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Abstract

Spin foam models provide a Lorentz-covariant definition of the dynamics of loop quantum gravity.
They offer a background-independent and non-perturbative quantization of gravity, and in their semiclassical
limit, they are related to discretized General Relativity. However, the analytic complexity of the models
is such that key questions concerning their theoretical consistency and physical predictions are still
open. In this thesis, I introduce a systematic framework to perform numerical computations in this
domain, to go beyond the limitations of the analytical techniques. The thesis contains an introduction
to spin foam theories from a theoretical and a numerical standpoint, in particular to the EPRL model.
I then present four of the six papers I published during my Ph.D., where the numerical framework was
used to study critical open problems in the field. These include the numerical study of the semiclassical
limit of a 4-simplex, recovering its Regge action and confirming known analytical computations ; a
study of non-simplicial spin foams to offer an insight into the continuum limit of the theory ; a new
approach to investigate extended triangulations and their semiclassical limit. Applied to a particular
transition amplitude, the new approach allowed me to recover geometrical configurations compatible
with curved boundary data, and to argue against an important dispute in the literature referred to as
flatness problem. These results open a window for calculations in spin foam theories and they provide
a new path to address their still unresolved questions.

Résumé

Les modèles de mousse de spin proposent une définition covariante de Lorentz de la dynamique de
la gravité quantique en boucle. C’est une approche non-perturbative qui a deja obtenu un resultat
important, reproduire la Relativité Générale discrétisée dans une limite semi-classique. Cependant, la
complexité analytique des modèles est telle que des questions clés concernant leur cohérence théorique
et leurs prédictions physiques restent ouvertes. Dans cette thèse, j’introduis un cadre systématique pour
effectuer des calculs numériques dans ce domaine, afin de dépasser les limites des techniques analytiques.
La thèse contient une introduction aux théories de mousse de spin d’un point de vue théorique et
numérique, en particulier au modèle EPRL. Je présente ensuite quatre des six articles que j’ai publiés
au cours de mon doctorat, où le cadre numérique a été utilisé pour étudier des problèmes critiques
ouverts dans le domaine. Il s’agit notamment de l’étude numérique du modèle semi-classique limite
d’un 4-simplexe, en récupérant son action de Regge et en confirmant des calculs analytiques connus ;
une étude des mousses de spin non-simplexes pour offrir un aperçu de la limite du continuum de la
théorie ; une nouvelle approche pour étudier les triangulations étendues et leur limite semi-classique.
Appliquée à une amplitude de transition particulière, la nouvelle approche m’a permis de retrouver des
configurations géométriques compatibles avec des paramètres de bord courbes, et d’argumenter contre
un litige important dans la littérature appelé flatness-problem. Ces résultats ouvrent une fenêtre pour
les calculs dans les théories de mousse de spin et ils fournissent une nouvelle voie pour aborder leur
questions encore non résolues.



Acknowledgments

I want to thank all the people in the research group in Marseille, past, and present. I learned a lot
from everyone I met, and I hope I have also contributed to sharing some of my energy and passion. A
sincere thanks to Alejandro Perez and Carlo Rovelli for their guidance and countless discussions. I want
to say a big thank you to Simone Speziale. As a supervisor, he helped me a lot in gaining confidence
and independence in my daily work while being there when I needed him. Especially, I would like to
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Résumé

La gravité quantique

La notion de gravité quantique renvoie au développement d’une théorie quantique de la relativité générale
et à la découverte du monde caché du champ gravitationnel quantique. Depuis un siècle, les physiciens
on entrepris cette quête qui s’est avérée si complexe d’avoir pris des contours presque mythiques. Après
ces décennies de recherche, nous sommes encore loin d’une réponse. Dans ce cadre, les deux théories
les plus significatives - la théorie des cordes et celle de la gravité quantique à boucle - vieillissent sans
qu’il y ait une seule vérification expérimentale dans le meilleur des cas, ou une confirmation de leur
cohérence théorique dans le pire des cas. Des alternatives existent, et le domaine semble parsemé de
nombreuses approches, idées et modèles différents qui méritent d’être explorés, mais qui ne sont pas, à
ce stade, suffisamment convaincants pour orienter la recherche dans une direction ou l’autre.

Cependant, dans ce scénario insatisfaisant, les progrès se poursuivent. La gravité quantique est un
sujet fascinant et théoriquement fondamental qui mérite notre attention et qui continue de stimuler
l’imagination des chercheurs. Cela reste un défi qui, si couronné de succès, changerait le monde.
Certaines des meilleures introductions, et en particulier aux idées qui guident l’approche de la gravité
quantique en boucle, se trouvent dans les premiers chapitres de [1] et [2]. Leurs motivations et
explications m’ont guidé dans le choix de ce sujet de recherche, et les relire aujourd’hui me fait ressentir
la même excitation que j’ai eu quand j’ai commencé ce voyage.

Dans cette thèse, nous travaillerons dans le contexte de l’approche de mousse de spin à la dynamique
de la gravité quantique à boucle, ou gravité quantique à boucle covariante, avec l’objectif pratique
d’effectuer des calculs numériques dans le cadre de la théorie. La gravité quantique a souvent été
représentée, à juste titre, comme un problème éminemment conceptuel. En dépit de cette conception,
ce travail se veut plus concret. L’objectif était d’étudier un modèle particulier, et d’être capables
d’effectuer des calculs précis sur lesquels construire des interprétations physiques. Dans cette thèse,
nous résumons le résultat de nos explorations.

Mousse de spin pour la gravité quantique

La théorie de mousse de spin fournit une approche particulière à la dynamique de la gravité quantique
à boucle qui est à la fois indépendante du bruit de fond et covariante de Lorentz. Le plus réussi des
modèles est celui proposé par Engle, Pereira, Rovelli et Livine (EPRL) [3, 4, 5] et par Freidel et Krasnov
(-FK) [6]. Il est formulé comme une somme di triangulations ds simplexes, avec des paramètres de bord
fixes. Il fournit des amplitudes de transition pour les états de réseaux de spin de la gravité quantique
à boucle canonique limitée à des nœuds quatre valents. Une généralisation à des complexes et réseaux
de spin arbitraires a également été développée [7]. L’approche de mousse de spin a pour but d’être
équivalente à une somme sur des histoires de géométries quantiques et de réaliser une intégrale de
chemin de gravité quantique bien définie.

Dans ce cadre, les calculs sont particulièrement complexes, et de nombreuses caractéristiques des
mousses de spin demeurent inconnues. Deux des calculs analytiques les plus réussis sont les suivants.



D’une part, la présence de l’action discrète de Regge dans l’amplitude de mousse de spin d’un état semi-
classique [8, 9]. Ce résultat met en relation la limite semi-classique de la théorie avec le calcul de Regge,
une discrétisation de la relativité générale proposée initialement par Tullio Regge [10]. En 3-dimensions,
un modèle quantique pour la gravité discrétisée, le modèle de Ponzano-Regge, a été introduit dès les
années soixante [11], mais il a fallu des décennies pour obtenir un analogue en 4-dimensions. D’autre
part, la fonction gravitationnelle à n-points reproduit, à l’ordre principal, celle du calcul de Regge dans
la limite semi-classique [12, 13, 14, 15]. Ce résultat est d’une importance historique particulière puisqu’il
a révélé les lacunes du modèle Barrett-Crane et a conduit au développement du modèle EPRL-FK. Le
modèle BC ne peut pas mettre en ouvre correctement les contraintes de simplicité, responsables de la
réduction de la théorie topologique BF à la gravité. La réussite du modèle EPRL est sujette à discussion
dans la communauté : il s’agit d’une question ouverte qui sera partiellement abordée dans cette thèse.
Pour motiver cette thèse, permettez-nous d’évoquer d’emblée deux questions cruciales qui font l’objet de
discussions au sein de la communauté. Premièrement, dans le cas des triangulations étendues, la limite
semi-classique de la théorie n’est pas encore bien comprise. Demeure notamment ouverte la question
de savoir quelles géométries semi-classiques dominent les sommations sur les degrés de liberté globaux.
Différents calculs suggèrent que la somme des degrés de liberté globaux est dominée par des géométries
plates, à savoir des géométries avec un angle de déficit autour des faces globales multiples de 4π/γ,,
soit γ, le paramètre d’Immirzi. Cette observation est appelée flatness-problem, et a été mentionnée par
Freidel et Conrady [16], Bonzom [17], et Han [18]. De plus, Hellmann et Kamiński [19] ont proposé une
analyse différente, basée sur le calcul de l’ensemble du wavefront set de la fonction de partition de mousse
de spin et d’une interprétation géométrique de ses variables, et ils ont trouvé un problème similaire.
Une autre analyse en phase stationnaire du modèle EPRL euclidien a été réalisée par Oliveira dans
[20] en étudiant une triangulation particulière composée de trois 4-simplexes, appelée ∆3. Ils incluent
toutes les contraintes sur les paramètres de bord pour obtenir une amplitude non exponentiellement
supprimée. Cependant, cette affirmation initiale a récemment été remise en question par Kaminski et
Engle [21]. Un deuxième problème ouvert concerne la limite du continuum de la théorie qui n’est pas
bien comprise puisqu’il n’y a pas de hiérarchie claire tout en augmentant la complexité d’une amplitude
de transition. De plus, même si le modèle est exempt de divergences dans l’ultraviolet, il existe des
divergences potentielles dans l’infrarouge à grand volume. En principe, celles-ci peuvent nécessiter une
procédure de renormalisation et leur étude pourrait être importante pour la définition correcte de la
limite du continuum. Cela a été largement étudié et peut être réalisé de différentes manières : en affinant
le 2-complexe comme dans [22, 23, 24], ou via une résumation comme proposé dans [25, 26]. Dans [27],
a été proposé un algorithme permettant de déterminer systématiquement la divergence potentielle de
tous les diagrammes de mousse de spin dans le modèle EPRL.

Tous ces arguments attendent une réponse claire, et ils constituent des préoccupations quant à la
cohérence de la théorie. L’objectif de cette thèse est de répondre à certaines de ces questions.

Au cours de mon doctorat, nous avons travaillé sur un problème précis et technique : comment
calculer numériquement les amplitudes de transition des mousses de spin. Malheureusement, les calculs
analytiques dans ce cadre ne sont pas toujours disponibles, et ils s’accompagnent de nombreuses
approximations et hypothèses. Pour cette raison, nous avons décidé de nous tourner vers les méthodes
numériques. Lorsque nous avons commencé, si certaines méthodes numériques étaient disponibles –
particulièrement dans le modèle SO(4) EPRL [28] [29] - il manquait une approche systématique. Nous
avons décidé de concentrer nos efforts sur deux modèles différents. D’une part, la théorie tridimensionnelle
SU(2) BF utilisée comme modèle-jouet, et d’autre part, le modèle complet SL(2,C) EPRL. Mon travail
a conduit à la publication de six articles, dont trois co-rédigés avec mon superviseur. Dans cet aperçu,
je présenterai les recherches qu’ils contiennent et les liens qui les unissent. Dans les chapitres 2 et 3, je
présenterai, respectivement, une introduction théorique et numérique des outils et des techniques que
j’ai exploités. Je me concentrerai ensuite sur quatre de nos articles. Dans ces travaux et dans cette
thèse, je conserverai ce que nous appelons une approche opérationnelle. Je veux être capable de calculer
les quantités que nous définissons et de spéculer sur le contenu physique de la théorie seulement après
qu’un calcul ait été effectué et réalisé. Du moment que de nombreuses caractéristiques de la théorie ne



sont pas encore connues, je considère que cette approche puisse conduire à des résultats originaux et
éviter les interprétations trompeuses.

En collaboration avec un postdoctorant de mon laboratoire, nous avons introduit dans [30] la
bibliothèque sl2cfoam où nous avons fourni les outils pour évaluer numériquement l’amplitude de vertex
du mousse de spin SL(2,C) EPRL et SU(2) BF. Elle est basée sur la décomposition de l’amplitude
EPRL en termes de fonctions booster et des invariants SU(2) introduits dans [31], un outil fondamental
que nous allons brièvement passer en revue dans 3.1.3. Dans les chapitres suivants, nous fournissons une
introduction théorique et numérique, et nous passons en revue les méthodes communes utilisées tout au
long de nos travaux. Ensuite, nous présentons nos travaux [33, 35, 37, 38], qui peuvent être divisés en
deux parties conceptuellement différentes. Dans la première partie, nous avons appliqué des méthodes
numériques pour confirmer des résultats d’analyse déjà connu dans le domaine. Cela nous a permis, à
la fois d’effectuer un contrôle de cohérence de nos outils numériques, mais aussi de compléter l’analyse
analytique (hessian cc, validité à petits spin, etc.). Nous avons étudié la limite asymptotique d’un
4-simplex euclidien dans la théorie BF [32] et dans le modèle EPRL SL(2,C) [33]. Nous avons récupéré
la limite de spin large étudiée dans [34] et dans [8] même si, dans cette thèse, nous ne présentons que le
cas SL(2,C), plus complexe des autres. Dans le chapitre 5, nous présentons les difficultés analytiques
et numériques d’un calcul de large-spin. Nous avons récupéré la limite asymptotique d’un 4-simplex
euclidien ; cependant, nous n’avons pas pu obtenir le même résultat pour un 4-simplex lorentzien, en
raison de difficultés techniques qui y seront détaillées. Dans la deuxième partie, nous avons appliqué
nos méthodes numériques pour explorer de nouveaux territoires. Dans [35], nous avons considéré les
mousses de spin EPRL généralisées de KKL avec des vertex non-simplexes, du type de ceux qui ont été
suggérés pour la cosmologie des mousses de spin [36]. Dans ce contexte, on n’a pas la relation directe
avec la gravité en termes d’action de Regge, mais l’amplitude de vertex est plus simple à calculer, ce qui
permet d’étudier comment différentes amplitudes contribuent à un réseau de spin avec des paramètres
de bord fixes. Nous avons examiné les amplitudes de transition entre deux réseaux de spins avec un
graphique de dipole et leurs propriétés de décroissance tout en augmentant le nombre d’arêtes, de faces
et de vertices. Ce travail est présenté dans 6 et vise à mettre en lumière la hiérarchie des amplitudes
des mousses de spin lorsque la complexité augmente. Ensuite, nous présentons un article dans la théorie
tridimensionnelle SU(2) BF, également appelée modèle Ponzano-Regge. Nous étions confrontés à des
difficultés difficilement surmontables lors du calcul de la grande limite de spin d’une amplitude. Comme
nous le verrons, le redimensionnement homogène de l’amplitude de vertex EPRL dans la base cohérente
nécessite d’énormes ressources numériques pour être réalisé. Outre les problèmes liées au temps de calcul
et de précision, il faut savoir a priori à quoi s’attendre (comme la fréquence et la phase de l’oscillation de
l’amplitude, la décroissance de sa loi de puissance, etc). En d’autres termes : dans cette approche, nous
devions connâıtre analytiquement de nombreux détails pour récupérer des informations utiles à partir de
nos calculs. Pour surmonter ces difficultés, dans [37], nous avons proposé une nouvelle façon numérique
de rechercher des géométries semi-classiques dans des amplitudes de mousse de spin avec de nombreuses
faces internes. Nous avons développé et testé nos algorithmes dans le modèle Ponzano-Regge, qui nous
permettait d’avoir un contrôle analytique complet. Les résultats sont passionnants. En analysant une
amplitude de transition composée de trois tétraèdres collés ensemble, une ∆3 tridimensionnel, nous
avons compris le comportement semi-classique de sa grande limite de spin de la manière suivante. À
paramètres de bord fixes, nous cherchons des points de phase stationnaires dans la sommation globale
interne pour récupérer son comportement semi-classique. Nous présentons cet article dans le chapitre
7. Cette méthode est ensuite appliquée à la théorie quadridimensionnelle SU(2) BF [38]. Même si elles
sont plus simples que dans le modèle EPRL, elles en partagent certaines caractéristiques. Par exemple,
tous les arguments en faveur de la planéité des amplitudes de mousse de spin peuvent être formellement
appliqués aux deux modèles. Là encore, nous avons décidé d’étudier l’amplitude ∆3, désormais formée
par trois 4-simplex partageant un triangle. Même dans ce contexte plus simple, nous avons trouvé
quelque chose de surprenant. Des points de phase stationnaires apparaissent pour les configurations de
limites plates et non plates, ce qui contredit certaines des analyses mentionnées précédemment. Nous
avons ensuite analysé les points où les arguments de planéité peuvent s’effondrer, et nous en avons
parlé dans l’article. Ce document est présenté au chapitre 8. Toutefois, ces résultats ne suffisent pas à



eux seuls pour apporter une réponse à la question de la planéité dans le modèle EPRL. Tout d’abord,
le même calcul doit être effectué dans le modèle EPRL. Deuxièmement, la triangulation ∆3 est plutôt
triviale du point de vue du calcul de Regge. Dans le Regge Calculus, les variables fondamentales sont les
longueurs d’une triangulation mais, en 4-dimensions, la ∆3 n’a pas de longueurs de bulk, seulement une
aire de bulk. En principe, on voudrait récupérer les solutions des équation du mouvement de Regge dans
la limite semi-classique de la théorie. Pour surmonter ce problème, nous travaillons actuellement sur
un calcul impliquant une triangulation qui permet une équation de Regge du mouvement non triviale.
Nous voulons comparer les points de phase stationnaires dans le modèle BF et dans le modèle EPRL
pour comprendre si les contraintes de simplicité sont correctement imposées. De plus, nous pensons
que l’approche du � wavefront set �, utilisée par Hellman et Kaminski dans le cas de SO(4), pourrait
conduire à une analyse intéressante de la théorie physique de SL(2,C) et de sa fonction de partition.
Nous travaillons également dans cette direction, en espérant qu’elle pourra apporter un éclairage sur
l’analyse semi-classique des triangulations étendues.

Il devrait être maintenant clair qu’une grande partie de notre travail a été consacrée à des questions
techniques, tant d’un point de vue numérique qu’analytique. Toutefois, il est possible d’en tirer des
enseignements intéressants et généralisables. Les modèles de mousse de spin sont confrontés à plusieurs
questions ouvertes, dont certaines existent maintenant depuis près d’une décennie. Comme nous l’avons
déjà mentionné, de nombreux arguments concernant la planéité ont été avancés au fil des ans. Mais en
l’absence de calculs concrets et précis, il s’agit encore de spéculations. Nous avons trouvé un contre-
exemple pour prouver que, dans un cas simple, elles ne sont pas valables. Même si ce résultat ne
détermine pas en soi la validité du modèle, il montre que certains calculs peuvent être effectués avec
précision et qu’ils peuvent nous aider à comprendre la théorie. De nombreuses difficultés dans l’exécution
des calculs numériques sont encore présentes, et nous en aborderons quelques-unes dans 3.2. Je suis
de l’avis que les calculs avec de nombreux vertices dans le cadre du model EPRL soient une possibilité
qui mériterait d’être explorée davantage, numériquement ou analytiquement, employant de nouvelles
méthodes. Nous avons décidé de prendre ces modèles au sérieux, en les poussant à leurs limites.
Au lieu de céder à la tentation de la construction de nouveaux modèles, nous pensons qu’une voie
différente puisse être suivie. Nous devons explorer les théories dont nous disposons déjà et en révéler
les caractéristiques.

Ce manuscrit vise à fournir une introduction technique aux mousses de spin, en particulier au modèle
EPRL, d’un point de vue opérationnel. Nous souhaitons que cela aide le lecteur intéressé à comprendre
comment, au cours des dernières années, a été travaillée à Marseille la théorie de mousse de spin, avec
l’espoir que cela la fasse avancer.



Chapter 1

Overview

1.1 Quantum Gravity

Quantum Gravity is the task of developing a quantum theory of General Relativity to unveil the hidden
world of the quantum gravitational field. It has been undertaken by physicists already a century ago, and
it has proven to be so challenging to assume almost mythological contours. After decades of research, we
are still far away from an answer. The two most significant theories facing the challenge, string theory
and loop quantum gravity, are growing old without a single experimental check in the best scenario,
or a confirmation of their theoretical consistency in the worst. Alternatives exist, and the field seems
scattered with many different approaches, ideas and models worth to be explored but still not convincing
enough to guide research in one direction or another.

However, in this unsatisfactory scenario, progress continues. Quantum Gravity is a fascinating and
theoretically fundamental topic that deserves our attention and that still drives the imaginations of
researchers. It still is a game that, if won, would change the world. Some of the best introductions to
it, and in particular to the ideas guiding loop quantum gravity’s approach to the problem, can be found
in the initial chapters of both [1] and [2]. Their motivations and explanations guided me in choosing
this topic of research, and rereading them today make me feel the same thrill I had when I began this
journey.

In this thesis, we will work in the context of spin foam approach to the dynamics of loop quantum
gravity, or covariant loop quantum gravity, with the practical goal of performing numerical computations
within the theory. Quantum Gravity can be rightly considered a very conceptual problem. Despite that,
our work has been more down to earth. We wanted to study a particular model, and to be able to perform
precise computations on which we could build physical interpretations. In this thesis, we summarize
the result of our explorations.

1.2 Spin Foam for Quantum Gravity

The spin foam framework provides an approach to the dynamics of loop quantum gravity that is both
background-independent and Lorentz covariant. The most successful model is the one proposed by
Engle, Pereira, Rovelli and Livine (EPRL) [3, 4, 5] and independently by Freidel and Krasnov (-FK) [6].
It is formulated as a sum over simplicial triangulations with a given boundary. It provides transition
amplitudes for spin network states of canonical Loop Quantum Gravity restricted to four valent nodes,
and a generalization to arbitrary complexes and spin-networks has also been developed [7]. The spin
foam approach aims to be equivalent to a sum over histories of quantum geometries and to realize a
well-defined quantum gravity path integral.
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Computations in this framework are particularly complex, and many features of spin foams are still
not known. Two of the most successful analytical calculations are the following. On the one hand, the
presence of the discrete Regge action in the spin foam amplitude of a semiclassical state [8, 9] relating
the semiclassical limit of the theory with Regge calculus, a discretization of general relativity firstly
proposed by Tullio Regge [10]. In 3-dimensions, a quantum model for discretized gravity, the Ponzano-
Regge model, was introduced already in the sixties [11], but it took decades to obtain a 4-dimensional
analogous. On the other hand, the graviton n-point function reproduces at the leading order the one of
Regge calculus in the semiclassical limit [12, 13, 14, 15]. This result is of particular historical importance
since it revealed the Barrett-Crane model’s shortcomings and led to the development of the EPRL-FK
model. The BC model cannot correctly implement the simplicity constraints, responsible for reducing
the topological BF theory to gravity. The question if the EPRL model is succeeding in implementing
them is a subject of discussion in the community and an open issue that will be partially addressed in
this thesis.

As motivations for this thesis, let me mention upfront two crucial open questions discussed in the
community. First, in the case of extended triangulations, the theory’s semiclassical limit is still not
well understood. In particular, the question of what semiclassical geometries dominate the summations
over bulk degrees of freedom is still open. Different calculations suggest that the summation over bulk
degrees of freedom is dominated by flat geometries, namely by geometries with a deficit angle around
bulk faces multiple of 4π/γ, being γ the Immirzi parameter. This observation is called flatness problem,
and it has been mentioned by Freidel and Conrady [16], Bonzom [17], and Han [18]. Moreover, Hellmann
and Kamiński [19] proposed a different analysis, based on the calculation of the wavefront set of the
spin foam partition function and a geometrical interpretation of its variables, and they found a similar
problem. Another stationary phase analysis of the euclidean EPRL model has been carried out by
Oliveira in [20] studying a particular triangulation composed of three 4-simplex called ∆3. They include
all the constraints on the boundary data to obtain a non-exponentially suppressed vertex amplitude.
However, this initial claim has been recently questioned by Kaminski and Engle [21]. A second open
problem regards the continuum limit of the theory which is not well understood since there is not a
clear hierarchy while increasing the complexity of a transition amplitude. Also, even if the model is free
of ultraviolet divergences, there are potential large-volume infrared divergences. In principle, these may
require a renormalization procedure and their study could be important for the correct definition of
the continuum limit. This has been extensively studied and can be achieved in different ways: refining
the 2-complex as in [22, 23, 24], or via a resummation as proposed in [25, 26]. In [27] an algorithm
to systematically determine the potential divergence of all spin foam diagrams in the EPRL model has
been proposed.

All these arguments are still waiting for a clear answer, and they are major concerns regarding the
consistency of the theory. With this thesis, we want to address some of these questions.

During my Ph.D., I have worked on a precise and technical problem: how to compute spin foam
transition amplitudes numerically. Unfortunately, analytical calculations in this framework are not
always available, and they come with many approximations and assumptions. For this reason, we
decided to look at numerical methods. When we started, some numerics was available, especially in the
SO(4) EPRL model [28] [29] but a systematic approach was lacking. We decided to concentrate our
efforts on two different models. On one side, the 3 and 4 dimensional SU(2) BF theory used as a toy
model, and on the other, the complete SL(2,C) EPRL model. My work has led to six published papers,
three with my supervisor and three without. In this overview, I will present the research contained
in these and how they relate to one another. In Chapter 2 and 3, I will present a theoretical and a
numerical introduction to the tools and techniques I have used. I will then focus on four of our papers.
In these works and this thesis, I will keep what we call an operational approach. I want to be able to
compute the quantities we define and to speculate about the physical content of the theory only after a
computation has been carried out and performed. Since many of the features of the theory are still not
known, I think that this approach can lead to original results and to avoid misleading interpretations.

In collaboration with a postdoc in my group, we introduced in [30] the library sl2cfoam where
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we provided the tools to evaluate the SL(2,C) EPRL and SU(2) BF spin foam vertex amplitude
numerically. It is based on the decomposition of the EPRL vertex amplitude in terms of booster
functions and SU(2) invariants introduced in [31] a fundamental tool that we will briefly review in
3.1.3. In the following Chapters, we provide a theoretical and numerical introduction, and we review
the common methods used throughout our works. Then, we present our papers [33, 35, 37, 38], which
can be divided into two conceptually different parts. In the first, we applied numerical methods to
confirm analytical results already established. This allowed us to perform a consistency check of our
numerical tools but also to complete the analytical analysis (hessian cc, small spin validity, etc). We
studied the asymptotic limit of an euclidean 4-simplex in BF theory [32] and in the SL(2,C) EPRL
model [33]. We recovered the large spin limit studied in [34] and in [8] even if, in this thesis, we present
only the much more challenging SL(2,C) case. In Chapter 5, we present the analytical and numerical
difficulties of a large spin limit computation in spin foam. We recovered the asymptotic limit of a
euclidean 4-simplex. However, we could not obtain the same result for a lorentzian 4-simplex due to
technical difficulties that will be addressed and explained.

In the second part, we applied our numerical methods to explore new territories. In [35], we
considered the generalized EPRL spin foams of KKL with non-simplicial vertices, of the type that have
been suggested for spin foam cosmology [36]. In this context, one does not have the direct relation to
gravity in terms of the Regge action, but the vertex amplitude is simpler to compute, allowing to study
how different foams contribute at fixed boundary spin-network. We looked at transition amplitudes
between two spin networks with dipole graphs and their decaying properties while increasing the number
of edges, faces and vertices. This work is presented in 6 and aims to shed some light on the hierarchy
of spin foam amplitudes when complexity increases. We then present a paper in the 3-dimensional
SU(2) BF theory, also called the Ponzano-Regge model. In fact, we had to take a step back: we
were facing difficulties hardly surmountable when computing the large spin limit of an amplitude. As
we will see, the homogeneous rescaling of the EPRL vertex amplitude in the coherent basis requires
enormous numerical resources to be accomplished. Also, aside from computational time and accuracy
problems, one needs to know a priori what to expect (such as the frequency and phase of the amplitude’s
oscillation, its power law decay, etc) to be able to obtain semiclassical information from numerics. In
other words: in that approach, we had to analytically know many details to recover useful information
from our computations. To overcome these difficulties, in [37], we proposed a new numerical way of
searching for semiclassical geometries in spin foam amplitudes with many internal faces. We developed
and tested our algorithms in the Ponzano-Regge model, where we have full analytical control. The
results are exciting. Analyzing a transition amplitude composed by three tetrahedra glued together, a
3-dimensional ∆3, we understood the semiclassical behaviour of its large spin limit in the following way.
At fixed boundary data, we look for stationary phase points in the internal bulk summation to recover
the semiclassical behavior of a particular set of boundary geometry. We report this paper in Chapter
7. This method is then applied to 4-dimensional SU(2) BF theory [38]. Even if simpler than the EPRL
model, they share some features. For instance, all the arguments for the flatness of spin foam amplitudes
can formally be applied to both models. Again, we decided to study the ∆3 amplitude, now formed
by three 4-simplex sharing a triangle. Even in this simpler context, we found something somewhat
surprising. Stationary phase points arise for flat and non-flat boundary configurations contradicting
some of the analyses mentioned before. We then analyzed where the flatness arguments may break
down, and we discussed those. This paper is reported in Chapter 8. However, these results alone are
not enough to draw an answer to the question of flatness in the EPRL model. First of all, the same
computation should be performed in the EPRL model. Secondly, the ∆3 triangulation is rather trivial
from a Regge Calculus point of view. In Regge Calculus, the fundamental variables are the lengths of
a triangulation but, in 4 dimensions, the ∆3 has no bulk lengths, only a bulk area. In principle, one
would like to recover solutions of the Regge equation of motions in the semiclassical limit of the theory.
To overcome this problem, we are currently working on a computation involving a triangulation that
allows non-trivial Regge equation of motions. We want to compare stationary phase points in BF and in
the EPRL model to understand if the simplicity constraints are imposed correctly. Moreover, we think
that the wave front set approach, used by Hellman and Kaminski in the SO(4) case, could lead to an
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interesting analysis of the SL(2,C) physical theory and of its partition function. We are also working in
this direction, hoping it could shed some light on the semiclassical analysis of extended triangulations.

It should now be clear that a large part of our work has addressed technical questions from a
numerical and analytical standpoint. However, we believe that some interesting and generalizable lessons
can be drawn from it. Spin foam models face many open questions, and some have now been around
for nearly a decade. As mentioned before, many arguments concerning the flatness have been carried
out throughout the years. But without actual and precise computations, these remain speculations.
We found a counterexample to prove that, in a simple case, these are not valid. Even if this result in
itself does not determine the validity of the model, it shows that some computations can precisely be
done and that they can help us in understanding the theory. Many difficulties in performing numerical
calculations are still present, and we will address some of those in 3.2. Anyway, we believe that they can
be overcome with some more work and that computations with many vertices in the EPRL framework
are a possibility worth to be further explored. Both numerically or analytically, using new methods. In
general, we decided to take these models seriously, pushing them to their limits. Instead of surrender
to the temptation of model-building, we believe that a different path can be taken. We need to explore
the theories that we already have, and to unveil some of their features.

This manuscript aims to provide a technical introduction to spin foam, particularly to the EPRL
model, from an operational perspective. We hope that this can help an interested reader in understanding
the work that has been done in spin foam theory in Marseille during the last years, and hopefully in
pushing it forward.
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Chapter 2

Theoretical Introduction

In this Chapter we introduce the theoretical framework and the definition of spin foam models for
quantum gravity. We introduce the notation and the theoretical tools that will be used throughout the
following chapters and in the papers presented in this thesis. We divide the Chapter into two sections.
The first concerns classical General Relativity (GR) and its relations with BF theory, we recommend
[39, 40] for more details. We also introduce Regge Calculus, a discretization of General Relativity that
will play an important role in understanding the quantum theory’s semiclassical limit. In the second
part, we define the partition function of BF theory and its discretization on a triangulation. Finally, we
introduce the EPRL model as a proposal for the quantization of constrained BF theory. We follow [41].
We also provide a brief review of the coherent states of the theory that will play an important role in
understanding the semiclassical limit studied in Chapter 5.

2.1 Classical BF Theory and General Relativity

2.1.1 General Relativity and the Holst Action

General Relativity describes the spacetime structure as a 4-dimensional differentiable manifoldM. The
relative distance between its spacetime points is specified by the metric tensor gµν which defines the
line element

ds2 = gµνdx
µdxν (2.1)

where xµ is a set of coordinates onM. To compare geometries at different spacetime points, one defines
a connection on M. In GR, this is achieved with the torsionless Levi Civita connection Γρµν , as a
function of the gravitational field. The curvature of spacetime is encoded in the Riemann tensor Rσµρν .
In its original formulation, GR is encoded by the Hilbert-Einstein action

SHE [gµν ] =
1

2κ

∫
d4x
√−gR[gµν ] (2.2)

with κ = 8πG, G as the gravitational constant. g is the determinant of the metric tensor and R is the
scalar curvature of gµν . The Einstein equations of motion are

Rµν −
1

2
gµνR = 8πGTµν (2.3)

where Tµν is the covariant version of the energy-momentum tensor and Rµν the Ricci tensor. GR can
be rewritten using the tetrad formalism and with the connection as an independent field. A tetrad is a
quadruple of 1-forms, eIµ(x) such that

gµν(x) = eIµ(x)eJν (x)ηIJ . (2.4)
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Here I = 0, 1, 2, 3 are internal flat indices and come together with an additional invariance under a local
gauge group G = SO(3, 1). Tetrads provide a local isomorphism between a general reference frame and
an inertial one, characterized by the flat metric ηIJ . The definition is invariant under

eIµ(x) −→ e′Iµ (x) = ΛIJ(x)eJµ(x). (2.5)

Now the connection ω is treated as an independent variable, and its curvature is given by

F IJµν = ∂µω
IJ
ν − ∂νωIJµ + ωIKµω

KJ
ν − ωJKµωKIν . (2.6)

If the conncection is Levi-Civita, namely if ω = ω(e), then

F IJµν (ω(e)) ≡ eIρeJσRµνρσ(e). (2.7)

In these variables, the Hilbert-Einstein action can be rewritten as

S(eIµ, ω
IJ
µ ) =

1

2κ
εIJKL

∫
eI ∧ eJ ∧ FKL (ω(e)) , (2.8)

and the field equations become

ωIJµ = eIν∇µeJν , Gµν(e) = 0. (2.9)

Since the connection is now considered a fundamental field, a new term compatible with all the action’s
symmetries can be added to the Lagrangian. This is

δIJKLe
I ∧ eJ ∧ FKL(ω), (2.10)

where δIJKL ≡ δI[KδL]J . In fact

δIJKLe
I ∧ eJ ∧ FKL(ω(e)) = εµνρσRµνρσ(e) ≡ 0. (2.11)

This term (with a coupling constant 1/γ) can be added to the Hilbert-Einstein action without changing
the equation of motions for non-degenerate tetrads. The action obtained is called the Holst’s action

S (e, ω) =
1

2κ

(
εIJKL +

1

γ
δIJKL

)∫
eI ∧ eJ ∧ FKL (ω)

=
1

2κ

∫
(?eI ∧ eJ +

1

γ
eI ∧ eJ) ∧ FIJ(ω).

(2.12)

This action plays an essential role in the definition of the Loop Quantum Gravity canonical quantization
and, therefore, in spin foam models. GR and the Holst action 2.12 can also be rewritten as a constrained
BF theory but before moving into that we review topological BF theory.

2.1.2 BF theory as a topological theory

Consider a Lie Group G, g as its Lie Algebra and M d-dimensional manifold. Classical BF theory is
defined by the action

S[B, ω] =

∫

M

BIJ ∧ FIJ(ω), (2.13)

with B as g valued (d−2)-form and ω connection on a G principal bundle overM. F(ω) is the curvature
of ω . This theory has no local excitations: gauge transformations locally relate all the solutions of its
equations of motion. The equations of motion are obtained imposing δS = 0 and we get

F = 0, dωB = 0, (2.14)
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where dω stands for the exterior covariant derivative. All their solutions look the same locally. BF
theory describes a world with no local degrees of freedom. F = 0 forces the spin connection ω to be
flat, and all flat connections are locally the same up to gauge transformations. The second equation
dωB = 0 is subtler. It is not true that its solutions are locally the same up to a gauge transformation
in the usual sense. But BF theory has another symmetry given by

ω 7→ ω, B 7→ B + dωη, (2.15)

for some (d− 3)-form η. These transformations leave the action unchanged, when ω is flat, any B field
with dωB = 0 can be locally written as dωη for some η. We can conclude that, locally, all solutions
of the BF theory field equations are equal modulo gauge transformations and transformations such as
2.15. In a BF theory, the gauge symmetries are so vast that all the solutions to the equations of motion
are locally pure gauge. If we specialize G = SU(2) and d = 3 we recover Riemannian General Relativity
in which the field Bia is given by the tetrad frames eia. General Relativity in 4 dimensions, however,
can not be recover so easily. It is necessary to impose constraints on the B field, as we do in the next
section.

2.1.3 Constrained BF Theory

For a 4-dimensional spacetime, GR can be written as a constrained BF theory. We study the action

S[B,ω, λ] =
1

2κ

∫

M

[
BIJ ∧ FIJ(ω) + λIJKL B

IJ ∧BKL
]
, (2.16)

called the Plebansky action. It depends on the fields B and ω while λIJKL = −λJIKL = −λIJLK =
λKLIJ is a Lagrange multiplier, a tensor in the internal space satisfying εIJKLλIJKL = 0. To study the
equations of motion for B we perform the variation respect to λ. On the 36 components of the field B,
we obtain 20 algebraic equations

εµνρσBIJµνB
KL
ρσ = e εIJKL, (2.17)

with e = 1
4!εOPQRB

OP
µν B

QR
ρσ ε

µνρσ [42]. This quadratic expression has two solutions [41]

BIJ = ±∗(eI ∧ eJ), and BIJ = ±eI ∧ eJ , (2.18)

in terms of the remaining 16 degrees of freedom of the tetrad field eIa. Here ∗ is the Hodge operator. If
these two sectors are related using a free parameter γ in the following way

BIJ = ±∗(eI ∧ eJ) +
1

γ
(eI ∧ eJ), (2.19)

then the constrained BF action 2.16 reduces to the Holst-Palatini’s action of General Relativity 2.12. γ
is called the Barbero-Immirzi parameter.

S (e, ω) =
1

2κ

∫
(?eI ∧ eJ +

1

γ
eI ∧ eJ) ∧ FIJ(ω). (2.20)

It is the Hilbert-Einstein action modified by a term proportional to the Immirzi parameter that does
not affect the classical equations of motion. GR is then recovered as a BF theory plus constraints, called
the simplicity constraints.

Linear Simplicity Constraint

The simplicity constraints 2.18 play an important role in the construction of the spin foam models, and
we need to analyze them more carefully. We want to explicitly write the two-form BIJ on a boundary
hypersurface Σ of M. To do so, we choose a gauge, called the time gauge, for which the normal N I
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to all the tangent vectors in Σ is a time- like unit vector N I = (1, 0, 0, 0). In doing so, we break the
SO(1, 3) invariance of the theory, choosing a SU(2) subgroup on the boundary. The pullback to Σ of
the two form BIJ allows us to decompose it in its rotational and boost part as

NIB
IJ = KI NI ? B

IJ = LI . (2.21)

Since we know that BIJ = ±∗(eI ∧ eJ) + 1
γ (eI ∧ eJ , ) and that on the boundary Σ, NIe

I = 0, we get

NIB
IJ = NI(e

I ∧ eJ , ) = KI NI ? B
IJ = NI

1

γ
(eI ∧ eJ) = LI . (2.22)

We obtain an equation relating KI and LI .

KI = γLI . (2.23)

This important relation is called linear simplicity constraint. It connects the boost and the rotational
part of the two form BIJ . They are proportional, and the Barbero-Immirzi parameter gives the
proportionality constant. This relation will play an essential role in the quantum theory.

2.1.4 Regge Calculus

A discretization of GR was firstly introduced by Tullio Regge in the sixties [10], an accurate review
and a discussion on its relations with GR can be found in [43]. In Regge Calculus, as the new theory
was called, the continuous d−dimensional spacetime M is replaced with a discretization made by d-
simplices. A d−simplex σ is defined as the convex hull of its n + 1 vertices. These are connected by
d(d+ 1)/2 segments whose (euclidean) lengths we call lij . They specify the metric gij(x) at any point
x ∈ M. Even if the metric is flat inside every d−simplex, non-flat metrics can be generated by gluing
more simplices together. In a cluster of d−simplices, the metric is flat anywhere except on (d − 2)
simplices, called hinges h, where we can define curvature. A vector parallel transported on a closed loop
around a hinge can come back rotated by a deficit angle

δh(lij) = 2π −
∑

σ>h

Θσ
h(lij), (2.24)

where Θσ
h is the dihedral angle at the corner σ, which hinges on h.

For instance, in d = 2, a discretization is made of triangles glued together. The hinges are the
vertices and we obtain a flat discretized manifold everywhere except on the vertices. The deficit angle
is given by δh(lij) = 2π−∑t Θσ

h where the sum in this case runs over the triangles sharing a vertex. If
δh(lij) = 2π it means that the Regge space is flat on h. The Regge Calculus provides the dynamics for
a simplicial discretization. The dynamical variables are the length lij and they are ruled by the Regge
action

SR(lij) =
1

2κ

∑

h

Ah(lij)δh(lij), (2.25)

with Ah as the (d − 2) volume of h. The remarkable result of Regge is that this action leads to the
Hilbert-Einstein action in the continuum limit. When a triangulation in the Regge space (M, lij) is
refined in such a way that, given two points x and y in M, the difference between the Regge distance
and the Riemannian distance is less then a ε then 2.25 converges to the Hilbert-Einstein action. The
equation of motion obtained from 2.25 are

∑

h

∂Ah(lij)

∂lij
δh(lij) = 0, (2.26)

because the variation of the deficit angles for all h vanishes. These equations are a discrete version
of Einstein’s equations. Moreover, Ponzano and Regge introduced in [11] a quantum version of Regge
Calculus for three-dimensional gravity where the equations of motion impose δh = 0. We will briefly
review this model in 2.2.2 and we will study some of its features in one of the papers here presented,
Chapter 7.
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2.2 Quantum BF theory and Quantum Gravity models

In this section, we present a covariant quantization of BF theory. We write its partition function and
we discretize it on a given triangulation. Finally, we can introduce spin foam models and then analyze
how to impose the simplicity constraints at the quantum level. We present the SL(2,C) EPRL model
as a discrete model for lorentzian quantum gravity.

2.2.1 Quantized BF Theory

Formally, we can write the partition funcion for BF theory 2.13 as

Z =

∫
DBDω exp(i

∫

M
BIJ ∧ FIJ(ω)), (2.27)

where M is taken to be compact. For simplicity, in this paragraph, we assume the gauge group G to
be compact. Integrating over the B field we obtain

Z =

∫
Dω δ (F (ω)) . (2.28)

This expression is formal: the functional integration is not well defined. To proceed, we need to step
from the continuous to the discrete. We start by replacing the manifold M with an arbitrary cellular
decomposition ∆. We introduce its dual 2-complex ∆? defined by a set of vertices v ∈ ∆? (dual to
d-cells in ∆), edges e ∈ ∆? (dual to (d−1)-cells in ∆) and faces f ∈ ∆? (dual to (d−2)-cells in ∆). The
field B is discretized associating a Lie algebra elements Bf to each f ∈ ∆?. It is definded throught the
smearing of the continuous (d− 2) form B on the (d− 2) cell in ∆

Bf =

∫

(d−2)cell

B. (2.29)

The connection ω is discretized with group elements gev ∈ G assigned to the half-edges of ∆?. They
are defined as the holonomy of ω along the edge e ∈ ∆?.

gevgev′ = P exp(−
∫

e

ω), (2.30)

where P stands for the path-ordered product. The discretized version of the path integral 2.27 reads

Z∆ =

∫ ∏

ev

dgev
∏

f

dBf e
iBfUf =

∫ ∏

ev

dgev
∏

f

δ(ge1v1 · · · genv1), (2.31)

where Uf = ge1v1 · · · genv1 represents the holonomy around a face and dgev the Haar measure on the
group G. The integration in Bf is performed with the group delta function. Using the Peter-Weyl
theorem, we can expand the delta function on the group

δ(g) =
∑

ρ

dρTr[ρ(g)], (2.32)

where ρ are irreducible unitary representations of G (irrep), dρ the dimensions of the vector spaces given
by the representations ρf and χ = Tr[ρ(g)] is the character of ρ. Using this result in 2.31

Z∆ =
∑

{ρ}

∫ ∏

ev

dgev
∏

f

Tr[ρf (ge1v1 . . . genv1)]. (2.33)

In a triangulation ∆ the edges e bound exactly d different faces. So, every group element gev appears in
d traces. We can use the following formula defining the projector over the invariant states of the theory

P evinv(ρ1, . . . , ρd) :=

∫
dgevρ1(gev)⊗ ρ2(gev)⊗ · · · ⊗ ρd(gev), (2.34)
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where the representations matrices ρ are contracted following the structure of the triangulation. The
tensor product of d ρ matrices defines a space H = Hρ1⊗. . .Hρd . P einv is the projector over the invariant
states in Inv[Hρ1 ⊗Hρ1 ⊗ . . .Hρd ]. For a BF theory with a compact group, we finally get

Z∆ =
∑

{ρ}

∏

f

dρf
∏

ev

P evinv(ρ1 ⊗ · · · ⊗ ρd). (2.35)

This expression can be rewritten as a graphical formula. The graphical notation here introduced has
been used extensively throughout all our works; more details can be found in [44, 45, 35]. The projector
reads

P einv(ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρd) =

ρ1 ρ2 ρd

gev

: : : : : :

: : : : : :

. (2.36)

Every representation becomes a strand, every integral over the group a box. The connectivity of strands
and boxes is given by the triangulation structure, namely by the pattern of indices contraction between
representations.

Some examples

Fix d = 2 as the dimension of M. Then, a triangulation is made by triangles glued together. At every
vertex of a triangle we associate a representation ρi and at every edge, an integration over the group.
At every element gev are assigned two representations, two wires. The BF partition function is

Z∆ =
∑

{ρ}

∏

f∈∆?

dρ , (2.37)

the open ends on the right side are linked to neighboring vertices according to the triangulation structure.
For d = 3 instead, ∆ is made by tetrahedra. In this case, every triangle is associated with a box,

and every strand is associated with the triangle’s segments. We have

Z∆ =
∑

{ρ}

∏

f

dρ . (2.38)

The 3-dimensional model with gauge group SU(2) is studied more carefully in the next paragraph 2.2.2
and in one of the papers of the thesis: it is precisely the well known Ponzano-Regge model.

In d = 4, the triangulation is made of 4-simplices glued together. Five tetrahedra and ten triangles
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compose every 4-simplex. In the graphical notation, we have that

Z∆ =
∑

{ρ}

∏

f

dρ , (2.39)

where every tetrahedron is a box sharing four strands (triangles) with other tetrahedra. This model
with gauge group SU(2) will prove to be an important test for computations within spin foam models,
as we will see in 2.2.3 and in Chapter 8.

2.2.2 The Ponzano Regge model

One of the theories studied in this thesis is the 3-dimensional BF model with gauge group G = SU(2),
also called the Ponzano-Regge model. General relativity in three dimensions has no propagating
gravitational degrees of freedom. It is a perfect example of topological theory, and the BF quantization
can be here easily implemented. In this case, the delta function is obtained on the basis of Wigner
functions Dj(g) and Eq. 2.38 becomes

Z∆ =
∑

jf

∫ ∏

e

dgev
∏

f

(2jf + 1)Tr(Djf (ge1v1 . . . genv1)) (2.40)

=
∑

jf

∏

f

(2jf + 1)
∏

v

. (2.41)

We can organize the product over faces as a product over vertices that are connected to each other
following the connectivity of the two-complex ∆?. The integrals over SU(2) can be performed exactly
and expressed in terms of SU(2) invariants as

∫
dgDj1

m1n1
(g)Dj2

m2n2
(g)Dj3

m3n3
(g) =

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
n1 n2 n3

)
. (2.42)

where on the left we have two {3jm} symbols, that are easily related to Clebsch-Gordan coefficients
[31]. The same equation graphically reads

j1 j2 j3

j1 j2 j3

=

j1 j2 j3

j1 j2 j3

. (2.43)

The resulting spin foam partition function can be written in the following form

Z∆ =
∑

jf

∏

f

Af
∏

e

Ae
∏

v

Av, (2.44)
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where the sum is over all the possible spins of the product of face amplitudes Af , edge amplitudes Ae,
and vertex amplitudes Av. In the Ponzano-Regge model, we have a trivial edge amplitude Ae = 1,
face amplitude equal to the SU(2) irrep dimension Af = 2jf + 1 and vertex amplitude is given by the
Wigner {6j} symbol

Av(jf ) =

{
j1 j2 j3
j4 j5 j6

}
=

j1
j2

j3

j4
j6

j5 . (2.45)

For SU(2) recoupling theory, we follow the notation in [44] and for their graphical representation. The
{6j} symbol is composed of four {3jm} symbols contracted together.

This spin foam model reproduces the theory firstly proposed by Ponzano and Regge [11]. In this
seminal work they discovered an important relation between the large spins asymptotic of the {6j}
symbol and discrete GR. In fact, if an euclidean tetrahedron with lengths given by jf + 1/2 exists,
namely its squared volume is positive V 2 > 0, then:

Av ∼
1√

12πV
cos(SR(jf ) +

π

4
) , (2.46)

where SR is the Regge action of the tetrahedron, and Θf are the corresponding external dihedral angles.
The Regge action is

SR(jf ) =
∑

f

(jf +
1

2
)Θf . (2.47)

If such euclidean tetrahedron does not exist, namely if V 2 < 0, the amplitude is exponentially suppressed.
Much of the work done in spinfoam theory aims to find an analogous model for Lorentzian 4d gravity.

