
THÈSE DE DOCTORAT
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Titre: Sur quelques problèmes de la torsion analytique holomorphe.

Résumé: Le but de cette thèse est d’étudier la torsion analytique dans deux contextes différents.
Dans le premier contexte, on étudie l’asymptotique de la torsion analytique, quand un fibré

vectoriel holomorphe hermitien est tordué par une puissance croissant du fibré en droites positif.
Dans le deuxième contexte, on généralise la théorie de la torsion analytique pour des surfaces

de Riemann avec des pointes hyperboliques. Motivé par des singularités de la métrique complète
de courbure scalaire constante −1 sur des surfaces de Riemann stables épointées, on demande que
la métrique sur la surface de Riemann soit lisse seulement en dehors d’un nombre fini des points au
voisinage auxquelles elle peut avoir des singularités comme la métrique de Poincaré sur un disque
épointé. On fixe un fibré vectoriel holomorphe hermitien qui peut avoir au pire des singularites
logarithmiques au voisinage des points marqués. Pour ces données, en renormalisant la trace de
l’opérateur de la chaleur, on construit la torsion analytique et on étudie ces propriétés.

Puis on étudie des propriétés de la torsion analytique en famille: on démontre la théorème de
la courbure, on étudie le comportement de la torsion analytique quand les pointes sont créées par
dégénération et on donne quelques applications aux espaces de modules de courbes épointées.

Mots clefs : Cohomologie, Laplacian, spectre, noyau de chaleur, torsion analytique, surfaces hy-
perboliques, l’espace module de surfaces épointées, fibré de Hodge.



Title: On some problems of holomorphic analytic torsion.

Abstract: The goal of this thesis is to study the analytic torsion in two different contexts.
In the first context, we study the asymptotics of the analytic torsion, when a Hermitian holo-

morphic vector bundle is twisted by an increasing power of a positive line bundle.
In the second context, we generalize the theory of analytic torsion for surfaces with hyperbolic

cusps. Motivated by singularities appearing in complete metrics of constant scalar curvature −1
on stable Riemann surfaces, we suppose that the metric on the surface is smooth outside a finite
number points in the neighborhood of which it can to have singularities like Poincaré metric has
on a punctured disc. We fix a Hermitian holomorphic vector bundle which has at worst logarithmic
singularities in the neighborhood of the marked points. For these data, by renormalizing the trace
of the heat operator, we construct the analytic torsion and study its properties.

Then we study the properties of the analytic torsion in family setting: we prove the curvature
theorem, we study the behavior of the analytic torsion when the cusps are created by degeneration
and we give some applications to the moduli spaces of pointed curves.

Keywords : Cohomology, Laplacian, spectre, heat kernel, analytic torsion, hyperbolic surfaces
with cusps, moduli spaces of pointed surfaces, Hodge bundle.
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Chapitre 1

Introduction

La torsion analytique holomorphe a été définie par Ray-Singer dans [103] comme l’analogue com-
plexe de la torsion réelle, qui est un invariant analytique correspondant à la torsion de Reidemeister
- le premier invariant topologique qui n’est pas un invariant homotopique. La torsion analytique
holomorphe s’obtient comme le déterminant régularisé du laplacien de Kodaira d’un fibré vectoriel
holomorphe sur une variété complexe compacte. La première application centrale du cet invari-
ant se trouve dans les travaux de Bismut-Gillet-Soulé [21], [22], [23], où les auteurs établissent la
théorème de la courbure, qu’on rappellera plus tard.

Aujourd’hui, la torsion analytique joue un rôle important dans de nombreux domaines des
mathématiques. Dans la géométrie d’Arakelov, elle joue un rôle central dans les travaux de
Gillet-Soulé [66], Gillet-Soulé-Rössler [63], Köhler-Rössler, [78], [79], [80], Freixas [59], [58].
Bershadsky-Cecotti-Ooguri-Vafa [14] ont trouvé ses applications en physique mathématique, et
Fang-Lu-Yoshikawa [48] ont donné un traitement mathématique de leur théorie. Dans la théorie
des formes automorphes et des surfaces K3, elle est la pierre angulaire du travail de Yoshikawa
[119] concernant la torsion analytique et la forme automorphe de Borcherds. . .

Rappelons maintenant la définition de la torsion analytique. Soit X une variété complexe com-
pacte munie d’une métrique riemannienne gTX , qui est compatible avec la structure complexe.
Soit (E, hE) un fibré holomorphe hermitien sur X . Soit ∂

E
l’opérateur de Dolbeaut sur l’espace

vectorielle Ω(0,k)(X,E), k = 0, . . . , dimX , des formes de type (0, k) à valeurs dans E. L’espace
Ω(0,k)(X,E) est naturellement muni d’un produit scalaire L2, obtenu comme

〈α, α′〉L2 :=

∫
X

〈α(x), α′(x)〉hdvX(x), α, α′ ∈ Ω(0,k)(X,E), (1.0.1)

où dvX est la forme de volume riemannienne sur (X, gTX) et 〈·, ·〉h est un produit hermitien
ponctuel induit par hE et gTX . On note ∂

E,∗
l’adjoint de l’opérateur ∂

E
par rapport à 〈·, ·〉L2 .

Soit
�Ek = ∂

E
∂
E,∗

+ ∂
E,∗
∂
E
, (1.0.2)

le laplacien de Kodaira associé, agissant sur Ω(0,k)(X,E), k = 1, . . . , dimX . Comme X est une
variété compacte et �Ek sont des opérateurs elliptiques, les spectres de �Ek sont les ensembles
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discrèts. La torsion analytique T (gTX , hE) est définie comme

T (gTX , hE) =
dimX∏
k≥0

(det ′�Ek )k(−1)k/2, (1.0.3)

où det ′ est le produit renormalisé de valeurs propres non-nulles.
Le but de cette thèse est d’étudier la torsion analytique dans deux contextes différents.
Dans le premier contexte, on étudie l’asymptotique de la torsion analytique, quand le fibré

vectoriel holomorphe hermitien (E, hE) est tordue par une puissance p, p→∞ du fibré en droites
positif (L, hL).

Dans le deuxième contexte, on généralise la théorie de la torsion analytique pour des surfaces
avec des pointes hyperboliques. Motivé par des singularités de la métrique complète de courbure
scalaire constante −1 sur une surface stable épointée, on ne demande plus que la métrique gTX

soit lisse sur X tout entier, mais seulement en dehors d’un nombre fini des points au voisinage
auxquelles gTX peut avoir des singularités comme la métrique de Poincaré sur le disque épointé. La
difficulté ici réside dans le fait que le spectre de l’opérateur�Ei n’est plus discret car la variété n’est
plus compacte, donc la définition (1.0.3) n’est pas valable et on doit définir la torsion analytique
par une autre façon. On le fait par la renormalisation de trace de l’opérateur de la chaleur, puis
on étudie des propriétés du cet invariant et ces applications à l’espace de modules de courbes
épointées.

Les deux chapitres composant cette thèse sont indépendants, et on donne ci-dessous une
introduction plus détaillée à chacun d’entre eux. Insistons cependant sur le fait que le point de vue
qu’on adopte tout au long de cette thèse est inspiré de la théorie de l’indice locale. Les objets
centraux de cette thèse sont le laplacien, la torsion analytique et le noyau de la chaleur.

1.1 L’asymptotique de la torsion analytique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Torsion analytique pour des surfaces aux pointes et l’espaces de modules . . . . . . . . . 18

1.2.1 Théorème de la perturbation compacte relative et la formule d’anomalie . . . . . . . . 21
1.2.2 Théorème de courbure et théorème de la régularité . . . . . . . . . . . . . . . . . . . 26
1.2.3 Théorème de restriction et théorème de compatibilité . . . . . . . . . . . . . . . . . . 32
1.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.1 L’asymptotique de la torsion analytique
Dans [27], Bismut-Vasserot ont calculé l’asymptotique de la torsion analytique associée à des
puissances croissantes d’un fibré en droites positif. Cette asymptotique a joué un rôle important
dans un résultat d’amplitude arithmétique de Gillet et Soulé [64] (voir aussi [106, Chapter VIII]).

Récemment, Klevtsov-Ma-Marinescu-Wiegmann en cas de surfaces de Riemann, [73], ont relié
cette asymptotique avec l’asymptotique de la fonction génératrice qui apparait dans l’étude de
l’effet de Hall quantique entier quand le flux du champ magnétique tends vers l’infini. À partir de
ces résultats, ils ont conjecturé [73, p.839] la formule pour ce terme de l’asymptotique de Bismut-
Vasserot. On calcule explicitement le terme suivante pour une variété kählérienne de dimension
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quelconque et ainsi on démontre la vérité de la conjecture pour le terme logarithmique et sa faus-
seté pour le terme constante. On donne aussi la forme générale de l’asymptotique de la torsion
analytique dans le cadre plus générale d’orbifold.

Plus précisément, soit (X, gTX ,Θ) une variété hermitienne de la dimension complexe n. Soit
(E, hE) un fibré vectoriel holomorphe hermitien sur X de rang rk(E). On note c1(E) ∈ H2(X,Z)
la première classe de Chern de E. Soit (L, hL) un fibré en droites holomorphe positif sur X . On
note ω la (1, 1)-forme sur X , défini par

ω := c1(L, hL) :=

√
−1

2π
RL, (1.1.1)

où RL est la courbure de la connexion de Chern sur (L, hL). On définit R̊L ∈ End(T (1,0)X) par

gTX(R̊Lu, v) = RL(u, v), u, v ∈ T (1,0)X. (1.1.2)

On note T (gTX , hL
p⊗E) la torsion analytique, (1.0.3), de Lp ⊗ E par rapport à gTX , hL, hE . Rap-

pelons brièvement les points essentiels dans la définition formelle de T (gTX , hL
p⊗E).

On note les spectres des opérateurs �Ek par λkj , k ∈ 0, . . . , dimX , j ∈ N. Par la loi de Weyl,
la fonction zêta associée

ζE,kX (s) :=
∑

j∈N,λkj 6=0

λ−skj , (1.1.3)

est bien définie et holomorphe pour s ∈ C, Re(s) > dimX/2. De plus, l’identité suivante est vraie

ζE,iX (s) =
1

Γ(s)

∫ +∞

0

Tr
[

exp⊥(−t�Ei )
]
ts
dt

t
, (1.1.4)

où exp⊥(−t�Ei ) est la projection spectrale de l’opérateur de la chaleur exp(−t�Ei ) sur l’espace
propre correspondant aux valeurs propres non-nulles.

À partir de l’identité (1.1.4) et des propriétés de la trace de l’opérateur exp⊥(−t�Ei ), la fonction
ζE,iX (s) s’étend méromorphiquement sur C et holomorphe en 0. D’après Ray-Singer, [103], on
définit

T (gTX , hE) := exp
( dimX∑

i=0

i · (−1)i · (ζE,iX )′(0)/2
)
. (1.1.5)

Par l’identité (1.1.3), on voit que (1.1.5) correspond formellement à la définition (1.0.3).

Théorème 1.1.1 ( [53, Theorem 1.1]). Il existe des coefficients locaux, c’est-à-dire qui peuvent
être exprimés comme intégrales de densités définies localement, αi, βi ∈ R, i ∈ N tels que pour
chaque k ∈ N, on a l’asymptotique suivante

−2 log T (gTX , hL
p⊗E) =

∑k
i=0 p

n−i(αi log p+ βi) + o(pn−k), (1.1.6)

lorsque p→ +∞. De plus, les coefficients αi ne dépendent pas de gTX , hL, hE .
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Dans [27, Theorem 8], Bismut-Vasserot ont démontré Théorème 1.1.1 pour k = 0. Ils ont
montré

α0 =
n rk(E)

2

∫
X

ωn

n!
, β0 =

rk(E)

2

∫
X

log
(

det
R̊L

2π

)ωn
n!
. (1.1.7)

Théorème 1.1.2 ( [53, Theorem 1.3]). Sous l’hypothèse Θ = ω, on a

α1 =
(3n+ 1)rk(E)

12

∫
X

c1(TX)
ωn−1

(n− 1)!
+
n

2

∫
X

c1(E)
ωn−1

(n− 1)!
, (1.1.8)

β1 =
rk(E)

24
(24ζ ′(−1) + 2 log(2π) + 7)

∫
X

c1(TX)
ωn−1

(n− 1)!
+

1

2

∫
X

c1(E)
ωn−1

(n− 1)!
. (1.1.9)

Remarque 1.1.3. La valeur explicite de α1, β1 a été conjecturée par Klevtsov-Ma-Marinescu-
Wiegmann dans [73, p.839] pour les surfaces de Riemann. On déduit du Théorème 1.1.2 que leur
conjecture est vraie pour α1, mais fausse pour β1.

