are done. If (iii), then M = AX — B and
M B — Aforall A€ ¥, that is M = A X < B. Since RE is valid, M =EOA Y — OB =
i((¥) = OB). Thus M = (T, (¥) = OB, A).

(ROm) Analogous to RO, by considering that in M-models M = AYX — B implies M |
OAXY — OB.

(N) Suppose M is a N-model and assume M = G | I',(T) = A. Then M E G, or
M ET,(T) = A. In the first case we are done. In the second case, M | i(I',(T) = A),
which is equivalent to OT — ¢(I' = A). Since OT is valid in M, M T = A.

(C) Suppose M is a C-model and assume M = G | T', (), (II), (3,II) = A. Then M = G
or M = T',(X),(II), (X,II) = A. In the first case we are done. In the second case, M |=
(T, (), D), (X, 11) = A) = (I, OAX,OAILOAXAAI) = A). This is equivalent to
OAZAOATIADAZAATL) — (T = A), and since axiom C'is valid in M, this is equivalent
to OAXADOAIL — (T’ = A). Thus M = i(T, (2), (II) = A).

(T) Suppose M is a T-model and assume M = G | I',(¥),¥ = A. Then M = G or
MET, (), = A. In the first case we are done. In the second case, M |= (T, (), =
A)=0OAXAAX =i’ = A). Since axiom T is valid in M, this is equivalent to O A ¥ —
i(I'= A). Then M =T,(X) = A.

(P) Suppose M is a P-model and assume M = G | T',(¥) = A | ¥ =. Then (i) M E G,
or (ii) M E=T,(3) = A, or (ili) M E ¥ =. If (i) or (ii) we are done. If (iii), then
M E AY¥Y — L. and by the validity of axiom P, M = OAY — L = i((¥) =). Then
MET, (Z) = A.
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(D;}) Suppose M is a RD;f-model and assume M = G | T, (21), ..., (E,) = A | X4, ..., 5, =
Then (i) M = G, or (ii) M =T, (21),...,(E,) = A, or (ili) M = %4,..., %, =. If (i) or (i)
we are done. If (iii), then M E =(AX1 A... AAX,). and by the soundness of rule RD;",
MESDOAZIALATOAS,) =i((Z1),...,(E,) =). Then M =T, (X1),...,(E,) = A.

(D2) Suppose M is a D-model and assume M = G | I',(3),(II) = A | £,II =, and
MEG|T,(E),(I) = A|= ABforall Ae X,B € Il. Then (i) M E G, or (ii)
MET(Z),(II) = A or (i) MEX,II=and M E = A Bforall Aec X, Bell If (i) or
(ii) we are done. If (iii), then M = AXAAID - Land M= AV Bforal Ae X, Bell
Thus M = AX < - AIL. By the soundness of axiom D, M E OALAODAIL —» 1 =
i((X), (II) =). Then M =T, (%), (II) = A.

(D1) Assume M =G T, ()= A|X=>, and MG |T,(X) = A|= Aforall AecX.
Then (i) M EG,or (i) MET, ()= A,or (il MEYX=and M| = Aforall AecX.
If (i) or (ii) we are done. If (iii), then M = AX — L and M |= A X, which is impossible.
Then (i) or (ii) holds. O

6.2 Structural properties and syntactic completeness

We now investigate the structural properties of our calculi. We first show that weakening
and contraction are height-preserving admissible, both in their internal and in their external
variants, and that all rules are invertible. Then, we prove that the cut rule is admissible, which
allows us to directly prove the completeness of the calculi with respect to the corresponding

axiomatisations. In the proofs we use the following definition of weight of formulas and blocks.

Definition 6.2.1. The weight wg of a formula or block is recursively defined as wg(L)
wg(T) = wg(p) = 0; for o € {A,V, =}, wg(A o B) = wg(A) + wg(B) + 1; wg((A1, ..., An))
mazx{wg(A1),...,wg(A,)} + 1; wg(OA) = wg(A) + 2.

Proposition 6.2.1. The following structural rules are height-preserving admissible in H.E*,

where ¢ is any formula A or block (X). Moreover, all rules of H.E* are height-preserving

invertible.
L G T=4 Rl G T=4 Ewk— G
MG e A VG T= A A G|T=A
L G|, p,0= A . G|I'=AAA c GI'=A|I'=sA
TG, e= A T GIr= AA TG r=A
oy CIDE AL A o GIT (T, 4) = A
TG, A) = A &G, (5 A A = A

Proof. For every rule R, the proof is straightforward by induction on the height of the deriva-

tion of the premiss, only rules Lctr and Rctr are simultaneously proved admissible by mutual
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induction on the height of the derivation on the premisses. Moreover, admissibility of Sctr
and Smgl rely on height-preserving admissibility of contraction and weakening on formulas
outside blocks, respectively.

For every rule R, if the premiss of R is an initial hypersequent, then so is the conclusion.
For the inductive step we consider the last rule applied in the derivation of the premiss of R,
let it be R'. Then we transform the derivation by applying first R to the premiss(es) of R’
(which is allowed by i.h.), and then we apply R’. For instance suppose to have

G|T,(X) = 0OB,A|T,(2)=0B,A|Y =B
G|T,(X) = 0B,A|T,(X) = 0B, A
G|T, (%) =0B,A

ROm

Ectr

Then we transform the derivation into
G|I(¥)=0B,A|l'(¥)=0B,A|X=1B
G|TI,(X)=0BA|X¥=1B
GIT. (%)= 0B.A

Ectr
ROm

The only exceptions are the cases where R is Lctr and R’ is Dy or D, in this cases we
1)
G | F) <E>7 <2> = A ’ 272 = {G | F7 <E>v <Z> = A | = A7B}A,B€E
G|T, (%), (X)=A
G|, (%) =A

must consider the rules D; or D respectively. For instance suppose to have

D2

Lctr

The derivation is converted as follows, where n is the cardinality of X.

{ G|, (%), E)=A|=A4A

) Lctr}
GIT,(X)=A|=A4,A Aex
Rctr

Dy

GIT, (), E)=A|5Y=>
GII,(5)=A|X= GIT,(X)=A|=A
G|, (Z)=A

Letrx(n + 1)

Finally, notice that since all rules are cumulative, the height-preserving invertibility of all
rules in an immediate consequence of the height-preserving admissibility of weakening. For
instance, invertibility of rule ROm is proved as follows:

G|I, (%) = 0B,A
G|I(¥)=0B,A|X¥=B

Ewk
]

Due to the fact that the rule RO isolates single formulas from block in its right premisses,
in the non-monotonic case the full-blown weakening inside blocks (from G | I',(¥) = A
derives G | T, (3, A) = A) is not admissible. However, the weaker rule Bmgl of mingle inside
blocks is admissible.

The proof of admissibility of cut is a bit more intricate and deserves more attention. In

the hypersequent framework we formulate the rule cut as follows:
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G|I'=AA GITIA= A
G|IT=A

cut

In order to prove the admissibility of cut we need to prove simultaneously the admissibility
of cut and of the following rule sub, which states that a formula A inside one or more blocks

can be replaced by any equivalent multiset of formulas X:

G|2:>A {G|A:>B}Bez G‘F,<An1,H1>,...,<Ank,Hk>:>A
G T, (ST, . (2 T = A

su

where A™ (resp. ¥™) is a compact way to denote m; occurrences of A (resp. ¥). In the

monotonic case we need to consider, instead of sub, the rule

GIS=A  G|T, (A1), ..., (A%, TI) = A
G ‘ I, <2n1,H1>, ey <Enk,Hk> = A

Sub|\/|

Observe that subp is essentially a cut on formula inside blocks. Although the formulation
of the cut rule could be generalised so to cover also suby, we keep the two rules cut and
subp distinguished to make the proof of cut elimination uniform in the monotonic and the

non-monotonic case.

Theorem 6.2.2 (Cut elimination). If H.E* is non-monotonic, then the rules cut and sub are

admissible in H.E*, otherwise cut and suby, are admissible in H.E*.

Proof. We prove that cut and sub are admissible in non-monotonic H.E*; the proof in the
monotonic case is analogous. Recall that, for an application of cut, the cut formula is the
formula which is deleted by that application, while the cut height is the sum of the heights of
the derivations of the premisses of cut. The theorem is a consequence of the following claims,
where Cut(c,h) means that all applications of cut of height A on a cut formula of weight
¢ are admissible, and Sub(c) means that all applications of sub where the principal formula
A has weight ¢ are admissible (for any X, 11y, ..., II): (A) Ve.Cut(c,0). (B) Vh.Cut(0,h).
(C) Ve.(Vh.Cut(e,h) — Sub(c)). (D) VeVh.((Vd < c.(Sub(d) AVR .Cut(d,h')) ANVR" <
h.Cut(c,h")) — Cut(c, h)).

(A) If the cut height is 0, then cut is applied to initial hypersequents G | I' = A, A and
G| T',A = A. We show that the conclusion of cut G | I' = A is an initial hypersequent,
whence it is derivable without cut. If G is an initial hypersequent we are done. Otherwise
I'= A A and I'; A = A are initial sequents. For the first sequent there are three possibilities:
(i) T = A is an initial sequent, or (ii) A = T, or (iii) A = p and I' = I”, p. If (ii), then the
second sequent is I', T = A, which implies that I' = A is an initial sequent. If (iii), then
the second sequent is IV, p,p = A. Then I'' = A is an initial sequent, or A = p, A/, which
implies that IV, p = p, A’ = T' = A is an initial sequent.
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(B) If the cut formula has weight 0, then it is L, T, or a propositional variable p. For
all three possibilities the proof is by complete induction on h. The basic case h = 0 is a
particular case of (A). For the inductive step, we distinguish three cases.

(i) The cut formula L, T, or p is not principal in the last rule applied in the derivation
of the left premiss. By examining all possible rule applications, we show that the application
of cut can be replaced by one or more applications of cut at a smaller height. For instance,
assume that the last rule applied is LO.

G| (A),0AT=A 1
G|OAT=A1 G| L,0AT=A
G|OAT = A

LO
cut

The derivation is transformed as follows, with a height-preserving application of Lwk and an
application of cut of smaller height.
G| L,OAT=A
G| (A),04T= A1 G| L1, (4),04T=A
G| (A),04T=A
G|OAT = A

The situation is similar if the last rule in the derivation of the left premiss is applied to some

Lwk

cut

sequent in G.

(ii) The cut formula L, T, or p is not principal in the last rule applied in the derivation
of the right premiss. The case is analogous to (i). As an example, suppose that the last rule
applied is ROm.

G|L, (), I'=A0B|Y¥=1B
G| (), I'=A,0B,1 G|L1,(3),'=A 0B
G| (), I'=A,0B

ROm
cut

The derivation is converted into

G| (), I'=A,0B, 1L
G|(Z),T=A0B,L|¥=B G|L(X),I'=A0B|%=B
G|(X),I'=A0B|Y¥=B
G| (), T = A,0B

Ewk
cut

ROm

where cut is applied at a smaller height.

(iii) The cut formula 1, T, or p is principal in the last rule applied in the derivation of
both premisses. Then the cut formula is p, as L (resp. T) is never principal on the right-hand
side (resp. the left-hand side) of the conclusion of any rule application. This means that both

premisses are derived by init, which implies that h = 0. Then we are back to case (A).

(C) Assume VhCut(c,h). We prove that all applications of sub where A has weight
¢ are admissible. The proof is by induction on the height m of the derivation of G |
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(A™ I1h), ..., (A", 11;), T = A. If m = 0 or no block among (A,II),..., (A, II;) is princi-
pal in the last rule application, then the proof proceeds similarly to previous cases. If m > 0
and at least one block among (A,Il), ..., (A,II;) is principal in the last rule application we
have the following possibilities.

e The last rule applied is RO:

{G | (A", 1L;),I' = A, 0D | D = C}cen,

®

G| (A" I1,), T = A,0D | A" 10; = D {G | (A", 1L;), T = A, 0D | D = A} -
G[{A™IL),T = A,0D RO
The derivation is converted as follows. First we derive:
Gl¥=A G|A=1B
_ Ewk _ Ewk]
G|Y¥=A| A" I; = D G|A=B|A"]I;= D Bex (D X
su

G| (Z,1L),T = A, 0D | A% 1I; = D

(where rule sub possibly applies to further blocks inside I'). Then by applying Ewk to G | X =
A we obtain G | (X" 1;),I' = A, 0D | ¥ = A. By auxiliary applications of wk we can cut A
and get G | (X, 1), = A, 0D | ¥, A%~ II; = D. Then with further applications of cut
(each time with auxiliary applications of wk) we obtain G | (X", 11;),T’ = A, 0D | ¥ II; =
D. By doing the same with the other premisses of RO in the initial derivation we obtain also
{{G | (£™,1L;),T = A,0D | D = B}pex}i! and {G | (£™,11;),I' = A, 0D | D = C}eery,-
Finally by RO we derive the conclusion of sub G | (™, 11;), ' = A, 0D.
e The last rule applied is C:

G ’ <Ani7Hi>a <Anj7Hj>a <Ani,AnjaHi7Hj>7F = A
G | <A”17Hl>’ <Anj,Hj>,F = A

By applying sub to the premiss we obtain G | (¥, I;), (", I1;), (£, 3% 11;, I1;,), T = A,
then by C we derive G | (X", I1;), (¥™,11;), I = A.
e The last rule applied is T:

G | Ani,Hi, <An‘,HZ>,F = A
Gl (A" I),T = A

By applying the inductive hypothesis to the premiss we obtain G | A", I1;, (3™, I1;), " = A.
Then, from this and G | ¥ = A, by several applications of cut (each time with auxiliary
applications of wk) we obtain G | X" II;, (X" II;),I' = A. Finally, by T we derive G |
(X" 1), T = A

e The last rule applied is P:

G| (A" IL),T = A | A" 11, =
G| (A" IL),T = A
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By applying the inductive hypothesis to the premiss (after auxiliary applications of Ewk to
the other premisses of sub) we obtain G | (X™,11;),I"' = A | A" II; =. Then, from this and
G | ¥ = A, by several applications of cut (each time with auxiliary applications of wk) we
obtain G | (X", 1), I’ = A | ¥™ II; =. Finally, by P we derive G | (", 11;),I' = A.

e The last rule applied is Dy: Then G | (A™, II;), (A", 11;),I' = A has been de-
rived by the following premisses. G | (A™,IL;), (A", 11;), I = A | A", A% 11;,1I; =
{G | (A", IL), (AW, IL),T = A = A, AN {({G ] (A L), (A, 1), T = A |=
A, Cheen s {{G | (A™,IL), (A", TL),T = A |= A, Dy pen,}i's and {G | (A", I1,), (A, L), T =
A= A Alcen,, per,- We consider the other premisses of sub and apply cut many times (each
time with auxiliary applications of wk) so to replace all occurrences of A with formulas in 3.
As final step we can apply Dy and obtain G | (X", IL;), (X", 11;),T" = A.

e The lacking cases D and D; are similar to the previous ones.

(D) Assume V¢’ < c. (Sub(d) AVR'.Cut(c,h')) and VA" < h.Cut(c,h”). We show that
all applications of cut of height A on a cut formula of weight ¢ can be replaced by different
applications of cut, either of smaller height or on a cut formula of smaller weight. We can
assume h,c > 0 as the cases h = 0 and ¢ = 0 have been already considered in (A) and (B).
We distinguish two cases.

(i) The cut formula is not principal in the last rule application in the derivation of at least
one of the two premisses of cut. This case is analogous to (i) or (ii) in (B).

(ii) The cut formula is principal in the last rule application in the derivation of both
premisses. Then the cut formula is either B o C, with o € {A,V,—}, or OB.

e The case of boolean connective is standard. We consider as an example B — C. We

have:

@ ® ®
G|B,I'=A,B—-C,C G|B—-C,I'=>A/B G|C,B—=CT=A

L—
G| T=A,B=C G|B—->CT=A .
cu
G|T=A
The derivation is converted into the following one:
Rwk G|IIT'=AB—~C G|B—=CT=A Lk
WtG\F:A,B%CﬂB ® G|B,B—>CTI=A "F:k
cu gy CIT=AB @® G|BB—CT=AC “t’ L GIP=ABC
Y GIT= A, B,C GIBT=AC v WtG|C,F:>A,B—>C ®
L GIT=AC < v G[CT=A
< GIT= A

e If the cut formula is OB we have
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G| (), I'=A0B|X=1B

{G|(%),T = A,0B|B= Clces G | (B),0B,(%),T = A
G|(X),I'=A DB G|OB,(%),T = A
G| (), I'=A

RO —

LO
cut

The derivation is converted as follows, with several applications of cut of smaller height
and an admissible application of sub.
G| OB, (%), '= A
G| (), I'=A0B|X=18B G|OB,X),=A|X=B
@G| E),T=A|X=B

Ewk
cut

G| (%), = A, OB

G| (B),(%),I = A,OB G| (B),0B,(),T = A
G| (B), (%), = A

® G| (&)L =A[(B),E),T=A

Lwk

cut

Ewk

G|O0B,(%),I'=A
{ GI{5)T=>ADB|B>C  G[0B, (5T =A[B=C -
G| (), I'=A|B=C ces (B
G130, T =A%), (5.7 = A
G|{E),I'=A[X)T=A
G| (X),I'=A

@

sub

Letr
Ectr

O

Given the admissibility of the structural rules and cut we can prove that the calculi are

syntactically complete with respect to the corresponding axiomatic systems.

Theorem 6.2.3 (Syntactic completeness). If A is derivable in E*, then = A is derivable in
HE".

Proof. As usual, we have to show that all axioms of E* are derivable in H.E*, and that all rules
of E* are admissible in H.E*. The derivations of the modal axioms and rules are displayed
in Figure 6.2. For the derivations of the axioms we implicitly consider Proposition 6.1.1. For
the derivation of rule RE we assume that A — B and B — A are derivable in E*, and for
the derivation of rule RD;" we assume that =(Aj1, ..., A,) is derivable in ED{". Finally, M P

is simulated by cut in the usual way. O

6.3 Complexity of proof search

In this section, we analyse the complexity of proof search in our hypersequent calculi. Recall
that, as proved by Vardi [167], the considered classical non-normal modal logics are coNP-

complete in the absence of axiom C, and are in PSPACE with C' (cf. Section 2.2). Here we
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firstly present a terminating proof search strategy in our calculi and show that it provides

a coNP-optimal decision procedure for the logics without C. In this way we also establish
+

-+, which are not covered in [167]. The we

coNP-complexity of the logics with the rules RD

briefly comment on the case where C' is present.

Extensions without axiom C

The decision procedures for the logics without the axiom C' implement backwards proof search
on a polynomially bounded nondeterministic Turing machine with universal choices to handle
the branching caused by rules with several premisses. Since all the rules are invertible, we
can fix an order in which the rules are applied. To prevent loops, we employ a local loop
checking strategy, stating that a rule is not applied (bottom-up) to a hypersequent G, if at
least one of its premisses is trivial in the sense that each of its components can be derived from
a component of the conclusion using only weakening and contraction. The formal definition

is as follows.

Definition 6.3.1. An application of a hypersequent rule with premisses Hi,...,H, and
conclusion G satisfies the local loop checking condition if for each premiss H; there exists a
component I' = A in H; such that for no component ¥ = II of the conclusion G we have:
for all A € T" also A € ¥; and for all (©) € T there is a (Z) € ¥ with set(0) = set(Z); and
set(A) C set(II).

Since the rules are cumulative, every application of a rule satisfying the local loop checking
condition adds in each of its premisses at least one new block or formula to an existing com-
ponent, or adds a new component, which is not subsumed by a component of the conclusion.
The following proposition shows that local loop checking preserves the completeness of the

calculus.

Proposition 6.3.1. If a hypersequent is derivable in H.E* with a derivation of height n,
then it is derivable using a derivation of height n in which every rule application satisfies the

local loop checking condition.

Proof. By induction on the height n of the derivation. The zero-premisses rules trivially
satisfy the local loop checking condition. If n > 1, consider the bottom-most rule application.
If it satisfies the local loop checking condition, then we apply the induction hypothesis to
each of its premisses and we are done. Otherwise, there is a premiss such that for each
of its components T, (01),...,(0,,) = A (where I" does not contain any block) there is a
component 3 = II of the conclusion G of the derivation with set(I') C set(X), and for every
i < m there is a (©)) € ¥ with set(0;) = set(0)), and set(A) C set(Il). By considering the

height-preserving admissibility of the structural rules (Proposition 6.2.1) we thus obtain a
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Algorithm 1: Decision procedure for the derivability problem in H.E*

Input: A hypersequent GG and the code of a logic L
Output: “yes” if G is derivable in H.L, a hypersequent if it is not.

if there is a component ' = A in G with L €T, or T € A, or TN A # () then
return “yes” and halt ;
else if there is an applicable rule then
pick the first applicable rule;
universally choose a premiss H of this rule application;
check recursively whether H is derivable, output the answer and halt;
else
return G and halt;
end

© o N o A W N =

derivation of G of height n, and an appeal to the induction hypothesis yields a derivation of

height n where every rule application satisfies the local loop checking condition. O

Notice that in the proof of this proposition, no new rule applications are added to a
derivation, and that the order of the rule applications is preserved in the proof of admissibility
of the structural rules (Proposition 6.2.1). Thus, given a derivation of a hypersequent, we
can first adjust the ordering of the rules using invertibility, and then remove all the rule
applications that violate the local loop checking condition. This yields completeness of proof

search under these constraints:

Corollary 6.3.2. Proof search in H.E* with local loop checking and a fixed order on the

applications of the rules is complete.

The proof search algorithm thus applies the rules backwards in an arbitrary but fixed order,
universally chooses one of their premisses and then recursively checks whether this premiss
is derivable. The procedure is shown in Algorithm 1. In order to facilitate the countermodel
construction for non-derivable hypersequents in the next section, we show termination for all

considered logics, even those containing axiom C:
Theorem 6.3.3. Algorithm 1 terminates for all calculi H.E*.

Proof. Due to the subformula property of the rules, every formula occurring in a hypersequent
in a run of Algorithm 1 is a subformula of the input. Moreover, local loop checking prevents
the duplication of formulas, blocks and components. Thus, every component occurring in
a run of the algorithm contains a subset of (occurrences of) subformulas of the input both
on its antecedent and succedent, together with a set of blocks, each containing a subset of
(occurrences of) subformulas of the input. Since there are only finitely many of these, the

number of possible components is finite, and then also the number of hypersequents occurring
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in a run of the algorithm. Since every rule application satisfying local loop checking strictly
increases the size of the hypersequent, each run of the algorithm thus halts after finitely many

steps. O

For the logics without axiom C, a closer analysis of the run time yields the optimal

complexity bound:

Theorem 6.3.4. For the logics without C'; Algorithm 1 runs in coNP, whence for these logics

the calculi provide a complexity-optimal decision procedure.

Proof. Since the procedure is in the form of a non-deterministic Turing machine with universal
choices, it suffices to show that every computation of this machine has polynomial length.
Every application of a rule adds either a subformula of its conclusion or a new block to one of
the components, or adds a new component. Due to local loop checking it never adds a formula,
block or component which is already in the conclusion, so it suffices to calculate the maximal
size of a hypersequent occurring in proof search for G. Suppose that the size of G is n. Then
both the number of components in G and the number of subformulas of G are bounded by n.
Since the local loop check prevents the duplication of formulas, each component contains at
most n formulas in the antecedent and n formulas in the succedent. Moreover, since we only
consider logics without the axiom C', every newly created block contains exactly one formula.
Again, due to the local loop checking condition no block is duplicated, so every component
contains at most n blocks. Thus every component has size at most 3n. The procedure creates
new components from a block and a formula of an already existing component using one of
the rules RO and ROm, or from ¢ components using one of the rules P, Dy, D1, DZ, with
¢ < k for a fixed k depending on the logic. Hence there are at most n? + k - n* many different
components which can be created without violating the local loop checking condition. Thus
every hypersequent occurring in the proof contains at most n + n?+k-nk many components,

k+1)

each of size at most 3n, giving a total size and thus running time of O(n?), resp. O(n for

k> 2. O

As noted above, Algorithm 1 works properly also for logics with the axiom C, ensuring in
particular termination. However, hypersequents occurring in a proof of H can be exponentially
large with respect to the size of H. This is due to the presence of the rule C that, given n
formulas OA;, ..., OA,, allows one to build a block for every subset of {A;,...,4,}. In
this respect, this decision procedure does not match the PSPACE complexity upper bound
established for these systems by Vardi [167|. However, this is not really unexpected, since one
of the main appeals of the hypersequent calculi is that they can be used to directly construct
countermodels for unprovable hypersequents, and in some logics with C' it is possible to force

exponentially large countermodels, in particular in normal modal logic K [21]. Hence for
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these logics the hypersequents will need to be of exponential size, suggesting that we need to

modify the hypersequent calculi to obtain complexity-optimal decision procedures.

Logics with axiom C

In order to obtain a PSPACE decision procedure for logics with axiom C we must adopt
a different strategy. Since already the standard sequent calculi could be used to obtain
complexity-optimal decision procedures in a standard way, we only sketch the ideas. Instead
of the rules in Figure 6.1, we consider their unkleene’d — and non-invertible — version, i.e.
the ones with all principal formulas and structures deleted from the premisses. For instance
ROm, RO and C are replaced respectively with

G|I'=A|¥=B GIT=A|YX=B {G|I'=A|B= A}lsex GI|T(Z,1I) = A
G|T,(Z) = OB,A G|T, ()= O0OB,A G|T,(Z),{I) = A

Call the resulting calculus H.E* . Backwards proof search is then implemented on an alternat-
ing Turing machine by existentially guessing the last applied rule except for N, and universally
checking that all of its premisses are derivable. To ensure that N is applied if it is present in
the system, we stipulate that it is applied once to every component of the input, and that
if the existentially guessed rule creates a new component, the rule N is applied immediately
afterwards to each of its premisses. Since no rule application keeps the principal formulas
in the premisses, and since the rule N if present is applied exactly once to every component,
there is no need for any loop checking condition.

Ona can show that the calculi H.E* are sound and complete. Soundness is obvious, since
we can add the missing formulas and structures and recover derivations in H.E*. Complete-
ness can be proved by a cut elimination argument similar to the one in Theorem 6.2.2, or
alternatively by simulating the standard sequent calculi by Lavendhomme and Lucas [107]
(cf. Section 3.4). We can show that the calculi H.E* give a PSPACE upper bound:

Theorem 6.3.5. Backwards proof search in H.E* is in PSPACE.

Proof. We need to show that every run of the procedure terminates in polynomial time.
Assume that the size of the input is n. Let the weight of a component in a hypersequent be
the sum of the weights of the formulas and blocks occurring in it according to Definition 6.2.1,
and suppose that the maximal weight of components in the input is m. Then every rule apart
from N decreases the weight of the component active in its conclusion. Moreover, a new
component is only introduced in place of at least one subformula of the input, hence any
hypersequent occurring in the proof search has at most n + n components. The weight of
each of these components is at most the maximal weight of a component of the input (plus
one in the cases with N). Since the rule N is applied at most once to each component, it is

thus applied at most n times in the total proof search. Thus the runtime in total is O(n?-m),
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hence polynomial in the size of the input. Thus the procedure runs in alternating polynomial
time, and thus in PSPACE. O

In brief, the situation of logics with axiom C can be summarised as follows. On the one
hand, we have the fully invertible calculi H.EC* which are terminating but not optimal. As
we shall see in the next section, these calculi allow for a direct extraction of countermodels
from single failed proofs. On the other hand, we have the calculi H.EC* | which are optimal
but contain non-invertible rules, whence it is not possible to define a countermodel only on
the basis of a single failed proof. As for many other logics, this illustrates the existence of a
necessary trade-off between the optimal complexity of the calculi and the direct extraction

of countermodels.

6.4 Countermodel extraction and semantic completeness

In this section, we show that from every failed proof in H.E* we can directly extract a
countermodel of the non-derivable hypersequent. This allows us to obtain a semantic proof
of completeness of our calculi, i.e., every valid hypersequent is derivable. The countermodels
extracted from the failed proofs are defined in the bi-neighbourhood semantics, as it turns out
to be more adequate than the standard one. The reason is that a failed proof only provides
a partial model that does not specify exactly the truth sets of formulas, as required by the
standard semantics.

To see this, recall that if we want a world w to satisfy a modal formula OA in the standard
semantics, we have to make sure that the truth set [A] belongs to the neighbourhood of w,
thus [A] must be computed. In order to define countermodels on the basis of the information
provided by the failed proofs, we consider the natural semantic reading of hypersequents
according to which every component corresponds to a world in the model, every formula in
the antecedent of a component is true in the corresponding world, and every formula in the
succedent of a component is false in that world. Thus, in order to determine the extension
of [A] basing only on the information provided by the failed proof we need that A occurs
either on the left or on the right of every component. But this is hardly ever the case: we
will more often find components where A does not occur neither on the left, nor in the right,
whence the determination of [A] is not possible. In contrast, this situation strictly reflects
the structure of the bi-neighbourhood semantics. As we shall see, suited bi-neighbourhood
pairs (a, #) such that o C [A] € W\ B can be extracted from the proof even without knowing
exactly the extension of [A].

In order to prove the semantic completeness of the calculus we make use of the backwards
proof search strategy based on local loop checking already considered in Section 6.3 (Algo-

rithm 1). This strategy amounts to consider the following notion of saturation, stating that no
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bottom-up rule application is allowed to initial sequents, and that a bottom-up application of
a rule R is not allowed to a hypersequent H if H already fulfills the corresponding saturation

condition.

Definition 6.4.1 (Saturated hypersequent). Let H =T'1 = Ay | ... | I, = A, be a hyper-
sequent occurring in a proof for H’. The saturation conditions associated to each application
of a rule of H.E* are as follows: (init) I; NA; =0. (LL) L ¢Ty. (RT)T ¢ A;. (L—)If
A—Bel;,then Aec AjorBeTl;. (R—)IfA— BeA;,then A€l and B e A;. (LA)
If ANB €T, then AeT;and BeT;. (RA)If ANB € A;, then A€ A; or B e A;. (LO) If
OA €Ty, then (A) e T;. (RO) If (X), T = A, 0B is in H, then there is I" = A’, B in H such
that set(X) C IV, or there is B,I" = A’ A in H for some A € ¥. (ROm) If (X),I' = A ;0B is
in H, then there is IV = A’, B in H such that set(X) CI”. (N) (T) e I;. (C) If (X), (II) € Ty,
then there is (2) € T'; such that set(X, I1) = set(Q2). (T) If (¥) € T',, then set(X) C T',,. (P) If
I',(¥) = Ais in H, then there is I" = A’ in H such that set(X) CIV. (D;) If I', (¥) = A is
in H, then there is I = A’ in H such that set(X) C I", or there is IV = A’, A in H for some
AeX. (Dg) T, (X),(II) = Ais in H, then there is I" = A’ in H such that set(X,II) C I",
or there is IV = A’; A, B in H for some A € X, B € Il. (D;}) If T, (%y),...,(¥,) = Aisin H,
then there is IV = A’ in H such that set(Xq,...,%,) C I".

We say that H is saturated with respect to an application of a rule R if it satisfies the
saturation condition (R) for that particular rule application, and that it is saturated with

respect to H.E* if it is saturated with respect to all possible applications of any rule of H.E*.
Then the strategy is simply defined as follows:

Definition 6.4.2 (Proof search strategy, failed proof). Given a hypersequent H, a proof of
H in H.E" is constructed bottom-up starting with H and applying backwards rules of H.E*.
The rule applications must respect the following two conditions: (i) No rule can be applied
to an initial hypersequent. (ii) The application of a rule to a hypersequent is not allowed if
the hypersequent is already saturated with respect to that particular rule application. The
construction of the proof tree terminates when no additional rule applications are possible in
the respect of conditions (i) and (ii). We call failed proof of A any tree which is constructed

in accordance with the strategy and contains some saturated hypersequent.

The strategy essentially amounts to avoiding applications of rules that do not add any
additional information to the hypersequents. As shown in Theorem 6.3.3, the proof search
procedure for H always terminates. Moreover, every branch ends either with an initial hyper-
sequent or a saturated one. We now show that, given a saturated hypersequent H, one can

directly construct a countermodel of H in the bi-neighbourhood semantics.

Definition 6.4.3 (Countermodel construction). Let H be a saturated hypersequent occurring

in a proof for H'. Moreover, let e : N — H be an enumeration of the components of H.
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Given e, we can write H as 'y = Ay | ... | Ty = Ag. The model M = (W, N, V) is defined

as follows:
e W={n|T,= A, € H}.
i V(p) = {n | pE Fn}'

e For every block (X) appearing in a component I'y, = A, of H,
Yt={nl|set(X) CT,}and X~ ={n|XNA, #0}.

e The definition of N depends whether the calculus is or not monotonic:

— Non-monotonic case: N'(n) = {(X1,27) | (X) € [, }.
— Monotonic case: N'(n) = {(X1,0) | (X) € T}
Lemma 6.4.1. Let H =T1 = Ay | ... | Ty = Aj be a saturated hypersequent, and M be

the model defined on the basis of H as in Definition 6.4.3. Then for every A, (3) and every

n € W, we have:

— if A €T, then M,n I A;
- if (¥) € Iy, then M, n -0 AX; and
- if A e A,, then M n I A.

Moreover, if the proof is in calculus HLEX*, then M is a X-model.

Proof. The first claim is proved by mutual induction on A and (¥).
(p € T'y,) By definition, n € V(p). Then n I+ p.
(p € A,,) By saturation of init, p ¢ T',. Then n ¢ V(p), thus n Iy p.

(BAC €T1,) By saturation of LA, B € T',, and C' € T',,. Then by i.h., nIF B and n I C, thus
nl-BAC.

(BAC € Ay) By saturation of RA, B € A, or C € A,,. Then by i.h., n | B or n | C, thus
nlf BAC.

(BvC,B—CeTl,,,BVC,B— C € A,) Analogous to (BAC €T},) and (BAC € A,),

respectively.

({X) € T'y,) In the non-monotonic case we have: By definition (X7, ¥7) € N(n). We show
that X C [AX] and ¥~ C [- A X], which implies n IF DA X. If m € %, then set(X) C T'y,.
By ih. mI- A for all A € ¥, then m I AX. If m € X7, then there is B € ¥ N A,,. By i.h.

m | B, then m | A ¥. In the monotonic case the proof is analogous.

(OB € 1'),) By saturation of LO, (B) € I',,. Then by i.h. n |- OB.
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(OB € A,) In the non-monotonic case, assume («, 3) € N'(n). Then there is (¥) € I';, such
that ¥ = o« and ¥~ = 3. By saturation of rule RO, there is m € W such that ¥ C I',,, and
B € A,,, or there is m € W such that ¥NA,, # 0 and B € I',,,. In the first case, m € ¥ = «
and by i.h. m I B, thus a Z [B]. In the second case, m € ¥~ =  and by i.h. m |- B, thus
BN[B] #0,ie., [B] £ W\ B. Therefore n lf OB. The monotonic case is analogous.