2.2.3 4-dimensional SU(2) BF model

The 4-dimensional SU(2) case is similar to the 3-dimensional one. Again, we can write the partition
function as

Z∆ =
∑

jf

∫ ∏

e

dge
∏

f

(2jf + 1)Tr(Djf (ge1 . . . gen)) (2.48)

=
∑

jf

∏

f

(2jf + 1)
∏

v

. (2.49)

where we expanded the delta function over irrep. We perform integration over SU(2) as

∫
dgDj1

m1n1
(g)Dj2

m2n2
(g)Dj3

m3n3
(g)Dj4

m4n4
=
∑

i

di

(
j1 j2 j3 j4
m1 m2 m3 m4

)(i)(
j1 j2 j3 j4
n1 n2 n3 n4

)(i)

.

(2.50)
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Here we introduce the {4jm} symbol as the contraction of two {3jm} symbols

(
j1 j2 j3 j4
m1 m2 m3 m4

)(i)

=
∑

mi

(−1)i−mi
(

j1 j2 i
m1 m2 mi

)(
i j3 j4
−mi m3 m4

)
. (2.51)

i is an intertwiner, it represents an invariant tensor in Inv[Hj1 ⊗ · · · ⊗Hj4 ]. di is the dimension of this
space.

Graphically eq 2.50 is given by

j1 j2 j3

j1 j2 j3

j4

j4

= i

j1 j2 j3 j4

j1 j2 j3 j4

. (2.52)

Using these simple rules, the partition function can again be written as

Z∆ =
∑

jf

∏

f

Af
∏

e

Ae
∏

v

Av, (2.53)

with Af = 2jf + 1 and edge amplitude given by Ae = 2ie + 1. The vertex amplitude Av is now
represented by a {15j} symbol

Av(jf , ie) =

i1

i2 i5

i4i3

j2 j4

j1 j6

j9

j7

j5j3

j10 j8

=





i1 j5 i4 j10 i2
j4 j6 j9 j1 j2
j7 i5 j8 i3 j3



 =

= (−1)
∑5
i=1 ji+li+ki

∑

s

(2s+ 1)

×
{
i1 j7 s
i5 j5 j4

}{
j5 i5 s
j8 i4 j6

}

×
{
i4 j8 s
i3 j10 j9

}{
j10 i3 s
j3 i2 j1

}{
i2 j3 s
i1 j7 j2

}
,

(2.54)

following the conventions in [45] for the {15j} symbol of the first type. This 4-dimensional model will
be used for the computations performed in Chapter 8. It is an important toy model, even if simple
and topological, it still contains essential features for the following reason. As we saw in the previous
paragraph, a remarkable result by Ponzano and Regge shows that the large spin limit of the SU(2) {6j}
symbol can be approximated with the cosine of the Regge action for a euclidean tetrahedron. Barrett
and collaborators in [34] obtained a 4-dimensional analog, based on linear combination o SU(2) {15j}
symbols and the notion of coherent intertwiners that we will introduce in 2.2.6. In this case, the large
spin limit is related to the cosine of the Regge action for a euclidean 4-simplex. More analytical details
can be found in [34]. In [32] we performed a numerical confirmation of Barret’s analysis finding an
excellent agreement between the rescaling of the coherent vertex amplitude and the cosine of the Regge
action even at relatively low spins.
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2.2.4 Quantized Constrained BF Theory: the EPRL model

The discrete quantum BF models studied so far are topological. In 2.1.3, we recovered GR in 4
dimensions using constraints on the B field at the continuum level. Unfortunately, the action 2.16
can not be discretized in its form. We need to impose the simplicity constraints at the quantum level as
a selection of the unitary irrep allowed by the theory. The vertex amplitude is built from the topological
SL(2,C) BF spin foam vertex amplitude by imposing, weakly, the simplicity constraints resulting into a
restriction of the unitary irreducible representations in the principal series. We review this model here.
We start analyzing the representation theory for SL(2,C), and we translate the classical continuous
constraints described in 2.1.3 into the quantum discrete language.

SL(2,C) representation theory and the linear simplicity constraint

The gauge group is G = SL(2,C), double covering of the Lorentz group SO(1, 3). An analogous analysis
can be done in the euclidean domain with gauge group SO(4) [41], but this case will not be considered
here. SL(2,C) unitary irreducible representations Hρ,k are infinite-dimensional, labelled by a positive
real number ρ ∈ R and an half integer k ∈ N/2. For reference see [47] and [46] for a detailed review.
The group has two Casimirs

C1 =
1

2
JIJJ

IJ = L2 −K2 C2 =
1

2
?JIJJ

IJ = K · L, (2.55)

where JIJ are the generators. Li are the generators of an arbitrary rotation subgroup and Ki those
of the corresponding boosts. For the definition of the EPLR model, we need to introduce an arbitrary
subgroup SU(2) ⊂ SL(2,C). This is the internal gauge group of the gravitational phase space in
connection variables appearing in the canonical approach of Loop Quantum Gravity. The link between
the unitary representations of SL(2,C) and those of SU(2) is established by

Hρ,k =

∞⊕

j=k

Hj . (2.56)

The full characterization of the algebra can be found in [41, 46] and we move on to impose the
linear simplicity constraint at the quantum level. The relation 2.23 becomes a constraint between
the generators of the group, once a SU(2) subgroup is chosen for every tetrahedron of the triangulation.
In the time gauge

NIJ
IJ = KI NI ? J

IJ = LI , (2.57)

and, if we identify the two form JIJ with BIJ , we know from 2.1.3 that

KI = γLI . (2.58)

To write this relation in terms of the quantum numbers ρ and k we recall that the two Casimirs act on
a state |ρ, k〉 ∈ Hρ,k as

C1|ρ, k〉 = (k2 − ρ2 − 1) |ρ, k〉
C2|ρ, k〉 = ρk|ρ, k〉. (2.59)

Imposing 2.58 we get

(L2 −K2) = (1− γ2)L2

K · L = γL2,
(2.60)

and on the quantum numbers, using 2.59

k2 − ρ2 − 1 = (1− γ2)j(j + 1)

ρk = γj(j + 1),
(2.61)
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that for large quantum number are solved by

ρ = γk

k = j.
(2.62)

We obtain a restriction on the quantum number of the theory. The constraints on the B field imply a
restriction on the representations of the theory, on the representations labeling the triangles of ∆. To
obtain this result, we choose a preferred SU(2) ⊂ SL(2,C) at each tetrahedron of the triangulation,
meaning we fix a preferred four normal for each tetrahedron of ∆. In the dual picture, on each e ∈ ∆?

we fix a SU(2) ⊂ SL(2,C) and a restriction on each f ∈ ∆? to ρf = γkf , kf = jf . The allowed quantum
states Ψ are elements of Hj ⊂ Hγj,j that satisfy, in the semiclassical limit

(KI
f − γLIf )Ψ = 0. (2.63)

The embedding of a preferred SU(2) on each tetrahedron can be seen as a map Y

Y : Hj → Hγj,j (2.64)

The Y map sends states of SU(2) to states on SL(2,C) restricted with the linear simplicity constraint
and it is one of the most important elements of the EPRL model.

2.2.5 EPRL Partition Function

The definition of the linear simplicity constraint and the Y map allows writing the partition function
of the theory.

Z∆ =
∑

jf

∏

jf

djf (2.65)

Now the boxes are associated with integrations over SL(2,C) group elements, and blue lines represent
the insertion of the Y map at every tetrahedron of the triangulation. Analytically it reads

Z∆ =
∑

{jf}

∏

f

djf

∫

SL(2,C)

∏

e

dgevD
(γjf ,jf )
jfmf ,jfmf

(ge1v1Y
†Y g−1

e1v2ge2v2Y
†Y . . . Y †Y g−1

env1) (2.66)

The group elements gev are represented by the infinite dimensional unitary matrices

D
(ρ,k)
jmln(g), (j, l) ≥ |k|, −j ≤ m ≤ j, −l ≤ n ≤ l, g ∈ SL(2,C). (2.67)

in which ρ = γk and k = j due to the Y map. The Y map is inserted at every tetrahedron while the
number of group elements n depends on how many tetrahedra share one triangle or, equivalently, on
how many boxes are shared by one strand. It acts restricting the unitary irrep for every group element.
For instance, with n = 2

D
(γj,j)
jm,jm(ge1v1Y

†Y g−1
e1v2ge2v2Y

†Y g−1
e2v1) = D

(γj,j)
jm,jm′(g

−1
e2v1ge1v1)D

(γj,j)
jm′,jm(g−1

e1v2ge2v2). (2.68)

We recall that [47, 31]

D
(γj,j)
jmjm′(g

−1
e2v1ge1v1) =

∑

l≥j

l∑

n=−l
D

(γj,j)
jmln (g−1

e2v1)D
(γj,j)
lnjm′(ge1v1). (2.69)
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This relations allows to write the partition function as

Z(∆) =
∑

jf

∑

lf

∏

f

djf

∫

SL(2,C)

∏

e

dgev

4∏

a=1

D
(γjfa ,jfa )
jfamfa ,lfanfa

(gev). (2.70)

However, it is divergent: the group is non-compact and there is one redundant integration for each
vertex. To obtain a well-defined amplitude, as shown in [48], one has to reabsorb this redundant
integral using the properties of the Haar measure. The finite partition function is graphically given by

Z∆ =
∑

jf

∏

jf

djf , (2.71)

where we cancel one redundat integral per-vertex. As previously done for the SU(2) BF case in 2.2.3,
we want to explicitely perform the integrations over SL(2,C). Following [31] we introduce the Cartan
decomposition [47] for an SL(2,C) group element

g = ue
r
2σ3v−1, (2.72)

with u and v arbitrary elements of SU(2) and r ∈ [0,∞) as the rapidity parameter of a boost along the
z axis. The Haar measure becomes

dg = dµ(r) du dv, dµ(r) =
1

4π
sinh2 r dr, (2.73)

and an arbitrary irreducible representation can be re-written as

D
(ρ,k)
jmln(g) =

∑

p

D(j)
mp(u)d

(ρ,k)
jlp (r)D(l)

pn(v−1), (2.74)

where D(j) are Wigner’s matrices for SU(2) and the boost matrix elements d(ρ,k) (also called d-small)
are given by sums of hypergeometric function. The explicit form of the boost matrix elements can be
found in the literature in its general form [47, 49, 50, 31], here we just report them in the case of simple
irreducible representation:

d
(γj,j)
jlp (r) =(−1)

j−l
2

Γ (j + iγj + 1)

|Γ (j + iγj + 1)|
Γ (l − iγj + 1)

|Γ (l − iγj + 1)|

√
2j + 1

√
2l + 1

(j + l + 1)!
(2.75)

×
[
(2j)!(l + j)!(l − j)! (l + p)!(l − p)!

(j + p)!(j − p)!

]1/2

× e−(j−iγj+p+1)r
∑

s

(−1)s e−2sr

s!(l − j − s)! 2F1[l + 1− iγj, j + p+ 1 + s, j + l + 2, 1− e−2r] .

Then, the integral in 2.70 reads

∫
dg

4∏

a=1

D
(γji,ji)
jamalana

(g) =

∫
du dv dµ(r)

4∏

a=1

∑

pa

D(ja)
mapa(u)d

(γja,ja)
jalapa

(r)D(la)
pana(v−1)

=
∑

i,k

didk

(
ja
ma

)(i)(
la
na

)(k)

Bγ4 (ja, la; i, k),
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where we performed the integrations over SU(2) explicitly, using Eq. 2.50. Here we called

Bγ4 (ja, la; i, k) :=
∑

pa

(
ja
pa

)(i)(
la
pa

)(k) ∫
dr

4∏

a=1

d
(γja,ja)
jalapa

(r) (2.76)

:= ki

j1
j2

j3
j4

l1
l2

l3
l4

(2.77)

the booster function. In it, we absorb the ”non-compactness” of the group. We also introduced a
simplified notation for the {4jm} symbols

(
ja
ma

)(i)

=

(
j1 j2 j3 j4
m1 m2 m3 m4

)(i)

. (2.78)

We establish a graphical notation for equation 2.76

j1

j2

j3

l1

l2

l3

j4 l4

=
∑

i,k

didk ki

j1

j2

j3

j4

l1

l2

l3

l4

. (2.79)

Using these relations, we can write Z as before

Z∆ =
∑

jf ,ie

∏

f

Af (jf )
∏

e

Ae(ie)
∏

v

Av (jf , ie) , (2.80)

defined in terms of the face amplitude Af , the edge amplitude Ae and the vertex amplitude Av. The
face amplitude is Af (jf ) = 2jf + 1, the edge amplitude Ae(ie) = 2ie + 1. The vertex amplitude Av
defined by the EPRL model is given by

Av (jf , ie) =
∑

lf ,ke

(∏

e

(2ke + 1)B4(jf , lf ; ie, ke)

)
{15j}jf ,i4(lf , ke) (2.81)

=
∑

lf ,ke

dke

k1

k2 k5

i4k3

j2

j4

j10

j9

i1

i2 i5

i3

j7

j1

j5j3
j2

j8
j7

j6
j4

j8

j3

j1

j6
j5

j10j9

.,

An important part of our work is focused on the numerical evaluation of the vertex amplitude Av here
defined. Before moving to the next Chapter, we introduce coherent states for spin foam amplitude, and
we define the coherent vertex amplitude.

17



2.2.6 Coherent states and coherent intertwiners

Coherent states are a fundamental ingredient in studying the semiclassical behavior of a spin foam
amplitude. We briefly review the conventions used in our works. For more details we refer to [51] or to
other numerical works [32] and [30]. A SU(2) coherent state |j, ~n〉 in the irreducible representation of
spin j is given by the action on the lowest weight state |j,−j〉 of a SU(2) group element gn corresponding
to the rotation that transforms the unitary vector ~z = (1, 0, 0) into ~n = (sin Θ cos Φ, sin Θ sin Φ, cos Θ).
This coherent state minimizes the uncertainty in the two directions orthogonal to ~n. The Euler angles
of group element gn are related to the angles Θ and Φ by

gn = e−iΦ
σz
2 e−iΘ

σy
2 eiΦ

σz
2 , (2.82)

where we expressed the SU(2) generators i~σ/2 in terms of the Pauli matrices. The scalar product
between a coherent state and a state in the magnetic basis is given by

〈j,m| j, ~n〉 = 〈j,m|D(j)(gn) |j, ~n〉 = D
(j)
m−j(gn) = D

(j)
m−j(Φ,Θ,−Φ) , (2.83)

where D
(j)
m−j(Φ,Θ,−Φ) is the Wigner matrix element of gn parametrized in terms of its Euler angles.

SU(2) coherent states form an overcomplete basis in the irreducible representation of spin j space

1(j) = (2j + 1)

∫

S2

d~n |j, ~n〉 〈j, ~n| , (2.84)

where d~n is the normalized measure on the sphere.
A 4-valent intertwiner in the recoupling basis is given by

|ja; i〉 =
∑

m1

(
j1 j2 j3 j4
m1 m2 m3 m4

)(i)

|j1m1〉 |j2m2〉 |j3m3〉 |j4m4〉 (2.85)

Finally, we can define a coherent tetrahedron as the projection on the intertwiner space of the tensor
product of four SU(2) coherent states. Each one of them is associated to a face of the tetrahedron with
area ja and normal ~na

ci(~na) : = 〈ja; i| j1, ~n1; j2, ~n2; j3, ~n3; j4, ~n4〉 (2.86)

=

(
j1 j2 j3 j4
m1 m2 m3 m4

)(i)

D
(j1)
m1−j1(gn1

)D
(j2)
m2−j2(gn2

)D
(j3)
m3−j3(gn3

)D
(j4)
m4−j4(gn4

) . (2.87)

A coherent state’s graphical representation is given by a line ending on a little circle while the coefficients
of the coherent state are represented by

|j, ~n〉 = ci(~na) =

i
j4

j3j2
j1

�n1

�n2 �n3

�n4

. (2.88)

2.2.7 Vertex Amplitude in the coherent state basis

We can write the vertex amplitude for SU(2) BF theory and for the SL(2,C) EPRL model in the
coherent state basis. To express the amplitudes in the coherent state representation, one has to use
relation 2.84 and insert a resolution of the identity for every strand connecting two vertices. The
partition function for the two models becomes

Z∆ =
∑

jf

∏

f

Af (jf )
∏

v

∫
d~nefdjfAv (jf , ~nef ) . (2.89)
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The vertex amplitudes for the two models are

ASU(2)
v (jf , ~nef ) =

∑

ie

die

i1

i2 i5

i4i3

j2 j4

j1 j6

j9

j7

j5j3

j10 j8

, (2.90)

and, for the EPRL case

AEPRLv (jf , ~nef ) =
∑

lf ,ie,ke

diedke

k1

k2 k5

i4k3

j2

j4

j10

j9

i1

i2 i5

i3

j7

j1

j5j3
j2

j8
j7

j6

j4

j8

j3

j1

j6

j5

j10j9

. (2.91)

These vertex amplitudes have been extensively studied analytically by Barrett and collaborators in a
series of important papers [34, 8, 9]. Depending on the coherent boundary data they contain the Regge
action of a 4-simplex in the large spin limit. This connection with discrete gravity has been extensively
studied in one of the articles here presented in Chapter 5, and we report any discussion to that work.
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Chapter 3

Numerical Introduction

In this chapter, we introduce the library sl2cfoam where we provide the tools to evaluate the EPRL
and SU(2) spin foam vertex amplitude numerically. It is based on the decomposition of the EPRL
vertex amplitude in terms of booster functions introduced in the previous chapter. These utilities
are indicated for the study of vertex amplitudes with coherent boundary data and non, opening new
windows on the covariant formulation of loop quantum gravity. The library sl2cfoam can be found
at: https://github.com/qg-cpt-marseille/sl2cfoam and we published a detailed paper to present
it [30], on which this chapter is based. Some updates have been made in the last year and a second
version has been released with the fundamental help and knowledge of Francesco Gozzini.

The vertex amplitude is built from the topological SL(2,C) BF spin foam vertex amplitude by
imposing, weakly, the simplicity constraints resulting into a restriction of the unitary irreducible representations
in the principal series. To evaluate it in its original form one should perform four group integrals, as
in Eq. 2.71. Each group integral is, in general, a six dimensional unbounded highly oscillating integral
for which numerical integration methods are very inefficient. To solve this issue, a more computational
friendly form for the amplitude, has been proposed [31] and we summarize it in 2.81. The result is a
superposition of SU(2) {15j} symbols weighted by one booster functions B4 per edge minus one in the
considered vertex. To obtain this form each SL(2,C) integral is decomposed in a SU(2) ”rotation”, a
boost along a fiducial axes and another SU(2) “rotation”. The compact integrals are then evaluated
exactly composing the SU(2) invariants. The summation is over a set of auxiliary spins lf for each face
involved in the vertex (but excluding the gauge fixed edge) for a total of 6 distinct lf , with lower bound
lf ≥ jf , and a set of auxiliary intertwiners ke for each edge in the vertex (excluding the gauge fixed
one) for a total of 4 that can assume all the values compatible with triangular inequalities.

The expression (2.81) is far more convenient than the original one for numerical evaluation. We
decomposed the amplitude into smaller building blocks, which are easier to compute. We trade four six
dimensional unbounded integrals with a summation of SU(2) invariants, which are widely studied, and
a class of one-dimensional integrals that we need to perform and we can characterize independently.
On one hand, the introduction of booster functions brings a drastic simplification to the computation
of the vertex amplitude because it reduces the problem of dealing with many high oscillatory integrals
to the study a family of one dimensional integrals, which are easier to handle and manipulate. On the
other hand, we introduce a large amount of convergent summation in the computation which need to
be dealt with. The net gain of this operation is evident once we realize that each element of the sum
can be computed in a fast way and with high precision.

Our tools can be generalized to arbirtary valency, as we will see in one of the papers here presented
6. In the library sl2cfoam , in addition to the simplicial lorentzian amplitude, we also provide the tools
to evaluate amplitudes for SU(2) BF theory both in 3 and 4 dimensions.
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3.1 The sl2cfoam library

3.1.1 General strategy

We can summarize the evaluation of the vertex amplitude (2.81) in three main ingredients that we need
to mix in the right way:

� all the necessary {15j} symbols,

� all the required booster functions,

� the sum over the auxiliary spins and intertwiners.

In the next sections we will discuss in detail the problems we encounter in these three steps and their
possible solutions. Here we want to give a general overview. The first valuable lesson we learned is
to not waste time computing vanishing contributions. Many SU(2) invariants and booster functions
are zero because of symmetries (triangular inequalities, odd symmetries under permutations), we avoid
computing objects that are part of amplitudes that we can identify as vanishing a priori.

Symmetries also play a secondary but equally important role. The objects in the summation repeat
themselves, instead of wasting time doing the same computation over and over again, we store them in
the RAM and, at the end, we dump them to disk. To make it possible and not saturate the memory
in a couple of iterations, we optimize the computation factoring the symmetries and consider only
one representative per equivalence class. The bottleneck of the computation while dealing with SU(2)
invariants is not the evaluation time but the memory needed. In an equivalence class of {6j} symbols
there are approximately a hundred elements, we store only one representative per class reducing by two
orders of magnitude the amount of necessary memory.

When dealing with summations with a huge amount of terms we need to be extremely careful. In our
calculation, apart from the summation over auxiliary spins and intertwiners itself, these sums appear also
in the evaluation of the booster functions. In particular, to deal effectively with interference effects we
need to resort to arbitrary precision libraries [52, 53, 54]. How to sum a large number of finite precision
floating point numbers is a well-studied problem in numerical analysis. The bound of the worst-case
error on the sum of N numbers with floating point precision grows proportional to N . By using a
compensated summation algorithm [55] we can make this error independent of N , and having it depend
only on the floating-point precision of the addends. Moreover, we employ compensated summation
algorithms to significantly reduce the numerical error in the addition of finite precision floating point
numbers.

The full computation is divided into a large number of small tasks and we can efficiently parallelize
it with OpenMP. We parallelize the computation of the booster functions and the summation over the
auxiliary spins but not the evaluation of the SU(2) invariants. The computational time needed for the
evaluation of the SU(2) invariants is negligible respect to all the other steps.

The sums over the six auxiliary spins are unbounded and convergent, therefore to extract a number
from them we need to truncate. We introduce a homogeneous cutoff on all the spins jf ≤ lf ≤ jf + ∆
and we sum over all compatible intertwiners ke. The details of the convergence of this summation
strongly depend on the value of the face spins and edge intertwiners, hindering our ability to provide a
consistent estimate of the systematical error due to the truncation. We are then forced to perform an
analysis a posteriori: we report some examples in Figure 3.5 where it is possible to estimate it between
1 and 5 percent for ∆ ≈ 5.

The error on the booster functions, due to the discretization of the integral, and the one on the SU(2)
invariants are completely irrelevant with respect to the one due to the truncation. We will discuss them
in more detail in the following sections.

For a single 4-simplex with fixed intertwiners, the bottleneck of the computation is the evaluation
of the booster functions. If we need to compute the amplitude for all the possible intertwiners, for
example, because we are contracting more than a single vertex, most of the computational time is used
in performing the summation. Having in mind the goal of performing the computation of spin foam
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diagrams with many vertices, since the number of elements grows exponentially with it, we are studying
selection rules based on the asymptotic of the booster functions or with the machine learning techniques.

3.1.2 SU(2) invariants

Evaluating a significant amount of SU(2) invariants can be a resources draining task. An SU(2) invariant
is defined as a summation over the magnetic indices of intertwiners (and them as a sum of (3jm)
symbols). Their evaluation, directly from the definition, is not convenient, as it will exhaust too many
computational resources, both in time and memory. To compute an amplitude we need to evaluate
a large number of invariant, requiring a technique that is both fast and memory lightweight. We can
solve the time issue by reducing to one the number of summation. We can reduce every SU(2) invariant
in a sum of {6j} and {9j} symbols that can be directly computed using prebuilt libraries [56]. We
tackled this problem for the first time in [32] where the asymptotic of a general SU(2) invariant has
been studied analytically and also numerically in the simplicial case. We employ a similar technique
in sl2cfoam . Following the notation of the monography [45] we identify five different kinds of {15j}
symbols. For example, we can write the {15j} symbols of the first kind as a sum of the product of five
{6j}s symbols:

{15j}I :=

k1

k2 k5

i4k3

l2 l4

l1 j6

j9

l3

j5
l7

j10 l8

=
∑

x

(2x+ 1)(−1)
∑
i li+ji+ki+i4

{
k1 l7 x
k5 j5 l4

}{
j5 k5 x
l8 i4 l6

}

(3.1)

×
{

i4 l8 x
k3 j10 j9

}{
j10 k3 x
l3 k2 l1

}{
k2 l3 x
k1 l7 l2

}
.

where we gauge fix the edge corresponding to the fourth tetrahedron as in 2.81. To compute a
single amplitude at a fixed cutoff ∆, we need to evaluate an enormous amount of {15j} symbols,
and consequently of {6j} (or {9j}) symbols. We recall that all the spins lf vary in the range between
the face spin jf and the cutoff jf + ∆, while the intertwiners ke assume all the values allowed by the
triangular inequalities. Note that the SU(2) BF amplitude 2.54 is given by this {15j} where ∆ = 0 and
li = ji.

The development of algorithms that allow for a fast and accurate computation of {6j} symbol is a
fascinating and challenging topic studied by mathematicians and computer scientist, and a significant
amount of libraries for the job are available. In our work, we adapt the C library wigxjpf developed in
[56] that can be used to compute (3jm), {6j} and {9j} symbols. We refer to their original paper for a
detailed discussion of the library’s performances, accuracy and memory management.

We also solved the memory usage issue by efficiently storing {6j} symbols taking into account the
various symmetries of the symbols. The right data structure for this job is the hash table, a structure
that efficiently maps keys to values. We associate to each {6j} symbol a key that is automatically
shared by the whole class of symbols with the same value (because of symmetries). Every {6j} symbols
share its value with other 143 [57] symbols due to permutation symmetries. Notice that an extension
of the library wigxjpf named fastwigxj provides a hash table implementation for (3jm), {6j} and
{9j} symbols but, since it is designed for more general applications, it stores all possible combinations
of the desired invariants with all spins smaller than a cutoff. This amount of data is way more of what
we need in an ordinary EPRL four simplex computation resulting in a huge memory consumption, and
consequently being an obstacle when exploring larger values of the spins. To circumvent this limitation,
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we implement our own hash tables based on khash provided in the library Klib [58]. We generate the
keys of the hash table with the hash functions discussed in [57], and we store the {6j} symbols assigning
a unique six integers key to each symmetry class, saving one representative value.

We can introduce an additional simplification to improve the performance, as already used in [32].
We can use the freedom of choosing the intertwiners recoupling basis of the spin foam edges to rewrite
the {15j} symbols as:

{15j}R :=

k1

k2 k5

i4k3

l2 l4

l1 j6

j9

l3
j5l7

j10 l8

= (−1)2(l4+l3)+2k1−(k2+k3+i4+k5) (3.2)

×
{
k1 k3 k2

l1 l2 l3

}{
k1 i4 k5

j6 l4 j5

}


k2 k3 k1

j10 j9 i4
l7 l8 k4



 ,

and then rewrite the {9j} symbol as a sum of three {6j} symbols:

{15j}R = (−1)2(l4+l3)+2k1−(k2+k3+i4+k5)

{
k1 k3 k2

l1 l2 l3

}{
k1 i4 k5

j6 l4 j5

}
(3.3)

×
∑

x

(2x+ 1)(−1)2x

{
k2 j10 l7
l8 k5 x

}{
k3 j9 l8
j10 x i4

}{
k1 i4 k5

x k2 k3

}
.

Comparing with (3.1) we are still using five {6j} symbols but we are summing only over three of them,
resulting in a relevant save of time and memory.

The function where we implemented the evaluation and the storing of the SU(2) invariants is called
J15Symbol Hash. It prepares all the {6j} symbols in (3.3) needed for the computation of a vertex
amplitude given the 10 spins jf f = 1, . . . , 10 and a cutoff ∆. Following the conventions of (3.3) the
gauge fixed edge is identified by the four spins j5, j6, j9 and j10 in the recoupling basis (j5, j6) with
intertwiner i4. This simplification is quite in general, (is free if the edges are not boundary ones), but
we need to be careful in computations of spin foams transition amplitudes with many vertices, since the
base choice on one edge affects both vertices it connects, and the split (3.3) needs to be done consistently
in every vertex.

After the evaluation, the hash tables with the {6j} symbols are stored on disk and can be used for
further computations.
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Figure 3.1: Evaluation time of the function J15Symbol Hash. Left panel: Scaling of the configuration with
all the spins and the gauge fixed intertwiner equal jf = i4 = λ and a vanishing cutoff ∆ = 0, we compute the
{15j} symbols for all the values of the intertwiners ke. We see a power law trend a × jb with a = 2.9 × 10−6s
and b = 5.3. Right panel: Scaling in the cutoff of the configuration with all the spins and the gauge fixed
intertwiner equal to jf = i4 = 1. We see a power law trend a× jb with a = 4× 10−4s and b = 5.0.

Figure 3.2: Memory usage of the function J15Symbol Hash. Left panel: Scaling of the configuration with all
the spins and the gauge fixed intertwiner equal jf = i4 = λ and a vanishing cutoff ∆ = 0, we compute the
{15j} symbols for all the values of the intertwiners ke. We see a power law trend a× jb with a = 1.8× 10−4Mb

and b = 5.1. Right panel: Scaling in the cutoff of the configuration with all the spins and the gauge fixed
intertwiner equal to jf = i4 = 1. We see a power law trend a× jb with a = 1.8× 10−3Mb and b = 3.7.

3.1.3 Booster functions

The expression for the booster functions (2.76) requires the calculation of the integral over the rapidity
of four boost matrix elements (2.75) and a sum over magnetic indices. The latter is not a problem
in this case since the number of terms to be summed over is relatively small (for all equal spins j is
less than (2j)3 terms). However, the numerical integration is still very challenging. The integrand is
a superposition of highly oscillating hypergeometric functions that, when multiplied together, interfere
resulting in a localized, smooth and regular function. Moreover, for specific values, the hypergeometric
functions are evaluated near one of their poles. These apparent divergences will cancel with other terms
in the superposition but would require extremely high precision to control the accuracy of the result.
We solved these issues by attacking them from a different angle. A direct computation is very slow,
and with this motivation an alternative formula was proposed in [31] and numerically explored by [35].
Nevertheless, the situation improves significantly using a different representation for the boost matrix
elements (2.75). This problem has been explored in [59] where each boost matrix elements (2.75) is
rewritten as a finite sum of exponentials with complex coefficients. For simple irreducible representations
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and γ 6= 0, the result is given by:

d
(γj,j)
jlp (r) =

1

(er − e−r)j+l+1
(3.4)

×



j+l−|j−p|∑

m=0

Y γj,j;j,l;pm e(j+l−|j−p|−2m−iγj)r + (−1)l−j
j+l−|j−p|∑

n=0

Y
γj,j;j,l;−p
n e(j+l−|j−p|−2n+iγj)r


 ,

where Y are complex coefficients 1. In the same work they provide a C++ implementation of the booster
functions based on this formula. We integrated this code in sl2cfoam porting it in C, we added the
evaluation of the (4jm) symbols in (2.76) with wigxjpf and we provided an hash table data structure
similar to the one we introduced for the SU(2) invariants in the previous section. The evaluation of
these functions requires arbitrary precision floating point numbers, implemented with MPFR and MPC.
These tools allow us to compute the booster functions in an accurate way and to test some of theirs
properties.

The integral is performed using the trapezoidal rule with 3000 points as a default number. We
explored this choice in Figure 3.3. The convergence looks very fast in the number of points; we observe
a slight worsening with the increase of the lf . The number of integration points can be increased
arbitrarily to reduce even further the admissible error on the single booster function.

Figure 3.3: Dependence of the booster function on the number of points in the rapidity integral. We plot the
relative difference ε with respect to the value with 104 points. All three booster functions reported here have all
equal spins jf = 10 and intertwiner i = 0. The four spins lf and intertwiner k are respectively: lf = 11, 12, 13, 10
and k = 1, lf = 20, 22, 23, 20 and k = 2, lf = 30, 32, 33, 30 and k = 2.

The sampling of the integration interval is parallelized with OpenMP. The library sl2cfoam implement
the evaluation of all the booster functions needed in the computation of a vertex amplitude with the
function B4 Hash.

The values of the booster functions are stored in hash tables and then in a file indexed with the name
of the gauge fixed edge and the cutoff ∆. We store in each file the booster functions with all the possible
combinations of the six lf spins appearing in a vertex amplitude and every compatible intertwiner. We
report a typical time consumption of B4 Hash in Figure 3.4 and the scaling of the time as a function of
the number of cores used in the computation in Figure ??. The memory’s use of booster functions is
negligible compared to {6j} symbols’ one.

When computing the booster functions, one notices that, for a fixed set of spins jf and lf , not
all combinations of intertwiners contributes with values of similar order of magnitude. An example
of this can be seen in [31] and in [60], for the case lf = jf (called simplified model), where the main
contribution is given by the same intertwiners ie = ke. The generalization of this result for any set
of lf is unfortunately still unknown. This result, or an equivalent method to localize the dominant
contribution from the booster functions, will immediately translate into a significant save of time in the
evaluation of the amplitude, especially in the case of multiple vertices.

1We refer to [59] for their full expression.
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Figure 3.4: Evaluation time of the function B4 Hash. Left panel: Scaling of the configuration with all the spins
and the gauge fixed intertwiner equal jf = i4 = λ and a vanishing cutoff ∆ = 0. We compute all the booster
functions for all the values of the intertwiners ke. We see a power law trend a × jb with a = 0.7s and b = 2.5.
Right panel: Scaling in the cutoff of the configuration with all the spins and the gauge fixed intertwiner equal
to jf = i4 = 1. We see a power law trend a× jb with a = 2.7s and b = 4.3.

3.1.4 Four simplex amplitude

In the previous two sections we illustrated the evaluation of the constituents of the vertex amplitude
(2.81). In this section we will discuss how all the contributions are summed together. The summation
is performed over six auxiliary spins lf and four ke intertwiners, whose ranges depends on the lf but
are generally bounded. The main problem in this step is the extension of these summations. They are,
generally, unbounded and numerous. As we already stressed multiple times, the full amplitude is well
defined [48], implying that the summations over the lf are convergent, thus being unbounded is not
a problem. Nevertheless, to be able to do a numerical evaluation of the sum we need to introduce a
homogeneous cut-off ∆. In the following, we will denote as the Nth shell the set of factors contributing to
the sum with maximum spin difference Max {lf − jf} = N . To be concrete we studied the convergence
of the amplitude as a function of the cutoff, generally, it is quite rapid. We report some explicit examples
in some particular cases in Figure 3.5. It is not possible to have a unique prescription to set the optimal
∆, since the convergence of the amplitude depends on the details of the data like the face spins jf and
the Immirzi parameter. We explored other configurations and the convergence is qualitatively the same.
However, the ratio between the amplitude value with a different number of shells varies.

Figure 3.5: Convergence of the vertex amplitude. Left panel: Convergence of the vertex amplitude while
increasing the cutoff ∆ for a configuration with all jf = 1 and three different set of boundary intertwiners.
Right panel: The relative error ε between the shell ∆ and the shell ∆ = 12, that has been taken as the correct
value of the amplitude. The error for the simplified model (∆ = 0) is ∼ 50% while from ∆ = 5 it decreases to
1% − 5%. The convergence of the vertex amplitude depends on many factors including the chosen boundary
configuration and the Immirzi parameter.

In the library sl2cfoam the function sl2cfoam four simplex performs the summation of the 4-
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simplex vertex amplitude. The algorithm at the base of the implementation is described in Figure 3.9,
where we also show the hierarchy respect to the other main functions previously described. sl2cfoam four simplex

is the main result of our numerical work and the big star of the library. Given the ten face spins, the five
edge intertwiners, the cutoff ∆ and the Immirzi parameter, it uses the functions J15Symbol Hash and
B4 Hash described in the previous sections to precompute all the needed SU(2) invariants and booster
functions and then proceed to the summations. In the case of an SU(2) BF vertex amplitude, instead,
we implemented its computation in a command called sl2cfoam four simplex BF

Given the vast number of factors to be summed over we need to employ a compensated summation
algorithm to reduce the numerical error caused by the sum of finite precision floating point numbers.
Furthermore, to minimize the error, we convert and multiply the components of the factors to arbitrary
precision floating point numbers (using the library MPFR). Parallelization is needed at this step but,
while we have implemented it for the summation over the face spins lf , it was counterproductive to
do it also for the four intertwiner sums ke because of triangular inequalities: when we fix a set of lf
we set the bounds over the ke and the remaining four sums depend on them. In Figure 3.6 we show a
parallelization test at fixed workload while increasing the number of cores.

Figure 3.6: Parallelization at fixed workload: Scaling of the time required by the computation of a 4-simplex
configuration with jf = 1 and ∆ = 11 while increasing the number of cores. The power law a × jb is given by
a = 109s and b = −0.76. Since the parallelization acts only on the lf summations and not on the ke ones the
code performs better, in this regard, when a large ∆ is considered.

We stress that selection rules, to find the important terms within the sums, would be an essential
step forward. At the present stage, we can set an empirical cut-off over boosters to reduce the number
of terms to be summed over but it would be exciting to study, with new methods such as machine
learning’s techniques, selection rules for the vertex amplitude.

Figure 3.7: Evaluation time of the function sl2cfoam four simplex. Left panel: Scaling of the configuration
with all the spins and the gauge fixed intertwiner equal jf = i4 = λ and ∆ = 0. We see a power law trend a× jb
with a = 2.0 × 10−6s and b = 4.8. Right panel: Scaling in the cutoff of the configuration with all the spins
and the gauge fixed intertwiner equal to jf = i4 = 1. We see a power law trend a× jb with a = 4× 10−4s and
b = 5.2.
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Figure 3.8: Left panel: We show the number of factors #fact to be cycled over to compute a single 4-simplex
with boundary spins, intertwiners equal to λ, and ∆ = 0. The power law is given by a = 0.2 and b = 4.3 Right
panel: Evaluation time of a single factor in a computation with all boundary spins and intertwiners equal to
λ. Each factor takes ∼ 10−5 s. Memory data access using khash works at ∼ 10−7s: we have to retrieve data for
four B4, two “fixed” {6j} and for a sum of three {6j}, converting data to MPFR variables and then assembly the
amplitude.This leads us to ∼ 10−5s of evaluation time for a single factor of the lf , ke sum. If we would be able
in the future to directly store {9j} symbols we could save one order of magnitude in time.

sl2cfoam four simplex homogeneous cut off ∆

input: ten spins,

Initialize a new hash table

Return value

End

Store and return value

yes no

yes

J15Symbol Hash

no

Immirzi parameter

five intertwiners

B4 Hash

parallelization on lf

Compute value and sum

Load {6j} and boosters tables

start summation

conversion in MPFR variables
compensated summation

Fix a set of six lf spins

and four ke intertwiners

Have you 4-simplex

hash tables?

Have you the table
with the required ∆

and the required value?

Is this the last set?

yes

no

Figure 3.9: sl2cfoam four simplex is the main function to compute and store EPRL vertex amplitudes
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3.2 Limitations and possible updates

Many technical improvements are necessary to unlock the full potential of this code. In analogy to what
we do for the {6j} symbols, we would need to implement hash tables for {9j} symbols. This upgrade
would speed up the computation of almost an order of magnitude, trading at low spins memory usage
with faster access to data. Moreover, we want to explore the possibility of computing booster functions
with the Kerimov formula, as explained in [31], for which recursion relations are available, simplifying
the summation over the auxiliary spins lf . A new version of the library has been released since [30],
in which we implement recursion relations for SU(2) Clebsch-Gordan coefficients and for three valent
booster functions. Unfortunately, a formula for the four valent case it is still not known. This would
improve a lot the computational time overall, at the present stage the computation of many B4 is
a strong time-consuming process. To perform the computation of transition amplitudes with many
vertices, it is also crucial to improve our parallelization process, using MPI and POSIX threads enabling
many servers calculations. A similar improvement will be reached by finding selection rules to restrict
the summation to only the important terms. Our lack of analytical insight into the booster functions
will force us to use new techniques like, for example, machine learning or Monte Carlo techniques.
For a quick reference, we report in Table 3.1 the timing of the various functions in sl2cfoam .

jf = i4 = 7 jf = i4 = 15 jf = 1, i4 = 1, ∆ = 5 jf = 1, i4 = 1, ∆ = 10

15j
0.1s 6.8Mb 6.1s 218Mb 1.4s 0.8Mb 62.0s 6.8Mb

a = 2.9 · 10−6s b = 5.4 a = 4 · 10−4s b = 5.0

B4

99.0s 642.1s 2433s 49214s

a = 0.7s b = 2.5 a = 2.7s b = 4.3

Av
0.03s 0.08s 2.0s 69.7s

a = 2.0 · 10−6s b = 4.8 a = 4 · 10−4s b = 5.2

Table 3.1: Summary of the computational time of the functions J15Symbol Hash, B4 Hash, and
sl2cfoam four simplex. We report some examples of computational time for configuration with all spins equal
to 7 and 15 in the first two columns and the parameters of the power law behavior ajb. In the last two columns
we report some examples of computational time for configuration with all spins equal to 1 as a function of the
cutoff and the parameters of the power law behavior a∆b. All the computations are performed with a single
processor.

A major problem is the following. Computations with many vertices have to be properly designed
to be efficient. For instance, see Chapter 8 and the related numerical code [61]. From a memory
point of view, the main obstacle is represented by the storage of many {6j} symbols to be used in
J15Symbol Hash. On the other side, B4 Hash, and sl2cfoam four simplex are mostly time consuming
functions due to integrations in the booster functions and resummation in the 4-simplex amplitude over
lf and over intertwiners ke and ie. Often, when computing an amplitude with many vertices, one has
to find a balance between these two sides. One needs to store as much data as possible in memory to
have a code working around clock speed. Sometimes this is not possible, depending on the machine
used, and a better rearrangement of the terms in the summation has to be found. At the present stage,
these functions are basic building blocks that have to be carefully used for a code to work fast. It would
be useful to develop our framework further and to make the library sl2cfoam more user-friendly and
available for users who do not know C well.
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Chapter 4

Conclusive Overview

In the previous Chapters, we explored the theoretical and numerical tools that we will use in the
proceedings. An interested reader can use these introductions as a reference. In the next Chapters,
we present four out of the six papers written during this Ph.D. We start in Chapter 5, analyzing the
numerical large spin limit of the coherent SL(2,C) EPRL vertex amplitude 2.91. First of all, it is
a fundamental test for the tools developed in [30] and briefly reported in Chapter 3. This result is
also important because it confirms the semiclassical relation between the vertex amplitude 2.91 and
the Regge action 2.25 of a euclidean 4-simplex. In the case of a lorenzian 4-simplex however, we were
not able to obtain a satisfactory result. In fact, the number of shells to be summed over depends on
the boundary data and, for a lorenzian 4-simplex, exceeded the numerical resources available to us at
the time. It could be worth to design a better strategy to tackle the problem for that particular case,
mainly thanks to the advances made in sl2cfoam and using more powerful servers. We then move to
exploit new computations within the generalized sector of the EPRL model, presented in Chapter 6.
We systematically study the transition amplitudes between two dipole spin networks up to two vertices.
Generalized booster functions form the resulting amplitudes while SU(2) invariants are not present.
We understand some of their decay’s properties when increasing the number of vertices, edges, and
faces in the dual complex ∆?. We discover that there are no asymptotic Regge actions at the order
considered, even if the amplitudes still induce non-trivial correlations between boundary states. Also,
spin correlations computed within a mini-superspace description appear only when one internal face is
present in the foam. We think that the generalized sector can be used as an arena to test different
ideas on how the sum of foams should be organized and could provide an interesting insight into the
continuum limit of the theory. However, the lack of connections with Regge Calculus makes it hard
to advocate for any physical interpretations in this domain. Moreover, the simplicity of the numerical
evaluation of these non-simplicial spin foams has a payoff in the loose combinatorics of the faces. The
proliferation of possible amplitudes is relevant, and the scaling power law can not be a priori determined
by looking at the number of vertices, edges and faces.

We then move back to focus again on simplicial amplitudes. In Chapter 7, we propose a new
algorithm to numerically identify stationary phase points in multi-vertices highly oscillating transition
amplitudes at fixed boundary data. Our strategy is based on the numerical study of the stationary phase
points in an amplitude’s internal faces. This proposal is powerful. First of all, it is generalizable to
many vertices and many internal faces and can detect an arbitrary number of stationary phase points.
The algorithm can, in principle, be used to investigate any triangulation. Moreover, the numerical
computation of the amplitude’s scaling in the large spin limit has many limitations. On the contrary,
this new procedure is much more feasible from a computational point of view since it requires to compute
an amplitude at fixed boundary spins. We test our idea in the 3-dimensional Ponzano Regge model 2.2.2,
analyzing the amplitude formed by three tetrahedra glued together on one internal length. We recover
the semiclassical geometries dominating the spin foam. Stationary phase points in the bulk spin match
the classical internal lengths allowed at given boundary data. This paper is particularly interesting
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because it shows that computations in spin foam theories can be done from a different perspective,
in a new and easier way. Our algorithm could be useful also for people in other fields dealing with
the critical behavior of highly oscillating functions. Finally, in Chapter 8, we apply our methods to
the 4-dimensional SU(2) BF model. By computing the amplitude formed by three 4-simplices glued
together, the so-called ∆3, we can detect stationary phase points that are compatible with flat and
curved boundary geometries. This result clashes with the claims of flatness in spin foam present in
literature that, even if developed for the EPRL model, can be applied to this simpler case. The flatness
problem argues that the partition function of the EPRL model is dominated in the semiclassical limit by
flat geometries. The same arguments can be directly applied to SU(2) BF spin foam theory, and they
indicate that curved geometries should be suppressed in the large boundary spins limit. Our numerics
prove that this is not the case.

Our work and the papers here presented, aimed to address some crucial questions in spin foam
theories. We found some partial answers so far, which suggest a way forward to proceed.

In [63, 27] there are two different estimates of the divergence called “self-energy” diagram. An
extensive set of power-law divergences are compatible with these two analyses. A better understanding of
its properties would help to correctly regularize the theory without introducing a cosmological constant,
following a prescription similar to the one studied in [64]. sl2cfoam allows the numerical computation
of this amplitude, and it could be useful to clarify the problem.

Another pressing issue is the renormalization group flow of the EPRL vertex amplitude. Since the
discretization breaks the diffeomorphism invariance of the continuous theory, we need to understand
what mechanism can restore it. It would be helpful to find a fixed point in the renormalization group
flow and to identify phase transitions. An interesting insight on this topic is provided in [23, 65, 66]
and in [67, 68, 69, 70, 29]. In this last series of works, the authors perform a numerical investigation
of the flow of the euclidean EPRL model on a hypercubic lattice and a large number of vertices. The
calculations are possible thanks to some strong but vital approximations: they work with the euclidean
version of the theory, they restrict to a specific form of the intertwiners, and instead of using the full
vertex amplitude they replace it with its asymptotic formula. At present, sl2cfoam cannot directly
attack analog computation since the number of vertices needed for a lattice computation is probably
out of our reach. Still, we do not exclude to be able to do it soon after all the proposed upgrades are
implemented, and we have access to more processing power (for the moment we are limited to a 32 cores
machine). Nevertheless, if we restrict our computations to a purely quantum region characterized with
relatively small spins, probably up to order 10, we can now compute transition amplitudes with a few
vertices.

Concerning the flatness problem, there are two interesting opportunities to finally settle the dispute.
From a numerical standpoint, an important step would be to apply the algorithms in 7 and 8 to the
SL(2,C) EPRL model and to explore more refined triangulations in which the Regge equations are
not trivial, as it is the case for the 4-dimensional ∆3. We should then be able to compare BF and
EPRL directly. In the topological case, in principle, all deficit angles are allowed in the semiclassical
limit of a given boundary state. Instead, if the EPRL aims to be a 4-dimensional analogous of the
Ponzano-Regge model, then the quantum simplicity constraints 2.62 should select only stationary phase
points corresponding to solutions of the Regge equations of motion. At the present stage, this is not
clear at all: the semiclassical limit of amplitudes with multiple vertices could lead to a different discrete
version of classical General Relativity then Regge Calculus. Or the simplicity constraints could not
be correctly imposed at the quantum level. In this sense, numerics can help us in understanding the
theory. A calculation involving bulk lengths can be set up. Using our algorithms, it is feasible from a
computational point of view, both in the EPRL and in the BF model, and we think it should be carried
out as soon as possible.

Analytically, we are currently exploring a different path. In [19], Hellmann and Kaminski studied
the wave front set of the partition function of the SO(4) EPRL model. They argue that analyzing the
properties of the distributions involved in the spin foam amplitudes, one can recover the holonomies
dominating the partition function’s integrals 2.70 (and the classical equations for bivectors). They then
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interpret these holonomies with classical variables, and they argue for the flatness of the model. Their
geometrical interpretation is not entirely convincing since it should also lead to flatness for the BF case.
However, we are intrigued by their ideas. We are currently computing the wave front set of the SL(2,C)
EPRl partition function, and we hope it could help us to shed some light on the spin foam semiclassical
limit for an extended triangulation from an analytic point of view.