Notre dernier résultat principal du première partie est une généralisation du Théorème 1.1.1
dans un cadre d’orbifold. Plus précisément, soit (M, gTM,Θ) un orbifold hermitien compact et
effectif. On note ΣM sa strate. On note ΣM[j], j ∈ J , les composantes connexes de ΣM, et nj
ses dimensions respectives. Soit (E , hE) un fibré vectoriel holomorphe propre et hermitien surM
et soit (L, hL) un fibré en droites holomorphe propre et positif surM. Dans ce cadre, la définition
de la torsion analytique T (gTM, hL

p⊗E) est analogue à la definition dans le cadre des variétés. Pour
plus de détails, voir Ma [83].

Théorème 1.1.4 ( [53, Theorem 1.5]). Il existe des coefficients locaux, α̃i, β̃i ∈ R et mj ∈
N, γj,i, κj,i ∈ R, j ∈ J, i ∈ N tels que pour chaque k ∈ N, on a l’asymptotique suivante,

− 2 log T (gTM, hL
p⊗E) =

k∑
i=0

pn−i
(
α̃i log p+ β̃i

)
+

k+nj−n∑
i=0

∑
j∈J

pnj−i

mj

e
√
−1θjp

(
γj,i log p+ κj,i

)
+ o(pn−k), (1.1.10)

lorsque p → +∞. Les valeurs θj, γj,i, κj,i,mj ne dépendent que de la géométrie locale de lieu
singulier deM, et

α̃0 =
n rk(E)

2

∫
M

ωn

n!
, β̃0 =

rk(E)

2

∫
M

log
(

det
R̊L

2π

)ωn
n!
, (1.1.11)

où ω̃, R̊L sont des analogues de (1.1.1) et (1.1.2) dans un cadre d’orbifold. De plus, il existe des
constantes cj 6= 0 telles que

γj,0 =

{
cj
∫

ΣM[j]
ω̃n−1

(n−1)!
, si codim ΣM[j] = 1,

0, sinon.
(1.1.12)

Comme dans le cas des variétés, les constantes α̃i, γj,i ne dépendent pas de gTM ,hL, hE . Si
Θ = ω, α̃1, β̃1 sont données par (1.1.8) et (1.1.9), ou l’intégration est faite surM.
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Corollaire 1.1.5. L’ensemble {T (gTM, hL
p⊗E) : p ∈ N} détecte les singularités de codimension

1.

Théorème 1.1.4 donne le raffinement du théorème principal de l’article [68] par Hsiao-Huang,
lorsque l’orbifoldM est obtenu comme le quotient de l’action CR transversallement libre du S1

sur une variété CR.
Décrivons maintenant l’histroire des problèmes reliées et proposons des directions dans

lesquelles nos résultats pourront être utiles. Dans l’article [28], Bismut-Vasserot ont généralisé
[27]. Ils ont calculé l’asymptotique de log T (gTM , hE⊗Sympζ), quand p → +∞, où (ζ, gζ) est un
fibré hermitien positif au sens de Griffith et (E, hE) est un fibré vectoriel hermitien. Récemment,
Puchol [101] a obtenu une généralisation de ce résultat en famille. On rappelle que dans [19, §3],
Bismut a généralisé la définition des formes de torsion pour des fibrations holomorphes (qui ne
sont pas nécessairement Kähler). Puchol a obtenu l’asymptotique des formes de torsion de Bis-
mut associé aux puissances croissantes de fibré en droites positif le long de fibres. Il est naturel
de penser qu’on peut combiner notre résultat avec [19, §3] et [101] pour obtenir l’asymptotique
générale des formes de torsion pour une fibration holomorphe.

1.2 Torsion analytique pour des surfaces aux pointes et l’espaces
de modules

Le deuxième partie de la thèse est consacrée à l’introduction et à l’étude de la torsion analytique
pour des surfaces aux pointes. Plus précisément, soit M une surface de Riemann compacte, et
soit DM = {PM

1 , . . . , PM
m } un ensemble fini de points distincts dans M . Soit gTM une métrique

kählérienne sur la surface de Riemann épointée M := M \DM .
Pour ε ∈]0, 1], i = 1, . . . ,m, on fixe zMi : M ⊃ V M

i (ε) → D(ε) := {z ∈ C : |z| ≤ ε} des
coordonnées locales holomorphes, centrées en PM

i . On note

V M
i (ε) := {x ∈M : |zMi (x)| < ε}. (1.2.1)

On dit que gTM est compatible au sens de Poincaré avec les coordonnées zM1 , . . . , z
M
m si pour

chaque i = 1, . . . ,m, il existe η > 0 telle que gTM |VMi (η) est induite par la forme kählérienne

√
−1dzMi dz

M
i∣∣zMi log |zMi |
∣∣2 . (1.2.2)

On dit que gTM est une métrique cuspidale si gTM est compatible au sens de Poincaré avec
des coordonnées holomorphes près de DM . Une surface aux pointes est un triplet (M,DM , g

TM)
constitué de la surface de Riemann M , de l’ensemble de points DM ⊂ M et de la métrique
cuspidale gTM sur M (cf. [93]).

Par exemple, si la surface épointée (M,DM) est stable, c’est-à-dire le genre g(M) deM satisfait
la condition suivante

2g(M)− 2 +m > 0, (1.2.3)
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Figure 1.1: Une surface aux pointes.

alors, par le théorème d’uniformisation (cf. [49, Chapter IV], [9, Lemma 6.2]), il existe une unique
métrique gTMhyp de courbure scalaire constante −1 sur M , appelé la métrique canonique hyper-
bolique. Encore une fois, par le théorème d’uniformisation il existe des coordonnées locales holo-
morphes zMi centrées en PM

i , i = 1, . . . ,m, telles que gTMhyp est induit par la forme kählérienne
(1.2.2) au voisinage de DM . C’est-à-dire que le triplet (M,DM , g

TM
hyp ) est une surface aux pointes.

On définit le fibré en droites canonique tordu par

ωM(D) := ωM ⊗ OM(DM). (1.2.4)

La métrique gTM induit la norme hermitienne ‖·‖M sur ωM(D) par l’isomorphisme canonique
ωM(D) → ωM au-dessus de M . On fixe un fibré hermitien (ξ, hξ) sur M . Le premier but dans
cette partie de la thèse est de définir T (gTM , hξ ⊗ ‖·‖2n

M ) comme l’analogue cuspidale de (1.0.3).
Pour cela on exprime la torsion analytique à l’aide de la noyau de la chaleur. On régularise la
définition de la trace de l’opérateur de la chaleur en soustrayant au voisinage de la pointe une
contribution universelle calculée sur CP1 \ {0, 1,∞} et en prenant la limite de la quantité obtenue
quand on s’approche de la pointe.

On s’intéresse plutôt ici à la métrique de Quillen qui contient dans son définition la torsion
analytique. Plus précisément, pour n ≤ 0, on définit le produit scalaire suivant

〈α, α′〉L2 :=
1

2π

∫
M

〈α(x), α′(x)〉hdvM(x), α, α′ ∈ Ω(0,i)(M, ξ ⊗ ωM(D)n). (1.2.5)

Par analogie avec la la théorie de Hodge dans le cas compact, on peut plonger les espaces vectoriels
H i(M, ξ ⊗ ωM(D)n), i = 0, 1, dans les espaces Ω(0,i)(M, ξ ⊗ ωM(D)n), i = 0, 1. Cette injection,
avec le produit scalaire (1.2.5), induisent une norme hermitienne sur la droite complexe

λ(ξ ⊗ ωM(D)n) :=
(
ΛmaxH0(M, ξ ⊗ ωM(D)n)

)−1 ⊗ ΛmaxH1(M, ξ ⊗ ωM(D)n), (1.2.6)

qu’on note‖·‖L2 (gTM , hξ⊗‖·‖2n
M ). La métrique de Quillen sur la ligne complexe (1.2.6) est définie

par l’identité suivante

‖·‖Q (gTM , hξ ⊗ ‖·‖2n
M ) = T (gTM , hξ ⊗ ‖·‖2n

M ) ·‖·‖L2 (gTM , hξ ⊗ ‖·‖2n
M ). (1.2.7)

Le but de cette partie de la thèse est d’étendre la théorie de la métrique de Quillen pour des surfaces
aux pointes.

Tout d’abord, expliquons pourquoi on formule toujours nos résultats en termes de la métrique
de Quillen (1.2.7) et pas en termes de la torsion analytique. Considérons une famille de surfaces
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de Riemann compactes. Comme la dimension des espaces de cohomologie varient selon la fibre,
la version en famille de la métrique L2 n’est pas forcement continue. La beauté et la magie de la
métrique de Quillen réside dans le fait que le produit de la torsion analytique avec la métrique L2

n’est pas seulement continue, mais lisse par un résultat de Bismut-Gillet-Soulé, [23]. Il y a de plus
une formule explicite pour la courbure de la connexion de Chern associée et elle correspond a la
forme différentielle représentant le côté droit de la formule de Riemann-Roch-Grothendieck. La
métrique de Quillen est donc mieux adaptée à la situation en famille.

Cette partie de la thèse est décomposée en trois sujets liés.
Dans le premier sujet, on donne la définition de la torsion analytique pour une surface aux

pointes. Ceci n’est pas une tâche triviale, car le spectre du laplacien de Kodaira n’est plus discret,
et la définition (1.0.3) n’a donc aucun sens. Comme on a dit avant, pour cela on exprime la torsion
analytique à l’aide de la noyau de la chaleur. On régularise la définition de la trace de l’opérateur
de la chaleur en soustrayant au voisinage de la pointe une contribution universelle calculée sur
CP1 \ {0, 1,∞} et en prenant la limite de la quantité obtenue quand on s’approche de la pointe.

On prouve deux résultats qui permettent de calculer cette torsion analytique. Le premier résultat,
qu’on appelle aussi le théorème de la perturbation compacte, exprime le quotient de deux métriques
de Quillen associées aux surfaces avec le même nombre de pointes par le quotient de deux métriques
de Quillen associées aux surfaces compactes construites comme des “aplanissements” des métriques
cuspidales. Le deuxième résultat, qu’on appelle la formule d’anomalie, exprime en termes des
classes de Bott-Chern le changement de la métrique de Quillen induit par le changement de la
métrique hermitienne hξ et par le changement conforme de la métrique gTM .

Dans le deuxième sujet on considère une famille de surfaces de Riemann aux pointes hyper-
boliques. On muni le fibré determinant de la métrique de Quillen et on démonte le théorème de la
courbure associé. Donc on donne un raffinement de la théorème de Riemann-Roch-Grothendieck
au niveau des courants avec une contribution explicite de courbes singulières. Ce théorème
généralise le théorème de courbure de Bismut-Bost [20] (qui généralise le théorème de courbure
de Bismut-Gillet-Soulé unidimensionnel, [21], [22], [23] en permettant des fibres singulières) et le
théorème de courbure de Takhtajan-Zograf [107]. Pour démontrer que la première forme de Chern
du fibré determinant, muni de la métrique de Quillen, est bien définie en tant que courant, on étudie
le comportement de la métrique de Quillen renormalisée près de diviseur de courbes singulières.
On donne aussi des conditions suffisantes pour que cette métrique s’étende continument sur le
diviseur singulier, qui motive notre troisième sujet.