Now we prove that if the failed proof is in H.EX*, then M satisfies condition (X).
(M) By definition, 5 = 0 for every (o, 8) € N(n).

(N) By saturation of rule N, (T) € T, for all n € W, thus (T*, T~) € N(n). Moreover, by
saturation of RT, T~ = 0.

(C) Assume that («,3),(v,0) € N(n). Then there are (X),(IT) € T, such that X7 = q,
¥~ = B, II" = v and II” = §. By saturation or rule C, there is (Q) € T, such that
set(Q) = set(X, ), thus (QT,Q27) € N(n). We show that (i) QT = an~y and (i7) Q~ = BUJ.
(i) m € Q7 iff set(Q2) = set(X,II) C Ty, iff set(X) C 'y, and set(Il) C Ty, iff m € ¥ = o and
melt =~ifmeany. (1) meQ if QNA, #0if S TINA, #0if XNA, #0or
MINA,#0ifmeX =Formell =¢§if me fUL.

(T) If (o, B) € N'(n), then there is () € T, such that ¥ = a and ¥~ = 3. By saturation
of rule T, set(X) C Ty, then n € X1 = a.

(P) If (a, B) € N'(n), then there is (¥) € T',, such that ¥+ = o and ¥~ = 3. By saturation
of rule P, there is m € W such that set(X) C I',,, then m € X1 = q, that is a # 0.

(D) Assume (o, B), (7,0) € N(n). If (o, 8) # (7,9), then there are (X), (II) € T',, such that
YT =q,X" = B, 1I" =~ and II™ = §. If the calculus is non-monotonic, then by saturation
of rule Dy there is m € W such that set(X,II) C I',, or there is m € W such that A, B € A,,
for A € ¥ and B € II. In the first case, set(X) C T, and set(I) C Ty, thus m € X7 = «
and m € IIT = v, that is aN~y # 0. In the second case, m € ¥~ = 3 and m € II~ = §, that
is N6 # (. If in contrast the calculus is monotonic, by saturation of Dy there is m € W
such that set(X,11) C I',,. Then set(X) C Ty, and set(Il) C Ty, thus m € ¥+ = a and
m € IIT = ~, that is a N~y # (. The other possibility is that (a,3) # (,8). Then there is
(¥) € T, such that ¥* = @ and ¥~ = 3. In the non-monotonic case, by saturation of Dy
there is m € W such that set(X) C T', or there is m € W such that A € A,, for some A € 3.
Then m € X1 = o, that is a # (), or m €= X~ = 3, that is 8 # 0. In the monotonic case we

can consider saturation of P and conclude that X1 = a # 0.

(RD;) Assume (a1, 81), ..., ((tm, Bm) be any m < n different bi-neighbourhood pairs belonging
to N (n). Then there are (31),..., (X)) € T’y such that Zj = «o; and X; = f; for every
1 <4 < m. By saturation of rule D}, (that by definition belongs to the calculus H.EED}™),
there is £ € W such that set(X1, ..., 5,,) C ['y. Then £ € X = aq, ..., £ € 5}, = ap, that is
a1 N ... N, # 0. O

155



CHAPTER 6.

Observe that, since all rules are cumulative, M is also a countermodel of the root hyper-
sequent H'. Moreover, since every proof built in accordance with the strategy either provides
a derivation of the root hypersequent or contains a saturated hypersequent, this allows us to

prove the following theorem.

Theorem 6.4.2 (Semantic completeness). If H is valid in all bi-neighbourhood models for
E*, then it is derivable in H.E*.

Proof. Assume H not derivable in H.E*. Then there is a failed proof of H in H.E* containing
some saturated hypersequent H’. By Lemma 6.4.1, we can construct a bi-neighbourhood coun-
termodel of H', whence a countermodel of H, that satisfies all properties of bi-neighbourhood

models for E*. Therefore H is not valid in every bi-neighbourhood model for E*. O

Since the countermodels constructed for non-derivable hypersequents are based on the sat-
urated hypersequents returned by Algorithm 1, and since the latter are finite, we immediately
obtain the finite model property for all the logics. For the logics without C' we can further

bound the size of the models, defined in the following way.

Definition 6.4.4 (Size of models). The size of a bi-neighbourhood or standard model M =
(W, N, V) is defined as size(M) := W[+ >, cpp IV (w)].

Corollary 6.4.3 (Polysize model property). Every classical non-normal modal logic E* with-
out axiom C' has the polysize model property with respect to bi-neighbourhood models, i.e.,
there is a polynomial p such that if a formula A of size n is satisfiable, then it is satisfiable in

a bi-neighbourhood model of size at most p(n).

Proof. Given a non-derivable formula of size n, from the proof of Theorem 6.3.4 we obtain
that the saturated hypersequent used for constructing the countermodel has O(n*) many
components, each containing O(n) many blocks for k& depending only on the logic. Since the
worlds of the countermodel correspond to the components, and the neighbourhoods for each
world are constructed from the blocks occurring in that component, this model has at most
O(n*) many worlds, each with a neighbourhood of size at most O(n). Therefore the size of
the model is O(n*+1). O

As the above construction shows, we can directly extract a bi-neighbourhood countermodel
from any failed proof. If we want to obtain a countermodel in the standard semantics we
then need to apply the transformations presented in Section 2.3. In principle, the rough
transformation (Proposition 4.3.3) can be embedded into the countermodel construction in
order to directly construct a neighbourhood model, we just need to modify the definition of
N (n) in Definition 6.4.3 as follows:

N(n) = {v | there is (¥) € T, such that T Cy C W\ X" }.
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However, in this way we might obtain a model with a larger neighbourhood function than
needed. In contrast, there is no obvious way to integrate the finer transformation of Proposi-
tion 4.3.4 into the countermodel construction, since it relies on the evaluation of formulas in

an already existing model. But it does lead to smaller models:

Corollary 6.4.4. Every classical non-normal modal logic E* without axiom C has the polysize

model property with respect to standard models.

Proof. Given a satisfiable formula of size n, from Corollary 6.4.3 we obtain a bi-neighbourhood
model with O(n) worlds. Since the transformation of Proposition 4.3.4 constructs neighbour-
hoods from sets of truth sets of subformulas of the input, the size of Ng(w) is at most n for
each world w. Then the total size of the standard model is polynomial in the size n of the

formula. O

An alternative way of obtaining countermodels in the standard neighbourhood semantics
is proposed in [107]. It basically consists in forcing the proof search procedure to determine
exactly the truth set of each formula. To this aim, whenever a sequent representing a new
world is created, the sequent is saturated with respect to all disjunctions A V —A such that
A is a subformula of the root sequent. This solution is equivalent to using analytic cut and
makes the proof search procedure significantly more complex than the one given here.

We now show some examples of countermodel extraction from failed proofs, both in the
bi-neighbourhood and in the standard neighbourhood semantics, the latter kind of models

are obtained by applying the transformation in Proposition 4.3.4.

Example 6.4.1 (Proof search for axiom M in H.E and countermodels). The following is a
failed proof of O(p A ¢) = Op in H.E.

derivable saturated
derivable ~|lp=pAgp (PN, 0@Aq=0plp=pAgq RA
(pNq),0(pAg)=0Op|pAg=p (pNq),8(pAg)=0Op|p=pAgq RO
(pAq),8(pAgq)= Op e
O(pAg) = Op

Bi-neighbourhood countermodel. Let us consider the following enumeration of the compon-

tents of the saturated hypersequent H: 1 — (p A q),0(pAq) = Op; and 2 — p = pAq,q.
According to the construction in Definition 6.4.3, from H we obtain the following coun-
termodel My; = W, Ny, V): W = {1,2}. V(p) = {2} and V(¢) = 0. Np(2) = 0 and
Noi(1) = {(0,{2})}, as Nyi(1) = {(pAgT,pAgT )} and pA gt =0, pAg™ = {2}. We have
11FO(pAq) because § C [pAg] =0 C W\ {2}, and 1 If Op because [p] = {2} € W\ {2}.
Then 11 O(p A q) — Op.

Neighbourhood countermodel. We consider the set S = {O(pAg) — Op, O(pAq), Op, pAg, p, q}

of the subformulas of O(p A ¢) — Op. By applying the transformation in Proposition 4.3.4 to
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the bi-neighbourhood model My;, we obtain the standard model Mg = (W, Ny, V), where
W and V are as in My;, and Ny (1) = {0}, since Ns:(1) = {[p A ¢lm,,} and [p A ¢]m,, = 0.

Example 6.4.2 (Proof search for axiom K in HEEC and countermodels). If Figure 6.3 we
find a failed proof of O(p — ¢) — (Op — Og) in H.LEC. The countermodels are as follows.

Bi-neighbourhood countermodel. We consider the following enumeration of the compontents

of the saturated hypersequent H:

1 — O(p—q),0p,»—q), (), —qp) = Oq.
2 = qg=p.
3 = p—qg=q,p.

According to the construction in Definition 6.4.3, from H we obtain the following counter-
model My, = W, Ny, V): W ={1,2,3}. V(p) =0 and V(q) = {2}. Npi(2) = Npi(3) =0, and
Nii(1) = {(0,{2,3}), ({3}, 0)}, as Ny(1) = {(®",p7), (0 = ¢",p = ¢7),(,p = ¢, p.p —
¢ )tandpt =0,p” ={2,3},p ¢t =8, p—>q =0 pp—qt=0,pp—q ={2,3}.

Then we have 1 |- O(p — ¢) because {3} C [p = ¢ = W C W\ 0; and z IF Op
because @ C [[p] = 0 C W\ {2,3}; but z | Og because {3} Z [q] = {2} and [q] = {2} £
W\ {2,3}, whence z Iff O(p — ¢) — (Op — Ogq). Observe that My; is a C-model since

(0N {3},{2,3}ud) = (0,{2,3}).

Neighbourhood countermodel. By logical equivalence we can restrict the considered set of

formulas S to {O(p — ¢),0p,0q,p — q,p,q,0((p — ¢) Aq),B(pAq)}. By the transformation
in Proposition 4.3.4, from My,; we obtain the standard model Mg = (W, N, V), where W

and V are as in My,;, and Ng (1) = {[p = ¢lm,,, [Pl [P A dlm,, } = {WV, 0}.

Finally, the next example shows the need of rule Dy for the calculus H.ED and its non-

monotonic extensions from the point of view of the countermodel extraction.

Example 6.4.3 (Proof search for =OT in H.ED and countermodel). Let us consider the
following failed proof of OT = in H.ED.
saturated
OT(T)=1|T= OT(T)=1[=T
aT.(T) =
oT =

RT
Dy

LO

Consider the saturated hypersequent and establish 1 +— OT,(T) =, and 2 — T =. We
obtain the bi-neighbourhood countermodel M = (W, N, V), where W = {1,2}; N (1) =
{(TH, T} ={({2},0)}; and N(2) = (. This is a D-model and falsifies =0T, as 1 |- OT.

Now imagine that the rule D; does not belong to the calculus H.ED. In this case the
proof would end with OT, (T) =, as no other rule is backwards applicable to it. From this
we would get the model M = W', N, V'), where W' = {1} and N'(1) = {(0,0)}, which
falsifies -OT but is not a D-model.

158



6.4. Countermodel extraction and semantic completeness

derivable
p=qq9=q

‘ derivable

saturated | ~lag=p—q
O(p — ), 0p, (p = q),{p), (p > ¢p)=0qlg=plp=q9=q¢p L |
O(p —¢q),0p,(p—=q),p),p—=qp)=0q|g=plp—rq=q o RO
O(p—q),0p,(p = a),{p),(p = a,p) = Bq|qg=p

derivable i derivable

Llp—=ap=q l lag=p—q

RO
O(p — q),0p, (p — q), (p), (p = ¢, p) = Oq

O(p — q),0p, (p = q), (p) = Og
O(p — q),0p, (p — q) = Oq
O(p — ¢q),0p = Og

LO

Figure 6.3: Failed proof of axiom K in H.EC.

Relational countermodels for regular logics

We now consider the possibility to define relational countermodels of formulas which are not
derivable in the calculi H.MC* for regular logics (Definition 2.3.7). In principle, this could
be done as follows: we first extract a bi-neighbourhood countermodel, and then apply the
transformation in Proposition 4.3.5. We now show that, analogously to the labelled calculi
(cf. Section 5.5), relational countermodels can be also extracted directly from failed proofs in
H.MC*. This possibility not only makes the definition of the relational models more efficient
(as it prevents to go through the transformation of previously extracted bi-neighbourhood
models), but also shows the independency of the calculus from any specific semantic choice.

Relational models are extracted from failed proofs in H.MC* as follows.

Definition 6.4.5 (Relational countermodel). Let H = I'y = A; | ... | Ty = A be a
saturated hypersequent occurring in a proof for H' in HMC*. For every 1 < n < k, we
say that a block () is mazimal for n if (¥) € T, and for every (II) € I'y,, set(II) C set(X).
It is easy to see that by saturation of rule C every component either contains a maximal

block or does not contain any block at all. On the basis of H we define the relational model
M= W, W, R,V), as follows.

e W, V, and for every block (X}, ¥1, are defined as in Definition 6.4.3.
e W' is the set of worlds n such that I';, does not contain any block.
e For every n € W\ W!, R(n) = ©F, where (X) is a maximal block for n.

Observe that if (3) and (II) are two maximal blocks for n, then ¥ = IT*, whence R(n)

is unique for every n.
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Lemma 6.4.5. Let H =T1 = A; | ... | I'y = Ay be a saturated hypersequent occurring in a
proof for H' in H.MC*, and M be the model defined on the basis of H as in Definition 6.4.5.
Then for every formula A and block (X) we have: if A € T, then M,n |- A4; if (¥) € T,
then M,nIF OAX; and if A € A, then M,n | A. Moreover, M is a relational model for
MC, and if HMC* contains rule N, then M is a standard Kripke model for normal modal
logic K.

Proof. The truth lemma is proved by mutual induction on A and (¥). As usual we only

consider modal formulas and blocks.

((2) € T,) Then n € W\ WE. Moreover, given a block (IT) maximal for n, set(%) C set(II).
We show that R(n) = IIT C [A X], which implies n |- O A X. If m € I, then set(II) C T,
then for all A € I, A € I'y,, and by i.h., m I A. Thus for all A € 3, m IF A, that is m I- A 2.

(A €T,,) By saturation of LO, (A) € T',,. Then by i.h., n |- OA.

(A € A,) If there is no block in T, then n € W¢ and by definition n If OA. Otherwise, let
(3) be a maximal block for n. Then by saturation of rule ROm there is m € W such that
set(X) C Iy, and A € A,. Thus m € ¥ = R(n), and by i.h., m I A, therefore R(n) € [A],
which implies n I OA. O

As examples, we show failed proofs of axiom 4 in H.MC and H.MCN and the extracted

countermodels.

Example 6.4.4 (Proof search for axiom 4 in H.MC and countermodels). A failed proof of
4 in H.MC is as follows.

saturated
Op, (p) = 00p | p= Op

Op, (p) = OOp
Op = O0p

ROm

Let: 1~ Op, (p) = OOp; and 2 — p = Op.

Bi-neighbourhood countermodel. From Definition 6.4.3 we obtain the following model My; =
W, N V) W = {1,2}. V(p) = {2}. N(1) ={(p",p7)} ={({2},0)}, and N(2) = 0. We
have {2} C [p] = {2} C W\ 0, then 1 I Op, but {2} € [Op] = {1}, then 1 I OOp.

Relational countermodel. From Definition 6.4.5 we obtain the following model M, = (W, W* R, V):
W = {1,2} and W' = {2}. V(p) = {2}. R(1) = p™ = {2}. Since 2 IF p we have 1 I~ Op.
Moreover, since 2 € W, by definition 2 |} Op, then 1 I OOp.

Example 6.4.5 (Proof search for axiom 4 in HMCNT and countermodels). A failed proof
of 4 in HMCNT is as follows.
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saturated
Op, (p),{T),{p, T),p, T = 00p | p, T,(T) = Op | T,(T)=p
Op, (p),(T), (, T),p, T = 00p | p, T,(T)=0p| T =p
Op, (p),(T),(p, T),p, T = 00p | p, T,(T) = Op
Op, (p),(T),(p, T),p, T = 00p|p, T = Op
Op, (p),(T),(p, T),p, T = O0p
Op, (p), (T), (p, T) = OOp
Op, (p), (T) = O0p

Op, (p) = OOp 5
Op = 0O0p

ROm

Om

Let: 1+ Op, (p),(T),{(p, T),p, T = OOp. 2 p, T,(T) = Op. 3= T,(T)=0p.

Bi-neighbourhood countermodel. From Definition 6.4.3 we obtain the following model My; =
<W7N7 V) W= {1,2,3}. V(p) = {1,2}. N(l) = {(p+7p_)7 (T+7 7). (p, T, )} =
({125, {31, ({1, 2,310} N(2) = N(3) = {(TH, T} = {({L,2,3},0)}. Tt s casy to see
that My; is a MCNT-model. Moreover, 1 |- Op and 1 I)f OOp, then 1 I Op — OOp.

Relational countermodel. From Definition 6.4.5 we obtain the following model M, = (W, W! R, V):
W = {1,2,3} and W' = 0. V(p) = {1,2}. R(1) = (p, T)T = {1,2}; and R(2) = R(3) =

T+ =1{1,2,3}. Since 1 IF p and 2 IF p, 1 |- Op. But 3 If¥ p, then 2 | Op, thus 1 I OOp. Then

we have 1 If Op — OOp. Notice that R is reflexive but is not transitive, as 1R2, 2R3, but

not 1R3.

Observe that in the above Examples 6.4.4 and 6.4.5, the relational models directly ex-
tracted from the saturated hypersequents are the same models that one obtains by applying

the transformation in Proposition 4.3.5 to the bi-neighbourhood models.

6.5 Hypersequent calculus for agency and ability logic

In this section, we present a hypersequent calculus for Elgesem’s agency and ability logic [47]
(see the axiomatisation in Section 2.4). To this aim, we take advantage of the modularity
of our hypersequent calculi H.E* for classical non-normal modal logics. As a matter of fact,
apart from the axioms Intgc and (¢, the modal axioms and rules of ELG are already covered
by the calculi H.E*. Thus, in order to define the calculus for ELG we consider the set of
hypersequent rules corresponding to these axioms, and give additional rules for the remaining
axioms. In this section, we present the hypersequent calculus HELG for ELG and prove
that it is complete with respect to the axiomatisation. Moreover, we prove that the calculus is
semantically complete by directly extracting bi-neighbourhood countermodels for Elgesem’s
logic (cf. Section 4.6) from failed proofs.

In order to define the hypersequent calculus H.ELG for ELG, we consider blocks of the

form (Z)E or (£)F, where ¥ is a multiset of formulas of L, and i is an agent. As in the
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GIT,EA (A= A L G |T,CiA, (A)¢ = A

e Gl T (D)E (D)= A
n
G|LE A=A ©

£ G|T,CA= A eI (E s A
GIT,(X)E = EA A

G|IT, (D) =CiAA Y= A {G|T,(2)¢ = C;A,A | A= Bl}pex

R

R
- G T, (5 = CA A
G| T, (D)E, (IME, (5, E = A G|T,(S)E S = A
T GIn e s A OIS A
Q {G|T,(%)f = A| = B}pes G|T, (D) =AY =
- GIT,(E)F = A RO

Figure 6.4: Modal rules of H.EELG.

calculi H.E*, sequents are pairs I' = A, where I' is a multiset of formulas and blocks, and
A is a multiset of formulas, whereas hypersequents are multisets of sequents. The formula

interpretation of sequents of H.ELG is as follows:

(AL ooy Any (S1) 615 o (Smda s ()5 5 oo (Tk)g = Bu, ..oy Be)

al? am )’

Nicn Ai AN Nj<m Bay ANZj A Nk Cag ANLs = V< B

The calculus H.ELG is defined by the propositional rules of hypersequent calculi in Fig-
ure 6.1, plus the modal rules in Figure 6.4. For every axiom of ELG there is a corresponding
rule in the calculus. Most rules have been already considered in the calculi H.E*, the only
new rules are Intgc and Q¢. Observe that E-blocks can be merged by means of the rule Cg,
but there is no analogous rule for C-blocks. However, once complex E-blocks are created,
they can be converted into C-blocks by means of the rule Intgc. In general, blocks allow us
to encode in a simple (and analytic) way the relation between the modalities E and C. For
the derivations of most axioms we can refer to Figure 6.2, whereas axioms Intgc and Q¢ are

derivable as follows.

Bid, (A)F, (A)f = Cid [ A= A Bl (AF, (A5 > Cid | A= 4 _ RT
BA (AE (AF = CA B
n . ¢
EA(AE=CA ¢ GT.(hr=
(CiT =

EA= C;A E

We can prove that HLELG is sound with respect to the bi-neighbourhood models for
ELG.

Theorem 6.5.1 (Soundness). If H is derivable in H.ELG, then it is valid in all bi-neighbourhood
models for ELG.
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6.5. Hypersequent calculus for agency and ability logic

Proof. As usual, we have to show that the initial sequents are valid, and that whenever the
premiss(es) of a rule are valid, so is the conclusion. The proof proceeds as for Theorem 6.1.2,
here we only consider the rules Intgc and Q¢ which are not already covered by the hyperse-

quent calculi for classical non-normal modal logics.

(Intgc) Assume M =G | T, (2)E ()¢ = A, Then M =G or M =T, (2)E ()¢ = A In
the first case we are done. In the second case, M |= (T, (£)F, (2)¢ = A), which is equivalent
to E;, AXAC; AX — i(T' = A). By the validity of axiom Intgc, this is in turn equivalent to
E; AX — i(I' = A). Therefore M = i(T, (2)F = A).

(Qc) Assume M = G | T,(2)¢ = A | = B for all B € . Then (i) M | G, or (ii)
MET, ()¢ = A, or (ili) M = = Bforall B¢ X. If (i) or (ii) we are done. If (iii), then
M =AY, that is M = A < T. By axiom Qc, M = C;AY — L =i((X)% =). Then
MET, (2)F = A O

We now move to prove the syntactic completeness of the calculus. Similarly to H.E*, we
can prove that weakening and contraction, both in their internal and external variants, as well
as cut are admissible in H.ELG. To this purpose we must consider the following definition

of weight of formulas and blocks of H.LELG.

Definition 6.5.1. The weight wg of a formula or block is recursively defined as wg(L)
wg(T) = wg(p) = 0; for o € {A,V, =}, wg(Ao B) = wg(A) +wg(B) +1; wg({Ar, ..., An)})

wg((Aq, ,An>§:) = maz{wg(A1),...,wg(A,)} + 1; wg(OA) = wg(A) + 2.

The proofs essentially extend the ones in Section 6.2. Here we concentrate on the admis-
sibility of cut. As before, for admissibility of cut we must consider a rule for substitution of

equivalent formulas inside blocks, which is now formulated as follows.

G|S=A {G|A= Blpex G{A"IDE (A" Q5T = A

subELG

G| (= IDE, (m )F T = A
where for instance <A”,H)Ei stays for (A”RHQE, ey (AT Hkﬁ, and A™ is a compact way
to denote ny occurrences of A.
Theorem 6.5.2 (Admissibility of structural rules and cut elimination). The structural rules
of weakening and contraction are height-preserving admissible in H.ELG. Moreover, the

rules cut and subg| ¢ are admissible in H.  ELG.

Proof. We concentrate on the admissibility of cut. Let Cut(c, h) mean that all applications
of cut of height h on a cut formula of weight ¢ are admissible, and Sub(c) mean that all
applications of subg| g where A has weight ¢ are admissible. Then the theorem is a consequence
of the following claims: (A) Ve.Cut(c,0); (B) Yh.Cut(0,h); (C) Ve.(Vh.Cut(c, h) — Sub(c));
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(D) VeVh. (Ve < c.(Sub(c) A\VR .Cut(d, 1)) A\VR" < h.Cut(c,h")) — Cut(c, h)). The proof
is analogous to the one of Theorem 6.2.2. Here we only show (C) in the cases where the last
rule applied is Intgc or Qc, as these two rules do not have a counterpart in calculi H.E*.

e The last rule applied is Intgc:

G | (A" TL)E (A 1) T = A
G| (A T)E T = A

Intgc

By applying the inductive hypothesis to the premiss we obtain G | (X", Hk)IZ-E, (3k, Hk>;c, =
A. Then by Intgc we derive G | (5™, 11,)6, T = A.
e The last rule applied is Qc:

(G| (A )T = A | = A}}* {G | (A )6 T = A |= Cleen,
G| (A™ II,)C.T = A

2

Qc

By applying the inductive hypothesis to the premisses (after auxiliary applications of Ewk
to the other premisses of subg g) we obtain {G | (X", T;)%, T = A | = A}* and {G |
(X TS T = A |= C}een,. By considering T' | A = B for all B € %, by several appli-
cations of cut (each time with auxiliary applications of wk) we obtain {{G | (X", II;)* T =
A| = Blges}t*. Finally, by Q¢ we derive G | (X7 I1;)&, T = A. O

As a consequence of admissibility of cut we can prove the following completeness theorem.

Theorem 6.5.3 (Syntactic completeness). If A is derivable in ELG, then = A is derivable
in HELG.

Proof. All modal axioms and rules of ELG are derivable in HEELG: on p. 162 we have shown
the derivations of axioms Intgc and (Jc, whereas for the other modal axioms and rules we
can refer to Figure 6.2. Finally, M P is simulated by cut, which has been proved admissible,

in the usual way. O

We adopt for HLELG the proof search strategy already considered in Section 6.4 for
the calculi H.E* (Definition 6.4.2). To this purpose, we consider the following saturation
conditions for the rules of H ELG:

Definition 6.5.2 (Saturated hypersequent). Let H = T'y = A; | ... | I, = A, be a
hypersequent occurring in a proof for H'. We say that H is saturated with respect to an
application of a rule R of H.ELG if it satisfies the saturation condition (R) below, and that
it is saturated with respect to H.ELG if it is saturated with respect to all possible applications
of any rule of HLELG. For the propositional rules and the rules Lg, L¢, Rg, Re, Cg, Tg, and
Pc, the saturation conditions are as in Definition 6.4.1 (but properly formulated with blocks
(2)E or (2)%), whereas for Q¢ and Intgc they are as follows: (Q¢) If T', (£)¢ = A is in H,

(2
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6.5. Hypersequent calculus for agency and ability logic

then there is I’ = B, A’ in H for some B € ¥; and (Intgc) If (X)F

. € I'y, then there is
()¢ €T, such that set(X) = set(€).

We can show that proof search in H.LELG always terminates.

Proposition 6.5.4. Every branch of a proof of a hypersequent H in H.ELG built in accor-
dance with the strategy is finite, whence the proof search procedure for H always terminates.

Moreover, every branch ends either with an initial hypersequent or a saturated one.

Proof. Let B be a proof of H in HLELG. Then all formulas occurring in B (both inside and
outside blocks) are subformulas of formulas of H, so they are finitely many. Moreover, satura-
tion conditions prevent duplications of the same formulas (both inside and outside blocks) and

same blocks. Therefore every branch of 8 can contain only finitely many hypersequents. [

Similarly to the calculi H.EC*, because of the presence of the rule Cg hypersequents
occurring in a proof of H can be exponentially large with respect to the size of H. In
this respect, our decision procedure does not match the PSPACE complexity upper bound
established for Elgesem’s logic by Schroder and Pattinson [155] as a particular case of non-
iterative modal logic, and also by Troquard [165]. An optimal calculus could be obtained by
considering a non-invertible formulation of the rules (cf. the calculi H.E* in Section 6.3), but
in this way we would lose the possibility to directly extract a countermodel from every single
failed proof.

Given a saturated hypersequent occurring in a failed proof of H’, a countermodel of H’

can be directly extracted as follows.

Definition 6.5.3 (Countermodel construction). Let H =T7 = Ay | ... | Ty = Ay be a
saturated hypersequent occurring in a proof for H’. The model M = (W, N, V) is defined as

follows:
e W, V, and, for every block () or (¥)¥ %+ and %7, are defined as in Definition 6.4.3.
e For every agent i € A and every world n € W,
NE) ={(E%,27) | (B)F € T} and N7 (n) = {(ZF,27) [ ()F € Tn}

Lemma 6.5.5. Let M be defined as in Definition 6.5.3. Then for every A, (X)F, (H>(jC and
every n € W, we have: If A € T, then n IF A; if ()F € T, then n I- E; A S; if <H>(JC ey,
then n |- C; AII; and if A € A,,, then n I A. Moreover, M is a bi-neighbourhood model for
ELG.

Proof. The proof is as for Lemma 6.4.1, with the new conditions proved as follows.

(Qc) If (o, B) € NF(n), then there is (X)F € T',, such that £+ = a and ¥~ = 3. By saturation
of rule Qc, there is m € W such that XN A,,, # 0. Then m € ¥~ = 3, that is 8 # 0.
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(Intgc) If (o, B) € NF(n), then there is (X)F € T, such that ¥* = a and ¥~ = 3. By

saturation of rule Intgc, then there is (Q)* € T, such that set(X) = set(Q2). Then (QF,Q7) =
(F,%7) = (o, B) € NE(n). O

We then obtain the following completeness theorem.

Theorem 6.5.6 (Semantic completeness). If H is valid in all bi-neighbourhood models for
ELG, then it is derivable in H. ELG.

As an example of countermodel extraction we show the failure of delegation in Elgesem’s
logic. The treatment of delegation represents a main difference between Elgesem’s account of
agency and other accounts, such as for instance the one formalised by STIT-logic |15, 91|. It
is explicitly rejected by Elgesem [47]: “a person is normally not considered the agent of some
consequence of his action if another agent interferes in the causal chain.” For instance, we can
say that having the car repaired is not the same as repairing the car by yourself, as shown in

the example below.

Example 6.5.1 (Failure of delegation). Let us represent Anna by a, Beatrice by b, and
“repairing the car” by p. Then by using our calculus we automatically obtain the following
countermodel to “If Anna gets Beatrice to repair her car, then Anna repairs her car”.
saturated
(Esp), (D) (Bsp)S, (P)§ s Eop, EaBop = Eap | p = Eyp | = p
{Esp)a (0)5 (Bsp)g, (95 Py Eop, EaEBop = Eap | p = Egp
(Eop)a (P}, Eop, BaBop = Eap | p = Eop

Qc

Intge X2

e | (p)5. p. Eop = p (Esp)y, (p)y Eop, EaBop = Eap | p = Epp L ¢
EE | (P)E, Eyp = p (Eop)E, Bop, EEop = Eap | p = Eop
. |Esp=p (Eop)e, BaBop = Bap | p = Evp
(Epp)E, EEpp = Eqp L ¢
EoEyp = Eqp .

We consider the following enumeration of the components of the saturated hypersequent:
1= (Ep)E, (0)F, (Eop)S, (0)5 . 0. Epp, EaEpp = Eap. 2 p = Eyp. 31 = p.

According to the construction in Definition 6.5.3, we obtain the following countermodel M =
W, NFNE V) W= {1,238} V(p) = {1,2}. NF(1) = N7(1) = {({1},{2})}, because
NE@1) = NE(1) = {(Eppt, Egp7)}, Egpt = {1}, and Epp~ = {2}. NE(1) = NE(1) =
{({1,2}, {3D)}, because NF(1) = NE() = {(p*,p)}, p* = {1,2}, and p = {3}. NE(n) =
NE(n) =0 for i =a,band n =2,3.

We have 1 IF Eyp because ({1,2},{3}) € NE(1) and {1,2} C [p] € W\ {3}; moreover,
2 If Epp and 3 I Epp because NE(2) = NE(3) = 0, thus [Epp] = {1}. Then we have
1 IF E.Epp because ({1},{2}) € NE(1) and {1} C [E,] € W\ {2}. But 1 I E,p because
[p] € W\ {2}. Therefore 1 |f E,Eyp — Eyp.
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6.6. Hypersequent calculus for coalition logic

G |T,E A, (A)E = A G |T,Cod4, (A = A . G (DE (S = A
t
G|T,E,A= A CTGIT,CAS A TECTTGT, (D = A

E

G|D, (D) =>EAA|S= A {G|T,(2)f = EjA,A | A= B}pes
G|T, (E)g =E/ A, A

Re

GIT,(8)§=>ClAA = A {G|T,(%)§ = CyA,A| A= B}pes

R
c GIT,(Z)C = CyA, A

s G| T, (%), (M, (X, 1)y = A . G|T,()y,2=A

G T, (D, (ME = A GIT, (DE = A

a {G |, (%); = A| = B}ges o GIT,(Z)C=A|=
¢ GIT, (5= A TG Et=A

. G T, (2)E (ME (2, mS, = A
S GITEf = A IntEe ST o A

G T, (D), (IM)g, = A

Figure 6.5: Modal rules of H.COAL.

6.6 Hypersequent calculus for coalition logic

In this section we present the hypersequent calculus H.COAL for Troquard’s coalition logic
COAL [165] (see the axiomatisation in Section 2.4). We show that the calculus is semanti-
cally complete with respect to the bi-neighbourhood models for COAL (cf. Definition 4.6.2)
by directly extracting bi-neighbourhood countermodels of non-derivable hypersequents from
failed proofs.

The hypersequent calculus H.COAL is defined by the propositional rules in Figure 6.1
and the modal rules in Figure 6.5. As for HLEELG (cf. Section 6.5), each axiom of COAL has

a corresponding rule in the calculus. We show as an example the derivation of axiom I nt?m.

(A, B)S gy = Coug(AANB) |A\B=ANB  ..|ANB=A . |AANB=B

Eg ANEg,B,Eg A Eg, B, (A)%, (B)g,, (A, B)S 1y, = Cgiug, (AN B)

g1’ 92’
EglA N ]EQQBvEglAv]Enga <A>§17 <B>§2 = (Cg1ng (A N B)
Ey, ANEy,B,E; A EyB = Cyug,(ANB)

EglA A EQQB = C91U92 (AN B)

C

|nt12E(C

LEXQ

LA

Theorem 6.6.1 (Soundness). If H is derivable in H.COAL, then it is valid in all bi-
neighbourhood models for COAL.
Proof. We only consider the rules F¢ and Int]2E(C.

(Intic) Assume M = G | T, (X)) (5,105 oy, = A, Then M | G or M =
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L(O)E (IE (2, )¢ = A. In the first case we are done. In the second case, M =

g1’ g2 91Ug2
i(T, <z>§1, <H>§2, (%, H>§1Ug2 = A), which is equivalent to Eg, A X AEg ATLA Cyyug (A A

AIL) — i(I' = A). By the validity of axiom IntZ, this is in turn equivalent to Eg A X A

Eg AII = ¢(I' = A). Therefore M = i(T, <E>§1, <H>52 = A).