Are the simplicity constraints 2.23 imposed correctly in the EPRL model? Do we recover the solution
of Regge equations 2.26 in a specific limit of the theory? And if not, what is the semiclassical limit
in the case of an extended triangulation? These questions still do not have a clear answer. At the
same time, we think that the work we have been done in Marseille in the last years can be rightly
considered an important step ahead, to explore spin foam theories and to start filling the gap between
computations and physical speculations. Is the EPRL model a good, or at least consistent, theory for
quantum gravity? We can not answer this fundamental question yet, but we like to think that we are
heading in the right direction to solve the puzzle.
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Abstract

The Lorentzian Engle-Pereira-Rovelli-Livine spin foam amplitude for loop quantum gravity is a multi-
dimensional noncompact integral of highly oscillating functions. Using a method based on the decom-
position of Clebsch-Gordan coefficients for the unitary infinite-dimensional representations of SL(2,C)
in terms of those of SU(2), we are able to provide for the first time numerical evaluations of the vertex
amplitude. The values obtained support the asymptotic formula obtained by Barrett and collaborators
with a saddle point approximation, showing, in particular, a power law decay and oscillations related to
the Regge action. The comparison offers a test of the efficiency of the method. Truncating the decom-
position to the first few terms provides a qualitative matching of the power law decay and oscillations.
For vector and Euclidean Regge boundary data, a qualitative matching is obtained with just the first
term, which corresponds to the simplified EPRL model. We comment on future developments for the
numerics and extension to higher vertices. We complete our work with some analytic results: We provide
an algorithm and explicit configurations for the different geometries that can arise as boundary data,
and explain the geometric consequences of the decomposition used.
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1 Introduction

We report on numerical studies of the Lorentzian Engle-Pereira-Rovelli-Livine (EPRL) vertex amplitude
for spin foam quantum gravity [1, 2] (for reviews, see [3, 4]). These are aimed in particular at testing its
large spin asymptotic behavior, as derived by Barrett et al. [5]. The asymptotics can be interpreted as a
semiclassical limit for the vertex amplitude and shows the presence of the Regge action, for a suitable choice
of boundary data. It establishes an important relation to (discrete) general relativity that is at the heart of
most of the physical applications of the EPRL model, thereby the interest in numerical verifications.

Our numerical work is based on the code sl2cfoam developed in [6] and publicly available at [7], opti-
mized here for the specifics of the vertex amplitude. The code implements the method of [8] to compute
Lorentzian Clebsch-Gordan coefficients and spin foam amplitudes. Our goal is twofold: on the one hand,
to provide the first numerical test of Barrett’s Lorentzian asymptotics results [5], thus verifying the saddle
point approximation underpinning it, as well as estimating its validity. On the other hand, to examine the
robustness of sl2cfoam and test its performances. This means being able to compute Lorentzian spin foam
amplitudes in the deep quantum regime, a necessary step for the spin foam formalism.

The results we found are encouraging, albeit not completely satisfactory. The numerics confirm Barrett’s
formula for boundary data corresponding to vector geometries or to Euclidean 4-simplices. In these cases, the
asymptotics is reached fast, with an error below 10% at spins of order 10. This confirms the validity of the
saddle point approximation already at small spins, a situation similar to the much more extensively studied
case of asymptotics of SU(2) invariants, see e.g. [9, 10]. In parallel, it shows the accuracy and robustness of
sl2cfoam. To give an idea of the heavy computational load required to achieve these results, the plot used
to confirm the Euclidean asymptotics at spins of order 10 needed the evaluation of 1011 configurations, each
of which is determined by up to 104 one-dimensional unbounded integrals of oscillating functions. We used
a server provided by the CPT with 32 Intel® Xeon® CPUs E5-2687W v2 at 3.40GHz with 264 gigabytes
of RAM. The evaluation times depend on the boundary data, as we will explain in the next sections. For an
Euclidean 4-simplex, the main plot of section 5.3 took approximately 3 weeks. For vector geometries the two
plots in section 5.2 took about 30h each. Lorentzian 4-simplices are even more demanding, and a bottleneck
in our computational precision restricted the number of data points accessible to us. These are shown in
section 5.4, which took about 2 days. These were enough to provide evidence of a critical behavior with the
predicted power law falloff, as well as nonmonotonic behavior depending on the Immirzi parameter. But a
more significative agreement with the asymptotic formula, in particular seeing the predicted oscillations, was
not obtained, and will require more computational work. Our results also show that the simplified model
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introduced in [8] captures the key features of the full EPRL asymptotics for vector and Euclidean Regge
geometries, but fails to do so, and instead decays exponentially, for Lorentzian geometries.

The increased difficulty of Lorentzian 4-simplices has partially to do with the fact that one cannot resort
to an equispin configuration. The best we found was a certain isosceles configuration, but even then one
has to deal with individual spins that are much higher than the value of the rescaling parameter controlling
the asymptotics. Furthermore, the internal sums introduced by the method of [8] turn out to converge more
slowly than for a Euclidean 4-simplex. This fact actually has a geometric origin, which explains how the
Lorentzian 4-simplex is reconstructed from many Euclidean 4-simplices compatible with the SU(2) {15j}
symbol, and whose tetrahedra are suitably transformed thanks to the half-edge booster functions. This
discussion also clarifies the critical behavior observed for the simplified model.

To obtain the numerical results presented, it proved necessary to develop an efficient algorithm to con-
struct the boundary data. This is a spin-off of our work, and we devote a section of the paper to explain how
this problem can be solved and provide in the same online repository [7] the relevant pieces of code. For the
vector geometries, we used the explicit parametrization worked out in [10]. For the Regge geometries, we
used a “deconstruction” algorithm, whereby we start from a geometric 4-simplex identified by its vertices,
and derive the 3D data associated with it by the EPRL model’s Y map. This procedure exposes some useful
properties of the 3D data and was helpful for us to better understand the details of the saddle point analysis
of [5]. We provide some more explicit formulas for the Hessian at the saddle point, needed for the numerical
comparison of the analytic formula with the data points.

Barring the increased computational power to confirm precisely the analytic formula for Lorentzian 4-
simplices, our work confirms the validity of this crucial result for the semiclassical limit of the EPRL model,
but more importantly supports the robustness of the method [8] and code sl2cfoam [6], which can now be
used to perform more ambitious calculations. To that end, we point out the heavy cost of using coherent
intertwiners. These are needed for the asymptotic formula, but many physical applications of the EPRL
spin foam model can be done in the much cheaper orthonormal basis of intertwiners. Some of us presented
calculations with two nonsimplicial vertices in [11]. The present code is much more performing than the
one there used, and we hope to apply it in future work to calculations with a few simplicial vertices and
orthonormal intertwiners.

With the intent to make the paper concise and its technical results easier to appreciate, we refer to the
existing literature for the necessary background. In particular, to [1, 12, 2] for the analytic background on
the EPRL model, to [5] for its saddle point approximation (see also [13, 14, 15, 16, 17] for related work),
to [8] for the method used for the exact evaluation, and to [6] for the numerical code, describing its details,
functioning scheme, and generic performance tests. Section 2 contains the minimal information about the
vertex amplitude for the paper to be self-contained and gives an overview of the approach used for the
calculation. Section 3 describes our algorithm to identify boundary data with the required properties, and
the explicit configurations used in the numerical calculations. Section 4 discusses the central point of the
convergences of the internal sums and presents a useful approximation that we use to shorten significantly
the numerical time of some numerical evaluations. Section 5 contains our main results, a selection of data
and their comparison with the analytic asymptotic behavior. Section 6 contains a discussion on the role
of the booster functions in mapping Lorentzian 4-simplices from the Euclidean ones associated with the
SU(2) {15j} symbol, as well as a summary of the numerical situation and future developments. After our
conclusions, we supplement the paper with two Appendices. In one we provide explicit formulas to fix our
conventions. In the second we summarize the asymptotic analysis of the EPRL vertex [5] and report on the
form of the Hessian at the critical point.

2 EPRL vertex amplitude and its asymptotic limit

The (coherent) vertex amplitude for the Lorentzian EPRL spin foam model [1, 2] is an SL(2,C) invariant
associated to the boundary graph of a 4-simplex,

Av(jab, ~nab) :=

∫ 5∏

a=2

dha
∏

a<b

D
(γjab,jab)
jab,−~nab,jab,~nba(h−1

a hb), (1)
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where ha ∈ SL(2,C), and D(ρ,k)(h) are infinite-dimensional unitary representations of the principal series,
labeled by ρ ∈ R and k ∈ Z/2. The irreducible representations (irreps) are restricted to satisfy ρab =
γkab, where γ is the Immirzi parameter, and expressed using Naimark’s canonical basis with minimal spin
eigenvalues jab = kab, and unit vectors ~nab used to build coherent intertwiners [18, 12]. Conventions and
explicit formulas are reported in Appendix A. The minus sign in the vectors appearing as rows is for later
convenience. The indices a, b = 1, . . . 5 stand for the nodes of the graph, and notice that one redundant
integration has been removed, which is necessary to ensure finiteness [19, 20] (see also the discussion in [11]).

The boundary data of the amplitude are ten spins jab = jba and twenty unit vectors ~nab 6= ~nba. Four
different subsets of data play an important role, see Fig. 1: First, closed twisted geometries, defined by the
following closure conditions, ∑

b6=a
jab~nab = 0, ∀a = 1. (2)

This means that the spins and normals data around each node define a tetrahedron.1

Within the space of closed twisted geometries, we can distinguish two disconnected subsets. One is vector
geometries, if furthermore there exist five rotations Ra ∈ SO(3) such that the two normals associated to
each face can be made opposite to one another:

Ra~nab = −Rb~nba. (3)

These rotations are determined by ha at the corresponding critical point. Clearly, the simplest possible case
is when the normals are pairwise antiparallel,

~nab = −~nba, (4)

which plays a useful role in choosing data. It is a remarkable fact that all Euclidean Regge geometries,
namely all Euclidean 4-simplices in this context, are a subset of vector geometries. They are characterized
by additional shape-matching constraints on top of Eq. 3, which can be described either using bivectors
[5, 25] or spherical cosine laws [26, 10]. Their neat implication is to guarantee that the five tetrahedra
determined by the closure conditions coincide with those determined as the boundary of a 4-simplex having
the spins as areas.2 What happens in the simplest case 4 is that there is always one critical point with all
holonomies at the identity, and only when the shape-matching conditions are further satisfied does one find
a second non trivial critical point that allows the reconstruction of the Euclidean 4-simplex.

The second disconnected subset of the closed twisted geometries are the Lorentzian Regge geometries,
for which the boundary data coincide with those determined by a Lorentzian 4-simplex with all tetrahedra
spacelike. The subset can again be characterized by shape-matching constraints in terms of bivectors [5, 25]
or Lorentzian spherical cosine laws [27, 28]. Furthermore, while in this subset 3 are not satisfied, it is still
true that the 3D normals are related by five complex transformation Ha such that

Ha~nab = −Hb~nba. (5)

These unimodular complex matrices are non unitary 3D representations of Lorentz boosts. They are again
determined by the ha at the corresponding critical point.

1To be more precise, twisted geometries have additional ‘twist’ angle variables, denoted ξab and canonically conjugated to the
spins [21, 22]. These angles do not show up in the coherent amplitude 1, defined by eigenvectors of the Casimir spin operator.
They would appear in amplitudes where also the areas are semiclassical and not quantum, like in the graviton propagator
calculations, see e.g. [23, 24]. The boundary data of 1 are thus a subset of twisted geometries with ξab = 0.

2That this is compatible with Eq. 3 is not obvious, and one of the key results of the reconstruction.
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Generic data
 namely open twisted geometries
35d

Figure 1: Classification of the boundary data. It is interesting to compare the situation with SU(2) BF theory
[16, 10] and with the Euclidean EPRL model [29, 2, 12]. All three models have the same boundary states and thus
some boundary data (jab, ~nab) in the coherent amplitudes. What changes are the group elements being integrated over
[which belong to SL(2,C), SU(2) and SO(4) respectively] and therefore the existence of critical points for a given set.
For instance, Lorentzian Regge data only admit critical points for the SL(2,C) model.

How these conditions allow the embedding of the boundary data in a flat Euclidean or Lorentzian 4-
simplex will be explained in detail below. It is in the meantime useful to remark that the areas alone suffice
to characterize a 4-simplex and distinguish whether it is Euclidean or Lorentzian. Data with areas compatible
with a Euclidean 4-simplex can be either a vector geometry or a Euclidean Regge geometry depending on the
compatibility or lack thereof of the normals with the Euclidean 4-simplex. This requirement can be expressed
in terms of the shape-matching conditions reducing a twisted geometry to a Regge geometry [26, 10].

The coherent amplitude 1 is a complex number, and it is important to make a remark about its phase
before continuing. The original formulation of the model [1] uses the standard basis of orthonormal inter-
twiners, which are labeled by a spin number ia per vertex, instead of the coherent intertwiners, labeled
by unit vectors ~nab. The resulting vertex amplitude Av(jab, ia) is a real number, provided a certain phase
convention for the Lorentz irrep matrices is chosen [8]. The interest in using the complex coherent amplitude
1 comes from the finer characterization of the boundary data and the clearer geometric interpretation that
it permits. However, while the original amplitude is SU(2) invariant, Eq. 1 is only SU(2) covariant: A
rotation of the 4-normals on a node preserves the amplitude only up to a phase.3 This phase is irrelevant
for geometric considerations because the coherent states themselves are only defined up to a phase, thus for
any chosen boundary configuration, one can suitably tune the coherent state phase to have a real amplitude.
Accordingly, we can neglect this phase and factor out the rotational gauge freedom at each node in our geo-
metric considerations. Up to rotations, the boundary data span a 35-dimensional space. The closed twisted
geometries are a 20-dimensional subset, 10 areas and 2 × 5 = 10 shape parameters, the vector geometries
a 15-dimensional subset, ten areas and five angles [10], and the Regge geometries a ten dimensional subset,
ten lengths or ten areas (up to some discrete ambiguity in the Euclidean case).

Thanks to properties of the coherent states, integrands like Eq. 1 can be written in exponential form
with a linear dependence on the spins [18]. In particular, under a homogeneous rescaling jab 7→ λjab we
can write the integrand as expλS(ga; jab, ~nab). This gives the possibility of evaluating the amplitude with a
saddle point approximation in the homogeneous large spin limit, λ 7→ ∞. This approximation was studied
in [5],4 and it was found that the leading order asymptotics of the coherent amplitude 1 has the following
dependence on the boundary data:

3As for full Lorentz invariance, this is broken by the Y -map identifying k = j. Nonetheless, it can be shown that the vertex
amplitude transforms covariantly under Lorentz transformations of the boundary data, and when various vertex amplitudes are
glued together to form an extended spin foam, Lorentz invariance is restored in the bulk [30].

4The definition of the coherent vertex amplitude used here differs from the one in [5] by an overall phase, given for γ > 0 by

exp{i
∑

a<b

(2jab(π + Φab) + arctan γ)}.

This is due to a phase difference between the Wigner matrices and the antilinear pairing of two unitary representations, as well
as to our use of the antipodal map instead of the complex structure in associating coherent states to the target nodes. See
Appendix A for details.
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1. For generic open or closed twisted geometries: exponential decay in λ;

2. For vector geometries: power law decay λ−12;

3. For Regge geometries: power law decay λ−12 with nonambiguous real oscillations, and frequency given
by the Regge action. The Regge action is independent of γ for Euclidean data and depends linearly
on it for Lorentzian data.

Our goal in this paper is to test numerically these saddle point approximations, in particular the power
law decays and the frequency of the oscillations. Such a numerical evaluation is not an easy task: The formula
for the amplitude contains 12 unbounded integrations, and a complex and rapidly oscillating integrand built
out of sums of products of hypergeometric functions. A direct approach using for instance adaptive Monte
Carlo methods5 appears daunting, and we are not aware of any results even for the much simpler Lorentzian
Barrett-Crane integrals. Facing these difficulties, the idea of [8] was to reduce as much as possible the
unbounded integrations, taking advantage of the known factorization of SL(2,C) Clebsch-Gordan coefficients
into SU(2) ones. Applied to Eq. 1, the method in [8] splits the expression into a convolution between an
SU(2) {15j} symbol and one-dimensional boost integrals, called booster functions and denoted Bγ4 :

Av (jab, ~nab) =
∑

lab≥jab

∑

ka,ia

{15j}
5∏

a=2

dkaB
γ
4 (jab, lab; ia, ka)

5∏

a=1

cia(~nab) (6)

=
∑

lab,ka,ia

j25

j24
k2 k5

k4k3

�1

�2 �5

�3

l45l23 l35

�4

j12

j13 j14

j15

l34

l24

l25

j23

j12

j34
j24

j14

j45

j25

j35
j45

j15

j34
j35

j13

j23

. (7)

Here dj := 2j + 1. The {15j} symbol is labeled by internal spins lab and intertwiners ka, except at the
node 1 without group integration, where it is labeled directly by the boundary spins and intertwiners. The
unbounded sums over lab go from jab to infinity, whereas the sums over the intertwiner labels ka, ia are
bounded by the usual SU(2) triangle inequalities. We define the simplified EPRL model consistently with
[8, 6, 11] as the truncation of the EPRL amplitude (7) where only the first term in the summation lab = jab
is considered.

The booster functions depend both on the internal and the boundary data, and to obtain the coherent
amplitude 1, they are contracted with the coefficients ci of the coherent intertwiners determined by the
normals ~nab. The graphical notation used in the second line helps to keep track of which links carry internal
spins, as well as of the orientation of the normals. The booster functions encode the details of the Y -map
defining the EPRL model, and are defined as follows,

Bγ4 (jf , lf ; i, k) = didk
∑

mf

(
jf
mf

)(i)(
lf
mf

)(k)
1

4π

∫ ∞

0

dr sinh2 r
4∏

f=1

d
(γjf ,jf )
jf lfmf

(r) =

j4

i
j3j2

j1

l4

k
l3l2

l1

, (8)

in terms of generalized four-legged (4jm) Wigner symbols and boost matrix elements d(ρ,k)(r), see [8] for
explicit formulas. To not be confused with di and dk the dimension of the SU(2) irrep of spin i and k, see

5As was done for the graviton propagator with the Euclidean Barrett-Crane model [31].
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Appendix A for more details on our conventions. For all links outgoing, the coherent intertwiner coefficients
are

ci(~nf ) :=
∑

mf

(
jf
mf

)(i) 4∏

f=1

D
(jf )
mf jf

(~nf ) =

~n1

~n2 ~n3

~n4

j1

j2 j3
j4

i

, (9)

where
D(j)(~n) = e−iΦJze−iΘJyeiΦJz (10)

is a Wigner matrix with Θ and Φ the zenithal and azimuthal angles of ~n. If one of the links is incoming one

multiplies the above formula by ε
(j)
mn = (−1)j−mδm,−n.

In spite of its complexity, the vertex amplitude 6 is in a form suitable for numerical evaluations. The
unbounded integrations have been limited to the booster functions, that are accessible numerically, but at
the price of introducing infinite summations, the sums over the internal spins l, or “internal sums” for short.
These may be just as hard to deal with numerically if they cannot be efficiently truncated. We will discuss
this point below in detail. Let us first examine the different ingredients required in setting up the algorithm.

The first is evaluating the {15j}. Optimized algorithms exist in the literature for the simpler {6j} and
{9j} symbols, but the {15j} can be significantly more complicated. In fact, the problem would be intractable
if one had to compute it starting from its definition as ten (3jm) symbols, contracted following the graph
drawn in Eg. 7. We can instead exploit the invariance of the sum over intertwiners under recoupling moves
to trade the irreducible {15j} appearing in Eq. 7 with a reducible one, a strategy successfully applied in
[10] to compute numerically the semiclassical limit of the coherent {15j} symbol. The simplest choice is
a reducible {15j} given by one sum of five {6j} symbols. The {6j} symbols can then be very efficiently
computed thanks to the libraries wigxjpf developed in [32], based on smart storage of factorials used to
compute the symbols. With this procedure, computing a single {15j} for spins of order 10 takes about
10−6 s. We refer to the original paper for a detailed discussion of the library’s performances, accuracy, and
memory management.

The second is the booster functions. Here and in sl2cfoam we use the definition 8 with a polynomial ex-
pression for the boost matrix elements in e−r derived in [33], which is more efficient to implement numerically
than the usual expression as hypergeometric functions.6 This expression is then amended with the phase
conventions of [8] to make the booster functions and vertex amplitudes with orthonormal intertwiners real.
We compute the numerical integrals at fixed magnetic labels mf , then resum over the (4jm) coefficients.
This gives an upper estimate of 4λ3 integrals, since only three magnetic labels are linearly independent. The
results are then stored using a hash table. With this procedure, computing a booster for spins of order 10
takes approximately 6 minutes on a single core, and needs to be computed only once. The main limitation of
this method is that numerical instabilities become important at spins of order 50. These instabilities prevent
the convergence of the boost integrals and are presumably due to the algebraic manipulations of very large
numbers in the integrand. We worked with the GNU MPFR library for multiple-precision floating-point
computations. See [6] for explicit formulas and more details. This makes the boosters the most delicate part
of our code, and an obvious target for improvements, as we will discuss below in Sec. 6.2.

The third is the coherent intertwiner coefficients (9). This is the simplest part of the code, obtained
contracting the Wigner matrices (10) with (4jm) symbols computed with wigxjpf. The evaluation time of
a single coherent state coefficient in sl2cfoam , is negligible with respect to the other computation times.

Finally one has to tabulate all these quantities and combine them to compute the amplitude. This is a
delicate task that is performed using the hash-table algorithm described in detail in [6]. The resulting code
is available in [7], and can be downloaded and used to independently rederive the results presented here, or
push them forward using more powerful computers.

6The expression of [33] is very similar to the one previously derived in [34], but with the crucial difference that it only has
finite sums. It is obtained starting from the integral representation, whereas the one of [34] starts from the infinite power series
for the hypergeometric functions.
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3 Constructing the boundary data

Our code allows us to compute the vertex amplitude for any boundary data, in principle. However, some
choices are more efficient than others: for instance, symmetric configurations maximize the number of data
points with a given maximal value of the rescaling parameter λ, thus optimizing the numerical effort. This
is simply a consequence of the discreteness of the areas, and the fact that the numerical costs are strongly
determined by the highest spin in the amplitude. For twisted, vector and Euclidean Regge geometries, one
has access to the most symmetric configuration with all equal spins jab ≡ j, and this is the one we focused
on.

For Lorentzian Regge geometries, it is not possible to take all spins as equal since an equilateral Lorentzian
4-simplex does not exist. We then devised a Mathematica code to span Lorentzian 4-simplices with all
tetrahedra spacelike, and we scanned the space of configurations with integer or half-integer areas. We
found that the case with minimal highest spin is a configuration with six spins equal to 2, and four spins
equal to 5, which can then be rescaled by an integer multiple (but not a half-integer). The four highest
spins can all be associated to the same tetrahedron, and it is then best to choose to gauge fix the SL(2,C)
integration on the same tetrahedron, so to avoid having to compute the heaviest booster function.

In all cases, we define the homogeneous rescaling parameter λ as an integer multiplying the smallest
allowed configuration, hence jab = λ/2 for equispin data, and jab = (2λ, 5λ) for Lorentzian boundary
data. The two spin configurations are summarized in Table 1. From a purely numerical perspective, these
configurations are rather generic, in the sense that they test generic structures of the numerical code.

Twisted, vector, Euclidean data All spins: λ/2 = 1
2 , 1,

3
2 , 2, . . .

Lorentzian data Four spins in gauge-fixed tetrahedron: 5λ = 5, 10, . . .

Remaining six spins: 2λ = 2, 4, . . .

Table 1: The two configurations used for boundary Regge data throughout the paper. The equispin data used for the
Euclidean Regge geometries can also be used for twisted and vector geometry data: It is the choice of normals that
distinguish the three cases.

The information just given suffices to follow the numerical analysis in the paper. On the other hand,
the actual construction of the boundary data turned out to be a nontrivial part of our analysis, and for the
interested reader, we explain in the rest of this section how it can be done, and provide more details on the
specific configurations we chose. The online repository [7] contains the Mathematica notebooks that we used
to construct the boundary data we used in our asymptotic analysis. The notebook can be used to generate
the boundary data for any spin foam vertex amplitude.

The first thing to keep in mind is that the amplitude’s boundary data (jab, ~nab) are purely 3-dimensional:
jab label irreps of the canonical SU(2) matrix subgroup corresponding to rotations preserving the time
direction tI := (1, 0, 0, 0), and ~nab are unit vectors in R3. We then have both an algebraic and a geometric
mapping of the data into four-dimensional structures. The algebraic mapping is straightforward: The
stabilizer of tI is also the canonical SU(2) subgroup of SL(2,C) used in Naimark’s basis of the unitary
representation of the principal series (ρ, k) used in the EPRL model. Then the mapping is given by the
map Y : j 7→ (γj, j), and |j, ~n〉 7→ |γj, j; j, ~n〉. See [1, 5, 35] for more details. The geometric mapping is
based on looking at the 3D geometry described by the data, and studying when and how it can be taken
as the boundary of a flat 4-simplex. This mapping is finer and allows the classification of the data reported
in Fig. 1. Given a set of data (jab, ~nab), it can be directly tested whether it describes one of the special
geometric classes. For our purposes though, we are interested in the reverse, “deconstructing” problem:
start from a geometric object of interest, like a Euclidean or Lorentzian 4-simplex, and deduce the 3D data
to be used as boundary states.

3.1 A closed twisted geometry

To generate the data of a closed twisted geometry it is convenient to start with five tetrahedra with ar-
eas matching along the graph of the 4-simplex. Each one can be characterized by the four areas and
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two independent 3D dihedral angles, φe ≡ φ
(a)
bc at the edge e of the tetrahedron a identified as the one

shared with the tetrahedra b and c in the graph. An alternative parametrization consists in using one
dihedral angle and the twist angle τe between the edge e and the opposite edge, see Fig. 2. The lat-
ter parametrization is closely related to the Kapovich-Millson [36, 37] conjugate variables (τe, µe), where

µe = (j2
ab + j2

ac − 2jabjac cosφ
(a)
bc )1/2.

�e

�e

�e

�e

j�b~n�b

j�c~n�c

Figure 2: Left panel: Parametrization of the tetrahedron with given areas in terms of a dihedral angle φe and the
corresponding twist angle τe.
Right panel: The dihedral angle φe = φ

(a)
bc and the corresponding twist angle τe in the Kapovich-Millson polygon made

with the scaled normals jab~nab and jac~nac. The variable µe is the length of the dashed line.

In terms of these variables, we considered the following set of equiarea tetrahedra:

φ
(1)
23 = π/2 φ

(2)
12 = π/3 φ

(3)
12 = 4π/5 φ

(4)
12 = 5π/6 φ

(5)
12 = 2π/3

τ
(1)
23 = π/2 τ

(2)
12 = 2π/3 τ

(3)
12 = 5π/8 τ

(4)
12 = 3π/8 τ

(5)
12 = 5π/7

These data correspond to five tetrahedra that, although all have the same areas, cannot be assembled to
form a 4-simplex. As a result, we also have a certain freedom in picking up how to orient them in space. To
keep things as simple as possible, we choose to orient all tetrahedra aligning a normal to a face with the x
axis. We further fix the rotational gauge by assuming that a normal to a second face lies in the xy plane.
The resulting normals are summarized in Table 2, and it can be explicitly checked that it is not possible to
find local rotations so that all pairs at a given face satisfy the orientation equations (3).

~n�b

�
b 1 2 3 4 5

1 (1, 0, 0) (0, 1, 0) (−0.5,−0.5, 0.70) (−0.5,−0.5,−0.70)
2 (1, 0, 0) (0.5, 0.87, 0) (−0.62,−0.65, 0.43) (−0.88,−0.22,−0.43)
3 (1, 0, 0) (−0.81, 0.59, 0) (0.25,−0.41, 0.88) (−0.44,−0.18,−0.88)
4 (1, 0, 0) (−0.87, 0.5, 0) (−0.42,−0.15, 0.89) (0.29,−0.35,−0.89)
5 (1, 0, 0) (−0.5, 0.87, 0) (0.22,−0.70, 0.68) (−0.72,−0.17,−0.68)

Table 2: Choice of normals for the closed twisted geometry described in the text. The gauge is fixed so that for every
tetrahedron there is one normal in the x direction, and a second normal in the xy plane. The additional alignment
~n23 = (0, 1, 0) is a consequence of the straight angle φ23 = π/2 among the shape parameters.

3.2 A vector geometry

Vector geometries were originally characterized in [38], and an explicit parametrization was recently provided

in [10]: One gives the ten areas, one dihedral angle φ
(a)
bc in four different tetrahedra, plus one additional angle

46



between two normals belonging to different tetrahedra; the latter angle is not gauge invariant and has to
satisfy an inequality. It is convenient to choose the gauge 4 with all normals pairwise antiparallel. A
simple configuration following this construction, with all areas equal and not giving a Regge geometry, is
the following:

φ
(2)
34 =

6

15
π, φ

(3)
25 =

8

15
π, φ

(4)
25 =

7

15
π, φ

(5)
34 =

8

15
π, φ53,42 =

9

15
π, (11)

where φ53,42 := arccos (~n53 · ~n42) is the gauge-dependent angle. The resulting normals are summarized in
Table 3.

~n�b

�
b 1 2 3 4 5

1 (0.82,−0.45,−0.35) (−0.96, 0.05, 0.28) (−0.76, 0.54,−0.34) (0.9,−0.15, 0.41)
2 (−0.82, 0.45, 0.35) (0.31, 0.21,−0.93) (1, 0, 0) (−0.49,−0.66, 0.57)
3 (0.96,−0.05,−0.28) (−0.31,−0.21, 0.93) (−0.34,−0.69,−0.64) (−0.31, 0.95, 0)
4 (0.76,−0.54, 0.34) (−1, 0, 0) (0.34, 0.69, 0.64) (−0.1,−0.14,−0.98)
5 (−0.9, 0.15,−0.41) (0.49, 0.66,−0.57) (0.31,−0.95, 0) (0.1, 0.14, 0.98)

Table 3: Choice of normals for the vector geometry 11 described in the text. The gauge is fixed so that all normals
are pairwise antiparallel, ~nab = −~nba.

3.3 A Euclidean Regge geometry

By Euclidean Regge geometry we refer to boundary data that can be embedded in R4 to form a Euclidean
flat 4-simplex. To construct such data, we start from a flat Euclidean 4-simplex, as the convex envelope of
its five vertices. Using the freedom to do SO(4) transformations, we can always put a vertex in the origin of
R4, one on the x axis, a third one in the xy plane, and a fourth one in the xyz hyperplane. This exhausts
the rotational freedom, and the position of the last vertex is free. From the vertices we compute the edge
vectors `Ie, with I = 0, 1, 2, 3 a Cartesian coordinate index. Their lengths `e := ||`Ie|| :=

√
`Ie`

J
e δIJ provide

ten numbers that characterize uniquely the 4-simplex up to SO(4) transformations. From the edge vectors

we can also define a simple bivector to each triangle t of the 4-simplex, given by BIJt := 2`
[I
e `

J]
e′ , where ee′

is any pair of edges in t. Then from A2 := ||BIJ ||2 = BIJB
IJ/2, or equivalently using Heron’s formula from

the edge lengths, we obtain the ten areas of the 4-simplex.7

The amplitude’s boundary data are areas and 3D normals in the time-gauge frame. Therefore the next
step is to find the transformation that takes all tetrahedra of our 4-simplex to the time-gauge, then compute
the resulting 3D normals to the faces. Only then we can identify the SO(4)-invariant geometric area with the
SU(2) irrep label j. To do so, we take as reference frame the t = 0 hyperplane to which the first tetrahedron
belongs (the one determined by the first four vertices fixed earlier). Its 4D normal is already the canonical
one for the time-gauge, tI = (1, 0, 0, 0). Hence we can directly compute the areas and 3D normals of this
tetrahedron from the edge vectors, and take them as the first set of boundary data. For each of the remaining
four tetrahedra, the procedure is not as straightforward. First, we determine the 4D normal from the triple
product of edges with a common vertex, e = 1, 2, 3,

NaI =
εIJKL`

J
a1`

K
a2`

L
a3

||εIJKL`J1 `K2 `L3 ||
, (12)

ordered so that it is outgoing.8 The SO(4) transformations mapping these vectors to tI can be found with

7Note that the resulting function from vertices (or equivalently from lengths) to areas is always injective and generically
bijective; it fails to be bijective in special cases, like precisely for all equal areas, that can correspond to either an equilateral
4-simplex, or a 4-simplex with seven equilateral triangles and three isosceles. The 3D normals then distinguish the two cases.

8This is determined computing the Euclidean scalar product between the 4D normal and the vector connecting the chosen
vertex to the center of the 4-simplex. Throughout the paper, we always work with outgoing normals, both 3D and 4D, and
accordingly all dihedral angles are external.
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a formula similar to Rodrigues’s 3D rotation formula,

Λa
I
J = δIJ −

1

1 +Na · t
(
N I
aNaJ + tItJ +N I

a tJ − (1 + 2N · t)tINaJ
)
, (13)

Λa
I
JN

J
a = tI , det Λa

I
J = 1.

The 4D normals define the 4D dihedral angles θab = arccos (Na ·Nb), and provide alternative expressions
for the face bivectors as well. Using the Hodge dual ? := (1/2)εIJKL, we have in fact

Bab = ||Bab||
?Na ∧Nb
|| ? Na ∧Nb||

= −Bba. (14)

The simplicity of the bivectors is now manifest in that

NaIB
IJ
ab = 0 = NbIB

IJ
ab , (15)

and sums on the triangles in the same tetrahedron close,

∑

b 6=a
Bab = 0 ∀a. (16)

Using Eq. 13 we map each tetrahedron to the time-gauge and define the rotated bivectors in the frame of
the reference tetrahedron,

◦
BIJab := ΛIaKB

KL
ab ΛJaL. (17)

This is simple in the time-gauge frame, i.e. tI
◦
BIJab = 0. Therefore its magnetic part vanishes,

◦
B0i
ab = 0, and

we can identify a 3D vector with its electric part,

jabn
k
ab := εkij

◦
Bijab, ||

◦
Bab|| = jab. (18)

Equation 18 defines the remaining boundary data for the tetrahedra 2 to 5. Notice that we can also give a
covariant formula for all 3D normals,

nIab := (0, ~nab) =
2

|| ?
◦
Bab||

tJ(?
◦
Bab)

IJ = Λa
I
J
NJ
b −NJ

a (Na ·Nb)√
1− (Na ·Nb)2

, (19)

where the case a = 1 has Λ1 = 1 and N1 = t. The covariant equations are actually more convenient
to implement in the numerical algorithm because they use only the 4D normals, and bypass the explicit
reconstruction of the bivectors.

Pictorially, we can describe the above procedure as the 4-simplex being opened up by SO(4) rotations of
four tetrahedra to the same R3 frame of the first tetrahedron. The resulting 3D object was called a spike
in [10], to which we refer the reader for explicit figures. Since the data (jab, ~nab) defined by Eq. (18) or
Eq. 19 come from a Euclidean 4-simplex, we expect that they satisfy the saddle point conditions 2 and
3 of the vertex amplitude asymptotic analysis. Indeed, the closure conditions 2 are satisfied since Eq. 16

is SO(4)-invariant, thus it applies to
◦
Bab as well and in turn to the 3D normals. As for the orientation

conditions 3, they follow from Eqs. 14 and 17. To see this, one notices that the 3D vector 18 also coincides

with the electric part of the self-dual part of
◦
Bab, and that under Eq. 17 the self-dual part transforms like

a rotation.
It is convenient to perform these rotations, so to have a configuration with pairwise-opposite normals

4. This configuration was called twisted spike in [10]. It was there shown that the required rotations have
directions ~n1a and angles given precisely by the 4D dihedral angle θ1a = arccos (N1 ·Na). In other words, the
twisted spike twists the axis of the tetrahedra by an amount corresponding to the original 4D dihedral angle,
and in doing so one achieves the condition of pairwise-opposite normals 4. See [10] again for illuminating
pictures. The twisted spike has a computational advantage because all holonomies at one of the two critical
points are the identity.
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We implemented the algorithm described above in the Mathematica code EuclideanBoundaryDataMaker
in [7], which can be used to generate data corresponding to arbitrary Euclidean 4-simplices. For our numerics,
we chose an equilateral 4-simplex. The main advantage is that having all areas equal, we can obtain a
maximal number of data points for a fixed maximal numerical effort. The resulting normals corresponding
to the twisted spike are summarized in Table 4.

~n�b

�
b 1 2 3 4 5

1 (0, 0, 1) (0.94, 0,−0.33) (−0.47, 0.82,−0.33) (−0.47,−0.82,−0.33)
2 (0, 0,−1) (−0.24,−0.91, 0.33) (0.91, 0.25, 0.33) (−0.67, 0.66, 0.33)
3 (−0.94, 0, 0.33) (0.24, 0.91,−0.33) (0.09,−0.66,−0.75) (0.62,−0.25, 0.75)
4 (0.47,−0.82, 0.33) (−0.91,−0.25,−0.33) (−0.09, 0.66, 0.75) (0.53, 0.41,−0.75)
5 (0.47, 0.82, 0.33) (0.67,−0.66,−0.33) (−0.62, 0.25,−0.75) (−0.53,−0.41, 0.75)

Table 4: Choice of normals for the Euclidean Regge data, corresponding to the twisted spike. These are reconstructed
from an equilateral 4-simplex using the algorithm described in the text.

As a final comment it is useful to understand the relation between our “deconstruction” of the 4-simplex
and the reconstruction that one does in the saddle point approximation, the critical point equations for the
Euclidean spike admit the following four solutions (see Appendix B),

h(c)
a = ± exp

(
i

2
θ1a~n1a~σ

)
, h(Pc)

a = ± exp

(
− i

2
θ1a~n1a~σ

)
= h(c)

a
†, (20)

all with ha ∈ SU(2) ⊂ SL(2,C). These group elements are precisely the Λa appearing in our procedure,
namely one can show that

Λa
I
J =

1

2
Tr
(
σIh(c)

a σJh
(c)

a
†) , (21)

where σI = (1, ~σ), and σI is lowered with the Euclidean metric.

3.4 A Lorentzian Regge geometry

To obtain the Lorentzian boundary data, we follow the same strategy as the previous case, but some addi-
tional care will be needed to take into account the presence of future pointing and past pointing timelike
vectors. We start from a Lorentzian 4-simplex with all tetrahedra spacelike9, and derive the corresponding
3D data in the time-gauge from it. We consider the five vertices in R4 with metric η = diag(−+ ++), and
use the SO(1,3) freedom to place them as before, a vertex in the origin, one on the x axis, a third one in
the xy plane, and a fourth one in the xyz hyperplane, with the last one completely free. The tetrahedron
described by the first four vertices will always be spacelike, whereas the nature of the other four tetrahedra
depends on the location of the fifth vertex. We derive as before the edge vectors `Ie, bivectors BIJab , and 4D
normals N I

a . The norms and scalar products are now given by η, and for the epsilon symbol we take the
convention ε0123 = 1.

To find a convenient choice of data, notice first that a Lorentzian 4-simplex cannot be equilateral, just
like a triangle in 2D. Just like in 2D, the most regular 4-simplex with all spacelike sub-simplices is isosceles,
with one equilateral tetrahedron and four equal isosceles ones, so in the simplest configuration we have four
areas of one value and six of a different one. To find suitable ones, we need both values to be integers or
half-integers. Recall also that the numerical algorithm becomes the more costly the higher the spins involved.
Therefore to optimize the numerical calculations we want a configuration in which the ratio between the two
areas is maximal, while at the same time minimizing the smallest integer or half integer realization of each
area value. Using the algorithm FromAreasToVericesLorentzian in [7], we scanned the space of admissible

9A tetrahedron on the boundary of a Lorentzian 4-simplex is spacelike if its four-dimensional normal Na is timelike, NI
aNaI =

−1. Conversely, the tetrahedron is said to be timelike if its four normal is spacelike.
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configurations, and settled on the ratio 2/5 anticipated above.10 This is a 4-1 configuration, namely four of
the timelike normals are future pointing and one past pointing, or vice versa.

Let us choose the gauge-fixed tetrahedron 1 to be past-pointing, i.e. N1 = −t. The remaining 4 normals
are all future pointing, and can be computed from the edge vectors as in 12. To determine the 3D normals we
proceed as in the Euclidean case, with Λa ∈ SO(1, 3) this time. To transform the future pointing 4-normals
to t we select the pure boost in the plane determined by t and Na, which can be computed to be

Λa
I
J = δIJ +

1

1−Na · t
(
N I
aNaJ + tItJ +N I

a tJ − (1− 2Na · t)tINaJ
)
, a 6= 1, (22)

Λa
I
JN

J
a = tI , det Λa

I
J = 1.

We then have the expression 14 for the bivectors and Eq. 17 for the time-gauge bivectors as before, and
define again the 3D normals via Eq. 18. The only difference is at the level of the covariant formula, which
now reads

nIab := (0, ~nab) =
2

|| ?
◦
Bab||

tJ(?
◦
Bab)

IJ = −Λa
I
J
NJ
b +NJ

a (Na ·Nb)√
(Na ·Nb)2 − 1

, a 6= 1. (23)

The 3D normals of the tetrahedron 1 are already in the chosen reference R3, and can then be directly
computed from the vertices (or equally from 23 but with now Λ1 = −1, due to the fact that the normal to
this tetrahedron is past-pointing). The resulting 3D object can be referred to as an antispike, because the
tetrahedra boosted in the frame of the first will be “sitting inside” it, see Fig. 3 for a 1+1 example. And
notice that the normals of the faces shared with the first tetrahedron will be aligned, and not antialigned.
While this configuration is a good representation of a Lorentzian 4-simplex in 3D, it will not feed a critical
point to the coherent amplitude 44, because of the minus signs in front of half of the vectors, which were
chosen for convenience in dealing with the vector and Euclidean geometries.11 This can be fixed if we
turn around the reference tetrahedron applying an inversion, namely the composition T̂ P̂ 6∈ SL(2,C) of a
time reversal and a parity transformation. Doing so we obtain again a picture with all tetrahedra outside,
which we call the Lorentzian spike. Pictorially, it can be distinguished from a Euclidean spike because the
tetrahedra spiking out are too “short” to allow the mapping to a closed Euclidean 4-simplex, see again Fig. 3
to get some intuition.

Figure 3: Left panel: 1 + 1 spacelike Lorentzian simplex and its antispike configuration, obtained boosting two sides
in the 1D frame of the base. Two normals are future pointing and one is past pointing. The two hyperbolae are the
points you obtain boosting the two sides.
Right panel: The same simplex and the spike configuration, obtained acting with a T̂ P̂ transformation after the
antispike boosts. All normals are now pointing in the same direction.

For the Lorentzian spike, all 4-normals are future pointing, and the 3D normals of the first tetrahedron
are each antialigned with the corresponding one of the tetrahedron sharing that face, as in the Euclidean
case. On the other hand, there is not now a set of five rotations so that Eq. (3) holds, because the Λa are

10Limiting ourselves to numerators and denominators smaller than 40, we identified the following 32 possible ratios, in
decreasing order:
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We found an upper bound at 1/
√

6 ' .41 > 2/5 = .4 for which the 4-simplex becomes degenerate, and a lower bound at 1/3
for which the isosceles tetrahedra become null.

11The same would be true had we worked with the antipodal spinor conventions of [5] instead of the antipodal vectors.
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pure boosts for a 6= 1. This means that there is no twisted spike configuration, and no configuration with all
critical holonomies at the identity. The 3D normals satisfy instead Eq. (5), namely they can be antialigned
by a set of five complex rotations.

The Mathematica code implementing this algorithm is called LorentzianBoundaryDataMaker in [7]. The
normals obtained for the 2/5 ratio 4-simplex are summarized in Table 5 below.

~n�b

�
b 1 2 3 4 5

1 (1, 0, 0) (−0.33, 0.94, 0) (−0.33,−0.47, 0.82) (−0.33,−0.47,−0.82)
2 (−1, 0, 0) (0.83, 0.55, 0) (0.83,−0.28, 0.48) (0.83,−0.28,−0.48)
3 (0.33,−0.94, 0) (0.24, 0.97, 0) (−0.54, 0.69, 0.48) (−0.54, 0.69,−0.48)
4 (0.33, 0.47,−0.82) (0.24,−0.48, 0.84) (−0.54, 0.068, 0.84) (−0.54,−0.76, 0.36)
5 (0.33, 0.47, 0.82) (0.24,−0.48,−0.84) (−0.54, 0.068,−0.84) (−0.54,−0.76,−0.36)

Table 5: Choice of normals for the Lorentzian Regge data. These are reconstructed from the chosen isosceles
4-simplex with area ratio 2/5, using the algorithm described in the text, and correspond to the spike configuration.

In determining the analytic asymptotic formula to be compared with this configuration, let us recall the
definition of the Lorentzian dihedral angles θL

ab ≥ 0. Following [5], the case with both timelike normals inside
the same causal patch is called thick wedge, and the case with the timelike normals inside opposite causal
patches is called thin wedge. With signature −+ ++, the scalar product of normals is negative in the first
case, and positive in the second. Accordingly, we define

thick wedge Na ·Nb = − cosh θL

ab, (24)

thin wedge Na ·Nb = cosh θL

ab. (25)

The 4-simplex of Table 5 is of type 4-1, and we have four thin angles θL
1a and six thick ones θL

ab for a, b 6= 1.
The solutions of the critical point equations for the Lorentzian spike are

h(c)

a = ± exp

(
(θL

1a + iπ)~n1a ·
~σ

2

)
, h(Pc)

a = ± exp

(
(−θL

1a + iπ)~n1a ·
~σ

2

)
= h(c)

a
−1. (26)

They are a combination of a boost given by the thin angle and an additional rotation by π in the same
direction. The origin of this rotation is the inversion performed to have the data describing a spike, so
that the 3D normals in the reference tetrahedron are the opposite of the corresponding ones in the adjacent
tetrahedra, and not parallel as in the antispike configuration with the reference tetrahedron being past
pointing. To recover the pure boost 22 we remove this additional rotation, and indeed one can check that

Λa
I
J =

1

2
Tr
(
σI ĥ(c)

a σJ ĥ
(c)

a
†
)
, ĥ(c)

a = ± exp

(
θL

1a~n1a ·
~σ

2

)
, (27)

where σI = (1, ~σ), and where σI is lowered with the Minkowski metric.

4 Methods: Shelled sums and a useful approximation

The finiteness of the vertex amplitude [19] guarantees that the internal sums in Eq. (7) converge. However,
the speed of the convergence depends on the boundary data considered, since for different configurations,
both the booster functions and the {15j} symbol can decrease either exponentially or polynomially. This
speed determines crucially the efficiency of our numerical method: If the convergence is fast we can keep
the lowest order terms only, but if the convergence is slow one has to add up more and more terms, and the
numerical algorithm becomes slower and slower.

To study the convergence, we introduce a homogeneous integer cutoff ∆ on the range of the internal
spins,

∞∑

lab=jab

→
jab+∆∑

lab=jab

(28)
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and we compare the value of the amplitude for successive truncations. Notice that each of these truncated
sums, or shelled sums to use the terminology of [6], can have a priori arbitrarily high internal spins l. It is
only the difference with the boundary spins j that is being truncated, namely the number of terms being
summed over in Eq. 6. The truncation ∆ = 0 gives the simplified EPRL model defined in [8].

Let us estimate the number of terms in a given truncation, for the equispin case jab = j. The l config-
urations compatible with Eq. 28 are (∆ + 1)6. For each l’s configuration, we have to sum over the internal
intertwiners k. Notice from the graphical representation 7 that each internal intertwiner always has at least
one external spin. Hence increasing l has the effect of tightening the triangular inequalities for the inter-
twiners. Consequently, the external triangular inequalities from the j spins provide an upper bound to the
number of k configurations, which is (2j)4 when all j’s are equal. To complete the estimate we have to
include the 2j terms coming from the sum defining the reducible {15j} symbol used. Overall, this gives an
upper bound of

(∆ + 1)6 × (2j)5 (29)

configurations for the amplitude defined by boundary spins and intertwiners. For the coherent amplitude
(6), one also has to sum over the external intertwiners i, which gives an additional (2j)5 terms. Recall that
for this configuration λ = 2j, the final upper bound estimate is

#∆ ≤ (∆ + 1)6 × λ10. (30)

An exact numerical counting confirms this estimate, see the Euclidean data in Fig. 4. A numerical fit
reported there shows that the neat effect of the triangular inequalities is to remove a bit more than half of
the configurations.

Figure 4: Total number of terms to be summed over at a given λ, for Euclidean (blue) and Lorentzian (red) boundary
data, for the simplified model (circles) and the first shelled sum (triangles). The lines are obtained through a numerical
fit with the (∆ + 1)6λ10 estimate from 29. For Euclidean data, the fitted coefficients give .38 at ∆ = 0 and .45 at
∆ = 1. These numbers give an indication of the percentage of configurations removed by the triangle inequalities. For
Lorentzian data, we cannot apply the counting leading to the estimate 29 because the spin configurations are isosceles.
Nonetheless, the numerical fit shown in the figure is also with slope (∆ + 1)6λ10, and it is in qualitative agreement (a
numerical fit with free exponent gives λ9.96 for ∆ = 0 and λ9.12 for ∆ = 1). This counting shows that for the same λ
(and thus same number of data points in the asymptotic plots), the Lorentzian configurations are numerically much
heavier. Generating this plot took about 24h on a standard laptop.

To give an idea of the complexity of the numerics involved, the amplitude for Euclidean data with λ = 16
and ∆ = 2 contains 1014 configurations, each of which requires the evaluation of 104 integrals and five {6j}
symbols. The evaluation of this data point alone took three weeks on our server.

For Lorentzian boundary data, the situation is worse, since one cannot use equal spins. Therefore for
the same value of the rescaling parameter λ, higher individual spins will enter, increasing the number of
terms to be cycled over. For the 2/5 ratio used as Lorentzian boundary data, we are limited at λ = 9, which
corresponds to highest spins 45, beyond which we encounter numerical instabilities in the booster functions.
We counted numerically all the configurations allowed by triangular inequalities, and the results are shown
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in Fig. 4. The most expensive data point we bought for Lorentzian data has λ = 9 and ∆ = 1, and 1013

configurations to be evaluated.
These estimates show the high price of increasing the cutoff ∆ on the internal sums, making configurations

for which the convergence is fast much more affordable. We also point out the λ5 numerical cost coming
from the use of coherent states in the boundary, which requires the additional summations over intertwiners.
Hence our methods are much faster for calculations requiring orthogonal intertwiners and not coherent ones.