Comme consequence facile de notre théorie, on obtient que la métrique de Weil-Petersson admet
un potentiel continu. Ce résultat a été déjà prouvé par Wolpert [112] dans sa preuve analytique de
la projectivité de M g,m.

Comme autre conséquence facile, on obtient aussi que les volumes de Weil-Petersson des
espaces de modules de courbes épointées sont des multiples rationnels de puissances de π. À
l’origine, ce théorème est aussi du à Wolpert [113].

Dans notre démonstration, ce résultat est une conséquence du fait que la forme de volume
est égale, modulo multiplication par une puissance de π, à une puissance maximale de la forme
de Chern d’un fibré hermitien muni d’une métrique qui est “good” au sens de Mumford. En
revanche, Wolpert a utilisé la formule donnant ωWP en termes de coordonnées de Fenchel-Nielsen

20



Introduction

et il a explicitement calculé l’intersection de ωWP avec une famille de 2-cycles analytiques qui
engendrent H6g−8(M g,0,R). Sa preuve est donc très différente de la notre.

En troisième sujet on considère une famille de surfaces de Riemann aux pointes hyperboliques.
Il s’agit d’étudier le comportement de la métrique de Quillen lorsque des pointes sont crées par
dégénérescence. Plus précisément, par le résultat de deuxième partie on sait que la métrique de
Quillen se prolonge par continuité sur le lieu singulier. On démontre que restriction de la métrique
sur le lieu singulier coı̈ncide, à une constante explicite près, avec la métrique de Quillen sur la
normalisée. Ce sujet est relié a plusieurs travaux, voir par exemple Bismut [18], Freixas [59], [60],
Wolpert [115].

On démontre aussi que dans le cas special de la métrique hyperbolique de courbure scalaire
constante−1, notre définition de la torsion analytique coı̈ncide avec la définition de la torsion ana-
lytique de Takhtajan-Zograf, [107, (6)], définie à l’aide de l’ensemble de longueurs de géodésiques
fermées. Ce résultat généralise le théorème de Phong-D’Hoker [44, (7.30)], [45, (3.6)] pour des
surfaces non-compactes.

Si on applique le théorème principal du troisième partie de la thèse à des espaces de modules
de courbes épointées, on obtient la compatibilité entre la métrique de Quillen et les morphismes de
“clutching”, construits par Knudsen [74], [75].

Ci-dessous on va donner l’introduction plus détaillée à chacun de ces sujets.

1.2.1 Théorème de la perturbation compacte relative et la formule d’anomalie
Le premier but dans cette partie de la thèse est d’étendre la définition (1.0.3) de la torsion analytique
et de l’étudier. Puis on exprime la métrique de Quillen d’une surface aux pointes en fonction
d’une métrique de Quillen d’une surface compacte et d’une partie purement locale. Ensuite on
utilise ce résultat pour obtenir une généralisation de formule de Polyakov. Les pointes apparaissent
explicitement dans notre formule sous forme de masses de Dirac.

Pour expliquer le façon dont on étend la définition de la torsion analytique, rappelons les points
essentielles dans la définition de (1.0.3). On conserve la notation de la Section 1.2.

On suppose tout d’abord m = 0, c’est-à-dire gTM n’a pas de points hyperboliques. Dans ce
cas le différentiel de Dolbeaut donne bijection entre les spectres non nulles de �ξ⊗ωM (D)n :=

�ξ⊗ωM (D)n

0 et de �ξ⊗ωM (D)n

1 . On peut donc interpréter la torsion analytique comme

T (gTM , hξ ⊗‖·‖2n
M ) =

(
det ′

(
�ξ⊗ωM (D)n

))1/2
. (1.2.8)

Plus formellement, soit ζM(s), s ∈ C, Re(s) > 1, est une fonction zêta de �ξ⊗ωM (D)n . C’est-
à-dire ζM(s) s’exprime pour Re(s) > 1 comme une somme infini de puissances −s des valeurs
propres non nulles de �ξ⊗ωM (D)n . C’est facile a voir que la fonction zeta s’exprime en fonction
de la projection spectrale exp⊥(−t�ξ⊗ωM (D)n) de l’opérateur de la chaleur exp(−t�ξ⊗ωM (D)n) sur
l’espace propre correspondant aux valeurs propres non-nulles par la formule suivante

ζM(s) =
1

Γ(s)

∫ +∞

0

Tr
[

exp⊥(−t�ξ⊗ωM (D)n)
]
ts
dt

t
. (1.2.9)
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D’après Ray-Singer, [103], on définit la torsion analytique pour des surfaces compactes par

T (gTM , hξ ⊗‖·‖2n
M ) := exp(−ζ ′M(0)/2). (1.2.10)

Maintenant si m > 0, c’est-à-dire la metrique gTM admet des points hyperboloques, le spectre
de l’opérateur�ξ⊗ωM (D)n n’est plus discret (voir Müller [93]), donc l’interprétation (1.0.3) n’a pas
de sens. De plus, comme l’opérateur exp⊥(−t�ξ⊗ωM (D)n) est majoré par une projection spectrale
de dimension infini, il n’a pas de trace, et la formule (1.2.9) n’a pas de sens non plus... L’idée
de notre approche est de régulariser la trace de l’opérateur exp⊥(−t�ξ⊗ωM (D)n) et de l’utiliser en
place de la trace usuel dans (1.2.9) pour donner la définition de la fonction zêta. Puis on définit la
torsion analytique par la même formule (1.2.10).

Pour régulariser la trace de l’opérateur exp⊥(−t�ξ⊗ωM (D)n), au voisinage de la pointe, on sous-
trait de la noyau de la chaleur une contribution universelle calculée sur CP1\{0, 1,∞} et on prends
la limite de la quantité obtenue quand on s’approche de la pointe.

Autrement dit, on définit la trace régularisée Trr[ exp⊥(−t�ξ⊗ωM (D)n)
]

comme “une partie fini”
de l’intégrale du noyau de la chaleur.

Puis on démontre que cette trace régularisée a des propriétés similaires aux propriétés de la
trace de l’opérateur de la chaleur associé à la variété compacte. Pour étudier le comportement
du ce trace quand t → ∞, il nous faut un résultat qui garantissent l’existence d’un trou spectral.
Pour n = 0, on utilise le résultat de Müller, et pour n < 0 on utilise l’inégalité de Nakano. Pour
contrôler le comportement du ce trace quand t→ 0, on compare des noyaux de la chaleur de deux
surfaces aux pointes près de pointes. Pour éliminer des effets de (ξ, hξ), qui n’est pas forcement
triviale au voisinage de pointes, on utilise la construction de parametrix du noyau de la chaleur et
puis on utilise des techniques de localisation de Bismut-Lebeau [25, §11].

Donc pour m ∈ N, on peut définir la fonction zêta régularisée par l’identité suivante

ζM(s) =
1

Γ(s)

∫ +∞

0

Trr[ exp⊥(−t�ξ⊗ωM (D)n)
]
ts
dt

t
. (1.2.11)

Comme dans le cas compact, la fonction ζM(s) admet une extension méromorphe en C et holo-
morphe en 0. On peut donc définir la torsion analytique par la même formule (1.2.10)1 en utilisant
la définition de la fonction zêta de (1.2.11).

Notre définition est similaire à la définition de Jorgenson-Lundelius de la torsion analytique
relative, qui est donné pour (ξ, hξ) trivial et n = 0, voir [81], [70], [71]. Les techniques qu’on
utilise sont différentes des ceux de Jorgenson-Lundelius, et l’apparence de (ξ, hξ), qui n’est pas
forcément triviale autour de pointes, rends la problème beaucoup plus difficile.

La question naturelle à se poser c’est comment peut-on calculer la torsion analytique définit
comme ci-dessus? Avant d’expliquer le premier théorème dans cette direction, on va introduire
quelques notions.

1En fait, on renormalisé cette définition en multipliant par une constante, qui dépend de la géométrie du CP 1 \
{0, 1,∞}, muni de la métrique hyperbolique à courbure scalaire constante −1, voir [54, Definition 2.17]. On le fait
pour que notre définition soit compatible avec la définition de Takhtajan-Zograf.
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Définition 1.2.1 (Un aplanissement de la métrique). Soit (M,DM , g
TM) une surface aux pointes.

On dit que la métrique gTMf sur M est un aplanissement de gTM s’il existe ν > 0 telle que gTM est
induite par (1.2.2) sur V M

i (ν), et

gTMf |M\(∪iVMi (ν)) = gTM |M\(∪iVMi (ν)). (1.2.12)

Figure 1.2: Un exemple de l’aplanissement.

On fixe un aplanissement gTNf de gTN . On dit que des aplanissements gTMf , gTNf sont compati-
bles, s’il existe ν > 0, satisfaisant (1.2.12) et

gTNf |N\(∪iV Ni (ν)) = gTN |N\(∪iV Ni (ν)). (1.2.13)

telle que pour chaque i = 1, . . . ,m, on a

((zNi )−1 ◦ zMi )∗(gTMf |VMi (ν)) = gTNf |V Ni (ν). (1.2.14)

Ici zMi , zNi sont des coordonnées compatibles au sens de Poincaré avec gTM , gTN respectivement.
Dans une manière similaire, on définit les notions d’aplanissement pour la norme hermiti-

enne‖·‖M sur ωM(D) induit par gTM . On définit aussi la notion des aplanissements compatibles
‖·‖f

M ,‖·‖f
N pour les normes hermitiennes‖·‖M ,‖·‖N sur ωM(D) et ωN(D) respectivement.

Figure 1.3: Un exemple des aplanissements compatibles. Les régions rayées sont isomorphes.

Théorème 1.2.1 (Théorème de la perturbation compacte relative, [54, Theorem A]). Soit
(M,DM , g

TM), (N,DN , g
TN) deux surfaces avec le même nombre de pointes. Soit (ξ, hξ) un fibré

hermitienne au-dessus de M de rang rk(ξ). On note par‖·‖M ,‖·‖N les normes induites par gTM ,
gTN sur ωM(D) et ωN(D) au-dessus de M et N respectivement. Soit gTMf , gTNf ,‖·‖f

M ,‖·‖f
N des

aplanissements compatibles de gTM , gTN ,‖·‖M‖·‖N respectivement. Pour chaque n ∈ Z, n ≤ 0,
on a l’identité suivant

2 log
(
‖·‖Q

(
gTM , hξ ⊗ ‖·‖2n

M

)/
‖·‖Q

(
gTMf , hξ ⊗ (‖·‖f

M)2n)
)
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− 2rk(ξ) log
(
‖·‖Q

(
gTN ,‖·‖2n

N

)/
‖·‖Q

(
gTNf , (‖·‖f

N)2n)
)

=

∫
M

c1(ξ, hξ)
(

2n log(‖·‖f
M /‖·‖M) + log(gTMf /gTM)

)
. (1.2.15)

En d’autres termes, la norme de Quillen relative peut être calculée par une perturbation compacte.

Remarque 1.2.2. Pour n = 0 et (ξ, hξ) trivial, Théorème 1.2.1 a été prouvé par Jorgenson-
Lundelius dans [71, Theorem 7.3] et Albin-Aldana-Rochon dans [3, Theorem 5.2], où les auteurs
utilisent substantiellement que la géométrie de (M, gTM) et (N, gTN) coı̈ncide près de pointes.
Ceci n’est plus vrai dans notre cas en vue de présence de (ξ, hξ). Les techniques qu’on utilise sont
très différents mémé si (ξ, hξ) est trivial et n = 0.

On va décrire le deuxième résultat qui est une généralisation des formule de Polyakov et qui
exprime en termes des classes de Bott-Chern le changement de la métrique de Quillen induit par
le changement de gTM et hξ.