(Fc) Due to the validity of axiom Fg, it is never the case that w I Cy AX. Then M |
i(T, (E)% = A) for every I', A. Therefore M =G | T, <E>% = A. O

We consider a proof search strategy in H.COAL analogous to the one in the calculi H.E*
and H.ELG (cf. Definition 6.4.2). To this purpose, we consider the following saturation
conditions for the rules of H.COAL:

Definition 6.6.1 (Saturated hypersequent). Let H = Ty = A; | ... | I, = A, be a
hypersequent occurring in a proof for H'. We say that H is saturated with respect to an
application of a rule R of H.COAL if it satisfies the corresponding saturation condition
(R), and that it is saturated with respect to H.COAL if it is saturated with respect to all
possible applications of any rule of H.COAL. We consider the saturation considitions already
considered for the rules of HLELG in Definition 6.5.2 (but properly formulated with groups
g instead of agents i), plus the following conditions for F¢ and Intic. (Fc) (E>% ¢ Ty, and

(Intc) if <E>El, <H>§2 € I'y, then (Q)Slugz € I'), such that set(Q2) = set(X, II).

In the same way as for H.ELG, we can prove that proof search always terminates, whence
it provides a decision procedure for the logic COAL. As before, proof search is not optimal
since the derivations can have an exponential size whereas the logic is in PSPACE, as it has

been proved by Troquard [165].

Proposition 6.6.2. Every branch of a proof of a hypersequent H in H.COAL built in accor-
dance with the strategy is finite, whence the proof search procedure for H always terminates.

Moreover, every branch ends either with an initial hypersequent or a saturated one.

Proof. The proof is analogous to the one of Proposition 6.5.4. We observe in addition that
only finitely many groups can be created starting from finitely many groups, each of them

containing finitely many agents. O

We now prove that the calculus is semantically complete. As usual, the proof consists in
showing that we can extract a countermodel of every non-derivable hypersequent on the basis

of the information provided by the failed proof.

Theorem 6.6.3 (Semantic completeness). If H is valid in all bi-neighbourhood models for
COAL, then it is derivable in H.COAL.
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6.6. Hypersequent calculus for coalition logic

Proof. Given a saturated hypersequent H we define a model M as in Definition 6.5.3 (replac-
ing agents ¢ with groups g). We can prove that formulas and blocks in the left-hand side of
the components are satisfied in the corresponding worlds, and that formulas in the right-hand
side are falsified, whence M is a countermodel of H. Moreover, we can prove that M is a
bi-neighbourhood model for COAL. The proofs are as in Lemma 6.5.5. We only consider

the following two conditions.

(Int}e) Assume (o, 8) € N (n) and (v,0) € N (n). If (a, B) # (7,6) or g1 # ga, then there
are (X)5,, (I)5, € T, such that * = a, ¥~ = 3, I" = 4 and II" = 4. By saturation or
rule Int3c, there is (Q)C & Ugs € Iy such that set(Q) = set(3,11), thus (27, Q7) € NS, (n),
where, as shown in the proof of Lemma 6.5.5 case (Cg), QT = an~y and Q= = S UJ.
If instead (o, B) = (7v,0) and g1 = g2, then there is <E>gl € T, such that ¥* = a and

~ = (. Then by saturation of rule Intgc there is ()& € T, such that set(X) = set((2). Then

(Q+,Q_) = (E+32_) = (avﬁ) € -N’z(c(n)

(F¢) By saturation of Fg, there is no block (3)§ € I'y, then NF(n) = 0. O

A peculiar aspect of Troquard’s characterisation of coalitional agency is that in joint ac-
tions every single participant must be involved, so that the logic rejects coalition monotonicity:
EyA — Ey A whenever g C ¢’ is not considered as valid. We conclude this section by showing

a failed proof of coalition monotonicity in H.COAL and the extracted countermodel.

Example 6.6.1 (Failure of coalition monotonicity). The formula E{q1p = E{q)p is not valid
in COAL. A failed proof is as follows.

saturated
(D) ays 0)Gay P Egayp = Egayp | = p
C
(P){ays D) Gay 2 Efayp = Egayp
Intgc

<p>I{Ea}7pa ]E{a}p = E{a,b}p
<p>I{Ea},E{a}p = E{unp
Eiayp = Efanyp

E

Let 1 (p)E, ()5, P, Egayp = Efqpp, and 2 — = p. We obtain the model M = (W, N3*, N, V),
where W = {1,2}; V(p) = {1} {a}( ) = N{a}( ) = {(".p7)} = {{1},{2D)}; and
NG (k) = NF(k) =0 for g # {a} or k # 1. Then 1 I Eg,yp because {1} C [p] € W\ {2}, but

1 I Egqpyp because ./\/'{Hfl’b}(l) = 0.

169



CHAPTER 6.

6.7 Implementation

In this section, we present HYPNO (HYpersequent Prover for NOn-normal modal logics), a
Prolog implementation of our hypersequent calculi H.E* for the systems of the classical cube.!
The architecture of HYPNO is similar to the one of PRONOM (cf. Section 5.7): the program
comprises a set of clauses, each of them implementing a sequent rule or an axiom of H.E*, and
proof search is provided for free by the mere depth-first search mechanism of Prolog, without
any additional ad hoc mechanism. Moreover, similarly to PRONOM, HYPNO implements
two separate procedures: a first one that searches for a proof of an input formula, and a
second one that builds a countermodel in case of failure of proof search. The proof search
procedure is implemented by a predicate terminating_proof_search which tries to generate
a derivation of the given input formula. In case of failure, on demand by the user, another
predicate build_saturated_branch is invoked that computes a saturated hypersequent from
which a countermodel is extracted.

The calculi implemented by HYPNO are a minor variant of the ones in Figure 6.1. They
contain an additional arrow =, which is used to represent that the formulas on the left of =
entails the conjunction (rather than the disjunction) of the formulas on its right. Moreover,

the rule RO of calculi H.E* is replaced by the following three rules.

GI(5,I=ADB|[E=B  G|(YI=>ADB[B=Y

RO
= G| (), T = A,0B
G|A=B G|A=B G|A= X
2> 1
"Gla=>B =2 G|A=> B,% =12

By this modification, all rules of the calculi are at most binary, which is more convenient
for implementation. We point out that no rule different from =; and =9 can be applied
to sequents of the form A = X¥. The equivalence of the modified calculi with the original
ones is straightforward. Essentially, an application of RO in calculi H.E* corresponds here to
an application of RO~ and subsequent applications of =5, which terminate when only one
formula occurs on the right of =. In this way the “right” premisses of RO are created once at
a time.

HYPNO represents a hypersequent with a Prolog list whose elements are Prolog terms of
the form singleSeq([Gamma,Delta] ,Additional), each one representing a sequent in the
hypersequent. Gamma, Delta, and Additional are in turn Prolog lists: Gamma and Delta rep-
resent the left side and the right side of the single sequent, respectively, whereas Additional
keeps track of the rules already applied to each sequent in order to ensure termination by

avoiding multiple redundant applications of the same rule to a given hypersequent. Elements

'HYPNO, as well as all the Prolog source files, including those used for the performance evaluation, are
available for free usage and download at http://193.51.60.97:8000/HYPNO/.
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of Gamma and Delta are either formulas or Prolog lists representing blocks. Logical symbols
are represented as in PRONOM: symbols T and | are represented by constants true and
false, respectively, whereas connectives -, A, V, —, and O are represented by -, =, 7, ->,

and box. Moreover, the new arrow = is represented by =>. As an example, the Prolog list

[singleSeq( [[box (a ~ ¢), [truel, [a,c]l], [a, b, a -> b, box bl],
[n, right(a -> b), apdR([a,c],b)]), singleSeq ([[dl, [d]1] ,[ 1)]

is used to represent the hypersequent
OANC),(T),(A,C)=A,B,AV B,0B | D = D,

to which the rules N, RV and RO have been already applied, the last one by using the block
(A,C) and the formula OB as the principal formulas. In turn, no rule has been applied to
D = D (the list Additional is empty).

Given a formula of £ represented by the Prolog term £, HYPNO executes the main predi-
cate of the prover, called prove, whose only two clauses implement the functioning of HYPNO:
the first clause checks whether the formula is valid and, in case of failure, the second one en-
ables the graphical interface to invoke a predicate called counter to compute a countermodel.
In detail, the predicate prove first checks whether the formula is valid by executing the

predicate:
terminating_proof_search(Hyper, ProofTree).

This predicate succeeds if and only if the hypersequent represented by the list Hyper is deriv-
able in H.E*. When it succeeds, the output term ProofTree matches with a representation

of the derivation found by the prover. As an example, in order to prove that the sequent

OAAN(BVC)=0(AANB)V(AAQ))
is valid in E, one queries HYPNO with the goal:

terminating_proof_search([singleSeq([[box (a ~ (b 7 <¢))], [box ((a "~ b) ? (a "~ cNI], [
1), ProofTree).

Each clause of terminating_proof_search implements an axiom or rule of the sequent calculi
H.E*. To search for a derivation of a sequent I' = A, HYPNO proceeds as follows. First,
if ' = A is an initial sequent, then the goal will succeed immediately by using one of the
clauses implementing the zero-premisses rules. As an example, the clause implementing init

is as follows:

terminating_proof_search(Hyper,tree(axiom,PrintableHyper,no,no)):-
member (singleSeq( [Gamma,Deltal,_) ,Hyper),
member (P,Gamma) , member (P,Delta),!,

extractPrintableSequents (Hyper,PrintableHyper) .
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The auxiliary predicate extractPrintableSequents is used just for a graphical rendering of
the hypersequent. If I' = A is not an instance of the axioms, then the first applicable rule
will be chosen, e.g. if Gamma contains a list Sigma representing a block (X) € I', and Delta
contains box b representing that OB € A, then the clause for RO will be chosen, and HYPNO
will be recursively invoked on its premisses. HYPNO proceeds in a similar way for the other
rules. The ordering of the clauses is such that the application of branching rules is postponed

as much as possible. As an example, here is the clause implementing RO:

. terminating_proof_search(Hyper,tree(rbox,PrintableHyper,Subl,Sub2)):-
select (singleSeq([Gamma,Delta],Additional) ,Hyper,NewHyper),

1

2

3. member (Sigma,Gamma), is_list(Sigma) ,member (box B,Delta),

4 list_to_ord_set(Sigma,SigmaOrd), \+member (apdR(SigmaOrd,B),Additional),!,
5

terminating_proof_search([singleSeq([Sigma, [B1], [1) |
[singleSeq([Gamma,Delta], [apdR(SigmaOrd,B) |Additional]) | NewHyper]],Subl),
6. terminating_proof_search([singleSeq([[],[B => Sigmall, [1)I
[singleSeq([Gamma,Deltal, [apdR(SigmaOrd,B) |Additional]) | NewHyper]],Sub2),
7. extractPrintableSequents (Hyper,PrintableHyper).

Line 3 checks whether Gamma contains an item Sigma which is a list representing a block and
if a box formula box B belongs to the list Delta. Line 4 implements the restriction on the
application of the rule used in order to ensure a terminating proof search: if the Additional
list contains the Prolog term apdR(SigmaOrd,B)?, this means that the rule RO has been
already applied to that sequent by using OB and the block ¥, and HYPNO does no longer
apply it. Otherwise, the predicate terminating_proof_search is recursively invoked on the
two premisses of the rule (lines 5 and 6), by introducing ¥ = B and B = ¥ respectively.
Since the rule is invertible, Prolog cut ! is used in line 4 to eventually block backtracking.
When the predicate terminating_proof_search fails, HYPNO can extract a countermodel
following the countermodel extraction described in Section 6.4. The model is computed by

executing the predicate:
build_saturated_branch(Hyper, Model).

When this predicate succeeds, the variable Model matches a description of a saturated hyper-
sequent obtained by backward applying the rules of H.E* to the initial formula. Since the
very objective of this predicate is to build a saturated hypersequent, its clauses are essentially
the same as the ones for the predicate terminating_proof_search, however rules introducing
a branching in a backward proof search are implemented by pairs of (disjoint) clauses, each
one attempting to build an open saturated hypersequent from the corresponding premiss. As
an example, the following clauses implement the saturation in presence of a block ¥ in the

left hand side and of a boxed formula OB in the right hand side of a sequent:

2The predicate list_to_ord_set is used in order to check the applicability of the rule by ignoring the
order of the formulas in the block.
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build_saturated_branch(Hyper,Model): -
select(singleSeq([Gamma,Delta],Additional) ,Hyper,NewHyper),
member (Sigma,Gamma) ,is_list(Sigma) ,member (box B,Delta),
list_to_ord_set(Sigma,Sigmalrd) , \+member (apdR(Sigmalrd,B) ,Additional),
build_saturated_branch([singleSeq([Sigma, [B]], [1) |
[singleSeq([Gamma,Delta], [apdR(SigmaOrd,B) |Additionall) |NewHyper]],Model).
build_saturated_branch(Hyper,Model) : -
select (singleSeq([Gamma,Delta] ,Additional) ,Hyper,NewHyper),
member (Sigma,Gamma) ,is_list(Sigma) ,member (box B,Delta),
list_to_ord_set(Sigma,SigmaOrd) ,\+member (apdR(SigmalOrd,B) ,Additional),
build_saturated_branch([singleSeq([[], [B => Sigmall, [1)|
[singleSeq([Gamma,Delta], [apdR(SigmaOrd,B) |Additional]) |NewHyper]] ,Model).

HYPNO will first try to build a countermodel by considering the left premiss of RO, whence
recursively invoking the predicate build_saturated_branch on the premiss with the sequent
>} = B. In case of a failure, it will carry on the saturation process by using the right premiss
of RO with the sequent B = .

Clauses implementing axioms for the predicate terminating_proof_search are replaced

by the last clause, checking whether the current hypersequent is saturated:

build_saturated_branch (Hyper,model (Hyper)) :-\+instance0fAnAxiom(Hyper) .

Since this is the very last clause of build_saturated_branch, it is considered by HYPNO
only if no other clause is applicable, then the hypersequent is saturated. The auxiliary pred-
icate instanceOfAnAxiom checks whether the hypersequent is open by proving that it is not
an instance of the axioms. The second argument matches a term model representing the
countermodel extracted from Hyper.

Apart from distingushing between monotonic and non-monotonic calculi, the implemen-
tation of the extensions is fully modular and reflects the modularity of the calculi H.E*: each
system is obtained by just adding clauses for both the predicates terminating_proof_search

and build_saturated_branch corresponding to the specific additional rules.

Performance

We have compared the performance of HYPNO with that of PRONOM (Section 5.7), obtaining
promising results. We have tested it by running SWI-Prolog, version 7.6.4, on an Apple
MacBook Pro, 2.7 GHz Intel Core i7, 8GB RAM machine. First, we have tested HYPNO over
hundred valid formulas in E and considered extensions obtained by generalizing schemas of
valid formulas by varying some crucial parameters, like the modal degree. For instance, we

have considered the schemas (valid in all systems):
(O(O(AL A (BLV CL) A - AO(An A (Bn V Cn)))) — (O(3((Ay A B1) V (A1 AC1)) A~ AD((An A Bn) V (An A Cn)))
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System 0,1 ms lms 100ms 1s 5s
HYPNO 91,50 % 78,91 % 28,23 % 9,52 % 5,78 %
PRONOM 85,71 % 77,55 % 57,82 % 31,16 % 19,80 %

Table 6.2: Percentage of timeouts over valid formulas in E.

Vars/Depth 1ms 10ms 1s 10s
3 vars - depth 5 4-5,58 % 0,78 - 1,76 % 0,02 - 0,48 % 0-0,22 %
3 vars - depth 7 23,78 - 25,18 % 10,86 - 20,16 % 3,16 - 14,40 % 2,02 -12 %
7 vars - depth 10 45,22 - 44,94 % 34,36 - 42,36 % 19,06 - 30,30 % 16,06 - 20,34 %

Table 6.3: Percentage of timeouts in 5000 random tests (system E).

(O"C1A---ANO"C; AO"A) = (O"AVDO"Dy V.- v O"Dy)

obtaining encouraging results: Table 6.2 reports the number of timeouts of HYPNO and
PRONOM over a set of valid formulas in system E. HYPNO is able to answer in less than one
second on more than the 90% of the tests, whereas PRONOM is not even if we extend the
time limit to 5 s.

We have also tested HYPNO on randomly generated formulas, fixing different time limits,
numbers of propositional variables, and levels of nesting of connectives. We have compared
the performances of HYPNO with those of PRONOM, obtaining the results in Table 6.3: in
each pair, the first number is the percentage of timeouts of HYPNQO, the second number is
the percentage of timeouts of PRONOM given the fixed time limit. Also in case of formulas
generated from 3 different atomic variables and with a higher level of nesting (7), HYPNO
is able to answer in more than 96% of the cases within 1 s, against the 85% of PRONOM.
We have repeated the experiments also for all the extensions of E considered by HYPNO:
complete results can be found at http://193.51.60.97:8000/HYPNO /#experiments.

6.8 Discussion

In this chapter, we have presented internal calculi for the basic cube of classical non-normal
modal logics and their extensions with the axioms 7', P, D, and the rules RD;’. The calculi
are defined by extending standard sequents with the structures of blocks and hypersequents.
Apart from the distinction between monotonic and non-monotonic systems, the calculi are
modular. They also have a natural “almost internal” interpretation, as each component of a
hypersequent can be read as a formula of the language. We have shown that the hypersequent
calculi have good structural properties, in particular they enjoy cut elimination, from which
we have obtained a syntactic proof of completeness. Moreover, the calculi provide a decision

procedure of optimal complexity for the logics without axiom C, and from a failed proof
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we can easily extract a countermodel (of polynomial size for logics without axiom C) in the
bi-neighbourhood semantics, whence by an easy transformation also in the standard one. In
general, the hypersequent formulation turned out to be very adequate for non-normal modal
logics, as it ensures good semantic, computational, as well as structural properties.

At the same time, we have seen that the bi-neighbourhood semantics is more adequate
than the standard semantics for the direct extraction of countermodels from failed proofs, as
the bi-neighbourhood pairs are well-suited to directly express, and reason with, the partial
information provided by the failed proofs.

In addition, we have also presented hypersequent calculi for Elgesem’s agency and ability
logic [47] and Troquard’s coalition logic [165|. For the definition of these calculi we have
taken advantage of the modularity of our hypersequent calculi: for most axioms we have
simply considered the corresponding rule in the calculus, moreover, the structure of blocks
allowed us to represent the relations between the ability and agency modalities by means of
simple and analytic rules. We have shown that the calculi are syntactically complete with
respect to the logics, and that they allow for countermodel extraction of non-valid formulas
in the bi-neighbourhood semantics.

Finally, we have presented HYPNO, a Prolog implementation of the hypersequent calculi
for the systems of the classical cube. Similarly to the theorem prover PRONOM based on
labelled calculi (Section 5.7), for every formula HYPNO provides either a proof in the calculus
or a countermodel, directly built from an open saturated hypersequent. On the basis of our
tests, the performance of HYPNO seems promising, in particular it outperforms PRONOM. In
future work we aim to analyse the performance of both provers more comprehensively with
tests analogous to the ones considered in Giunchiglia et al. [71].

As we made clear in Section 6.1, to the purpose of having sound and complete calculi
for non-normal modal logics the hypersequent framework is not necessary, as for instance the
Gentzen calculi discussed in Section 3.4 show. Moreover, for the calculi H.E* it holds that
whenever a hypersequent is derivable there is a component which is derivable. But as we have
seen, the hypersequent framework is very adequate to extract countermodels from a single
failed proof, ensuring at the same time good computational and structural properties. In
particular, hypersequents allow one to easily compute countermodels as they can represent
all worlds of a model by means of a rather simple structure. Moreover, differently from other
possible structures such as, e.g., nested sequents, the flat structure of hypersequents makes
possible for every world to have direct access to all other worlds, thus avoiding any possible
redundancy in the construction of the models.

A similar remark can be done for the theorem prover. It is clear that to the purpose
of obtaining an automated tool answering to the derivability/satisfiability problem for non-
normal modal logics one could also implement their Gentzen calculi (Section 3.4). As an

advantage, the implementation of the Gentzen calculi would not be only simpler, but would
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likely provide a more efficient prover than HYPNO. In particular, the backtracking needed for
the backward proof search in the Gentzen calculi (cf. Section 3.4) would be made automatically
by Prolog. However, differently from the Gentzen calculi, the hypersequent calculi H.E*
have the advantage of offering a simple countermodel extraction procedure which is very
suitable to be implemented. It would be in contrast overly complicated to implement the
complex countermodel construction defined by Lavendhomme and Lucas [107] for the Gentzen
calculi, moreover, its implementation would in any case require a data structure which is
not simpler than the one needed for the representation of the hypersequents. In addition,
given the modularity of the calculi H.E*, the implementation of both the proof search and
the countermodel construction of HYPNO can be extended to all systems covered by the
hypersequent calculi simply by adding clauses corresponding to the additional rules. The
same would not be equally easy for the implementation of the Gentzen calculi, since their
definition is not modular, and in addition the construction of countermodels for the systems
beyond the classical cube is still unexplored.

Concerning Elgesem’s and Troquard’s logics, to our knowledge the only calculus for Elge-
sem’s logic was proposed by Lellmann [108] in the form of a Gentzen calculus, but apart
from our calculus no other proof system is known which connects syntax and semantics and
allows for countermodel extraction of non-valid formula. Moreover, no other calculus at all
is known for Troquard’s coalition logic. Troquard [165] has also developed a decision pro-
cedure for Elgesem’s as well as his coalition logic that reduces validity checking to a set of
SAT problems, similarly to Vardi [167] and Giunchiglia et al. [71]. This algorithm based on
SAT-reduction is efficient but does not provide neither derivations, nor countermodels. In
contrast, our decision procedure based on the hypersequent calculus is constructive, as for

every formula returns either a derivation or a countermodel.

Possible further extensions

The syntactic framework based on hypersequents and blocks behaves particularly well for
non-iterative logics, that is, logics defined only by axioms not containing nested modalities.
In contrast, we have excluded from this chapter the logics with axiom 4, which are the
only non-iterative non-normal modal logics among the ones considered in Section 2.2. In
this work (Chapter 5) we have presented cut-free labelled calculi for the logic E4 and its
extensions. By contrast, as recalled in Section 3.4, to the best of our knowledge no cut-free
internal, Gentzen-style calculus exists for the logic E4. In future work we aim to extend our
hypersequent calculi to the logics with axiom 4, and possibly others. Here we limit ourselves
to the following remarks.

At present, it seems possible to cover the logics with axiom 4 by extending our calculi

with one of the rules below:
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GIT, (&), () =A
G|T,(Z)y=A

G|T,(04)= A

O
Lo G|I,04A= A

The rule on the right, which is given by analogy with calculi for normal modal logics (see for
instance [87]), is essentially a second left-box rule. By contrast, the rule on the left follows
the general idea at the basis of the design of our hypersequent calculi of modularly defining
extensions by means of structural rules handling blocks. Given the rule 4, a derivation of

axiom 4 would be as follows:

LA A A=A A, (A), ((A)) = O0A | OA, (A) = (A)
RO 54, (4), ((A4)) = DOA | (4) = 04 OA, (), ((A)) = O0A [ DA = (4) -~
04, (AY, ((A)) = O0A RO
0OA, (A) = 00A
0A = 0O0A

As it is made clear by the above derivation, this solution would require to extend our
syntactic framework by allowing both nesting of blocks and the presence of blocks in the right-
hand-side of sequents. This represents a significant modification of the formalism that, if
accepted, would likely entail the need of additional investigation of the structural properties
of the calculi, for instance one might need to examine applications of cut over bocks. All this

requires further analysis that we would like to carry on in future work.
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Chapter 7

A sequent framework for intuitionistic

non-normal modal logics

In this chapter, we define a family of intuitionistic non-normal modal logics that can bee seen
as intuitionistic counterparts of the systems of the classical cube (cf. Section 2.2). We first
consider monomodal logics, which contain only O or <. We then consider the more important
case of bimodal logics, which contain both modal operators. In this case we define several
interactions between the two modalities of increasing strength, although weaker than duality.
We thereby obtain a lattice of 24 distinct bimodal logics. For all logics we provide both a
Hilbert axiomatisation and a cut-free sequent calculus. Moreover, on the basis of the sequent
calculi we prove the decidability of all defined systems and also investigate the property of
Craig’s interpolation. Finally, we present strictly terminating sequent calculi for our systems

as well as for the intuitionistic non-normal modal logics CK and CCDL (cf. Section 2.6).

7.1 The strategy

As explained in Section 2.5, differently from both classical non-normal modal logics and
intuitionistic normal modal logics, no general investigation of non-normal modalities with an
intuitionistic basis has been carried out in the literature. By contrast, their study is limited
to specific systems such as the ones presented in Sections 2.5 and 2.6. In this chapter, we
aim to provide a general framework for non-normal modal logics with an intuitionistic basis.
In the following, under “intuitionistic modal logics” we understand any modal logic L that

extends intuitionistic propositional logic (IPL) and satisfies the following requirements:

(R1) L is conservative over IPL: its non-modal fragment coincides with IPL.

(R2) L satisfies the disjunction property: if A V B is derivable, then at least one formula

between A and B is also derivable.
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We shall consider monomodal logics, i.e., logics containing only one modality, either O
or &, as well as the more interesting case of bimodal logics, i.e., logics containing both O
and ©. For the logics containing both O and <, we require that the two modalities are not
interdefinable; this is coherent with the non-interdefinability of connectives in intuitionistic

logic. In particular, the duality axioms
Duale 0OA DC =O—A, Dualg ©A DC -0O-A4,

should not be valid. We take this lack of a duality as an additional requirement for the

definition of intuitionistic non-normal bimodal logics:
(R3) O and < are not interdefinable.

The above requirements (R1), (R2), (R3) are part of the requirements considered by
Simpson [161] as general features of any intuitionistic modal logic. In contrast, we move away

from Simpson’s criteria by considering the following requirement:
(R4) L does not contain C¢, neither as an axiom, nor as a theorem.

By assuming (R4), we ideally put our investigation of intuitionistic non-normal modal logics
into the constructive tradition, which originated the intuitionistic systems with non-normal
modalities already studied in the literature (cf. Section 2.5).

We have seen in Section 2.6 three systems — namely, CK, CCDL, and IK — that, though
not equivalent, can all be seen as intuitionistic counterparts of the classical normal modal
logic K. In this chapter, we are interested in defining logics that can be seen as intuitionistic
counterparts of the non-normal systems of the classical cube. To this aim, we consider the
intuitionistic versions of the characteristic modal axioms and rules of the systems of the
classical cube (Figure 2.8, p. 33). We first define monomodal logics, that by analogy with
the classical systems are Hilbert-style defined by extending IPL with the congruence rule
plus combinations of the other axioms (although <-logics do not contain C¢). We then
move to the definition of bimodal logics. In this case, we distinguish monotonic and non-
monotonic logics by requiring that the systems either contain both Mg and M, or do not
contain either of them. In addition, logics with both O and ¢ must contain some form of
interaction between the two modalities, although always weaker than duality. To this purpose,
we consider interactions that can be seen as “weak duality principles”’, and are determined by

answering the following question, for any two formulas A and B:
under which conditions are OA and OB jointly inconsistent?

We distinguish three degrees of increasing strength: OA and B are jointly inconsistent when

182



7.2. Intuitionistic non-normal monomodal logics

ADCB AD>DB A
REo 774 S>c OB RMo 575 > OB RBNo 54
ADCB ADB —-A
REo = 4 Sc OB BMo — 4 =08 RBNo —574
My O(AAB)D>UOA Ms <CADO(AVDB)
Cn OAAOBDO(AAB) Co <O(AVB)DOCAVOB
Ng OT Ne =L

Figure 7.1: Modal axioms and rules of intuitionistic non-normal modal logics.

(i) one of the two is T and the other is L.
(ii) A is equivalent to =B, or B is equivalent to —A.
(iii) A and B are jointly inconsistent.

In order to put some order into the picture of the possible systems defined by the above
ctriteria, we base our definition of intuitionistic non-normal bimodal logics on cut-free Gentzen
calculi: First, we formulate sequent rules corresponding to the O- and <¢-axioms (these shall
be analogous to the rules by Lavendhomme and Lucas [107] for the systems of the classical
cube, cf. Section 3.4), as well as sequent rules corresponding to the three considered degrees
of interaction between O and <. Then, we investigate the admissibility of cut in the systems
defined by any combination of the considered rules. The existence of a cut-free calculus
shall be our criterion to identify meaningful systems: A system is accepted if and only if the

combination of its sequent rules provides a cut-free calculus.

7.2 Intuitionistic non-normal monomodal logics

In this section, we begin with the definition of intuitionistic non-normal modal logics by
considering monomodal systems, that is systems containing only one modality, either O or <.

We first define the axiomatic systems, and then present their sequent calculi.

Hilbert systems

By analogy with the definition of classical non-normal modal logics (cf. Section 2.2), we
define over IPL two families of intuitionistic non-normal monomodal logics, that depend
on the considered modal operator, and are called therefore the O- and the <-family. The
systems are defined by the O- or <$-counterparts of the characteristic axioms and rules of
the systems of the classical cube (cf. Section 2.2). We already considered these axioms and

rules in Section 2.5, however for the sake of readability we display them again in Figure 7.1.
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O-IMCN
— S O-IMN
O-IMC ! O-IMN _—
~ <O-IM
O-IM |
O-IECN
-7 S~ O-IEN
O-IEC O-TEN
~ O-1IE
O-IE

Figure 7.2: The lattices of intuitionistic non-normal monomodal logics.

O- and <-logics are respectively defined in the monomodal languages Lo := £; \ {¢} and
Lo = L; \ {0}, where £; is the intuitionistic modal language with both O and < defined in

Section 2.6. Moreover, for IPL we consider the axiomatisation presented in the same section.

Definition 7.2.1 (O- and <-logics). An intuitionistic non-normal monomodal O-logic is any
logic in language Lo := £; \ {<} that extends IPL with the rule REm and a (possible empty)
combination of axioms among Mp, Co and Np in Figure 7.1. Moreover, an intuitionistic
non-normal monomodal <¢-logic is any logic in language Lo := £; \ {0} that extends IPL

with the rule RE¢ and a (possible empty) combination of axioms among M and No.

Recall that we are not considering intuitionistic non-normal modal logics containing axiom
Co. We denote the resulting logics by, respectively, O-IE* and O-IE*, where E* replaces any
system of the classical cube (for ¢-logics, any system not containing Cy).

Notice that, having rejected the definability of the lacking modality, O- and <-logics are
distinct, as O and < behave differently. Moreover, as a consequence of the fact that the systems
in the classical cube are pairwise non-equivalent, we have that the O-family contains eight
distinct logics, whereas the <-family contains four distinct logics (something not derivable
in a classical system is clearly not derivable in the corresponding intuitionistic system). We
then obtain the two lattices in Figure 7.2. It is also worth noticing that, as it happens in
the classical case, the axioms Mp, M¢ and Np are interderivable, respectively, with the rules
RMp, RM¢s and RNp, and that Kq is derivable from Mg and Cq, as the standard derivations
are intuitionistically valid (see e.g. the derivations in Figure 2.3, where the used propositional

axioms and rules are valid also in IPL).

Sequent calculi

We now present sequent calculi for intuitionistic non-normal monomodal logics. The calculi
are defined as modal extensions of a given sequent calculus for IPL. We take G3ip as the
base calculus (Figure 3.6 on page 57), and extend it with suitable combinations of the modal
rules in Figure 7.3. The O-rules can be compared with the rules given by Lavendhomme and
Lucas [107] for the classical cube of non-normal modal logics (see Section 3.4). As a difference

with the rules in Figure 3.4, the rules in Figure 7.3 for intuitionistic calculi have at most
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E A= B B= A E A= B B= A
O I,04=0B ° T, 0A=9¢B
M A= B M A= B

U T,04= 0B °T,04= 9B

N, = A N, A=

" T=04 CT,0A=A

Aq,...,A, = B B= A, .. B= A,
>

Co T,04;,..,0A, = OB (n>1)

Y T,04,,..,04, = 0B

Figure 7.3: Modal rules of Gentzen calculi for intuitionistic non-normal modal logics.

G3.0IE = {E.} G3.0-IEC = {C.}
G3.0-IM = {Mgy} G3.0-IMC = {MC.}
G3.0-IEN = {Eg, Ng} G3.0-IECN = {Cg, Ng}
G3.0-IMN = {Mg, Ng} G3.0-IMCN = {MCg, Ny}
G3.0IE = {E,}

G3.0-IM = {My}

G3.0-IEN = {E, Ny}

G3.0-IMN := {M, Ny}

Table 7.1: Gentzen calculi for monomodal logics.

one formula in the right-hand side of sequents. This restriction is adopted in order to have
single-succedent calculi (as it is G3ip).

As usual, we consider the sequent calculi to be defined by the modal rules that are added
to G3ip. For every monomodal logic L, the corresponding Gentzen calculus G3.L is defined
as displayed in Table 7.1. Notice that, analogously to the classical calculi, the axiom Cq is
captured by modifying the rules E; and M. In particular, these rules are replaced by Cg
and MCp, respectively, that are the generalisations of E5 and Mg with n principal formulas
(instead of just one) in the left-hand side of sequents.

We now prove the admissibility of the structural rules, and then show the equivalence

between the sequent calculi and the associated Hilbert systems.

Proposition 7.2.1. The following weakening and contraction rules are height-preserving
admissible in any monomodal calculus:

= A = I'NA, A= A
A=A = A ctr A=A

Proof. We show that whenever the premiss of an application of Lwk, Rwk or ctr is derivable,

Lwk Rwk

then its conclusion has a derivation of at most the same height. As usual, the proof is by
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induction on the height n of the derivation of the premiss. If n = 0, i.e., the premiss is an
initial sequent, then so is the conclusion. If n > 1, we consider the last rule applied in the
derivaiton of the premiss. For left and right weakening, if the last rule applied is a rule of
G3ip, then the proof is standard. If it is a modal rule, then the proof is easy. For instance,
if the premiss of Rwk is derived by N, then we have the derivation of the left, which is

converted into the derivation on the right containing a different application of N.

~ A—:>|\|
Rwk LOA=B °

For contraction, the proof is known if the last rule applied is a rule of G3ip. If this is a
modal rule, then the proof is easy. As an example, consider the case where the premiss of ctr
is derived by MCg. We have the derivation on the left, which is converted into the derivation

on the right containing an application of ctr at a smaller height, which is admissible by i.h..