4.1 Convergence of the shells

Having discussed the numerical costs of the evaluations, let us now present some investigations on the
convergence of the internal sums. We restricted attention to the four types of boundary data presented
earlier, which will be relevant to study the asymptotic scaling. Figure 5 shows examples of convergence for
γ = 1.2, and λ = 1. At this λ the convergence is quite fast for all four cases, with differences of 1% or less
when increasing the truncation from ∆ = 4 to ∆ = 5.

Figure 5: Convergence of the internal sums at λ = 1 for Euclidean (left panel) and Lorentzian (right panel) data.
Closed twisted and vector geometries give plots undistinguishable from the one on the left panel, with numerical
differences typically at 4 digits.

The convergence can, however, change quite significantly for different configurations or different values
of γ. More importantly for our scopes, it can also change as we increase λ. An analysis like Fig. 5 for higher
λ is unfortunately too costly and could not be performed. As a cheaper alternative, we looked at the gap
∆1 −∆0 between the first shelled sum and the simplified model. This is reported in Fig. 6. We see that for
Euclidean data the gap remains bounded at 30% of the ∆ = 1 amplitude. If the same happens for the other
differences ∆2 −∆1, etc, it would mean that the speed of convergence is constant in λ. This possibility is
supported by the full asymptotic study presented in the next section. In that context, we will also explain
the oscillation seen in (the right panel of) Fig. 6 as the rephasing of the asymptotic formula performed by
the shells.

For Lorentzian data, on the other hand, we observe a generic growth of the gap. This suggests that while
the convergence was (very) fast at λ = 1, it will likely slow down as λ increases. This slower convergence
for Lorentzian data as λ is increased will also be confirmed by the full asymptotic study of the next section,
and suggests that the simplified model will miss important aspects of the full model for such boundary
configurations.
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Figure 6: Behavior of the difference Dv(jab, ~nab,∆) = Av(jab, ~nab,∆ = 1) − Av(jab, ~nab,∆ = 0), for Euclidean
(on the left) and Lorentzian (on the right) boundary data. The oscillating behavior in the Euclidean case is the
Regge asymptotic behavior, as explained in the next Section. The growing behavior in the Lorentzian case is a clear
indication that the simplified model is becoming subdominant with respect to the first shell as λ increases. This will be
clarified in the next Section, where it will be shown that the simplified model misses the critical behavior and decays
exponentially, while the first shell decays at power law.

Summarizing, our investigations indicate that convergence is fast at very small spins for all types of data
considered, but that while it remains fast for twisted, vector and Euclidean Regge geometries, it slows down
for Lorentzian Regge geometries.

4.2 Approximating the coherent states

In an effort to reduce the numerical cost of the coherent amplitude, we studied the effect of truncating the
sums over the boundary intertwiners i. In fact, ci(~nf ) is roughly a Gaussian distribution in i [18, 39], see
e.g. Fig. 7, the more accurate and the sharper for larger spins, and one can explore the impact of cutting
the tails. An analytic study of the Gaussian width shows that it depends on both the spins and the normals
[39]. However the use of those formulas is not easy beyond the equilateral case. For our purposes it is more
practical to estimate σ(jf , ~nf ) numerically, as explained in the caption of Fig. 7.

Figure 7: Left panel: The distribution of a coherent state with jab = 10 and normals corresponding to an equilateral
tetrahedron, as a function of the intertwiner label i = j12. To estimate numerically the width we interpolate the data
points with a Gaussian, and use the function gsl stats sd of the GNU Scientific Library [40]. Numerically it
is then convenient to define a cutoff α excluding terms for which ci(~nf ) ≤ σ(j, ~n)/α. This means cutting the tails
at
√

1 + 2 logασ(j, ~n). The horizontal line in the figure corresponds to α = 3, namely 1.79σ for which 93% of the
Gaussian is covered.
Right panel: The distribution of an isosceles coherent state with three spins equal to 10 and one equal to 25. For this
configuration there are only 6 intertwiner spins allowed, and the spread is too broad to allow any reliable truncation.
These are the tetrahedra entering the most numerically economical Lorentzian boundary data.

There is however no guarantee that truncating the tails of the Gaussians gives a valid approximation
for the vertex amplitude because the intertwiner dependence of the {15j} symbol can compensate for the
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Gaussian damping. This happens for instance in the equilateral configurations used for Euclidean boundary
data, where the coherent state distribution is roughly peaked around the middle value of the intertwiner
label,12 whereas the {15j} is peaked on extremal intertwiners 0 or 2j. In this case, it turns out that cutting
the tails even just a bit introduces large errors. For the simplified model and λ around 10, one needs at
least 5σ in the Gaussians to reduce the error on the full amplitude below 5%. This makes the approximation
basically useless and pushed us to devise an alternative scheme. Instead of truncating all five Gaussians of
the vertex amplitude, we kept two Gaussians exact and truncated only the other three (it does not matter
which because of the symmetry of the problem). Using the simplified model as trial, we found that truncating
three Gaussians at 1.79σ (namely covering 93%) we reduce drastically the number of terms included in the
summation, see Fig. 8, while introducing a small error ≤ 3%. This reduces the required computational time
to roughly 1/20, for the simplified model and spins of order 10.

Figure 8: Study of the impact of truncating three of the five coherent states distributions, for the simplified model
with Euclidean equilateral boundary data, and γ = 1.2.
Left panel, The error introduced: We compute the relative error εσ between the exact amplitude and various trunca-
tions corresponding to different values of α – defined in the previous figure, the smaller α the bigger the truncation –
as a function of the rescaling parameter λ. Setting ourselves an error tolerance of 3%, we truncate at α = 3.
Right panel, the improvement on the evaluation times: We compute the ratio between the number of terms Nα=3

surviving in a truncation with α = 3 and the total number Ntot. The impact of the truncation grows roughly linearly
in λ (the solid line is 13.6λ−3/2), and we see that for instance at λ = 20 only 5% of the terms survive.

The advantage of such a truncation becomes even more important when adding the internal sums. To
make sure that the error introduced is not significantly different than in the simplified model, we performed
an analog study for ∆ = 1 and λ ∼ 10, reported in Fig. 9. It confirms that α = 3 is a good compromise
between cutting as many terms as possible and keeping the error small.

12More precisely slightly after, at ı̄ = (2/
√

3)j ' 1.15j [18].
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Figure 9: The truncation relative error in the ∆ = 1 contribution of the shelled summation and Euclidean boundary
data.

Having so chosen the truncation α = 3, we apply it to higher spins where the evaluation times are the
longest. We have no quantitative estimate of the error made, but the coherence of the plots shown in the
next section reassures us that we are not deviating significantly from the few percentage points established
for λ ∼ 10, and the evaluation times are very conveniently shortened.

On the other hand, a similar truncation does not work for Lorentzian boundary data because of the
isosceles tetrahedra there used. For the isosceles configuration there is a smaller range of intertwiners and
the Gaussians are more spread out, see Fig. 10. We found that any truncation in this case introduces
large errors. Therefore for Lorentzian data we contented ourselves to truncate the only equilateral coherent
intertwiner, again with α = 3. This gives an improvement of roughly 1/4 of the computational time for
λ = 9. On the other hand, we can introduce the truncation already at λ = 3, something that with three
Gaussians truncated as for Euclidean data was introducing a bigger error.

Figure 10: The improvement of the evaluation times obtained truncating one of the Gaussians. Left panel: We
perform the same test as shown in Fig. 8 for the Lorentzian configuration, truncating only on one coherent state (the
equilateral one). We can cut only a single tetrahedron due to the fact that, for low rescaling parameters, the isosceles
tetrahedra do not approximate a Gaussian, as shown in Fig. 7. In this case, the fit gives 0.8λ−1/2.
Right panel: The truncation relative error in the simplified model contribution for Lorentzian boundary data, used in
Section 5.4.

Summarizing, in the numerics we used the Gaussian truncation with α = 3 on three coherent intertwiners
for vector and Euclidean Regge data, starting at λ = 8; and a similar truncation with α = 3 but on the
unique equilateral coherent intertwiner for Lorentzian data, starting at λ = 3. This approximation enters
the plots shown in Fig. 6, etc. An estimated error bar of 3% could be added but would not be visible.
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5 Numerical analysis of the asymptotic formula

In this section, we present a selection of our numerical data. We consider the four different types of boundary
geometries constructed in Sec. 3, plus a completely random configuration not satisfying even closure, to test
the different possible asymptotic behaviors derived in [5].

1. For arbitrary areas and normals, or for the closed twisted geometry: the data confirm the exponential
decay;

2. For the vector geometry: The data confirm a power law decay λ−12 and no oscillations;

3. For the Euclidean Regge geometry: The data confirm a power law decay λ−12 and an oscillation with
a frequency given by the Regge action;

4. For the Lorentzian Regge geometry: The data indicate a power law decay λ−12 and an oscillation with
a frequency depending on γ, but more conclusive results will require additional computational power.

5.1 Generic data, open and closed twisted geometry

5.1.1 Open boundary data

For generic data we expect from [5] an exponential decay, namely

Av = o(λ−K) ∀ nonnegative integer K. (31)

To confirm this numerically, we took all spins to be equal, but the normals were randomly generated. We
did not truncate the coherent states, since the Gaussian profile of Fig. 7 is lost for open configurations.13

We evaluate the amplitude in the simplified model, ∆ = 0, and the first shelled summation, ∆ = 1. The
vertex amplitude is exponentially suppressed, see Fig. 11.

Figure 11: The amplitude for generic boundary data not admitting critical points, showing an exponential falloff.
Both log-log plots showing the absolute value of the amplitude for the simplified model (∆ = 0) and the first shelled
sum (∆ = 1), with γ = 1.2. Each plot took roughly 2h for the simplified model, and 36h for ∆ = 1.
Left panel: Open data, with spins equal and random normals not satisfying closure. The line is 2.1×10−7λ−12, added
to help the eye identifying the exponential falloff.
Right panel: Closed twisted geometries data, with the normals satisfying closure but not the vector geometry conditions.
The line is 3.2× 10−12λ−12, added to help the eye identifying the exponential falloff.

13The reader may wonder why we can use open configurations in the boundary states, since these represent coherent in-
tertwiners and closure is the classical counterpart of the quantum gauge invariance. The answer is that the normals are just
classical labels, therefore one can have gauge invariant states with nonclosed normals. These states are on the other hand
over-redundant, and can be effectively removed without losing coherence. The result is a family of coherent states depending
only on the cross ratio parametrizing the intrinsic shape of the tetrahedron [39]. This family was used for numerical calculations
of the volume operator in [37], but we refrain from using it here to keep the treatment as simple as possible.
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5.1.2 Closed twisted geometry

A closed configuration is enough to have a critical point for the norm of the coherent intertwiners [18], but
not for the full amplitude 6, and [5] predicts again an exponential falloff (31). We computed numerically
the amplitude using the configuration constructed in Sec. 3.1, and verified the exponential suppression for
the simplified model and the first shelled sum, see Fig. 11. In generating these data, we did not use any
truncation on the coherent states. The coherent state distributions are in fact too broadly spread for this
configuration, and it is thus not possible to efficiently truncate them for the values of spins considered.

5.2 Vector geometry

For vector geometries, namely data satisfying both closure (2) and orientation (3) constraints, there is one
critical point (doubly degenerate), and one finds the following power law asymptotic behavior [5]

Av =
1

λ12
Nce

iλΦc +O(λ−13). (32)

Here Nc contains the (inverse square root of the) Hessian determinant, the integration measure evaluated at
the critical point, and the factors of 2 and π coming from the critical point degeneracies and the Gaussian
integrations. The action at the critical point is purely imaginary, hence the phase Φc in Eq. 32. See [5] and
our appendixes for details and explicit formulas. With the vector geometry constructed in Sec. 3.2 one finds

Nc = 7.86× 10−7. (33)

The value of the Φc is irrelevant because of the global phase ambiguity discussed earlier, and we restrict
attention to the absolute value of the amplitude.

For the numerical evaluation of the amplitude, we fixed γ = 1.2, and evaluated first the simplified model,
∆ = 0, and then the first shelled sum, ∆ = 1. In both cases we included a truncation on three Gaussians,
for reference, on tetrahedra 2, 3 and 4. Even if the configurations are not equilateral, equal area is enough
to have sufficiently peaked Gaussians.

The results are reported in Fig. 12, together with the analytic prediction. We find excellent agreement
for the power law. As for the numerical coefficient, the simplified model comes out a bit short, and the first
shell gives an order-one contribution approaching the predicted analytical value. Notice also the short scale
nonmonotonic behavior, which is introduced by the higher order corrections to the saddle point. Presumably
the first shell is already converging quite well to the analytic value 33, and the contributions from the second
and higher shells will be small. This would mean that the behavior observed at λ = 1 in Fig. 5 (left panel)
is maintained at higher λ’s.

Figure 12: Asymptotics of vector geometries, γ = 1.2.
Left panel: The absolute value of the vertex amplitude with a vector geometry boundary for an homogeneous rescaling
of the spins in log scale. The amplitude is following the power law (32). We plot the value of the amplitude in the
simplified model (∆ = 0) with empty diamonds, and the first shelled summation (∆ = 1) with full triangles. Here we
used the cutoff on the coherent states discussed earlier, and the whole plot took roughly 30h. The line plotted is the
analytical formula.
Right panel: The absolute values rescaled by λ12, showing a short scale nonmonotonic behavior, coming from the
higher order saddle point corrections.
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5.3 Euclidean Regge geometry

For Euclidean Regge data, the integral has two distinct critical points, and the asymptotic formula given in
[5] reads

Av =
(−1)χ

λ12
eiλΦc

(
Nce

iλSR +NPce
−iλSR)+O(λ−13). (34)

Here χ is an integer depending on the eventual braiding of the intertwiners; c and Pc the two critical points,
at which the action is purely imaginary and equal up to sign, up to a global phase Φc;

14 Nc contains the
(inverse square root of the) Hessian determinant, but also a contribution from the integration measure at
the critical point which is not trivial, and for convenience also the various factors of 2 and π coming from
the twofold degeneracy of the critical points and the Gaussian integrations; and most importantly,

SR(jab, ~nab) :=
∑

a<b

jabθab(~nab), (35)

is the Regge action. Here θab are the 4D dihedral angles between tetrahedra, which can be reconstructed
from the 3D normals using the spherical cosine laws.

It is always worthwhile to remind the reader that the actual Regge action is a function of edge lengths,
unlike 35. Nonetheless, the bivector reconstruction theorem [25] used in [5] to derive Eq. 34 guarantees that
the data span all Euclidean 4-simplices, and therefore Eq. 35 is equivalent to the Regge action. One can also
give a different proof that does not rely on the bivector reconstruction theorem [10]. To that end, notice first
that due to the rotational invariance at each node of the functions θab, the independent variables of 35 are
areas and angles between the 3D normals. It is known from [26] that the area-angle action 35 is equivalent
to the Regge action based on edge lengths provided closure and shape-matching conditions are satisfied, a
result that holds for a generic triangulation and not only a single 4-simplex. In the case at hand of a single
4-simplex, closure is guaranteed by the critical point condition 2. And it can be shown explicitly [10] that
the conditions for the existence of two distinct critical points is precisely the shape-matching conditions, in
the form of consistency of spherical cosine laws.15

If Nc = N̄Pc, the asymptotics can be written as a cosine of λSR, with a λ-independent phase offset given
by the argument of Nc,

Av =
(−1)χ

λ12
2|Nc|eiλΦc cos

(
λSR −

1

2
argHc

)
+O(λ−13). (36)

We are not aware of an analytic proof of this property, but we verified it in all cases numerically checked.
To avoid confusions between the phases Φc and argHc, we will refer to the first as the global phase and to
the second as the cosine phase offset.

For our numerical simulations, we considered the equilateral twisted spike configuration described in
Sec. 3.3. Assigning the normals to the intertwiners according to the geometric picture of a 4-simplex, we
have no braiding and χ = 0. For the Hessian, we use the explicit formulaq in Appendix B.1, and the
Mathematica algorithm EuclideanHessian of [7] to evaluate it at the chosen configuration. The result is
real and identical at both critical points, and fixing for example γ = 1.2, we find

Nc = NPc = 2.65× 10−7. (37)

Furthermore, using our phase convention for the coherent amplitude (which is not the same as the one in [5],
see Appendix A) and the conventional phase convention for the coherent states [41], we numerically found
that Φc = SR. Removing this phase (redefining for instance the phase of the coherent states), the analytic
prediction is

Av =
5.13× 10−7

λ12
cos
(

5λ arccos
(
− 1

4

))
. (38)

14The two critical points are related by a parity transformation, hence the notation Pc. Then one finds Sc = iλ(SR + Φc)
and SPc = iλ(−SR + Φc), leading to Eq. 34.

15More precisely, one gets angle-matching conditions. However, for triangular faces with the areas already matching by
construction, matching angles imply matching shapes. This is not the case for general polytopes with nontriangular faces, and
in fact the large spin asymptotics of nonsimplicial vertices contains not just Regge geometries, but more general conformal
twisted geometries, see the discussion in [10].
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We recall that for these boundary data λ = 2j. Notice that there is no phase offset in the argument of the
cosine, unlike for SU(2) asymptotics [9, 42, 10]. This fact will play a role below.

In the numerics we used the approximation truncating three of the Gaussians, for reference the tetrahedra
2, 3 and 4. We evaluated first the simplified model, then added the internal sums, with truncations at ∆ = 1
and ∆ = 2. This increases progressively the cost of the numerics. We were able to reach λ = 40 for the
simplified model, 20 for the first shell, and 18 for the second shell. We did not push our analysis to a third
shell, because we would have been forced to stop at spins too small to test the asymptotic behavior. The
data obtained are complex, but since we identified the global phase, we can remove it a posteriori and obtain
real data points.

The first result we found is that the numerical data are in excellent agreement with the λ−12 power law,
see Fig. 13. The agreement is achieved already at small spins, and holds for both the simplified model and
the first shelled sum. We plot also the difference ∆1 −∆0 to show that it follows the same power law: not
only does the simplified model see the critical behavior, but so do (at least some of) the individual higher l
configurations.

Figure 13: Numerical data versus the analytic asymptotics 38, for Euclidean Regge data, γ = 1.2. Log-log plots,
absolute values of the amplitude, versus the analytic scaling 5.13× 10−7λ−12.
Left panel: Simplified model and first shelled sum. Both scale according to the predicted power law, and feature
oscillations.
Right panel: The simplified model and the difference between the first shelled sum and the simplified model; namely, all
contributions with one nonminimal l. This difference also scales with the predicted power law and features oscillations,
showing that individual higher l contributions see the critical behavior.

We found the same λ−12 scaling also for the second shell ∆2−∆1−∆0, with includes individual terms with
two l = j + 1 or one l = j + 2. We deduce from these numerical results that the simplified model captures
the right scaling, and so do individual shells. This means that the convergence of the internal sums for
higher λ is still qualitatively similar to the extended study that was possible to make for λ = 1 (see Fig. 5),
and also that the the analytic behavior 34 must be the result of adding up all the relevant contributions of
different l’s. These are of order one initially, but we expect them to suitably decrease as guaranteed by the
convergence.

Next, let us zoom in on the palatable oscillations already visible in Fig. 13. We rescale the data and
asymptotic formula by λ12 and report the result in Fig. 14, the highlight plot of our paper. It shows a
beautiful agreement between the numerical evaluation of the vertex and the analytic asymptotic formula
in particular, a confirmation of the frequency of the oscillations determined by the Regge action, its most
important feature.16

16A word of caution to avoid possible confusion: If one plots the asymptotic formula as a real function, the real frequency
given by SR is much higher than the frequency of oscillations that can be deduced interpolating the (half-)integer sampling, a
situation familiar from the study of SU(2) asymptotics. Hence when we speak of matching frequency of oscillations between
the numerical data and the analytic formula, we refer to the “effective” frequency of the (half-)integer oscillations, which is not
the Regge cation, but a function thereof.
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Figure 14: Rescaled numerical data versus the analytic asymptotics 38, for Euclidean Regge data and γ = 1.2, for
the simplified model and internal summations with cutoffs ∆ =1 and 2. The simplified model alone already sees the
Regge oscillations of the analytic formula. The two shelled sums maintain the same frequency, but give contributions
of order one to the magnitude and the phase offset.

In more details, we observe the following situation. First, the simplified model captures already the right
frequency of oscillations. What is missing is the precise magnitude and cosine phase offset. The first and
second shells have the same frequency of oscillations, and different magnitude and cosine phase offset, which
lead to a better qualitative match with the asymptotic formula. A more precise quantitative improvement
will likely require pushing to higher spins where the asymptotic formula becomes more accurate. As for the
crude numerical values, we see that at λ ∼ 20 (which means spins j ∼ 10, recall half-integers are also being
computed here) the simplified model and shelled sums agree with one another and with the analytic formula
with a 10% error.

From these data we deduce that individual l’s see the same critical behavior for Euclidean Regge data,
including the simplified model, and that the asymptotic formula 34 is the result of summing all the relevant
contributions. However the power law and frequency of oscillations are well described by the simplified
model, with the internal sums only contributing to the overall magnitude and phase offset. Given the much
faster evaluation times of the simplified model, this is an interesting property, whose origin will be explained
in the next section.

The data presented in the figures of this section have γ = 1.2. For double checking, we performed further
numerical investigations with the different value γ = 0.1, leading to similar plots. In particular, we found
the same frequency of oscillations as predicted by Eq. 34.

We conclude from the numerics that the power law and frequency of the asymptotic formula can be
confirmed already at spins of order 10, to a 10% error. A better match requires changes in the amplitude
and the phase offset, for which one needs more shells and/or higher spins.

5.4 Lorentzian Regge geometry

For Lorentzian Regge data, we have two distinct critical points, and the oscillating power law decay [5]

Av =
(−1)χ+M

λ12
eiλΦc

(
Nce

iλSc +NPce
−iλSc)+O(λ−13). (39)
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The crucial difference is that this time the action at the critical point depends linearly on γ,

Sc = γ
∑

a<b

jabθ
L

ab(~nab). (40)

The Lorentzian 4D dihedral angles θL

ab are defined from the Lorentzian spherical cosine laws in terms of the 3D
normals, or from the 4D normals as recalled in Sec. 3.4 above. They are boosts between the timelike normals
if the latter are both future or past pointing, and in the mixed case (called the thin wedge configuration)
one has to add a shift by a factor iπ. These shifts result in the additional (−1)M phase, where

M =
∑

thin wedges

jab. (41)

We remark that Eq. 40 is a Lorentzian Regge action with areas are given by γj, which is in agreement
with the area spectrum of loop quantum gravity in the large spin limit. As for the shape-matching and
equivalence of Eq. 40 to the Regge action based on lengths, the same considerations of the Euclidean case
apply.

For our numerical simulations, we considered the isosceles configuration described in Sec. 3.4. Assigning
the normals to the intertwiners according to the geometric picture of a 4-simplex, we have no braiding and
χ = 0. Further, we have four thin wedges all associated with jab = 5λ, thus M = 20λ with integer λ and this
phase drops out as well. For the Hessian, we use the explicit formulas in Appendix B.1, and the Mathematica
algorithm LorentzianHessian of [7] to evaluate it at the chosen configuration. Taking γ = 0.1, we find

Nc = NPc = 1.76× 10−13 + i1.87× 10−14, (42)

thus Eq. 39 is a cosine up to a global phase. Reabsorbing the global phase in the definition of the coherent
states and computing the corresponding Regge action, we obtain the analytic asymptotic formula

Av =
3.53× 10−13

λ12
cos (0.01λ+ 0.106) . (43)

In running the numerical code, we used the Gaussian truncation on only one coherent intertwiner, the
equispin gauge-fixed tetrahedron 1. The data obtained are complex, and their λ-dependent phase this time
is not simply the Regge action. We spent a considerable amount of time going through the conventions and
technical details that determine this anyway irrelevant global phase, for the sake of having real data points.
In the end the simplest solution was to determine the λ-dependent phase through a numerical fit, then
remove it from the numerical data. A more brutal removal by taking absolute values would have deprived
us of the numerical sign, which is important in comparing data and analytic formulas.17

The code works fine also for Lorentzian boundary data, and we were able to evaluate the amplitude for
the simplified model and first shell. The numerical results we were able to obtain are however less satisfying
than for the previous configurations, in terms of comparing with the analytic asymptotic formula. The main
problem is the numerical instability in the booster functions, which limits us to λ = 9, before the j = 50
instability of the boosters is reached. Furthermore, the numerical cost of the calculation limits us to ∆ = 1.
We can, on the other hand, take advantage of the expected linear dependence of the oscillations on γ, and
evaluate numerically the vertex amplitude at different values of γ, to try to establish different aspects of the
asymptotics. We considered three different values of γ, chosen to have qualitatively different behaviors in
the accessible λ ∈ [1, 9] range: a rather flat plateau with no oscillations, and visible oscillations but with a
different frequency. The resulting asymptotic formulas needed to match the numerics in the three cases are
reported in Table 6.

17We shamelessly admit that we actually failed to reproduce the observed numerical global phase from our analytic calculations
– Ref. [5] does not compute it, given its irrelevance. Appendix A collects all explicit formulas and all numerous places where a
global phase arises, as well as a careful comparison between the conventions here used based on [43, 41, 44], and the ones of [5].
Albeit an overlooked phase lurking there and open to inspection, we suspect that the origin of the problem lies in a mismatch in
the conventions for the orientation of the links of the reducible {15j} between the numerical code and our analytic description
of the amplitude.
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γ Nc = NPc λ12Av

0.1 1.76× 10−13 + i1.87× 10−14 3.53× 10−13 cos
(
0.963× 10−2λ+ 0.106

)

1.2 2.82× 10−16 + i5.7× 10−16 1.27× 10−15 cos (0.116λ+ 1.111)

7 8.86× 10−25 − i3.67× 10−25 1.92× 10−24 cos (0.674λ− 0.392)

8 1.48× 10−25 − i4.32× 10−26 3.08× 10−25 cos (0.770λ− 0.284)

Table 6: Asymptotics for Lorentzian boundary data at different values of γ.

Not having enough points for a significative log-log plot, we present directly the data rescaled by the
predicted λ12 falloff, versus the rescaled asymptotic formula. The first plot shown in Fig. 15 is for γ = 0.1.
The effective frequency of oscillations is low, giving a roughly constant behavior in the accessible range. The
first consideration to be deduced from the data is that the simplified model appears to fall off significantly
faster than the analytic power law decay of the EPRL model. We interpret this to mean that the simplified
model does not have a critical behavior for Lorentzian Regge geometries. The data points of the first shell
on the other hand roughly stabilize in parallel to the asymptotic formula. This indicates that the first shell
is already enough to capture the critical behavior, even though with its actual magnitude being too small,
we expect nearby shells to still give order-one contributions, and thus a slow convergence.

Figure 15: Rescaled numerical data for Lorentzian Regge geometry, versus the analytic asymptotics 39, for γ =
0.1. The bottleneck is the numerical instabilities of the booster functions at spins of order 50, which even for the
optimal isosceles configuration we identified, occur already at λ = 10. With the caveat of the few points obtained,
the simplified model is decaying faster than the first shell, indicating that it lacks the critical behavior, and will likely
decay exponentially. The first shell, on the other hand, is well in line with the power law decay. Its magnitude falls
short of the asymptotic formula by a factor of order one: this could be completed by higher order shells, accordingly
with the previous indications that convergence is slow for Lorentzian Regge geometries.

Next, we increase the expected frequency looking at larger values of γ. Taking γ = 7 and γ = 8
allows us to fit roughly one full period of analytic oscillations within the accessible range, and with different
frequencies, to see whether the data offer a compatible nonmonotonic behavior. The results are plotted in
Fig. 16. The behavior of the first shell is again compatible with the power law scaling, and we clearly observe
nonmonotonic behavior and dependence on γ. This is nice evidence in support of the numerical evaluation
of the vertex amplitude and of the validity of the asymptotic formula. The data points at disposal are
however too few and at too small λ to draw any conclusions about the frequency of oscillations like we could
do for the Euclidean Regge geometry. As a somewhat optimistic remark, as we increase γ from 7 to 8 the
(interpolated) analytic zero with positive slope moves to the left, and so does the (interpolated) zero of the
numerical data.
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Figure 16: Rescaled numerical data versus the analytic asymptotics 39, for Lorentzian Regge data and γ = 7 and 8.
These values are chosen so that the analytic formula has a visible oscillation within the range numerically accessible.
The faster frequency of the γ = 8 case can be inferred comparing the eyesight interpolation of the positive slope through
the x axis. The data points for the first shell are well in line with the analytic power law, and show a nonmonotonic
behavior qualitatively comparable with the predicted oscillations. Higher spins are needed for a better match, as well
as increasing the number of shells being summed over.

In summary, the simplified model does not see the critical behavior for Lorentzian Regge data, but
the first shell already does, and presumably all other shells. The power law decay observed confirms the
asymptotic formula. There is a γ-dependent nonmonotonic behavior, qualitatively compatible with the
oscillations predicted by the asymptotic formula. The convergence of the internal sums is slower than with
Euclidean Regge data, and higher shells/higher spins are needed for a more quantitative confirmation of the
asymptotic formula.

6 Outlook

6.1 Geometric meaning of the internal sums

The formula 6 and more generally the method of [8], introduce a factorization of Lorentzian spin foam
amplitudes so that only SU(2) objects appear at the vertices, and all Lorentzian properties are in the booster
functions localized at the edges. Since the vertices are dual to 4D structures and the edges to 3D structures,
this raises the question of how the 4D Lorentzian structures are reconstructed by the internal sums. A second
question concerns the simplified model, which we have shown to capture the EPRL asymptotics for vector
and Euclidean Regge geometries. Since the simplified model has the advantage of much faster evaluation
times, it is useful to understand why this is the case. These two questions are closely related, and can be
answered by inspecting in more detail the role of the sums over the internal spins lab.

Let us look again at the decomposition 6, and consider the simplified model, for which the internal sums
are removed.18 The vertex amplitude reduces to the {15j} symbol evaluated at the boundary spins, and the
booster functions at their minimal configurations:

AEPRLs
v (jab, ~nab) =

∑

ka,ia

{15j}
5∏

a=2

dkaB
γ
4 (jab, jab; ia, ka)

5∏

a=1

cia(~nab). (44)

The internal intertwiners are still being summed over, but in the large spin limit the booster functions are
Gaussians peaked on equal intertwiners, and to lowest order [45, 8, 11]

Bγ4 (jab, jab; ia, ka) ' b(γ, jab)

λ3/2 dia
δiaka . (45)

The simplified vertex amplitude 44 is thus in first approximation proportional to a single coherent {15j}
18This is achieved through a further imposition of the Y map inside the product h−1

a hb in Eq. 6, see [8] for details and
motivations.
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symbol, which we recall is the vertex amplitude for SU(2) BF theory:

AEPRLs
v (jab, ~nab) '

1

λ6

(
5∏

a=2

b(γ, jab)

)
ASU(2)

v (jab, ~nab), ASU(2)

v (jab, ~nab) :=
∑

ia

{15j}
5∏

a=1

cia(~nab). (46)

This approximation shows that the simplified model has the same critical points of SU(2) BF theory, and
λ−6 times its scaling. The SU(2) coherent vertex amplitude has no critical behavior for Lorentzian Regge
data and thus decays exponentially; whereas for Euclidean Regge data it admits two distinct critical points
and oscillations with exactly the same frequency 35 of the EPRL model [16],

ASU(2)

v (jab, ~nab) =
1

λ6

1

26π2

eiλΨc

|detHSU(2)
c |1/2 cos

(
λSR −

1

2
argHSU(2)

c

)
+O(λ−7). (47)

Here HSU(2)
c is the Hessian determinant at the critical point, and Ψc a global phase determined by the action

at the critical point, which is purely imaginary, and which depends in turn on the gauge choice and the
phase of the coherent states exactly as for the EPRL model.

From this analysis we understand why the simplified model has no critical behavior for Lorentzian Regge
data, and the same critical behavior of SU(2) BF for vector and Euclidean Regge data. In particular, for
Euclidean Regge data, inserting Eq. 47 into Eq. 46 we find that the simplified model has the same λ−12

power law decay and the same γ-independent frequency of oscillations SR of the full EPRL model. This
explains why the simplified model captures the right scaling and frequency of oscillations of the EPRL
asymptotics 34, as was shown in Fig. 14.

It also explains why it does not capture the right cosine phase offset: The simplified model sees the SU(2)
phase offset − 1

2 argHSU(2)
c = −0.324 for the equilateral configuration, which is absent in the asymptotic

formula for the EPRL model, since the Hessian is in that case real. Consider then a modified asymptotic
formula

Asv(Euclidean data) =
5.13× 10−7

λ12
cos
(

5λ arccos
(
− 1

4

)
− 0.324

)
, (48)

where we added by hand the offset of the SU(2) BF amplitude. This formula correctly matches the cosine
phase offset of the simplified model, see Fig. 17. As a consequence, the internal sums pile up to the SU(2)
Hessian to give the right magnitude of the EPRL amplitude, but also contribute to the phase offset of the
cosine, creating an interference pattern that changes Eq. 47 to Eq. 34.

Figure 17: Left panel: Comparison of the simplified model with the EPRL asymptotics and the modified asymptotics
with the SU(2) offset 48. The improved agreement shows that the right asymptotics of the simplified model is to first
approximation the same of SU(2) BF theory, and implies that the role of the internal sums in this case is to contribute
to the re-phasing of the offset to match the EPRL asymptotics - as well as contributing to the magnitude.
Right panel: Evauation of the SU(2) BF asymptotics for an equilateral Euclidean 4-simplex, and comparison with
the analytic formula 47 (It updates the plot of [10] which stopped at λ = 50 - or λ = 25 in that notation). It shows
how while the frequency is captured early on, the magnitude requires higher spins. At λ = 79 the data for the {6j}
required weighted 230 gigabytes and saturated our server’s capacity.

We take this opportunity to provide in the same figure an updated plot of the SU(2) BF asymptotics
with respect to the one presented in [10]. It allows us to highlight that the frequency of the asymptotic
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formula is matched early on by the exact evaluation, but the magnitude only at higher spins. We expect a
similar situation for the EPRL model.

Let us now consider Lorentzian boundary data. As already stated, the SU(2) vertex amplitude is ex-
ponentially suppressed for such data and thus also the simplified model should be, in agreement with the
indication of exponential decay in Fig. 15. Only the l-shells can see the critical behavior. If we look at the
factorization 6, we need both booster functions and the {15j} symbol to individually have critical behavior.
The {15j} has critical behavior only for Euclidean Regge configurations, or vector geometries. The booster
functions must then admit a critical behavior precisely at those configurations for which the j’s correspond
to a spacelike Lorentzian 4-simplex, and the l’s to a Euclidean one, or a vector geometry. A saddle point
approximation of the booster function will appear in [46], and shows that critical behavior appears when
the two sets of spins and coherent intertwiners correspond to tetrahedra that can be boosted into one an-
other. The action of the boosts is defined embedding each 3D normal as the electric part of a γ-simple
bivector. Hence there are a priori an infinite number of admissible l’s contributing to the critical behavior,
characterized by the existence of a certain classical boost mapping the j tetrahedra to the l tetrahedra, and
then a critical point of the {15j} symbol at that configuration. There are a priori infinitely many Euclidean
4-simplices for which this construction works, and we had fun exploring the ones with smallest l’s in a
reconstruction algorithm depicted in Fig. 18.

According to this argument, all shells should contribute to the asymptotic formula, and Eq. 39 should
only be reproduced accurately when sufficiently many shells are summed over. One can reasonably hope
that a limited number of shells will suffice to most applications, and in the luckiest cases, the single first
shell and its qualitative matching to the asymptotic behavior. For situations where one needs to sum many
shells, the method [8] here used becomes less efficient and may have to leave way for alternative approaches,
like for instance adaptive Monte Carlo.

Figure 18: Top panel: A pictorial representation of the spike of the Lorentzian 4-simplex used in our numerical
analysis. One tetrahedron is equilateral with areas 5, the other four are isosceles with base area 5 and the others 2.
Middle panel: Twisted spike for the Euclidean 4-simplices with areas compatible with the spins in the first shell. The
4-simplex on the left has one equilateral tetrahedron with areas 5, one isosceles tetrahedron with base area 5 and the
other 3 and three tetrahedra with one area 5, one area 3 and the other two areas 2. The one on the right has one
equilateral tetrahedron with areas 5, and four isosceles tetrahedra with base area 5 and the others 3 .
Bottom panel: Twisted spike for the Euclidean 4-simplices with areas compatible with the spins in the second shell.
The 4-simplex on the left has one equilateral tetrahedron with areas 5, one isosceles tetrahedron with base area 5 and
the other 4 and three tetrahedra with one area 5, one area 4 and the other two areas 2. The one in the middle is
similar but with areas 5, 4, and 3. The one on the right has one equilateral tetrahedron with areas 5, and four isosceles
tetrahedra with base area 5 and the others 4.
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6.2 Numerical improvements

6.2.1 Improved server

A few of the numerics presented in this paper can be performed on a simple laptop, like computing the
simplified model at spins below 10, our counting of the number of configurations compatible with the triangle
inequalities. For the rest, we used a server with 32 cores at the CPT. While this enormously improves with
respect to a single laptop, it is effectively very small with respect to the computing power used in other
branches of theoretical physics. The CPT is in the process of acquiring a server with 128 cores. When it
will come on line, it will cut our evaluation times by a factor of 4, and push forward current computing and
RAM limits. To fully take advantage of this additional power however, one will need to improve the part
of the code that computes the booster functions, to eliminate the numerical instabilities plaguing it at spins
of order 50. Once this is done, a more powerful server will no doubt be able to fully test the asymptotics
with Lorentzian boundary data, and show at which spins it is reached, and for which cutoff ∆, answering
the questions left open here.

A more powerful server will also allow numerical evaluations for extended triangulations. In particular
for calculations not requiring the use of coherent states, computational times may be reasonable for a
triangulation with a handful or more of 4-simplices. Beyond that, one may likely need simplification schemes,
like for instance the minisuperspace models used for a numerical study of renormalization in the Euclidean
EPRL [47], or approximations. To that end, let us briefly comment on one approximation and two variations
that could be considered in future work.

6.2.2 Cutting the boosters

Cutting the coherent boundary states is the only approximation used in some of the calculations of this
paper. A second approximation that should be considered is to cut the booster functions, as it could turn
out to be more efficient. The boosters are decreasing functions of the l’s, typically power law but in many
cases exponentially decreasing. If one could identify a priori which ones, then one could cut the l sums. The
numerical investigations we performed do not suggest any easy way in which this can be done. We found
for example cases in which most of the boosters within a shell are one to 3 orders of magnitude smaller than
the few dominant ones, yet the total sum of the subdominant ones is of the same order as the sum of the
dominant ones, thus forestalling any truncation. Some light over this possibility could be shed by analytic
studies of the boosters’ asymptotic behavior [45, 46].

6.2.3 Alternative expressions for the boosters

Our code computes the booster functions using numerical integration with the trapezoidal method, and the
expression of the boost matrix elements d as finite sums derived in [33]. This expression contains ratios of
Euler’s gamma functions with both real and complex arguments. We spent a significative amount of time
optimizing this part of the code and running tests and debugs. The instabilities we found arising at spins of
order 50 are the results of very small numbers constructed from ratios of very large numbers, and it is the
part of our code that we should, and we plan to, improve next.

On the other hand, there are alternative expressions that could be considered in future work. One is the
alternative formula derived in [8], where the r integrals are solved analytically but at the price of introducing
a new integral over a virtual ρ label. The ρ integrand has a nice Gaussian-like behavior,19, which can be
exploited in numerical evaluations.

Another possibility is to implement the recursion relations for the SL(2,C) Clebsch-Gordan coefficients
derived in [48]. For a simpler model with three-valent boosters and no intertwiners, this approach is extremely
powerful, and one can push the internal sums to order ∆ ∼ 100 [49].

6.2.4 Alternative form of the coherent states

The coherent state coefficients ci(~nab) are a fast part of the numerical code. However, since an enormous
number of these coefficients is needed, it could be interesting to explore alternative definitions that could
speed up this procedure. One possibility is the cross ratio coherent states [39], and the analytic expressions

19With a peak when the virtual ρ label takes value γj, thus showing a certain type of simplicity off-shellness in the model.
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studied in [50]. This basis has more economical features and proved advantageous in numerical evaluations
of the coherent state volume operator defined in [37]. We hope to be able to investigate its implementation
in future work.

As we estimated in Sec. 4, the use of coherent states can require up to an additional λ5 terms, which has
a strong impact on the numerical cost of the amplitude. Coherent states are necessary for the asymptotic
formula, but many spin foam calculations can be done in the more economical orthonormal basis of inter-
twiners. This can be an important trade-off when moving to consider amplitudes on many 4-simplices. We
have seen that the number of terms for a single equilateral 4-simplex with coherent states scales like λ10.
This is the same number of terms needed to compute, with orthonormal intertwiners, the equispin amplitude
with three 4-simplices glued together and one internal sum. This ∆3 amplitude is relevant for a discussion
of the flatness problem [51, 52], and will be the object of future work. More in general, avoiding coherent
states and increasing the number of cores, we expect to be able to make calculations on a few vertices. Going
beyond that will probably require some deeper optimization of the method, or reduction to minisuperspace
models.

7 Conclusions

We presented for the first time a numerical evaluation of the Lorentzian EPRL vertex amplitude. Obtaining
this result proved to be a challenging task, and the work presented in this paper took more than two years
to complete. Preliminary, more qualitative results were presented at the conference Loops ’17. Making
them quantitatively precise was complicated by the many technical details to be worked out. The challenges
were twofold. The main one was clearly to setup the numerical code, which includes evaluating the booster
functions, the {15j} symbols, the coherent states, and assembling them via hash tables. All making sure that
there were no numerical instabilities or inconsistent conventions. A bit more surprisingly, we also faced some
analytical challenges, concerning the way the boundary data were to be constructed and fed to the computer,
and computing the overall phase and Hessian of the asymptotic formula. While these quantities were well
defined in principle, precise explicit formulas and reconstruction algorithms were missing. We devoted part
of the paper to explaining how this can be done explicitly, and the online repository [7] contains explicit
Mathematica codes to answer these questions. We hope that our paper and this repository can provide
a reference point for future work in this direction, so that one does not have to spend time again on this
background material.

On the analytic side, we provided useful formulas and explicit configurations for the boundary data to be
used in the amplitude. We shed light on the geometric meaning of the internal sums, explaining in particular
why the simplified model asymptotes to the Regge action for Euclidean configurations but not for Lorentzian
ones.

On the numerical side, our main conclusion is that precise numerical evaluations of the complete Lorentzian
EPRL model are currently possible, and it is worthwhile to invest computational capabilities to address ex-
plicit physical questions. The method of [8] and its implementation developed in [6] have been successfully
tested. Including only a few terms of the internal shells appears sufficient to most applications, avoiding the
need to develop a full Monte Carlo approach of the amplitude. The codes for the geometric reconstruction of
the data and the numerical evaluation of the vertex amplitudes are publicly available at [7]. More specifically
to the asymptotic large spin behavior of the vertex amplitude, our conclusions confirm the analytic formula
of [5] already at spins of order 10 for vector and Euclidean Regge data. Higher spins are required for a good
match in the case of Lorentzian Regge data, but the power law decays and γ-dependence of the oscillations
are already evident at spins of order 10.

The computational resources it takes to compute the vertex amplitude in the coherent basis are con-
siderable but at the same time affordable. A natural and indeed crucial question is how to extend the
numerical calculations to many vertices. We performed computations using 32 parallel cores, but let us not
forget that in other areas of physics, computations are done with hundreds or thousands of cores. What will
be computed in the future depends on the resources available, as well as on numerical improvements and
optimizations that can still be done. Finally, we would like to stress that while our methods and results
were motivated by the EPRL model, they can be applied or adapted to other spin foam models based on or
related to SL(2,C) [53, 52, 54, 55, 56, 57, 58], their physical applications, e.g., [59], to applications involving
many vertices through intertwiner renormalization as in [60] or minisuperspace renormalization as in [47],
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as well as to calculations of tensorial and graph invariants regardless of their quantum gravity applications.
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A Conventions and explicit formulae

In this appendix we fix our conventions and notation, and provide the explicit relation between our version
6 of the coherent amplitude and the one in [5]. The difference is just in the phase and a complex conjugation
of the spinors, but it has multiple origins due to the many conventional choices involved. Our conventions
follow those of [41, 44, 43].

A.1 SU(2) coherent states and spinors

SU(2) coherent states

The uncertainty in the direction of a state |j,m〉 in the SU(2) irrep j is minimized by the lowest and highest
weights m = ±j. Acting with a rotation g ∈ SU(2) on |j,±j〉 defines two alternative families of coherent
states. Orbits of the isotropy subgroup U(1) ⊂ SU(2) generate an irrelevant global phase in the coherent
states, and it is sufficient to consider two-parameters group elements in the form [41]

n(ζ) :=
1√

1 + |ζ|2

(
1 ζ
−ζ̄ 1

)
, ζ = − tan

Θ

2
e−iΦ ∈ CP 1. (A.1)

This is also known as the Hopf section for the SU(2) ' S2 × S1 fibration, and we parametrized ζ as the
stereographical projection of the sphere from the south pole, with (Θ,Φ) the zenith and azimuth angles.
In terms of Wigner’s matrices as D(α, β, γ) = e−iαJze−iβJye−iγJz [43] (caveat in reading the files in [7],
Wolfram’s Mathematica uses opposite sign conventions for this parametrization),

n(ζ) = D(1/2)(Φ,Θ,−Φ). (A.2)

The standard choice is to define coherent states starting from the lowest weight [41],

|j, ζ〉 := n(j)(ζ)|j,−j〉, 〈j,m|j, ζ〉 = D
(1/2)
m,−1/2(Φ,Θ,−Φ). (A.3)

They satisfy
〈j, ζ| ~J |j, ζ〉 = −j~n, ~n := (sin Θ cos Φ, sin Θ sin Φ, cos Θ), (A.4)

and the important factorization property

〈j, ζ1|j, ζ2〉 = 〈 12 , ζ1| 12 , ζ2〉2j . (A.5)

The phase ambiguity associated with the U(1) subgroup, namely with choosing a different section than
Hopf’s, is the one that can be used to make the coherent amplitude real for any boundary data configuration,
as discussed in [5] and in the main text.

It is often convenient to use also the second family, the one constructed from the highest weight. To
distinguish it, we use a different ket notation,

|j, ζ] := n(j)(ζ)|j, j〉, 〈j,m|j, ζ] = D
(1/2)
m,1/2(Φ,Θ,−Φ). (A.6)
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It satisfies
[j, ζ| ~J |j, ζ] = j~n, (A.7)

namely the state points in the antipodal direction on the sphere. The two families are in fact related by a
parity transformation realized by the complex structure

J (j) . |j, ζ〉 := ε(j)|j, ζ̄〉 = |j, ζ], J (j)2 = (−1)2j . (A.8)

Here ε
(j)
mn := (−1)j−mδm,−n = D

(j)
mn(iσ2) is the spinorial metric. Another useful operation is the antipodal

map

~n 7→ −~n ⇔ (Θ,Φ) 7→ (π −Θ, π + Φ) ⇔ ζ 7→ ζAP = −1

ζ̄
. (A.9)

We observe that
|j, ζ] = e2ij(π+Φ)|j, ζAP〉, |j, ζAP] = e2ijΦ|j, ζ〉, (A.10)

so the antipodal map has the effect of changing family without preserving the Hopf section because of the
additional phase. This will play a role below.

Coherent intertwiners

Group averaging the tensor product of coherent states defines the coherent intertwiners [18],

∫

SU(2)

dg ⊗f D(jf )(g)|jf , ζf 〉 =
∑

i12

di12 ci12(~nf ) |j1, . . . j4, i12〉, (A.11)

where i12 is the standard orthonormal intertwiner basis, here taken in the 12 recoupling channel. The
coherent intertwiner coefficient ci12(~nf ) is given by Eq. 9 in terms of Wigner’s four-legged symbol

(
jf
mf

)(i12)

=

(
j1 j2 j3 j4
m1 m2 m3 m4

)(i12)

=
∑

m12

(−1)j12−m12

(
j1 j2 j12

m1 m2 m12

)(
j12 j3 j
−m12 m3 m

)
.

In Eq. 9 we used ~n to label the argument of the Wigner matrices, instead of Eq.A.2. This was done so
to reduce at most the technical details needed to read the main text. This coherent intertwiner is directly
applicable to the tetrahedron labeled 5 in Eq. 7. In the other cases, one or more kets are replaced by bras,
and simultaneously we put an antipodal map in the normal labeling the coherent states, like in Eq. 1. Where
we have a bra, the intertwiner needs to be multiplied by the epsilon matrix ε(j) to take into account the
link’s orientation. For a tetrahedron with only one bra, say in the first position of the graphic symbol, the
resulting coefficient is

c
(1)
i12

(~nf ) :=

(
j1 j2 j3 j4
−m1 m2 m3 m4

)(i12)

(−1)j1−m1D
(j1)
m1,j1

(−~n1)
4∏

f=2

D
(jf )
mf ,jf

(~nf ). (A.12)

For the numerical code, it was convenient to rewrite this expression in terms of the intertwiner with all four
legs outgoing. This can be achieved by recalling that

D
(j)
m,n(g) = (−1)m−nD(j)

−m,−n(g), (A.13)

which applied to Eq. A.12 leads to

c
(1)
i12

(~nf ) =

(
j1 j2 j3 j4
m1 m2 m3 m4

)(j12)

D
(j1)
m1,−j1(−~n)

4∏

f=2

D
(jf )
mf ,jf

(~nf ). (A.14)

These are the expressions used in sl2cfoam.