On rappelle que par [21, Theorem 1.27], des classes de Bott-Chern de fibré vectoriel ξ avec
des métriques hermitiennes hξ1, hξ2 sont des formes différentielles (en réalité, les classes des formes
différentielles, mais cette distinction ne serai pas important ici), qui satisfont des identités suivantes

∂∂

2π
√
−1

T̃d(ξ, hξ1, h
ξ
2) = Td(ξ, hξ1)− Td(ξ, hξ2),

∂∂

2π
√
−1

c̃h(ξ, hξ1, h
ξ
2) = ch(ξ, hξ1)− ch(ξ, hξ2),

(1.2.16)

où Td, ch sont des formes de Todd et Chern. Par [21, Theorem 1.27], on a des identités suivantes

c̃h(ξ, hξ1, h
ξ
2)[0] = 2T̃d(ξ, hξ1, h

ξ
2)[0] = log

(
det(hξ1/h

ξ
2)
)
. (1.2.17)

Si de plus, ξ := L est un fibré en droites, on a l’identité suivante

c̃h(L, hL1 , h
L
2 )[2] = 6T̃d(L, hL1 , h

L
2 )[2] = log(hL1 /h

L
2 )
(
c1(L, hL1 ) + c1(L, hL2 )

)
/2, (1.2.18)

où c1(L, hLi ) est la première forme de Chern.

Définition 1.2.3. Pour une surface aux pointes (M,DM , g
TM), la norme ‖·‖Wi sur les droites

complexes ωM |PMi , i = 1, . . . ,m, est définie par ‖dzMi ‖Wi = 1. Ces normes induisent la norme de
Wolpert‖·‖W sur la ligne complexe ⊗mi=1ωM |PMi .

Remarque 1.2.4. Puisque les coordonnées compatibles au sens de Poincaré sont définies de
manière unique, jusqu’à une multiplication par un constante unimodulaire, les normes‖·‖Wi sont
bien définis. À l’origine les normes‖·‖Wi ont été définis par Wolpert dans [117, Definition 1] pour
des surfaces hyperboliques à courbure scalaire constante −1.
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Théorème 1.2.2 (La formule d’anomalie pour des surfaces aux pointes, [54, Theorem B]). Soit
gTM , gTM0 deux métriques sur M telles qye des triplets (M,DM , g

TM), (M,DM , g
TM
0 ) sont des

surfaces aux pointes. On note par ‖·‖M ,‖·‖0
M les normes induites par gTM , gTM0 on ωM(D), et

par ‖·‖W , ‖·‖W0 les normes de Wolpert associées. Soit hξ, hξ0 deux métriques hermitiennes sur ξ
au-dessus de M . Alors le côté droit de l’équation suivante est fini, et

2 log
(
‖·‖Q

(
gTM0 , hξ0 ⊗ (‖·‖0

M)2n
)/
‖·‖Q

(
gTM , hξ ⊗ ‖·‖2n

M

))
=

∫
M

[
T̃d
(
ωM(D)−1, ‖·‖−2

M , (‖·‖0
M)−2

)
ch
(
ξ, hξ

)
ch
(
ωM(D)n,‖·‖2n

M

)
+ Td

(
ωM(D)−1, (‖·‖0

M)−2
)
c̃h
(
ξ, hξ, hξ0

)
ch
(
ωM(D)n,‖·‖2n

M

)
+ Td

(
ωM(D)−1, (‖·‖0

M)−2
)
ch
(
ξ, hξ0

)
c̃h
(
ωM(D)n,‖·‖2n

M , (‖·‖0
M)2n

)][2]

− rk(ξ)

6
log
(
‖·‖W /‖·‖W0

)
+

1

2

∑
log
(

det(hξ/hξ0)|PMi
)
.

(1.2.19)

Remarque 1.2.5. a) La formule d’anomalie a été prouvé par Polyakov dans [100] pour m = 0,
n = 0 et (ξ, hξ) trivial. Elle a été généralisé par Bismut-Gillet-Soulé [23, Theorem 1.23] pour
m = 0 en dimension quelconque. Pour m = 0, Fay dans [50], a donné une démonstration
alternative de (1.2.19), qui n’utilise pas le noyau de la chaleur. Notre preuve est basé sur Théorème
1.2.1 et la formule d’anomalie pour m = 0.

b) On définit la fonction φ : M → R par l’identité gTM = e2φgTM0 . Si φ est de support compact
dans M , Théorème 1.2.2 est une conséquence directe de la formule d’anomalie de Bismut-Gillet-
Soulé et du Théorème 1.2.1. La différence entre Théorème 1.2.2 et le théorème de Bismut-Gillet-
Soulé est dans les deux dernières termes de (1.2.19):

−rk(ξ)

6
log
(
‖·‖W /‖·‖W0

)
+

1

2

∑
log
(

det(hξ/hξ0)|PMi
)
. (1.2.20)

Pour n = 0 et (ξ, hξ) trivial, Albin-Aldana-Rochon dans [2, Theorem 2.9] en améliorant un
résultat de la thèse de Aldana [6, Theorem 4.5] ont obtenue la version de Théorème 1.2.2. Là
les auteurs ne supposent pas que φ est à support compact, mais ils supposent que le comporte-
ment de φ près de DM est comme (log |z|)−2, ou z est une coordonne holomorphe centré en une
point de DM (voir [2, (2.11)]). Les transformations conformes avec φ, satisfaisant ce type des
hypothèses n’alterne pas la métrique de Wolpert, donc les termes (1.2.20) n’apparaissent pas dans
ses formules, voir [2, Theorem 2.9], [6, Theorem 4.5].

Dans tous nos applications, on utilise substantivement que par la formule d’anomalie, on peut
trivialiser les coordonnées compatibles au sens de Poincaré au voisinage de pointes. En partic-
ulier, on change la métrique de Wolpert par ces trivialisations. L’apparence de termes (1.2.20) est
donc d’importance capitale.

c) Si (ξ, hξ) est trivial et n = 0, un théorème similaire a apparu dans l’article de Lundelius [81,
Theorem 1.1]. Pourtant, on n’est pas d’accord avec son résultat, comme il ne contient pas de
termes (1.2.20).
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En fait, on peut combiner les deux résultats principales dans un seul théorème. Ce théorème
décrit une relation explicite entre la métrique de Quillen associée à une métrique en pointe et la
métrique de Quillen associée à une métrique sur la surface de Riemann compactifié.

Pour le préciser, on va définir l’intégral régularisé sur une surface aux pointes. Soit
(M,DM , g

TM) est une surface avec des pointes. Soit α ∈ C∞(M,∧2TM). On suppose que
pour tout Pi ∈ DM , il y a des coordonnées holomorphes zi autour de Pi ∈ DM , tel que pour
certains ε > 0 assez petit, il y a C ∈ C, l ∈ N telle que

α|{|zi|<ε} =
C · dzidzi
|zi|2| log |zi||

+O

(
log | log |zi||ldzidzi
|zi log |zi||2

)
. (1.2.21)

On définit
∫ r
M
α ∈ C par la limite suivante∫ r

M

α = lim
ε→0

(∫
M\(∪{|zi|<ε})

α− 4Cπ · log | log ε|
)
. (1.2.22)

En d’autres termes,
∫ r
M
α est la partie finie de

∫
M\(∪{|zi|<ε}) α pour ε→ 0.

Théorème 1.2.6 (Théorème de perturbation compacte). Pour n’importe lequel n ∈ Z, n ≤ 0, il
existe E−n. Soit (M,DM , g

TM) est une surface aux pointes. On note par‖·‖M la métrique induite
sur ωM(D) au-dessus de M comme dans la Construction 1.2.8. On note par‖·‖W la métrique de
Wolpert ⊗P∈DMωM |P induit par gTM .

Soit gTM une métrique de Kähler au-dessus de M , et soit‖·‖M une métrique hermitienne sur
ωM(D) au-dessus de M . On note par‖·‖DM

M
la métrique au-dessus ⊗P∈DMωM |P induit par gTM .

Soit ξ un fibré vectoriel holomorphe au-dessus de M , et soit hξ et hξ0 sont deux métriques hermiti-
ennes sur ξ au-dessus de M .

2 ln
(
‖·‖Q

(
gTM , hξ ⊗ ‖·‖2n

M

)/
‖·‖Q

(
gTM , hξ0 ⊗ ‖·‖

2n
M

))
=

∫ r

M

[
T̃d
(
ω−1

M
, gTM , gTM

)
ch
(
ξ, hξ0

)
ch
(
ωM(D)n,‖·‖2n

M

)
+ Td

(
ω−1
M , gTM

)
c̃h
(
ξ, hξ0, h

ξ
)
ch
(
ωM(D)n,‖·‖2n

M

)
+ Td

(
ω−1
M , gTM

)
ch
(
ξ, hξ

)
c̃h
(
ωM(D)n,‖·‖2n

M , ‖·‖2n
M

)][2]

+
rk(ξ)

6
ln
(
‖·‖W /‖·‖DM

M

)
− 1

2

∑
P∈DM

ln
(

det(hξ/hξ0)|P
)

+
(

#(DM) · rk(ξ) · E−n
)
.

(1.2.23)

Remarque 1.2.7. On pourra même calcluler E−n explicitement. Ce calcul est très lié à la preuve
de la théorème principale de la troisième partie de cette thèse et elle est une objet d’une travaille
en cours.
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1.2.2 Théorème de courbure et théorème de la régularité
Dans cette partie de la thèse on va appliquer les résultats de la section précédente à l’étude de la
métrique de Quillen sur des familles dégénérescentes de courbes épointées.

On fixe une application holomorphe, propre, surjective π : X → S entre deux variétés com-
plexes X,S, telle que pour chaque t ∈ S, l’espace Xt := π−1(t) est une courbe complexe qui a
au pire des singularités ordinaires, c’est-à-dire des singularités de type {(z1, z2) ∈ C2 : z1z2 = 0}.
Dans la terminologie de [20], π : X → S est une f.s.o. - famille holomorphe de surfaces de
Riemann à singularités ordinaires. On note ΣX/S ⊂ X le sous-variété de points singulières dans
les fibres de π. On note ∆ = π∗(ΣX/S) le diviseur de fibres singulières. Soit DX/S ⊂ X un
diviseur induit par une sous-variété |DX/S| qui intersecte π−1(|∆|) transversalement et telle que
π||DX/S | : |DX/S| → S est localement un isomorphisme. En d’autres termes, on suppose que pour
tout s ∈ S, il y a un voisinage U de s, et des sections holomorphes disjointes σ1, . . . , σm : U → X
de π, qui ne passent pas par des points singuliers et tels que l’identité suivante est valable

DX/S|π−1(U) := Im(σ1) + · · ·+ Im(σm). (1.2.24)

Ces sections modéliseraient les positions des pointes dans notre famille.
On fixe la norme‖·‖ωX/S sur le fibré relatif canonique ωX/S au-dessus deX\(π−1(|∆|)∪|DX/S|).

On suppose que la restriction de cette norme sur les fibres non-singulières Xt := π−1(t), t ∈
S \ |∆| de π induit la métrique de Kähler gTXt sur Xt \ {σ1(t), . . . , σm(t)} pour laquelle le triplet
(Xt, {σ1(t), . . . , σm(t)}, gTXt) est une surface aux pointes.

Définition 1.2.8. Pour une variété complexe Y et un diviseur D0 ⊂ Y , on note ‖·‖div
D0

la norme
canonique singulière sur OY (D0), définie par l’identité suivante

‖sD0‖div
D0

(x) = 1, (1.2.25)

où sD0 , div(sD0) = D0, est une section canonique de diviseur D0, et x ∈ Y \ |D0|.
On munit le fibré en droites canonique tordu

ωX/S(D) := ωX/S ⊗ OX(DX/S) (1.2.26)

de la norme ‖·‖X/S sur X \ (π−1(|∆|) ∪ |DX/S|), induite par‖·‖ωX/S et‖·‖div
DX/S

.

Soit ξ un fibré vectoriel holomorphe au-dessus de X et hξ une métrique hermitien sur ξ au-
dessus de X \ π−1(|∆|). On considère les droites complexes λ

(
ξ|Xt ⊗ ωX/S(D)n|Xt

)
, t ∈ S \ |∆|

définies comme dans (1.2.6). La construction de Grothendick-Knudsen-Mumford [76] (cf. aussi
[23, §3]) munit ces droites complexes avec la structure du fibré en droites holomoprhe sur S, qu’on
note λ

(
j∗(ξ ⊗ ωX/S(D)n)

)
:=
(

detR•π∗(ξ ⊗ ωX/S(D)n)
)−1.