Ay, .. Ay, B,B=C MG At A B.B=C

I'OA,,...,04,,0B,0B = 0C ¢ ~> Ay,...,Ap,B=C
T,04,,.. 04, 0B=0C T,04;,..,0A, 0B = OC

We now show that the cut rule

I'=s A I'A= A
I'= A

cut

is admissible in every monomodal calculus. The proof makes use of the following definition
of weight of formulas, which is different from the one of weight of formulas of the classical
language £ (Definition 2.2.2):

Definition 7.2.2 (Weight of formulas). The function wg; assigning to each formula A of £;
its weight wg;(A) is defined as follows: wg;(L) = wg;(T) = 0; wg;(p;) = 1 for every p; € Atm,;
wgi(Ao B) = wg;(A) + wg;(B) + 1 for o = A, V, D; and wg;(0A) = wg;(CA) = wg;(A) + 2.

Observe in particular that, given the present definition, = A has a smaller weight than OA
and CA. Although irrelevant to the next theorem, this shall be used in Section 7.3 for the

proof of cut elimination in bimodal calculi.
Theorem 7.2.2 (Cut elimination). The rule cut is admissible in every monomodal calculus.

Proof. Given a derivation of a sequent with some applications of cut, we show how to remove
any such application and obtain a derivation of the same sequent without cut. The proof is
by double induction, with primary induction on the weight of the cut formula and secondary

induction on the cut height. We recall that, for any application of cut, the cut formula is the
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formula which is deleted by that application, while the cut height is the sum of the heights
of the derivations of the premisses of cut.

We just consider the cases in which the cut formula is principal in the last rule applied in
the derivation of both premisses of cut. Moreover, we treat explicitly only the cases in which
both premisses are derived by modal rules, as the non-modal cases are already considered
in the proof of cut admissibility for G3ip, and because modal and non-modal rules do not

interact in any relevant way.

e (Cq; Cp). LetI'y = Ay,..., A, and 'y = C1, ..., Cyy,. The first derivation is converted into

the second one, which contains several applications of cut on a cut formula of smaller weight.

I'n=B B=A4, .. B=A, BIy=D D=B D= .. D=CC, C
[,00,,= OB [/,0B,00, = OD .
T, F/, or,,ars = ab

¢
I'h=2h8 B I's=D (CutD:>B B = A, )"
C Fl,F2:>D D:>AZ i=1 D:>01 D:>Cm
. [,I/,00;, 00 = 0D

Co

cut

cut

e (MCy; MCp) is analogous to (Cg; Cg). (Eg; Eg) and (Mg; Mg) are the particular cases

where n,m = 1.

e (Ng; Cy). LetI'y = By, ..., By,. The first derivation is converted into the second one, which
has an application of cut on a cut formula of smaller weight.
N -~ A Al'=C C=A (C=B .. C=818B
"T=04 IV, 0A,0I = OC
r,r,or, =oc
¢

TLCD

cut

= A ATl =C
I'i=0C C=5B .. C=8B
I, I’,0r, = ocC

cut
n CD

e (Ng; MCp) is analogous to (Ng; Co). (Ng; Eg) and (Ng; Mp) are the particular cases where

n=1.
e (Es; Ep) and (My; My,) are analogous to (Eg; Eg) and (Mg; Mp), respectively.
e (Es; Ni). The derivation on the left is converted into the derivation on the right.

E A= B B= A B = N A= B B =
<&

T,0A= OB I''OB=A ©° ~ A= NC“t
TV, OA= A cut LI, 0A=A °
e (My; Ny) is analogous to (Ey; Ny). O
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= ADB AADB=1B =BDA B,BOA=A

cut cut
A= B B=A
itk “OA=0B | Fo
—O0A>OB -~
ANB = A A B=AAB ANB= A ANB=1B C
= a
S OAAB) SOA -~ = 0 ) RS
= 0OAAOBD>O(AAB)
=T L= N, A= AVB R
(Vo) — 7 No (No) _OoL= 2 (Ms)  ©A= O(AVB)
=0l = CADO(AV B)

Figure 7.4: Derivations of modal axioms and rules of O-IE* and <-TIE*.

On the basis of the admissibility of cut we can prove that the sequent calculi and the

axiomatic systems are equivalent.

Theorem 7.2.3 (Syntactic equivalence). Let L be any intuitionistic non-normal monomodal

logic. Then the calculus G3.L is equivalent to the system L. that is

FesrL '= A ifand only if Fr, AT D\ A.

Proof. As usual, for the right-to-left direction we have to show that the axioms of L are
derivable in G3.L, and that the rules of L are admissible in G3.L. For the axioms of IPL
we can consider their derivations in G3ip, whereas M P is simulated by cut in the usual
way. Moreover, in Figure 7.9 we show the derivations of the modal axioms and rules by the
corresponding sequent rules, the lacking derivation of RE¢ is analogous to the one of REG.
For the other direction, we prove that the rules of G3.L are derivable in L. As before, we

restrict our attention to the modal rules, and consider the following illustrative derivations:

e If L contains Ng, then N is derivable: Assume Fy, A. Then by RNp (which is equivalent
to ND), l_L OA.

o If L contains N, then N is derivable: Assume 1, A D L. Since F, L D A, by E,, we
obtain k1, ©A D ¢ L. Then by, =L D =<OA, and, since by, =<¢ L, we have Fr, =CA.

e If L contains Cp, then Cg is derivable: Assume Fy, Aj A ... A A, D B and Fr, B D A;
forall 1 <i <mn. Then ty, B D Ay A...NA,. By REp, b, O(A;1 A ... NA,) D OB. In
addition, by several applications of Cn, b, DAy A ... AOA, D O(A; A ... A Ay). Therefore
by OA; A ... AOA, D OB. O
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= A B = A= = B
weaks T A OB = A weks T e OB 5 A
A B= -B= A A B= -A= B
neg, neg,
oA, OB = A [NOA, OB = A
A, B=
str
I,04,0B= A

Figure 7.5: Interaction rules for sequent calculi.

7.3 Intuitionistic non-normal bimodal logics

In this section, we define intuitionistic non-normal bimodal logics, i.e., with both O and <, by
following the proof-theoretic approach described in Section 7.1. In practice, we realise our list
of desiderata as follows. As before, we take G3ip (Figure 3.6) as the base calculus for intu-
itionistic logic. This is extended with combinations of the characteristic rules of intuitionistic
non-normal monomodal logics given in Figure 7.3. As a difference with monomodal calculi,
the calculi for bimodal logics contain both some rules for O and some rules for ©. In order
to distinguish monotonic and non-monotonic logics, we require that the calculi contain either
both Eg and E,, (in this case the corresponding logic will be non-monotonic), or both My and
M, (corresponding to monotonic logics). In addition, the calculi shall contain some rules for
interaction between O and < corresponding to the three degrees of interactions considered
in Section 7.1. The interaction rules are displayed in Figure 7.5. We require that the calculi
contain either both weak, and weak, (corresponding to the first lever of interaction), or both
neg, and neg, (corresponding to the second level), or str (corresponding to the third level).
In the following, we present the sequent calculi for intuitionistic non-normal bimodal logics
obtained by following this methodology. Then, for each cut-free sequent calculus we define

an equivalent axiomatisation.

Sequent calculi for logics without Cp

In the first part, we focus on sequent calculi for logics containing only axioms among Mg, Mo,
Np and N¢ — in other words, we do not consider the axiom Cp. The calculi are obtained
by adding to G3ip (Figure 3.6) suitable combinations of the modal rules in Figures 7.3 and
7.5. Although in principle any combination of rules could define a calculus, we accept only
the calculi that satisfy the restrictions mentioned above. In particular, this entails that we
investigate cut elimination. As usual, the first step towards the study of cut elimination is to

prove the admissibility of the other structural rules.
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G3.IE; := ({Eq, E., weak,, weak,}

G31IE; := {Eq, E, neg,, neg,} G3.IENs* = G3.IE" U {Ny}
G3IE; := {Eg, E,,str} G3IEN.* = G3.IE*U {Ng, N}
G3.IM := {Mg, M, str}

Table 7.2: Gentzen calculi for intuitionistic non-normal bimodal logics without Cp.

Proposition 7.3.1. Weakening and contraction are height-preserving admissible in each se-

quent calculus defined by any combination of modal rules in Figures 7.3 and 7.5.

Proof. The proposition is proved by extending the proof of Proposition 7.2.1 with an exami-
nation of the interaction rules in Figure 7.5. Due to their form, however, it is easy to verify
that if the premiss of wk or ctr is derivable by any interaction rule, then the conclusion is

derivable by the same rule. O

On the basis of the above result and the definition of =4 as A D 1, we can also prove the
admissibility of the following rules for negation, that we shall use in the following in order to

abbreviate the derivations:

=4 A=

These rules are shown admissible in the following standard way.

= A INA=
Lwk NMA>1l=A rl= ::J‘ A= 1 Rwk
Ao 1= - F:>ADJ_RD

We can now examine the admissibility of the rule cut. As stated by the following theorem,
our methodology leads to consideration of 12 sequent calculi for intuitionistic non-normal

bimodal logics.

Theorem 7.3.2 (Cut elimination). The cut rule is admissible in every calculus G3.IE* in
Table 7.2.

Proof. The structure of the proof is similar to the one of Theorem 7.2.2. As before, we consider
only the cases where the cut formula is principal in the last rule applied in the derivation of
both premisses, with the further restriction that the last rules are modal ones.

The combinations between O-rules, or between <-rules, have been already considered in
the proof of Theorem 7.2.2. Here we only consider the possible combinations of O- or <$-rules
with rules for interaction. For each case below, the derivation on the left is transformed into

the derivation on the right.

o (Eg; weak,).
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A= B B=A =B C= k = B B=A
EI:I 7 weak, cut
IOoA= 0B IVOB,oC = A N ~ weak = A C =
[, 17, 04,00 = A c *T,I,0A4,0C= A

o (E; weak,).
A= B B= A =C B = Weaka A= B B =

Eo I[L0A= OB I’,0C, 0B = A ~ =0 A= ean cut
[.I,CA OC = A cut [0V, 0A,00 = A a
o (Eg; weaky).
Eq A= B B=A B = =C weak, cut A= B B =
T,04 = OB I',0B,0C = A ~ ek A= ~C
[,17,04,00 = A cut b TP IV, 04,00 = A
o (Eo; weaky).
E, A= B B= A /C:> = B weak, - B B:Acut
T,0A= OB I',0C, 0B = A ~  =C S A ek
T.IV,CA 0OC = A cut [.IV,0A,0C = A b
e (Eo; neg,).
g A=B B=4A CB= ﬁB:>Cnegb
B T,0A=9°B IV, 0C, 0B = A .
[,17,0C,0A = A cu
¢
L B=A
'B,-A=
A=B ¢B= R —3_-—"p _p=oc
cut C, A= A=C cut
’ - neg,

[,I',0C,0A= A

Observe that the second derivation has two applications of cut, both of them with a cut

formula of smaller weight; in particular wg;(—B) < wg;(¢B) (cf. Definition 7.2.2).

o(ED;negb).
£ A=B B= A B,C= ﬂB:>Cnegb
° T,0A=0B F’,DB,<>C:>ACUt
[, I7,04,00 = A
¢
L B= A
''B,-A=
A=B BC= R —j-—-p _p=c
cut cut
AC= -A=C neg
[,17,04,0C = A b
e (Mp; str).
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M __ A=B B.C= str A= B B,C = ;
" T,04= 0B [/, 0B,0C = A . ~ AC = ;”r
[,I7,04,0C = A < [.1.04,0C = A
o (Ng; str).
N LA AaB = Str = A A,B = ¢
"T=04 TI,04,0B=A .~ B — NCU
I,T, 0B = A cu IT.0B=A °

The lacking combinations can be easily treated in similar ways. Observe that N does not
interact significantly with any interaction rule, since the principal formula ¢ B occurs in the

left-hand side of the conclusion. O

It can be shown that all combinations of rules excluded from Theorem 7.3.2 do not give
a cut-free calculus. In particular, cut elimination fails if we take the rule N and we do not
take the rule N, or if we combine the monotonic rules for O and < with interaction rules

different from str, as it is shown by the following examples.

Example 7.3.1. Sequent &L = is derivable from Ny + weak, + weak, + cut (without N,),
but it is not derivable from N5 + weak, + weak, without cut. With cut a possible derivation

is the following:

=T =T 1=
=0T ar, oL =

Ol =

0 weak,

cut

In contrast, without cut the only rule with a conclusion of the form &L = is N, whence the

sequent does not have any cut-free derivation without N.

Example 7.3.2. Sequent O-p, O(p A q) = is derivable from My + neg, + neg, + cut, but

it is not derivable from My + neg, + neg, without cut. A possible derivation is as follows:

—p = —(pA “(pAQ),pAg=  —(pAg)=-(pA
Mg P (pAq) (PAa)pAg (PAa)=~PAD) oo

O-p = O=(pAq) O-(pAq),O(pAq) = cut
O-p, O(pAq) =

Let us now try to derive bottom-up the sequent without using cut. The bottom-most rule
can only be neg, or neg,, as these are the only rules with a conclusion of the right form. In
the first case, the premisses would be —p, p A ¢ =, and ——p = p A ¢; while in the second case
the premisses would be —p,p A ¢ =, and —(p A q) = —p. It is clear, however, that in both

cases the second premiss is not derivable.
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7.3. Intuitionistic non-normal bimodal logics

Sequent calculi for logics with Ch

We now consider sequent calculi for logics containing the axiom Cn. We have seen in the
case of monomodal O-logics that the rules for congruence and monotonicity of O must be
generalised to n principal boxed formulas in order to obtain cut-free calculi which capture
Cp. For the same reason, interaction rules need to be generalised in an analogous way. In
this regard, observe that the rules in Figure 7.5 do not provide cut-free calculi if combined

with C or MCp, as the following example shows.

Example 7.3.3. The sequent Op, O-p, &T = is derivable by MCy + weak, + weak, + cut,
but is not derivable by MCy + weak, + weak, without cut. The derivation with cut is as

follows:

MC p,p= 1 1= =T
° Op,0-p=0L 0L,oT =
Op, O-p, OT =

weak,

cut

In contrast, the sequent is not derivable without cut, as the only applicable rule would be

weak,, but neither p nor —p is a contradiction.

Suitable generalisations of rules weak,, neg,, str are displayed in Figure 7.6. Observe
that the rule weak, has not been modified, and more interestingly, that there is no rule
corresponding to neg,. Concerning weak,, as a difference with other rules, the boxed formula
which is principal in an application of weak, occurs unboxed only in the right-hand side of
the premiss, for this reason the rule does not need to be modified (as it is shown in the proof
of Theorem 7.3.4).

Concerning neg,, its generalisation to n principal formulas would be as follows:

A,...,An, B = —|(A1/\.../\An) = B
.04, .04, OB = A

neg,C

This rule is not analytic as the right premiss contains a conjunction which does not occur
in the conclusion. In contrast with the case of the rules C5 and neg,, it is not possible to
decompose the right premiss into simpler premisses. In particular, notice that taking the n
premisses ~A; = B, ..., 7A, = B is not the same as taking ~(4; A ... A A,) = B, since
(A1 Ao ANAy) D —AL VLV 24, is not valid in intuitionistic logic. At present it is an
open problem whether by adopting the rule neg,C we would still obtain a cut-free calculus.
For this reason we exclude this rule from the calculi for Cp, and we stipulate that the calculi
G3.IE;C* contain only rule neg,C. As a consequence, the calculi G3.IE5C* are not proper
extensions of G3.IEx*.

As before, it can be easily proved that weakening and contraction are height-preserving

admissible in the considered systems.
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K =A B> A, Ay=> =B
W T 04, 0B = A weakeC A 04, 0B = A
neg.C A, ..., Ay, B= -B= A, ... -B= A4,

& T,04,,.., 04, OB = A
C Ay,...,An, B=>
SUC T 04,,... 04, 9B= A

Figure 7.6: Modified interaction rules for Cy. For each rule we have n > 1.

G31IE,C := {Cg, E,, weak,, weak,C}

G3IE,C = {Co, E,, neg,C} G3IECN.* := G3IEC*U {Ny}
G3IEsC = {Cg, E,strC} G3IECN.* := G3IEC* U {N,, No}
G3IMC := {MCy, M, strC}

Table 7.3: Gentzen calculi for intuitionistic non-normal bimodal logics with Cpq.

Proposition 7.3.3. Weakening and contraction are height-preserving admissible in each se-

quent calculus defined by any combination of modal rules in Figures 7.3 and 7.6.

Following our methodology, we obtain again 12 sequent calculi, as stated by the following

theorem:
Theorem 7.3.4. The rule cut is admissible in every calculus G3.IEC* in Table 7.3.

Proof. As before, we only present some relevant cases.

o (Cy; weak,). Let I'; be the multiset Ay, ..., Ay, and OI'; be OAy,...,0A4,,.
=B B=A4 .. B=A, = B C =

Co ; weak,
r,or, = onB I OB, oC = A ;
cu
[, 17,00, 0C = A
¢
¢ = B B= A
cu = A C =
weak,

[,IV,04;,04,,...,04,,0C= A

o (Co;neg,C). LetI'y = Ay,..., A, and I'y = C1, ..., .

I'n=B B=A, .. B=A, B,I'9,D= -D=B -D=C .. -D=0C,

C
Co .00, - OB [,0B,003,0D = A _ neeb
[.I,00,,00, oD = A !
4
CtF1:>B B,T3,D = wi P=B B=4A4; \"
. c Tl D= D = 4, ., ~D=0C .. -D=0Cy
O

[.I7,00,, 00, 0D = A
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~(A A B)
—~(0A A OB)

weak, —(OTAOL) weaky, —(OLAOT)
neg,  —(O-ANCA) negy,  —(OANAO—A)

Figure 7.7: Hilbert axioms and rules for interactions between O and <.

IMCNg
] IE3CNQ

TE3CNo 3

IMC : :( | IEchon
IE3C' pd IE;CNo

IMCNo IE2CNp.

IE;CNg

IE,C

| . IE;C
IM‘NEIE
P IE;Ng
IMN b TE,>Ng
o BN )
M L IE,N

IE;s 2

IE.Ng

B IE; N,
IE,
I1E,

Figure 7.8: The lattice of intuitionistic non-normal bimodal logics TE*.

o (Co;strC). LetI'y = Ay, ..., A, and 'y = C1, ..., Cy,. We have:

C I'N=B B=A, .. B=A, B, T2, D = strC
O [,0r; = 0B IV, O0B,00, oD = A .
Ccu
[,T/,00, 00, 0D = A
¢

=B BTIyD=

Fl,PQ,D = cu

strC

T,00, 00, 0D = A
O

Notably, the cut-free calculi in Theorem 7.3.4 are the Cp-versions of the cut-free calculi in
Theorem 7.3.2, with the only exception of the calculi G3.IEoC* which do not contain any rule
corresponding to neg,. This means that, once the interaction rules are conveniently modified,

the generalisation of the modal rules to n principal formulas preserves cut elimination.

Hilbert systems

For each sequent calculus, we now define an equivalent Hilbert system. To this purpose,
in addition to the formulas in Figure 2.8, we also consider the interaction axioms and rules
displayed in Figure 7.7. The Hilbert systems are defined by the set of modal axioms and rules
that are added to IPL, as summarised in Table 7.4.
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IE; := {REqn, REs, weak,, weaky} IE;C := IE; U {Cq}
IE; := {REqn, REs, negq, negy} IE;C := {REn, REs, neg,, Co}
IE; -~ {REn, REs, str} 1E;C — IE3 U {Cq}
IM = {REq, REo, Mg, Mo, str} IMC = IM U {Co)

IEN.* := IE* U {No}
IENy* := IE* U {Ng}

Table 7.4: Axiomatisations of intuitionistic non-normal bimodal logics TE*.

w Weaka w Weakb
(weak ) & L (weak ) &
a OT AOL = %ﬁ Vo ST ADL S /;{ﬁ
= (0T AOL) = (OT ADOL)
A, -A = —A=-A neg A, A= A=A neg
(nega) 0-4,04= 2 (negs) 04,0-A= b
o O-ANCA = ARﬁ b OANO—A = ARﬁ
= —\(D—\A A <>A) = —\(DA A <>—\A)
; = -(AAB) A,B,-~(AAB) =
cu
A B =
o= v str
(str) 0A0B= |
OAANOB — ARﬁ
= -(0AACB)

Figure 7.9: Derivations of interaction axioms and rules of TE*.

The relations among the different systems are depicted in Figure 7.8. Notice in particular
that the systems IEoC, IE2CNg, and IE2CNpg are not extensions of, respectively, IEg,
IE2No and IEsNg, as explained for the corresponding calculi on p. 193.

Theorem 7.3.5 (Syntactic equivalence). Let G3.L be any sequent calculus for intuitionistic

non-normal bimodal logics. Then G3.L is equivalent to the system L, that is
Fesr I'= A if and only if F, AT DV A.

Proof. In Figure 7.9, we show that every axiom of L is derivable in G3.L, and that every rule

of L is admissible in G3.L. We only consider the interactions between the modalities, since

the derivations of the other axioms have been already shown in the proof of Theorem 7.2.3.
Conversely, we prove that every rule of G3.L is derivable in L. As before, we only consider

the interaction rules, we show the following illustrative derivations:

o If L contains the axiom weak,, then the rule weak, is derivable. Assume that -, A and
Fr, BD L. Then by, T D A and, since by, A D T, by REg we have by, DA D OT. Moreover,
since F, L. D B, by RE¢ we have 1, OB D &1, hence kg, =01 D =<CB. By weak, we also
have Fr, OT D =< L. Thus by, OA D =0 B, which gives Fr, -(OA A OB).
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e If L contains the axioms Cp and weaky, then the rule weakp,C is derivable. Assume
F, AAN...ANA, D Land by, B. Then by, Ay A...ANA, DC L and b, B DC T. By REQ,
Fp O(A1 A ... A Ay) D OL, and by considering axiom Cp n — 1 times, Fr, OA; A ... AOA, D
O(A; A ... A A,). Moreover, by REowe have Fy, OB DC <T, whence kg, =0T DC —~OB.
Then k1, OA; A ...AOA, ANOB D L.

e If L contains the axiom negy, then the rule neg, is derivable. Assume by, —=(A A B) —
that is Fr, B D =A — and g, =B D A. Then, by RFEs, 1, B D ¢—-A. By neg, we have
Fr ©—=A D —0A. Thus by, OB D —0OA, which gives k1, ~(0A A OB).

e If L contains the axioms Cp and neg,, then the rule neg,C is derivable. Assume Fr,
AN NA,ANB D 1L and b, =B D Ay, ..., b, =B D A,. Then b, Ay A...ANA, D —-B
and Fy, =B D A1 A ... AN A,. By REp, b, O(A1 A ... A A,,)) D O-B, and by considering
axiom Cp n — 1 times, b, OA; A ... AOA, D O(A; A ... A A,). Moreover, by neg, we have
i, O-B D =B, Then b, DA A ...AOA, AOB D L. O]

7.4 Decidability, and other consequences of cut elimination

In this section, we take advantage of the admissibility of cut in all sequent calculi defined in
Sections 7.2 and 7.3 in order to prove additional properties of the corresponding logics, most
importantly decidability. Looking at the shape of the rules, we first observe that all calculi
satisfy all the requirements on intuitionistic non-normal modal logics that we have initially
assumed, i.e., that they are conservative over IPL (R1); that they satisfy the disjunction
property (R2); that the duality principles Dualn and Duale are not derivable (R3); and that
the axiom C¢ is not derivable (R4). In a similar way, we prove that all calculi are pairwise
distinct, hence the lattices of intuitionistic non-normal modal logics contain, respectively, 8

distinct monomodal O-logics, 4 distinct monomodal <$-logics, and 24 distinct bimodal logics.

Proposition 7.4.1. Every intuitionistic non-normal modal logic defined in Sections 7.2 and
7.3 satisfies the requirements (R1), (R2), (R3), and (R4) (the third one being only relevant

for bimodal logics).

Proof. (R1) Every logic is conservative over IPL: the non-modal rules of each sequent calculus

are exactly the rules of G3ip.

(R2) Every logic satisfies the disjunction property: Assume Fy, A V B. Then, by Theo-
rems 7.2.3 and 7.6.6, Fgz .= AV B. Moreover, we observe that the only rule of G3.L with a
conclusion of this form is RV, whence this is necessarily the last rule applied in the derivation

of = AV B. This has premiss = A or = B, which in turn is derivable. Thus ty, A or by, B.

(R3) For any system L, the axioms Dualg and Duale are not derivable in L for an arbitrary A.

In particular, neither =0O-p D Op, nor =<C—p D Op (instances of the right-to-left implication

197



CHAPTER 7.

of Dualn and Duale) is derivable. For instance, if we try to derive bottom-up the sequent
—0-p = Op in G3.L, the only applicable rule would be LD. This has premiss =O-p = O-p.
Again, LD is the only applicable rule, with the same sequent as premiss (or, if contained by
G3.L, we could apply Ny and get the non-derivable sequent = —p). Since -O-p = O-p is
not an initial sequent, we have that -0O-p = <p is not derivable. The situation is analogous

for =O—p = Op.

(R4) For any system L, C¢ is not derivable: Let us consider the sequent = < (pVg) D OpVv<g.
The only backward applicable rule is RD, which gives O(p V q) = Op VvV Oq. The backward
applicable rules are now (i) N, (if is contained by the calculus), which gives the non-derivable
sequent pV ¢ =, or (ii) RV, which gives either &(pVg) = Op, or O(pVq) = ©q. Considering
O(pVq) = Op, we can apply Ny, falling again into case (i); alternatively, we can apply Eg (if
the calculus is non-monotonic), or Mg (if the calculus is monotonic). In both cases we obtain

the non-derivable premiss p V ¢ = p. The analysis for &(p V g) = Og is analogous. O

Theorem 7.4.2. The lattice of intuitionistic non-normal bimodal logics contains 24 distinct

systems.

Proof. Given two logics L and Lg of the lattice, we can always find some formulas (or rules)
that are derivable in L; and not in Lg, or vice versa. This can be easily done by considering
the corresponding calculi G3.L1 and G3.L2. In particular, if Ly is stronger than Lo, then
some characteristic axioms or rule of L; are not derivable in Lg. If instead L and Lo are
incomparable, then they both have some characteristic axioms (or rules) that are not derivable

in the other. For instance, Example 7.3.2 shows that the rule str is not derivable in IE,. [

On the basis of the cut-free calculi we can also compare our systems with the intuitionistic
logics CK and CCDL (cf. the axiomatisations in Section 2.6 and the Gentzen calculi in
Section 3.6). First, we can observe that the axiom K¢, which belongs to both CK and
CCDL, is not derivable even in the strongest calculus G3.IMCNg: in bottom-up proof
search for = O(p D ¢q) D (Op D Og) we can only apply twice RD and obtain the sequent
O(p D q), Op = <q. Then at this stage we can apply either strC, thus obtaining p D ¢,p =, or
N, thus obtaining p =, both of them non-derivable. By contrast, all the rules of G3.IMCNp
also belong to G3.CCDL. Therefore we have:

Proposition 7.4.3. Every intuitionistic non-normal modal logic TE* in Table 7.4 is strictly
weaker of CCDL, that is: Thmig+ € ThmcebpL-

By contrast, CK is not comparable even with the weakest logic IE1, since the axioms
weak, and weaky are not derivable in G3.CK. For instance, in oder to derive weak,, the
calculus should derive the sequent OT, <L =, but this is neither an initial sequent, nor the

conclusion of any rule of G3.CK. Then we have:
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CCDL

N

CK

1E

Figure 7.10: Extended lattice of intuitionistic non-normal modal logics.

Proposition 7.4.4. Every intuitionistic non-normal modal logic IE* in Table 7.4 is incom-
parable with CK, that is: Thmig € Thmck and Thmck € Thmig=.

The relations among the intuitionistic systems stated by the above propositions can be
schematised as in Figure 7.10.

On the basis of the cut-free calculi we can also prove that the logics are decidable. As
usual, this is a consequence of the subformula property. However, for the calculi containing
the rules neg, (or neg,C) and neg,, we need to slightly relax the property by considering = A
as a “subformula” of OA and GA. We extend Definition 2.2.3 as follows:

Definition 7.4.1 (Strict subformula and negated subformula). For any formulas A and B,
we say that A is a strict subformula of B if A is a subformula of B and A # B. Moreover,
we say that A is a negated subformula of B if there is a formula C' such that C is a strict
subformula of B and A = —C.

Definition 7.4.2 (Subformula property and negated subformula property). We say that a
sequent calculus G3.L enjoys the subformula property if all formulas in any derivation are
subformulas of the endsequent. We say that G3.L enjoys the negated subformula property if all

formulas in any derivation are either subformulas or negated subformulas of the endsequent.
The following result is an immediate consequence of cut elimination:

Theorem 7.4.5. Every sequent calculus different from G3.IEo(C/N¢/Np) enjoys the sub-
formula property. Moreover, the calculi G3.IE2(C/N¢/Np) enjoy the negated subformula

property.

Given the subformula property we can easily define a terminating proof search procedure
in our calculi. Notice however that due to the presence of the rule LD which copies the
principal formula A O B into the left premiss, the calculi are not strictly analytic, meaning as
usual that the complexity of the premisses is not strictly smaller than the complexity of the
conclusion (cf. Section 3.3) As a consequence, some restriction in the backward application
of the rules is needed in order to ensure termination. Nonetheless, since LD is the only non

strictly analytic rule (in particular, all modal rules are strictly analytic), it suffices to consider
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the standard loop checking in G3-style calculi for intuitionistic logic, such as the one defined

in Troelstra and Schwichtenberg [164], p. 109. We formulate it as follows:

Definition 7.4.3 (Proof search strategy). A proof of I'y = Ag is constructed bottom-up
by applying the rules of G3.L backwards respecting the following condition: given a branch
B=Tg= Ay, T'1 = Ayq,....T, = A, of the proof, a rule R is not applied to I';, = A,, if (i)
I', = A, is an initial sequent, or (ii) there is a premiss ¥ = I of R and a sequent I'; = A,
in B such that set(X) = set(I';) and 1T = A;.

This strategy ensures termination of proof search as it prevents loops that can be created
by unrestricted applications of LD. For instance, applications of LD like the following are not
allowed:

IN'A>B=A I''B= A
INA>B=A

LD

By adopting this strategy, given a root sequent I' = A, every proof of I' = A is finite.
Notice that, since the calculi are not invertible, a single failed proof is not sufficient to ensure
the non-derivability of the root sequent. However, because of the subformula property every
sequent has only a finite number of possible proofs. Then the decision procedure will trivially

consist in checking all possible proofs. We obtain as a consequence the following result:

Theorem 7.4.6 (Decidability). For every intuitionistic non-normal modal logic defined in

Sections 7.2 and 7.3, it is decidable whether a given formula is derivable.

7.5 Craig’s interpolation

In this section, we take advantage of the admissibility of cut in our calculi G3.IE* to inves-

tigate the property of Craig’s interpolation in the corresponding logics.

Definition 7.5.1 (Craig’s interpolation). A logic L enjoys Craig’s interpolation if for every
A,B € L;, if b1, A D B, then there is I € £; such that -y, A D I, and kg, I D B, and
var(I) C var(A) Nvar(B).

We are able to prove Craig’s interpolation for the systems IE;q, IEo, IM, IMC, and
their extensions with the axioms N¢ or Ng, by means of a methodology based on cut-free
sequent calculi introduced by Maehara [118] (in contrast this methodology does not seem to
be adequate for the non-monotonic calculi with the rules for Cg). For every derivable sequent
A = B, Machara’s method allows one to find a suitable intepolant I such that A = I and
I = B are derivable, thus providing a constructive proof of interpolation. The same method
is used to prove Craig’s interpolation for CCDL in Wijesekera [170] and for the non-normal
modal logics of the classical cube in Orlandelli [140]. The crucial statement to be proved,

formulated for our systems, is the following.
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Proposition 7.5.1. Let L be any of the systems IEq, IE2, IM, IMC, or their extensions
with No or Ng. If I'1,T's = A is derivable in G3.L, then there is I € £; such that I'1 = I
and I,y = A are derivable in G3.L, and var(I) C var(I'1) Nvar(T'e, A).

Proof. Assume I'1, 'y = A derivable in G3.L. We show how to construct the interpolant
I by induction on the height n of the derivation of I'y,T'y = A. In the proof we write
I}, A; B, T, = A to denote the sequent I'1,I'y = A where I'y =T, A and T's = B, TY%.

If n =0, then I'1,T2 = A is an initial sequent, and has one of the forms below on the
left. For each possibility, we establish the interpolant I and show that 'y = [ and I,I'y = A

are derivable.

) LTpDh=A ~ I=L o Troabtt

i) IylTh=A ~ I=T: T o7 Rl FImp=oalbt

init ——=—init

(

(

(i) Ty,To=T ~ I=T: 7,57 Rl Fp,z7 RT
(iv) pTypTa=p ~ IT=p “pTro p,To=p

(

v) TupTh=p ~ I=T: T,=7 RT Lo, ™

In all these cases, it is easy to see that var(I) C var(I'1) Nvar(Te, A).
If n > 1, we consider the last rule R applied in the derivation of I';, 'y = A. The cases of
propositional rules are standard: we show as examples the cases R = LA, and R = RA, and

then we consider the modal rules.

e If the last rule applied is LA, then we must consider two cases, depending whether the

principal formula A A B belongs to I'y or I's.

A, B,T|;Ty = A

i
() AAB,T|;Ty = A

LA

By ih., there is I such that A, B,I'y = I and I,T's = A are derivable, and var(l) C
var(A, B,T)) Nwvar(T'2, A). By applying LA to the first sequent we obtain A A B,T} = I.
Moreover, var(I) C var(A A B,T')) Nvar(Ty, A). Then we have the claim.

I';A BT, = A
Pl;A/\B,PéjA

(i)

LA

By ih., there is I such that I'y = I and I, A, B,T, = A are derivable, and var(l) C
var(Ty) Nwvar(A, B,T, A). By applying LA to the second sequent we obtain AA B, T, = A.
Moreover, var(I) C var(T'y) Nwvar(A A B,T%,A). Then we have the claim.

e If the last rule applied is RA, we have
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Fl,rg = A Fl,F2 = B
I',I'oy=AAB

RA

By i.h., there are Iy, Iy such that (i) I'y = I3, (ii) [, T2 = A, (iii)) I'y = Iy, and (iv) I,y = B
are derivable, and var(I;) C var(I'1) Nwvar(I's, A) and var(lz) C var(I'y) Nwvar(I'y, B). We

establish I = I} A I» and consider the following derivations:

Rwk Il,F2:>A IQ,FQ?B Rwk
Pnlo=sh  Tiula=h LW I,I5,T; = A I,I5,T5 = B LW
T To= LA DL A N AL To=A4 L ALTs=B -

LN, o= AANB
where var(Iy A Iz) = var(Iy) Uvar(lz) C var(I'y) N (var(Ta, A) Uvar(Ty, B)) = var(T'1) N
var(Ty, AN B)

e If the last rule applied is E5 we must consider two cases, depending whether the principal

formula OA in the left-hand side of the conclusion belongs to I'y or I's.