70



Spinors

The fundamental irrep j = 1/2 is isomorphic to C2, and the relation of the coherent states to spinors is very
useful to study properties of the SL(2,C) unitary irreps. We denote a spinor with zA ∈ C2, A = 0, 1, and
use

εAB =

(
0 1
−1 0

)
= εAB (A.15)

to raise and lower indices. We equip C2 with a complex structure J and define the dual spinor

(Jz)A := J . zA :=

(
z̄1

−z̄0

)
, J2 = (−1)2j . (A.16)

Notice that so defined, the complex structure is consistent with Eq. A.8 for j = 1/2. εAB gives an SL(2,C)-
invariant bilinear coupling, and we can introduce an Hermitian norm given by complex conjugation (book
kept by dotting the indices) and the identity matrix δAȦ, which is nothing but a choice of canonical timelike
vector in Penrose’s abstract index notation. With a Dirac-like notation for spinors [61], the relations between
spinors and their dual can be compactly written

|z〉 =

(
z0

z1

)
= −ε|z̄] = −J . |z] = −|Jz], |z] = J . |z〉 = |Jz〉 = ε|z̄〉 =

(
z̄1

−z̄0

)
, (A.17)

with ε = iσ2, and the Hermitian and Lorentz-invariant bilinear are

〈z|w〉 = δAȦz̄
ȦwA = 〈Jw|Jz〉 = [w|z], [z|w〉 = εABw

AzB ≡ 〈Jz|w〉. (A.18)

Finally, for the norm we use
||z||2 := 〈z|z〉 = |z0|2 + |z1|2. (A.19)

Coming back to the SU(2) coherent states, the lowest-weight ones define spinors

|ζ〉 := | 12 , ζ〉 =

(
− sin Θ

2 e
−iΦ

cos Θ
2

)
(A.20)

of unit norm and arg z1 = 0. The map z0 = − sin Θ
2 e
−iΦ, z1 = cos Θ

2 provides a choice of section for the
C2 ' CP 1 × CP 1 fibration. Conversely, an arbitrary spinor defines a coherent state for the fundamental
irrep which is redundantly parametrized by an additional norm and phase,

|z〉 = ||z||ei arg z1 | 12 , ζ〉, ζ =
z0

z1
, |z1| = ||z||

(1 + |ζ|2)1/2
. (A.21)

The additional phase corresponds to the phase ambiguity in the coherent states previously discussed, whereas
the norm can be eliminated by working always with normalized spinors. Spinorial SU(2) coherent states
feature prominently in spin foam models and their applications, see e.g. [62, 63, 61, 64, 65, 66]. An immediate
advantage of their use is to write the resolution of the identity as Gaussian integrals.

For the highest weight,

|ζ] := | 12 , ζ] ≡ J . |ζ〉 =

(
cos Θ

2

sin Θ
2 e

iΦ

)
= eiΦ| 12 , ζAP〉. (A.22)

Again, an arbitrary dual spinor defines a redundant coherent state with an additional norm and phase,

|z〉 = ||z||ei arg z1 | 12 , ζ〉. (A.23)

The expressions A.21 and A.23 can be generalized to an arbitrary irrep j, to provide spinorial coherent states
for SU(2). To that end, we consider the matrix

g(zA) :=
1

||z||
(
|z], |z〉

)
=

1

||z||

(
z̄1 z0

−z̄0 z1

)
= n(ζ)e−i arg z1σ3 , ζ =

z0

z1
, n(ζ) ≡ gR(ζ, 1). (A.24)
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We then define the spinorial coherent states

|j, zA〉 := ||z||2jD(j)
(
gR(zA)

)
|j,−j〉 =

∑

m

(
2j

j +m

)1/2

(z0)j+m(z1)j−m|j,m〉 ≡ ||z||2je2ij arg z1 |j, ζ〉, (A.25)

|j, zA] := ||z||2jD(j)
(
gR(zA)

)
|j, j〉 =

∑

m

(
2j

j +m

)1/2

(−z̄0)j−m(z̄1)j+m|j,m〉 ≡ ||z||2je−2ij arg z1 |j, ζ], (A.26)

where in the second equality we used the following properties of the Wigner matrices:

D
(j)
m,−j(g) =

(
2j

j +m

)1/2

(g12)j+m(g22)j−m, D
(j)
mj(g) =

(
2j

j −m

)1/2

(−ḡ12)j−m(ḡ22)j+m. (A.27)

These expressions reduce to Eqs. A.21 and A.23 for j = 1/2.
Finally, we note the factorization properties

[j, w|j, z〉 =
∑

m

(
2j

j +m

)
(w1z0)j+m(−w0z1)j−m = [z|w〉2j , (A.28)

〈j, w|j, z〉 =
∑

m

(
2j

j +m

)
(w̄0z0)j+m(w̄1z1)j−m = 〈w|z〉2j . (A.29)

A.2 SL(2,C) unitary irreps of the principal series

Homogeneous representation

We follow the conventions of [44], with the notational difference

ρ =
1

2
ρRuhl, k = −1

2
mRuhl. (A.30)

Unitary irreps of the principal series of SL(2,C) are labeled by a pair (ρ ∈ R, k ∈ Z/2) [67, 68, 44], and can
be represented on a space of homogeneous functions of two complex variables,

F (ρ,k)(λzA) = λk−1+iρλ̄−k−1+iρ F (ρ,k)(zA), λ ∈ C, A = 0, 1. (A.31)

The scalar product is defined choosing any section of the C2 ' CP 1 × CP 1 fibration,

(F, F ′) :=

∫

CP 1

dµ(zA)F (zA)F ′(zA), dµ(zA) :=
i

2
zAdz

A ∧ z̄Ȧdz̄Ȧ. (A.32)

The scaling of the Lorentz-invariant measure dµ(zA) guarantees that the whole integrand is homogeneous of
degree zero, and thus the integration is independent of the choice of section.

For the EPRL model with spacelike tetrahedra we pick Naimark’s orthonormal basis, labeled by the
eigenfunctions of L2 and Lz and given in the conventions of [44] by

F
(ρ,k)
jm (zA) := eiΨ

ρ
j

√
dj
π

1

||z||2(1−iρ)D
(j)
m,−k

(
g(zA)

)
, j ≥ |k|, j ≥ m ≥ −j. (A.33)

Here D(j) are Wigner matrices, and g(zA) is the same matrix defined in Eq. A.24.
The function Ψρ

j parametrizes a freedom in choosing the phase of the basis elements. This is set to zero
in [44] and [5]. This economical choice however leads to complex Clebsch-Gordan coefficients. An alternative
choice is to take [8]

eiψ
ρ
j = (−1)−

j
2

Γ(j + iρ+ 1)

|Γ(j + iρ+ 1)| , (A.34)

which guarantees reality of the Clebsch-Gordan coefficients, and as a consequence also of all EPRL amplitudes
Av(jab, ia) in the orthogonal intertwiner basis. This is the convention used in our numerical code, but this
phase difference goes away in the expression of the coherent amplitude.
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We introduce next the antilinear map J , the infinite-dimensional analog of the complex structure J for
spinors, given by

JF (zA) := AF (zA), (A.35a)

AF (zA) :=

√
ρ2 + k2

π

∫

CP 1

dµ(wA)[w|z〉−k−1−iρ[w|z〉k−1−iρF (wA). (A.35b)

It satisfies
J : (ρ, k) 7→ (ρ, k), (JF,JF ′) = (F ′, F ), J 2 = (−1)2k. (A.36)

Using this map we can define the bilinear pairing

ε(F, F ′) := (JF, F ′) = (−1)2kε(F ′, F ), (F, F ′) = ε(F ′,JF ). (A.37)

This is the infinite-dimensional analog of the spinorial bilinear A.18.

Group elements and vertex amplitude

The SL(2,C) group action in the homogeneous representation is given by matrix multiplication on the spinor
argument, h.F (zA) = F (hTzA). The matrix elements can be equally written as the Hermitian or the bilinear
products,

D
(ρ,k)
jmln(h) := 〈ρ, k; j,m|h|ρ, k; l, n〉 =

(
F

(ρ,k)
jm , h . F

(ρ,k)
ln

)
= ε

(
h . F

(ρ,k)
ln ,JF (ρ,k)

jm

)
. (A.38)

For the EPRL model, we are only interested in the “minimal” weights

ρ = γk, j = l = k, (A.39)

and for group elements in the form h = h−1
a hb. Using the invariance of the integration measure, we can

write these group elements as

D
(γj,j)
jmjn (h−1

a hb) =

∫

CP 1

dµ(zA)F
(γj,j)
jm (hT

az
A)F

(γj,j)
ln (hT

b z
A). (A.40)

The vertex amplitude in the orthonormal basis is simply the tensor associated to the complete five-valent
graph,

Av(jab,mab) =

∫ 5∏

a=2

dha
∏

a<b

D
(γjab,jab)
jab,mab,jab,mba

(h−1
a hb). (A.41)

Because of its SU(2) invariance it can be contracted for free with the four-legged Wigner’s symbol to define
the amplitude in the intertwiner basis Av(jab, ia).

A.3 Definition of the SL(2,C) coherent amplitude

Since the maximal isotropy group of SL(2,C) is the same as of SU(2), coherent states are a direct embedding
of the SU(2) ones into the unitary irreps used. For the EPRL irreps in the homogeneous representation
A.33, we define the (lowest-weight) family of coherent states

F
(γj,j)
jζ (zA) :=

∑

m

F
(γj,j)
jm (zA)〈j,m|j, ζ〉 =

√
dj
π
||z||2(iγj−1−j)〈z̄|ζ〉2j , (A.42)

where the last step follows from the factorization properties of coherent states.20 It is useful to define also
a dual basis associated with the highest weight A.6,

F
(γj,j)
jJζ (zA) :=

∑

m

F
(γj,j)
jm (zA)〈j,m|j, ζ] =

√
dj
π
||z||2(iγj−1−j)〈z̄|ζ]2j . (A.43)

20The complex conjugation in 〈z̄|, which could be avoided by defining the coherent states as
∑
m F

(ρ,j)
jm (zA)〈j, ζ|j,m〉, is

actually all right, and familiar from (holomorphic) representations generated by (unnormalized) coherent states, e.g. fn(z) :=
〈z̄|n〉 = zn/n! for the harmonic oscillator.
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This is related to the antipodal map by the same phase shift A.10 of the SU(2) case, namely

F
(γj,j)
jJζ (zA) = e2ij(π+Φ)F

(γj,j)
jζAP (zA). (A.44)

The map ζ 7→ Jζ from one family to the other can also be induced using the infinite-dimensional complex
structure A.35. An explicit calculation gives in fact

JF (γj,j)
jζ (zA) = e−i arctan γ

√
dj
π
||z||2(iγj−1−j)[ζ|z〉2j = e−i arctan γF

(γj,j)
jJζ (zA), (A.45)

JF (γj,j)
jJζ (zA) = (−1)2jei arctan γF

(γj,j)
jζ (zA), (A.46)

where we fixed γ > 0 for convenience.
When defining the coherent vertex amplitude, it is convenient to have an antipodal map on the coherent

state at the target of each link, so that the vectors can be interpreted consistently as outgoing (or incoming,
if one prefers) normals. From the previous formulas, we know three different ways to apply the antipodal
map: via ζAP, via J . |ζ〉, or via JF . The resulting amplitudes differ by an overall phase. To keep the
notation as simple as possible in the main text, we used the first option, so as to be able to refer only to
unit vectors and bypass spinors. The coherent basis elements used in Eq. 1 are defined as follows,

D
(γjab,jab)
jab,−~nab,jab,~nba(h−1

a hb) := D
(γjab,jab)
jab,jab,jab,jab

(
n†(ζAP

ab )h−1
a hbn(ζba)

)
= e−2ijabΦabD

(γjab,jab)
jabζabjabJζba

(h−1
a hb)

= e−2ijabΦab

∫

CP 1

dµ(zAab)F
(γjab,jab)
jabζab

(hT
az
A
ab)F

(γjab,jab)
jabJζba

(hT

b z
A
ab)

= e−2ijabΦab
djab
π

∫

CP 1

dµ(zAab)
expSab

||hT
azab||2||hT

b zab||2
, (A.47)

where in the last step we defined the action

Sab := jab ln
〈hT
azab|ζ̄ab〉2[ζ̄ba|hT

b zab〉2
||hT
azab||2 ||hT

b zab||2
+ iγjab log

||hT

b zab||2
||hT
azab||2

. (A.48)

Therefore our definition 1 of the coherent vertex amplitude is

Av(jab, ~nab) =

∫ 5∏

a=2

dha
∏

a<b

D
(γjab,jab)
jab,−~nab,jab,~nba(h−1

a hb) =

= e−2i
∑
a<b jabΦab

(∏

a<b

djab
π

)∫ 5∏

a=2

dha

∫

CP 1

∏

a<b

dµ(zAab)

||hT
azab||2||hT

b zab||2
expS, (A.49)

with
S =

∑

a<b

Sab. (A.50)

At this point we can follow the saddle point approximation developed in [5], but not before explaining the
different conventions used.

Phase ambiguity and the conventions of [5]

The basis of homogeneous functions used in [5] differs from Eq. A.33 in choosing k instead of −k and a
different spinorial parametrization,

FB(ρ,k)
jm (zA) :=

√
dj
π

1

||z||2(1−iρ)D
(j)
m,k

(
gB(zA)

)
, gB(zA) :=

1

||z||

(
z0 −z̄1

z1 z̄0

)
. (A.51)

In spite of this generic difference, the two choices coincide for the minimal weights used in the EPRL model,
since

D
(j)
m,j

(
gB(zA)

)
≡ D(j)

m,−j
(
g(zA)

)
. (A.52)
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So there is no difference at this level. The choices however reflect that [5] takes as fundamental family of
coherent states the highest weights, and furthermore the spinorial complex structure A.16 is defined with an
opposite sign. The spinorial bilinear in [5] is [w, z] = [z|w〉.

The coherent basis is defined from the highest weights, and denoted

Iφξ(zA) :=

√
dj
π
||z||2(iγj−1−j)[ξ|z〉2j ≡ F (γj,j)

jJξ
(zA). (A.53)

Then,

J Iφξ(zA) = (−1)2je−i arctan γ

√
dj
π
||z||2(iγj−1−j)〈ξ|z〉2j ≡ (−1)2je−i arctan γF

(γj,j)

jξ
(zA), (A.54)

consistent with A.45, since we have the same sign convention for J .
The link “propagator” is defined in [5] from the infinite-dimensional bilinear A.37 (there denoted β(F, F ′)

but otherwise identically defined). This is the same as a coherent unitary representation matrix up to a phase,

Pab := ε(ha . Iφab, hb . Iφba) ≡ (ha . J Iφab, hb . Iφba) = (−1)2jabei arctan γD
(γjab,jab)

jabξ̄abjabJξba
(h−1
a hb)

= (−1)2jabei arctan γ

∫

CP 1

dµ(zA)F
(γjab,jab)

jabξ̄ab
(hT
az
A)F

(γjab,jab)

jabJξba
(hT

b z
A). (A.55)

Hence our expression A.47 for the link propagator differs from the one of [5] by the overall phase
exp{i∑a<b(2jab(π + Φab) + arctan γ)} reported in footnote 4, and by the identification

ζab = ξ̄ab. (A.56)

With this map, and the renaming ha 7→ h̄a, the action becomes

Sab := jab ln
〈h†azab|ξab〉2〈Jξba|h†bzab〉2
||h†azab||2 ||h†bzab||2

+ iγjab log
||h†bzab||2
||h†azab||2

, (A.57)

which coincides with [5] (with our definition of J of opposite sign, but this is irrelevant because of the
squares). Alternatively, we can reproduce the action of [5] keeping the same spinors ζab = ξab and the same
group elements ha if we take a global complex conjugate and map γ → −γ.

B EPRL critical point equations and Hessian

We can at this point recall briefly the key steps of the saddle point approximation of [5], and complete
it with the explicit calculation of the Hessian. We look for critical points defined by the vanishing of the
gradient of Eq. A.57 with respect to the variables integrated over, the spinors zab, and the group elements
ha. Vanishing of the spinor gradient gives

|ξab〉 =
eiυab

||h†azab||
h†a |zab〉, |Jξba〉 =

eiυba

||h†bzab||
h†b |zab〉, (B.58)

which can be combined to

(h†a)−1|ξab〉 =
||h†bzab||
||h†azab||

ei(υab−υba)(h†b)
−1|Jξba〉, (B.59a)

as well as

ha|ξab〉 =
||h†azab||
||h†bzab||

ei(υab−υba)hb|Jξba〉. (B.59b)

Here υab are phases to be determined. Because of the homogeneity of the action, these are only four
independent real equations per link. Two fix zab up to the irrelevant choice of section, and the remaining
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ones fix the group element and υab phases. On-shell of these equations, the vanishing of the ha gradient
gives the closure conditions ∑

b 6=a
jab~nab = 0. (B.60)

These are not equations for the integration variables, but directly a restriction on the boundary data. On
the other hand, also Eq. B.59 cannot be solved in general for zab and ha, but only if the boundary data
satisfy special conditions, which leads us to the classification recalled in Sec.2.

In the first subset satisfying Eq. 3, let us further specialize the boundary data to the twisted spike
configuration 4, where all normals are pairwise antiparallel. Plugging this condition into Eq. B.59 and
looking at the norms, we find equations for the 3D representation matrices Ha := D(1) (ha),

Ha~nab = −Hb~nba = Hb~nab. (B.61)

These have a trivial solution with ha = ±1 ∀a. This corresponds in general to a vector geometry in the
twisted spike gauge. However if additionally the shape-matching conditions are satisfied, it is possible to
find a second, nontrivial solution, given by h(c)

1 = 1 and

h(c)

a = ± exp (θ1a~n1a · ~σ) (B.62)

for a 6= 1. This is the second critical point for Euclidean Regge data in the twisted spike. As for the spike
configuration, one rotates back the tetrahedra so that all edges are aligned, and in that case the two critical
points are Eq. 20 in the main text. See also Fig. 8 of [10]. Then to evaluate the action at the critical point,
we plug the solutions back in Eq. B.59 and determine the υab phases.

In the second subset, the solutions are not in the SU(2) subgroup, and their derivation is more involved,
see [5]. Again we can simplify the analysis choosing judiciously the boundary data. Fixing the spike
configuration described in the main text, and using the freedom to gauge fix h1 = 1, we can solve the system
with Mathematica, finding the set of four solutions 26. Notice the presence of the iπ: this is due to the
inversion required by the fact that the first tetrahedron is past pointing, whereas all the others are future
pointing. Plugging them back into Eq. B.59 we determine the υab phases entering the action at the critical
point.

For vector geometries in the twisted spike, υab = 0. For the Regge geometries with two critical points,
the υab contribute not only to the Regge action oscillation but also to the overall phase of the amplitude.
Their value for the configurations used in this paper are computed in the Mathematica files in [7]. However,
the overall phase is the only part of the analytic calculation that does not fit our numerical data. This could
be due to an overlooked phase in the previous appendix, or to a mismatch between the analytic definition
and the numerical implementation that we were not able to identify. This is of limited harm, since the global
phase is irrelevant to the model, and we determined it from a numerical fit for the sake of plotting real data
points.

B.1 Hessian

The Hessian H is the matrix of second derivatives of the action (A.57) with respect to the group elements
ha and the spinors zab. It is a 44× 44 matrix of the form

H =

(
Hhh Hhz

Hzh Hzz

)
. (B.63)

The generic structure of the Hessian is presented in [5], however not in a form explicit enough for numerical
evaluations. Here we close this gap, and provide the explicit expressions for all the blocks.

The top left block is a 24× 24 block diagonal matrix

Hhahb = δabHha ,

where each block is a 6× 6 matrix given by

Hha =
1

2

∑

b 6=a
jab

(
− (1− ~nab ⊗ ~nab) −iεab (1− ~nab ⊗ ~nab) + (εab + iγ) ? ~nab

−iεab (1− ~nab ⊗ ~nab)− (εab + iγ) ? ~nab − (1 + 2iεabγ) (1− ~nab ⊗ ~nab)

)
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where εab = sign (b− a) and ? is the Hodge dual in the 3D internal space. The bottom right block of Eq.
B.63 is a 20× 20 block diagonal matrix

Hzabzcd = δacδbdHzabzab

where each block is a 2× 2 matrix

Hzab =jab(iγ + 1)

(
ei4υab〈ξab|hah†a|Jξab〉2 |〈Jξab|hah†a|Jξab〉|2 − 〈Jξab|(hah†a)2|Jξab〉

|〈Jξab|hah†a|Jξab〉|2 − 〈Jξab|(hah†a)2|Jξab〉 −e−2i(2υba+arctan γ)〈Jξab|hah†a|ξab〉2
)

+ jab(iγ − 1)

(
ei2(2υba+arctan γ)〈Jξba|hbh†b|ξba〉2 〈ξba|(hbh†b)2|ξab〉+ |〈ξba|hbh†b|ξab〉|2
〈ξba|(hbh†b)2|ξab〉+ |〈ξba|hbh†b|ξab〉|2 −e−i4υba〈ξba|hbh†b|Jξba〉2

)
.

The off-diagonal block of Eq. B.63 is a 24× 20 matrix defined with sparse blocks

Hhz =




Hh1z12 Hh1z13 Hh1z14 Hh1z15 0 0 0 0 0 0
Hh2z12 0 0 0 Hh2z23 Hh2z24 Hh2z25 0 0 0

0 Hh3z13 0 0 Hh3z23 0 0 Hh3z34 Hh3z35 0
0 0 Hh4z14 0 0 Hh4z24 0 Hh4z34 0 Hh4z45




where each block is the following 6× 2 matrix,

Hhczab =δcbkab

(
iei2υba~vba 0

iγei2υba~vba (iγ − 1) e−i2υab~vba

)
+ δcakab

(
0 ie−i2υab ~wab

(iγ + 1) ei2υab ~wab iγe−i2υab ~wab

)

defined in terms of the 3D complex vectors

~vba = 〈Jξba|~σhbh†b|ξba〉 − ~nba〈Jξba|hbh
†
b|ξba〉 , and ~wab = 〈Jξab|hah†a~σ|ξab〉+ ~nab〈Jξab|hah†a|ξab〉 .

By symmetry, the block Hzh is a 20× 24 matrix that can be obtained by transposition of Hhz.
The expression reported here must be evaluated at the critical point, and since we know that hah

†
a is a

boost along ~n1a, everything can be written as a function of dihedral angles, 3D normals, and phases υab.
The result is rather cumbersome and we do not write it here, but we refer to the Mathematica notebook
SL2Cderivatives in [7] that generates the symbolic expression of the Hessian starting from the action,
where this final step is made.

If we revert to our action A.48 (or ?? in the main text), we have
Finally, let us review the various numerical factors that contribute to Nc in the asymptotic formula. This

includes the inverse square root of the Hessian determinant, as well as the integration measure at the critical
point. For the spinor measure Ωab := ||h†azab||−2||h†bzab||−2dµ(zAab), one needs to make a choice of section
of the tautological spinor bundle, the same made in evaluating the (inverse square root of the) Hessian at
the critical point. Only their product is independent from this choice. The section we chose is ||zab|| = 1
and υab = 0 for a < b, and the result can be read from SL2Cderivatives. For the group integrals, we use
the normalization of the SL(2,C) Haar measure given in [44]. This gives a factor 1/(28π4)4 in both the
numerical code and the value of the group measure at the critical point. We then have a factor (2π)22 from
the Gaussian integrations, a factor 24 from the double multiplicity of the solutions ha = ±h(c) for a 6= 1,
and a factor (2/π)10 from the normalization of the coherent states in the amplitude. This gives the factor
236π12 of [5] times the factor 2−32π−16 from the Haar measure. Putting everything together,

Nc =
24

π4

1√−detH|σ

∏

a<b

Ωab|c. (B.64)
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Abstract

We compute transition amplitudes between two spin networks with dipole graphs, using the Lorentzian
EPRL model with up to two (non-simplicial) vertices. We find power-law decreasing amplitudes in the
large spin limit, decreasing faster as the complexity of the foam increases. There are no oscillations nor
asymptotic Regge actions at the order considered, nonetheless the amplitudes still induce non-trivial
correlations. Spin correlations between the two dipoles appear only when one internal face is present
in the foam. We compute them within a mini-superspace description, finding positive correlations,
decreasing in value with the Immirzi parameter. The paper also provides an explicit guide to computing
Lorentzian amplitudes using the factorisation property of SL(2,C) Clebsch-Gordan coefficients in terms
of SU(2) ones. We discuss some of the difficulties of non-simplicial foams, and provide a specific criterion
to partially limit the proliferation of diagrams. We systematically compare the results with the simplified
EPRLs model, much faster to evaluate, to learn evidence on when it provides reliable approximations of
the full amplitudes. Finally, we comment on implications of our results for the physics of non-simplicial
spin foams and their resummation.
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1 Introduction

The spin foam formalism offers a covariant approach to the dynamics of loop quantum gravity, see [1] for
an introduction. The state of the art is well described by the EPRL model [2, 3, 4, 5], which includes the
Immirzi parameter, can be extended to provide transition amplitudes to all spin network states [6, 7], and
admits a quantum group deformation conjectured to describe the case of non-vanishing cosmological constant
[8]; Most importantly, the large spin asymptotics of the 4-simplex vertex amplitude contains exponentials
of the Regge action [9, 10]. On the other hand, a systematic evaluation of spin foam transition amplitudes
for given boundary data is hindered by their sheer complexity. For instance, numerical calculations of spin
correlations have been performed so far only with a single 4-simplex and with the old Barrett-Crane model
[11, 12]. The situation is even worse for Lorentzian signature, because of the unbounded group integrations
in the vertex amplitude. Testing the EPRL Regge asymptotics is numerically very hard [13, 14], and spin
correlations are out of reach for the time being.1 In this respect, the extension of the EPRL model to
arbitrary vertices [6, 7] can be used to simplify the problem of explicit evaluations, by considering foams
which are combinatorially simpler than the simplicial ones. For instance, one can consider boundary graphs
in the form of a ‘flower’ (a single node with links starting and ending on it), or of a ‘dipole’ (two nodes and
all links connecting one node to the other): the lowest-order spin foams are then much simpler than the
simplicial ones, and one can hope to evaluate them explicitly with analytic and numerical methods. This
is what we do in this paper: we choose a simple boundary given by two dipoles with 4-links, and study a
dozen different spin foam amplitudes with up to two vertices and one internal face.

Schematically, we compute amplitudes for the following spin foam expansion:

+ λ + λ2 + λ2 (1)

Here λ is a bookkeeping ‘coupling constant’ of the vertex expansion. The method we use to evaluate the
Lorentzian amplitudes is the factorization introduced in [18], together with Wolfram’s Mathematica and
C++ codes to compute the boost integrals and SU(2) Clebsch-Gordan coefficients. The explicit evaluations
are very costly, and we limited detailed computations to those foams that we identified as the most interesting
ones.

Non-simplicial transition amplitudes have been used in preliminary work in spin foam quantum cosmology
based on a dipole boundary graph [19, 20, 21, 22, 23, 24] or on a flower one [25]. Similar simple graphs
appear also in symmetry-reduced models of quantum cosmology using the canonical framework [26, 27, 28].2

Apart from mini-superspace applications, simpler graphs also provide a case study to gain control over

1There is on the other hand a growing literature on results using approximate numerical methods for toy models or symmetry
reduced models, e.g. [15, 16, 17].

2These canonical models are different from the main loop quantum cosmology approach (see e.g. [29] for a review), in which
the graph structure effectively disappears; and from [30, 31], where a regular 6-valent graph is used.
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the structure of the spin foam expansion. Being able to compute the explicit value of the amplitudes, or
even just the large spin scaling or the divergence structure, are crucial ingredients to understand how to
organize them, be it for resumming them or taking their continuum limit. To begin with, we are interested
in questions of the following type: (i) at fixed boundary graph, how do the different foams scale in a large
spin expansion? (ii) which foams dominate at large spins? (iii) what correlations between initial and final
states are introduced by the foam? In the case of 1 we found the following answers: The foams become
quickly sub-dominant as their complexity increases; The large spin scaling is not simply a function of the
number of vertices, edges and faces of the foam. There are non-trivial correlations even in the absence of
the Regge asymptotic behaviour; Only in the presence of an internal face (but not always) the correlations
couple spins on the two dipoles, otherwise the amplitudes factorize and only spins and intertwiners within
each connected part of the graph are correlated.

The paper is organized as follows. First, we provide a summary of our main results and the consequences
that can be drawn from them in Section 1.1 at the end of the Introduction, for the benefit of the reader
already familiar with spin foams, and who wants to quickly identify the methods and results closest to
her interests. In the main body of the paper we provide an explicit guide on how to compute the EPRL
Lorentzian amplitudes for generalized (non-simplicial) foams. In Section 2 we briefly recall the definition
of the vertex amplitude; We discuss the existence of non-integrable graphs, and introduce a face criterion
to partially limit the proliferation of diagrams, the hardest issue in using non-simplicial spin foams. The
criterion we use, of faces as minimal cycles only, basically makes the 2-complex rigidly determined by its
1-skeleton. The exclusion of non-integrable graphs and non-minimal faces significantly reduce the number
of foams to be computed. For instance at one vertex, graph integrability eliminates 16 of the 20 possible
vertex graphs listed in [24] for the Euclidean theory; our face criterion eliminates 3 more, leaving only one,
which is the one considered in [20]. With two vertices and one edge we have again a single admissible type of
vertex graph. With two edges and an internal face we have seven topologically distinct vertex graphs. The
graphs and associated foams are presented in Section 3. A complementary Appendix C contains the complete
list relaxing our face criterion. In Section 4.1 we review the factorization property introduced in [18], and
explain how we use it to provide analytical and numerical studies of the amplitudes. It provides us also
with a simplified version of the amplitude (denoted EPRLs in [18]), which provides a good approximation in
certain cases, and can be used to compute some analytic estimates and much faster numerical evaluations.
One of the results of this paper is that we tested that for most foams of 1 the simplified model gives correct
estimates of both scaling and correlations. This result and all exact numerical evaluations and approximate
analytic estimates we performed of the EPRL amplitudes are reported in Section 5. In Section 5.4 we focus
on the dominant non-factorized foam with one internal face, and discuss and compute in some details the spin
correlations it induces. The final Section contains our conclusions with the implications of our results, and
a perspective on future work, explaining the limits we face at the moment at the numerical level, and what
could be improved. Two additional Appendices contain the recoupling theory rules used for the evaluations
of the spin foams, a summary of scaling properties of the booster functions, and the results of evaluating
the 3 one-vertex foams left out by our face criterion.

We follow the conventions of [32] for SU(2) and its recoupling theory, and those summarised in [18] for
SL(2,C). We refer to the nomenclature of [33] for spin foams: the boundary graph is characterised by nodes
connected by links, and as the boundary of a 2-complex, each node is the boundary of an edge (and one
only), each link the boundary of a face (and one only).

1.1 Summary of the main results

The notation for 1 is as follows: we use thin lines for the links of the boundary dipole graphs, and round
dots for their nodes; thick lines for the edges of the foams and (red) crosses for their vertices; we call ja

the spins of the lower dipole (a = 1 . . . 4) and (i, t) its left and right intertwiners, and similarly but with
primed letters for the upper dipole. Then 1 is a function W (ja, j′

a; i, t; i′, t′) (ignoring the dependence on λ)
determined by the Lorentzian EPRL model.

• Aware of the risk of an uncontrollable proliferation of non-simplicial spin foams, we introduced a strong
criterion to select the 2-complexes: we admit only faces corresponding to minimal cycles. With this
choice, to be motivated and detailed below, there is only one admissible vertex graph at one vertex;
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only one at two vertices and one edge; seven topologically distinct vertex graphs for foams with one
internal face.

• As shown already in [23], the one-vertex foam factorizes in two contributions each depending only
on lower or upper spins. There are thus no correlations between lower and upper graphs, but only
within each connected component. We find that also the two-vertex-one-edge foam factorizes in the
same manner. Non-factorized amplitudes appear only in the presence of an internal face, and thus
lower-upper spin correlations.

• The spin correlations we found do not have an immediate geometric interpretation. In fact, most of the
foams considered do not contain non-trivial nj-symbols, but only (generalized) θ-graphs, and Regge
actions do not appear in the asymptotics. We numerically computed the spin correlations, using for
cost sustainability the simplest non-factorized amplitude and a mini-superspace approach with all spins
fixed to be equal. We found positive correlations between lower and upper spins, with a monotonical
decrease in γ. We also considered spin correlations in the general boundary framework with a unit-
width Gaussian state peaked on a background geometry j0. The resulting correlations peak near the
Planck scale at γ-dependent value, and have a γ-dependent power-law tail in j0.

• The large-spin leading order of each foam decreases as the complexity of the foam increases. The
power of the large spin scaling depends on the explicit combinatorics of the faces, and it is not simply a
function of the number of vertices V , edges E and faces F of the 2-complex. This is unsurprising given
the non-topological nature of the EPRL model, however one could have still hoped for a dependence
on the three numbers (V, E, F ) alone. We discuss this point and what we can learn for power counting
of scalings from the foams here considered.

• Numerical estimates show that the foam with one vertex (DV D, for dipole-vertex-dipole) scales like
N−3 in the homogeneously large spin limit; the foam with two vertices and one edge (DED, for
dipole-edge-dipole) scales like N−6; the simplest non-factorized foam with an internal face (DLD, for
dipole-loop-dipole) scales like N−9. Using both analytical and numerical methods, we found that the
large spin behaviour of 1 has the following structure:

W (Nja, Nj′
a; i, i′; t, t′) = δja,j′

a
δi,i′δt,t′ + λ

f(ja)f(j′
a)

N3
δitδi′t′

+ λ2 g2(ja)g2(j′
a)

N6
δitδi′t′ + λ2 h(ja, j′

a, i, t, i′, t′)
N9

, (2)

where the functions f, g and h will be presented below.

• We systematically compared the EPRL evaluations with those of the simplified EPRLs model intro-
duced in [18], corresponding to additional impositions of the primary simplicity constraints (via the
Y -map): this is much faster to evaluate, and furthermore analytic estimates of the scalings are known.

For the first two foams (DV D and DED) the EPRLs provides an exact evaluation of the full model; for
the simplest foam with an internal face it does not, but it still captures the right large spin scaling and
the spin correlations, hence providing a valid approximation for most questions. There are 3 additional
foams of the 7 with an internal face that have non-factorized amplitudes. For these the simplified model
amplitudes differ significantly from the complete EPRL model. They could have slower decay behaviour
than N−9 (by one or two powers, a priori) because of the presence of unbounded summations, and
may thus dominate the correlations in the large spin limit; but we do not know at present.

• Our results can also be immediately applied to a nothing-to-dipole expansion,

WD = λ + λ2 · · · (3)

There are three principal lessons that can be drawn from these results. The first is that Lorentzian amplitudes
are explicitly computable, in spite of their complexity. We were limited to small foams, but with improved
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codes for the booster functions and the guidance from the simplified model here learned to estimate the
scalings, the analysis can be pushed significantly further. The second is that large spin decays speed up with
the complexity of the foam, allowing a naive hierarchical organization of the expansion. The power of the
decay depends explicitly on the routing of the faces and not just on their number. This complicates power-
counting arguments even with our criterion to restrict the faces, and show the dominance of disconnected
vertex graphs. The third is that there are non-trivial spin correlations even in absence of asymptotic Regge
actions. Such correlations do not show a squared-inverse power law as in the 4-simplex graviton calculations
(see e.g. [34, 11, 12, 35]), but a non-trivial dependence on the Immirzi parameter. It is a priori possible
to compute spin correlations on larger graphs and study whether they fall off with the graph distance or
background distance, but that would definitively require much more numerical power than currently available
to us, or find better approximation schemes.

2 Lorentzian EPRL model for general complexes

In this Section we briefly review the definition of the Lorentzian EPRL model [3], its factorization introduced
in [18], and discuss its extension to non-simplicial complexes. The two aspects that require attention are the
presence of non-integrable graphs and the proliferation of foams. We assume the reader to be familiar with
the basics of loop quantum gravity and the spin foam model, and refer to the cited literature [2, 3, 4, 5] and
to the monographs [1, 33] for details. Conventions and notations follow [18].

2.1 Boundary states, spin foam amplitudes and correlations

We work with abstract oriented graphs colored by spins jl on every link l, and a set of intertwiner labels ~ın
on every node n: these are vn − 3 half-integers for a node of valence vn, corresponding to the spins along
virtual links once a recoupling scheme is chosen. We define an SU(2) spin network state by

〈gl| Γ, jl,~ın〉 =
∏

l

D(jl)
ms(l)mt(l)

(gl)
∏

n

(
jl

ml

)(~ın)

, (4)

with s(l) and t(l) the source and target nodes of the link l, and summations over magnetic indices m
implicitly assumed. Here D(j)(g) are Wigner matrices, and the right-most symbol a short-hand notation for
generalized Clebsch-Gordan coefficients, see Appendix A for definitions. These functions provide a basis of
the Hilbert space of square-integrable gauge-invariant functions with respect to the SU(2) Haar measure,
schematically

HΓ = L2
[
SU(2)L/SU(2)N , dµHaar

]
,

where we denoted by L and N the total number of links and nodes of the graph. Because of standard
conventions in the definition of the Wigner matrices and {nj}-symbols, the basis 4 is not normalized. That
requires multiplying each state by (

∏
l djl

∏
n d~ın

)1/2, where dj := 2j + 1 is the dimension of the SU(2) irrep
j, and d~ı = (2i(1) + 1)...(2i(ve−3) + 1) is the dimension of the virtual links irreps.

Consider next an open 2-complex C whose boundary is Γ: it consists of vertices, edges and faces, such that
to each node and link of Γ there correspond a unique edge and face of the boundary of C. We color it with
spins jf on the faces and intertwiners~ıe on the edges, such that jf = jl and~ıe =~ın for each face and edge on
the boundary. The spin foam formalism [36, 37, 1, 33] assigns an amplitude to each pair (|s〉 = |Γ, jl,~ın〉 , C)
in the form of a state sum model,

〈WC | Γ, jl,~ın〉 =
∑

{jf ,~ıe}

∏

f

djf

∏

e

d~ıe

∏

v

Av(jf ,~ıe) , (5)

where the summations are at fixed boundary values, and face and edge weights are internal only.3 The vertex
amplitude Av is model-dependent and carries the core of the dynamics of the theory.

3In other words, the weight for a boundary face and edge is 1. This is a consequence of our choice of basis 4. If we work
instead with normalized boundary spin networks, the boundary face and edge weights would be the square roots of the internal
ones. Notice also that in the literature the edge weights are often absorbed in the definition of the vertex amplitude. We choose
not to do so, so that the vertex amplitudes are given by the conventional {nj}-symbols.
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The physical interpretation of WC is to provide a dynamical amplitude for the (quantum) 3-geometry |s〉.
The total transition amplitude was historically defined as the sum over all possible 2-complexes compatible
with the boundary graph, and conjectured to implement the projector over physical states in the kernel of
the Hamiltonian constraint [36, 37]. Hopes to control the sum and make sense of it mathematically were put
on the group field theory approach [38, 39], and work of the last few years (see e.g. [40, 41, 42]) is starting to
bear fruits: for simplicial complexes and simpler models at least (typically topological BF theory) it is now
possible to establish convergence or renormalizability of the sum. Extending these results to the Lorentizan
EPRL is a key open question. The study presented in this paper contributes by evaluating individual foams
and assessing their relative scaling weights in the non-simplicial case.4

To give physical content to the amplitudes at fixed foam, one can define dynamical expectation values
following the general boundary framework [34]. For an observable Ô and a state |Ψ〉 ∈ HΓ, we consider the
quantity

〈WC | Ô |Ψ〉
〈WC | Ψ〉 (6)

as the ‘C-representative’ of the dynamical projection on |Ψ〉. In this construction, |Ψ〉 is required to be
a semiclassical state peaked on a classical discrete geometry qΓ associated to the boundary. One often
works with Gaussian states (see however [44]), with width kept as a free parameter or fixed by dynamical
requirements [45]. In special circumstances, the linear map 〈WC | is normalizable; or alternatively it can be
suitably regularized. Then it is also possible to look at the spin foam expectation values

〈WC | Ô |WC〉
〈WC | WC〉 . (7)

In both cases, a simple choice of observables are those diagonalized by the spin network basis 4, for which

〈WC | Ô |Ψ〉 =
∑

jl,~ın

WC(jl,~ın)O(jl,~ın)Ψ(jl,~ın). (8)

In particular, we will compute below correlations among spins, defined as

〈jljl′〉(C,Ψ) :=
〈WC | ĴlĴl′ |Ψ〉

〈WC | Ψ〉 − 〈WC | Ĵl |Ψ〉
〈WC | Ψ〉

〈WC | Ĵl′ |Ψ〉
〈WC | Ψ〉 . (9)

2.2 EPRL vertex amplitude

For the EPRL model in Lorentzian signature [3], the vertex amplitude Av is built from SL(2,C) unitary
irreducible representations (irreps) of the principal series, see [46]. These are labelled by a pair (ρ ∈ R, k ∈
Z/2), and Naimark’s canonical basis is chosen diagonalizing the operators L2 and Lz of the matrix subgroup
SU(2), with eigenvalues j(j + 1) and m. The group elements in this basis are represented by infinite-
dimensional unitary matrices

D
(ρ,k)
jmln(g), (j, l) ≥ k, −j ≤ m ≤ j, −l ≤ n ≤ l, g ∈ SL(2,C). (10)

Only a certain subset of irreps is used, that we refer to as γ-simple representations; they satisfy

ρ = γk, k = j. (11)

This restriction defines an embedding of SU(2) irreps in unitary SL(2,C) ones called Y -map.
The explicit form of the vertex amplitude Av depends on both the valence of the vertex (i.e. the number

of edges attached to it) and the combinatorics of the faces. The combinatorics can be most easily visualized
if we draw a sphere around the vertex: each edge projects to a point on the sphere, each face to a line
connecting two points. The spherical graph so obtained is referred to as the vertex graph, see Fig. 1 for an
example. Points and lines of the vertex graph are in 1-to-1 correspondence with edges and faces of the spin
foams, and we adapt the labelling accordingly.

4An alternative definition of the dynamics is to view spin foams as amplitudes cut-off at a finite number of degrees of
freedom, to be studied in the continuum limit instead of being summed over. See e.g. [43] and [15, 16] for recent results in this
directions.
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Figure 1: On the left the complex for a single 4-simplex together with a little sphere surrounding the vertex v. On

the right the vertex graph associated to it (the pentagon graph) as explained in the text.

The amplitude is then defined by the evaluation of a γ-simple SL(2,C) spin network on the vertex graph,
namely

Av(jf ,~ıe) :=

∫

SL(2,C)Ev−1

Ev−#∏

e=1

dge

∏

f

D
(γjf ,jf )
jf ms(e)jf mt(e)

(g−1
s(e)gt(e))

∏

e

(
jf

mf

)(~ıe)

, (12)

with the summation over magnetic indices implicitly assumed as in 4. Here Ev is the valence of the vertex
graph and # the number of connected components of the vertex graph. Although in the definition we assign
a group element to each node of the vertex graph, we need to remove one integration per connected part of
the graph: left-right invariance of the Haar measure makes it redundant, and it would lead to a diverging
amplitude because of the non-compactness of the group. This is an important difference from Euclidean
models where removing or not the redundant integration does not affect the amplitude. However, even once
the redundancy has been taken care of, not all vertex graphs are integrable. Examples of graphs for which 12
is not well-defined are reported in Fig. 2. The amplitude of a graph with a uni-valent node diverges trivially

Figure 2: Left: Vertex graph with uni-valent or bi-valent nodes: divergent amplitudes. Right: Vertex graph with a

petal: the associated amplitude diverges in the case of two legs, and converges for three or more legs.

because it contains the integration

∫ ∞

0

dr (sinh r)2 dρ,k
jlm(r) = ∞. (13)

For a graph with a bi-valent node, the amplitude contains the integration

∫
dg D

(ρ1,k1)
j1m1l1n1

(g)D
(ρ2,k2)
j2m2l2n2

(ḡ) =
δ(ρ1 − ρ2)δk1k2

4(ρ2
1 + k2

1)
δj1j2δl1l2δm1m2

δn1n2
. (14)

The right-hand side, a consequence of the orthogonality of the matrix representations, gives a distributional
divergence for general irreps; and gives always infinite for the simple ones 11 used in the EPRL model. A

89



related example is a vertex graph containing a closed loop, or ‘petal’. Using the following ‘sliding’ identity
from graphical calculus (see Appendix A),

=

petals factorize in the evaluation of the amplitude, leaving behind an intertwiner with two lesser links. For a
petal with two legs, or tadpole, this gives 14 and the same divergence as before; whereas for higher-valence
petals with three or more legs the amplitude is finite.

The existence of divergent graph introduces a necessary restriction on the admissible foams unlike in the
Euclidean case. We are not aware of a necessary condition for graph integrability. A sufficient condition
is 3-link-connectivity, meaning any bi-partition of the nodes cannot be disjointed by cutting only two links
[47, 48]. One could then decide to restrict attention to such vertex graphs, for which convergence of 12 is
guaranteed. The criterion is however based on very loose bounds, and one can find many vertex graphs that
are not 3-link-connected and yet finite: We will encounter some examples below. For this reason, we will
remove in our analysis only vertex graphs with uni- and bi-valent nodes, and two-legged petals, and keep
non-3-link-connected ones – at least a priori.5

The fact that not all vertex graphs are integrable reduces the number of admissible foams with respect
to Euclidean amplitudes. For instance, out of the 20 possible vertex graphs considered in [24], only 4 do not
contain tadpoles, and only 3 satisfy the triple-connectivity criterion. See Appendix C for details. Nonetheless,
the proliferation of generalized spin foams remains a severe problem of this approach, as compared for instance
to the use of simplicial ones. To have any hope of taming it, it is quite likely that one needs to supplement
the definition of the theory with some notion of class of complexes to be considered.6 For the purposes of
this paper, we work with a single but strong restriction on the assignment of the faces in the 2-complex:

Definition: The faces of the 2-complex are defined as all minimal cycles of its 1-skeleton, namely minimal
closed sequences of edges (for internal faces), or edges and links (for external faces).

This definition means that the 2-complex is uniquely specified by its 1-skeleton and the boundary graph, thus
imposing a strong restriction on the foams to be considered. Two important consequences are the following:

• There are no minimal cycles without a face assigned; nor multiple faces can be assigned to the same
minimal cycle. The latter forbids trivial infinite proliferations like adding ad libitum rolled-up faces
or ‘pillow-like’ faces to the bulk edges, which corresponds to adding petals or additional links between
the same two nodes to vertex graphs.

• It also forbids the ‘intermediate static foam’ construction used in [49] to freely associate arbitrary
vertex graphs to a given boundary graph. It implies in particular that petals in vertex graphs can only
appear if induced by petals in the boundary graph.

This definition appears to us natural in order not to be irremediably swamped by the problem of prolif-
eration of non-simplicial foams. Whether it is sufficient to truly tame the combinatorics, and whether it can
be relaxed is an interesting but also very difficult question. With the ensuing restriction imposed, there are
still two additional configurations unusual from the simplicial setting worth to be pointed out:

1. Disconnected vertex graphs: these can lead to factorizations of the transition amplitudes that limit
their relevance.

2. Spin foam faces with two or more boundary links in them: these force the boundary spins on the
shared links to match, leading to trivial pieces in the amplitudes. Such ‘face-rigidity’ limits as well the
relevance of such amplitudes.

With these considerations in mind, we discuss next our choice of boundary graphs.

5A related open question is whether the simplified model, see below, allows one to sharpen this sufficient condition. At first
sight it looks like removing uni- and bi-valent nodes may be enough for this model, which sits at an intermediate place between
the complete EPRL and a pure SU(2) theory. We leave it as an open question for future work.

6A radically opposite philosophy has been proposed in [49, 24], whereby one tries to accommodate all possible vertex graphs
to all boundaries. This removes combinatorial constraints on the vertex graph, thus simplifying the problem of listing all
admissible foams with a given boundary graph; but at the price of largely increasing their number.
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3 Minimal boundary graphs and lowest-order interpolating foams

In its original formulation, the EPRL model was defined on simplicial foams, i.e. 2-complexes dual to
simplicial decompositions of spacetime. Since the boundary of a simplicial manifold is again a simplicial
manifold of co-dimension one, these can be used to compute transition amplitudes only for spin networks
with 4-valent graphs dual to a 3d simplicial manifold. A reason to be interested in non-simplicial foams is that
one can then look at simpler boundary graphs, and interpolate them with simpler foams. The computational
advantage of simpler foams is immediate from 15: we get simpler {nj} symbols whose evaluation is faster.
In the context of abstract spin networks, the simplest possible boundary graphs are flower graphs with a
single node, or a dipole graph with two nodes, see Fig. 3. Between these two types, dipole graphs have

Figure 3: The 4-petal graphs and the 4-link dipole.

simpler interesting lowest-order spin foams, and have a more intuitive geometric interpretation that makes
them preferable for applications.

3.1 Flower Graphs

Flower graphs appear often in the discussion of gauge fixing, see e.g. [50]. By gauge-invariance, the algebra
of observables on any abstract closed graph is isomorphic to that associated with a flower graph, were the
number of ‘petals’ matches the number L−N +1 of independent loops of the initial graph. The isomorphism
depends on a choice of maximal tree on the initial graph, along which all holonomies can be gauge-fixed to
the identity. Although flower graphs are very simple, they are not so natural as boundaries of spin foams:
each face touching the boundary is rolled-up on itself, meaning it touches twice the same edge. This does not
forbid the definition of (non-simplicial) spin foam amplitudes, however it leads to peculiar combinatorics:
either a rolled-up face shares both boundaries, or one of the spin foam vertices must have at least one
petal in its vertex graph, to absorb the ‘rolling-up’. This is for instance the case of [51]: there the authors
considered a three-petal flower boundary graph, and a single-vertex foam in the bulk. The vertex graph is
identical to the boundary graph, and the contribution of the spin foam amplitude is trivial. Considering two
disconnected flowers for transitions, it is easy to see that our face criterion leads to factorized amplitudes
for simple 2-complexes. Using flower boundary graphs leads to subtle combinatorics and not particularly
rewarding from the perspective of simplifying the analysis. In the exploratory spirit of this paper, we find it
more suitable to work with less peculiar foam structures.