Les normes de Quillen (1.2.7) (resp. de Wolpert, voir Définition 1.2.3), définit point par
point, induisent la norme de Quillen sur le fibré en droites‖·‖Q (gTXt , hξ ⊗ ‖·‖2n

X/S) sur λ
(
j∗(ξ ⊗

ωX/S(D)n)
)

(resp. de Wolpert ‖·‖WX/S sur det(π∗(ωX/S||DX/S |))) au-dessus de S \ |∆|. On note
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det ξ := Λmaxξ le fibré en droites sur X et par hdet ξ la métrique induite par hξ sur det ξ. On
considère la norme

‖·‖Ln
:=
(
‖·‖Q (gTXt , hξ ⊗ ‖·‖2n

X/S)
)12 ⊗

(
‖·‖WX/S

)−rk(ξ)

⊗
(
‖·‖div

∆

)rk(ξ) ⊗
(

det(π∗(h
det ξ||DX/S |)

)3 (1.2.27)

sur le fibré en droites

Ln := det
(
R•π∗(ξ ⊗ ωX/S(D)n)

)−12 ⊗
(

det(π∗(ωX/S||DX/S |)
)−rk(ξ)

⊗ OS(∆)rk(ξ) ⊗
(

det(π∗(det ξ||DX/S |)
)6
. (1.2.28)

Notre première but dans cette partie de la thèse est d’étudier la régularité de ‖·‖Ln
sur S \ |∆|

et ses singularités près de ∆. On va démontrer que les singularités de ‖·‖Ln
sont suffisamment

raisonnables pour qu’on puisse définir la forme de Chern de (Ln, (‖·‖Ln
)2) comme un courant sur

S. On calcule ce courant explicitement, et ça nous donne le raffinement du théorème de Riemann-
Roch-Grothendieck au niveau des courants.

Pour préciser les hypothèses qu’on mets sur les données, on va utiliser deux types de singularités
des métriques sur le fibrés vectoriells le long d’un diviseur a croisements normaux: la condition
“good” au sens de Mumford [95] et la condition plus faible pre-log-log de Burgos Gil-Kramer-
Kühn [36]. Sans rentrer dans les détails, contentons-nous de dire qu’une métrique “good” ou
pre-log-log est une métrique lisse au complément du diviseur à croisements normaux, dont le
comportement au voisinage de celui-ci est singulier et de type logarithmique en valeur absolue
d’une équation locale du diviseur. Citons les hypothèses, qu’on considère dans cette thèse.

Hypothèse S1. La métrique hermitienne hξ est lisse sur X; la norme hermitienne ‖·‖X/S est
lisse sur X \ |DX/S| et pre-log-log d’ordre infini avec des singularités le long de DX/S .

Hypothèse S2. Le diviseur ∆ a des croisements normaux. La métrique hermitienne hξ est pre-
log-log avec des singularités le long de π−1(∆); la norme hermitienne‖·‖X/S est pre-log-log avec
des singularités le long de π−1(∆) ∪DX/S .

Hypothèse S3. Le diviseur ∆ a des croisements normaux. La métrique hermitienne hξ est lisse
sur X; la norme hermitienne‖·‖X/S est continue sur X \ (ΣX/S ∪|DX/S|), et son comportement au
voisinage de ΣX/S∪|DX/S| est singulier de type double logarithme en valeur absolue du maximum
d’équations locales, qui engendrent ΣX/S ∪ |DX/S|. On suppose que‖·‖X/S est “good” sur X \
|DX/S| avec des singularités le long π−1(∆), et l’accouplement de c1(ωX/S(D),‖·‖2

X/S) avec des
champs de vecteurs lisses verticaux surX\(ΣX/S∪|DX/S|) est continue surX\(ΣX/S∪|DX/S|) et
singulier de type double logarithme en valeur absolue d’une équation locale, qui engendre |DX/S|.

Remarque 1.2.9. Si ∆ a des croisements normaux, alors S1 implique S2 et S3.

Disons quelques mots de motivation à propos de ces hypothèses. Hypothèse S1 est une
généralisation des hypothèses de Bismut-Bost [20] pour m 6= 0. Les hypothèses S2 et S3 sont
intéressantes comme à partir des travaux de Wolpert [116] et Freixas [58], on voit, que des sur-
faces hyperboliques dégénérescentes les satisfait.
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Disons quelques mots pourquoi on considère des hypothèses “pre-log-log” et pas les hypothèses
“good”. La raison principale vient du fait que par le résultat de Burgos Gil-Kramer-Kühn [36],
des formes de Bott-Chern associes aux métriques pre-log-log sont de type pre-log-log. Comme
des formes de Bott-Chern apparaissent naturellement dans la formule d’anomalie (voir Théorème
1.2.2) et dans la définition de normes de Deligne [42, (6.3.1)], cette propriété est fondamentale
dans les questions qu’on étudie. On note aussi que les métriques “good” ne satisfont pas cette
propriété.

Introduisons encore quelques notions des métriques hermitiennes singulières.

Définition 1.2.10. Soit Y une variété complexe et D0 un diviseur dans Y .
a) On suppose que D0 a des croisements normaux et que la fonction f : Y \ |D0| → R est

continue avec la croissance de type double logarithme le long de D0. On note [f ]L1 le courant sur
Y , donné par l’extension L1 de f sur Y . On dit que f est “nice” avec des singularités le long
D0 si les courants ∂[f ]L1 , ∂[f ]L1 , ∂∂[f ]L1 sont données par l’intégration des formes continues sur
Y \ |D0| avec la croissance de type double logarithme le long de D0.

b) Pour x ∈ D0, on fixe un ouvert U ⊂ Y , x ∈ U . Soient h1, . . . , hk, k ∈ N des fonctions
holomorphes dhi(x) 6= 0, i = 1, . . . , k et n1, . . . , nk ∈ N sont telles que D0 est défini sur U par
l’équation {hn1

1 h
n2
2 · · ·h

nk
k = 0}. On dit que la fonction lisse f : Y \|D0| → R est “very nice” avec

des singularités le longD0 si pour chaque x ∈ D0 il existe des fonctions lisses f0, . . . , fk : U → C,
telles que

f = f0 +
k∑
1

fi|hi|2 ln |hi|. (1.2.29)

c) Soit L un fibré en droites holomorphe Y , et soit hL une métrique hermitienne continue sur L
au dessous de Y \ |D0|. Pour x ∈ Y , fixons une section holomorphe υ non-nulle de L au voisinage
U de x. On dit que hL est “very nice” (resp. “nice”) avec des singularités le long de D0 si pour
chaque x et υ, la fonction lnhL(υ, υ) est “very nice” (resp. “nice”) avec des singularités le long
de D0.

Remarque 1.2.11. a) Pour une métrique hermitienne hL, qui est soit “nice” soit “very nice”, on
définit la première forme de Chern comme un courant sur Y , donné par l’identité suivante

c1(L, hL) :=
∂∂[lnhL(υ, υ)]L1

2π
√
−1

. (1.2.30)

Le courant c1(L, hL) est fermé. De plus, par la théorie de Chern-Weil il représente la classe c1(L)
dans la cohomologie de Y .

b) Directement de la définition de la métrique pre-log-log, on voit que si hL est lisse sur Y \D0

et “nice” avec des singularités le long de D0, alors hL est pre-log-log.

Théorème 1.2.3 (Théorème de continuité, [55, Theorem C]). Soit π : X → S une famille de
courbes complexes à singularités ordinaires. Soit ΣX/S la sous-variété de points singuliers sur
les fibres, et soit ∆ := π∗(ΣX/S) le diviseur de courbes singulières. Soit ξ un fibré vectoriel
holomorphe au-dessus de X et hξ une métrique hermitien sur ξ au-dessus de X \ π−1(|∆|).
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SoitDX/S ⊂ X un diviseur induit par une sous-variété |DX/S| qui intersecte π−1(|∆|) transver-
salement et telle que π||DX/S | : |DX/S| → S est localement un isomorphisme. Soit‖·‖ωX/S la norme
sur le fibré en droites canonique ωX/S au-dessus de X \ (π−1(∆) ∪ |DX/S|). On suppose que la
restriction de ‖·‖ωX/S sur chaque fibre non singulière Xt := π−1(t), t ∈ S \ |∆| de π induit la
métrique de Kähler avec pointes à |DX/S| ∩Xt.

On utilise la même notation pour le fibré en droites Ln (voir (1.2.28)), et la norme‖·‖Ln
(voir

(1.2.27)).
1) Sous l’hypothèse S1, la norme‖·‖Ln

est “very nice” (donc, lisse au-dessus de S \ |∆|) avec
des singularités le long de ∆.

2) Sous l’hypothèse S2, la norme‖·‖Ln
est “nice” avec des singularités le long de ∆.

3) Sous l’hypothèse S3, la norme‖·‖Ln
s’éteint continument sur S.

Remarque 1.2.12. a) Pour m = 0, Théorème 1.2.31 donne un résultat de Bismut-Bost [20,
Théorème 2.2]. Cependant, on note que notre preuve utilise [20, Théorème 2.2].

b) On peut se demander si pour n’importe lesquelles π : X → S, DX/S , ... il existe une
métrique‖·‖ωX/S satisfaisant les hypothèses S1. On le démontre dans la section §3.4.6.

Théorème 1.2.4 (Théorème de courbure, [55, Theorem D]). On utilise les notations du Théorème
1.2.3. Sous l’hypothèse S1 (resp. S2), le courant

π∗

[
Td(ωX/S(D)−1,‖·‖−2

X/S)ch(ξ, hξ)ch(ωX/S(D)n,‖·‖2n
X/S)

](2,2)

(1.2.31)

est L1
loc(S). On note par le même symbole son extension L1 sur S. Cette extension est fermé. De

plus, au sens de courants sur S, on a l’identité suivante

c1

(
Ln, ‖·‖2

Ln

)
= −12π∗

[
Td
(
ωX/S(D)−1,‖·‖−2

X/S

)
ch
(
ξ, hξ

)
ch
(
ωX/S(D)n,‖·‖2n

X/S

)](2,2)

. (1.2.32)

Remarque 1.2.13. Sous l’hypothèse S1 et m = 0, Théorème 1.2.4 est exactement Bismut-Bost
[20, Théorème 2.1]. Cependant, on note que notre preuve de Théorème 1.2.4 sous l’hypothèse
S1 utilise [20, Théorème 2.1]. Sous l’hypothèse S2, par contre, on n’utilise que la théorème de
courbure de Bismut-Gillet-Soulé [23].

Décrivons ci-dessous quelques applications des ces résultats à la géométrie de l’espace de mod-
ules Mg,m de courbes stables m-épointées du genre g ∈ N, 2g − 2 + m > 0. On note M g,m la
compactification de Deligne-Mumford de Mg,m, par ∂Mg,m := M g,m \Mg,m le diviseur com-
pactifiant, par Cg,m et C g,m les courbes universelles sur Mg,m et M g,m respectivement. On note

Π : C g,m →M g,m (1.2.33)

la projection universelle. Soit Dg,m le diviseur sur C g,m, induit par les points épointées. On note
ωg,m le fibré relatif canonique de Π, et par ωg,m(D) le fibré en droites relatif canonique tordu,
donné par la formule

ωg,m(D) := ωg,m ⊗ OC g,m
(Dg,m). (1.2.34)
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Par le théorème d’uniformization, (cf. [49, Chapter IV], [9, Lemma 6.2], [10]), on munit ωg,m(D)

de la norme hermitienne ‖·‖hyp
g,m telle que sa restriction sur chaque fibre de π induit par Con-

struction 1.2.8 la métrique dont la courbure scalaire est −1. On considère le fibré determinant
λ(j∗(ωg,m(D)n)), n ≤ 0 sur S, qui est aussi souvent appelé le fibré de Hodge, et on la munit de la
métrique de Quillen‖·‖Q,ng,m induit par‖·‖hyp

g,m. On munit le fibré en droites det(Π∗(ωg,m||Dg,m|)) de
la métrique de Wolpert‖·‖Wg,m induite. On note ωWP la forme de Weil-Petersson sur Mg,m.