.~ A=1B B= A E
) . OA:T OB
1 ;o =

O

By i.h., there are I; and I such that Fgg 1, A = I1; and Fgs [1 = B; and FgsL B = Is;
and kg3 Iz = A; where var(I),var(l2) C var(A) Nvar(B). We establish I as folllows,
and show that I'y = I and I,I's = A are derivable.

I = B B= A cut B=A A= 1 ¢
~ I=0L: A=1 L4 S B=T . cu
[m] (]

Fi,DAﬁDIl Djl,F2:>DB

.. A=1R B= A - A= B B=A
E prng . RT
(if) roAm,-op ° ~ I=T Ti=T " ¢ “Foim-op °

o If the last rule applied is E, Mg, or M, the proof is similar to the case Eg.

e If the last rule applied is N, we have:

= A - RT = A
—=—N =T: ;. =N
T, 04 o~ I=T T/=T " T T,=04 °

o If the last rule applied is N, we have the following two possibilities.

N — . A= N LL
O Toar,=a o =k o pmoao TNl Lh=A

N T RT . N
W Toam=a e ~ 1= Ti=T T FoaT, oA

o If the last rule applied is weak, we have the following four possibilities. For each case we
establish I and show that I'1 = I and I,I'y = A are derivable.
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. = A B = = A B =
= 1 eak, :
@ [[,0A4,0B;Ts = A =4 [[,0A,OB= L @i

TT,=A
(ii) = A B =

_ T ———=—RT =A B= eak
ThOA,0B T, A~ I=T =T T,04,0B Ty = A °
= A RT ——
Gii) —=A4 _B= ~ 1=om RTAST TS a4 =T B= ek,
I, 04;0B,T) = A I,0A=OT o oT,0B, T, = A
B= E—)
(iv) T Z;DA?iA ~ I =310 RWkB:>i 1l =B IEL; = A /L:> weak,
1 ) ) 2:> F/17<>B$<>J_ < OL,DA7F2$A

o If the last rule applied is weak, we have the following four possibilities. For each case we

establish I and show that I'y = I and I,y = A are derivable. In all cases var(I) = 0,
whence var(I) C var(I'1) Nwvar(I'y, A).

. A= =B _ . A= =B .
©) I|,04, 0BTy = A I=L I,0A4,0B= L weak, ;

1,y = A LL
(ii) A= = B

_T. ———RT . A= =B \eak
I,04,0B,T, = A I=T Fi=T : T,04,0B,T) = A b
A= p—
(iii) P/éZOB;fBA ~ I=0L RWkZITT T 'EL; L= =B eak,
1 ) bl 2$ Fll‘DA:>DL ] DL,OB,F2:>A
=B ——RT
(V) waZ ot ~ I=oT: N BT TSR A= =T ey,
1 ) ) 2:> F/17<>B:><>T < OT,DA7F2$A

o If the last rule applied is neg, we have the following four possibilities.

(i) 45> b= A4 I=1 4,8 = ks neg ——~ Ll
jad = . .
T, 04,0B;T5 = A I, 04,08 = L by LTx=A

Gy LB=  cB=4A o
T,;04,0B,T, = A

RT . A B= -B= A neg
=T " "ToaoBI,=4A °

(i) A, B = -B= A
I, 04;0B,T, = A

By i.h., there are I; and I5 such that A = I;, and I;, B =, and =B = Iy, and Iy = A are

derivable, and var(ly),var(Iz) C var(A) Nwvar(B). We establish I = OI; and consider the
following derivations.

Rﬁi‘rl’B:> -B=A A=1,
L =B -B=A cut
cut Il,B:> _‘Bifl ne
A:>11 Il = A E 07, OB F/ ~A Ea
I, 0A=0I o byt

(iv) A B= -B= A
I, 0B;0A T, = A
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By i.h., there are I; and I» such that A = I;, and I;, B =, and =B = I5, and I = A are
derivable, and var(ly),var(Iz) C var(I'y) Nvar(y, A). We establish I = —0I; and consider

the following derivations.

R Il,B =
-B= A A=1, . I, = B B=A
L,B= “B=h cu A=1 L=A
I, ¢B,0I, = 2 OA, T, = 06 .
I, OB= -0 -0, 0A,T) = —_
Rwk
—-014, \:‘A, P/2 = A
e If the last rule applied is neg, we have the following four possibilities.
A B= -A=B A,B= -A= B
i ’ I=1: ’ negy : LL
() [, 04, 0BTy = A [,04,0B = L by LTz=A
... A B= -A= B A B= -A= B
(ii) ~ I=T: T, o1 R neg,

[;0A4, 0BT, = A T,04,0B,T, = A

A, B = -A=B
I, 04;0B,T, = A

(iii)

By i.h., there are I; and Is such that A = I;, and I, B =, and -4 = I, and I, = B are
derivable, and var(ly),var(I2) C var(A) Nvar(B). We establish I = =15 and consider the

following derivations.

A B =
I,=B A B= RO -A=1,
cut AT, = A= cut B= 1 L=B
T, 04, 0L, = & OB,Th = &l °
I OA= 0L -1, OB, T =

oD, OB, T, = A Wk

A B = -A= B

W) T Sp oA, = A

By i.h., there are I; and Is such that A = I;, and I;, B =, and -4 = I,, and I, = B are
derivable, and var(Iy),var(I2) C var(A) Nwvar(B). We establish I = &Iy and consider the

following derivations.

__AB= L=B AB=
tBﬁ—'A -A= 1 cut 17 = AT
cu B= I, I,= B 22 2 neg,

E O /
I OB S oh o OI,,0A, T, = A

e If the last rule applied is str we have the following four possibilities.
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A B= A B=
i ! I=1: ’ tr; LL
O oiopmoa I,040B=1 ' LI:=A
A B= A, B =
.. 5 I=T: R—|—7 ’ t
W Foienn=a Ti=T T.0A, OB T, = A o
A, B=

(iii)

I/,04;0B,T, = A
By i.h., there is I’ such that A = I’ and I’, B = are derivable, and var(I') C var(A)Nvar(B).

We establish I = OI’ and consider the following derivations.

A=T M I''B =

[ OA=oOr ° O, 0BTy = A

A B=

(iv)
I, 0B;0A4,T, = A

By i.h., there is I’ such that B = I’ and I’, A = are derivable, and var(I') C var(A)Nvar(B).
We establish I = OI’ and consider the following derivations.

B=T M I''A=

r,oB=or ° O DOAT, = A

o If the last rule applied is MCg, we have the following three possibilities.

Al, ceny An = B
T/ ,04,..,0A,:T, = OB

(i)

By i.h., there is I’ such that Ay,...,A, = I' and I’ = B are derivable, and var(I') C
var(Ai, ..., Ap) Nvar(B).

A, A, =T I'=> B
[=ar: 2o An M =8 M

e 7 0A,. .04, SO "o 0/'.T,=0B = °
Al,---;An = B

[;04,..,04, )= OB

e RT. Al,...,A,,L:>B
MCo ~ I=T: T,=7 " T,04,..,04,,T,= 0B

(i)

1417 . Ai,Ai+1, ceny A, =B
F/17 DA, ...DAl; DAiJrl, ey DA,,“FIQ = 0B

(iii) MCq,

By i.h., there is I’ such that Ay,...,A; = I' and I', A;y1,..., Ay, = B are derivable, and
var(I') Cwvar(Ay, ..., A;) Nvar(Ait1, ..., An, B).

Al,...,An:>I/ M I/,AH_l,...,An:}B

~ I =0I"
F/I,DA]_,...,DATL@ ar DI/,DAi+1,...,DAn,F/2 = 0B

MCq
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e If the last rule applied is strC we have the following six possibilities.

(1) A17 ...7An,B = ~ = |- A17 ...7An,B = str : Ll
[},04,,.,04,,0B:Ts = A = T[0A,..0A4,0B=1 o LI=A

(11) Al,...,An,B=> ~ [ =T =T RT7 Al,...,An,B:> str
ry;04,,..,04,,OB,T, = A 1 T,044,...,04,,0B,T, = A

Aq,...,A,,B=

(iii) - strC

T),0A,,..04,;0B,T), = A

By i.h., there is I’ such that Aj,...,A, = I' and I',B = are derivable, and var(l’) C
var(Ai, ..., Ap) Nvar(B).

Ay, A, =T I'B=

MC
ry,04,..,04, = 0OI' o strC

~ [ =0I"
or,oB,TY = A

(IV) Al,...,An,B = C
), OB, 0A;, .0A, Ty = A

By i.h., there is I’ such that B = I’ and I’, Ay,..., A, = are derivable, and var(I') C
var(Ai, ..., Ap) Nvar(B).

B=1T M I/,Al,...,An:>

I =31 —_—
e I, 0B=oI ¢ OT',0Ay, ..,04,, Ty = A

strC

Al,---,Az’,Ai 1,...,AH,B:>
v) * strC
T, 0A;, ..., 04, OB; OA; 1, OA, Ty = A

By i.h., there is I’ such that A;i1,...,A, = I' and I, Ay, ..., A;, B = are derivable, and
var(I') Cvar(Ait1, ..., Ap) Nvar(Ay, ..., A;, B).

I/,Al,...,AZ‘,Bi C Ai+17...7An =T
~ T =-0I" T/, 07,04,,..,04;, 0B = sFt; OAj1,..,04,, T, =0  ©
I',04;,..,04;, OB = -0I' -0, 0A;41,...,04,, T, = A

. Al»"'vAi7Ai+1a"'7Aan =
(vi) 7 n strC
F17 DAlv EE) DAi; DAi+17 SE) DAna <>Bvr2 = A

By i.h., there is I’ such that: Aj,...,A4; = I’ and I', A;y1, ..., Ay, B = are derivable, and
var(I') Cwvar(Ay, ..., 4;) Nvar(Ait1, ..., An, B).

A17...7A,L' =TI M I/7Ai+1,...,An,B =

C
T),04;,..,04; =0  ° OI',0A;41,...,04,, OB, T) = A strC

~ [ =0I"
O

Theorem 7.5.2. The logics IEq, IEo, IM, IMC, and their extensions with No or Ng enjoy

Craig’s interpolation.
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7.6. Strictly terminating calculi

L0 I,p,B=A L LCo>(DOD>B)=A

" TppoB=A N T (CAD) SB=A

L, DCOBDSB=A  _ TCDSB=D TB=A
°T,(CVD)>B= A — I, (Co>D)>B=A
LT I''B=A

°T.T>B=A

Figure 7.11: Left implication rules of G4ip.

Proof. Let L be any of these systems, and assume Fy, A D B. Then by Theorem 7.6.6,
Fgs1r A = B. Moreover, by Proposition 7.5.1 there is I € L£; such that Fgzr A4 = I,
Fesr I = B, and var(I) C var(A) Nwvar(B). Therefore 1, A D I and 1, [ D B. O

7.6 Strictly terminating calculi

In this section, we present strictly terminating calculi for our intuitionistic non-normal modal
logics IE* as well as for CK and CCDL. As remarked in Section 7.4, G3-style calculi for
intuitionistic logics are not strictly terminating because of the copy of the principal implication
A D B into the left premiss of LD. For IPL, alternative, strictly terminating calculi are
defined by Hudelmaier [92] and Dyckhoff [45]. These calculi are defined by replacing LD
with several rules, one for every possible outermost connective in the antecedent A of the
principal implication A D B. Here we consider Dyckhoff’s calculus G4ip in the formulation
given in Dyckhoff and Negri [46]. The calculus G4ip is defined as G3ip (Figure 3.6), with
the difference that the rule LD is replaced by the five rules in Figure 7.11. As a difference
with [46], we also take the rule LTD since we are considering T as a primitive symbol of
the language. Dyckhoff’s [45] original completeness proof of G4ip is indirect: essentially, it
consists in showing how to transform a derivation in G3ip in order to obtain a derivation
of the same sequent in G4ip. An alternative completeness proof of G4ip based on a direct
syntactic proof of cut elimination is given in Dyckhoff and Negri [46]. This second proof
is more suitable for studying extensions of G4ip as it can be modularly extended with the
analysis of the additional rules, for this reason we consider here this second kind of proof.

A modal extension of Dyckhoff’s calculus is presented in Iemhoff [94], where strictly ter-
minating calculi for intuitionistic monomodal versions of the classical modal logics K and KD
are presented. The calculi are defined by considering the following additional left implication
rule for the case where the antecedent of the principal implication is a modal formula OD:

I"'=D r,or',B= A

| | >0
LOS r,or’,ob > B= A Il =
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LDDC:D D="C IoC,B= A L0 DC:>D I,oC,B= A
E [,0C,0D > B= A M [,0C,0D > B= A
I'=D D=C, .. D=(, .o, B= A
LO o I'=0Cy,...,C
¢ [,00,0D > B = A ( 1 Cn)
LOmes I"'=D r,or’,B= A LOn =D I'B= A
Mc r,00,0D > B = A N°TT ODoB= A
L<>DCZ>D D=C o, B= A L<>3C2>D o, B= A
E [,0C, oD > B= A M [,0C, D> B= A
Lows T E=D [,00",OF, B = A
w 0,00, 0F,0D > B = A

Figure 7.12: Left implication rules of modal extensions of G4ip.

Modal rule Ep Co Mg MCg Ng Eo M W
Implication rule LOgD LOcD LOywD LOycd LOND LOgD LOMD LOWD

Table 7.5: Correspondence between modal rules and left implication rules in calculi G4.L.

We take here a similar strategy and define G4-style calculi for intuitionistic non-normal
modal logics. Similarly to Iemhoff’s rule, these calculi contain suitable left implication rules
taking care of the O- or O-formulas in the antecedent of implications. The relevant rules
are displayed in Figure 7.12 (as before, when OI" occurs in a rule (schema), we implicitly

understand that I' contains at least one formula).

Definition 7.6.1 (G4-style calculi). Let L be any system among IE*, CK, or CCDL. Then
the calculus G4.L for L contains

e the propositional rules of G3.L different from LD (cf. Tables 7.2 and 7.3 and Section 3.6);
e the modal rules of G3.L;
e the left implication rules in Figure 7.11;

e for every rule among E5, Cy, Mg, MCq, Ng, E, My, and W contained by G3.L, G4.LL
contains the corresponding modal left implication rule in Figure 7.12, as summarised in
Table 7.5.

Observe that the calculi G4.L do not properly satisfy the subformula property, in partic-
ular the principal formulas in the premiss of LAD, LVD, and the left premiss of LDD are not

subformula of any formula in the conclusion. However, it is possible to define an ordering of
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sequents according to which the premisses of every rule of G4.L are strictly smaller than the
conclusion (cf. [45, 46, 94]). To this purpose we need to re-define the weight of formulas as

follows:

Definition 7.6.2 (Weight of formulas). The function wgy assigning to each formula A of £;
its weight wg4(A) is recursively defined as follows: wgs(L) = wga(T) = 0; wga(p;) = 1 for
every p; € Atm; wgs(A D B) = wga(A) + wga(B) + 1; wga(A N B) = wga(A) + wga(B) +2;
wgs(AV B) = wga(A) + wga(B) + 3; and wgs(OA) = wgs(CA) = wga(A) + 2.

Then, basing on the above notion of weight of formulas we consider the multiset ordering

of sequents, which is defined as follows:

Definition 7.6.3 (Multiset ordering of sequents). Given two multisets ¥ and IT of formulas
of L;, we define ¥ < II if and only if II is the result of replacing one or more formulas in %
by zero or more formulas of lower weight according to Definition 7.6.2. Moreover, given two
sequents ' = A and IV = A/, we defineI' = A < I = A’ if and only if I', A < I, A’.

The above relation < is a well-ordering on sequents. As a consequence, since the premisses
of every rule of G4.L are strictly smaller than the conclusion according to <, every application
of backward proof search for a sequent I' = A comes to an end after a finite number of steps,
whence the calculi G4.L are strictly terminating.

We now investigate the property of the calculi G4.L. In particular, we first show that the
structural rules of weakening and contraction are admissible, and then prove the equivalence
between the calculi G4.L and the corresponding calculi G3.L. Finally, we present a direct

proof of cut elimination in G4.L.

Lemma 7.6.1. Every left implication rule in Figure 7.12 is height-preserving invertible with
respect to the rightmost premiss, i.e., the following rules are height-preserving admissible in

the corresponding calculi:

r,oCc,0D>B=A r,or’,ob > B= A r,obo>B=A
r,oC,B= A r,or',B= A I'B=A
I,0C,0D>B=A I,or,0E,¢D > B = A
I, 0C,B= A I,OI",0F, B = A

Proof. The proof is by induction on the height n of the derivation D of the premiss. If n = 0,
that is the premiss is an initial sequent, then the conclusion is also an initial sequent. If n > 1,
then we distinguish two cases, depending whether 0D D B or &D D B is principal in the last
rule application in D: If OD D B (respectively ¢ D D B) is principal, then the conclusion of
the rule coincides with the rightmost premiss of the last rule application in D, whence it is

derivable with a derivation of smaller height by hypothesis. If it is not principal, then either
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we apply the inductive hypothesis and then use the last rule applied, or, in case the last rule

applied is a modal rule, we simply consider a different application of the same rule. O

Proposition 7.6.2. For every L € {IE*, CK, CCDL}, the structural rules Lwk and Rwk are
height-preserving admissible in G4.L. Moreover, ctr is admissible in G4.L.

Proof. The proof of height-preserving admissibility of weakening is standard by induction on
the height of the derivation of the premiss (see e.g. the proof of Proposition 7.2.1). Here we
prove the admissibility of contraction.

As usual, the proof is by induction on the height n of the derivation D of the premiss of
ctr. If n = 0, that is the premiss is an initial sequent, then the conclusion is also an initial
sequent. If n > 1 and the contracted formula is not principal in the last rule applied in
D, the the proof is standard. If in contrast the contracted formula is principal in the last
rule application, then we consider the following four possibilities: If the last rule applied is
a propositional rule different from left implication rules, then the proof is standard. If the
last rule applied is a propositional left implication rule (Figure 7.11), then we can refer to the
proof in Dyckhoff and Negri [46]. If the last rule applied is a modal rule, then we can refer
to the proofs of Propositions 7.2.1, 7.3.1, and 7.3.3 in previous sections. The remaining case
is that the last rule applied is a modal left implication rule (Figure 7.12). We consider as

examples the cases where the last rule applied is LOgD or LOwWD.

e The last rule applied is LOgD. There are two possibilities depending whether the contracted
formula is OC or OD D B. If the contracted formula is OC' we have the following derivation,

which is converted into the derivation below, where ctr is applied at a smaller height.

C=D D="C r,oc,oC,B= A
r,0C,0C,0D > B= A
I,o0C,0D > B=A

¢
r,oc,oC,B= A

C=D D=C IoC,B= A
I,o0C,0D > B= A

LOgD

ctr

ctr
LOgD

If the contracted formula is 0D D B we have the following derivation, which is converted
into the derivation below, containing an application of height-preserving invertibility of LOgD

(Lemma 7.6.1) and an application of ctr at a smaller height.

C=D D=C I'oC,B,0D > B= A
I,oCc,0D > B,0DD>B=A
r,oc,ob>B= A

¢

L\:‘ED

ctr
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I,OC,B,0D > B = A

r,oc,B,B= A

C=D D=C r,oc,B= A
oCc,0D>B=A

inv—LDED

ctr
LOgD

e The last rule applied is LOwD. There are three possibilities depending whether the con-
tracted formula is OA, or ¢C, or D D B. If the contracted formula is OA we have:

I"AJAJE= D [,OIY,0A,0A4,CFE,B = A
I,OIY,04,04,0FE,0D > B= A
I,or',0A4,0E,&oD > B = A

¢
drFQA¢LE:>D [,00,04,04,0F,B = A o
I/, A E =D FﬂFﬂAQﬂBiAL%D
[,007,04,0E,0D > B= A

LOwWD

ctr

If the contracted formula is OF we have:
I E= D ,or,oE,OF,B = A
r,or,oE,0E,oD D> B = A
r,or’',©oe,oD >B= A
¢

r,or, OB, OFE,B = A
I E= D r,or',oE,B= A

I,OI",0A4,0E, D > B= A

LOwD

ctr

ctr
LOwD

If the contracted formula is ¢ D D B we have the following derivation, which is converted
into the derivation below, containing an application of height-preserving invertibility of LOw D

(Lemma 7.6.1) and an application of ctr at a smaller height.

I'E=D TI,0I',0E,B,©D>B=A
r,ar,©¢rE, oD > B,oD > B = A
r,or',oFE, oD > B = A

¢

T,00,0FE,B,oD > B = A

I,or',¢oE,B,B = A

I E=D r,or’',oE,B = A
IO, 0E, 0D > B = A

LOwD

ctr

inv-LOWD

ctr
LOwD

O

We now prove that every calculus G4.L is equivalent to the corresponding calculus G3.L,

whence also to the logic L. The proof is based on the following two propositions.

Proposition 7.6.3. For every L € {IE*, CK, CCDL}, the following rule LD is admissible
in G4.L:
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INA>B=A I''B=A
A>DB=A ’

Proof. We first prove that the following rule is admissible in G4.L:

= A I'B=A
INA>DB=A

LD

The proof is by induction on the height n of the derivation of ' = A. If n =0, then ' = A
is an initial sequent. There are three possibilities: (i) f T = 1", 1, then IV, 1, A D B = A
is derivable by LL. (ii) If A = T, then I', T D B = A is derivable from the right premiss
I'B= AbyLTD. (ii) [T = A=T1",p=p, then I',p,p D B = A is derivable from the
right premiss IV, p, B = A by L0D.

In n > 1, then we consider the last rule applied in the derivation of I' = A. If this is a
propositional rule of G4ip, then we can refer to the proof in [46]. If the last applied rule R is
N, or an interaction rule in Figure 7.5 or 7.6, then A is not principal in the rule application.
Then, 'y A D B = A can be derived from the premiss of R by a different application of R.
For the other rules we show the following three illustrative examples.

e If the last rule applied is Eg, then I' = A has the form IV,0C = OD and is derived
from C = D and D = C. Moreover, I', B = A has the form I",0C, B = A. Then by
applying LOgD to C = D, D = C, and I',0C, B = A we derive IV,0C,0D D B = A,
which is the conclusion of LD’.

o If the last rule applied is W, then I = A has the form IV, O, &C = <D, and is derived
from I',C = D. Moreover, I', B = A has the form I'', OI"”, &C, B = A. Then by applying
LOWD to I, C = D and I, 0OI'", OC, B = A we derive IV, O, 0C, 0D D B = A, which
is the conclusion of LD’.

e If the last rule applied is LOgD, then I' = A has the form IV,0C,0D D E = A, and
is derived from C = D, D = C, and I",0C,E = A. Moreover, I', B = A has the form
IY,0C,0D D> E,B = A. Then by Lemma 7.6.1, IV, 0C, E, B = A is derivable. Thus we can

obtain the conclusion of LD’ as follows, where the application of LD’ is admissible by i.h.:
I'OC,E = A I,0C,E,B = A

C=D D=C I'0C,E,A> B= A
I 0C,0D>E,AD>DB=A

L\:‘ED

Now, having shown that LD’ is admissible, and that weakening and contraction are also

admissible in G4.L (Proposition 7.6.2), we can show the admissibility of LD as follows:

I''B=A
I'A>B=A T,BA>B=A -
FLASBA>B=A LS

T A>B=A
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Proposition 7.6.4. For every L € {IE*, CK, CCDL}, every left implication rule of G4.L
is admissible in G3.L.

Proof. As before, we only consider modal left implication rules, whereas for propositional

rules we refer to [46]. We present the following illustrative cases.

e Rule LO¢D is derivable in G3.IE* as follows, where IV = C1, ..., Cy:

I'=D D=C .. D=0C,
T,00',0D > B = 0D r,ar,B = A
T,0I',0D > B = A

Co

LD

e Rule LOND is derivable in G3.IM™ as follows:

M C=D
°T,0C,.oD>B=D  TI,0C,B= A

T,0C, oD > B = A

e Rule LOWD is derivable in G3.CCDL and G3.CK as follows:
I",F= D
r,ar, or, oD > B = <D L,or,oF, B = A
r,or,oF, oD > B= A

w

LD

Then, from Propositions 7.6.3 and 7.6.4 we obtain the following result.

Theorem 7.6.5. For every L € {IE*, CK, CCDL}, a sequent I' = A is derivable in G3.L
if and only if it is derivable in G4.L.

Proof. T' = A is derivable in G3.L iff (by Proposition 7.6.4) it is derivable in G3.L plus the
left implication rules of G4.L iff (by Definition 7.6.1) it is derivable in G4.L U {LD} iff (by
Proposition 7.6.3) it is derivable in G4.L. O

Moreover, from this and the syntactic completeness of the calculi G3.L (Theorems 7.6.6

and 3.6.1) we obtain as an immediate corollary:

Theorem 7.6.6 (Syntactic completeness). For every L € {IE*, CK, CCDL},
Fgar I'= A if and only if Fr, AT DV A.

Furthemore, since cut is admissible in the calculi G3.L (cf. Section 7.3 and Theorem 3.6.1),
from the above equivalence it also follows that cut is admissible in the calculi G4.L. This
means as usual that every derivable sequent has a cut-free derivation in the calculus. It
is nonetheless interesting to prove cut elimination directly. As an advantage, such a proof

gives an effective procedure to convert every derivation containing applications of cut into
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an equivalent derivation not containing any of them, thus showing the admissibility of cut in
a constructive way. Moreover, this provides also a completeness proof for the calculi G4.L

which is independent from the one for the calculi G3.L.

Theorem 7.6.7 (Cut elimination). The rule cut is admissible in G4.IE* as well as in G4.CK
and G4.CCDL.

Proof. As usual, the proof is by double induction, with primary induction on the weight
of the cut formula and secondary induction on the cut height. As for previous proofs of
cut elimination, we consider only the cases where the cut formula is principal in the last rule
applied in the derivation of both premisses. Moreover, we only consider relevant combinations
with left implication rules of modal G4-style calculi. We present some significant cases, the

lacking combinations are analogous to some of the ones below.

e (RD; LO¢D) Let I = (4, ...,C,,. We have the following derivation, which is converted into
the derivation below, containing two applications of cut on cut formulas of smaller weight and

n application of contraction, which has been proved admissible (Proposition 7.6.2).

oD = B =D D=C, .. D=C, I'OI',B= A
I'=0D>B Y, ar”, 0D > B = A
LIV, 00" = A
¢
I'"=D D=CC, ... D=C,
Or” = 0D I',oD = B
r,or” = B I, ar”, B = A
[T/, 00", 0" = A
I, 00" = A

RD LOcD

cut

Co

cut

cut

ctrxn

° (CD; LD(:D) Let IV = Ay, ..., A, and "= Ciyeeey Cpy.

I'sE (E=A)", EI"=D D=FE (D=Cjr, I'",0E0I" B=A

LOcO
. r,00 = OF I".0E,O".0D>B=A ¢
cu
T, 17,00, 00",0D > B = A
W =E  BEI"=D (D=E _ E= Ay Lo 0B I"0B,O".B=A
' T" = D ( D= 4, )7;:1 (D=C)ry [,T",00, 00", B = A ]
. o

I, 1”7, or,or”, oD >B = A

° (MCD; LDMCD)

"= A ", AJE = D I, o0 0A,©E,B = A
T, O = 04 I, 00" 0A,OF, 0D > B = A
[, 07,00, 00", OE,oD > B = A

|\/lcl:l LDMCD

cut
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¢

; I'= A ", AJE = D r,or=ogA I, 00", 0A,0E,B = A ;
< I'T".E= D [.I7 or,or”, OF, B = A e
LOmcD

r,r,or,or”,oE,¢D > B = A

° (W; LOWD)

W A= E I"E=D IO OBEB=A
T,00,0A = OF " Or”, OE, oD > B = A W

T, 0", 00,00, GA, oD 5> B = A

¢

(A= E I EB=D TDOM0A=OE IO 0B B=A
< I'T". A= D [,07, 00,00, 0A, B = A <t
LOwD

r,r”,or,or”,0A, oD D B= A

cut

e (MCg; LOWD)

= A AT" E=D IV 0A0OI" OFE,B= A
o= o4 I, 04,01 OB, 0D D> B = A
r,r,or,or”,OFE,&¢D > B = A
¢
ut I'=A AT E=D T,0I'=04 IV 0A400" OE,B=A wt
I'.T" E= D I, I, or,or”,OE,B = A Lowo
L, I, or,or”,©oE,oD > B = A

MCq LOwWD

cut

e (Mo; LOWD)

A= E I'".E=D T'.,0I'",0E,B= A
Mo [,0A= OF ', 01", 0F, 0D > B = A
[,I',00",0A, 0D > B = A
¢
wA=E T'E=D T,0A=0F I OI"0EB=A .
I, A= D [,V 007, 0A, B = A Lows
I,I7,00",0A, 0D > B = A

LOwD

cut

e (Ng; LOED)

= C C=D D=C I 0CB=A
T = 0OC [',0C,0D > B = A
I[,I',OD>B=A
¢
- C C =D Ir'=ocC I',0C,B= A
=D ILI',B= A
[,[',OD>B=A

Ng LOgD

cut

cut

cut

LOND
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O

We have shown that, for every logic L among our intuitionistic systems IE* and CK and
CCDL, the calculus G4.L is strictly terminating and complete with respect to the logic. As
a consequence of this results, we obtain an alternative proof of decidability of the respective
logics, with the advantage that — differently from the G3-calculi — proof search does not require
loop checking: for every logic L and formula A, the decision procedure trivially consists in
checking all possible proofs of = A in G4.L, which are in a finite number. Furthermore, this
result partially solves the problem left open in Iemhoff [94]| concerning the possibility to define

strictly terminating G4-style calculi for intuitionistic logics with both modalities O and <.

7.7 Discussion

The results presented in this chapter represent the initial step towards a general investigation
of non-normal modalities with an intuitionistic base. We have defined a new family of intu-
itionistic non-normal modal logics that can be seen as intuitionistic counterparts of classical
non-normal modal logics. In particular, we have defined 12 monomodal logics — 8 logics with
0O modality and 4 logics with & modality — and 24 bimodal logics. For each of them we have
provided both a Hilbert axiomatisation and a cut-free sequent calculus, and on its basis we
have proved that all systems are decidable. Furthermore, we have proved that the systems
IEq, IE2, IM, IMC, and their extensions with axioms N¢ or Ng, enjoy Craig’s interpolation.
Finally, we have presented strictly terminating G4-style calculi for all our systems as well as
for CK and CCDL.

All intuitionistic non-normal modal logics defined in this chapter contain some of the
modal axioms characterising the classical cube. In addition, bimodal logics contain interac-
tions between the modalities that can be seen as “weak duality principles”, and express under
which conditions two formulas OA and B are jointly inconsistent. On the basis of the dif-
ferent strength of such interactions, we identify different intuitionistic counterparts of a given
classical logic. Since there are three degrees of interaction, to every classical non-monotonic
logic E* are associated at least three intuitionistic counterparts of increasing strength.

The notion of “intuitionistic counterpart of a classical system” considered here is not a
formal one, but rather an informal notion which is used for the classification of intuitionistic
systems. However, one could intuitively identify at least two conditions that an intuitionistic
modal logic IL should satisfy in order to be interpreted as an intuitionistic counterpart of a
classical modal logic L: first, it should contain the characteristic modal axioms and rules of
L, and second, it should be weaker than L, the latter because IPL is weaker than CPL. In
this sense, it would not be true that IEg is a counterpart of classical E. Indeed, the rule str

is classically equivalent to the rule RM, whence it allows one to derive formulas which are
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not derivable in E. For instance, =(0O(p A ¢) A O—p) is derivable in IEg but is not derivable
in E, as it is shown by the proofs below: on the left we see a derivation of O(p A g) A C—p =
in G3.IE3, while on the right we see a failed proof of O(p A ¢) A =Op = in the hypersequent
calculus H.E (cf. Chapter 6).

saturated
Sg=p init | p=pAgp ~|p=pANgq RA
D,q,p = LIj/\ ~|pAg=p . |lp=pAq RO
pPAGD= T O(p Ag) A=0Op,0(p Aq),~Op, (pAq) = Op =
O(pAq),O—p= LA O(pAg) A—Op,0(pAg),~Op = Op
O(PAg) AO-p= O(pAg) A—-Op,0(pAq),~Op = N

O(pAg)A—-Op =

At the same time, however, it would be unnatural to consider IE3 as corresponding to classical
M, as neither Mg nor My is derivable.

We see therefore that the picture of systems that emerge from a certain set of logic
principles is richer in the intuitionistic case than in the classical one. In particular, assuming
an intuitionistic base not only allows us to make subtle distinctions between principles that
are not distinguishable in classical logic, but also gives us the possibility to investigate systems
that in a sense lie between two different classical logics, and do not correspond essentially to
any of the two.

The results presented in this chapter can be extended in several ways, here we highlight

some possible directions.

Interpolation. First of all, in Section 7.5 we have proved Craig’s interpolation for a subset of
our intuitionistic non-normal modal logics by means of a general methodology based on cut-
free Gentzen calculi. This methodology does not seem to be adequate for the non-monotonic
calculi with the rules for Cp (the same problem was encountered for classical non-normal
modal logics in Orlandelli [140]). In future work we aim to study the possibility to find a syn-
tactic proof of interpolation for these logics by means of different kind of calculi. Furthermore,
it is known that both intuitionistic logic and the non-normal modal logics of the classical cube
enjoy the stronger property of uniform interpolation (for the systems of the classical cube this
was uniformly proved by Pattinson [145] and for monotonic logics also by Santocanale and
Venema [154], while the first proof of uniform interpolation for IPL was given by Pitts [148]
on the basis of a G4-style calculus). Therefore, it is natural to ask whether this property is
satisfied also by our systems. For some intuitionistic normal modal logics, uniform interpola-
tion has been recently proved by Iemhoff [95] on the basis of G4-style calculi. In Section 7.6
we have presented G4-style calculi for all systems TE*. In future work we aim to study the

possibility to extend Iemhoff’s proof so to cover also our systems.

A further direction of research can consist in studying additional extensions of our family
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of intuitionistic non-normal modal logics. We conclude this chapter with some remarks in

this direction.