3.2 Dipole Graphs

The next simplest graph is a ‘dipole’, namely two nodes connected by a set of L links. It can be associated to
a partially gauge-fixed abstract extended graph, where one fixes to the identity all but one of the holonomies
on a maximal tree, and it admits a more intuitive geometric interpretation as two atoms of space connected
by all faces: the dual graph to a (degenerate) tessellation of the 3-sphere by two L-faced polyhedra. For the
sake of concreteness and simplicity, we restrict attention to 4-valent dipoles, as in Fig. 3. We can consider
two different types of transition amplitudes: ‘nothing-to-dipole’ or ‘dipole-to-dipole’. If Γ has a single closed
connected component, it is a ‘nothing-to-Γ’ amplitude similar in spirit to the Hartle-Hawking ‘no-boundary’
proposal [52, 53]. If the boundary graph has two closed disconnected components, WC provides a transition
amplitude between two 3-geometries associated with the two S3 boundaries of a 4d hyper-spherical shell.
This set-up was proposed in [20], and it is the one we focus on. It shows very neatly the advantage of
working with non-simplicial spin foams: were we to use a simplicial discretization, the minimal configuration
would be five tetrahedra for each boundary S3 and a 2-complex with 30 vertices! Whereas with the dipole,
one can get transitions with as little as a single vertex. We list here all possible vertex graphs associated
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with the expansion 1 and the restrictions given by finiteness and our face criterion. For completeness, we
report in Appendix C the complete list of vertex graphs relaxing our face criterion. With reference to 1, we
refer to foams with one vertex as DV D (for dipole-vertex-dipole), two vertices and one edge as DED (for
dipole-edge-dipole), two vertices and two edges as DLD (for dipole-loop-dipole).

DD complex

The first term in 1 is a foam with no vertices, and corresponds to the trivial transition amplitude.

DV D complex

Using our definition of faces, we only have 1 admissible vertex graph, see Fig.4, which is the one originally
considered in [20, 23]. It is disconnected, and thus manifestly leads to a factorized amplitude between initial
and final states.

a
0

b
0

a
0 b

0

a b

a b

Figure 4: DV D complex and the admissible vertex graph.

Vertex graph for DED

The smallest foam with two vertices has a single edge connecting them, and the two vertex graphs are
necessarily equal and specular from our definition of faces. There is again a single admissible choice, shown
in Fig. 5: all other routings of the strands would produce faces corresponding to non-minimal cycles.

a b

a
0 b

0

c

d

a
0

a

c

Figure 5: DED complex and the admissible vertex graph.

Although the vertex graph is not disconnected, it still leads to a factorized amplitude. As we will show
explicitly below, this simply comes from the fact that we can remove the SL(2,C) integration at the middle
vertex, thus effectively ‘disconnecting’ the evaluation in two pieces.

Vertex graphs for DLD

With two internal edges we have more than just one admissible foam. By our criterion, we can have one
internal face only; but the boundary links can be routed in topologically distinct ways without violating the
minimal-cycle rule for the faces. This leads to seven different possibilities compatible with our definition of
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faces, shown in Fig. 6. Again the two vertex graphs must be equal and specular, so we show only one of
them.

1 2 3

4 5 6 7

Figure 6: DLD complex with the seven topologically distinct admissible vertex graphs. Each can give different foams
by permutations of the spin labels or by flipping the two internal edges; The graphs 2, 3, 5, and 6 are not symmetric
if we flip the internal edges, thus both configurations give two independent spin foam amplitudes. Graphs 1, 2 and 3
lead to factorized amplitudes, altough 1 and 2 are not 3-link-connected, so their amplitude are not guaranteed to be
finite. Graph 6 is the non-factorized amplitude easiest to evaluate, and the one we will study in more details below.

Anticipating on the results presented below, the first three diagrams factorize, but not the remaining
four. These are thus the first ones with non-trivial bulk dynamics, and correlations between initial and final
spins.

If we were to allow for faces corresponding to non-minimal cycles, we would have 4 topologically distinct
vertex graphs for DV D, 3 for DED, and 13 for DLD, see Appendix C.

4 Evaluation of Lorentzian diagrams

4.1 Amplitude factorization and booster functions

Having listed the foams we are interested in, we now move to their explicit evaluation. The key to do so is
the factorization of the amplitudes introduced in [18]. We observe that the vertex amplitude defined in 12 is
an SL(2,C) tensor invariant, and as such can be represented in terms of Clebsch-Gordan coefficients. For the
unitary irreps of the principal series, these can be written as (infinite) sums of Clebsch-Gordan coefficients
for the canonical SU(2) matrix subgroup weighted by 1-dimensional boost integrals. See [18] for details. The
result gives

Av(jf , ie) =
∑

lf ,ke

{nj}(lf , ke)

Ev−#∏

e=1

Bγ
ve

(jf ; lf ;~ıe,~ke), (15)

where {nj}(lf , ke) is the SU(2) nj-symbol associated to the vertex graph, labelled by spins lf and ke; ve is
the valence of the edge e (namely the number of faces it bounds), and

Bγ
n(ja, la;~ı,~k) =

1

4π

∫ ∞

0

dr sinh2 r
∑

pa

(
ja

pa

)(~ı) (
la
pa

)(~k) n∏

a=1

d
(γja,ja)
jalapa

(r). (16)
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The boost matrix elements d(ρ,k)(r) for simple irreps are reported in Appendix A. The summations over ke

in 15 are bounded by Clebsch-Gordan conditions, and those over lf by lf ≥ jf .
The factorization result 15 has the neat effect of minimizing the number of unbounded integrations over

boost directions, and reduce the evaluation of the Lorentzian amplitude to an exercise in recoupling theory
of SU(2), with the boost contributions as weights localised on the edges, see Fig. A.12. The fact that only
Ev − # boosters appear per vertex reflects the redundancy of one group integration in 12. The freedom to
arbitrarily choose the redundant integration can be used at one’s advantage to eliminate the booster function
with the highest valence ne, a simplification that we will use systematically below.

For the purposes of using graphical calculus for the recoupling theory, we follow the conventions of [32]
for the SU(2) part (briefly summarized in Appendix A), and the following graphical representations for 16,

Bγ
3 (ja; la) =

j1

j2

j3

l1

l2

l3

Bγ
4 (ja; la; i, k) =

j1 j2 j3 j4

l1 l2 l3 l4

i

k

(17)

Bγ
5 (ja; la; i1, i2, k1, k2) =

j1 j2j3 j4 j5

l1 l2 l3 l4 l5

i1 i2

k1 k2 .

(18)

and so on for higher n. Here the convention is that both lower and upper sets of spins are assigned from left
to right in the 4jm symbols.7 Because of this diagrammatic expression, the boost integrals were referred to
as ‘dipole amplitudes’ in [18]. We refrain from using this expression here to avoid confusion with the dipole
spin network graph, and call them booster functions instead.

In spite of the simplicity achieved by 15, the explicit evaluation is still a very complex task: first of all,
only for n = 3 there exist a closed expression for 16 in terms of finite sums of Γ functions, see [54, 18]; for
n ≥ 4 one has to rely on numerical methods to perform the integrals.8 The difference is important, since
using Mathematica we are able to reliably evaluate Bγ

3 for spins up to 100 within few seconds, whereas for
B4 we are limited to spins of order 30 by numerical instabilities on hypergeometric functions, and at those
spins each value of B4 can take hours to compute. Some numerical calculation times are reported in Fig. 15
in the Appendix, based on a standard laptop computer with core speed of 2.5 GHz and 8 Gb of RAM. To
perform the calculations of spin foam amplitudes in this paper we used the server maintained by our lab,
featuring 32 processors with 3.4 GHz CPU and 24 Gb of RAM.

Secondly, the factorization has introduced infinite sums over the l’s, which play the role of ‘magnetic
numbers’ from the SL(2,C) viewpoint. These can be very slow to converge and hinder the numerical
efficiency. This is for instance the reason why it is difficult to test Barrett’s asymptotic formula [10] with
Lorentzian boundary data [14]. For some of the foams considered in this paper, the sums turn out to be
quickly converging, in which case they can be handled with a controllable cutoff.

Hence, exact evaluations of Lorentzian EPRL amplitudes are possible but limited, and very costly. One
important information that we are interested in is the large spin scaling of the amplitudes. For such estimates
the factorization 15 is very useful because we can use known results from the asymptotics of SU(2) nj-symbols
[55, 56] and combine them with scalings of the booster functions and estimates for the sums. To that end,
let us briefly review some scaling properties of the booster functions. Plots showing the behaviours and

7This means that all lower (upper) nodes have clockwise (anticlockwise) orientation, see Appendix A. As shown in Ap-
pendix B, the booster functions are independent of orientation of the strands. For this reason we omit the arrows on the
strands in the picture.

8Also for n ≥ 4 it is possible to analytically perform the r integrals, see [18]; however the results involves new integrations
which at present are still of comparable numerical complexity.
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claims of this section, as well as more details and expressions for the booster functions and their numerical
evaluations can be found in Appendix B.

4.2 Boosters’ scalings

1. Minimal spins, homogeneous large spin asymptotics (see [18] and Fig. 16.):

Bγ
3 (Nja; Nja) ∼

{
N−3/2 if

∑
a ja odd

N−1 if
∑

a ja even
, Bγ

n≥4(Nja; Nja;~ı,~k) ∼ N−3/2. (19)

In the second expression, the leading order scaling is the same irrespectively of the intertwiners. How-
ever, seen as a function of the intertwiners at fixed spins, it is strongly peaked at equal values. The
precise shape and width of the peak depends on the spins considered, but the drop is measured in or-
ders of magnitude already one step away from equal values. Hence, it is qualitatively fair to complete
the estimate with a Kronecker delta δ~ı~k. There exist also an analytic estimate for the leading order,
given by [57]:

Bγ
n(Nja; Nja; i, k) ∼ 1

(4π)2

[
6π

(1 + γ2)N
∑

a ja

]3/2 δ~ı~k
d~ı

. (20)

This correctly reproduce the power law decay, and numerical tests (see e.g. [18] or App. B) confirm
also the γ and

∑
a ja dependence. On the other hand, the numerical factor is not very accurate (the

error is of order 1), nor the dependence on the intertwiners. Indeed as mentioned above configurations
with non-equal intertwiners also decay like N−3/2 and not faster as 20 would suggest.

2. Minimal spins, inhomogeneous large spin asymptotics with one spin small (see Fig. 17):

Bγ
3 (Njā, j3; Njb, j3) ∼ N−1, Bγ

4 (Njā, j4; Njb, j4; Ni, Nk) ∼ N−5/2, (21a)

Bγ
5 (Njā, j5; Njb, j5; Ni1, Nk1, Ni2, Nk2) ∼ N−7/2, (21b)

where in the above ā = 1, . . . , n − 1.

3. Non-minimal spin decay, homogeneous (see [18] and Fig. 18):

Bγ
3 (ja; ja + ∆l) ∼ 1√

∆l
, Bγ

4 (ja; ja + ∆l; i, k) ∼ 1

∆l
(22)

4. Non-minimal spin decay, inhomogeneous: an exponential decay if we rescale a single l label, see Fig. 19.

4.3 Simplified model and scaling estimates

The non-minimal spin decays described in points 3 and 4 just above suggest that for some configurations
good estimates of the EPRL model can be obtained looking at the minimal configurations only, la = ja.
This restriction defines a simplified version of the EPRL model, called EPRLs in [18], s for simplified. Since
the EPRLs amplitudes are much faster to evaluate, it is useful to get a hand on when the simplification gives
a good approximation of the full EPRL model. There are three possibilities, depending on the foam:

(i) The summations over l’s are truncated to the minimal value by Clebsch-Gordan inequalities: this
can happen for particular configurations, and if it happens for all ls, we refer to such amplitudes as
EPRLs-exact.

(ii) The summations are bounded, or unbounded but quickly converging: EPRLs gives different numerical
values than EPRL, nonetheless it provides precise estimates of the large spin scalings and of correlations’
properties.

(iii) The summations are unbounded and slowly converging: the EPRLs differs strongly from the EPRL,
and does not provide good estimates.

Because of the intricate structure of the amplitudes, it is not easy to give a general criterion to identify a
priori which ones are well approximated by the simplified model. One of the results of this paper is to show
for which of the considered foams it happens. The interest in this is that the simplified model is much faster
to evaluate, and furthermore, it allows us to use the analytic estimate 20.
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5 Dipole-to-dipole spin foam amplitudes

In this Section we present the explicit form of the amplitudes for the foams listed in Section 3. For an
SU(2) BF theory, the evaluation of the various spin foam amplitudes associated to the above diagrams is a
straightforward, if somewhat tedious, exercise in recoupling theory. It is very similar for the EPRL model,
using the factorization reviewed above. We use graphical calculus for SU(2) with the conventions of [32],
briefly reported in Appendix A, and the notation 17 for the booster functions. In the diagrams below, every
strand represents a face and every box an integration over SL(2,C) assigned for each half-edge. One has to
choose a face orientation, but the result is independent of this choice (not of the orientation of the boundary
links, on the other hand).

5.1 DD foam

The first term of 1 is a trivial foam, with no internal vertices and faces bounded by a lower and an upper
link. The corresponding ‘face-rigid’ amplitude is the identity,

WDD(ja, j′
a; i, t, i′, t′) = δja,j′

a
δi,i′ δt,t′ . (23)

5.2 DV D foam

The vertex graph is disconnected (see Fig. 4), leading to an exact factorization of the amplitude into lower
and upper contributions. Each connected component has a single SL(2,C) integration after gauge-fixing,
and the amplitude reads

WDV D(ja, j′
a; i, t, i′, t′) = didi′dtdt′

∫
dg1dg2

4∏

a=1

Dγja,ja

jamajana
(g1) D

γj′
a,j′

a

j′
am′

ij
′
an′

i
(g2)

(
ja

ma

)(i) (
ja

na

)(t) (
j′
a

m′
a

)(i′) (
j′
a

n′
a

)(t′)

= didi′dtdt′

+−

− +

j′
1

j′
1

j′
2

j′
2

j′
3j′

3 j′
4j′

4
j1j1

j2j2

j3j3
j4j4

i′ t′

i tg1

g2

I

I

where in the graphical notation we used a box with an identity I to flag the group integrations we removed.
The arrows on the box keep track of the edge orientations, and the signs of the spin ordering chosen for the
4jm symbols, see Appendix A.9.

To proceed with the graphical evaluation we use A.12 to split the boxes in terms of intertwiners. This
results in one booster function and one SU(2) 4-valent θ graphs per edge. The θ graph gives a dimensional
factor, see A.5, and we get

WDV D(ja, j′
a; i, t, i′, t′) = didi′dtdt′

j1 j2 j3 j4

j1 j2 j3 j4

i

t

j′
1 j′

2 j′
3 j′

4

j′
1 j′

1 j′
3 j′

4

i′

t′

. (24)

9In the literature the signs in the graphical calculus are often discarder under the assumption of fixing a convention once
and for all, say anticlockwise. We prefer to keep track of them so that we can use an unique algebraic 4jm symbol and have a
easier mnemonic rule for the boundary spins (ja goes to j′a with the same a)
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The amplitude factorizes as anticipated, and we see that there are no summations over the magnetic spins l:
In the DV D case the simplified model coincides with the complete model, or in other words, this diagram
is EPRLs-exact. We can then use the estimate 20 for the large spin scaling, finding

WDV D(Nja, Nj′
a; i, t, i′, t′) ∼ 1

N3

27

32π

1

(1 + γ2)3
didi′δitδi′t′

(
∑

a ja)3/2(
∑

a j′
a)3/2

. (25)

We have an N−3 power law, peaked on configurations with equal intertwiners for each connected component
of the boundary graph. The only correlations introduced by the amplitude are within spins and intertwiners
within each connected component of the boundary graph.

In Appendix C we study the other 3 integrable vertex graphs with non-minimal faces. We do so to get a
first understanding of what is excluded by our face criterion, but also because they provide simple examples
of some interesting features: diagrams non 3-link-connected yet integrable; diagrams with unbounded l
summations but which are nonetheless well approximated by the simplified model; presence of non-trivial 6j
symbols and thus oscillation in the large spin limit.

5.3 DED foam

For the vertex graph in Fig. 5, the associated spin foam amplitude is (here and in the following we omit the
first, trivial step of listing the matrix elements, and use directly the graphical calculus)

WDED(ja, j′
a; i, t, i′, t′) = didi′dtdt′

+−

− +

j′
1

j′
1

j′
2

j′
2

j′
3j′

3 j′
4j′

4
j1j1

j2j2

j3j3
j4j4

i′ t′

i tg1

g2

g3

g4

II

Notice that, by choosing judiciously the integration to be removed, we can avoid the presence of booster
functions with 8 legs. This choice further shows manifestly that the vertex graph reduces to two connected
components, although this would be true with any other gauge-fixing chosen. Hence, the amplitude is again
factorized, and no mixing of lower and upper spins occurs.

Proceeding as before with A.12 and the normalization of the SU(2) generalized θ graphs we get

WDED(ja, j′
a; i, t, i′, t′) = didi′dtdt′

∑

k

dk

j1 j2 j3 j4

j1 j2 j3 j4

i

k

j1 j2 j3 j4

j1 j2 j3 j4

t

k

×
∑

k′

dk′

j′
1 j′

2 j′
3 j′

4

j′
1 j′

1 j′
3 j′

4

i′

k′

j′
1 j′

2 j′
3 j′

4

j′
1 j′

1 j′
3 j′

4

t′

k′

.

(26)

Again only minimal spins enter, and the diagram is EPRLs-exact. The estimate 20 gives the asymptotic
behaviour

WDED(ja, j′
a; i, t, i′, t′) ∼ 1

N6

1

(4π)8

[
6π

(1 + γ2)

]6
δitδi′,t′

(
∑

a ja)3(
∑

a j′
a)3

. (27)
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This foam order λ2 is thus suppressed with respect to the one of order λ by three powers in the large spin
limit. As for correlations, the situation is identical to the previous one: the amplitude factorizes, and the
only non-trivial correlations are within each connected component of the graph.

5.4 DLD foams

Foams with an internal face give more interesting amplitudes. First of all, these foams turn out to contain
sums over the magnetic l’s, hence the EPRL amplitudes differ from the simplified ones. Secondly, the
presence of an internal face can couple lower and upper spins. This does not happen for all foams: the first
three vertex graphs of Fig. 22 still give factorized amplitudes: to see this, notice that all spins of a connected
part of the boundary go through the same internal edge. If we choose to remove the group integral associated
with that edge on both vertices, we immediately see that those spins completely decouple from the rest of
the diagram. The remaining four are all coupled. Among them, the simplest to evaluate is number 6: it
has a six-valent node, whose integration can be removed by gauge-fixing, leaving only 3-valent and 4-valent
strands behind. We study this one first and in more details, and report some properties of the others in
the next Section. Unless otherwise stated, the reference value for the Immirzi parameter in the numerical
calculations is γ = 6/5.

The amplitude of DLD6 is given by

WDLD6(ja, j′
a; i, t; i′, t′) = didi′dtdt′

+

− +

−

j1j1
j2j2

j3j3
j4j4

j′
1

j′
1

j′
2

j′
2

j′
3j′

3 j′
4j′

4

jf

i′ t′

i tg1

g2

g3

g4

g5g6

II

where we used the internal SU(2) gauge invariance to route the faces within each boxes in a convenient way.
Permuting spin labels or flipping the internal edges gives trivially related amplitudes. We further use the
freedom to remove one group integral by vertex to remove the highest valent ones, marked with I in the
picture. The internal lines without the Y -map are magnetic l’s. However those that hit an I-box are also
projected by the Y -map to their minimal value. This leaves us with four free l’s only, those going through
the g5 and g6 boxes. Splitting the boxes as in A.12 and using the orthogonality A.6, the l’s must be pairwise
equal and the SU(2) symbols reduce to generalized θ graphs. The amplitude is then equivalent to

WDLD6(ja, j′
a; i, t; i′, t′) = didtdi′dt′

∑

l,l′k,k′

dkdk′

dldl′

[ ∑

jf

djf

( j4

j′
4

jf

l

l′
jf

)2 ]

×

j1 j2 j3 j4

j1 j2 j3 l

i

k

j1 j2 j3 j4

j1 j2 j3 l

t

k

j′
1 j′

2 j′
3 j′

4

j′
1 j′

2 j′
3 l′

i′

k′

j′
1 j′

2 j′
3 j′

4

j′
1 j′

2 j′
3 l′

t′

k′

.

(28)

With respect to the previous diagrams, we have two new features: the first is a coupling of lower and upper
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labels, thanks to the internal face function

Cl,l′(j4, j
′
4) :=

min{j4+j′
4|,l+l′}∑

jf =max{|j4−j′
4,|l−l′|}

djf

(
Bγ

3 (j4, j
′
4, jf ; l, l′, jf )

)2

, (29)

where we made the extremes of the sum explicit with respect to 28. The second is the summations over the
magnetic-l numbers: this amplitude differs then from the one computed with the simplified model.

In order to study the large spin beahviour of 28, we begin within the simplified model: namely we cut
the two l-summations to their first contribution: l = j4, l′ = j′

4, and define in this way the EPRLs amplitude
WDLD6

s (ja, j′
a; i, t; i′, t′) and its internal face correlation as

Cs(j, j
′) := Cj,j′(j, j′). (30)

Using the inhomogeneous scaling Bγ
3 (Nj1, Nj2, j3) ∼ N−1, see 17, and the boundness of the summation in

jf , we can infer the power laws

Cs(Nj, j′) ∼ N−1, Cs(Nj, Nj′) ∼ N−1. (31)

Both are confirmed with good accuracy by numerical analysis, see Fig. 7.

Figure 7: Numerical confirmation of the asymptotics 31 of the face correlation function for the simplified model. The
dots are the numerical data, the lines fits obtained assuming a power law N−1.

Using this result and 19 for the scaling of Bγ
4 , we estimate the EPRLs contribution to 28 to be

WDLD6
s (Nj, Nj′; i, t; i′, t′) ∼ N−9. (32)

We further expect peakedness on equal intertwiners as before, δitδi′t′ .
From the simplified to the full EPRL model there are only a finite number of extra terms: the sum over

l is bounded by j3 and k, which in turn is bounded by j1 and j2; and similarly for l′. We thus expect the
same scaling,

WDLD6(Nj, Nj′; i, t; i′, t′) ∼ N−9. (33)

We performed numerical tests of both estimates 32 and 33 at spins of order 10, finding a qualitative agree-
ment, see Fig.8. This could be made sharper pushing to higher spins, since at such low spins, even the
individual Bγ

4 is still not precisely at its asymptotic power law behaviour, see Fig. 16. However we lack
at present the numerical power to do so, because Mathematica has instabilities in evaluating and integrat-
ing hypergeometric functions starting from around spins j = 30. Given the extremes of 29, this puts our
numerical limits at spins of order 10.10

10We can go beyond only for diagrams having only three-valent booster functions, since for these we can use a finite sum
expression without hypergeometric functions [18].
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WDLD6(N,N;i,t,i',t')

● i=1,t=3,i '=1,t'=3; ● i=1,t=1,i '=1,t'=1

Figure 8: Left panel: Large spin scaling of W DLD6(N, N ; i, t; i′, t′) in 28 for equal spins and two different configura-
tions of intertwiners. The dots are the numerical data, and the continuous lines the expected N−9 decay derived in 33.
The dashed lines are the actual fits at the spins we can access. Using the last 5 points, the fits give N−8.4 and N−8.1

respectively. The discrepancy can be imputed to the slow spins, at which already the indivudal booster function is not
yet at asymptotic behaviour, see Fig. 16 in the Appendix. Data points for the simplified model are indistinguishable,
the difference is in the per thousands and shown in the right panel. Right panel: Numerical studies of the relative
error between the EPRL model and the simplified one, ǫ := |W DLD6 − W DLD6

s |/W DLD6 .

This means that even if this foam is not EPRLs exact, the difference is very small. The simplified model
captures the correct scaling, and also the spin correlations, as we will see in Section 6.

5.5 DLD foams: additional vertex graphs

As we have seen, integrability and our face criterion do not single out a unique amplitude diagram for
the DLD complex. Next to DLD6 studied in the previous Section, there are 3 additional types of vertex
graphs leading to non-factorized amplitudes, those numbered 4,5 and 7. As before, these graphs give raise
to different foams by considering permutations of spin labels, and swapping the routing through the internal
edges. We consider here only one representative of these possible permutations.

In order of numerical complexity, the next non-factorized amplitude is the one with vertex graphs number
5, which only contains 4-stranded boosters. Proceeding as in the previous Section, we have

WDLD5(ja, j′
a; i, t, i′, t′) = didi′dtdt′

+

− +
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)
(34)
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There are five l summations (the SU(2) symbol associated with the internal face identifies two initially
different l′4 and l̄′4), only one bounded. This EPRL amplitude differs thus from the simplified model by
an infinite number of terms, decreasing in magnitude with a power law in the ls. The quantity in round
brackets identifies the face correlation function coupling lower and upper spins. It is again a square of
boosters, 4-stranded this time.

As before, let us first estimate the scaling of the simplified model. The first thing to notice is the
dependence of the face correlation function on the intertwiner labels. If we let the boundary spins grow,
Clebsch-Gordan inequalities quickly reduce to zero the number of terms in the sum over the internal spin,
unless we let the intertwiners also grow. Hence, the dominating contribution comes from large bulk inter-
twiners. But since in the simplified model the boundary booster functions (in the last line of 34) are sharply
peaked on equal intertwiners, this means that the whole amplitude scales differently for different values of
the boundary intertwiners, with dominant contribution coming from the largest intertwiners. This is quite
different from the previous foam considered, where the scaling was homogeneous in the intertwiners. To
estimate the power law associated with this dominant scaling, we look at the inhomogeneous scaling of Bγ

4

with one small spin, see 21a. Then, since the number of terms to be summed over grows linearly with the
spins, we estimate

∑

jf

djf
Bγ

4 (Njā, jf ; Njā, jf ; Nh, Nk)Bγ
4 (Njā, jf ; Njā, jf ; Nh, Nk′) ∼ N(N−5/2)2 = N−4, (35)

where the extremes of the summations are

[max{N |j′
4 − h|, N |j′

4 − k|, N |j4 − k′|}, min{N(j′
4 + h), N(j′

4 + k), N(j4 + k′)}].

This function is hard to evaluate numerically, and we were able to compute it explicitly up to spins of order
10 only. At those value, a numerical fit gives a power law N−3.2. This is in qualitative agreement with the
estimate 35, since at the same values the inhomogeneous Bγ

4 only scales like N−2.1 instead of N−2.5. With
this numerical support, we use 35 to estimate the whole amplitude. The summations over the intertwiners
are all cut down by the Gaussian peak in the boosters. Putting 35 together with the dimensional factors of
the intertwiners and the homogeneous scalings of the boosters in the last line of the amplitude, and taking
into account the fact that also the boundary intertwiners must be rescaled to get the dominant contribution,
we get for the simplified model

WDLD5
s (Nja, Nj′

a; Ni, Nt, Ni′, Nt′) ∼ N4NN−4(N−5/2)4 = N−9. (36)

This is the same scaling estimated for the previous foam. At spins of order 10, a linear fit of the exact
numerical data gives N−8.1, same qualitative agreement as expected from 35.

For the complete model, our results are more limited. The numerical evaluation is significantly harder
because of the many l-summations, and out of reach of our current numerical power. This is unfortunate
because unlike for the previous foam, the two scalings could differ this time. Indeed, the presence of un-
bounded summations of slow convergence (the booster functions now have a power-law decay in the ls, as
opposed to the exponential one of the previous foam) means that the complete EPRL model could have a
slower decay. Consider in fact the following example:

f(j) =
1

jx

∞∑

∆l=0

1

(j + ∆l)y
∼ 1

jx+y−1

1

y − 1
(37)

where in the last step we approximated the sum with an integral. This suggests that an unbounded sum
can slow by one power the large spin decay. If this is the case, then this foam dominates and the overall
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expansion 1 should be completed with an intermediate scaling, and spin correlations between the boundary
dipoles would appear at a stronger power than N−9. Since there are only two independent summations, the
boosters decay and the example 37 suggest that the scaling would be at most two powers slower, that is
N−7.

The remaining two non-factorized amplitudes have a more complicated structure, with 5-stranded booster
functions. Their expression is, respectively,

WDLD4(ja, j′
a; i, t, i′, t′) = didi′dtdt′

+
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and

WDLD7(ja, j′
a; i, t, i′, t′) = didi′dtdt′

+
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The best we can do for these two foams is to give the large spin scaling of the simplified amplitude. Proceeding
in the same way as before, suing this time the inhomogeneous scaling 21a of the 5-stranded booster, we obtain
the following estimates:

WDLD4
s (Nja, Nj′

a; Ni, Nt, Ni′, Nt′) ∼ N4N3N−6(N−5/2)4 = N−9, (38)

WDLD7
s (Nja, Nj′

a; Ni, Nt, Ni′, Nt′) ∼ N4N2N−6(N−5/2)4 = N−10. (39)

The presence of unbounded summations means again that the amplitudes for the complete EPRL model
could decay slower.

Finally, we have the three vertex graphs 1,2 and 3 of Fig. 6, corresponding to factorized DLD amplitudes.
Proceeding as above, we find that the amplitudes for the simplified model scale respectively as N−6, N−7,
N−11. As for the complete model, we did not invest numerical resources to study these diagrams, that give
factorized amplitudes. Since the vertex graphs 1 and 2 are not 3-link-connected, we are not guaranteed that
the associated amplitudes are ill-defined. We present in Appendix C an example with a similar structure in
which the amplitude is finite.

The results of our estimates and comparisons with the simplified model are summarized in the following
Table 1:
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Foam Factorization LOs scaling EPRLs=EPRL Numerics
DV D Y N−3 Y X
DED Y N−6 Y X
DLD1 Y N−6 N
DLD2 Y N−7 N
DLD3 Y N−11 N
DLD4 N N−9 N
DLD5 N N−9 N
DLD6 N N−9 N X
DLD7 N N−10 N

Table 1: Summary of scalings and properties of the foams. The column Factorization refers to whether the amplitude
factorizes in two terms associated with each connected part of the boundary graph; LOs scaling gives the scaling of the
simplified model; the next column marks the foams for which EPRL and EPRLs give the amplitude (so in particular
the scaling is the same); Numerics lists those foams for which we have numerical evaluations. In the three cases
considered, the numerics confirm the scaling of the simplified model. For the other foams, we notice in particular that
DLD4, DLD5 and DLD7 contain slowly converging unbounded summations over ls and could likely give slower fall
offs. The summary of different scalings shows manifestly that already for the simplified EPRLs model the large spin
scaling is not a simple function of V, E and F .

It goes without saying that we would have liked to perform numerical studies of (at least) the large spin
scaling of all foams, especially for those like DLD4, DLD5 and DLD7 that have non-factorized amplitudes
and may have a slower power law decrease than the simplified model. This lays however beyond our current
numerical means: Evaluating the booster functions is very slow and limited at spins of order 30, and the
slow convergence of the sums over l makes it impossible to deduce any meaningful behaviour from our data.

One thing that can be nonetheless fruitfully learned from the estimates for the EPRLs is that the power
of the leading scaling is not a simple function of the number of vertices, edges and faces. A priori, one has
the following structure:

• Number of vertices and their valence = Number and type of SU(2) symbols;

• Number of half-edges = Number of booster function;

• Number of faces per half-edge = Valence of booster functions.

Using 20 and the scalings of the SU(2) symbols one can use this structure to estimate the scaling of the
amplitudes, at least for the simplified model. This works for simplicial foams, as explained in [18].11 However
for non-simplicial foams the situation is made more complicated by the large freedom in the routing of the
faces and the valence of the edges. The routing in particular turns out to strongly influence the scaling, as
shown in the Table above. As a particular example, the routing can lead to disconnected vertex graphs,
which are always the dominant ones for given V, E, F : this is because gauge-invariance implies to remove
one integral per connected component, and thus an additional booster power-law decay with it. Only if the
routing of the faces is rigidly fixed, one can hope to find easy rules to estimates the power-law decay without
writing down the explicit form of the amplitude. For the complete EPRL model we have two possibilities:
either the same scaling of the simplified model, or a slower scaling. The first situation occurs for simple
foams with no unbounded l summations, like DV D and DED above, or with fast convergent unbounded
summations, like DLD6 and the additional examples in Appendix C. The second situation is however more
general, and to estimate the difference one can look at how many independent unbounded l-summations are
present, see discussion around 37 for an example. The slower decays impact also the analysis of the amplitude
divergences associated to internal bubbles, like for the self-energy spin foam or the Pachner 1-5 move, see
[58]. The actual details on the behaviour of the complete EPRL model depend on the structure of the booster
functions for non-minimal spins, and an improved analytic understanding of their large spin behaviour is
certainly necessary if one wants to make progress in the evaluation of Lorentzian EPRL amplitudes. See [59]
for work in this direction.

11The actual estimate there given does not take into account the removal of one integration per node and should accordingly
be amended.
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5.6 Higher vertices and Regge asymptotics

The next foams in the vertex expansion have two vertices with three internal edges and, according to our
criterion, three internal faces, see Fig. 9. The vertices are now 5-valent: one may wonder whether {15j}
symbols appear in the amplitudes, and allow us to make some contact with simplicial spin foams and their
geometric interpretation. The answer is in the negative, due to the combinatorial structure of the faces:
a 4-simplex vertex graph would require one of the faces to have two external links (one upper and one
lower). But for this specific foam that would mean a non-minimal cycle, thus violating our face criterion.
15j symbols will certainly appear with a high enough number of vertices, however it is hard to anticipate
without a detailed analysis how much of their potential Regge-like behaviour will survive in the presence of
so many non-simplicial symbols around them.

Although lacking a relation to Regge actions, the simple foams considered so far carry nonetheless non-
trivial correlations, and we will look at some of them in the next Section.

Figure 9: An example of 2-complex with two pentavalent vertices, on the left, and two of its possible vertex graphs,
on the right. The requirement of avoiding faces corresponding to non-minimal cycles excludes vertex graphs with the
combinatorics of a {15j} symbol.

6 Spin Correlations

One of the most important properties of spin foam amplitudes is to introduce dynamical correlations among
spin network states. These correlations have played an important role in the study of the 2-point function
for simplicial foams [34], and the relation with the graviton propagator in the linearized expansion (see
e.g. [45]).12 For non-simplicial foams, we do not have a geometric interpretation of the correlations, but it
is nonetheless important to study their structure if such amplitudes have to play a dynamical role in the
theory. We focus here on the most interesting correlations encountered in our dipole-to-dipole transitions,
those between spins associated with disconnected parts of the boundary graph. We have seen in the previous
Section that such correlations appear only in the presence of an internal face and a routing mixing the
boundary faces. The simplest foam for which this happens is DLD6, and in this Section we present a
more detailed analysis of the spin correlations. Our analysis will however be only indicative in nature, for
the following reason: we do not have sufficient computer power and time to evaluate the twelve sums over
boundary spins and intertwiners. We resorted to a strong simplification provided by a ‘mini-superspace’
model: we assume all lower and all upper spins to be equal, ja ≡ j, j′

a ≡ j′, and study the amplitudes
as probability distributions WDLD6

mini (j, j′) in this two-dimensional space, at fixed γ and intertwiners. This
enormously reduces the contributions we need to sum over and makes numerical calculations an easy task.
We hope that it still captures, at least qualitatively, the nature of the spin correlations of the true model.
Using a Gaussian boundary state |Ψ〉 =

∑
j,j′ exp{−(j − j0)

2 − (j′ − j0)
2} |j, j′〉 as in the general boundary

framework, we evaluate

〈jj′〉γ,j0 :=
〈WDLD6

mini | ĴlĴl′ |Ψ〉
〈WDLD6

mini | Ψ〉
− 〈WDLD6

mini | Ĵl |Ψ〉
〈WDLD6

mini | Ψ〉
〈WDLD6

mini | Ĵl′ |Ψ〉
〈WDLD6

mini | Ψ〉
. (40)

12For recent alternative ideas based on entanglement to select physically correlated states, see e.g. [60, 61, 62, 63].
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The results are reported in Fig. 10.

Figure 10: Correlations 40 as functions of the background spin j0 introduced by the boundary state. The value of
the peak and of the power-law tail depend on γ, here taken to be 6/5. The intertwiners labels are all equal to 1.

We see a peak and a power-law large j0 decay. These two features are qualitatively reminiscent of the
simplicial spin correlations (see e.g. [11]), although the details differ, notably the power law and the width
of the Gaussian.

An important consequence of the minisuperspace model is that the amplitude is normalizable:

〈WDLD6

mini | WDLD6

mini 〉 =
∑

j,j′

WDLD6

mini (j, j′)2 < ∞. (41)

Furthermore, convergence is achieved almost immediately, see Fig. 11. Hence, we can define the correlations

Figure 11: Normalizability of the minisuperspace amplitude. The plot shows the convergence of 41 as a cut-off Λ on
the summations is increased. Here we fixed all intertwiner labels to 1, and γ = 1.2.

for this mini-superspace model also as in 7,

〈jj′〉DLD6
:=

∑Λ
j,j′ jj′WDLD6

mini (j, j′)2
∑Λ

j,j′ WDLD6

mini (j, j′)2
−

∑Λ
j,j′ jWDLD6

mini (j, j′)2
∑Λ

j,j′ WDLD6

mini (j, j′)2

∑Λ
j,j′ j′WDLD6

mini (j, j′)2
∑Λ

j,j′ WDLD6

mini (j, j′)2
, (42)

where, since the sums over j and j′ are infinite, we put an homogeneous cut-off Λ on them. The convergence
in Λ is very fast, see left panel of Fig. 12, as it was for the normalization alone. The same plot shows that
the EPRL and simplified model give basically the same correlations: the difference is of order 10−4. Hence
for this diagram the simplified model correctly captures both the scaling and the spin correlations.

Finally, we studied the dependence of 42 on the Immirzi parameter γ, see left panel of Fig. 12. The
correlations are positive, and decrease as γ increases.
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Figure 12: Left panel: Spin correlation 42 for the complete and the simplified models, showing that convergence of
the sum is achieved at small values of the cut-off Λ. The models give indistinguishable data points, the relative error
being of order 10−4. The same fast convergence is seen for all values of γ considered. Right panel: Spin correlation
42 as a function of the Immirzi parameter, using the simplified model and cut-off Λ = 10.

Let us now look at the origin of the correlations, namely the internal face function 29 responsible for
the coupling of upper and lower spins. The main contribution is the one for the simplified model, 30. As
a distribution in the spins this function has an interesting behaviour, with a principal peak for equal spins
and symmetric sub-leading peaks, see Fig. 13.

Figure 13: Numerical studies of the internal face correlation function, for the simplified model and γ = 6/5. Upper
panel: 3d plot of Cs(j, j

′), showing a power-law decay superimposed with a peak for equal spins and symmetric sub-
leading peaks. Lower panels: 2d sections of Cs(j, j

′), showing more details about the peaks. The peak in the fixed-j
cut may amusingly remind the reader of a resonance in particles scattering, like the famous Higgs-diphoton bump,
however the background typically has opposite concavity.

Adding the l contributions of the complete EPRL model gives stronger correlations, although by a very
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small amount. For the internal face function, we can look at a cut-off summation,

C∆l(j, j
′) =

j+∆l∑

l=j

j+∆l∑

l′=j′

Cl,l′(j, j
′). (43)

Each new term added enhances the peak, as shown in Fig. 14. However, the l, l′ to be summed over in 28
are convoluted with booster functions, that has seen previously decrease as we increase the l labels. This
has the effect of damping the peak enhancement, and as anticipated above, the final correlations only differ
by an order 10−4.

The resummed C∆l only gives a qualitative picture of the effect in the complete model, in particular it
overestimate it since the B4 convoluted over are also decaying functions in ∆l. Indeed, the correct result
can be seen by looking at the complete amplitude as a function of final (say all equal) spins at fixed initial
(all equal) spins. That is the reason why, also for the correlation of the present foam and not only for the
scaling behaviour, the simplified model offers a good approximation.

Figure 14: Peak enhancement for the cut-offed sums 43.

As a final comment, let us point out that the simplicity constraints play an important role in generating
the correlations. Had Had we worked with SU(2) BF theory alone, in fact, the internal face function would
simply be

CBF (j, j′) =

j+j′∑

jf=|j−j′|
djf

. (44)

There is no more coupling of the spins in the summand, and the only almost-trivial correlations come from
the extremes of the sum. Hence these correlation are a good test of the dynamics of the EPRL model, within
the limit of the simple foams and mini-superspace setup here considered.

7 Conclusions

Numerical calculations of spin foam amplitudes are notoriously difficult, especially for Lorentzian signature.
In this paper we have considered amplitudes for a boundary graph with two 4-link dipoles, originally con-
sidered in [20, 23] for cosmological applications. We have extended that analysis to foams with two vertices,
and showed how the amplitudes can be computed explicitly using the method introduced in [18]. Our results
show that the decoupling of the boundary dipoles present at one vertex [20] is still present at two vertices
with a single connecting edge. In order to couple the spins on the two dipole one needs an internal face. This
is however not sufficient, as some foams with an internal face also can give factorized amplitudes, depending
on the routing of the faces. For the simplest foam with a non-factorized amplitude we performed numerical
studies of its scaling and spin correlations. The amplitude is suppressed by six powers in the large spin limit
with respect to that with a single vertex, and the correlations between lower and upper spins, studied with
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a mini-superspace model, are positive and monotonically decreasing with γ. The origin of the correlations
can be isolated in a specific function associated to the internal face, which features a non-trivial structure
with multiple peaks. This study of correlations can be considered as a first step to understand the dynamics
induced by the spin foam for the two dipoles, and it is relevant for the development of spin foam cosmology.
Indeed, one of our main motivations to undertake the present analysis was to take a look at cosmological
applications using spin foams [19, 20, 21, 22, 23, 24, 25, 17], with the specific question of seeking evidence of
the famous Big Bounce predicted by loop quantum cosmology [64]. We are not there yet with our approach,
partly because the path proved rich and complicated, partly because our current numerical power is signifi-
cantly limited. We thus content ourselves for the time being with presenting the results obtained so far, and
postpone a study of cosmological applications to future work.

For all foams considered, the spin sum over the internal face is convergent, and the amplitudes have
a power law decay in the large spin limit. The power increases with the complexity of the foam, thus
introducing a hierarchical scheme on top of the vertex coupling expansion. However, the exact scaling
depends in a complicated way on the combinatorics of the foam, and cannot be easily established just
looking at the number of vertices, edges and faces of the 2-complex. For instance a routing of faces leading
to a disconnected vertex graphs always gives a dominant amplitude with respect to a connected routing,
because of the extra group integrations to be removed. These results leave us with a mixed feeling. Exposing
the large spin hierarchy of the foams allows one to play around with expansions like 1 as an arena to test
different ideas on how the sum should be organized, or a continuum limit taken, and how different questions
may be sensitive to different orders. On the other hand, the (relative) simplicity of the numerical evaluation
of these non-simplicial spin foams has a payoff in the loose combinatorics of the faces. Even introducing
a very strong criterion as we did, the proliferation is still important, and most unsatisfactorily, the scaling
power law can not be a priori determined simply looking at the number of vertices, edges and faces, not even
for the simplified EPRLs model.

In the course of presenting these results we also discussed detailed aspects of the evaluations, the guiding
role that the simplified model can play, and what are our current numerical limits. In particular, we were
able to numerically evaluate only one – and the simplest – non-factorized foam for the complete EPRL model.
Both types of results, on the scalings and the correlations, concern the very limited setting 1 with at most
two vertices and a single internal face, and it is necessary to push our analysis further before more meaningful
conclusions can be drawn. The numerical evaluations are very costly, and we are furthermore limited by
instabilities of hypergeometric functions in Mathematica to compute the booster functions at spins beyond
30. Our analysis tells us that we need to improve these instabilities and parallelize the code so to speed up
the l summations. Work is currently in progress in this direction, and these improvements will be crucial
to testing the Regge asymptotic of the simplicial amplitude [14]. Once this is achieved, the factorization
method of [18] put the Lorentzian amplitudes on the same tractability level as SU(2) amplitudes. This is
non-trivial progress, but far from saying that the hardest part of the work is done: it is actually at that
point that one can face the true hard problem, namely the summations over internal j spins for many-vertex
foams. So from the numerical perspective our results are both good and bad: good because we were able to
do explicit numerics at two vertices, bad because they showed how much more improvement is needed, in
methods and numerical codes and/or approximation schemes.

Let us conclude with a comment on the dynamical meaning of the amplitudes here considered. Most
of the literature on spin foams focuses on simplicial amplitudes, for their natural geometric interpretation
and relation to Regge calculus. Nonetheless, non-simplicial amplitudes have been put forward as a mean
to provide transition amplitudes to spin networks on arbitrary graphs [6]. One can go out of the simplicial
setting in two opposite directions: on the one, considering simpler foams, with lower-valence vertices and
simple boundary states. This is the set up proposed in [20, 23] for cosmological applications and considered
here. On the other one, considering higher-valence vertices, which could be interesting from a coarse-graining
perspective for instance, and has also been considered for cosmological applications [17]. In the first case,
the connection with Regge calculus and that geometric interpretation of the dynamics is lost, as we have
seen in this paper no Regge actions enter the dynamics of the leading foams in the expansion. In the second
case, the analysis of [13] (which is restricted to SU(2) theory, but already points out what the story is like
for the EPRL model, see also [65] on this) shows that while it is possible in principle to get a Regge-like
dynamics based on flat 4d polytopes instead of 4-simplices, the EPRL model as it is now allows for more
general non-flat polytope configurations at the saddle point, corresponding to 3d data describing a class of
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conformal twisted geometries in which areas and angles match, but not the diagonal of the polygonal faces.
The lack of a simple connection with Regge calculus, and of a simple rule to identify the large spin scaling

of each diagram, are for us indications that more work is needed to assess the viability of non-simplicial EPRL
amplitudes for quantum gravity.
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A SU(2) and SL(2,C) graphical calculus

For the graphical calculus used to explicitly compute the amplitudes, we refer the reader to the monography
[32], whose conventions we use here.

A.1 SU(2) Symbols

We represent Wigner’s 3jm symbol as

(
j1 j2 j3
m1 m2 m3

)
=

j1 j2 j3

−

=

j3 j2 j1

+

, (A.1)

where the signs ± on the nodes keep track of the assignment of spins in the symbol, respectively anticlock-
wise/clockwise.

The contraction of two 3jm symbols via an intertwiner gives

j1 j2 j3 j4

i
− −

=

j1 j2 j3 j4

i

− =
∑

mi

(−1)i−mi

(
j1 j2 i
m1 m2 mi

)(
i j3 j4

−mi m3 m4

)

=:

(
j1 j2 j3 j4
m1 m2 m3 m4

)(i)

(A.2)

which we used to define a 4jm symbol with four external legs. From now on we forget to use dots for
nodes and we discard signes assuming they are always minus if not otherwise stated. These symbols satisfy
orthogonality properties such as

∑

m1,m2

(
j1 j2 j3
m1 m2 m3

) (
j1 j2 l3
m1 m2 n3

)
=

δj3l3δm3n3

dj3

, (A.3)

∑

ma

(
j1 j2 j3 j4
m1 m2 m3 m4

)(j12) (
j1 j2 j3 l4
m1 m2 m3 n4

)(l12)

=
δj12l12

dj12

δj4l4δm4n4

dj4

. (A.4)

Unlike the 3jm symbol, the 4jm symbol we defined is not normalized.13

13A normalised 4jm-symbol is obtained multiplying the right-hand side of A.2 by
√

dj12 . We chose the non-normalised
convention because it is the one that corresponds to a 4-valent node in the SU(2) graphical calculus, and because it is more
convenient to work with in order to reconstruct the invariants {nj}-symbols associated to graphs.
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In the graphical notation of the 4jm symbol we distinguish one spin, j12, which corresponds to an
intertwiner label in the recoupling channel 12. Graphically, tracing over the free magnetic indices the
orthogonality relations A.3 and A.4 we obtain the evaluation of the θ graph and its generalized version with
4 links,

j1

j2

j3

= 1;

j1

j2

j3

j4

i k =
δi,k

di
. (A.5)

Above and everywhere we implicitly assumed that the Clebsch-Gordan inequalities are satisfied, else the
evaluations vanish.

For the simple foams considered in this paper, the rule that we needed the most is the orthogonality
relation (A.3), namely

j1 j1

j2 j2

j2

j3 j3j4

j4

d−1
j1= (A.6)

Other two useful rules are the node sign change, equation (6) in Section 8.5 of [32], and the 6j graph identity
at the bottom of page 429.

Inverting the orientation of an internal line with spin j gives a (−1)2j phase. Inverting the orientation
of an external line gives a parity map ǫ = iσ2. Depending on whether we are acting on a ket or a bra we get

D(j)
mn(iσ2) = ǫ(j)mn = = (−1)j+mδm,−n

ǫ−1(j)mn
= ǫ(j)nm = (−1)j−mδm,−n

(A.7)

So for instance
j1 j2 j3 j4

i

= (−1)j1−m1

(
j1 j2 j3 j4

−m1 m2 m3 m4

)(i)

. (A.8)

Since
∑

l jl ∈ N at a node, reversing all external lines has no effect:

j1 j2 j3

=

j1 j2 j3

,

j1 j2 j3 j4

i

=

j1 j2 j3 j4

i

. (A.9)
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Changing the orientation of the virtual line gives a phase in agreement with the rule for internal lines:

j1 j2 j3 j

i

=
∑

mi

(
j1 j2 i
m1 m2 mi

)
(−1)i−mi

(
i j3 j

−mi m3 m

)

=
∑

mi

(
j1 j2 j12
m1 m2 −mi

)
(−1)i+mi

(
i j3 j

mi m3 m

)

=
∑

mi

(−1)2(i−mi)

(
j1 j2 i
m1 m2 −mi

)
(−1)i+mi

(
i j3 j

mi m3 m

)

= (−1)2i

j1 j2 j3 j

i

.