Corollaire 1.2.14. La norme

‖·‖H,ng,m := (‖·‖Q,ng,m)12 ⊗ (‖·‖Wg,m)−1 ⊗ ‖·‖div
∂Mg,m

(1.2.35)

sur le fibré en droites

λH,ng,m := λ(j∗(ωg,m(D)n))12 ⊗ (det(Π∗(ωg,m||Dg,m|)))−1 ⊗ OM g,m
(∂Mg,m) (1.2.36)

est “good” au sens de Mumford avec des singularités le long de ∂Mg,m. De plus, elle s’éteint
continument sur M g,m et elle est lisse sur Mg,m.

Remarque 1.2.15. C’est possible de déduire le résultat du Corollaire 1.2.14 à partir de l’isomorphisme
de Deligne [42, Théorème 11.4], du théorème de Riemann-Roch arithmetique pour des surfaces
épointées, prouvé dans cette forme par Gillet-Soulé dans [66] (cf. [65, Proposition 1.5.2]) poir
m = 0, n ≤ 0, par Freixas dans [59, Theorem 6.2] pour n = 0, m ∈ N et dans [60, Theorem
6.2] pour n < 0, m ∈ N, et en utilisant “goodness” de la métrique de Deligne associé, prouvé
par Freixas dans [58, Theorem 5.2.1 and Remark 5.2.4]. Notre démonstration est différente, car
on obtient Corollaire 1.2.14 directement par Théorème 1.2.32.

Par Corollaire 1.2.14 et Remarque 1.2.11, on voit que la première forme de Chern de
(λH,ng,m, (‖·‖

H,n
g,m)2) est bien-définie comme un courant sur M g,m. Comme conséquence triviale du

Théorème 1.2.4, on a

Corollaire 1.2.16. On conserve les notations du Corollaire 1.2.14. La forme ωWP a la croissance
de type log-log le long de ∂Mg,m. On note [ωWP ]L1 son extension L1 sur M g,m. Cette extension
est fermé. De plus, au sens de courants sur M g,m, on a l’identité suivante

c1

(
λH,ng,m, (‖·‖

H,n
g,m)2

)
= −π−2

(
6n2 − 6n+ 1

)[
ωWP

]
L1 . (1.2.37)

Remarque 1.2.17. a) Par le résultat de Wolpert [117, Theorem 5], [114, Corollary 5.11], et
Théorème 1.2.6, Corollaire 1.2.16 est une extension sur M g,m du théorème de courbure de
Takhatajan-Zograf [107, Theorem 1] sur Mg,m. Nos méthodes sont très différents de méthodes
de Takhatajan-Zograf.

b) Le fait que la métrique de Weil-Petersson a la croissance log-log près de ∂Mg,m suit déjà
d’un résultat de Masur [89, Theorem 1]. Le fait que l’extension L1 de ωWP est fermé a été prouvé
par Wolpert dans [113, Theorem 2.3] en utilisant le résultat de Masur.

c) C’est possible de déduire le résultat du Corollaire 1.2.16 à partir de l’isomorphisme de
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Deligne et du théorème de Riemann-Roch arithmetique pour des courbes epointées, prouvé par
Gillet-Soulé et Freixas (voir Remarque 1.2.15), et du quelques propriétés des métriques “good”,
voir Mumford [95, Proposition 1.2]. Notre démonstration du Corollaire 1.2.16 est très différent.
En fait, Corollaire 1.2.16 découle directement des Théorèmes 1.2.32, 1.2.4. Notons aussi que dans
ce cas plusieurs difficultés techniques disparaissent à la démonstration du Théorème 1.2.4 à cause
du fait que la métrique de Weil-Petersson est lisse sur Mg,m. En particulier, la théorie de poten-
tielles pour des courantes de type log-log, qu’on a developpé, n’est pas nécessaire, car on pourrait
simplement utiliser les résultat de Mumford [95, Proposition 1.2].

Comme conséquence triviale de Théorème 1.2.4 et Remarque 1.2.11, on a

Corollaire 1.2.18. On conserve les notations des Corollaires 1.2.14, 1.2.16. La classe coho-
mologique de π−2 ·

[
ωWP

]
L1 dans H2(M g,m,R) coı̈ncide avec c1(λH,ng,m).

Remarque 1.2.19. Corollaire 1.2.18 suit aussi des résultats de Wolpert, voir [111, Lemma 5.4],
[113, Theorem 1.3, §2, Theorem 4.1], mais sa preuve est très différent. En particulier, il a utilisé
l’expression de ωWP en coordonnées Fenchel-Nielsen, il a étudié la régularité de l’application
i : M

FN

g,0 → M g,0, où M
FN

g,0 est une variété homéomorphe à M g,0 muni de la structure
différentielle venant des coordonnées de Fenchel-Nielsen. Après Wolpert a fait un calcul explicit
de l’accouplement de forme Weil-Petersson et certaines 2-cycles analytiques en M g,0.

Comme conséquence triviale de Théorèmes 1.2.33, 1.2.4, on a

Corollaire 1.2.20. La forme de Weil-Petersson ωWP a un potentiel local continue sur M g,m.

Remarque 1.2.21. Corollaire 1.2.20 a été prouvé par Wolpert dans [112, §2]. Il a utilisé cette
corollaire pour donner une preuve analytique de l’amplitude de la classe de la forme de Weil-
Petersson, et donc donner une preuve analytique de la projectivité de M g,m indépendant de la
preuve algébrique par Knudsen-Mumford, [76], [74], [75]. Nos méthodes sont constructives,
donc ils n’utilisent pas le lemme de ∂∂, et ils sont très différentes de méthodes non-constructives
de [112, §2].

Comme conséquence triviale de Théorèmes 1.2.32, 1.2.4 et (1.2.30), on a

Corollaire 1.2.22. On peut décomposer la forme de Weil-Petersson ωWP en somme

ωWP = −π2α + dβ, (1.2.38)

où les formes α, β sont lisses sur Mg,m, et β, dβ ont la croissance de type double logarithme le
long de ∂M g,m, et il existe une métrique hermitienne lisse hsm sur λH,0g,m au-dessus de M g,m telle
que

α = c1(λH,0g,m, hsm). (1.2.39)

En particulier, on a l’identité suivante∫
Mg,m

ω
∧(3g−3+m)
WP = (−π2)3g−3+m

∫
M g,m

c1(λH,0g,m)∧(3g−3+m). (1.2.40)

Le côté gauche de (1.2.40) est donc une multiple rationnelle de la puissance de π.

Remarque 1.2.23. L’identité (1.2.40) a été prouvé par Wolpert dans [112, Corollary 5.3, Lemma
5.4], mais nos méthodes sont très différentes, voir Remarque 1.2.19.
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1.2.3 Théorème de restriction et théorème de compatibilité
Dans le Théorème 1.2.33, on a vu que sous l’hypothèse S3, la norme (1.2.27) sur le fibré en droites
(1.2.28) s’étende continument sur S. Le but principale de cette partie est de donner l’expression
géométrique de cette extension. Ou, autrement dit, on cherche à comprendre le comportement de
la métrique de Quillen lorsque des aux pointes apparaissent en dégénérescence.

Plus précisément, on fixe une application holomorphe, propre, surjective π : X → S entre
deux variétés complexes X,S, telle que pour chaque t ∈ S, l’espace Xt := π−1(t) est une courbe
complexe qui a au pire des singularités ordinaires. On note ΣX/S ⊂ X le sous-variété de points
singulières dans les fibres de π. On note ∆ = π∗(ΣX/S) le diviseur de fibres singulières. On
suppose que ∆ a des croisement normaux. Soit DX/S ⊂ X un diviseur induit par une sous-variété
|DX/S| qui intersecte π−1(|∆|) transversalement et telle que π||DX/S | : |DX/S| → S est localement
un isomorphisme.

En rétrécissant la base S, on peut toujours supposer qu’il existent des sections holomorphes
disjointes σ1, . . . , σm : U → X de π, qui ne passent pas par des points singuliers et tels que
l’identité suivante est valable

DX/S := Im(σ1) + · · ·+ Im(σm). (1.2.41)

Comme on a supposé que ∆ a des croisements normaux, en rétrécissant la base S, on peut toujours
supposer que pour un certain l ∈ N, le diviseur ∆ se décompose comme

∆ = k ·∆0 + k1 ·∆1 + · · ·+ kl ·∆l, (1.2.42)

où ∆i, i = 0, . . . , l sont des diviseurs induits par les sous-variétés |∆i| et k, kj ∈ N∗, j = 1, . . . , l.
On note ∆0

j := ∆j ∩∆0 le diviseur induit sur S ′ := |∆0|, et par ∆′ le diviseur sur S ′ donné par

∆′ := k1 ·∆0
1 + · · ·+ kl ·∆0

l . (1.2.43)

On note ι : S ′ → S l’inclusion évidente. On note Z := π−1(S ′), Zt := π−1(t), t ∈ S ′, et par
ρ : Y → Z la normalisation de Z. On note π′ : Y → S ′ la famille des surfaces, induite par le
diagramme commutatif suivant

Y
ρ−−−→ Xyπ′ yπ

S ′
ι−−−→ S

(1.2.44)

La restriction des sections holomorphes σ1, . . . , σm sur S ′ induit les sections holomorphes, qu’on
note σ′1, . . . , σ

′
m : S ′ → Y .

Soit ΣZ/S′ le lieu des points, qui se normalisent par ρ. La sous-variété ΣZ/S′ est une union de
certaines composantes connexes de ΣX/S . On note

κ : ΣZ/S′ ↪→ X (1.2.45)

l’inclusion évidente. La restriction de π′ sur ρ−1(κ(ΣZ/S′)) est le revêtement de degré 2k, voir
(1.2.42). En rétrécissant la base, on peut supposer que c’est un revêtement trivial, il existe donc
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Xt X0 Y0

t 0

ρ

Figure 1.4: Une famille dégénérescente. Notre objectif est de relier la restriction du norme en
fibres singulières avec une norme sur la normalisation. De gauche à droite, les points représentent
les éléments dans DX/S|Xt , DX/S|X0 et DY/S′ |Y0 .

des sections holomorphes σ′m+1, . . . , σ
′
m+2k : S ′ → Y telles que ρ−1(ΣZ/S′) = ∪2k

i=1 Im(σ′m+i) et
ρ ◦ σ′m+2i−1 = ρ ◦ σ′m+2i, i = 1, . . . , k. On définit le diviseur DY/S′ sur Y par

DY/S′ := Im(σ′1) + · · ·+ Im(σ′m+2k). (1.2.46)

On définit le fibré en droites canonique tordu par

ωY/S′(D) := ωY/S′ ⊗ OY (DY/S′). (1.2.47)

On a l’isomorphisme canonique

ρ∗(ωX/S(D)) ' ωY/S′(D). (1.2.48)

Sous l’hypothèse S3, l’isomorphisme (1.2.48) induit la norme hermitienne ‖·‖Y/S′ sur ωY/S′(D)
au-dessus de Y \ |DY/S′| par

‖·‖Y/S′ := ρ∗(‖·‖X/S). (1.2.49)

On note ‖·‖ωY/S′ la norme hermitienne sur ωY/S′ induite par ‖·‖Y/S′ comme dans la Construction
1.2.8. Les normes‖·‖Y/S′ ,‖·‖

ω
Y/S′ sont défini au-dessus de Y \ ((π′)−1(|∆′|) ∪ |DY/S′|).