Non-monotonic systems with Cz and negative interactions ¢ and b. We have seen
in Section 7.3 that the combination of rule C5 with neg,C — i.e., the generalisation to n
principal formulas of rule neg, — provides a cut-free calculus, and that the admissibility of
cut is preserved by the addition of rules N, and Ng. By contrast, the addition of a proper
generalisation of rule neg, is problematic. As remarked in Section 7.3, a natural rule would

be the following

Ay,...,An, B = “(AiN..NA) =B |
[ OA;,..,04,, OB= A ’

negbC

but at present it is an open problem whether this rule would give a cut-free calculus.
Alternatively, one could consider the rule

A, ..., A, B= -A1=B .. —-A,=B
I'OA,,...,04,,0B= A

negbC’

It can be shown that this rule gives cut-free calculi. However, since A4y V ... V =4, is not
intuitionistically equivalent to =(A; A... A Ay), it is not obvious to see how these calculi would
be related with the other systems of the lattice. The addition of this rule would be instead

natural in a non-normal modal extension of a suitable intermediate logic.

Combinations of monotonic and non-monotonic modalities. In all systems considered
in this chapter O and < are either both monotonic or both non-monotonic. However from
a combinatorial perspective, and possibly under certain interpretation of the modalities, it
makes sense to consider the cases in which one modality is monotonic and the other one is
non-monotonic.

Let us consider first the cases in which one modality is characterised only by the congruence
rule and the other modality is characterised only by the monotonicity rule (i.e., there are no
axioms for N and C'). It can be shown that the only rule for interaction which gives a cut-free
calculus is

A B=
[,O0A4,OB=C

str

In calculi defined by adding the other two interactions (weak, + weak, and neg, + neg,) the
cut rule is not admissible and it is possible to find counterexamples to cut elimination. For
instance, the counterexample presented in Example 7.3.2 still holds when < is non-monotonic.
Concerning extensions with rules for NV and C, we remark that weak, is derivable from N,
whence in principle there might be more combinations of rules enjoying cut admissibility. We
leave to future investigation the study of these combinations and the semantic properties of

the resulting systems.
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- TECN
O-IEN

Figure 7.13: Extended lattice of <-logics.

Systems containing C¢. In this chapter we have restricted the analysis to systems not
containing axiom C¢. This axiom is of particular significance in the intuitionistic context since
it can be seen as a cut-off point between the constructive and the intuitionistic tradition. In
future work we aim to extend our framework to cover also such systems, here we limit ourselves
to some preliminary remarks.

Let us extend the O-family of monomodal logics to the systems containing Co: <O-logics
are now defined by adding to IPL the congruence rule RE¢ and any combination of axioms
Mes, No, and Co. We obtain the picture in Figure 7.13, which contains 8 non equivalent
systems. From the point of view of sequent calculi, O-logics containing Co could be covered
by modifying the rules E., and M, in the following way, where A is a finite multiset of formulas

of £; without further restrictions on its cardinality:

A= DBq,..,B, Bi=A .. B =A MC A= Bq,...B,
[,0A= OBy,...,OB,, A T, 04= OBy,...,.OB,, A

Co

If compared with the other rules considered in this work, rules for C¢ have the crucial
difference of containing multiple formulas on the right-hand side of sequents. In order to
admit these rules we have to take as base calculus instead of G3ip a multisuccedent calculus
for intuitionistic logic, as for instance the propositional fragment of m-G3i in Troelstra and
Schwichtenberg [164]. The sequent calculi for O-systems containing C, would then be defined

by extending the basic multisuccedent calculus for IPL with modal rules as follows:

G3.0-IEC = {C,} G3.0-IECN = {C,, Ny}
G3.0-IMC = {MC,} G3.0-IMCN = {MC,, Ny}

Similarly to the calculi in Sections 7.2 and 7.3, one can show that the calculi defined in
this way enjoy cut elimination. This result can be trivially extended to logics with O and <&
but without interactions (after rewriting the rules for O in their multi-succedent versions).
We leave to future work the investigation of interactions between the modalities which give

cut-free calculi in presence of Co.
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Chapter 8

Intuitionistic neighbourhood

semantics

In this chapter, we present a semantic framework for intuitionistic non-normal modal log-
ics. This framework is defined in terms of neighbourhood models. On its basis, we provide
a modular characterisation of all systems IE* defined in the previous chapter, as well as
of further intuitionistic non-normal modal logics such as CK and CCDL (cf. Section 2.6).
Then, by applying the filtration technique we show that all these systems enjoy the finite
model property. Moreover, basing on the semantics, we present an embedding of intuitionis-
tic non-normal modal logics into classical non-normal multimodal logics. Finally, we present
a prefixed tableaux calculus for our intuitionistic monotonic logics that allows one to ex-
tract countermodels of non-valid formulas in the neighbourhood semantics introduced in this

chapter.

8.1 Coupled intuitionistic neighbourhood models

In this section, we present neighbourhood models for all the systems IE* defined in Chapter 7.
These models can be regarded as intuitionistic counterparts of the standard neighbourhood
models for classical non-normal modal logics (cf. Section 2.3). Since we want to deal with
logics containing both O and <, we consider neighbourhood models endowed with two distinct
neighbourhood functions Ng and No. We call these models Coupled Intuitionistic Neighbour-
hood Models (abbreviated as CINMs in the following). The two neighbourhood functions can
be related by natural conditions that correspond to the different forms of interaction between
the two modal operators. We also consider further closure conditions of neighbourhoods, that
are analogous to the ones characterising the neighbourhood function in classical models. Fur-
thermore, as in standard intuitionistic models, CINMs also contain a partial order on worlds

which is used to deal with the intuitionistic implication. CINMs are defined as follows.

221



CHAPTER 8. INTUITIONISTIC NEIGHBOURHOOD SEMANTICS

Definition 8.1.1 (Intuitionistic neighbourhood models for bimodal logics). A Coupled In-
tuitionistic Neighbourhood Model (CINM) is a tuple M = (W, <, Ng,No, V), where W is a
non-empty set, < is a preorder over W, V is a valuation function W — P(Atm) satisfying

the following hereditary condition:
if w < v, then V(w) C V(v);
and Np, N are two neighbourhood functions W — P(P(W)) such that:
if w < v, then No(w) € No(v) and No(w) 2 No(v). (hp)

Functions Ng and N are supplemented, closed under intersection, or contain the unit, if they
satisfy the following conditions, where N, € {Na, No }:

If @ € No(w) and o C 3, then 8 € No(w). (Supplementation)
If , 8 € No(w), then an g € No(w). (Closure under intersection)
W e No(w). (Containing the unit)

Furthermore, let us define
—a={weW|forall v>=w,v¢a}.

Then, we say that M is weaklnt, or neglnty, or neglnt,, or strint, if Vg and N are related by

the corresponding condition below:

For all w € W, Ng(w) C No(w).

If —a € No(w), then W\ a € No(w).

If « € No(w), then W\ —a € No(w).

If « € Ng(w) and o C S, then 5 € No(w).

Weak interaction (weakint))
Negation closure interaction-a (neglint,))

Negation closure interaction-b (neginty))

o~ o~~~

Strong interaction (strint))

Finally, the forcing relation M, w I+ A associated to CINMs is as follows, where [B] = {v €
W | M, vl B}:

M,w k- p iff peV(w);

Mywlf L;

M,wl-T;

M,wlFBANC iff M,wlFAand M,w - B;

M,wlFBvC if M,wlFAor M,wl B;

M,wlFB>C iff forall v>w, M,vIF B implies M, v IF C;
M,w OB iff [B] € No(w);

M,wlF OB iff W\ [B] ¢ No(w).
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The notion of satisfiability, validity, and semantic consequence are defined in the usual
way (see Definition 2.3.2). As usual, we omit to specify the model M, and just write w I+ A,
when the considered model is made clear by the context.

In the above definition, we are considering for D-formulas their standard satisfaction
clause in intuitionistic Kripke models, whereas for O- and <-formulas we are considering their
satisfaction clauses in classical standard neighbourhood models (cf. Definition 2.3.1), although
as a difference with standard models, O- and <-formulas are evaluated on the basis of distinct
neighbourhood functions. By means of the condition hp which connects the neighbourhood
functions Ng and N to the order <, we ensure that CINMs preserve the hereditary property

of intuitionistic Kripke models:

Proposition 8.1.1 (Hereditary property). Let M = (W, <, No,No, V) be a CINM. Then
for every A € L£; and w,v € W, if wlF A and w < v, then v IF A.

Proof. By induction on A. For A = 1, T is immediate. For the other cases we have:
(A=p) If wlkp, then p € V(w), then since V(w) C V(v), p € V(v), thus v I p.

(A=BAC)Ifwlr BAC, then w Ik B and w IF C, thus by i.h., v IF B and v IF C, therefore
viF BAC.

(A=BVvC)lfwlk BV, then wlF B or w Ik C, thus by i.h., v IF B or v IF C, therefore
viF BV C.

(A=BD>C)Ifwl- B D C, then for all z > w, z IF B implies z IF C, thus for all z > v,
z IF B implies z IF C, therefore v IF B D C.

(A=0B) If w Ik OB, then [B] € Ng(w), then by hp, [B] € No(v), therefore v IF OB.

(A =9OB) If wlk OB, then W\ [B] ¢ No(w), then by hp, W\ [B] ¢ No(v), therefore
vlFOB. O

By simplifying Definition 8.1.1, we can also define intuitionistic neighbourhood models
for monomodal O- and <-logics, henceforth called O-intuitionistic neighbourhood model and

O-intuitionistic neighbourhood model, and abbreviated respectively as O-INMs and <$-INMs.

Definition 8.1.2 (Intuitionistic neighbourhood models for monomodal logics). Let M =
(W, <, No,No, V) be a coupled intuitionistic neighbourhood model. Then its reduct (W, <
,No,V) is a O-intuitionistic neighbourhood model, whereas its reduct (W, =<, No,V) is a

O-intuitionistic neighbourhood model.

Essentially, models for monomodal O- and <-logics are defined by removing from Defini-
tion 8.1.1 the neighbourhood function and the forcing condition for the lacking modality. For
every intuitionistic mono- or bimodal logic, we associate a class of intuitionistic neighbourhood

models as follows.
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Mg | Ng is supplemented weak, + weaky | weaklnt
No | No contains the unit negq negint,
Co | No is closed under N negp neglnty,
M | No is supplemented str strint
No | No contains the unit

Table 8.1: Semantic conditions associated to intuitionistic modal axioms.

Definition 8.1.3. Let L be any intuitionistic non-normal bi- or monomodal logic. Then, a
model for L is any CINM (respectively O- or O-INM) where Ng and N (respectively Mg or
No) satisfy the conditions associated to every axiom of L according to Table 8.1. For every
logic L, we denote with Cr, the class of CINMs (respectively O- or &-INMs) for L.

It is easy to see that for monotonic CINMs — that is, when both N and N are supple-
mented — the two conditions weaklInt and strint are equivalent. For the sake of simplicity we
therefore consider weakInt as the semantic condition corresponding to rule str in monotonic
logics.

We can compare our models with other models already studied in the literature. For
monomodal O-logics, our models essentially coincide with Goldblatt’s neighbourhood spaces [73],
although in that work the property of containing the unit is not considered. As a difference,
in Goldblatt’s spaces the neighbourhoods are assumed to be closed with respect to the order,

that is, the following condition is assumed to hold:
If « € No(w), v € @ and v < u, then u € a.  (=Z-closure)

However, as already observed by Goldblatt, this property is irrelevant from the point of view of
the validity of formulas, in the sense that a formula is valid in O-INMs (that are supplemented,
closed under intersection, contain the unit) if and only if it is valid in the subclass of the
corresponding O-INMs that in addition satisfy the <-closure. Goldblatt’s spaces have been
considered in order to semantically characterise further intuitionistic monomodal logics: they
have been considered by Goldblatt |73] and Fairtlough and Mendler [50] to provide a semantic
characterisation of Propositional Lax Logic, an intuitionistic monomodal logic motivated by
hardware verification which can be seen as non-normal as it fails to validate the axiom Co
(cf. Section 2.5). Furthermore, they have been reformulated and extended to an intuitionistic
version of logic ET by Witczak [172].

Concerning the use of distinct neighbourhood functions taking care of the different modal
operators, in the context of classical modal logics an analogous solution is adopted e.g. in
Anglberger et al. [3] in order to separately characterise obligations and permissions. As we
have seen in Section 2.4, this solution is also adopted in the context of agency logics by
Governatori and Rotolo [78] and Troquard [165] in order to separately characterise realisation

of actions and capability.
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8.2 Soundness and completeness

In this section, we prove that the intuitionistic non-normal modal logics IE* are sound and
complete with respect to the corresponding CINMs. We present all results explicitly only for
bimodal logics, whereas for the simpler case of monomodal logics analogous results can be

obtained by simplifying the proofs given here. Soundness is proved as follows.

Theorem 8.2.1 (Soundness). Every intuitionistic non-normal modal logic IE* is sound with
respect to the corresponding CINMs: If ® Fyg+ A, then ® |=¢, .. A.

Proof. As usual, we have to show that every axiom or rule of IE* is valid in the corresponding
class of models. The proof is standard or propositional axioms and rules, and it is easy for

O- and <¢-axioms. We consider here the interaction axioms and rules.

(weak,) Let M be weaklnt, and assume z |- OT. Then [T] =W € Ng(w). Thus by weakint,
WA [L] =W € No(w), then z I & L. Therefore M = —=(OT A<SL).

(weaky) Let M be weaklInt, and assume z IF OL. Then [L] =0 € Ng(w). Thus by weakint,
WA [T] =0 € No(w), then = If OT. Therefore M = —(OLAOT).

(neg,) Let M be neglnt,, and assume z |- O-A. Then [-A] € No(w). We have [-A] =
{v | forallu > v,u If A} = {v | forallu > v,u ¢ [A]} = —[A]. Thus by neglint,,
WA [A] € No(w), then z [ GA. Therefore M = —(O-A A CA).

(negy) Let M be neglntp,, and assume z |- OA. Then [A] € Ng(w), thus by neglnty,, W\
—[A] € No(w). As before, —[A] = [-A]. Then W\ [-A4] € No(w), which implies z Iff O—A.
Therefore M |= =(0A A O-A).

(str) Let M be strint, and assume M | —~(AA B). Then [A]N[B] =0, i.e., [A] € W\ [B].
Now assume x |- OA. Then [A] € No(w), thus by strint, W\ [B] € No(w), which implies
z I ©B. Therefore M = =(0A A OB). O

We now move to the completeness of systems IE*. The completeness proofs are based on

the canonical model construction. We consider the following standard definition.

Definition 8.2.1 (Prime sets). Let L be any intuitionistic non-normal modal logic and £;

be the corresponding language. We call L-prime any set ® of formulas of £; which is:

e consistent: ® t/, L;

e closed under derivation: if ® g, A, then A € &;

e and satisfies the disjunction property: if (AV B) € ®, then A € ® or B € ®.
Moreover, for every A € L;, we denote with 1A the class of prime sets ® such that A € ®.

225



CHAPTER 8.

The standard properties of prime sets hold, in particular:

Lemma 8.2.2. (a) If ® I/, A D B, then there is a L-prime set ¥ such that #U{A} C ¥ and
B ¢ W. (b) For every A, B € L, TA C1B implies F, A D B.

Proof. The proof of claim (a) is standard: for the propositional fragment it can be found
e.g. in [19], and for modal extensions it does not require major modifications. We present
however a sketch of the proof. Let Cy, C,Co, ... be an enumeration of all formulas of £;. We

construct a chain Wy, ¥y, W, ... of sets of formulas of £; as follows:

Uy = U {A}
v, U{Cy} if ¥,, U{C,} t/L B;
\Ijn—l—l - .
v, otherwise.

Moreover, we define ¥ :=J,,~ Vy.

By construction we have <I>_U{A} C W. Moreover, by construction and inductive hypothesis
it is immediate to see that ¥, b/, B for every n. This implies ¥ I/, B, therefore B ¢ W.
We can show that U is a L-prime set: (Consistency) VU t/, L follows from VU t/, B. (Closure
under derivation) Assume W ty, D. Then ¥ U {D} t/f, B. Moreover, D = C; for some C; in
the enumeration. Since ¥; C ¥, W, U {D} /1, B, then D € ¥, by construction. Therefore
D € V. (Disjunction property) Assume by contradiction DV E € W and D ¢ ¥, E ¢ V.
Then D = C;, E = C; for some C;,C; in the enumeration. Assume i > j. Then D ¢ V;,
E ¢ V;, and by construction hypothesis, ¥; U{D} Fr, B and ¥; U {E} 1, B. This implies
U, U{DV E} 1, B, and since ¥; U{DV E} C ¥, ¥ b, B, which was shown not to be the
case.

(b) If t/1, A D B, then by (a) there is a L-prime set ¥ such that A € U and B ¢ ¥. Then
U 1A and ¥ ¢1B, therefore 1A Z1B. O]

As in the classical case — cf. Chellas [29] for the proof with the standard semantics, and
Section 4.2 for the bi-neighbourhood semantics — in order to prove completeness we need
to consider separately monotonic and non-monotonic systems. We first consider canonical
models for non-monotonic systems, then we define canonical models enjoying supplementation

for monotonic ones.

Definition 8.2.2 (Canonical models for non-monotonic systems). Let L be any system not
containing axioms Mp and M. The canonical model My, for L is defined as the tuple
WL, <L, N&, NE, VL), where:

e Wi, is the class of L-prime sets;
o for every @, ¥ € Wy, ® <, ¥ if and only if & C U;
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o NE(@)={1A|0A € o}
o NE(®) =P(WL)\ {WL\ 14| OA € o};
e Vi(®)={peL|pe }.

First of all, observe that the canonical model My, is a CINM: in particular, it follows from
the definition that ® <y, ¥ implies both N&(®) € ML (¥) and NF(®) D NE(¥). We prove

the following lemma.

Lemma 8.2.3. Let L be any non-monotonic system, and My, = (W, <, N&, NE, VL) be
the canonical model for L. Then, for every ® € Wy, and A € L; we have

®IFA if and only if A€ .

Moreover: (i) If L contains Ng, then AV contains the unit.
(ii) If L contains Cr, then N} is closed under intersection.
(iii) If L contains N, then A% contains the unit.

(iv) If L contains weak, and weaky, then My, is weaklnt.
(v) If L contains neg,, then My, is neglnt,.

(vi) If L contains negy, then My, is neglnty,.

(vii) If L contains str, then My, is strint.

Proof. By induction on A, we prove that ® I+ A if andonlyif A ®. If A=p, L, T, BA
C, BV C the proof is immediate. We consider the cases A= B > C,0B,<$B.

(A=BD>C)If®IF B D C, then for every ¥ € W such that & <y, ¥, ¥ | B implies ¥ |- C.
Then by definition of <y, and i.h., for every ¥ € W such that ® C ¥, B € ¥ implies C' € V.
Then by Lemma 8.2.2, & 1, B D C (otherwise there would be a L-prime set T € Wi, such
that ® C YT, B € T, and C ¢ T). Then by closure under derivation, B O C' € ®. For the
other direction, if B D C' € ®, then for all ¥ O &, B D C € V. By closure under derivation,
forall W O &, B € ¥ implies C € ¥. Then by definition of <y, and i.h., for all ® € Wi, such
that ® <, ¥, ¥ I B implies ¥ I C. Therefore ® I+ B O C.

(A = OB) For the converse implication, assume OB € ®. Then by definition 1B € N (®),
and by inductive hypothesis, 1B = [B] s, therefore @ I+ OB. For the direct implication,
assume ® |- OB. Then we have [B]r, € N&(®), and, by inductive hypothesis, [B] 1, =1B.
By definition, this means that there is C' € £; such that OC € ® and 1C =1B. Then, by
Lemma 8.2.2, -, C' D B and -, B D C. Thus by REqp, 1, OC D OB, and, by closure under
derivation, OB € .

(A = ©B) For the converse implication, assume OB € ®. Then by definition Wi\ 1B ¢
NZ(®), and by inductive hypothesis, T B = [B]um,, therefore ® |- OB. For the direct
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implication, assume ® |- ¢B. Then we have Wy, \ [B]ym, ¢ NE(®), and, by inductive
hypothesis, Wi\ 1B ¢ NX(®). This means that there is C € £; such that ©C € ® and
1C =1B. Thus, by, C D B and k1, B D C, therefore by REe, Fr, OC O OB. By closure
under derivation, we obtain that OB € ®.

Claims (i)—(vii) are proved as follows: (i) OT € ® for every ® € Wy,. Then by definition
Wi =1T € N5 (@).

(ii) Assume a, 8 € N,(®). Then there are A, B € L such that OA,0B € ®, « =1 A and
3 =1B. By closure under derivation, O(A A B) € ®, and, by definition, (A A B) € N&(®),
where 1(AA B) =tAN1B = aNnp.

(iii) =OL € ® for every ® € Wy, thus by consistency, OL ¢ ®. If W\ 1L ¢ NL(®),
then there is A € £; such that 1A =71 and ¢A € ®, that implies &L € ®. Therefore
Wo = WL\ L € NE(®).

(iv) Assume by contradiction that a € NF(®) and o ¢ NE(®). Then there are A, B € L
such that o =1A, a = Wi\ 1B, and OA, OB € ®, therefore TA = W\ 1B. By the properties
of prime sets, this implies that 1, 7(A A B) and Fy, AV B, and by the disjunction property,
Fr A or Fy, B. If we assume by, A, then Ff, A DC T and Fr, B DC L. Therefore by REQ
and REs, g, OA D OT and g, OB D <1, thus by closure under derivation, OT, O L € &.
But =(OT A<OL) € @, in contradiction with the consistency of prime sets. If we now assume
1, B, then g, B DC T and k1, A DC L. We obtain an analogous contradiction considering
—(OT ADOL).

(v) By contraposition, assume that Wi, \ a ¢ NXZ(®). Then there is A € L; such that
WL\ a =W\ 14 and OA € . Thus a =T A, and by neg,, O-A ¢ ®. Therefore
1+-A ¢ NE(®) — otherwise there would be OB € & such that $-A =1 B, which implies
O0-A € &. Since T-A = — 1A = —a, the claim holds.

(vi) Assume o € NE(®). Then there is A € £; such that « =t A and OA € ®. Thus, by
negy and consistency of ®, G—=A ¢ ®. Therefore W\ 1-A € NE(®) (otherwise there would
be B € L such that 1B =1-4 and ¢B € ®, which implies 0-A4 € ®). Since -4 = — T4
(1A = [-AJmy, = —[Almy, = — TA) and — 1A = —a, the claim holds.

(vii) Assume by contradiction that o € NE(®), o C 3, and 3 ¢ NE(®). Then there are
A, B € L such that o =14, 8 =W\ 1B and OA, OB € ®. Moreover, TA C Wi\ 1B, which
implies TAN 1B = (). Thus b, (A A B); and by str we have 1, 7(O0AA < B), in contradiction
with the consistency of ®. O

We now define canonical models and prove an analogous lemma, for the monotonic systems.
We shorten the proof by considering, instead of the axioms Mp and M, the syntactically
equivalent rules RMp and RM..
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Definition 8.2.3 (Canonical models for monotonic systems). Let L be any system containing
axioms Mg and Mo. The canonical model My for L is the tuple (Wi, <r, N, N, VL),
where Wy, <1, V1, are defined as in Definition 8.2.2, and:

NF (@) = {a C WY, | there is A € L; such that OA € ® and 1A C «}.
NZ (@) =PWL) \ {a C Wy | there is A € £; such that CA € ® and o C Wi\ 14}

Lemma 8.2.4. Let L be any monotonic system and M; = (Wy, <p, NF,NJ, VL) be the
canonical model for L. Then ® IF A if and only if A € ®. Moreover, claims (i)—(iii) of Lemma
8.2.3 still hold. Finally: (iv), if L contains str, then M is weakInt.

Proof. Observe that both Nd and NI are supplemented. The proof is by induction on A,

we only show the modal cases.

(A = OB) For the converse implication, assume that OB € ®. Then by definition 1B €
NZ(®), and by inductive hypothesis, + B = [B] M therefore ® |- OB. For the direct
implication, assume that ® |- OB. Then we have [[B]]MI € NF(®), and, by inductive
hypothesis, [B] ME = 1B. By definition, this means that there is C' € £; such that OC € &
and 17C' C1B, which then implies 1, C' D B. Thus, by RMp, i, OC D OB, and, by closure
under derivation, OB € ®.

(A = ©OB) For the converse implication, assume that &GB € ®. Then by definition Wi\ 1
B ¢ NI (®), and by inductive hypothesis, 1B = [B] M therefore ® I- ©B. For the direct
implication, assume @ |- &B. Then we have Wi, \ [Blm,, ¢ NI (®), and, by inductive
hypothesis, W\ 1B ¢ N (®). This means that there is C' € £; such that ¢C € ® and
WL\ B C W\ C, that is 1C C1B. Thus, i1, C' D B, therefore by RE¢, b, ¢C D OB. By

closure under derivation we then have OB € ®.

Claims (i)—(iii) are proved similarly to the claims (i)—(iii) in Lemma 8.2.3. For (iv): By
contradiction, assume that « € N3 (®) and o ¢ NJ(®). Then there are A,B € L such
that 14 C o, « C Wi\ 1B, and OA,OB € ®. Therefore 1A C Wi\ 1B, which implies
Fr (A A B). By str we then have -(OA A ©B) € ®, in contradiction with the consistency
of ®. O

Theorem 8.2.5 (Completeness). Every intuitionistic non-normal modal logic IE* is complete
with respect to the corresponding CINMs: If ® |=¢ . A, then ® Fyg« A.

Proof. Assume ® t/g= A. Then ® tAg T D A. Thus by Lemma 8.2.2, there is a IE*-
prime set U such that ® C ¥ and A ¢ W. By definition, ¥ is a world of the canonical
model Mg+ for IE* (respectively MFE* if IE* is monotonic). Moreover, by Lemma 8.2.3,
Mig=, VU Ik B for every B € ®, and Mg+, ¥ I A. Then, since Mg+ is a CINM for TE*, we
have ® [&¢ . A. O
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It can be easily verified that by removing NF (resp. NJ) or N& (resp. NF) from the
definition of My, (resp. Mf), we obtain analogous results for monomodal logics. Therefore

we have:

Theorem 8.2.6 (Completeness). Every intuitionistic non-normal monomodal O- or <-logic

is sound and complete with respect to the corresponding O- or O-INMs, respectively.

8.3 Finite model property

We have seen that all intuitionistic non-normal modal logics defined in Section 7.2 and 7.3
are sound and complete with respect to the corresponding models. In this section, we prove
that all logics enjoy the finite model property, meaning that if a formula is satisfiable in the
class of models for a given logic, then it is satisfiable in a finite model belonging to the same
class. Since these logics are recursively axiomatisable, the finite model property implies that
the logics are decidable (see e.g. Blackburn et al. [21], p. 339), thus providing a semantic proof
of decidability which is alternative to the syntactic one presented in Section 7.4.

Our proof of the finite model property is based on the filtration technique. Given a model,
this technique allows one to define a finite model which is equivalent to the initial one with
respect to a finite set of formulas. The proofs are given explicitly for bimodal logics, while
the simpler proofs for monomodal logics can be easily extracted. We consider the following

definitions.

Definition 8.3.1. Let M = (W, <, Ng,No, V) be a CINM and ® be a set of formulas of £;

closed under subformulas. We define the equivalence relation ~ on W as follows:
w~v iff forallAe ® wlkAiff vl A.

Moreover, for every w € W and o C W, we denote with w.. the set {v € W | v ~ w}, i.e., the
equivalence class containing w, and with o™ the set {w~ | w € a} (thus in particular [A]%,
is the set {w~ | w € [A]m}).

Definition 8.3.2 (Filtration). Let M = W, <X, Ng,No,V) be a CINM and ® be a set of
formulas of £; closed under subformulas. A filtration of M through ® (or ®-filtration) is any
CINM M* = W*, =* N, NG, V*) such that:

e W' ={w.|we W}

e w. =*uv. if and only if for all A € &, M, w IF A implies M, v I+ A;

o for every OA € @, [A]%, € Ni(w~) if and only if [AJap € No(w);

o for every OA € ®, W*\ [A]%, € N&(w-~) if and only if W\ [A]m € No(w);
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e for every p € &, p € V*(w.) if and only if p € V(w).

Observe that the above model M* is well-defined, in particular for every OA, OB, p € P,
w ~ v implies that [A]%, € Nj(w~) if and only if [A]}, € N5(v~), W*\ [B] 3 € N&(w~) if
and only if W*\ [B]%, € NS(v~), and p € V*(w.) if and only if p € V*(v~). For instance, if
[A]% € N&(w~), then [A]y € No(w), then w Ik OA, thus, since DA € ®, v I- A, therefore
[Alm € Na(v), hence [A]%, € Ni(v~). Moreover, it is easy to see that M* satisfies the
properties of CINMs.

Lemma 8.3.1 (Filtration lemma). Let M = W, <, Ng,No,V) be a CINM, ® be a set of
formulas of £; closed under subformulas, and M* be a ®-filtration of M. Then, for every

formula A € ®,
M* wo IF A if and only if M, w - A.

Proof. This is equivalent to prove that [A] ¢ = [A]%,. The proof is by induction on A. For
A=p, 1L, T,BAC, or BV (C, the proof is immediate. For the other cases we have:

(A = B D C) For Assume M,w If B D C. Then there is v > w such that M,v I+ B
and M,v ¥ C. By inductive hypothesis M* v, I+ B and M* v |f C. Moreover, by
definition of <* and the fact that M satisfies the hereditary property, w. <* v~. Therefore
M* w., f B D C. Now assume M*, w. |f B D C. Then there is v.. € W* such that
W~ v, M* v IF B and M* v If C. By inductive hypothesis M, v IF B and M, v IV C,
thus M, v | B O C. By definition of <* we then have M, w I} B D C.

(A=0B) M*,w. Ik OB iff [B]pm+ € N(w-) iff (Lh.) [B]y, € N(w~) iff [B]ym € Na(w)
iff M, w IFOB.

(A = OB) M*,w. |- OB iff W*\ [Blm- ¢ NE(w-) iff (ih) W*\ [B]%, ¢ N&(w.) iff
WA [Blm € No(w) iff M,w IF OB. 0

We show that the general notion of filtration allows us to prove the finite model property

for the logics which are not monotonic and do not contain Cp.

Lemma 8.3.2. Let M = W, X, N, No, V) be a CINM, ® be a set of formulas of £; closed
under subformulas, and M* be a ®-filtration of M. Then: (i) If Ng contains the unit and
OT € @, then N contains the unit. (ii) If Mo contains the unit and ¢L € ®, then NF
contains the unit. (iii) If M is weaklInt, then M* is weaklnt. (iv) If M is strint, then M* is
strint. (v) If M is neglnt, and @ is such that =A € ® for all A € ®, then M* is neglnt,.
(vi) If M is neglntp and @ is such that =A € & for all OA € ®, then M* is neglnty,.

Proof. (i, ii) The claims follow from Definition 8.3.2 and Lemma 8.3.1, for instance if W =
[Tlm € No(w), then, since OT € ®, we have [T]%, = [T]m= = W* € N (w-).
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(iii) Assume by contradiction that o € Ni(w~) and a ¢ Ng(w~). Then o = [A]}, for a
A € L; such that 0OA € ® and [AJsm € No(w). Moreover o« = W* \ [B]}, for a B € L
such that OB € ® and W \ [BJm ¢ No(w). Thus [A]%, = W*\ [B]%, which implies
[Alpm = WA [Blm (w € [A]am iff we € [A]R, iff we € W\ [B]y iff w € W\ [B] ). Then,
since M is weakInt, W\ [B]m € No(w), which gives a contradiction.

(iv) Assume by contradiction that o € Nj(w~), a C  and 8 ¢ NS(w~). Then o = [A]7y,
for a A € L; such that OA € ® and [AJpm € No(w). Moreover § = W* \ [B]}, for a
B € L such that OB € ® and W\ [B]am ¢ No(w). Thus [A]%, € W*\ [B]%, which implies
[AJm € WA [B]am. Then, since M is strint, W\ [B]sm € No(w), which gives a contradiction.

(v) Assume by contradiction that —a € Nf(w~) and W* \ a ¢ N(w~). Then there is
OA € ® such that —a = [A]}. and [A]xm € No(w). In addition there is OB € & such
that W*\ a = W*\ [B]» and W\ [B]m € No(w). As a consequence we have [A]}. =
—[Bl5y+ = [-B]3-- Having =B € ®, by the filtration lemma we obtain [A]x¢ = [-B]m.
Then [-B]spm = —[B]m € No(w). Finally, by negint, W\ [B]um € No(w), which gives a

contradiction.

(vi) Assume by contradiction that o € Mj(w~) and W* \ —a ¢ NZ(w~). Then there is
OA € ®s.t. a = [A]y- and [A]y € No(w). In addition thereis OB € ® s.t. W*\—a = W*\
[B]x and W\ [B]m ¢ No(w). As a consequence we have [B]yv. = —[A]% = [FA] -
Having —=A € ®, by the filtration lemma we obtain [B]y = [7A]am. Since M is neglnty,, we
have W\ —[A]m = W\ [~A]m = W\ [B]m € No(w), which gives a contradiction. O

In contrast, in order to prove the finite model property for models satisfying supplementa-
tion or closure under intersection we must consider a finer notion that, following Chellas [29],

we call finest filtration.

Definition 8.3.3 (Finest filtration, supplementation, intersection closure, quasi-filtering).
Let M = (W, =<,Na,No,V) be a CINM, and ® be a set of formulas of £; closed under
subformulas. We call finest ®-filtration of M any ®-filtration M* of M such that:

N (w~) = {[Alx( | DA € © and [A]m € No(w)};
NE(w~) = POV)NAV N [ATR | ©A € @ and W [A]m & No(w)}

Moreover, let M° = (W* <* NZ,NZ,V*) be a CINM where W*, <* and V* are as in M*.
We say that:

e M?° is the supplementation of M™* if:

a € N§(w~) iff there is f € Nj(w~) such that 8 C «, and
a e Ng(w.) iff for every § C W*, if a C , then 8 € N§(wn).
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o M?° is the intersection closure of M* if:

a € N§(w.) iff there are Sy, ..., B, € N&(w~) such that 5y N...N B, = a, and
a € N(w) iff ae Ni(w).

o M° is the quasi-filtering of M* if:

a € N§(w~) iff there are B, ..., 8, € Ng(w~) such that 81 N...N 3, C «, and
a € Ng(w.) iff for every § C W*, if a C 3, then 5 € Ni(w~).

It is easy to verify that the supplementation of a model is supplemented, its intersection
closure is closed under intersection, and its quasi-filtering is both supplemented and closed

under intersection.

Lemma 8.3.3. Let M = (W, <, Ng, No, V) and M° = W°, <°, N5, N&,V°) be two CINMs,
® be a set of formulas of £; closed under subformulas, and M™* be a ®-filtration of M. Then:

(i) If M is supplemented and weaklInt, and M° is the supplementation of M*, then M° is
weaklInt and is a ®-filtration of M.