A.2 Boxes and Integrations

We refer the reader to [10] for a more detailed description of graphical calculus for SL(2,C). Here we just
need two elements to complement the SU(2) calculus. The SL(2,C) integration boxes, and the booster
functions. We represent every half-edge of a foam with a box, every face with a strand and the Y map with
a blue line orthogonal to the strands. If e.g. four faces touch an half edge the corresponding box will have
four strands. The Y map projects the ‘magnetic spins’ to their minimal value, which we always denote with
a j in this paper. ‘Magnetic spins’ allowed to vary freely above their minimal value are always labeled with
a l. Hence for a 4-stranded half-edge,

+ −

g
=

∫

SL(2,C)

dg

4⊗

a=1

D
(γja,ja)
jamalana

(g). (A.10)

The arrow under the box is needed to keep track of whether the group element to be integrated over is g or
g−1. For instance, following the same convention as before for outgoing and ingoing lines, we have

j1j1

j2j2

l1

l2

g h =

∫
dh dg

∑

l1,r1,l2,r2

Dγj1,j1
j1m1l1r1

(g)Dγj1,j1
l1r1j1n1

(h−1)Dγj2,j2
j2m2l2r2

(g−1)Dγj2,j2
l2r2j2n2

(h) .

(A.11)
Following [18], the SL(2,C) integrals can be split in two SU(2) Wigner’s njm symbols summed over a booster
function, for instance

−
− −

{ja}{ja} {la}{la}
i k= di

+++

g dk

∑
i,k . (A.12)

The graphical notation for the booster function is the one introduced in the main text. With this choice
the signs of the nodes are alternating. We use this property also in the main text, to avoid keeping track of
the signs on all diagrams: we assign + or - to the boundary states, then the signs of the internal nodes are
implicitly assigned according to this alternate rule.
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The booster functions do not depend on the strand orientations. To see this, notice that in a box with
n lines we can have two possible configurations:

j

l

= Dγj,j
lnjm(g−1)

j

l

= Dγj,j
jmln(g), (A.13)

with g ∈ SL(2,C). On the first case the decomposition reads [18]

Dγj,j
lnjm(g−1) = D

γj,j

jmln(g) = (−1)j−l+m−nDγj,j
j−ml−n(g)

= (−1)j−l+m−nDj
−mp(u)dγj,j

jlp (r)Dl
p−n(v),

(A.14)

while in the second case

Dγj,j
jmln(g) = Dj

mp(u)dγj,j
jlp (r)Dl

pn(v). (A.15)

In both cases we can split the SL(2,C) group element without any phase depending on magnetic index p,
thus the booster functions do not get any arrow.

B Booster functions: numerical results

In this Appendix we collect numerical results for the booster functions 16. For n = 3 there is a fast and exact
formula in terms of finite sums, see [18]. Using this we can go up to spins of order a hundred within seconds.
For larger n we can do much less. A formula based on the finite sums for presented in [18], and in spite
of promising properties, it presents numerical instabilities due to subtractions of ratios of large numbers.
For this paper we then used the basic definition 16 with the boost matrix elements expressed in terms of
hypergeometric functions. This gives reliable evaluations with Mathematica, although slow, up to spins of
order 30 where numerical instabilities appear. Fig. 15 gives an idea of the evaluation times.

Figure 15: Left panel: Time (in seconds) to evaluate a Bγ
4 (Nj, Nj) for minimal and equal spins for all possible

intertwiners, the important contribution is given by numerical integration while, at low spins, 4j symbol calculation
time is negligible using [66] Right panel: Calculation time for Bγ

4 (j, j + N∆l), for all intertwiners and with a
homogeneous rescaling of magnetic spins.

Spins of order 30 are enough to see convincingly the N−3/2 scaling, although it is still a few per cents
away with a fit, see Fig. 16. Experience from the 3-stranded boosters shows in fact that a 1% fit needs spins
of order 60. The same figure also shows that the analytic estimate 20 is off by a numerical factor of order
1. Further studies show also that the decay with unequal intertwiners has the same power law, hence the
Kronecker delta reported in 20 should be more precisely be replaced by a Gaussian.
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Asymptotic formula ● Numerical behaviour

Figure 16: Homogeneous large spin scaling of Bγ
4 , with equal intertwiners i = k = 1 and γ = 6/5. Dots are the

data points, and the continuous line is a numerical fit with power N−3/2. The dashed line is a numerical fit with a
free power, which gives a scaling N−1.4 using the last 5 points. This is compatible with the N−3/2, and suggests that
the asymptotics is reached at spins of order 50 to 100, as it is for the Bγ

3 , see [18]. Finally, the dotted line is the
analytic formula 20, which captures the right scaling but not the numerical factor. Further analysis [18] shows that
also the γ and ji dependences are well captured, but not so well the intertwiner one which is a Gaussian rather than
a Kronecker delta.

Next, we report in Fig. 17 the studies of the inhomogeneous scalings, with a single small spin, and all
other large.

Figure 17: Inhomogeneous large spin scalings of booster functions with a small spin, see 21 in the main text. The dots
are data points, the lines numerical fits. We find a power law N−1 for Bγ

3 (top left), N−5/2 for Bγ
4 with intertwiners

equal and large (top right), N−7/2 for Bγ
5 with both intertwiners equal and large (bottom).

Another important property of the booster functions is the way they decay as we increase the l ‘magnetic
numbers’, starting from their minimal value j. This can be either a power law or an exponential decay.
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Fig. 18 shows non-oscillating and oscillating power laws obtained increasing homogeneously all l’s of Bγ
4 for

different spin configurations.

Figure 18: Non-minimal spin decays, homgeneous. Left panel: Equal spins, equal and non-equal intertwiners.
Numerical fits give a power law N−1 in both cases. Right panel: Configuration with non-equal spins, Bnonequal

4 =
B4(j, j, j + 1, j + 2; j + N, j + N, j + 1 + N, j + 2 + N ; i, k), showing oscillatory behaviour with the same N−1 power
law.

The final Fig. 19 shows that allowing a single l to grow large with respect to its minimal value give an
exponential decay.

Figure 19: Left panel: Decaying at j=10 for a B4 while increasing one l. The difference between the first two points
(N = 0 and N = 1) is one order of magnitude while between the first and the last point nine orders. Right panel:
Decaying at j=10 for a B3 while increasing one l.

C Extended graph analysis

In the main body of the paper, we used two different types of arguments to reduce the number of vertex
graphs to be studied. First, the existence of non-integrable Lorentzian spin networks; second, our criterion
to define the spin foam faces as minimal cycles. In this Appendix we relax the second argument, and show
what it would look like to take into account all possible graphs which are a priori integrable. Accordingly,
we only exclude graphs containing uni-valent and bi-valent nodes, as well as tadpoles. We keep a priori also
non-3-link-connected graphs: as explained in the main text, 3-link connectivity is only a sufficient criterion,
and indeed we will see below examples of integrable non-3-link connected graphs.
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Allowing for faces corresponding to non-minimal cycles, we have 4 possible vertex graphs for DV D, see
Fig. 20, 3 for DED, see Fig. 21, and 13 for DLD, see Fig. 22. We have listed only the topologically distinct
vertex graphs; to list the associated spin foams one has to take into account also label permutations and
alternative but topologically equivalent routings (for these simple graphs, these can be captured by rotating
the graph by π/2 and by flipping it vertically). Many of these diagrams lead to ‘face-rigid’ amplitudes for the
dipole transitions: these can be easily identified as those with a link connecting the top and bottom nodes.
It is also easy to identify those that would lead to factorized amplitudes, by using the criterion explained
in the main text: if all the spins of a single boundary are linked to a unique node of the vertex graph then
decoupling can be immediately seen choosing to remove the group integration at that node. This is the case
for the first graph of 21 and for the first three graphs of 22.

The admissible graph analysis shown in these figures was performed by hand, using rules analogue to
those explained in details in [24]. For more general graphs it is highly recommendable to switch to an
automatic evaluation on Mathematica.

Figure 20: Integrable graphs for a 4-valent vertex with 8 faces. The second is not 3-link-connected, yet it turns out

to be integrable. The last one is the only one to contain a non-trivial symbol, a 6j. When applied to the DVD foam,

all but the first violate the minimal-cycle faces criterion; all non-minimal-cycle faces in this case lead to ‘face-rigid’

amplitudes, meaning one face has two boundary links thus imposing equality of those boundary spins.

Figure 21: Integrable graphs for a 3-valent vertex with 8 faces. When applied to DED the last two give ‘face-rigid’
amplitudes.
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1 2 3 4

5 6 7 8 9

10 11 12 13

Figure 22: Integrable graphs for a 4-valent vertex with 9 faces. Number 1,2 and 8 are not 3-link-connected.
The simplified amplitude is finite, but we do not know whether the complete EPRL amplitude is finite or not.

C.1 Evaluations of the ‘face-rigid’ DVD foams

We report here the explicit evaluation of the three additional vertex graphs of Fig. 20. These calculations,
although not directly relevant to the main goal of the paper, allow us to highlight some properties of the
EPRL model useful for more general evaluations. First, the fact the non-3-link connected graphs can have
integrable Lorentzian amplitudes (in DV D2). Second, the fact that even in the presence of unbounded
‘magnetic l’s’ summations the simplified model can still provide precise leading order approximations of the
EPRL model, if the sums quickly converge (in DV D2 and DV D3). Third, it allows us also to see a diagram
in which a non-trivial 6j symbol appears (in DV D4).
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With reference to Fig. 20, the second vertex graph for DVD gives the following amplitude:

WDV D2(ja, j′
a; i, t, i′, t′) = didi′dt

∑

k′,la

dk′(−1)2(k
′+t′) δj′

3,l4

dj′
3

δj1,j′
1
δj2,j′

2
δj3,j′

3

j1 j2 j3 j4

j1 j2 j3 l4

t

t′

j1 j2 j3 j4

l1 l2 l3 l4

i

k′

j′
1 j′

2 j′
3 j′

4

j′
1 l3 l2 l1

i′

k′

(C.16)

We see in the first line above the three ‘face-rigid’ conditions imposing equal spins between the lower and the
upper dipole. The amplitude is not 3-link-connected, thus convergence of the l-summations is not guaranteed.
Of the 4 l summations, 3 are unbounded due to triangular inequalities, and further the l’s enter in 3 or 4 slots
of the (last two) booster functions, whose decay is a slow power-law. Nonetheless, the summations quickly
converge, and the amplitude is finite, see Fig. 23. The quick convergence of the summations indicates also
that the simplified model can give a good scaling estimate, which is also confirmed numerically. Using 19
we estimate the large spin limit of the EPRLs amplitude to scale as N−11/2, and the numerical fit on the
right panel of Fig. 23 shows that already at spins of order 10 the power approaches this value.

Figure 23: Left panel: Convergence of the sums over l’s in C.16 with an homogeneous cut off ∆l. Boundary spins
and intertwiner fixed to 1, γ = 6/5. The relative error between the first and the last point is of 35% while between the
seventh and the last one is 0.03% Right panel: Scaling of W DV D2 for different values of the cut off with all boundary’s
intertwiners fixed to 1. The roughly 10% differences are squashed by the scale of the y-axis. The continuous line is
a numerical fit, which gives N−5.01 for all of them, a value compatible with the EPRLs analytic estimate at this low
spins at which the boosters have not yet reached asymptotic scaling.

We have a similar story for DV D3, whose unbounded l summations also quickly converge, making the
EPRLs scaling coincide with the complete evaluations. The amplitude reads

WDV D3(ja, j′
a; i, t, i′, t′) = didi′dt

∑

la

δj1,j′
1
δj2,j′

2

j1 j2 j3 j4

j1 j2 l3 l4

t

t′

j1 j2 j3 j4

l1 l2 l3 l4

i

t′

j′
1 j′

2 j′
3 j′

4

j′
1 j′

2 l2 l1

i′

t′

(C.17)

with only two l summations unbounded. The simplified scaling is N−9/2, and the numerical studies are
reported in Fig. 24.
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Figure 24: Left panel: Convergence of the sums over l’s in C.17 with an homogeneous cut off ∆l. Boundary spins
and intertwiner fixed to 1, γ = 6/5. The relative error between the first and the last point is of 50% while between the
seventh and the last one is 0.4%. Right panel: Scaling of C.17 for different values of the cut off with all boundary’s
intertwiners fixed to 1. The convergence is now slower and we can tell the different cut-offs apart. The numerical fits
in the continuous lines give N−4.1, again compatible with the EPRLs estimates.

These results show that the EPRLs captures well the scaling of the complete model, but with a caveat:
it could happen that the quick convergence of the l summations, exposed in the numerics above at small
spins (left panels of Figs. 23 and 24, is not preserved at high spins. This could result in larger contributions
and slower decays. The fact that the numerical fits (in the right panels of the same figures) are unchanged
shows that this should be true up to j of order 10, but we do not have stronger evidence beyond that.

Finally, DV D4 carries a {6j} symbol due to the crossing of two of the faces:

WDV D4(ja, j′
a; i, t, i′, t′) = didi′dt

∑

k,la

dk(−1)2t′+3l4+j′
1δj1,j′

1
δj2,j′

2
δj3,j′

3

j1 j2 j3 j4

l1 l2 j3 l4

i

k

j1 j2 j3 j4

j1 j2 l3 l4

t

t′

j′
1 j′

2 j′
3 j′

4

j′
1 l3 l2 l1

i′

k

{
k l3 j′

4

t′ l3 l4

} (C.18)

For the simplified model with boundary intertwiners fixed, the involved {6j} symbol has only four large
entries, and scales like N−1, see Fig. 25. The estimate for the simplified amplitude gives

WDV D4
s (Nj, Nj; i, t, i′, t′) ∼ (N−3/2)3N−1 = N−11/2. (C.19)

The properties of the DVD foams studied in this Appendix are summarized in the following Table 2:

Foam Factorization LOs scaling EPRLs=EPRL Face-rigidity
DV D1 Y N−3 Y
DV D2 N N−10/2 N 3-face rigid
DV D3 N N−9/2 N 2-face rigid
DV D4 N N−11/2 N 3-face rigid

Table 2: Summary of scaling and some properties of the DVD foams.
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Figure 25: Scaling of a {6j} symbol with 4 large entries. The dots are data points, the continuous line a N−1 fit.
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Abstract

We develop a numerical method to investigate the semiclassical limit of spin foam amplitudes with
many vertices. We test it using the Ponzano-Regge model, a spin foam model for three-dimensional
euclidean gravity, and a transition amplitude with three vertices. We study the summation over bulk
spins, and we identify the stationary phase points that dominate it and that correspond to classical
geometries. We complement with the numerical analysis of a four vertex transition amplitude and with
a modification of the model that includes local curvature. We discuss the generalization of our results to
the four-dimensional EPRL spin foam model, and we provide suggestions for new computations.

1 Introduction and Motivations

Spin foam theory is a Lorentz-covariant and background-independent formulation of the dynamics of loop
quantum gravity. The state of the art is the EPRL-FK model, proposed independently by Engle et al
[1, 2, 3] and by Freidel and Krasnov [4]. The spin foam partition function, defined on a simplicial triangula-
tion, provides a regularized version of the quantum gravity path integral. The theory introduces transition
amplitudes between spin network states on the boundary of the triangulation.

Spin foam theory leads to many interesting results: in the semiclassical limit the single vertex amplitude
contains the Regge action, a discrete version of general relativity [5, 6]; the graviton n-point function exhibits
the correct scaling [7, 8, 9, 10]; it has physical applications in the study of black hole-to-white hole tunneling
processes [11] and quantum cosmological models [12, 13, 14].

With the fast development of computational techniques and resources, numerical methods are becoming
of great interest to the quantum gravity community. In the context of spin foam theory, we developed and
we keep improving sl2cfoam, a C based high-performance library, to evaluate the vertex amplitude of the
lorentzian EPRL model. We used the library to numerically confirm the single vertex asymptotics of the
amplitude [15]. Different numerical techniques are also employed to analyze the renormalization group flow
of the theory [16, 17, 18]. Finding fixed points in the flow and identifying phase transitions would allow us to
understand the open question of the diffeomorphism invariance. The evaluation of the transition amplitude
with quantum computing methods is under development [19]. Recently the Encyclopedia of Quantum
Geometries [20], a public repository for computational projects in quantum gravity, has been created.

However, many questions remain unanswered. The most concerning one is the so-called flatness problem,
firstly mentioned by Freidel and Conrady [21], and later explored by Bonzom [22] and Hellmann and Kaminski
[23]. They argue that the EPRL partition function, in the semiclassical limit, is dominated by classical flat
geometries. If confirmed, this would be a clear indication that the simplicity constraints (essentials in
reducing topological BF theory to General Relativity) are not imposed correctly, and then the model would
be seriously put in question. We strongly believe we will be able to give a definitive answer to this question
using numerical techniques.

∗dona@cpt.univ-mrs.fr
†gozzini@cpt.univ-mrs.fr
‡sarno@cpt.univ-mrs.fr
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In this paper, we make the first step in this direction. In spin foam literature, the large spin limit of
the theory is studied by uniformly rescaling the boundary spins and analyzing the oscillatory behavior of
the amplitude. While this approach works for the analytic computation, it is not well suited for numerical
analysis. The evaluation of the scaling of a single vertex amplitude is very taxing on computational time and
resources. As shown recently in [24], while the small spin regime of the amplitude is entirely under control,
the large spins region demands more attention. The estimation of the frequency of the oscillation from the
numerical data is hard since, in general, the oscillation is orders of magnitude faster than the sampling rate.
Therefore we cannot employ Fourier analysis and we must devise different computational techniques.

We focus on the link between quantum amplitudes and classical geometries, setting aside all the technical
complications arising in complex spin foam models. Motivated by the path integral formulation of quantum
mechanics, we look at stationary phase points in the bulk spins summation of the spin foam amplitude. We
find them numerically evaluating partial sums and running sums of the amplitude. We work with a spin
foam amplitude with three vertices and one internal face within the three dimensional SU(2) topological spin
foam model. This model was firstly proposed by Ponzano and Regge to describe euclidean three dimensional
quantum gravity [25] and it is nowadays well-known and well studied by the quantum gravity community.
Therefore, it is the perfect playground for our analysis, as analytical control is crucial to develop new reliable
numerical tools. The technique we develop in this work can be immediately generalized to the EPRL model
via the decomposition of the amplitude introduced in [26].

The code and the accompanying Mathematica notebooks used for the geometric reconstruction and the
data analysis are publicly available [28]. The code used in this paper is written in C and based on the
wigxjpf [27] and sl2cfoam [24] libraries. All the computations are performed on personal laptops using
Intel i7-8650U cores and 16 GB of memory in seconds or minutes at most.

2 Propagator in quantum mechanics

In this section, we briefly review the properties of the propagator in the path integral formulation of quan-
tum mechanics. The composition of propagators is analog to the one of vertex amplitudes in spin foam
models. Therefore, studying the semiclassical limit in this simple context can be propaedeutic for the anal-
ysis performed in the rest of the paper. The transition amplitude of a non-relativistic particle going from
the position x0 at time t0 to position x1 at time t1 with t0 < t1 can be computed using the path integral
formalism as:

K (x1, t1;x0, t0) =

∫ x(t1)=x1

x(t0)=x0

D [x(t)] e
i
~S[x(t)] , (1)

where S[x(t)] is the classical action functional and we integrate over all paths with fixed boundary condition
x(t0) = x0 and x(t1) = x1. The transition amplitude (1) is also called the propagator of the system.

In the semiclassical limit, identified by ~ → 0, we can evaluate the transition amplitude by performing
a stationary phase approximation of the path integral. The equation characterizing the stationary phase
condition reads

δS

δx
= 0 , (2)

which is the Euler-Lagrange equation of motion that arise from the least action principle of classical me-
chanics. This indicates that classical paths dominate the path integral in the semiclassical regime. In this
limit, we approximate the transition amplitude with

K (x1, t1;x0, t0) ≈
(

i

2π~
∂2S[xc(t)]

∂x0∂x1

) 1
2

exp
i

~
S[xc(t)] , (3)

where xc(t) is the classical path (solution of the classical equations of motion) that satisfies the boundary
condition xc(t0) = x0 and xc(t1) = x1. The prefactor, in general, is a function of the Hessian of the action on
the stationary phase path. Equation (3) holds for the case of quadratic Lagrangians, we refer to textbooks
for the detailed derivation [29]. If multiple classical paths exist (for example in the case of a particle in a
box) each one of them contributes to the semiclassical limit of the propagator.
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The propagator (1) satisfies also a composition property [30]. Given an intermediate time t0 < tm < t1
the propagator between the initial and the final point can be expressed as the integral over all the possible
intermediate positions of two intermediate transition amplitudes:

K (x1, t1;x0, t0) =

∫
dxmK (x1, t1;xm, tm)K (xm, tm;x0, t0) . (4)

Can we apply the stationary phase approximation technique to evaluate the integral over the intermediate
positions (4) in the semiclassical limit? It is useful to look at two simple examples first.

Free particle The propagator of a free particle of mass m is given by [30]:

K (x1, t1;x0, t0) =

√
m

i~ 2π(t1 − t0)
exp

im

2~
(x1 − x0)2

t1 − t0
. (5)

Given an intermediate time t0 < tm < t1 the composition property of the propagator (4) results in the
equation

K (x1, t1;x0, t0) =

∫
dxm

m

i~ 2π
√

(t1 − tm)(tm − t0)
exp

im

2~

(
(x1 − xm)2

t1 − tm
+

(xm − x0)2

tm − t0

)
. (6)

In the semiclassical limit, we can compute the integral over intermediate positions and, to find if a point
dominates the integral, we search for the stationary of the phase of the integrand

d

dxm

m

2

(
(x1 − xm)2

t1 − tm
+

(xm − x0)2

tm − t0

)
= 0 .

The solution to this equation is given by

xm(tm) =
x1 − x0

t1 − t0
tm +

x0t1 − x1t0
t1 − t0

,

the position of a non-relativistic free particle at time tm with boundary conditions x(t0) = x0 and x(t1) = x1.

Harmonic oscillator We can perform a similar analysis also for the harmonic oscillator of mass m and
frequency ω. The propagator is given by [30]

K (x1, t1;x0, t0) =

√
mω

i~ 2π sinω(t1 − t0)
exp

imω

2~
(x2

0 + x2
1) cosω(t1 − t0)− 2x0x1)

sinω(t1 − t0)
. (7)

We can analyze the composition property of the propagator (4) in the semiclassical limit, as in the case
of the free particle. We use the stationary phase approximation to evaluate the integral over intermediate
positions, and find a stationary phase point if

d

dxm

mω

2

(
(x2
m + x2

1) cosω(t1 − tm)− 2xmx1)

sinω(t1 − tm)
+

(x2
0 + x2

m) cosω(tm − t0)− 2x0xm)

sinω(tm − t0)

)
= 0 . (8)

This equation is solved by

xm(tm) =
x1 sinω(t0 − tm)− x0 sinω(t1 − tm)

sinω(t0 − t1)
, (9)

which is the position of the harmonic oscillator at time tm with boundary conditions x(t0) = x0 and
x(t1) = x1.
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General case. In the general case an explicit, analytic form for the propagator is not available. To
perform the analysis we introduce the following notation: we denote with St1t0 the action evaluated between
the time t0 and t1, and we explicit in the classical solution the boundary condition xc(t, x0, x1) such that
xc(t0, x0, x1) = x0 and xc(t1, x0, x1) = x1. We then evaluate the propagators in the semiclassical regime (3)
in the right hand side of (4) and obtain

K (x1, t1;x0, t0) ≈
∫

dxm f(x0, xm, x1) exp
i

~
(
Stmt0 [xc(t, x0, xm)] + St1tm [xc(t, xm, x1)]

)
(10)

where we summarized in f(x0, xm, x1) all the prefactors in (3). We can combine the actions into the action
evaluated between the starting and final time t0 and t1

Stmt0 [xc(t, x0, xm)] + St1tm [xc(t, xm, x1)] = St1t0 [Θ(tm − t)xc(t, x0, xm) + Θ(t− tm)xc(t, xm, x1)] , (11)

joining the two classical solutions on the shared point xm at time tm. We know that the classical path
xc(t, x0, x1) is an extremum of the action functional St1t0 [x(t)], and the “piecewise-classical” test functions in
the r.h.s. of (11) correspond to xc(t, x0, x1) precisely when xm = xcm ≡ xc(tm, x0, x1), i.e. xm is equal to the
classical intermediate position xcm. Therefore, xcm is a point of stationary phase for (4). The argument is
readily extended to the case of multiple solutions of the equations of motions, which will result in multiple
intermediate stationary points, see Fig. 1

Figure 1: A graphical representation of (11) in the case of a free particle. The path integral is performed along all
“piecewise-classical” paths joining at the intermediate time tm. The integral is dominated by the stationary phase
point corresponding to the solution of the classical equations of motion, the straight black continuous line in the
picture.

3 Euclidean three dimensional spin foam model

General relativity in three space-time dimensions has no propagating gravitational degrees of freedom. It is
an example of topological BF theory and the spin foam quantization program can be easily implemented.
The theory is still of relevant interest for us since we can use it to address many conceptual issues of spin
foam theory in a simple framework. In this section, we will briefly review the construction of the euclidean
three dimensional topological spin foam model. We refer to [31, 32] for a detailed and complete presentation
of BF theories and their relation to spin foams.

Formally we write the partition function of the three dimensional BF theory (in the first-order formalism)

Z =

∫
D[e]D[ω] exp(i

∫

M
Tr(e ∧ F (ω)) , (12)
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where the manifold M is assumed to be compact and orientable, ω is an SU(2) connection and the triad
field e is a 1-form taking values on the SU(2) algebra. F (ω) is the curvature of the connection ω. We can
perform the functional integration over the triad field e in (12) obtaining the expression

Z =

∫
D[ω]δ(F (ω)) . (13)

The partition function of the theory is the integral over all the flat connections (F (ω) = 0) on M. The
above expression is formal, so to make it concrete we discretize the manifold (M) using a triangulation ∆.
The triangulation ∆ defines an abstract two-complex ∆∗ given by a set of vertices (dual to the tetrahedra
of ∆), edges (dual to triangles of ∆) and faces (dual to segments of ∆). The connection ω is represented by
ge the holonomy along each edge e of ∆∗. The discrete partition function reads

Z(∆) =

∫ ∏

e

dge
∏

f

δ(ge1 . . . gen) , with ei ⊂ f (14)

where dge is the Haar measure over SU(2), δ is the Dirac delta function on SU(2) and the product ge1 . . . gen
is the holonomy around the face f of ∆∗. The delta function constrains the holonomy around each face
to be the identity, this is equivalent to parallel transporting around the face with a flat connection. We
can expand the δ(g) function on the basis of Wigner functions Dj(g) using the Peter-Weyl theorem δ(g) =∑
j(2j + 1)Tr(Dj(g)). The partition function then becomes

Z(∆) =
∑

jf

∫ ∏

e

dge
∏

f

(2jf + 1)Tr(Djf (ge1 . . . gen)) (15)

=
∑

jf

∏

f

(2jf + 1)
∏

v

. (16)

We introduced a graphical notation for representing spin foam amplitudes. Edges are made of strands, each
strand is a representation matrix of SU(2), each box on an edge is an integral over the SU(2) group element
associated to that edge. We re-organized the product over faces as a product over vertices that are connected
to each other following the connectivity of the two-complex ∆∗. The integrals over SU(2) can be performed
exactly and expressed in terms of SU(2) invariants. The resulting spin foam partition function is usually
presented in the following form

Z(∆) =
∑

jf

∏

f

Af
∏

e

Ae
∏

v

Av (17)

where the sum is over all the possible quantum numbers of the product of face amplitudes Af , edge amplitudes
Ae and vertex amplitudes Av. The spin foam model for three dimensional euclidean gravity is given by
trivial edge amplitude Ae = 1, face amplitude equal the the SU(2) irrep dimension Af = 2jf + 1 and vertex
amplitude given by the Wigner {6j} symbol of the six spins entering that vertex

Av =

{
j1 j2 j3
j4 j5 j6

}
=

+

+

––

j1

j2

j3

j4

j5

j6

. (18)

We use the same convention and notation of [33] for the evaluation and definition of SU(2) invariants and
their graphical representation. The orientation of the {6j} symbol needs to be picked carefully and coherently
in the whole amplitude [34] 1

1In [34] the vertex amplitude has a phase for every node with a bulk spin. In our graphical notation this corresponds to
change a sign on that particular {6j} symbol node. We prefer to fix a triangulation and then to glue the tetrahedra in a
coherent way, see Appendix A for an explicit computation.
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The spin foam model we derived above reproduces the transition amplitude between quantum geometries
first proposed in the 60s by Ponzano and Regge [25]. They were motivated by their discovery of the large
spins asymptotic formula of the {6j} symbol. If an euclidean tetrahedron with lengths given by jf + 1/2
exists, namely its squared volume is positive V 2 > 0, then:

Av ∼
1√

12πV
cos(SR(jf ) +

π

4
) , (19)

where SR is the Regge action of the tetrahedron, given by

SR(jf ) =
∑

f

(jf +
1

2
)Θf . (20)

and Θf are the external dihedral angles of the tetrahedron. If such euclidean tetrahedron does not exist,
namely if V 2 < 0, the amplitude is exponentially suppressed.

Regge calculus [35] provides a discretized version of general relativity on a triangulation. Thanks to (19),
the Ponzano-Regge model in the large spin limit shows a clear connection to (discrete three dimensional
euclidean) general relativity and, therefore, can possibly describe a quantum theory of gravity. The derivation
of the model from topological three dimensional BF theory was formulated later [36]. A first numerical check
of formula (19) was put forward in the original paper. However, thanks to the technological progresses of the
last half-century, testing the formula for arbitrary large spins is now accessible to any personal computer,
see Fig. 2.
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Figure 2: Uniform scaling of the Ponzano-Regge vertex amplitude for spins j1 = j2 = j3 = λ and j4 = j5 = j6 = 2λ
for a scaling parameter λ between 500 and 1000. The red diamonds are the values of the {6j} symbol while the blue
dots are the values of the asymptotic formula (19).

A key feature of the Ponzano-Regge model is its formal triangulation independence: the amplitude is
preserved by any Pachner move (a local change of the triangulation that does not modify the topology) up
to a divergent overall factor. We can understand this invariance as the discrete equivalent of diffeomorphism
invariance of the classical theory. The divergences can be explained as a residual action of the diffeomorphisms
group acting on the triangulation [37]. They can be regularized with an appropriate gauge fixing procedure
of by trading the SU(2) group for its quantum counterpart. The model obtained in this way is the so-
called Turaev-Viro model[38] and is usually interpreted as a three-dimensional quantum gravity model with
a non-vanishing cosmological constant.

4 The ∆3 transition amplitude

In this paper, we focus on the ∆3 triangulation formed by three tetrahedra sharing a common segment. In
Figure 3 we represent the corresponding dual 2-complex. It consists of three vertices, one bulk face, and
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nine boundary faces. This triangulation is the simplest one with a single bulk face.
Six triangles joined by all their sides form the boundary of the triangulation. Therefore, the boundary

graph consists of six 3-valent nodes joined by all their links. The nine links, colored with spins j1, . . . , j9,
are dual to segments of the triangulation. We denote with x the spin associated with the bulk face.

x

Figure 3: Left: The 2-complex dual to the ∆3 triangulation. We highlighted in red the internal face. Right: Spin
foam diagram of the transition amplitude associated to the ∆3 triangulation. We picked a conventional orientation
for the faces and we denoted as boxes the integrals over the SU(2) group.

Following the prescriptions given in Section 3 we can write the ∆3 transition amplitude for the Ponzano-
Regge model

W∆3
(jf ) = (−1)χ

∑

x

(−1)x(2x+ 1)

{
j5 j8 x
j9 j6 j1

}{
j9 j6 x
j4 j7 j2

}{
j4 j7 x
j8 j5 j3

}
(21)

where χ =
∑9
f=1 jf is a consequence of the convention we used for the boundary data. We report a detailed

derivation of (21) in Appendix A. Because of triangular inequalities the summation over the bulk spin is
bounded by xmin = Max {|j4 − j7|, |j5 − j8|, |j6 − j9|} and xmax = Min {j4 + j7, j5 + j8, j6 + j9}. 2

5 Numerical analysis

Is the summation over the bulk spin x (21) dominated by some specific value of x? The question is similar
to the one we asked in Section 2 for a one-dimensional quantum mechanical system. However, since we are
interested in finding a technique applicable to any spin foam model, where analytical computation is, in
general, not possible or challenging, we resort to numerical methods.

The evaluation of the amplitudes presented in this paper is performed using a C code and is based on
wigxjpf, a high-performance library to efficiently compute and store {6j} symbols with very high spins
[27]. Computations of the amplitudes take from seconds to minutes depending on the order of magnitude of
the spins. It is also interesting to point out that some numerical computations were already present in the
original paper by Ponzano and Regge.

In this work we develop a technique to determine if any bulk spin dominate the ∆3 transition amplitude
(21) with very large boundary spins jf . We study the terms w∆3(jf , x) of the summation (21):

w∆3(jf , x) = (−1)x(2x+ 1)

{
j5 j8 x
j9 j6 j1

}{
j9 j6 x
j4 j7 j2

}{
j4 j7 x
j8 j5 j3

}
. (22)

We start by plotting w∆3(jf , x) for all the admitted values of the bulk spin x in Figure 4. By visual inspection,
we observe some interesting features. The function is highly oscillating, therefore we expect cancellations

2Formula 21 can be manipulated into the reducible {9j} symbol as shown at page 466 of [33]. The irreducible {9j} symbol
has a different spin connectivity and a different geometrical interpretation, see [39].
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to play a crucial role. Moreover, starting from the center and going towards larger or smaller spins, the
function seems to increase in average absolute value until two particular values of x. Beyond those values,
the function becomes exponentially small. These two particular points correspond to the last set of (large)
spins in the classically allowed region of all the {6j} symbols, see [39] for more details. After those points
the spins of at least one of the {6j} symbols is classically forbidden3 and therefore we have an exponential
suppression of w∆3 .
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Figure 4: Discrete plot of the function w∆3 as a function of the bulk spin x for the boundary spins j1 = j2 = j3 =
j7 = j8 = j9 = λ and j4 = j5 = j6 = 2λ with λ = 1700. We highlight with red vertical lines the position of the
stationary phase points.

The stationary phase approximation is an essential technique to evaluate integrals of rapidly oscillating
functions. Given a one dimensional integral

I =

∫
dx g(x)eiλf(x) , (23)

we can approximate it with a sum of contributions from points where the derivative of the oscillatory phase
f vanish, i.e. stationary phase points

I =
∑

y

√
2π

λ|f ′′(y)|g(y) + o(λ−1/2) , where f ′(y) = 0 . (24)

At the leading order, the result of the integration does not depend on the specific form of the integration
domain, as long as it contain the same stationary phase points

I =
∑

y

∫

Iy

dx g(x)eiλf(x) + o(λ−1/2) (25)

where Iy is a neighborhood of the stationary phase point y.

Inspired by the stationary phase analysis for one-dimensional integrals, we look for points with similar
properties in the discrete. First, we look at the partial sum

Pw(jf , x) =
x∑

x′=xmin

w∆3
(jf , x

′) , (26)

where we sum over the internal spin up to a variable cutoff x. If there are no stationary phase points of w∆3

in the interval [xmin, x] then we expect the partial sum to vanish due to destructive interference. However,

3It is not possible to construct a euclidean tetrahedron with those spins as lengths.
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increasing x we expect to observe a significant change of the value of the partial sum Pw(jf , x) 6= 0 every
time [xmin, x] includes a new stationary phase point. In Figure 5 we observe this behavior.
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Figure 5: Numerical analysis of the partial sum Pw(jf , x) as a function of the bulk spin x with boundary spins
j1 = j2 = j3 = j7 = j8 = j9 = λ and j4 = j5 = j6 = 2λ with λ = 1700 normalized to the value of the amplitude
W∆3(jf ).

Analogously, we define the running sum

Rw(jf , x) =
∑

Icx

w∆3(jf , x
′) (27)

where the sum is performed on an interval Icx = |x′ − x| < c centered in x and of width 2c. For large jf
we expect the running sum to vanish unless a stationary phase point is included in Icx. Tuning the size of
the interval c sufficiently small we can assume to have at most one critical point in Icx. As a function of the
center of the interval x the running sum Rw(jf , x) is extremal at the stationary phase points.

Estimating the location of the stationary phase points from the running sum is, in general, a difficult
task. We implemented an algorithm that resulted in being reliable in all the cases we analyzed. We pick
three interval sizes c1, c2, c3 uniformly at random. We should not choose the interval size too small, to
allow cancellations between w∆3

(jf , x
′) in Icx, or too large, to retain enough resolution in the center of the

interval x. With this in mind, we decided to limit the possible interval sizes to a reference interval size
c =
√
xmax − xmin/2 (equal to half of the square root of the number of the available data points) plus or

minus 25%. We compute the running sum for all three values of ci, multiply them and consider the absolute
value:

Rw(jf , x) = |Rw(jf , x)1Rw(jf , x)2Rw(jf , x)3| . (28)

This step aims at eliminating as much as possible the dependence from the choice of the interval size.
At the same time, this procedure has the effect of smoothing the oscillations around the peaks. They are an
artifact of the finite interval size, and they interfere destructively when multiple running sums are multiplied
together. We proceed by discarding the points of Rw(jf , x) that in absolute value are smaller then the 0.1%

of the of the absolute maximum. At this step, we use Mathematica’s statistical tools to analyze Rw(jf , x)
and extract the positions of the peaks. We iterate this procedure ten times (with different random choices of
interval sizes ci each time) and compute the average and standard deviation of the resulting peak position
estimates. The Mathematica notebooks used to estimates the locations of the stationary phase points in all
the amplitudes analyzed in this paper are publicly available [28].

Given a spin foam amplitude with one bulk face, we summarize the algorithm we propose to find the
stationary phase points in the bulk sum in the following
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Figure 6: The running sum Rw(jf , x) as a function of the bulk spin x with boundary spins j1 = j2 = j3 = j7 = j8 =
j9 = λ and j4 = j5 = j6 = 2λ with λ = 1700 normalized to the value of the amplitude W∆3(jf ). With highlight the
stationary phase points detected by our numerical method (29) with two red lines. We used the reference interval size
equal to half the square root of the number of data points.

Algorithm 1 Numerical algorithm to estimate the stationary phase points in spin foam amplitudes.

1: Choose a set of boundary spins and compute all the terms of the sum over the bulk spin x
2: repeat the peak position estimate
3: Compute a reference interval size c =

√
xmax − xmin/2

4: Select three interval sizes ci uniformly at random in [0.75, 1.25]c
5: Compute the running sums with interval size ci and multiply them together
6: Take the absolute value and obtain Rw(jf , x)

7: Set a threshold (e.g. 0.1% of the largest peak) and ignore smaller values of Rw(jf , x)

8: Use a peak finding algorithm to determine the peaks of Rw(jf , x)
9: until 10 times

10: Compute the mean and the standard deviation of the peaks for different interval sizes
11: They estimate the stationary phase points of the amplitude and their errors

The procedure is completely general and can be applied for any choice of boundary spins jf . As a
concrete example, we analyzed the amplitude (21) with a specific choice of boundary spins. We choose high
spins because we expect the stationary phase points to be fairly evident, the stationary phase approximation
being an asymptotic approximation. We do not choose the case with all equal spins since one stationary
phase point will be located at x = 0, thus making the analysis confusing. A minimal variation from the
equal-spin case is given by j1 = j2 = j3 = j7 = j8 = j9 = λ and j4 = j5 = j6 = 2λ with a scale factor fixed
at λ = 1700. Applying the algorithm 1 described in this section we can estimate the position of the two
stationary phase points

x1 = 1866± 3 x2 = 4644± 3 . (29)

We compare them with their analytic values in the next section. To illustrate the result of our algorithms
we superimpose the values of the stationary phase points (29) to the running sum in Figure 6.

In this section, we performed computations with a huge scale factor of λ = 1700. While this is ideal for
observing the stationary phase points cleanly, the same regime is out of reach for the SL(2,C) EPRL model
and the technical tools available to us. At very low boundary spins all bulk spins are important to evaluate
the amplitude. However, the presence of stationary phase points in the partial sum is evident already at
spins of order ∼ 30. We repeat the calculation for a scale factor λ = 30, 40, 50, 60 and we report it in Figure
7 together with the position of the two saddle points obtained with our numerical analysis in Table 30. From
the final value of the partial sum that can be read off these four snapshots at different scale factors, one can
also spot the oscillation of the amplitude.
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This result is significant. In analogy to the results on a single vertex [40] we show that the semiclassical
regime is reached at relative low spins that we can explore numerically.
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Figure 7: Partial sum Pw(jf , x) as a function of the bulk spin x with boundary spins j1 = j2 = j3 = j7 = j8 = j9 = λ
and j4 = j5 = j6 = 2λ and scale factors λ = 30, 40, 50, 60. Notice the change of value of the partial sum in
correspondence of the two stationary phase points obtained with our algorithm. It is evident also for these low values
of the scaling parameter.

Using our algorithm, we obtain the following estimates for the position of the stationary phase points at
low spins. We compare them with their analytic counterpart in the next section.

λ = 30 : x1 =34± 3 x2 =82± 1 (30)

λ = 40 : x1 =45± 2 x2 =109± 1

λ = 50 : x1 =57± 2 x2 =137± 1

λ = 60 : x1 =67± 2 x2 =164± 1

The numerical analysis we proposed in this section is adapted to spin foam amplitudes with one bulk
face like (21). Our algorithm can be extended to spin foam amplitudes with multiple bulk faces. Instead of
describing the general strategy let us consider the example of an amplitude with two internal faces

W∆(jf ) =
∑

x,y

w∆(jf , x, y) . (31)

First we apply our analysis to

wx∆(jf , x) =
∑

y

w∆(jf , x, y) , (32)

and find the x coordinate of the stationary phase point candidates. Say, for example, that we find two of
such points x1 and x2. We now repeat our analysis to

wy∆(jf , y) =
∑

x

w∆(jf , x, y) , (33)
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and find the y coordinate of the stationary phase point candidates. At this stage we have four different
stationary phase point candidates (x1, y1), (x1, y2), (x2, y1), (x2, y2). If, for example, (x1, y1) is a stationary
phase point but (x2, y1) is not, our algorithm applied to

wx′∆(jf , x) =
∑

Icxy1

w∆(jf , x, y) , (34)

for some interval size cx will result in a peak detection only for x1 but not x2. Analogously, if, for example,
(x2, y2) is a stationary phase point but (x1, y2) is not, our algorithm applied to

wx′′∆(jf , x) =
∑

I
cy
y2

w∆(jf , x, y) , (35)

for some interval size cy will result in a peak detection only for x2 but not x1. This procedure can be iterated
for any number of bulk faces (#faces) and any number of stationary phase points (#ssp). However, it could
be resources intensive to find the true stationary phase points among the (#ssp)#faces candidates.

Our numerical procedure has two significant advantages that will prove to be crucial in the analysis of
more complicated spin foam models. The terms of the summations need to be computed only once; the rest
of the algorithm consists only in performing partial summations. Moreover, the peak detection algorithm is
applied only on one-dimensional summations, therefore, we do not need to adapt it case by case.

6 Geometrical interpretation

The two stationary phase points we identified with our numerical analysis have an interesting geometric
interpretation. For large spins jf � 1 we can also assume that x is large 4. Therefore, in the expression for
the amplitude (21), we approximate each vertex amplitude with its asymptotic expression (19) in terms of
the Regge action of the classical tetrahedron with edge lengths equal to spins, as already shown in [25]. If
we denote the three vertex amplitudes as A1, A2, A3 and the corresponding Regge actions as S1, S2, S3 the
summand (22) reads:

w∆3
(x) = (−1)x(2x+ 1)A1(x)A2(x)A3(x) ∝ (−1)x cos

(
S1(x) +

π

4

)
cos
(
S2(x) +

π

4

)
cos
(
S3(x) +

π

4

)
,

(36)
where we left implicit the dependence on the boundary spins jf and we isolated the oscillatory part of
the function summarizing the amplitudes as Af . Furthermore, motivated by the numerical analysis in the
previous section, we assume that the bulk spins x can assume continuous values to perform a stationary
phase point computation.

If we rewrite the cosines as a sum of conjugated exponentials, we obtain for the summand

w∆3
(x) ∝ eiπx

(
ei (S1(x)+S2(x)+S3(x)+ 3

4π) + ei (S1(x)+S2(x)−S3(x)+π
4 )

+ ei (S1(x)−S2(x)+S3(x)+π
4 ) + ei (−S1(x)+S2(x)+S3(x)+π

4 ) + c.c.

)
, (37)

where we used an exponential notation for the phase (−1)x = eiπx. By linearity, we can search for stationary
phase points of each of the eight terms in (37) independently and sum the results. The stationary phase
equation for the first term is the following

d

dx

(
πx+ S1(x) + S2(x) + S3(x)

)
= 0 , (38)

and analog equations hold for all the other seven terms of (37) that differ for different signs in front of the
Regge actions. The derivative of the actions Si(x) with respect to one spin (edge length) has been computed

4Under a uniform rescaling of the spins jf → λjf also the bounds of the summation rescale in the same way xmin → λxmin

and xmax → λxmax.
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in [35] and reads
dSi
dx

=
d

dx

∑

f

jfΘi
f (x) = Θi

x +
∑

f

jf
d

dx
Θi
f (x) = Θi

x , (39)

where Θi
f is the external dihedral angle in the tetrahedron i relative to the edge f . The total variation of the

dihedral angles with respect to the edge lengths is zero [35, 25]. Therefore, the stationary phase equation
for the first term of (37) is

π + Θ1
x + Θ2

x + Θ3
x = 0 . (40)

and the other seven are similar. The presence of terms with all the possible signs was discussed in [25] and
is associated with all the possible orientations of the tetrahedra. Moreover, in [25] it was also proved that
in general there are at most two solutions to this set of stationary phase equations.

Geometrically, the two values of x that solve (40) correspond to the only two geometries made of three
tetrahedra glued together following the connectivity of ∆3 that are embeddable in flat euclidean three
dimensional space. Notice that (40) is equivalent to require the deficit angle around the bulk edge to vanish.
We interpret equation (40) as the one responsible, in the large spin limit, for selecting flat classical geometries
compatible with the boundary data.

In the case of the boundary data used in our numerical study the only relevant stationary phase equation
is (40). Its two solutions are

x1 = λ
1

3
(
√

33−
√

6) ≈ 1867.2 x2 = λ
1

3
(
√

33 +
√

6) ≈ 4643.3 (41)

and correspond to the two geometries rendered in Figure 8 and 9.
We can compare them with their numerical estimates (29) and notice they are compatible within the

allowed numerical uncertainty.

Figure 8: Left: Classical flat geometry corresponding to the solution x1 of the stationary phase equations. The three
tetrahedra are glued together and share an internal segment (in red). Right: The same geometry can be interpreted
as two tetrahedra sharing a triangle.
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Figure 9: Left: Classical flat geometry corresponding to the solution x2 of the stationary phase equations. The three
tetrahedra are glued together and share an internal segment (in red). Right: The same geometry can be interpreted
as the subtraction of two tetrahedra sharing a triangle.

Using the invariance under change of triangulation of the Ponzano-Regge model, we can perform exactly
the summation in (21):

W∆3
(jf ) =

{
j1 j2 j3
j4 j5 j6

}{
j1 j2 j3
j7 j8 j9

}
. (42)

This formula is also known as Biedenharn-Elliott identity. We apply the asymptotic formula (19) to the
right-hand side of (42) in the large spin limit. The emerging three dimensional geometry is a combination
of two tetrahedra, one per {6j} symbol, sharing a face:

W∆3
(jf ) ≈ AuAd cos

(
Su +

π

4

)
cos
(
Sd +

π

4

)
=
AuAd

2
cos
(
Su + Sd +

π

2

)
+
AuAd

2
cos (Su − Sd) (43)

where in the last equality we used a trigonometric identity. The two terms can be interpreted as two different
geometries. The Regge actions of the two tetrahedra Su and Sd are summed in the first term S+ = Su +Sd,
reproducing the Regge action of the first geometry in Figure 8. The second term contains the difference
S− = Su − Sd, the Regge action of the second geometry in Figure 9. The minus sign is crucial to reproduce
the correct dihedral angles around the edges shared by the two tetrahedra.

Already for small values of the scale parameter λ = 30, 40, 50, 60 we observe good agreement between the
analytical calculation of the stationary phase points (41) with our numerical estimate (30). We report both
of them in the table below for the convenience of the reader. This is a strong indication that our method is
robust even at low spins.

numerical analytic
x1 x2 x1 x2

λ = 30 : 34± 3 82± 1 32.9 81.9
λ = 40 : 45± 2 109± 1 43.9 109.2
λ = 50 : 57± 2 137± 1 54.9 136.6
λ = 60 : 67± 2 164± 1 65.9 163.9

7 Disentangling classical geometries

From (43) we deduced that the two classical geometries emerging from the stationary phase analysis of the
bulk summation of (21) could also be extracted from a uniform rescaling of the boundary spins. Numerically,
we can compare the asymptotic formula (43) with the amplitude (21) and find perfect agreement, see Fig.
10.
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Figure 10: Left: The asymptotic limit of the ∆3 amplitude for the considered isosceles configuration with spins
equal to λ and 2λ. We use red diamonds to represent the numerical evaluation of the amplitude and blue dots
to represent the analytical asymptotic expression given by 43. Right: The relative error ε(λ) = |Wnum

∆3
(λjf ) −

W asym
∆3

(λjf )|/|W asym
∆3

(λjf )| between the numerical evaluation of the amplitude and the analytic asymptotic formula.