On suppose que la norme hermitienne‖·‖ωY/S′ sur Y \ (π−1(|∆′|) ∪ |DY/S′|) est

telle que sa restriction sur chaque fibre non singulière Yt := (π′)−1(t), t ∈ S ′ \ |∆′|
de π′ induit la métrique kählérienne gTYt , pour laquel le triplet

(Yt, {σ′1(t), . . . , σ′m+2k(t)}, gTYt) est une surface aux pointes.

(1.2.50)

On note‖·‖WY/S′ la norme de Wolpert sur ⊗m+2k
i=1 (σ′i)

∗ωY/S′ , induite par‖·‖ωY/S′ . Maintenant, par
une analogie avec (1.2.27), (1.2.28), on définit la norme hermitienne
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‖·‖L ′n :=
(
‖·‖Q (gTYt , ρ∗(hξ)⊗ ‖·‖2n

Y/S′)
)12 ⊗

(
‖·‖WY/S′

)−rk(ξ)

⊗
(
‖·‖div

∆′

)rk(ξ) ⊗
(
⊗m+2k
i=1 (σ′i ◦ ρ)∗hdet ξ

)3 (1.2.51)

sur le fibré en droites

L ′
n := λ

(
j∗(ρ∗(ξ)⊗ ωY/S′(D)n)

)12 ⊗ (⊗m+2k
i=1 (σ′i)

∗ωY/S′)
−rk(ξ)

⊗ OS′(∆
′)rk(ξ) ⊗

(
⊗m+2k
i=1 (σ′i ◦ ρ)∗ det ξ

)6
. (1.2.52)

On note NΣZ/S′/X
(resp. NS′/S) le fibré vectoriel normal de ΣZ/S′ en X (resp. de S ′ en S).

Comme les fibres de la famille π n’ont que des singularités ordinaires, la projection π induit
l’isomorphisme canonique

dπ2 : ∧2NΣZ/S′/X
→ κ∗π∗NS′/S. (1.2.53)

Pour chaque i = 1, . . . , k, l’application de normalisation ρ induit l’isomorphisme canonique

(σ′m+2i−1)∗(TY/S ′)⊗ (σ′m+2i)
∗(TY/S ′)→ ∧2NΣZ/S′/X

. (1.2.54)

On note ωS et ωS′ les fibrés en droites canoniques sur S et S ′. En combinant les duales des
isomorphismes (1.2.53), (1.2.54), on obtient l’isomorphisme canonique

(ωS ⊗ ω−1
S′ )|S′ → (σ′m+2i−1)∗(ωY/S′)⊗ (σ′m+2i)

∗(ωY/S′). (1.2.55)

Le morphisme de résidu de Poincaré donne l’isomorphisme canonique

(ωkS ⊗ OS(k∆0))|S′ → ωkS′ . (1.2.56)

En combinant l’isomorphisme (1.2.55), appliqué pour chaque i = 1, . . . , k, l’isomorphisme (1.2.56)
et en multipliant par (⊗mi=1σ

∗
i ωX/S)−1 ⊗ OS(

∑
ki∆i), on obtient l’isomorphisme canonique((

⊗mi=1 σ
∗
i ωX/S

)−1 ⊗ OS(∆)
)∣∣
S′
→
(
⊗m+2k
i=1 (σ′i)

∗ωY/S′
)−1 ⊗ OS′(∆

′). (1.2.57)

Pour t ∈ S ′, on a la suite exacte de faisceaux (cf. [18, (5.53)])

0→ OZt

(
j∗(ξ ⊗ ωX/S(D)n)

)
→ ρ∗OYt

(
j∗(ρ∗(ξ)⊗ ωY/S′(D)n)

)
→ OΣZ/S′

(
κ∗ξ ⊗ det(ρ∗Oρ−1ΣZ/S′

)
)
→ 0, (1.2.58)

où la première flèche est induite par le pull-back, et la deuxième flèche est la différence de résidus
évaluées en points de ρ−1(ΣZ/S′). La suite exacte courte (1.2.58) induite l’isomorphisme canon-
ique (cf. [18, (5.55)])

λ
(
j∗(ξ ⊗ ωX/S(D)n)

)
|S′ → λ

(
j∗(ρ∗(ξ)⊗ ωY/S′(D)n)

)
⊗ det

(
π∗(κ

∗(ξ))
)
⊗ det

(
(π ◦ ρ)∗Oρ−1ΣZ/S′

)rk(ξ)
. (1.2.59)
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On note que det((π ◦ ρ)∗Oρ−1ΣZ/S′
) est un fibré en droites avec un carré canoniquement trivial.

À partir de maintenant, on ne mentionne pas explicitement ses puissances. Trivialement, on a un
isomorphisme

det
(
π∗(κ

∗(ξ))
)2 →

(
⊗2k
i=1 (σ′m+i ◦ ρ)∗ det ξ

)
⊗
(

detπ∗OΣZ/S′

)2·rk(ξ)
. (1.2.60)

La composition des isomorphismes (1.2.57), (1.2.59) et (1.2.60) induit l’isomorphisme canonique

Ln|S′ → L ′
n ⊗

(
detπ∗OΣZ/S′

)12·rk(ξ)
, (1.2.61)

qui est le protagoniste de cette partie de la thèse.
Pour k ∈ N∗, on note

C0 = −6 log(π), Ck = −6(1 + k) log(2)− 6(1 + 2k) log(π)− 6 log((2k)!). (1.2.62)

Le résultat suivant est le résultat principal de cette partie de la thèse, et il décrit l’extension
continue de la norme (1.2.27) en termes des mêmes objets qu’on a utilisés dans la définition de
(1.2.27).

Théorème 1.2.5 (Théorème de restriction, [56, Theorem 1.2]). Soit π : X → S une famille de
courbes complexes à singularités ordinaires. On suppose que le diviseur de courbes singuliers ∆
se décompose comme (1.2.42). Soit k ∈ N et S ′ sont comme dans (1.2.43).

Soit σ1, . . . , σm : S → X des sections holomorphes disjointes de π, qui ne passent pas par des
points singuliers des fibres. On note par DX/S le diviseur (1.2.41).

Soit ‖·‖ωX/S le norme hermitienne sur le fibré en droites canonique ωX/S au-dessus de X \
(π−1(|∆|) ∪ |DX/S|) telle que sa restriction sur chaque fibre Xt := π−1(t), t ∈ S \ |∆|
induit la métrique kählerienne gTXt as-dessus de Xt \ {σ1(t), . . . , σm(t)} telle que le triplet
(Xt, {σ1(t), . . . , σm(t)}, gTXt) est une surface aux pointes dans le sens de §1.2.1.

Soit (ξ, hξ) fibré hermitienne au-dessus de X . On utilise la notation‖·‖Ln
et Ln comme dans

(1.2.27), (1.2.28). On définit une famille de courbes complexes à singularités ordinaires π′ : Y →
S ′ comme dans (1.2.44). On suppose que les hypothèses S3 du Théorème 1.2.3 et les hypothèses
(1.2.50) sont vérifiées. On utilise la notation‖·‖L ′n et L ′

n comme dans (1.2.51), (1.2.52).
La norme‖·‖Ln

s’étend continument S et sous l’isomorphisme (1.2.61), l’identité suivante est
vraie

‖·‖Ln
|S′ = exp(m · rk(ξ) · C−n) ·‖·‖L ′n . (1.2.63)

Remarque 1.2.24. On note qu’un théorème similaire a été prouvé par Bismut dans [18, Theorems
0.2, 0.3], et malgré le fait qu’on utilise [18, Theorems 0.3] dans notre preuve de Théorème 1.2.5,
les situations géométriques considérées ici et dans [18] sont très différentes. Contrairement à
[18], la situation décrit dans cet article est adapté pour des familles des surfaces de Riemann
dégénérescentes. On note que même dans le cas m = 0, la fibre singulière dans notre situation a
toujours au moins deux pointes. En particulier, on ne peut pas obtenir Théorème 1.2.5 directement
à partir de [18, Theorems 0.2, 0.3] et de la formule d’anomalie.
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Décrivons le deuxième résultat de cette partie de la thèse. On fixe le surface aux pointes
(M,DM , g

TM
hyp ) à courbure scalaire constante. Comme (M,DM , g

TM
hyp ) est une surface aux pointes,

la torsion analytique T (gTMhyp , (‖·‖
hyp
M )2n) est bien-défini.

Alternativement, soit Z(M,DM )(s), s ∈ C la fonction zêta de Selberg, donnée pour Re(s) > 1
par la formule suivante

Z(M,DM )(s) =
∏
γ

∞∏
k=0

(1− e−(s+k)l(γ))2, (1.2.64)

où γ parcours l’ensemble de toutes les géodésiques fermées simples non orientées sur (M, gTMhyp ),
et l(γ) est la longueur de γ. La fonction Z(M,DM )(s) admet une extension méromorphe sur C avec
une zéro simple en s = 1 (voir par exemple [44, (5.3)]).

Soit ζ(s) :=
∑∞

i=1 i
−s la fonction zêta de Riemann. Pour k ∈ N∗, on met

c0 = 4ζ ′(−1)− 1
2

+ log(2π),

ck =
∑k−1

l=0 (2k − 2l − 1)
(

log(2k + 2kl − l2 − l)− log(2)
)

+ (1
3

+ k + k2) log(2)

+ (2k + 1) log(2π) + 4ζ ′(−1)− 2(k + 1
2
)2 − 4

∑k−1
l=1 log(l!)− 2 log(k!).

(1.2.65)

Pour k ∈ N, on note Ck : N2 → R, E : N2 → R les fonctions suivantes

Bk(g,m) = exp
(

(2− 2g(M)−m)
ck
2

)
,

E(g,m) = exp
(

(g(M) + 2−m)
log(2)

3

)
.

(1.2.66)

En particulier, on voit que pour tout k ∈ N, (g,m) ∈ N2, on a

Bk(g +m, 0) = Bk(g,m) ·Bk(1, 1)m. (1.2.67)

Alors pour l ∈ Z, l < 0, Takhtajan-Zograf dans [107, (6)] ont proposé2 l’analogue de défini à
l’aide de la fonction zêta de Selberg par

TTZ(gTMhyp , 1) = E(g(M),m) ·B0(g(M),m) · Z ′
(M,DM )

(1),

TTZ(gTMhyp , (‖·‖
hyp
M )2l) = B−l(g(M),m) · Z(M,DM )(−l + 1).

(1.2.68)

Théorème 1.2.6 (Théorème de compatibilité, [56, Theorem 1.4]). Notre définition de la torsion
analytique est compatible avec la définition de Takhtajan-Zograf. C’est-à-dire pour n’importe
laquelle surface aux pointes (M,DM , g

TM
hyp ) muni de la métrique de la courbure scalaire constant,

on a
T (gTMhyp , (‖·‖

hyp
M )2n) = TTZ(gTMhyp , (‖·‖

hyp
M )2n). (1.2.69)

2La constante devant la fonction zêta de Selberg n’a pas apparu dans [107], car le résultat de Takhtajan-Zograf n’en
dépend pas. La constante de la normalisation de TTZ(gTMhyp , (‖·‖

hyp
M )2l) coı̈ncide avec Freixas [59], [60].
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Remarque 1.2.25. Pour m = 0, Théorème 1.2.6 a été prouvé par Phong-D’Hoker [44, (7.30)],
[45, (3.6)] (voir [104], [29, (50)] et [99, (9)]). Notre preuve est basée sur leur résultat. On note
aussi que Albin-Rochon dans [4] ont prouvé (1.2.69) jusqu’à une multiplication par une constante
universelle, mais nos approches sont très différentes.

Décrivons maintenant les applications des Théorèmes 1.2.5, 1.2.6 dans l’étude de l’espace des
modules Mg,m de surfaces de Riemann m-épointées de genre g ∈ N, 2g − 2 +m > 0.