(ii) If M is closed under intersection and weaklnt, and M° is the intersection closure of
M*, then M° is weaklnt and is a ®-filtration of M.

(iii) If M is supplemented, closed under intersection, and weaklnt, and M° is the quasi-
filtering of M*, then M° is weaklInt and is a ®-filtration of M.

(iv) If M is closed under intersection and strlnt, and M° is the intersection closure of M*,
then M° is strInt and is a ®-filtration of M.

(v) If M is closed under intersection and neglnt,, and M?° is the intersection closure of M*,
and @ is such that —=A € & for all OA € &, then M° is negint, and is a ®-filtration of
M.

Proof. The proofs of (i)—(iv) are very similar to each other. We show as an example the proof

of (iii), and then we prove (v).

(iii) First, we show by contradiction that M° is weaklnt. Assume « € NZ(w.) and «a ¢
NE(w~). Then there are o, ..., ap, € Ng(w~) s.t. a3 N...Nay, C «; and there is 8 ¢ N (w.)
s.t. a C . By definition, this means that there are OAy,...,0A4, € ® s.t. a; = [A1]},,
ey = [Ap]Rs and [Ai]a, o [An]m € No(w). Moreover, there is OB € @ st. 3 =
W\ [B] s and W\ [B]am € No(w). As a consequence, we also have [A1]%,N...N [A,]% C
W\ [B] %, Since M* is a ®-filtration of M, by the filtration lemma this implies [A;]r¢N...N
[An]Jm € WA [B]m. Then by intersection closure of Mg, [A1Jm N ... N[An]m € No(w), and
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by its supplementation, W\ [B]pm € No(w). Finally, since M is weakInt, W\ [B]m € No(w),
which gives a contradiction.

We now prove that M° is a ®-filtration of M. Let OA € ®. If [A]p € No(w), then
[A]% € Ni(w~), and also [A]}, € NS(w~). Now assume that [A]}, € N5(w~). Then there
are av, ..., € Nj(wo) s.t. g N...Nay C [A]%y. By definition, this means that there are
DAy, ...,04, € ®st. ar = [Ai]%y, - an = [An]y, and [Ai]u, -, [An]m € No(w). Then,
since M* is a ®-filtration of M, [A1JmN...N[An]m C [AJm. By intersection closure of Mg,
[Ailm N N [AR]m € No(w), then by supplementation, [A]apm € Na(w).

Now let A € . If W\ [A]m ¢ No(w), then W* \ [A]x, ¢ N(w~), and also W* \
[A]% ¢ NS(w~). Now assume W* \ [A]%, ¢ NS(w~). Then there is § ¢ N(w~) s.t.
W*\ [A]x € B. By definition, § = W* \ [B]}, for a OB € ® s.t. W\ [B]m ¢ No(w).
Since M* is a ®-filtration of M, we have W\ [AJp € W\ [B]m. Then by supplementation,
WA [A]m & No(w).

(v) Assume by contradiction that —a € NS(w~) and W* \ @ ¢ NZ(w~). Then there are
gy ey € NE(we) st ap N Nay, = —a; in addition W* \ @ ¢ N (w~). By definition
there are OAy,...,04,, 0B € ® s.t. oy = [A1]%y, -, an = [An]%y, and [A1]as -, [An]m €
No(w); moreover W* \ a@ = W* \ [B]%; and W\ [Blm ¢ No(w). Thus [A]% N ...N
[A.]% = =Bl = [-Blx- Since M* is a ®-filtration of M and =B € ®, by the filtration
lemma this implies [AiJpm N ... N [An]m = [7B]m = —[B]m. But by intersection closure
of Mo, [Ai]Jm N ... N [An]m € Na(w), then by neglnty, W\ [B]m € No(w), which gives a

contradiction. Similarly to (iii) we can also prove that M° is a ®-filtration of M. O

Theorem 8.3.4. If a formula A of £; is satisfiable in a CINM M = (W, <, No, No, V), then
A is satisfiable in a CINM M" = W', </ N5, NL, V'), where N and N} satisfy the same
properties of Ng and No, and W is finite.

Proof. The proof is standard, by taking ® = sbf(A)UW¥, where sbf(A) is the set of subformulas
of A, and ¥ depends on the properties of M. In particular, ¥ contains <L, L if N contains
the unit; it contains OT, T, L if Mg contains the unit; it contains =B for all OB € sbf(A) if
M is neglnt, (and not strint); and it contains =B for all OB € sbf(A) if M is neglnty (and
not strint). Moreover, depending on the properties of M we consider the right transformation
M’ of M. Observe that the set @ is always finite, which implies that any ®-filtration M’ of
M is a finite model. O]

As an immediate corollary we obtain the following result.

Theorem 8.3.5 (Finite model property). Every intuitionistic non-normal mono- or bimodal

logic enjoys the finite model property.
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8.4 Coupled intuitionistic neighbourhood models for CK and
CCDL

In this section, we show that the framework of CINMs is general enough to cover two additional
intuitionistic non-normal modal logics studied in the literature, namely CK [14] and CCDL,
the latter being the propositional fragment of Wijesekera’s first-order modal logic [170] (see
their axiomatisations in Section 2.6). In particular, we show that the two systems can be
captured in our framework by considering a very simple additional property. This result
is particularly significant for CK since it provides a semantics for it without the need of
inconsistent worlds. In the following, we first define CINMs for CK and CCDL, and prove
the soundness and completeness of both systems. Then, by the filtration technique we prove

that the two systems enjoy the finite model property.

Definition 8.4.1 (Coupled intuitionistic neighbourhood models for CK and CCDL). A
CINM for CK - or CK-model — is any CINM M = (W, =<, Ng,No,V) in which Ng is
supplemented, closed under intersection, and contains the unit; N is supplemented; and Ng

and Ny are related by the following condition:
If « € Ng(w) and B € No(w), then anN B € No(w). (Wint)

Moreover, a CINM for CCDL — or CCDL-model — is any CINM for CK that also satisfies
the condition weaklnt, i.e., for every w € W, No(w) C No(w).

Notice that, as a consequence of the above definition, the function N¢ in CCDL-models
contains the unit, whereas this is not necessarily the case in CK-models (more precisely,
for every CK-model M it holds that M is weaklnt if and only if No contains the unit).
We now prove that the logics CK and CCDL are sound and complete with respect to the

corresponding models.

Theorem 8.4.1 (Soundness). The logics CK and CCDL are sound with respect to CK-
and CCDL-models, respectively.

Proof. We just show that the axiom K¢ is valid. Let M be a CK- or CCDL-model, w
be a world of M, and assume w I+ O(A D B) and w If ©B. Then [A D B] € Np(w)
and W\ [B] € No(w). By Wint, [A D BN (W \ [B]) € No(w). Since [A D B] N (W \
[B]) € W\ [4]), by supplementation we have W \ [A] € No(w); then w If GA. Therefore
METOADB) D (CADOB). O

Completeness is proved as for systems IE* (cf. Section 8.2) by the canonical model con-

struction.
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Lemma 8.4.2. Let the canonical models Mcgk for CK, and M¢ccpr, for CCDL, be defined
as in Definition 8.2.3. Then M¢ck and MccpL are, respectively, a CK-model and a CCDL-

model.

Proof. We show that both Mck and Mcepr, satisfy the condition of Wint. Assume «a €
NF(X) and an B &€ NI (X). Then there are A, B € £ such that 14 C o, anN B C Wi\ 1B
and OA, OB € X. As a consequence, TAN B C Wi\ 1B, that by standard properties
of set inclusion implies 8 C Wi\ TA) U WL\ 1B) = Wi\ T(A A B). Moreover, since
(DANOB) D O(AA B) is derivable (from A D (B D AA B), by RMp and Ko), we have
O(ANAB) € X. Thus, by definition, 8 ¢ NZ(X). In addition, by Lemma 8.2.4 (iv), MccpL
is also weaklnt, as str is derivable in CCDL. O

On the basis of the above lemma, with a proof analogous to the one of Theorem 8.2.5 we

obtain the following result.

Theorem 8.4.3 (Completeness). Logics CK and CCDL are complete with respect to CK-
and CCDL-models, respectively.

We now prove that CK and CCDL enjoy the finite model property by applying the
filtration technique to CK- and CCDL-models. For CK, a proof of the finite model property
with respect to the original relational semantics (cf. Section 2.6) can be found in Mendler and
de Paiva [126].

Lemma 8.4.4. Let M and M* be CINMs, where M* is a finest ®-filtration of M for a set
® of formulas that is closed under subformulas and contains OT,< 1. We call Wint closure
of M* any CINM M° = (W* <* N§,Ng,V*) such that

a € N§(w~) iff  there are aq, ..., a, € Nj(w~) such that ag N...Nay, C
a€ N2(w.) iff for all By, ..., Bn,y CW*, ifanBiN..NB, Cv
and B, ..., Bn € N&(w~), then v € N (w~).

The following hold: (i) If M is a CK-model, then M° is a CK-model.
(ii) If M is a CCDL-model, then M° is a CCDL-model.
(iii) If M is a CK- or a CCDL-model, then M° is a ®-filtration of M.

Proof. (i) Clearly N3 is supplemented and closed under intersection, and it is immediate to
check that N3 is supplemented. By Lemma 8.3.2 we also have that /S contains the unit. Here
we show that M° satisfies Wint: assume a € N§(w~) and a N g ¢ NS(w~). By definition,
there are ay, ..., ap, € Ng(w~) s.t. a3 N...Nay, C a. Moreover, there are i, ..., B € N (w~)
and v ¢ N5 (wo) s.t. (anB)NBiN...NBx C . This implies that ayN...Na, NBNBLN...0Lk C 7.
Therefore 8 ¢ N (w..).
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(ii) In addition to the properties of (i), we prove here that M?° is also weaklInt. Assume
by contradiction that o € Ng(w~) and o ¢ NS(w~). Then there are aq, ..., 0, € N (wo)
st. a1 N..Na, € a Moreover, there are fi,...,0, € N(w) and v ¢ Ni(w~) s.t.
anNfyN..NpB, C~. This implies that there are OAq,...,04,,0B,...,0B;,OC € & s.t.
ar = [A]3es - on = [Anli 81 = [Biljyss Bk = [Brliys> and v = W*\ [C] -
In addition, [Ai]m, - [An]ams [Bimy - [Be]m € No(w) and W\ [CJm ¢ No(w). By
the filtration lemma, we obtain [A1]am N ... N [An]am N [Bi]m N oo N [Be)im € WA [Cm-
Finally, since Mg is supplemented and closed under intersection, and M is weaklInt, we have
WA [C]m € No(w), which leads to a contradiction.

(iii) For OA € @, the proof is exactly as in Lemma 8.3.3. Let CA € . If W\ [A]m ¢
No(w), then W* \ [A]x» ¢ N&(w~). Thus, since by Lemma 8.3.2 W* € Np(w~), we
have W* \ [A] ¢ ¢ NS(w~). Now assume that W* \ [A]%« ¢ NS(w~). Then there are
B,y Bn € Ni(w~) and v ¢ NE(w) s.t. W\ [A] - NB1N...0Bx C . Hence, by definition,
there exist OAy,...,04,,0B1,...,0B;,0C € ® s.t. 31 = [B1]3, - B = [Bi]y+, and
v = W*\ [C]5+- In addition, [Bi]a; ..., [Be]m € Na(w) and W\ [CTm ¢ No(w). By
contradiction, assume that W \ [AJm € No(w). Then, by intersection closure of Ny and
Wint, [Bi]mN...N[Be]m "W\ [A]m € No(w). Moreover, by the filtration lemma, we have
that [Bi]lm N N [Bim DWW [AJm € W [C]m. Thus, by supplementation of N, we
obtain that W\ [C]am € No(w), which leads to a contradiction. O

As before, we obtain the following theorem:

Theorem 8.4.5. CK and CCDL enjoy the finite model property.

8.5 Direct equivalence with pre-existing semantics for CK and
CCDL

From the results of the previous section, it follows that CK and CCDL are equally char-
acterised by our neighbourhood semantics and by their pre-existing semantics, namely Wi-
jesekera’s relational models [170] and Kojima’s neighbourhood models [102] for CCDL, and
Mendler and de Paiva’s relational models [126] for CK (see Definitions 2.6.2, 2.6.3, and 2.6.4
in Section 2.6). It is instructive, however, to prove the equivalence directly by mutual trans-
formations of models. For both CK and CCDL, the transformations from CINMs to the
models in the pre-existing semantics only hold for finite models. The reason is that we have
to consider a closure property involving the intersection of all neighbourhoods that is ensured
by the closure under (finitary) intersection of AVg only for finite models; in order to obtain
analogous transformations holding for arbitrary models we should consider the stronger prop-
erty of augmentation (| Ng(w) € Ng(w) in CINMs (cf. Chellas [29], p. 220). The equivalence
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between CINMs and the pre-existing models is then a consequence of the finite model prop-
erty of CK and CCDL with respect to their CINMs shown in the previous section. We begin
with system CCDL, considering both Kojima’s and Wijesekera’s models.

Semantic equivalence for CCDL

A proof of equivalence between Kojima’s and relational models is given in Kojima [102].
Here we prove directly the equivalence of Kojima’s and CINMs for CCDL. In particular,
we show that every Kojima model can be transformed into an equivalent CINM for CCDL,
and that every finite CINM for CCDL can be transformed into an equivalent Kojima model.
By combining these results with the transformations given by Kojima we also obtain direct
transformations between CINMs and relational models. Furthermore, considering also the
finite model property of CCDL with respect to the corresponding CINMs (cf. Theorem
8.4.5), this provides an alternative proof of equivalence of the three semantics.

In the proof of some of the next lemmas we shall make use of the following property, which
is satisfied by any finite model for CCDL and CK, and is an easy consequence of WInt and

the intersection closure of Ng.

Lemma 8.5.1. Every finite CINM for CCDL or for CK satisfies the following property:
For every a € No(w), there is 5 € No(w) such that § C a and 8 C (N No(w). (Wint")

First, given a Kojima model, we obtain an equivalent CINM for CCDL as follows.

Lemma 8.5.2. Let My = (W, <X, N, V) be a Kojima model for CCDL, and let M,, be the
model (W, <, Ng, No, V) where W, < and V are as in My, and:

No(w) ={a €W | UNi(w) € a};
No(w) = {a CW | there is B € N (w) s.t. B C a}.

Then M,, is a CINM for CCDL. Moreover, for every A € £; and w € W, M,,,w IF A if and
only if Mg, w Ik A.

Proof. Tt is immediate to verify that Mg and N are supplemented and contain the unit; that
Mg is closed under intersection; and that w < v implies Ng(w) € Np(v) and No(v) C No(w).
We show that M,, satisfies the other properties of CCDL-models.

(weaklInt) Assume a € Ng(w). Then |JNi(w) C a, and, since Ny (w) # 0, there is 8 € Ni(w)
such that 8 C a. Therefore a € No(w).

(WInt) Assume o € Ng(w) and 8 € No(w). Then [JNi(w) C a and there is v € Ny (w) such
that v C 8. Thus v C |JNk(w), which implies v C aN 3. Therefore a N B € No(w).
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By induction on A, we now prove that M,, and M, are pointwise equivalent. Since the
two models share the same order and evaluation of propositional variables, we only consider
the inductive cases A = 0B, $B.

(A = OB) My,w I OB iff [Blpm, € No(w) iff UNi(w) € [Bla, iff (ih) UNi(w) C
[B]m, iff for all a € Ny(w), a C [B]m, iff My, w Ik, OB.

(A =OB) Mp,w - OB ift W\ [B]m, ¢ No(w) iff for all a € Ny(w), a N [B]m, # 0 iff
(i.h.) for all @ € Ny(w), a N [B]m,, # 0 iff My, w Ik OB. O

For the opposite transformation, given a finite CINM for CCDL, we obtain an equivalent

Kojima model as follows.

Lemma 8.5.3. Let M,, = (W, <, Ng,No,V) be a finite CINM for CCDL, and let My, be
the model (W, <, N, V) where W, < and V are as in M,,, and:

Ni(w) = {a € No(w) | a € No(w)}-

Then My, is a Kojima model for CCDL. Moreover, for every A € £; and w € W, Mg, wlFp A
if and only if M,,,w IF A.

Proof. First, notice that My is a Kojima model: by intersection closure, we have that
N Na(w) € Na(w), hence by weaklnt, Nao(w) € No(w). Thus Nag(w) € Ng(w), which
implies Ny (w) # 0. Moreover, assume that w < v and a € Ng(v). It follows that a € No(v)
and o C (N Na(v). Since No(v) € No(w) and No(w) € Np(v), we have both a € No(w)
and a C (Ng(w), therefore a € N (w).

We prove by induction on A that, for every A € £; and w € W, My, w I, A if and only
if M,,,wlF A. As before, we only consider the inductive cases A = OB, B.

(A = 0OB) My,w Ik OB iff for all o € Ny(w), o C [B]um, iff (since (YNo(w) € Ni(w))
ANa(w) C [B]m, iff (i.h.) NNa(w) C [B]m, iff (by properties of Ng(w)) [B]m,, € No(w)
iff M, w IF OB.

(A = OB) Assume My, w,l-, OB. Then for every a € Ni(w), a N [Bm, # 0, and, by
inductive hypothesis, o N [B]am, # 0. Thus for every a € No(w) st. o € (No(w),
a N [BJm, # 0. Let 8 be any neighbourhood in No(w). By Wint', there is v C S s.t.
v € No(w) and v € (Nog(w). Then v N [B]m, # 0, which implies 8 N [B]um, # 0.
Therefore M,,,w |- ©B. Now assume that M,,w IF GB. Then for every a € No(w),
a N [Blm, # 0. Thus for every o € Ny (w), a N [B]am,, # 0, and, by i.h., a N [B]m, # 0.
Therefore My, w Ik, OB. O

Theorem 8.5.4 (Semantic equivalence). A formula A of £; is valid in all Kojima models for
CCDL if and only if it is valid in all CINMs for CCDL.
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Proof. If A is falsified in a Kojima model, then by Lemma 8.5.2, there is a CINM for CCDL
that falsifies A. Vice versa, if A is falsified in a CINM for CCDL, then by Theorem 8.4.5,
there is a finite CINM for CCDL that falsifies A, and consequently by Lemma 8.5.3, there is
a Kojima model that falsifies A. O

By combining the above transformations with those between Kojima models and relational
model for CCDL given in Kojima [102|, we can obtain the following direct transformations
between CINMs and relational models for CCDL:

Lemma 8.5.5. Let M, = (W, =<,R,V) be a relational model for CCDL, and let Z(w) =
{v | wRv}. We define the neighbourhood model M,, = (W, <X, Ng, No, V) by taking W, =<,
VY as in M,.; and the following neighbourhood functions:

No(w) ={a CW | for all v = w,Z(v) C a};
No(w) = {a CW | thereis v = w s.t. Z(v) C a}.

Then M, is a CINM for CCDL. Moreover, for every A € £; and every w € W, M,,w Ik A
if and only if M,., w I, A.

Lemma 8.5.6. Let M,, = (W, <, Ng, N5, V) be a finite CINM for CCDL. The relational
model M* = (W*, <* R* V*) is defined as follows:

o W' = {(w,a) |weW, a€No(w), and o C (N Np(w)};

o (w,a) 2" (v, ) if w=v;

o (w,a)R*(v,p) iff v e

o V'((w,a)) ={p|peV(w)} forall weW.

Then M* is a relational model for CCDL. Moreover, for all A € £; and w € W, the following

claims are equivalent:

1) Mp,wl-A.
2) For every (w,a) € W*, M* (w, a) Ik, A.
3) There is (w, &) € W* such that M*, (w, a) I, A.

Theorem 8.5.7 (Semantic equivalence). A formula A of £; is valid in all relational models
for CCDL if and only if it is valid in all CINMs for CCDL.

The above transformations between CINMs and relational models for CCDL are partic-
ular cases of the forthcoming transformations for models of CK, to see this we just need to
consider the set on inconsistent worlds in the relational models for CK to be empty. For this
reason we do not give the proofs of Lemmas 8.5.5 and 8.5.6, but refer to the ones of the next
Lemmas 8.5.8 and 8.5.9.

240



8.5. Direct equivalence with pre-existing semantics for CK and CCDL

Semantic equivalence for CK

We now directly prove the equivalence of relational and neighbourhood semantics for CK. As
for CCDL, we can prove that every relational model can be transformed into an equivalent
CINM for CK, and that every finite CINM for CK can be transformed into an equivalent
relational model. The equivalence of the two semantics is then a consequence of the finite
model property of CK with respect to its CINMs.

Given a relational model for CK, we can define an equivalent CINM as follows.

Lemma 8.5.8. Let M, = (W, X, R,V) be a relational model for CK. We denote with W+
the set {w € W | M,,w I}, L} of the consistent worlds of M,., and, for all « C W, we denote
with a™ the set a NW™T. We define the neighbourhood model M,, = (W™*, 2T Ng, No, V),
where <™ and V* are the restrictions of < and V to W¥, and Np, No are the following

neighbourhood functions:

No(w) = {at CW | for all v = w,Z(v) C a};
No(w) = {at CW | there is v = w s.t. Z(v) C at}.

Then, M,, is a CINM for CK. Moreover, for every A € £; and every w € W, M,,,w I- A if
and only if M, w -, A.

Proof. 1t is easy to verify that M, is a CINM for CK. In particular, for Wint, assume that
at € Ng(w) and BT € No(w). Then there is v = w s.t. Z(v) C f7; thus Z(v) C a. Then
Z(v) Canpt = (anp)’. Therefore (¢ NB)T =at N BT € No(w).

We now prove that for every w € W', M,,w I A if and only if M,,w IF. A. This is
equivalent to stating that [A],, = [[A]]+MT. As usual, we only consider the modal cases.

(A=0B) Let w e WH. My, w - OB iff [Blum, € No(w) iff (ih.) [B]}, € No(w) iff for
all v = w, Z(v) C [B]m, iff M,,w -, OB.

(A = ©B) Assume that M,.,w Ik, OB and w € W*. Then for every v = w, there is u € W s.t.
vRu and M, u Ik, B. Thus for every v = w, R(v) € W\ [B]m,, which in particular implies
that R(v) £ W\ [Blm,)t. Moreover, W\ [Blaq,)T = WH\[B]}, = (ih.) WH\ [B]m,.
Then W\ [B]m,, & No(w), therefore M,,, w I ©B. Now assume that M,,,w |- ©B. Then
WH N\ [B]m, ¢ No(w). This implies that for every v = w, R(v) € WT \ [B]um,; that is,
there is u € W s.t. vRu and w ¢ W \ [B]uq,,. Thus u ¢ W or u € [B]m,. If u g W,
then M,,u Ik, L, hence M,,u I, B. If u € [B]m,, by inductive hypothesis u € [[B]]X/,T,
thus M,., u I, B. Therefore M,, w I, OB. O

For the opposite direction, given a finite CINM for CK we can obtain an equivalent
relational model as follows. Notice that in the next definition we have to add a specific world
denoted (f,{f}) playing the role of a fallible world.
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Lemma 8.5.9. Let M,, = (W, <X, Ng,No, V) be a finite CINM for CK, and f ¢ W. The
relational model M* = (W*, <* R* V*) is defined as follows:
e W= {(w,a)|weW, No(w) #0, a € No(w), and a C (\No(w)}
U {(v,NNa() U{f}) | veW and No(v) = 0}
u {(f:{fHh

(w, ) =* (v, B) if and only if w < v or w,v = f;

(w, ) R*(v, B) if and only if v € «;

o for every w € W, V*((w,)) = {p [p € V(w)};
VI((f,AF}) = Atm;

o M (fASD) I L

Then M* is a relational model for CK. Moreover, for every A € £; and w € W, the following

claims are equivalent:

1) My, wl-A.
2) For every (w,a) € W*, M*, (w, a) IF, A.
3) There is (w, &) € W* such that M*, (w, a) I, A.

Proof. 1t is easy to check that M* is a relational model for CK, in particular that the
conditions on inconsistent worlds are satisfied. We prove by induction on A that 1), 2) and

3) are equivalent. As usual we only consider the inductive cases A = OB, ¢B.
e A=08.

— 1) implies 2). Assume M, w I+ OB. Then [B]sm, € No(w), that implies ((Na(w) C
[Blm, - Let (w,a) € W*, and (w, ) <* (v,3). Then w < v, so ((Na(v) € Na(w).

We distinguish two cases:

(a) f € B. Then (v, 3)R*(u,~) implies u € (\Na(v) or u = f.
If u= f, then (u,v) = (f,{f}), so M*, (u,7) I, B.
Ifu € N Na(v), then u € [B] A, By inductive hypothesis we have M*, (u,~) I+, B
for all v s.t. (u,y) € W*.

(b) f ¢ B. Then 8 C (N Na(v), thus 8 C [B]m, . Let (v, 3)R*(u,7). Then u € 3, so
M, u |k B. By inductive hypothesis we have M*, (u,~) Ik, B.

By (a) and (b) we have that for all (v,3) =* (w,«) and all (u,v) s.t. (v, 8)R*(u,~),
M*, (u,7) Ik, B. Therefore for all a s.t. (w,a) € W*, M*, (w,a) Ik, OB.
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— 2) implies 3). Immediate because for every w € W there is « such that (w,a) € W*.

— 3) implies 1). Assume M* (w,«) I, OB for an « s.t. (w,«) € W*. Then for every
(v,8) =* (w,) and everys (u,v) s.t. (v, 8)R*(u,vy), M*, (u,v) I, B. Thus, in par-
ticular, for every 6 s.t. (w,d) € W*, for every (u, ) s.t. (w,d)R*(u,7), M*, (u,v) Ik B.
Take any world z € (Y Na(w). There exists v s.t. (z,v) € W*. Then (w, Na(w))R*(z,7)
or (w,No(w) U{f})R*(z,7) (depending on whether No(w) # 0 or No(w) = 0; in
the first case ((Nao(w) € No(w)). Thus M*, (z,7) Ik, B; and by inductive hypoth-
esis, My, z IF B. So (\Na(w) C [B]m,, which implies [B]m, € No(w). Therefore
M, w - OB.

o A=CB.

— 1) implies 2). Assume M,,w |- B, and let (w,a) € W* and (w,a) =* (v,3). We

distinguish two cases:

(a) f€p. Then (v, B)R*(f,{f}), and M*,(f,{f}) IFr B.

(b) f ¢ B. Then w < v and 8 € No(v), thus since No(v) C No(w), B € No(w). By
My, w IF OB, we have that W\ [B]m,, ¢ No(w). Then by supplementation, for
every v € No(w), v N [B]m, # 0; thus in particular 8N [B]a, # 0. Then there
isu € fs.t. My,ulr B. By inductive hypothesis, for every § s.t. (u,d) € W*,
M*, (u,0) Ik, B. Moreover, there is € s.t. (u,e) € W*. Thus (v, 5)R*(u, €) and
M* (u,€) Ik B.

By (a) and (b) we have that for every (v, 8) =* (w, a), there is (u, ) s.t. (v, B)R*(u,7)
and M*, (u,v) Ik, B. Therefore, for every a s.t. (w,a) € W*, M* (w,a) Ik, OB.

— 2) implies 3). Immediate because for every w € W there is « such that (w,a) € W*.

— 3) implies 1). Assume M*, (w,a) -, OB for a a s.t. (w,a) € W*. Then for every
(v, B) =* (w, a), there is (u,7) s.t. (v, B)R*(u,7) and M*, (u,v) Ik, B. Thus in partic-
ular, for every ¢ s.t. (w,d) € W*, there is (u, ) s.t. (w,d)R*(u,~y) and M*, (u,~) Ik B.

We distinguish two cases:

(a) f €4 fora (w,d) €W Then No(w) =10, so M,,w - <B.

(b) f ¢ 9 for every (w,d) € W*. Then by inductive hypothesis we have that for every
(w,d) € W*, there is (u,v) s.t. (w,0)R*(u,v) and M,,,u lF B. So u € 4. This
means that for every § € No(w) s.t. § € (N No(w), dN[B]m, # 0. Then by Wint/,
we have that for every € € No(w), € N [B]m,, # 0. Therefore M, w I+ OB.
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weak® BA—RIA negt OEA— BA negi HA—EOA
stre  D(AAB) > BA  K§ ODAAOB — O(AAB)

Figure 8.1: Connecting axioms of classical multimodal logics.

Theorem 8.5.10 (Semantic equivalence). A formula A of £; is valid in all relational models
for CK if and only if it is valid in all CINMs for CK.

Proof. Assume A is not valid in all relational models for CK. Then there are a relational model
M, and a world w such that M, w Iff, A. The world w is consistent (i.e., M,,w Iff, 1) as
inconsistent worlds satisfy all formulas. Then by Lemma 8.5.8, there is a CINM M,, for
CK such that M,,w I A. Now, assume A is not valid in all CINMs for CK. Then by
Theorem 8.4.5, there are a finite model M,, and a world w such that M,,, w [} A. Therefore by
Lemma 8.5.9, there are a relational model M* and a world (w, @) such that M*, (w, ) I, A.
Then A is not valid in all CINMs for CK. O

8.6 Embedding into classical non-normal multimodal logics

In this section, we present an embedding of our intuitionistic non-normal modal logics TE*, as
well as of CK and CCDL, into classical multimodal logics of the form (S4, cLg, cLg), where
S4 is the normal modal logics defined by extending K with the axioms 7" and 4, and cLg2 and
cL3 are two non-normal modal logics of the classical cube (cf. Section 2.2). The logics (S4,
cL2, cLg3) are defined on a propositional modal language L3 containing three modalities &,
@, Bl. Correspondingly, the formulas of L3 are defined as follows, where p; is any variable in
Atm:

Au=p; | L| T|ANA|AVA|A— A|BA|BA|BA.

As usual, we define -4 := A — 1. Moreover, the diamond-modalities can be defined by
duality with box, for instance, © A := = [F-A.

Definition 8.6.1. Let L be any logic among our intuitionistic non-normal modal logics IE*
and CK and CCDL. We denote by L the classical multimodal logic (Lj, Lg, Lg) which is
defined in language L3 by extending CPL (formulated in language £3) with the following

axioms for the modalities [, [, and [©:

e the modal axioms and rules of S4 for [El;
e the rule RE for Bl and [;
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e if L contains Mg, or Ng, or Cp, then L® contains the axiom M, or N, or C, for B,

respectively;
e if L contains M or Ng, then L® contains the axiom M or N for [, respectively;

e if L contains weak, and weaky, or neg,, or negy, or str, or K¢, then L® contains the

axiom weak®, or negg, or negy, or str¢, or K§, respectively (Figure 8.1).

We consider the following translation of formulas of £; into formulas of L3.

Definition 8.6.2. The translation {: £; — L3 is recursively defined as follows:

(

i) =15

(=T

(Ao B) = t(A) o {(B), for o € {A,V};
(A D B) =E(t(A) = 1(B));

1(B4) = BE1(A);

1(0A) =EO1(4)

For instance, we have

T(O(ADB)D (CADOB)) =
AEBE((A) — {(B)) » HEOH(4) » BOH(B))).

Our goal is to show that every intuitionistic non normal modal logic L can be simulated by the
corresponding classical non-normal multimodal logic L® by means of the above translation, in
the sense that a formula A of £; is derivable in L if and only if {(A) is derivable in L. One

direction can be proved syntactically as follows:

Theorem 8.6.1. Let L be an intuitionistic non-normal modal logic. Then for every formula

Aof L;, L'+ A implies L° F {(A).

Proof. We can show that the translations of all axioms and rules of Li are derivable in L€, i.e.,

if B is an axiom of L, then {(B) is derivable in L¢, and if By .. Bn is a rule of L, then
B B B

f(B1) J[(B)T (Bn) is derivable in L€. Illustrative derivations of some modal axioms and rules

of LL are displayed in Figure 8.2. O

For the other direction we proceed as follows. First, we define an evaluation of formulas
of L3 in CINMs, and show that L€ is sound with respect to the CINMs for L under this
evaluation. Then we show that in CINMs every formula A of £; is equivalent to its translation
T(A). This allows us to semantically prove that if a formula A is not derivable in L, then {(A)

is not derivable in L.
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IE:° F f(weak,)

IE;No¢ F (No)
L T (Nw) 1. BTA-RT -1 (theorerp of CPL)
(] 2. BTA®L— L (1, duality E, ©)
2. Ol 1 (1, CPL) .
3. @T =0T (weak®)
3. BOL—=06L (Tg) 4 BTAGL— 1 2,3, CPL
L BOL-1 (23 CPL) : (2,3, CPL)
5 DEOL L) (4 ANo) 5. BETABOL L (4, T, CPL)
' ’ 6. EEOTABOL— 1) (5, RNg)
TIE;° F {(str)
IE,“ - {(RED) 1. B(AANB— 1) (assumption)
1. E(A—B) (assumption) 2. ANB— 1 (1, Tz, CPL)
2. E(B— A) (assumption) 3. A« AN-B (2, CPL)
3. A—>B (1, Ty) 4. BA—E(AAN-B) (3, REg)
4. B—A (2, T) 5. B(AA-B)—>BE-B  (str)
5. OA— @B (3, 4, RER) 6. @A PI-B (4, 5, CPL)
6. EO0A—EOB (5, RMg) 7. BANOB — L (6, CPL)
7. E(@BA—E8B) (5 RNg) 8. EEHAAEOB > L (7, T, CPL)
9. B(EEAAEOB— 1) (8, RNy
CK®/CCDLF  $(Ko)
1. (A-B)ANA—B (CPL)
2. (A= B)ANA) OB (1, RM &)
3. BA—-BANOA—O(A— B)ANA) (K$)
4. B(A— B)— (©A—<9B) (2, 3, CPL)
5. [E(A— B)— (A— B) (Tg)
6. OBEA— B)—OA— B) (5, RMg)
7. BEA-—-B)— (9A— ©B) (4, 6, CPL)
8. EOEA— B)— (B¢A— E9OB) (7, RMg, Kg, CPL)
9. BEDEHA— B) -»EHEOA—EOB) (8, RMp)
10. EEEA — B) » BEEE(A — B) (4g)
11. BEEA - B) » HE®A - BOB) (9, 10, CPL)
12. HEBEHA - B) - EE®A—-EOB)) (11, RNg)

Figure 8.2: Derivations in classical multimodal logics.

Definition 8.6.3. Let M = (W, <, Ng,No,V) be a CINM, w be a world of M, and A be
a formula of L£3. The forcing relation w Ik, A is defined as w kg A in Definition 2.3.1 for
A=1 T, ANB,AV B,A — B, whereas for A = p;,EB,B B, B it is defined as follows:

w ke p; iff peV(w);
wik, BB iff
wl-. BB iff

wlF, BB iff

for every v = w, v Ik, B;
[B] € No(w);
[[B]] ENQ(UJ).