Is it possible to isolate different oscillatory contributions in the large spin regime? A consequence of the
stationary phase analysis discussed in Section 5 is the following. If we limit the sum over the bulk spin in
an interval centered around one of the stationary phase points corresponding to a classical geometry (cl) we
obtain a function that asymptotically oscillate with a frequency equal to its Regge action. We define

Wcl(jf ) =
∑

|x−xcl|<δ
(−1)x(2x+ 1)

{
j5 j8 x
j9 j6 j1

}{
j9 j6 x
j4 j7 j2

}{
j4 j7 x
j8 j5 j3

}
≈ Acl cos (Scl + φcl)

(44)
where δ will depend on both the boundary spins and the scaling parameter. In the limit of infinite scaling
parameter, the dimension of the interval can be set as small as possible. However, for a finite scaling
parameter, we need to choose δ empirically.

We numerically evaluated (44) with boundary spins j1 = j2 = j3 = j7 = j8 = j9 = λ and j4 = j5 = j6 =
2λ and all scale factors between λ = 1000 and λ = 1100. We fix the parameter δ = 4

√
xmax − xmin and we

consider both xcl1 = λ(
√

33 +
√

6)/3 and xcl2 = λ(
√

33 −
√

6)/3. We report the comparison between the
analytic formula (44) with the actions determined in (43) and the numeric evaluation in Figure 11.

Figure 11: The asymptotic limit Wcl with the scale parameter λ between 1000 and 1100. The red diamonds are the
numerical data and the blue dots are the analytical formula. Left: We show the good agreement between the asymptotic
formula (44) for the first classical geometry defined by xcl1 and the numerical data obtained while summing around
it. Right: We show the good agreement between the asymptotic formula (44) for the second classical geometry defined
by xcl2 and the numerical data obtained while summing around it.

8 More than three vertices

The numerical analysis developed in Section 5 apply directly to any spin foam amplitude with one bulk face.
In this Section we will consider the triangulation ∆4. This consists of four tetrahedra sharing a common
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segment. The dual two-skeleton consists of four vertices, one bulk face, and twelve boundary faces. We
associate to each boundary face a spin jf with f = 1, . . . , 12 and we denote the bulk face as x, see Fig. 12.

x
x

Figure 12: Left: The 2-complex dual to the ∆4 triangulation. We highlighted in red the internal face. Right: Spin
foam diagram of the transition amplitude associated to the ∆4 triangulation.

The associated transition amplitude in the Ponzano-Regge model is

W∆4(jf ) = (−1)χ
∑

x

(−1)x(2x+ 1)

{
j5 j8 x
j9 j6 j1

}{
j9 j6 x
j4 j7 j2

}{
j4 j7 x
j11 j10 j3

}{
j10 j11 x
j8 j5 j12

}

(45)

where χ =
∑12
f=1 jf is a consequence of the convention we used for the boundary data. Again, because of

triangular inequalities, the summation over the bulk spin is bounded by
xmin = Max {|j4 − j7|, |j5 − j8|, |j6 − j9|, |j10 − j11|} and xmax = Min {j4 + j7, j5 + j8, j6 + j9, j10 + j11}.

We report the result of our analysis in Figure 13 and 14 where we considered j1 = j2 = j3 = j7 = j8 =
j9 = j11 = j12 = λ and j4 = j5 = j6 = j10 = 2λ with a scale factor fixed at λ = 1750. We can clearly see the
presence of four stationary phase points. We estimate their position using the algorithm (1) and we obtain

x1 = 2036± 4 x2 = 4509± 11 x3 = 1896± 6 x4 = 4841± 5 (46)
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Figure 13: Numerical analysis of the normalized partial sum Pw as a function of the bulk spin x with λ = 1750. We
highlight the stationary phase points xi (46) with red lines.
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Figure 14: Numerical analysis of the normalized running sum Rw as a function of the bulk spin x with λ = 1750. We
highlight the stationary phase points xi (46) with red lines.

To interpret them geometrically, we perform an analytical stationary point analysis as in Section 6. The
first two solutions are

x1 =

√
4−
√

7λ ≈ 2036.5 x2 =

√
4 +
√

7λ ≈ 4511.4 (47)

and correspond to the two possible flat embedding of four tetrahedra compatible with the given boundary
lengths in complete analogy with the ∆3, see Figure 15 for a three dimensional rendering. The other two
x3,4 =

x3 =

√
3 +
√

2−
√

2
(

1 + 3
√

2
)
λ ≈ 1897.8 x4 =

√
3 +
√

2 +

√
2
(

1 + 3
√

2
)
λ ≈ 4841.0 (48)

correspond to a geometry where two tetrahedra cancel each other while the other two have a flat embedding.
The four analytical values for xi are compatible with the numerical estimates (46), see Fig. 15.

Figure 15: The classical flat geometries corresponding to the solution x1, x2 of the stationary phase equations
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Figure 16: The classical flat geometries corresponding to the solution x3, x4 of the stationary phase equations

9 Phase deformation and curvature

The flatness condition (40) is a consequence of the phase choice (−1)x = exp iπx in (21). A simple, yet
intriguing, variation consists in modifying this phase by replacing the angle π with an arbitrary real angle
απ with 0 < α ≤ 2.

W c
∆3

(jf ) = (−1)χ
∑

x

eiαπx(2x+ 1)

{
j5 j8 x
j9 j6 j1

}{
j9 j6 x
j4 j7 j2

}{
j4 j7 x
j8 j5 j3

}
(49)

In previous case, α = 1, the summation over the bulk spin x is dominated by flat geometries and the
stationary phase equations (40) can be interpreted as imposing the sum of the dihedral angles around the
bulk hinge of the three tetrahedra to zero. The modification of the phase introduce curvature á la Regge:
the bulk summation is dominated by geometries with a deficit angle δ = (α− 1)π.

This modification of the amplitude breaks the triangulation invariance of the theory and suggests that
we are introducing local degrees of freedom compatible with the presence of curvature.

In general, the new amplitude (49) is a complex number and we look at its real (or imaginary) part. If
one insists on working with real amplitudes they can replace the phase exp iαπx with cosαπx (or sinαπx).
The stationary phase points of the real part and the imaginary part are the same since they differ only by
a phase shift of π/2, see Fig. 17.

Our numerical analysis shows the presence of more then two stationary points, for example in Figure 18
we find six stationary phase points corresponding to the values

x1 = 898± 4 x2 = 975± 4 x3 = 1149± 3

x4 = 2852± 3 x5 = 3374± 4 x6 = 3655± 3

The modified analytical stationary phase equations now depends on α,

απ ±Θ1
x ±Θ2

x ±Θ3
x = 0 mod 2π . (50)

The phase deformation lifts some “degeneracies” that are implicit in the original flatness condition (40). In
particular, the argument that there is only a unique choice of signs in (37) that admits two real solutions
does not apply in this case, similarly to what happens for the ∆4 amplitude (45). The analytic solution to
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the deformed flatness condition (50) are

x1 = λ

√
9

4
+

1√
5
−
√

1

10

(
37 + 9

√
5
)
≈ 898

x2 = λ
1

2

√√√√
13−

2
(

2 +
√

32 + 46 sin
(
π
30

)
− 18 cos

(
π
15

))

1 + sin
(
π
30

) ≈ 973

x3 = λ

√
9

4
− 1√

5
−
√

1

10

(
37− 9

√
5
)
≈ 1150

x4 = λ

√
9

4
− 1√

5
+

√
1

10

(
37− 9

√
5
)
≈ 2853

x5 = λ
1

2

√√√√
13 +

2
(√

32 + 46 sin
(
π
30

)
− 18 cos

(
π
15

)
− 2
)

1 + sin
(
π
30

) ≈ 3370

x6 = λ

√
9

4
+

1√
5

+

√
1

10

(
37 + 9

√
5
)
≈ 3654

that are compatible with our numerical estimates. In this case, in contrast with the ∆3 case, the six stationary
phase points are solutions of different equations. Recovering all of them is a good test for the solidity of our
analysis. These stationary phase points may or may not correspond to geometrical triangulations that we
can interpret as Regge-curved along the common hinge.

Figure 17: Real part of the normalized partial sum P c
w as a function of the bulk spin x for the boundary spins

j1 = j2 = j3 = j7 = j8 = j9 = λ and j4 = j5 = j6 = 3
2
λ with λ = 1620 and deformation parameter α = 0.6.

We observe six different stationary phase points corresponding to the solutions of the three possible equations for the
deficit angle.
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Figure 18: Absolute value of the normalized running sum Rc
w as a function of the bulk spin x for the boundary spins

j1 = j2 = j3 = j7 = j8 = j9 = λ and j4 = j5 = j6 = 3
2
λ with λ = 1620 and deformation parameter α = 0.6.

We observe six different stationary phase points corresponding to the solutions of the three possible equations for the
deficit angle.

We also found cases with four stationary phase points which correspond to two ∆3 geometries with
non-null positive deficit angle and non-null negative deficit angle. We can naively interpret them as the
superposition of two (Regge-)curved geometries, one positively curved and one negatively curved, with
curvature around the bulk hinge. The general nature of the geometries emerging from the analysis is not
clear.

Interestingly, a similar modification of the Ponzano-Regge model has been previously made in [41]. They
proposed to insert a character of a specific group element in the amplitude and they interpret it as the
presence of a massive spinning particle that introduce a conical singularity dual to the face.

10 Conclusion and Outlook

We presented a numerical method to study the semiclassical limit of spin foam amplitudes with many
vertices. In the path integral formulation of quantum mechanics, the composition of two propagators is
dominated by classical trajectories. Similarly, the summation over bulk spins of a spin foam transition
amplitude is dominated by stationary phase points. We estimate the location of the stationary phase points
analyzing the running sum (27) with different interval sizes. The stationary phase points correspond to
classical geometries that are solutions of the equations of motion of a classical underlying theory. We test
our method on the ∆3 transition amplitude, the simplest amplitude with three vertices and one bulk face,
within the Ponzano-Regge model.

The two emergent classical geometries are three tetrahedra glued together along a common segment.In
this case we can compute the stationary phase points analytically and confront them with our numerical
estimates and we find amazing agreement. This confirm the interpretation of the Ponzano-Regge model as a
spin foam model for three dimensional euclidean quantum gravity. The stationary phase points in the sums
over the bulk faces corresponds to the solutions of the classical Regge equations of motion.

Our numerical investigation can be extended to spin foam amplitudes with multiple bulk faces analyzing
one face at a time while summing over the others.

Our method has more interesting applications to more complex spin foam models, as the EPRL model. In
these cases, analytical computations to determine the stationary phase points for multi-vertices amplitudes
are not present in the literature. This absence led to various arguments [21, 22, 23] claiming that the
semiclassical limit of the EPRL model is dominated only by flat geometries, hence failing to reproduce
General Relativity in this limit. In the euclidean SO(4) formulation of the theory preliminary analytical [42]
and numerical [43] studies suggest that this is not the case.

Almost all the semiclassical results are based on the uniform rescaling of the amplitude. This approach
is very costly numerically [15]. The method hereby proposed offers a viable alternative and only requires
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to compute an amplitude at fixed rescaling parameter. Moreover, it provides a clear signature of the semi-
classical geometries where instead extracting the Regge action from the fast oscillating data is bound to
fail.

We extended our analysis treating also a four vertices amplitude and we proposed a simple modification
of the Ponzano-Regge model to include local curvature. In both cases our numerical analysis is able to
estimate with great accuracy the location of the saddle points that we can compute analytically. This is an
indication that the algorithm we propose is robust.

The next step is to apply our method to a four dimensional BF spin foam model and to the lorentzian
EPRL model. In particular, we want to study a four dimensional triangulation and assign coherent boundary
data compatible with a curved bulk geometry. If stationary phase points corresponding to curved geometries
are present in the EPRL case we would conclude that the model is not flat.
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Appendices

A Derivation of ∆3 spinfoam amplitude

In this section, we derive the explicit form of the amplitude (21). Using the graphical notation we briefly
introduced in (15), see [33] for more details, we start from the amplitude:

W∆3(jf ) = (−1)2j6(−1)j1+j2+j3+j4+j6+j7+j9 (51)

The sign next to each box indicates the order in which the spins has to be read into the (3jm) symbol. +
means anticlockwise order while − clockwise order. The integrals over SU(2) can be performed exactly in
terms of invariants, in particular {6j} symbols and (3jm) symbols

W∆3
(jf ) = (−1)2j6(−1)j1+j2+j3+j4+j6+j7+j9

∑

x

(2x+ 1) (52)

The twisted theta graph is the contraction over all the magnetic indices of a (3jm) symbol with spins
(j5, j8, x) and a (3jm) symbol with spins (j8, j5, x). Notice the permutation of the first two columns. The
evaluation of the twisted theta graph results in the phase (−1)j8+j5+3x. We denote with χ = j1 + j2 + j3 +
j4 + j5 + j6 + j7 + j8 + j9. Using the definition of the {6j} symbol (18) and inverting some arrows where
needed at the cost of a (−1)jf phase [33] we obtain

W∆3
(jf ) = (−1)χ

∑

x

(−1)x(2x+ 1)

{
j5 j8 x
j9 j6 j1

}{
j9 j6 x
j4 j7 j2

}{
j4 j7 x
j8 j5 j3

}
. (53)

The global phase of the amplitude depends on the conventions used and on the choice of the boundary
configuration.
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Abstract

In this paper we apply a recently proposed numerical algorithm for finding stationary phase points
in spin foam amplitudes. We study a spin foam amplitude with three vertices and a bulk face in 4d BF
theory. We fix the boundary coherent states to three possible triangulations, one with zero deficit angle
on the bulk face and two with non-zero deficit angle. We compute the amplitude numerically and we
find a stationary phase point already at low spins in all the three cases. We comment on how this result
contrasts with the claims of flatness problem in spin foam theories. We point out where these arguments
may be misleading and we propose further computations to definitively answer the question.

1 Introduction and Motivations

The EPRL-FK spin foam theory [1, 2] is an attempt to define the dynamics of loop quantum gravity. It
provides a regularized, background-independent and Lorentz covariant quantum gravity path integral with
the definition of a partition function on a triangulation. The theory assigns transition amplitudes to spin
network states on the boundary of a triangulation.

Recovering General Relativity (or at least a discrete version of it) in the semiclassical limit is a funda-
mental test for spin foam theories. The large spin limit of the EPRL vertex amplitude has been largely
explored in both euclidean [3] and lorentzian versions [4]. Remarkably, under a homogeneous rescaling of
all the spins, the single vertex amplitude with coherent boundary data contains the Regge action, a discrete
formulation of General Relativity.

However, in the case of extended triangulations, the semiclassical limit of the theory is not completely
understood. In particular, the question of what semiclassical geometries dominate the summations over bulk
degrees of freedom is still open.

Different calculations suggest that the summation over bulk degrees of freedom is dominated by flat
geometries1. This observation, often called flatness problem, has been mentioned by Freidel and Conrady
[5], Bonzom [6], and Han [7]. Hellmann and Kamiński [8] proposed a different analysis, based on the
calculation of the wavefront set of the spin foam partition function and a geometrical interpretation of its
variables, and they found a similar problem.

A more refined stationary phase analysis of the euclidean EPRL model has been carried out by Oliveira
in [9]. They include all the constraints on the boundary data necessary to obtain a non-exponentially
suppressed vertex amplitude. The initial claim that the flatness problem is not present in that setting has
been recently questioned by Kaminski and Engle [10]. It has been suggested that taking only large spins is
not the right way to access the semiclassical regime of the theory [11, 12, 13].

The importance of numerical methods for the investigation of spin foam theories grew considerably in
recent years. The software library sl2cfoam is a C based high-performance library and is the foundation
for the numerical computation of general spinfoam amplitudes, both in 3 and 4 dimensions, with topological

∗dona@cpt.univ-mrs.fr
†gozzini@cpt.univ-mrs.fr
‡sarno@cpt.univ-mrs.fr
1Precisely, only geometries with a deficit angles around bulk faces multiple of 4π/γ.
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BF or lorentzian EPRL models [14]. The library is based on the factorization [15] and was used to explore
the large spin limit of both models [16, 17].

While still at the early stages, the evaluation of many-vertices spinfoam amplitudes is possible. In a recent
work [18], we have developed an algorithm to determine the existence and estimate the position of stationary
phase points in the summations over the spins of internal faces. We tested its effectiveness applying it to BF
spin foam theory in 3D (the Ponzano-Regge model), where the stationary phase points are directly connected
to the solution of the equations of motion of euclidean Regge calculus. We adapt the algorithm to the BF
spin foam theory in 4D. This topological model is the starting point for the construction of physical spin foam
models like the EPRL model. For this reason, there are many similarities between the two. For example, the
boundary states of the transition amplitudes are the same, as well as the semiclassical geometries emerging
from the single vertex asymptotics. What geometries dominate the BF transition amplitudes in the large
spin limit is an interesting question on its own.

In this work, we focus on the Δ3 triangulation, formed by three 4-simplices sharing a common triangle.
It is the simplest triangulation with many vertices and a bulk face, and it is the standard example used in
the flatness problem literature [19, 9, 8].

Solutions of the classical equation of motion dominate the summation over the bulk degrees of freedom in
the large spin limit. We expect them to manifest through the presence of stationary phase points. Note that
in classical Regge calculus, the Δ3 triangulation is too simple to give non-trivial dynamics since boundary
conditions fix all the lengths. Hence, this triangulation is not a good example to probe the large spin
limit of the EPRL model if we suppose the classical underlying theory to be (area-angle) Regge Calculus.
Nevertheless, the study of this amplitude can teach us some valuable lessons.

We find an unexpected result. We construct three examples of the 4D euclidean Regge Δ3 triangulation.
One is the flat triangulation characterized by a zero deficit angle around the shared triangle. The other two
are curved triangulations. We compute the coherent amplitude associated with each triangulation, and we
look for stationary phase points in the internal spin, dual to the shared triangle. We find the presence of a
stationary phase point in all the cases. We estimate its value, and we find it compatible with the area of the
dual triangle of the prescribed triangulation.

If we apply arguments similar to the ones claiming flatness of the EPRL model to BF theory, we would
infer that curved triangulations should be suppressed in the sum. Therefore we would not expect to find
any stationary phase point in this case. This shows tension between our results and the arguments declaring
that the EPRL model is flat.

The paper is organized as follows. In Section 2 we review the spin foam formulation of BF theory and
the Δ3 transition amplitude. Section 3 describes the Regge triangulations we use to construct the boundary
data of the amplitude. In Section 4 we illustrate the algorithm we use to search for stationary phase points
and its application. We review the main arguments of the flatness problem of the EPRL model applied to
the topological BF model in Section 5. We conclude with a summary of our numerical results and their
implications.

All the computations are performed on the CPT servers in Marseille. Each machine is equipped with a 32
cores CPU Intel(R) Xeon(R) Gold 6130 with a base frequency of 2.10 GHz and 196 GB of RAM. In the public
repository [20] we publish the C code used to calculate the transition amplitudes along with the Wolfram
Mathematica notebooks used to prepare the boundary data and to perform the numerical stationary phase
point analysis.

2 BF theory and the Δ3 transition amplitude

General Relativity in four dimensions can be written as a BF theory with constraints. This is the starting
point in the construction of many spin foam models, as the lorentzian EPRL model. In this paper, we study
the spin foam formulation of the SU(2) BF theory on a four-dimensional manifold. For a detailed overview
of BF theory and its relations with spin foam models, see [21] or [22]. A triangulation Δ of the manifold
is dual to a two-complex Δ� that consists of a set of vertices (dual to the 4-simplices), edges (dual to the
tetrahedra) and faces (dual to the triangles). We assign an SU(2) holonomy ge to each half-edge of the
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triangulation. The partition function of the theory discretized on Δ is given by

Z(Δ) =

� �

e

dge

�

f

δ(ge1
. . . gen

) , with ei ⊂ f , (1)

the product ge1
. . . gen

is the holonomy around the face f , and dge is the Haar measure on SU(2). We
expand the delta function using the Peter-Weyl theorem as δ(g) =

�
j(2j + 1)Tr(Dj(g)), where Dj(g) are

the Wigner matrices of the SU(2) representation of spin j. We get

Z(Δ) =
�

jf

� �

e

dge

�

f

(2jf + 1)Tr(Djf (ge1
. . . gen

)) (2)

=
�

jf

�

f

(2jf + 1)
�

v

. (3)

It is useful to introduce a graphical notation for spin foam vertices. Every box represents one integral over
SU(2), each line is an irreducible representation of SU(2), and each edge contains four lines. For more details
on graphical notations see [23, 16]. We reorganized the partition function as a product over the vertices
of Δ� (4-simplices of Δ) and a sum over all the spins. Furthermore, the integrations over SU(2) can be
performed explicitly, introducing a sum per edge over a 4-valent intertwiner space ie. We obtain the familiar
form for the partition function in terms of amplitudes

Z(Δ) =
�

jf ,ie

�

f

Af

�

e

Ae

�

v

Av . (4)

The face amplitude and the edge amplitude are given respectively by the dimensional factors Af = 2jf + 1
and Ae = 2ie + 1. The vertex amplitude Av is given by a {15j} symbol. In this work we use the {15j}
symbols of the first type (see Appendix A for our conventions).

Curiously, the vertex amplitude of this theory with coherent boundary data contains the Regge action of
a 4-simplex in the large spin limit. This connection with discrete gravity has been extensively studied both
analytically [24] and numerically [16], and is limited to a single vertex. The topological nature of the model
is encoded in the delta functions that appear in triangulations with internal faces.

We study the spin foam transition amplitude of the Δ3 triangulation. The 2-complex dual to the Δ3

triangulation is represented in Figure 1. It is the simplest amplitude with 3 vertices, 18 boundary faces and
one internal face. Each vertex shares an edge with the other two and has three boundary edges.

The boundary data consist of coherent states parametrized by 18 spins and 36 unit normals, one spin
and two normals per each strand of the spin foam diagram. We denote with jabc each boundary spin and
with x the internal spin. In the next section, we study the four-dimensional geometry we use to specify
the boundary data; the notation will be clearer then. The spin foam transition amplitude, omitting the
summation over x and the associated face amplitude, is represented using the graphical notation in Figure
1. We refer to (26) in appendix C for the complete picture with all the spin labels and orientations of the
faces.
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x

Figure 1: Left: The 2-complex of the Δ3 triangulation. We highlight in red the bulk face. Right: The Δ3 spin foam
amplitude in graphical notation. We are omitting a summation over the internal spin x and a dimensional factor
2x + 1. The boxes represent integrals over the SU(2) group, and the strands are irreducible representations labeled by
a spin jabc. The empty dots on the boundary represents the SU(2) coherent states.

We perform the SU(2) integrals and obtain the Δ3 spin foam amplitude in terms of {15j} symbols (see
appendix C for more details)

WΔ3
(jf , �nfa) = (−1)χ

�

x

wΔ3
(x, jf , �nfa) (5)

= (−1)χ
�

x

(−1)x(2x + 1)
�

kb

��

b

(−1)kb(2kb + 1)

��

ia

��

a

(2ia + 1)cia(�nfa)

�

×





i1 j345 k1 j145 i2
j235 x j134 j124 j245
j125 k2 j123 i3 j234









i4 j123 k2 j235 i5
j136 x j125 j256 j236
j356 k3 j156 i6 j126





×





i7 j156 k3 j136 i8
j145 x j356 j346 j146
j134 k1 j345 i9 j456





where χ = 2(j123+j234+j124+j134+j456+j156+j346+j356+j235)+j123+j345+j156 is a phase function only
of the boundary spins, ia are the boundary intertwiners, kb are the internal intertwiners and the sum over
the spin x is bounded by triangular inequalities. The complex coefficients cia

(�nfa) are the Livine-Speziale
coherent intertwiners in the recoupling basis, they depend on the normals �nfa and areas of the tetrahedron
a (see appendix B for their definition).

3 The Δ3 geometry

The Δ3 triangulation is formed by three 4-simplices, sharing a common triangle. The boundary of the
triangulation consists of nine tetrahedra and the bulk consists of three tetrahedra all sharing the common
triangle x.
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Figure 2: Left: The geometry of the Δ3 triangulation. The numbered circles correspond to points. Lines correspond
to segments. Each color corresponds to a different 4-simplex. The bulk triangle is highlighted in red. Right: The three
4-simplices are shown separately.

We associate to each boundary tetrahedron a coherent state characterized by 4 spins, the areas of its
faces, and 4 unitary vectors, the outward normals to the faces of the tetrahedron. The triangulation is made
of points, segments, faces and tetrahedra. We use the triangulation representation in Figure 2 as reference.
The boundary spins jabc are labeled by a triple of points a, b, c since they correspond to triangles. We
decide to focus on Regge geometries, fully characterized by their 15 lengths �ab of the segment joining points
a, b. Notice that all the lengths belong to at least one boundary tetrahedron, therefore fixing the boundary
determines the triangulation completely.

For simplicity and easier computability, we restrict our analysis to geometries with a high degree of
symmetry. We require “cylindrical” symmetry forcing the three 4-simplices to be identical. This symmetry
requires the bulk triangle to be equilateral (�13 = �35 = �15) and the bulk tetrahedra to be isosceles, having
an equilateral base and three identical isosceles faces (�12 = �25 = �23 = �16 = �36 = �56 = �34 = �14 = �45).
The remaining three lengths also have to be equal (�26 = �24 = �46).

Furthermore, we require all the areas of the boundary triangles to be the same, and this fixes �13 = �26.
The symmetry reduces the degrees of freedom of the Regge triangulation from 15 to 2, for example, �12
and �13. In terms of the lengths, we can compute all the geometric quantities of the triangulations: areas,
three and four-dimensional volumes and two, three and four-dimensional dihedral angles. It is interesting to
compute the area of the boundary triangles λ and α the 4D dihedral angle around the bulk triangle of one
4-simplex:

λ =
1

4
�13

�
4�212 − �213 , sin2 α =

3

4
�213

12�212 − 7�213

(�213 − 3�212)
2 . (6)

They are independent variables and under a linear rescaling of the lengths λ scales quadratically while α
does not scale. In the following, we identify with λ the scale of the triangulation.

Another interesting geometrical quantity for our analysis is the value of the area of the shared triangle

xg =

√
3

4
�213 = 3

�
6 + sin2 α + 6

�
1 − sin2 α

48 + sin2 α

� 1
2

λ . (7)

For Regge geometries curvature can be expressed in terms of deficit angles associated to triangles shared
between 4-simplices. In the particular class of symmetric triangulations we are considering the deficit angle
associated with the shared triangle is

δ = 2π − 3α . (8)

We parametrize the triangulations in this paper with λ and δ instead of the two lengths. Once the trian-
gulation is specified, we compute all the normals of the boundary tetrahedra to use them in defining the
boundary coherent states.
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In this work we consider the flat triangulation characterized by δ = 0 at various scales λ, a first curved
triangulation characterized by δ ≈ 3.60 at scale λ = 20, and a second curved triangulation characterized by
δ ≈ 2.47 at scale λ = 20. The chosen parameters of the curved triangulations are particularly convenient for
this numerical analysis. We motivate our choice of focusing on a single scale for the curved configurations in
the next section. All the notebooks we used to compute all the geometric data and the boundary normals
for the three triangulations are available in [20].

4 Numerical analysis

The algorithm in [18] is designed to determine the presence and estimate the value of stationary phase
points in summations over spin foam bulk spins. We adapt it to the amplitude in examination that we study
for different choices of boundary data. In this section, we briefly recall features of the algorithm, and we
highlight the differences with the original version. We refer to the original paper for a detailed explanation.

The amplitude (5) involves a sum over the spin x of the internal face and the intertwiners kb of the
three internal edges. For brevity let us omit the dependence on the boundary data jf , �nfa on the summand
wΔ3

(x) ≡ wΔ3
(x, jf , �nfa). First, we compute wΔ3

(x) for each value of the internal spin x using the library
sl2cfoam [14]. We focus on two quantities

Pw(x) =
x�

x� = xmin

wΔ3
(x�) , and Rw(x) =

�

x�∈Ic
x

wΔ3
(x�) , (9)

where Ic
x is an interval centered in x with width 2c. We call them respectively the partial sum and the

running sum. The algorithm is based on the behavior of these two quantities in the presence of stationary
phase points for WΔ3

.
Suppose that x0 is a stationary phase point for WΔ3 . The sum over the internal spin interferes destruc-

tively away from x0 and constructively near x0. The partial sum Pw(x) stays roughly constant away from
x0 and has a sudden “jump” near x0. Similarly, the running sum Rw(x) is close to zero away from x0 and
peaks at x0. The width of the peak depends on the parameter c, the size of the interval that characterizes
the running sum.

Second, we consider Rw(x) = |Rw(x)c1
Rw(x)c2

Rw(x)c3
| correlating three running sums with different

interval sizes ci and we use a Mathematica’s built-in function to locate the peaks of Rw(x). We repeat this
step for all the possible triples of ci in a reference set. Since we are working at smaller spins then [18] in
this work we use as reference set c =

√
xmax − xmin/2 plus or minus 50%. The numerical estimate of the

stationary phase point is given by the average of the outcomes of this procedure with an error given by the
standard deviation (both values are rounded to the nearest integer). This aims to eliminate the dependence
of our analysis from the choice of a particular interval.

The first triangulation we study is the flat one. We report in Figure 3 the running sum and the partial
sum for this configuration at λ = 30.
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Figure 3: Flat configuration. Left: Averaged running sum Rw(x) with interval sizes 2,6, and 10. We normalize
respect to the value of its maximum. Right: Real part of the partial sum Pw(x) normalized respect the absolute value
of the amplitude. In both plots, we mark with a red line the value of the geometrical area of the bulk triangle, and
with a green band the values of the numerical estimate of the stationary phase point within one standard deviation.

Our algorithm is implemented in Mathematica, the notebooks are available in [20]. We estimate the
presence of a stationary phase point for spin xn0

= 40 ± 1. The value of the geometric area shared by the
three 4-simplices (7) for the flat configuration is xg0

= 1.34 λ ≈ 40.2. It is in perfect agreement with our
numerical analysis.

To corroborate the result we repeat the analysis at other scales λ = 10, 12, 14, 16, 18, 20. We summarize
in Table 4 the numerical estimate of the stationary phase point and the geometric area of the shared triangle.
Signatures of the stationary phase point are present at all scales, and its position is always compatible with
its geometric counterpart. We also note the resources necessary to perform the computations on our server.

numerical analytical memory (GB) time (h)
λ = 10 : 13 ± 1 13.4 2 0.2
λ = 12 : 16 ± 1 16.1 6 0.4
λ = 14 : 18 ± 1 18.8 16 0.9
λ = 16 : 21 ± 1 21.5 33 3
λ = 18 : 23 ± 1 24.1 65 7.8
λ = 20 : 26 ± 1 26.8 121 21
λ = 30 : 40 ± 1 40.2 ∼ 2500 ∼ 2700

Table 1: We compare the numerical estimate of the stationary phase point with the geometrical area at different scales.
For each calculation, we report the time (in hours) and the memory (in GB) required for these computations on our
server. Time and memory for λ = 30 are an estimation based on the previous points. The computation, in this case,
was performed on multiple machines, a piece at a time and took more than two months to complete.

Notice that the agreement is excellent even at small scales. This confirms the result of [16, 17], the
asymptotic regime is reached already at relatively low spins. Moreover, at larger scales λ, the computation
becomes computationally demanding both on memory and time. This motivated us to focus only on λ = 20
for other boundary data, the best compromise in terms of results and our computational resources.

We perform our numerical analysis also for boundary data corresponding to the two curved triangulations
we described in 3 at scale λ = 20. We report in Figure 4 and 5 the running sum and the partial sum for
these configurations.
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Figure 4: First curved configuration. Left: Averaged running sum Rw(x) with interval sizes 2,6, and 10. We normalize
respect to the value of its maximum. Right: Real part of the partial sum Pw(x) normalized respect the absolute value
of the amplitude. In both plots, we mark with a red line the value of the geometrical area of the bulk triangle, and
with a green band the values of the numerical estimate of the stationary phase point within one standard deviation.

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●
●

●

●

●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●●●●●
●
●
●

●●

●●

●

●

●

●●

●

●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Figure 5: Second curved configuration. Left: Averaged running sum Rw(x) with interval sizes 2,6, and 10. We
normalize respect to the value of its maximum. Right: Real part of the partial sum Pw(x) normalized respect the
absolute value of the amplitude. In both plots we mark with a red line the value of the geometrical area of the bulk
triangle, and with a green band the values of the numerical estimate of the stationary phase point within one standard
deviation.

In both cases, we see a clear signature of the existence of a stationary phase point. For the first curved
configuration we estimate the position of the stationary phase point for spin xn1

= 28 ± 1. It is compatible
with the geometric area (7) of the curved triangulation xg1

= 1.39 λ ≈ 27.8. Analogously, for the second
curved configuration we find a stationary phase point at spin xn2

= 25± 1. Also in this case it is compatible
with the expected geometric area xg2 = 1.26 λ ≈ 25.2.

5 Flatness arguments applied to WΔ3

In this section, we repeat the principal arguments for flatness of the EPRL model, on BF theory. To be
specific we focus on the WΔ3 amplitude (5). We sketch the various arguments to keep the exposition as
clear as possible, and we refer to the original papers for more details. The arguments [5, 6, 7] are based on
the large spins approximation of the vertex amplitude. They approximate the integrals over the group using
saddle point techniques, and then they look for stationary phase points in the sum over the bulk degrees of
freedom. Inserting a resolution of the identity in terms of SU(2) coherent states in each internal edge the
summand of the amplitude reduces to

wΔ3
(x, jf , �nfa) ∝ A1(x, jf , �nfa)A2(x, jf , �nfa)A3(x, jf , �nfa) (10)
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where Ai(x, jf , �nfa) are the {15j} symbols contracted with coherent intertwiners. The proportional symbol in
(10) indicates that we are omitting multiple dimensional factors and the integrals coming from the resolution
of the identities we inserted. They both play no role in the calculation we illustrate in this section.

If the boundary spins jf are large, we can safely assume that also the spin of the bulk face x is large.
The asymptotic expansion of the coherent {15j} symbols was studied in [24, 16]: if the boundary data of
the coherent vertex forms the boundary a euclidean 4-simplex, the amplitude can be approximated with

Ai(x, jf , �nfa) ≈ Ni(x, jf , �nfa) cos(Si(x, jf , �nfa)) (11)

where the factor Ni contains numerical constants and the hessian, both of them are not relevant for the
following considerations. The function Si =

�
f∈vi

jfθf,i + xθx,i is the Regge action for the 4-simplex: the
sum runs over the triangles f (faces) belonging to the ith 4-simplex (vertex) vi, jf are the areas of the
triangles and θf,i the 4D dihedral angles around the triangle f of the 4-simplex i. The dihedral angles can
be reconstructed from orientation invariant scalar products between the normals �nfa using the spherical
cosine law. In this analysis, we assume that vector geometries play no role or can be ignored by selecting
the boundary data for the Δ3 amplitude appropriately.

In the large spin regime (10) is proportional to

wΔ3
(x) ∝ cos(S1(x)) cos(S2(x)) cos(S3(x)) = ei(S1(x)+S2(x)+S3(x)) + ei(S1(x)+S2(x)−S3(x))+ (12)

ei(S1(x)−S2(x)+S3(x)) + ei(−S1(x)+S2(x)+S3(x)) + c.c. ,

where we omitted the dependence on boundary spins jf and normals �nfa that we consider fixed from
this point on. By linearity, we can search for stationary phase points of each of the eight terms in (12)
independently and sum the results. We focus on the first term, the analysis of the others is similar. The
derivative of the Regge action Si respect to the area x is given by δSi(x)/δx = θx,i. The stationary phase
points are the solutions of the equation

δ

δx
(S1(x) + S2(x) + S3(x)) = θx,1 + θx,2 + θx,3 = 0 (13)

and this apparently implies that flat geometries dominate the summation over the bulk degrees of freedoms
in the large spin limit. Notice that if we complete the analysis with the other terms in (12) we would
obtain that the oriented deficit angle is vanishing. In this section we disregard this additional but distinct
complication, that was discussed in length in the proper vertex literature [25].

The main counterargument to this analysis is that (11) holds only if some constraints (closure and shape
matching) are satisfied by the boundary data. Therefore, the variables are not independent and we cannot
take the variation in (13) without including the constraints in the action.

Recently Oliveira [9] proposed a more accurate stationary phase point analysis taking into account also
these constraints. They studied the spin foam transition amplitude on the Δ3 2-complex in the euclidean
EPRL model. The original paper claimed that in this setting the flatness problem was not present, however
Kamiński and Engle [10] corrected an oversight obtaining flatness once again. The analysis is based on the
Malgrange preparation theorem. This approximation is valid in an entire neighborhood of a solution of the
closure and shape matching constraints x0. The effect on (13) is the addition of a purely imaginary term

δ

δx
(S1(x) + S2(x) + S3(x) + iµ(x − x0)

2) = θx,1 + θx,2 + θx,3 + i 2µ(x − x0) = 0 , (14)

where µ depends on everything but x. To solve (14) we need both the real and the imaginary part to vanish.
2 This is possible only if x is a solution of the constraints x = x0 and the flatness condition is satisfied,
θx,1 + θx,2 + θx,3 = 0.

Hellmann and Kamiński [8] suggested an argument for the flatness of the EPRL model based on a different
strategy. First, they perform the summation over the bulk degrees of freedom and then they look for saddle
points in the integrals over the holonomies. In the large boundary spins limit, the holonomies dominating

2The same conclusion is obtained in [10] in a more rigorous way. Instead of looking for stationary phase points they perform
the summation over x using the Poisson resummation. The flatness condition is derived by requiring a non exponentially
suppressed sum.
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the spin foam integrals are the ones contained in the wavefront set [26] of the partition function. The
wavefront set of WΔ3

fixes the product of the group elements around its bulk face gx = 1. If we parametrize
gx = exp(iΘ �m · �σ/2) this condition imposes Θ = 0. Following [8] we can map 3 gx into the geometrical
holonomy around the triangle shared by the three 4-simplices. In this case, Θ can be interpreted as 2π minus
the deficit angle around the internal face, obtaining the flatness condition.

6 Conclusion

We presented a numerical exploration of the semiclassical limit of the Δ3 transition amplitude in the 4d
BF spin foam model. We computed the transition amplitude with coherent boundary data corresponding
to Regge triangulations, both flat and curved. We found a stationary phase point in the sum over the bulk
spin with value compatible with the area of the dual triangle of the prescribed triangulation in all the three
cases.

This was at first surprising. The flatness problem argues that the partition function of the EPRL spin
foam theory, in the semiclassical limit, is dominated by flat geometries. Usually, this is interpreted as an indi-
cation that the simplicity constraints, responsible for reducing a topological BF theory to General Relativity,
are not imposed correctly. The same arguments, applied directly to SU(2) BF spin foam theory, indicate
that curved geometries should be suppressed in the large boundary spins limit. This is in contradiction with
our numerical result.

The classical equations of motion of BF theory impose the curvature of the spin connection to be van-
ishing. However, no equations additionally require the connection to be metric. The notion of curvature in
terms of deficit angles, as in Regge calculus, is not appropriate in this case.

In our opinion, this is the crucial misstep in the various claims of flatness of the EPRL spin foam theory.
If one insists on a simplicial interpretation of the large spin regime of BF spin foam theory, flatness does not
require vanishing deficit angles, but, on the contrary, any deficit angle is allowed. Equivalently, as stated in
[29], the deficit angles do not measure the holonomy of a connection.

In fact, the sums over the internal spins and the SU(2) integrals of the transition amplitude can be
performed exactly, reducing it to a coherent {3nj} symbol. The large spin asymptotic of general coherent
SU(2) invariants is well understood [16, 30]: the spin foam amplitude is not suppressed if the boundary
data satisfy closure and shape matching constraints. The requirement of flat embedding in four-dimensional
euclidean space is not necessary.

In a recent paper [13], the authors explored the large spin limit of an effective spin foam model related
to area-angle Regge calculus. They show that curved geometries are suppressed unless one considers a small
Immirzi parameter in addition to large spins. They enrich their analysis with a numerical study confirming
their findings. This calculation shows exactly the origin of the tension between our results and the various
flatness arguments. These works share the common hypothesis that the asymptotic expression (11) holds
also for extended triangulations. We have preliminary indications [31] that, while this expansion is correct
for a single vertex, more care is needed in the presence of internal faces. All the flatness arguments become
compatible with our numerical result if the angles in (11) are not dihedral angles. What these arguments
require to vanish is an angle related to the triangulation but that can not be interpreted as a pure deficit
angle.

The study of the semiclassical limit of the EPRL spin foam theory remains a pressing issue. If we
anticipate to obtain Regge calculus in the large spins regime we must study transition amplitudes with
nontrivial classical equations of motion. We believe that numerics will play a central role in future studies
of spin foams. The numerical algorithm we described in this paper is powerful and can be applied to general
amplitudes, with many vertices and internal faces, and different theories. We plan to use it to make a direct
comparison of the large spin regime of BF and EPRL spin foam theories and finally provide an answer to
this important question.

3For Regge boundary data, the coherent {15j} symbol has two distinct saddle points. Up to gauge, the product of the two
group elements on a wedge at the saddle point is characterized by ± the dihedral angle associated with that wedge. Each
solution is responsible for one exponential forming the cosine in (11). If we take the saddle points of the three vertices with
angles with the same sign, the angle of gx is ± the sum of dihedral angles around the shared triangle. With these two group
elements, we use the map between SU(2) × SU(2) and SO(4) to derive a non trivial SO(4) geometrical holonomy, that is a
rotation of angle Θ on the plane orthogonal to the shared triangle.
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Appendices

A Convention for the {15j} symbol

The {15j} symbol we use in this work is the irreducible {15j} symbol of first type, following the convention
of [27]. The definition and its graphical representation is the following

=





j1 j2 j3 j4 j5
l1 l2 l3 l4 l5
k1 k2 k3 k4 k5



 = (15)

= (−1)
�5

i=1 ji+li+ki

�

s

(2s + 1)

�
j1 k1 s
k2 j2 l1

��
j2 k2 s
k3 j3 l2

�
(16)

×
�

j3 k3 s
k4 j4 l3

��
j4 k4 s
k5 j5 l4

��
j5 k5 s
j1 k1 l5

�
. (17)

B Coherent states

Coherent states are a fundamental ingredient to study the semiclassical behavior of a spin foam amplitude.
We briefly review the conventions used in this paper. For more details we refer to [28] or to other numerical
works [16] and [14]. A SU(2) coherent state |j, �n� in the irreducible representation of spin j is given by
the action on the lowest weight state |j,−j� of a SU(2) group element gn corresponding to the rotation
that transforms the unitary vector �z = (1, 0, 0) into �n = (sinΘ cosΦ, sinΘ sinΦ, cosΘ). This coherent state
minimizes the uncertainty in the two directions orthogonal to �n. The Euler angles of group element gn are
related to the angles Θ and Φ by

gn = e−iΦσz
2 e−iΘ

σy
2 eiΦσz

2 , (18)

where we expressed the SU(2) generators i�σ/2 in terms of the Pauli matrices. The scalar product between
a coherent state and a state in the magnetic basis is given by

�j, m| j, �n� = �j, m| D(j)(gn) |j, �n� = D
(j)
m−j(gn) = D

(j)
m−j(Φ,Θ,−Φ) , (19)

where D
(j)
m−j(Φ,Θ,−Φ) is the Wigner matrix element of gn parametrized in terms of its Euler angles. These

conventions are used by sl2cfoam and Wolfram Mathematica.
SU(2) coherent states form an overcomplete basis in the irreducible representation of spin j space

1(j) = (2j + 1)

�

S2

d�n |j, �n� �j, �n| , (20)

where d�n is the normalized measure on the sphere.
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A 4-valent intertwiner in the recoupling basis is given by

|ji; j12� =
�

m1

�
j1 j2 j3 j4
m1 m2 m3 m4

�(j12)

|j1m1� |j2m2� |j3m3� |j4m4� (21)

and the (4jm) symbol is given by the contraction

�
j1 j2 j3 j4
m1 m2 m3 m4

�(j12)

=
�

m

(−1)j12−m

�
j1 j2 j12
m1 m2 m

��
j12 j3 j4
−m m3 m4

�
. (22)

Finally we can define a coherent tetrahedron as the projection on the intertwiner space of the tensor product
of four SU(2) coherent states. Each one of them is associated to a face of the tetrahedron with area ji and
normal �ni

cj12(�ni) : = �ji; j12| j1, �n1; j2, �n2; j3, �n3; j4, �n4� (23)

=

�
j1 j2 j3 j4
m1 m2 m3 m4

�(j12)

D
(j1)
m1−j1

(gn1)D
(j2)
m2−j2

(gn2)D
(j3)
m3−j3

(gn3)D
(j4)
m4−j4

(gn4) . (24)

The graphical representation of an SU(2) coherent state is given by a line ending on a little circle while the
coherent states coefficients are represented by

|j, �n� = cj12(�ni) = j1

~n1 j2

~n2

j3

j4

~n3

~n4

j12

. (25)

C Derivation of the Δ3 spin foam amplitude

In this appendix we derive the formula (5) for the spin foam transition amplitude associated to the Δ3

triangulation starting from its integral representation. We use the SU(2) graphical calculus to represent the
amplitude as

WΔ3(jf , �nfa) =
�

x

(2x + 1)

2345

1245

1234

1235 1235

1345

1356

1456

1346

3456

1345

1356

1256

2356

1236

j

(26)

where we picked a conventional orientation of the faces that are capped by coherent states on both ends,
represented by empty circles. We label the 4-simplices using the five points, the edges, dual to a tetrahedron,
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are labeled by four points and the faces, dual to triangles, are labeled by three points. We highlight in red
the internal face x.

We perform the integrations over SU(2) and we get

WΔ3(jf , �nfa) =
�

x

(2x + 1)
�

kb

��

b

(2kb + 1)2

��

ia

��

a

(2ia + 1)cia(�nfa)

�
× (27)

i1

i2 k2

k1
i3

j245 j235

j124

j134

j125

jj234

j123

i6

k2 i5

i4k3

j125 j256

x

j136

j235

j126j156

j356

k3k1

i9

i8

i7

x

jj145

j146

j345

j136

j156

j456

. (28)

To keep the picture as simple as possible we opted for not using the graphical representation of the coherent
tetrahedra cia

(�nfa) that we factorize. The “dipole” like diagrams contribute with a phase and the inverse
dimension of the intertwiner space

j
j2

j
x

k =
(−1)k+j1+j2

2k + 1
. (29)

We invert the orientation of some internal lines to conform with (15) and obtain the Δ3 transition amplitude
in terms of three {15j} symbols

WΔ3
(jf , �nfa) = (−1)χ

�

x

(−1)x(2x + 1)
�

kb

��

b

(−1)kb(2kb + 1)

��

ia

��

a

(2ia + 1)cia
(�nfa)

�
(30)

×

i1

i2 k2

k1i3

j245 j235

j124

j134

j125

jj234

j123

i4

i5 k3

k2i6

j236 j136

j

j125

j

j123j126

j156

i7

i8 k1

k3i9

j146 j145

j

j356

j134

j156j

j

(31)

with χ = 2(j123 + j234 + j124 + j134 + j456 + j156 + j346 + j356 + j235) + j123 + j345 + j156. This phase is
obtained from the contributions of (29) and (−1)2j required to invert the orientation of an internal line of
spin j. We finally derive (5).
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[26] L. Hörmander, “The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier
Analysis,” Classics in Mathematics, Springer Berlin Heidelberg, 2015.

[27] A. P. Yutsis, I. B. Levinson, and V. V. Vanagas, “Mathematical apparatus of the theory of angular
momentum,” Israel Program for Scientific Translations for National Science Foundation and the National
Aeronautics and Space Administration, Washington D.C.,1962. 1962.

[28] A. M. Perelomov, Generalized coherent states and their applications. Texts and monographs in physics,
Berlin: Springer, 1986. OCLC: 12972287.

[29] J. W. Barrett, M. Rocek and R. M. Williams, “A Note on area variables in Regge calculus,” Class.
Quant. Grav. 16 (1999), 1373-1376 doi:10.1088/0264-9381/16/4/025

[30] P. Dona and S. Speziale, “Large spin limit of the EPRL-KKL spin foam vertex amplitude,” in prepara-
tion.

[31] P. Dona and S. Speziale, “Asymptotic of spin foam amplitudes with many vertices,” in preparation.

15
165


	Overview
	Quantum Gravity
	Spin Foam for Quantum Gravity

	Theoretical Introduction
	Classical BF Theory and General Relativity
	General Relativity and the Holst Action
	BF theory as a topological theory
	Constrained BF Theory
	Regge Calculus

	Quantum BF theory and Quantum Gravity models
	Quantized BF Theory
	The Ponzano Regge model
	4-dimensional SU(2) BF model
	Quantized Constrained BF Theory: the EPRL model
	EPRL Partition Function
	Coherent states and coherent intertwiners
	Vertex Amplitude in the coherent state basis


	Numerical Introduction
	The sl2cfoam library
	General strategy
	SU(2) invariants
	Booster functions
	Four simplex amplitude

	Limitations and possible updates

	Conclusive Overview
	Numerical study of the Lorentzian Engle-Pereira-Rovelli-Livine spin foam amplitude
	2-vertex Lorentzian Spin Foam Amplitudes for Dipole Transitions
	Searching for classical geometries in spin foam amplitudes: a numerical method
	Numerical analysis of spin foam dynamics and the flatness problem