Lemma 8.6.2. Let L be an intuitionistic non-normal modal logic. Then L€ is sound with

respect to CINMs for L under the forcing relation I-..
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Proof. Assume M is a CINM for L. As usual, we have to show that all axioms and rules
of L® are valid according to the considered evaluation of formulas. For the axioms and rules
of CPL, as well as for the characteristic axioms and rules of S4 and of classical non-normal
modal logics, the proof is standard. We consider the different axioms connecting the three

modalities.

e If M is weakInt, then M | BA — BA) If w -, @A, then [A] € No(w), thus by weaklnt,
[A] € No(w), therefore w Ik, B A.

e If M is negint,, then M E BEA — BA) If w I, BEA, then [BA] € No(w), where
[BA] = {v | forallu = v,u Ik, A} = {v | forallu = v,u ¢ [-A]} = —[-A]. Then by
negint,, W\ [-A4] = [A] € No(w). Therefore w I-. B A.

e If M is neglnty, then M EBA — BIO A) If w -, B A, then [A] € Ng(w). Thus by neglnty,
W\ —[A] € No(w). We have —[A] = {v | for all u = v,u ¢ [A]} = {v | for all u = v,u Ik,
-A} = [E-A]. Thus W\ —[4] = [-E-A4] = [© A]. Therefore w I, I A.

o If M is strint, then M EB(AAB) — BJA) If w -, B(AA B), then [AA B] € No(w). Since
[A A B] C [A], by strint, [A] € No(w), therefore w I, B A.

o If M is Wint, then M | TAA OB — (A A B)) Assume w I-, DA and w If (A A B).
Then [A] € Na(w) and W\ [A A B] € No(w). Then by Wint, [AJn W\ [AA B)] =
[A]n W\ [B]) € No(w). Thus by supplementation of No(w), W\ [B] € No(w), therefore
w Ife OB, 0

Lemma 8.6.3. Let M = W, <, Ng,Ns,V) be a CINM. Then for every w € W and every
Ae L;, wlF Aif and only if w I-. T(A).

Proof. By induction on A. For A = p, 1, T,BAC, BV C the proof is immediate. For the

other cases it is as follows.

(A=BOC)lfwlF-B> Ciffforallv>=w,vlf Borwvl- Ciff (i.h.) for all v = w, v Iffe 1(B)
or vl $(C) iff for all v = w, v Ik 1(B) = 1(C) iff w I E(1(B) — 1(C)).

(A=0B) wlk OB iff [B] € Nao(w) iff (i.h.) [1(B)]e € No(w) iff for all v > w, [1(B)]. €
No(v) iff for all v = w, v Ik, B1(B) iff w Ik, BBT(B).

(A=9B) wlF OB iff W\ [B] ¢ No(w) iff (.h.) W\ [1(B)]e ¢ No(w) iff for all v = w,
WA [1(B)]e ¢ No(v) iff for all v = w, v Ik, ©1(B) iff w -, BO1(B). O

Theorem 8.6.4. Let L be an intuitionistic non-normal modal logic. Then for every formula
A of L;, L¢ + {(A) implies L - A.

Proof. By contraposition, assume L I/ A. Then by the completeness of L (Theorem 8.2.5),
there are a CINM M for L and a world w of M such that w I A. Therefore by Lemma 8.6.3,
w I $(A), finally by Lemma 8.6.2, L¢ I/ 1(A). O
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T.IM := {propositional rules, hp;y, TO, Mg, Mo, str}
T.IMC* = T.IM*U {Co).
T.IMNo* = T.IM* U {Ng}.
T.IMNg* = T.IM* U {No}.

Table 8.2: Prefixed tableaux calculi T.IM*.

From Theorems 8.6.1 and 8.6.4 we then obtain our result:

Corollary 8.6.5 (Embedding). L + A if and only if L¢ - {(A).

8.7 Prefixed tableaux

Similarly to classical non-normal modal logics, we are interested in defining calculi for intu-
itionistic non-normal modal logics allowing for direct countermodel extraction for non-valid
formulas. We conclude this chapter by presenting some preliminary results about proof sys-
tems of this kind. In particular, we present some tableaux calculi for monotonic logics TM*:
we show that the calculi are sound and semantically complete with respect to the correspond-
ing classes of CINMs. In particular, we show that from every failed proof we can extract a
countermodel of the non-derivable formula.

We define proof systems for the logics IM* in the form of prefixed tableaux. For the
design of these calculi we adopt the solution already used for the hypersequent calculi H.E*
(cf. Chapter 6) of collecting O-formulas by means of blocks. Do to the absence of axiom Cl,

no analogous structure is needed for $-formulas.

Definition 8.7.1 (Prefixed formulas). A block is a structure (X), where ¥ is a finite set of

formulas of L£;. A prefized formula is a triple
o X ¢,

where o is a finite sequence of natural numbers, called prefiz, X € {T, F'}, and ¢ is a formula
of L; or a block.

Intuitively, the prefixes o, p, ... represent worlds of CINMs. Moreover, their sequential
structure incorporates the ordering among worlds: in general, a world represented by a prefix o
will be related through < to any world represented by o.0’. Formulas o T ¢ or o F ¢ intuitively
represent that ¢ is satisfied (respectively falsified) in world o. Furthermore, similarly to the
calculi LT.E* presented in Section 5.4, we use a special symbol f to denote branch closure.

We take as base calculus for IPL Fitting’s tabeaux system [58] (see the propositional rules
in Figure 8.3). For every logic IM*, the corresponding calculus is defined by extending it with

suitable modal rules from Figure 8.3, as summarised in Table 8.2. As usual, in the definition
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Propositional rules
cT A
o FA T 2Lt oL T
init ———— f f
f
T/\M cF AAB cT AV B F\/M
cT A FA TV cF A
oT B cFA|ocFB cTA|locTB o F B
FADB
cTA—> B Fo-22 222 (5n) oT A
hp ———— (o.n;
TDCTFA|0’TB onT A pa.nTA (o)
on ' B
Modal rules of basic monotonic calculus T.IM
O T (X T (Aq, ..., A, T (Ay,...., A,
T o T OA hpgy 7 <>(U-ni) o T (A, ..., Ap) oT (A4 )
o T (A) on T (%) Mo 2 E 0B (1) str 2L OB ()
. TLTAl ’ nTA1 '
ocT CA
oc F OB : :
Mow(n!) nT A, n1T Ay,
nkF B nF B nT B
Modal rules for extensions
o T (%) B T oA
Ng —=——— (o] LA (p)
¢, o ran o No — 7 a (")
o T (3,1II)

Figure 8.3: Rules of prefixed tableaux calculi T.IM"*.

of the rules (o!) means that the prefix o must be fresh in the application of the rule, i.e., it
does not occur in the branch to which the rule is applied. By contrast, (o) means that o
must be old, i.e., it already occurs in the branch to which the rule is applied. Derivations are

defined in the standard way:

Definition 8.7.2 (Derivation). A tableau for a prefixed formula 0 X ¢ in T.IM" is a tree
where the root is labelled by ¢ X ¢, end every succedent node is obtained by the application
of a rule of T.IM"* to formulas occurring in the same branch at smaller depths. Moreover,
we say that a branch of a tableau is closed if it contains f, otherwise it is open, and that

a tableau is closed if all its branches are closed. Finally, a derivation of A € L; is a closed
tableau for 1 F' A.

As an example, we show in Figure 8.4 the derivation in T.IM of O(AA B) D =<$—A (that

in IM is equivalent to the rule str).

Definition 8.7.3. Let B be a branch of a tableau in T.IM*, and B, be the set of prefixes
occurring in B. Then B is satisfiable in a CINM M = (W, <, Na, No, V) if B does not contain
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1. 1FOAAB)D(O(ADL)D L)
2. 11T O(AAB) (1, F D)
3. 1L1Fo(ADL)D L (1, F D)
4. 111T G(AD 1) (3, FD)
5 111F L (3, FD)
6. 1.1.1T O(AAB) (2, hp)
7. 1.1.1T (AAB) (6, TO)
8. 2T AAB (4,7, str)
9 2TAD1L (4,7, str)
10. 2T A (8, TA)
11. 2T B (8, TA)
/ \
12 2FA (9, TD) 122 27 1L (9, TD)

13. £ (10,12, init) 13, f (12, TL)

Figure 8.4: Derivation of O(A A B) D =0=A in T.IM.

f, and there is a function g : &, — W such that:

e if p and p.n are in B,, then o(p) < o(p.n);
o if p T A€ B, then M, o(p) IF A;
o if p ' A € B, then M, 0(p) I A4;

o if p T (3) € B, then M, o(p) IFOAX.

Moreover, we say that a tableau is satisfiable if a branch of the tableau is satisfiable.

Notice that on the basis of the above definition, no closed tableau is satisfiable. We now

show that the calculi T.IM™* are sound with respect to the corresponding CINMs.

Theorem 8.7.1 (Soundness). If A is derivable in T.IM*, then A is valid in every CINM for
IM*.

Proof. If A is derivable in T.IM*, then there is a closed tableau for 1 F' A in T.IM*. We
show that whenever a tableau in T.IM* is satisfiable in a CINM M for IM*, then the
tableau obtained by extending it with the application of any rule of T.IM* is satisfiable in
M as well. Since a closed tableau is not satisfiable, this implies that 1 F' A is not satisfiable
either, therefore A is valid. For the propositional rules the proof is standard, in particular the
soundness of hp is a consequence of the hereditary property of CINMs (Proposition 8.1.1).

Here we consider the modal rules.

(Mg) Assume B = B'U {0 T (Ay,...,A,),0 F OB} satisfiable in M = (W, <, Ng, No, V).
Then in particular there are ¢ and a world w € W such that o(0) = w, wIF O(A; A ... A Ay),
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and w If OB. Then [A1A...AA,] € No(w) and [B] ¢ Na(w). Since Ngo(w) is supplemented,
this means that [A; A ... A A,] € [B], then there is v € W such that v IF A;, ..., v I A,, and
v If B. Since the prefix n is fresh in the application of Mg, we can extend o to ¢’ by choosing
o(n)=v. Then BU{n T Ay,..,nT A,,n F B} is satisfiable in M under ¢'.

(Mo) Assume B =B U{oc T ¢CA,o F OB} satisfiable in M = W, <, Ng, N, V). Then in
particular there are ¢ and a world w € W such that go(0) = w, wIF CA, and w | ¢B. Then
WA [4] ¢ No(w) and W\ [B] € No(w). Since No(w) is supplemented, this means that
WA[B] € W\[A], i.e,, \[A] € \[B]. then there is v € W such that v IF A, and v I B. Since
the prefix n is fresh in the application of M, we can extend p to ¢ by choosing ¢'(n) = v.
Then BU{n T A,n F B} is satisfiable in M under ¢'.

(str) Assume B = B U{o T (Ay,...,An),0 T OB} satisfiable in M = (W, <X, Ng, N, V).
Then in particular there are ¢ and a world w € W such that o(0) = w, wIF O(A; A ... A Ay),
and w IF OB. Then [A; A ... A A,] € Nao(w) and W\ [B] ¢ No(w). Since M is weaklnt,
[A1 A ... A A] € No(w), then since No(w) is supplemented, [A; A ... A A,] € W\ [B]. It
follows that there is v € W such that v I+ Ay, ..., v Ik A,, and v IF B. Since the prefix

n is fresh in the application of str, we can extend o to ¢ by choosing ¢'(n) = v. Then
BU{nT Ay,...nT A,,n T B} is satisfiable in M under ¢'.

(Co) Assume B =B U{o T (X),0 T (II)} satisfiable in a model M = (W, <, Ng, N, V) for
IMC*. Then there are g and a world w € W such that p(c) = w, w - O A X, and w IF O AII,
then [AX],[AI] € Na(w). Since Ng(w) is closed under intersection, [AX] N [AII] =
IANEAAI] € Na(w). Then w IF O(A X A ATIL), therefore BU {o T (3,1I)} is satisfiable.

(Np) Assume B satisfiable under ¢ in a model M = (W, <, Ng, No,V) for IMNg*, and o
occurs in B. Since Ng(o(o)) contains the unit, o(o) IF OT, then BU{c T (T)} is satisfiable.

(No) Assume B = B'U{c T <A} satisfiable in a model M = (W, <, Ng, No, V) for IMN*.
Then there are o and w € W such that p(0) = w and w |- GA, that is W\ [4] ¢ No(w).
Since No(w) contains the unit, W\ [A] # W, i.e., [A] # 0. Then there is v € W such that
v I A. Since the prefix n is fresh in the application of N¢, we can extend p to ¢’ by choosing
o' (n) =wv. Then BU{n T A} is satisfiable in M under ¢’ O

We now prove that the calculi T.IM* are semantically complete with respect to the
corresponding CINMs. As usual, the proof consists in showing that every non-derivable
formula has a countermodel. In particular, we show that the countermodel can be directly

extracted from the failed proof.

Definition 8.7.4 (Countermodel). Let B be a saturated branch of a failed proof of A in
LT.E*. On the basis of B, we define the CINM M = (W, <, Ng,No, V) as follows:

e W = the set of prefixes occurring in B.
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e o =< p iff there is a (possibly empty) ¢’ such that p = 0.0,
e V(o)={p|oTpe B}

e For every formula A € £; end every block (A1, ..., Ay,),
At ={ceW|oT AecB}and (Ay,...,A,)" = A Nn...N A}

e No(o) ={a CW | thereis ¢ T (X) € B such that ¥ C «}.

e No(o) =PW)\ {a CW/|thereis o T CA € B such that AT Na = 0}.

Lemma 8.7.2. Let B be a saturated branch of a failed proof of A in T.IM*, and M be the
model defined on the basis of B as in Definition 8.7.4. Then M is a CINM for IM*. Moreover,
for every A € £; and every block (¥),

—if o T A € B, then o IF A;
—if o FF A € B, then o I A; and
—ifo T (X) € B, then o IFOAX.

Proof. We first prove that M is a CINM. By the definition of < it is immediate that < is

reflexive and transitive. Moreover, assume o < p. Then p = 0.0’ for some ¢’. We have:

e V(o) C V(p): If p € V(o), then by definition ¢ T p € B. Then by saturation of hp,
p T p € B, therefore p € V(p).

e Na(o) C Na(p): If a € No(o), then by definition there is ¢ T' () € B such that ¥t C a.
Then by saturation of hpyy, p T' (X) € B, therefore o € No(p).

o No(0) 2 No(p): If a ¢ No(o), then by definition there is 0 T G A € B such that ATNa = 0.
Then by saturation of hp, p T CA € B, therefore o ¢ No(p).

We now show that M satisfies the conditions of CINMs for IM*:

e M is weaklnt: Assume o € Ng(o). Then there is 0 T (X) € B such that ¥t C a. By
contradiction, assume o ¢ No (o). Then there is 0 T OB € B such that Bt Na = (. By
saturation of str, there is n such that n T" A € B for every A € ¥, and n T' B € B. Then by
definition, n € ¥* and n € BT. Thus ¥+ N BT # (), therefore « N BT # (), which gives a
contradiction. Therefore a € No (o).

e Vg and N are supplemented: Immediate by definition of Ng and No.

e If T.IM* contains rule No, then Ao contains the unit: By contradiction, assume W ¢ No.
Then there is 0 T' O A € B such that ATNW = (), that is AT = (). By saturation of N, there
is n such that n T' A € B. Then n € AT, thus A" # (), which gives a contradiction.
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e If T.IM"* contains rule Ng, then Ng contains the unit: By saturation of Ng, for every
o €W, o T (T)eB. Moreover, T™ C W, then by definition W € Ng(o).

o If T.IM"* contains rule Cn, then Ag is closed under intersection: Assume «, 3 € Ng(o).
Then there are 0 T (X),0 T (II) € B such that ©* C « and II" C 3. By saturation of Cg,
o T (%,1I) € B. Moreover, (X, 1)t = XTNIT: p e (X,I)" iff forevery Be X, 11, pT Be B
iff for every B€ X, p T B € B and for every BeIl, pT B e Biff pe Xt and p € IIT iff
p € YT NITT. Then (X,II)" C aN B, which implies a N B € No(o).

Finally, we prove the truth lemma by induction on A and (X):

(o T p € B) By definition, p € V(o), then o I p.

(o F p € B) By saturation of init, 0 T p ¢ B. Then p ¢ V(o), therefore o Iff p.

(o T L € B) Impossible by saturation of T_L.

(o F L € B) By definition, o I L.

(c T TeB;oFTeB) Analogous to casesc T' L € Band o F L € B.

(o T BAC € B) By saturation of TA, 0 T B € Band 0 T C € B. Then by i.h., o I B and
o IF C. Therefore o IF BAC.

(o0 F BAC € B) By saturation of FA, 0 FF B € Bor ¢ FF C € B. Then by i.h., o If B or
o I C. Therefore o I BAC.

(c TBVCe€B;oF BVC € B) Analogous to cases 0 T BAC € Band o F BAC € B.

(0T B> C € B) Let 0 X p. Then p = 0.0’. Thus by saturation of hp, p T B D C € B.
Moreover, by saturation of T D, p F B € Bor pT C € B. Then by i.h., plf Bor pl- C.
Therefore o I B D C.

(o0 F B D C € B) By saturation of F D, there is .n such that o.n T'B € Band o.n F C € B.
Then by definition ¢ =< o.n, and by i.h., o.n Il- B and o.n I C. Therefore o I B D C.

(o T OB € B) By saturation of TO, ¢ T (B) € B. Then by i.h., o IF OB.

(o T (X) € B) First, notice that X" C [AX]: if p € %, then p T' B € B for all B € %, thus
by i.h., p Ik B for all B € X, that is p - A X. Then by definition, [A X] € No(c), therefore
olFOAS.

(0 F OB € B) Assume a € Ng(o). Then there is T () € B such that ¥* C «. Then by
saturation of Mg, there is n such that n T'C € B for all C' € ¥, and n F B € B. Then
n € X1 and, by ih, nlf B. Thus ©* ¢ [B], which implies « # [B]. Therefore [B] ¢ Na(o),
which implies o Iff OB.
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(o0 T OB € B) As before, we have BT C [B]. Then BtNW)\ [B] = 0, thus W\ [B] ¢ No(o),
which gives o IF OB.

(¢ F ©B € B) By contradiction, assume W \ [B] ¢ No (o). Then there is ¢ T OC € B such
that CTNW\ [B] = 0. By saturation of Mg, there is n such that n T C € Bandn F B € B.
Then n € C*, and by i.h., nlf B, i.e., n ¢ [B], which implies C* N W\ [B] # 0. Therefore
W [B] € No(o), thus o I OB. O

Theorem 8.7.3 (Semantic completeness). For every formula A of £;, if A is valid in the class
of CINMs for IM*, then A is derivable in T.IM"*.

Proof. If A is not derivable in T.IM?*, then it has a failed proof. By Lemma 8.7.2, from this
we obtain a countermodel of A which is a CINM for IM*, therefore A is not valid in the class
of CINMs for IM*. O

From the completeness of systems IM* with respect to the corresponding CINMs we then

obtain the following result:

Theorem 8.7.4. For every formula A of £;, A is derivable in T.IM* if and only if it is
derivable in IM*.

Proof. A is derivable in T.IM™ iff (by Theorems 8.7.1 and 8.7.3) A is valid in the class of
CINMs for IM* iff (by Theorems 8.2.1 and 8.2.5) A is derivable in IM™. O

We conclude this section with an example of a failed proof in T.IMCNg and the extracted

countermodel.

Example 8.7.1 (Axiom K¢ is not derivable in T.IMCNpg). In Figure 8.5 we find a failed
proof of O(p D q) D (Op D ©g) in T.IMCNGg. Following Definition 8.7.4, from the saturated
branch we obtain the following CINM M = (W, <X, Ng, No, V):

W ={1,1.1,1.1.1,2,3);

— =< is the transitive and reflexive closure of 1 < 1.1 < 1.1.1;

V) = V(L) = V(LI = 0 V(2) = {p.g}: and V(3) = {p}:

— for every w € W, Np(w) = {a CW | {2} C a};

~No(1.1.1) = POV\{O, {1}, {1.1}, {1.1.1}, {1, 1.1}, {1, 1.1.1}, {1.1,1.1.1}, {1, 1.1, 1.1.1}};

— for every w # 1.1.1, No(w) = P(W).
We have M (= O(p D q) D (Op D <q), since:

~1.1.11F O(p D q), since [p D ¢q] = PW) \ {3} € No(1.1.1).

— 1.1.1 Ik Op, since W\ [p] = {1,1.1,1.1.1} ¢ No(1.1.1).

— L1111 Op, since W\ [¢] = {1,1.1,1.1.1,3} € No(1.1.1).
It is easy to verify that M satisfies the conditions of CINMs for T.IMCNg. Moreover, it
does not satisfy Wint, since {2} € Ng(1.1.1), {3} € No(1.1.1), but {2} N{3} =0 ¢ No(1.1.1).
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1. 1FO(p>q) D (CpD<Cg)
2. 1T (T) (1, Ng)
3. 1.1 TO(p>Dq) (1, FD)
4. 11 F Op><gq (1, FD)
5. 117 (T) (3, No)
6. 11T (pDgq) (3, TO)
7. 11T (T,pDgq) (5,6, Ca)
8. 111T Op (4, F )
9. 11.1F g (4, F )
10. 1117 (T) (8, No)
11. 1.1.1T0(pDgq) (3,8, hp)
12. 1.11T {(p>q) (11, TO)
13. LL1T (T,p>q) (10,12, Co)
14. 27T (8,13, str)
15. 2T pDg (8,13, str)
16. 2T p (8,13, str)
\
17. 2Tq (15, T D)
18. 2T (T) (17, Np)
17. 2Fp (15 TD) 19. 3Tp (89, Mo)
18. £ (16,17, init) 20. 3Fq (89, Mo)
21. 3T (T) (19, Ng)
saturated

Figure 8.5: Failed proof of axiom K¢ in T.IMCNp.

8.8 Discussion

In this chapter, we have presented a semantic framework for intuitionistic non-normal modal
logics defined in terms of Coupled Intuitionistic Neighbourhood Models. On its basis, we have
provided a modular semantic characterisation of all the systems introduced in Chapter 7, as
well as of pre-existing intuitionistic non-normal modal logics CK and CCDL. The models
contain an order relation and two neighbourhood functions handling the modalities O and
<& separately. The two functions can be supplemented, closed under intersection, or contain
the unit. Moreover, they can be related in different ways reflecting the possible interactions
between O and <. Through a filtration argument we have also proved that all logics enjoy the
finite model property. Our semantics turns out to be a versatile tool to analyse intuitionistic
non-normal modal logics, and can capture further well-known logics such as Constructive
K and the propositional fragment of Wijesekera’s Constructive Concurrent Dynamic Logic.
For these two systems we have proved completeness both directly by the canonical model
construction and indirectly by mutual transformations with models in their original semantics.
Furthermore, we have shown an embedding of intuitionistic non-normal modal logics into
classical logics with multiple non-normal modalities. Finally, we have presented tableaux

calculi for the monotonic logics IE* that allow one to directly extract countermodels of non-
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valid formulas from failed proofs. These calculi can be reformulated for monotonic monomodal
O- and <-logics simply by removing the rules for the lacking modality.

The fact that CK and CCDL fit in our framework is interesting for two reasons. On the
one hand, it shows the power of our neighbourhood semantics, that can accommodate in a
natural way many systems. On the other hand, it shows that CK and CCDL can be obtained
as extensions of weaker logics in a modular way. As a further advantage, differently from
relational models, coupled intuitionistic neighbourhood models provide a standard semantics
for CK which does not need to resort to inconsistent worlds.

In future work, we aim to study semantic characterisation with CINMs of further exten-
sions of our systems with additional standard modal axioms. As a preliminary remark, we
observe that restricting the analysis to systems without interaction between the modalities,
a semantic characterisation of axiom C¢ can be given by requiring that N is closed under
intersection. Completeness of systems of this form can be proved by slightly modifying Defi-
nition 8.2.2 of canonical models, that is defining NX(X) = {Wp\ 1A | ©A ¢ X}. This result
can be extended to logics with both O and & but without interactions between the modalities.
On the contrary, as a consequence of the modification of the definition of canonical models, for
the logics with interactions between O and < the completeness proof presented in Section 8.2
does not work anymore. Further investigation is required to establish whether in presence
of Co we can preserve the semantic conditions connecting Ng and N¢ that we considered
in this work, or whether we need to consider different connections instead. In addition, it
would be interesting to investigate whether our semantic framework is suitable to cover also
stronger systems studied in the literature such as for instance the intuitionistic epistemic logic
in Artemov and Protopopescu [8|.

Concerning the tableaux calculi, we recall that for classical non-normal modal logics pre-
fixed tableaux calculi are presented in Indrzejczak [98]. However, differently from Indrzejczak’s
calculi, in our calculi the sequential structure of prefixes takes care of the intuitionistic order
=, which is determined by the applications of the rule F D, and not of the generation of
worlds by means of the application of the modal rules. As a matter of fact, for the semantic
completeness of the calculi it is not necessary to keep track of the latter relation, neither
in the classical case, as it is also witnessed by the possibility to extract countermodels from
hypersequent calculi (cf. Chapter 6), nor in the intuitionistic one.

A lot of work has still to be done for a fully satisfactory proof-theoretic account of the
considered logics. First of all, similarly to other calculi for intuitionistic logic, the tableaux
calculi T.IM* are not strictly terminating (cf. Section 7.4). In future work we intend to define
proof search strategies that ensure termination and at the same time preserve the complete-
ness of the calculi. Furthermore, we aim to extend both the systems and the countermodel
extraction to all the intuitionistic non-normal modal logics defined in Chapter 7 as well as to
CK and CCDL.
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Conclusion

Summary of main results

In this thesis we have carried out a proof-theoretical investigation of non-normal modal log-
ics. We have considered non-normal modal logics based on both classical and intuitionistic
propositional logic. Concerning non-normal modal logics based on classical logic, we have
firstly defined a new semantics, the we called bi-neighbourhood semantics (Chapter 4), for all
the systems of the classical cube and their extensions with the axioms 7', 4, D, P, and the
rules RD;F. Moreover, we have shown that this semantics can also characterise Elgesem’s and
Troquard’s agency and ability logics. This semantics generalises the standard neighbourhood
semantics and can be used to represent under-determined situations. The bi-neighbourhood
semantics essentially decomposes the forcing condition of boxed formulas in the standard se-
mantics into two monotonic components. We have shown that from a syntactic point of view,
this observation corresponds to an embedding of classical non-normal modal logics into logics
with binary monotonic modalities.

Moreover, we have presented two kinds of calculi for these logics: labelled calculi (Chap-
ter 5) and hypersequent calculi (Chapter 6). The first calculi are defined by extending the
language of the logics with labels which are used to import semantic information into the cal-
culus. Modular extensions of the basic calculus are obtained by means of rules that directly
express properties of bi-neighbourhood models for the corresponding logics. The second kind
of calculi are defined by extending the structure of sequents: they employ hypersequents (i.e.,
multisets of sequents) and blocks, which are used to collect modal formulas. We have proved
that both labelled and hypersequent calculi enjoy admissibility of structural rules, and that
they are equivalent to the axiomatisations, the latter by means of a syntactic proof of cut
elimination. In addition, we have shown that both kinds of calculi allow for simple terminating
proof search strategies, and in case of failed proofs it is always possible to extract counter-

models of the non-valid /non-derivable formulas in the bi-neighbourhood semantics. All this
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provided an alternative proof of the finite model property of classical non-normal modal logics,
as well as a constructive proof of their decidability, since for every formula the proof search
procedures return either a derivation, if the formula is derivable/valid, or a countermodel,
otherwise. We have also presented Prolog implementations of both the proof search and the
countermodel extraction in the two calculi, these provide the first theorem provers that uni-
formly cover non-normal modal logics and compute both derivations and countermodels of
non-valid formulas. Furthermore, we have extended the hypersequent calculi to Elgesem’s
and Troquard’s agency and ability logics. In conclusion, both kinds of extension of the basic
framework of sequent calculi (i.e., extension of the language and extension of the structure of
sequents) turned out to be adequate to define proof systems for classical non-normal modal
logics satisfying our desiderata.

It is also worth highlighting some relevant differences between the two kinds of calculi.
First of all, while the hypersequent calculi essentially need to distinguish between monotonic
and non-monotonic systems, the labelled calculi allow for a fully modular treatment of the
whole family of the considered logics. The possibility to uniformly cover monotonic and
non-monotonic systems essentially depends on the fact that, by directly converting model
conditions into rules, the calculus preserves the modularity of the bi-neighbourhood semantics.
Moreover, within the labelled framework we have defined cut-free calculi for all the logics
containing axiom 4. To the best of our knowledge, these are the first cut-free calculi for logic
E4 and its extensions without axioms M or T. On the other hand, while both kinds of calculi
allow for terminating decision procedures, we have shown that the hypersequent calculi have
very good computational properties, a fact that is also witnessed by the better performance
of the prover HYPNO (which implements the hypersequent calculi) compared with that of
PRONOM (which implements the labelled calculi). In particular, hypersequent calculi allow
for a complexity optimal decision procedure for coNP-complete logics, i.e., all covered logics
not containing axiom C'. Moreover, the calculi provide a constructive proof of the polysize
model property for these logics, since for every non-derivable formula the procedure returns a
countermodel which is polynomial with respect to the size of the input formula.

Concerning non-normal modal logics with an intuitionistic basis, in Chapter 7 we have
defined a family of systems that can be interpreted as intuitionistic counterparts of the logics
of the classical cube. Every system contains some of the characteristic modal axioms and rules
of classical non-normal modal logics, plus some axioms connecting the two modalities O and
< which can be seen as “weak duality principles”. As we observed, assuming an intuitionistic
basis allows us to do finer distinctions between principles that are not distinguishable in
classical logic. As a consequence, the picture of systems that emerge from a certain set of
logic principles is richer in the intuitionistic case than in the classical one: while the classical
cube contains 8 logics, the intuitionistic lattice features 24. In addition, as we observed for

the logic IE3 (cf. Section 7.7), assuming an intuitionistic basis gives us also the possibility
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to define systems containing combinations of principles which are not jointly compatible in
classical logics.

For every intuitionistic system we have provided both a cut-free sequent calculus and an
equivalent axiomatisation. Moreover, we have proved that all systems are decidable and that
some of them enjoy Craig interpolation. In addition, we have also defined strictly terminating
“a la Dyckhoff” calculi for all our intuitionistic systems as well as for CK and Wijesekera’s
CCDL. These calculi allow for an alternative proof of decidability of the respective logics
without needing any loop checking mechanism.

We then moved to the investigation of the semantics of the intuitionistic systems: in Chap-
ter 8 we have defined a general semantic framework in terms of so-called coupled intuitionistic
neighbourhood models which modularly captures all the systems defined in Chapter 7 as well
as CK and CCDL. For the latter systems, we have also shown direct transformations be-
tween coupled intuitionistic neighbourhood models and models in their original semantics.
Moreover, we have proved that all these systems enjoy the finite model property, and that
they can be embedded into classical non-normal modal logics with multiple modalities. Fi-
nally, we have presented tableaux calculi for intuitionistic monotonic systems that allow one

to directly extract countermodels in their neighbourhood semantics from failed proofs.

Open problems and future work

We have discussed open problems and possible extensions of the presented results at the end
of each chapter, here we briefly recapitulate some of the main issues.

Concerning extensions of the presented results, first of all we can investigate the possibility
to further extend the bi-neighbourhood semantics as well as the labelled and the hypersequent
calculi to systems defined by additional standard modal axioms, such as for instance 5, B, and
Sahlqvist formulas. As remarked, this seems a non-trivial task especially when axioms with
nested modalities are concerned. For instance, in Section 4.5 we have proved the completeness
of the systems E and M extended with axiom 5, but we have not obtained yet analogous results
for systems containing 5 together with other modal axioms, such as D, P, etc. Moreover,
although we have defined cut-free labelled calculi for the systems with axiom 4 (Chapter 5),
we have not found yet a proof search procedure in these calculi that ensures termination
and at the same time preserves the completeness of the calculi. We aim to search for such
a terminating procedure in future work, thus ideally complementing the decidability result
established for these systems by Vardi [167].

We have shown that the proof systems defined in this thesis are also suitable to cover
specific logical systems studied in the literature, in particular Elgesem’s agency logic and
Troquard’s coalition logic. In future work we aim to explore the possibility to cover further

systems, such as for instance Pauly’s coalition logic [146]. Furthermore, we aim to extend the
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implementations of both the labelled and the hypersequent calculi to all the logics captured
by the proof systems, whence also Elgesem’s and Troquard’s logics. Moreover, we aim to
improve the performance of the provers, for instance by establishing finer restrictions on the
order of the rule applications, or by using more efficient data structures.

Furthermore, in Section 7.5 we have proved Craig’s interpolation for a subclass of intu-
itionistic non-normal modal logics by applying Maehara’s method based on cut-free Gentzen
calculi. Interestingly, this method does not seem to work for non-monotonic logics with ax-
iom C, neither in the classical, nor in the intuitionistic case (see also Orlandelli [140]). In
several papers, Kuznets has presented proof-theoretical proofs of interpolation for modal and
related logics based on different kinds of proof systems, both labelled and structured (see
e.g. [106]). It would be worth investigating whether our labelled or hypersequent calculi are
suitable to prove Craig’s interpolation for these logics, thus complementing the semantic proof
provided for the classical systems by Pattinson [145]. Moreover, we also aim to study whether
Temhofl’s [95] proof of uniform interpolation for intuitionistic modal logics based on strictly
terminating G4-style calculi can be extended to our intuitionistic systems as well as to CK
and CCDL, for which we have defined G4-style calculi in Section 7.6.

Finally, we have presented preliminary results about proof systems for intuitionistic non-
normal modal logics allowing for direct countermodel extraction of non-valid formulas. These
results must be understood as initial steps toward a more comprehensive investigation. In this
respect, we aim to explore the possibility to define proof systems for these logics analogous
to the labelled or hypersequent calculi for classical non-normal modal logics presented in this
work; to this purpose we also aim to define bi-neighbourhood models for the intuitionistic
systems. Ideally, similarly to the proof systems for classical non-normal modal logics, these
calculi should be also suitable for implementation. A theorem prover which computes deriva-
tions and countermodels in IK and some extensions has been recently described in Girlando
and Strakburger [70], but as far as we know no analogous tool exists for constructive systems.
Furthermore, it would be worth investigating further extensions of constructive modal logics.
In particular, differently from both IK and CK, we are not aware of any semantical or proof-
theoretical study of extensions of CCDL. Finally, it would be interesting to see whether our
intuitionistic logics, similarly to CK (cf. Bellin et al. [14]), can be given a type-theoretical
interpretation by a suitable extension of the typed lambda-calculus. All this will be object of

future investigation.
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