Pour la définition des morphismes de clutching

αij : M g−1,m+2 →M g,m,

βP(g1,m1),(g2,m2) : M g1,m1+1 ×M g2,m2+1 →M g,m,
(1.2.70)

où i < j, i, j = 1, . . . ,m+2;m1,m2 ∈ N, g1, g2 ∈ N,m1+m2 = m, g1+g2 = g, 2g1+m1−2 > 0,
2g2+m2−2 > 0 et P ∈ {I, J ⊂ {1, 2, . . . ,m} : I∩J = ∅, I∪J = {1, 2, . . . ,m}, |I| = m1, |J | =
m2}, voir Knudsen [74]. On rappelle que le diviseur compactifiant ∂Mg,m peut s’écrire en termes
de (1.2.70) par (voir [8, p.262])∣∣∂Mg,m

∣∣ =
(
∪ Im(αij)

)
∪
(
∪ Im

(
βP(g1,m1),(g2,m2)

))
. (1.2.71)

À partir de maintenant et jusqu’à la fin, par souci de brièveté, on supprime les indices de α, β.
Après une application de la formule d’adjonction, qui affirme la trivialité canonique du fibré en

droites Π∗(ωg,m(D)||Dg,m|), l’isomorphisme (1.2.61) spécifie dans ce cas aux isomorphismes

α∗λH,ng,m ' λH,ng−1,m2
, (1.2.72)

β∗λH,ng,m ' λH,ng1,m1+1 � λ
H,n
g2,m2+1, (1.2.73)

qui respectent la structure Z naturelle de fibrés en droites (1.2.36), voir Knudsen [75, Theorem
4.2] (cf. [59]). Ici on a utilisé la notation LX � LY pour le fibrés en droites sur X × Y , qui est
donné par π∗XLX ⊗ π∗YLY pour certains fibrés en droites LX , LY sur les variétés complexes X et
Y respectivement, et projections naturelles πX : X × Y → X et πY : X × Y → Y .

Théorème 1.2.26 (Théorème de restriction sur M g,m). a) L’isomorphisme (1.2.72) est une isométrie
si le côté gauche est muni de‖·‖H,ng,m , et le côté droite est muni de exp(mC−n) ·‖·‖H,ng−1,m+2.

b) De même, l’isomorphisme (1.2.73) est une isométrie si le côté gauche est muni de la norme
‖·‖H,ng,m , le côté droite est muni de la norme exp(mC−n) · (‖·‖H,ng1,m1+1 �‖·‖

H,n
g2,m2+1).

Remarque 1.2.27. Dans [59, Corollary 6.5], Freixas a prouvé Théorème 1.2.26b) pour n = 0
avec la norme Quillen, défini comme un produit de la torsion analytique de Takhtajan-Zograf
et de la norme L2. Puis dans [60, Theorem 5.3] il a généralisé ce résultat pour n ≤ 0. Par
Théorème 1.2.6, ses résultats découle du Théorème 1.2.26. Cependant, on note que notre preuve
du Théorème 1.2.5, qui est une généralisation du Théorème 1.2.26 est basé sur le calcul effectué
par Freixas dans ces articles.
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1.2.4 Conclusion
Tout d’abord, on note que Théorème 1.2.5 suggère que la renormalisation

T ren(gTXt , hξ ⊗ ‖·‖2n
X/S) := exp(m · rk(ξ)C−n/12) · T (gTXt , hξ ⊗ ‖·‖2n

X/S) (1.2.74)

est plus naturel du point de vue du théorème de restriction. La même normalisation a été fait par
Freixas dans [59, Definition 2.2], [60, Definition 4.2] pour (ξ, hξ) trivial etM surface hyperbolique
stable, muni de la métrique à courbure scalaire constante −1.

Proposons maintenant des directions dans lesquelles nos résultats pourront être utiles.
En combinant la définition de la torsion analytique pour des surfaces avec des pointes hyper-

boliques, qu’on a introduit, et la torsion analytique d’orbifold de Ma [83], on peut définir la torsion
analytique T (gTM , hξ ⊗‖·‖2n

M ) pour une orbisurface (M, gTM) avec des pointes DM ⊂ M et
singularités D′M ⊂ M , où n ≤ 0 et ‖·‖M est la norme induite sur le fibré en droites orbifold
canonique tordu ωM(D). Cette définition devrait généraliser à la fois la torsion analytique de
Takhtajan-Zograf [109], qui est fait pour des orbisurfaces hyperboliques stables et (ξ, hξ) trivial, et
de Freixas-von Pippich [61], qui est fait pour des orbisurfaces hyperboliques stables, (ξ, hξ) trivial
et n = 0.

Comme nos méthodes dans la preuve du Théorème 1.2.1 sont locales, l’analogue du Théorème
1.2.1 devra toujours être vraie. Précisons aussi que on a obtenu Théorème 1.2.2 en combinant
Théorème 1.2.1 et la formule d’anomalie de Bismut-Gillet-Soulé [21, Theorem 1.23]. Si on rem-
place la dernière référence par son analogue orbifold de Ma [83, Theorem 0.1], il serait possible
d’obtenir un analogue du Théorème 1.2.2 pour des orbisurfaces. Ça nous donne un espoir qu’on
peut déduire des analogues de théorèmes de courbure et restriction pour des orbisurfaces par des
mêmes méthodes qu’on a utilisé dans le cas de surfaces de Riemann.

Ça sera très interessant de comprendre la relation entre cette approche avec des résultates des
articles de Takhtajan-Zograf [109] et Freixas-Pippich, [61].
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Chapter 2

On the full asymptotic of the analytic
torsion

Abstract. The purpose of this article is to study the asymptotic expansion of Ray-Singer analytic
torsion associated with powers p of a given positive line bundle over a compact n-dimensional
complex manifold, as p→∞. Here we prove that the asymptotic expansion contains only the
terms of the form pn−i log p, pn−i for i ∈ N. For the first two leading terms it was proved by
Bismut-Vasserot. We calculate the coefficients of the terms pn−1 log p, pn−1 in the Kähler case and
thus answer the question posed in the recent work of Klevtsov-Ma-Marinescu-Wiegmann about
quantum Hall effect. Our second result concerns the general asymptotic expansion of the analytic
torsion for a compact complex orbifold.
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2.1 Introduction
The holomorphic analytic torsion was introduced by Ray-Singer in [103]. It is a number T (gTM , hE)
defined for a holomorphic Hermitian vector bundle (E, hE) over a compact Hermitian manifold
(M, gTM ,Θ) as the regularized determinant of the Kodaira Laplacian �E = ∂E ∂E∗ + ∂E∗∂E ,
acting on the vector space of sections of the vector bundle Λ•(T ∗(0,1)M)⊗ E.

Let L be a positive Hermitian line bundle over M , dimCM = n. In [27], Bismut-Vasserot
obtained the asymptotics of log T (gTM , hL

p⊗E) as p → +∞, (here Lp := L⊗p), and they gave
an explicit formula for the coefficients of the leading terms pn log p, pn of the expansion. This
asymptotic expansion played an important role in a result of arithmetic ampleness (see Gillet-
Soulé [66], [106, Chapter VIII]). In this article we obtain a general formula for it in the orbifold’s
setting. The general strategy of the proof is the same as in the article [27]: we study this asymptotic
expansion by studying the heat kernel of the rescaled Kodaira Laplacian �Lp⊗E/p. We use func-
tional analysis approach inspired by Bismut-Lebeau [25] and realized in Ma-Marinescu [85, §5.5].
Certainly, one expects that the probability approach of [27] could also be applied. In Theorem
2.1.3 we also give an explicit formula for the coefficients of the subsequent terms pn−1 log p, pn−1.

Now let’s describe our results more precisely. Let (M, gTM ,Θ) be a compact Hermitian mani-
fold of complex dimension n. Let (E, hE) be a holomorphic Hermitian vector bundle over M with
first Chern class c1(E) and rank rk(E). Let (L, hL) be a Hermitian positive line bundle over M .
Let’s denote by ω the 2-form defined by

ω := c1(L, hL) :=

√
−1

2π
RL, (2.1.1)

where RL is the curvature of the Chern connection on (L, hL). We define R̊L ∈ End(T (1,0)M) by

gTM(R̊LU, V ) = RL(U, V ), U, V ∈ T (1,0)M. (2.1.2)

We denote by T (gTM , hL
p⊗E) the analytic torsion of Lp ⊗ E associated with gTM , hL, hE (see

Definition 2.2.3). From now on, “a local coefficient” means that it can be expressed as an integral
of a density defined locally over M . Our first result (cf. Theorem 2.2.7) is

Theorem 2.1.1. There are local coefficients αi, βi ∈ R, i ∈ N such that for any k ∈ N, as p→ +∞

−2 log T (gTM , hL
p⊗E) =

∑k
i=0 p

n−i(αi log p+ βi) + o(pn−k), (2.1.3)

Moreover, the coefficients αi do not depend on gTM , hL, hE .

Remark 2.1.2. Moreover, in the case if M is the fiber of a proper holomorphic submersion, we
prove in Section 2.3.3 that αi, βi are smooth over the base of the family, and derivatives over the
base commute with the asymptotics (2.1.3).

We note that in [27, Theorem 8], Bismut-Vasserot proved Theorem 2.1.1 for k = 0. They
computed

α0 =
n rk(E)

2

∫
M

ωn

n!
, β0 =

rk(E)

2

∫
M

log
(

det
R̊L

2π

)ωn
n!
. (2.1.4)
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Theorem 2.1.3. If Θ = ω, we have

α1 =
(3n+ 1)rk(E)

12

∫
M

c1(TM)
ωn−1

(n− 1)!
+
n

2

∫
M

c1(E)
ωn−1

(n− 1)!
, (2.1.5)

β1 =
rk(E)

24
(24ζ ′(−1) + 2 log(2π) + 7)

∫
M

c1(TM)
ωn−1

(n− 1)!
+

1

2

∫
M

c1(E)
ωn−1

(n− 1)!
. (2.1.6)

Remark 2.1.4. In the special case when M is a Riemann surface Theorem 2.1.3 gives a precise
version of some results concerning quantum Hall effect in physics, see [73, p. 839], [52, §5].

In Section 2.4.3 we verify this result for the case M = CP1, L = O(1) by calculating the
coefficients of the asymptotic expansion of T (gFS, hO(p)) as p → +∞, for the Fubini-Study
metric gFS . In Section 2.4.3 we also discuss the informal relation of our result with the arith-
metic Riemann-Roch theorem of Gillet-Soulé [66]. We also make a connection with [73], where
Klevtsov-Ma-Marinescu-Wiegmann conjectured [73, p.839] the coefficient of the term log p and
the constant term for Riemann surfaces. As it turns out, their conjecture is true for log p, but not
for the constant term, see Section 2.4.3.

Our last result (cf. Theorem 2.5.12 for a precise statement) is a generalization of Theorem 2.1.1
to the orbifold’s case. Let (M, gTM,Θ) be a compact effective Hermitian orbifold with strata ΣM
(see Definition 2.5.5). We denote by ΣM[j] for j ∈ J the connected components of ΣM, by nj it’s
dimension. Let (E , hE) be a proper holomorphic Hermitian orbifold vector bundle (see Definition
2.5.3) onM and let (L, hL) be a proper Hermitian positive orbifold line bundle onM.

Theorem 2.1.5. There are local coefficients α̃i, β̃i ∈ R and mj ∈ N, γj,i, κj,i ∈ R, j ∈ J, i ∈ N
such that we have the following asymptotic expansion for any k ∈ N, as p→ +∞

− 2 log T (gTM, hL
p⊗E) =

k∑
i=0

pn−i
(
α̃i log p+ β̃i

)
+

k+nj−n∑
i=0

∑
j∈J

pnj−i

mj

e
√
−1θjp

(
γj,i log p+ κj,i

)
+ o(pn−k). (2.1.7)

The values θj, γj,i, κj,i,mj depend only on the local geometry around the singular set ofM, and

α̃0 =
n rk(E)

2

∫
M

ωn

n!
, β̃0 =

rk(E)

2

∫
M

log
(

det
R̊L

2π

)ωn
n!
, (2.1.8)

where ω̃ and R̊L are the orbifold analogues of (2.1.1) and (2.1.2). There are cj 6= 0 such that

γj,0 =

{
cj
∫

ΣM[j]
ω̃n−1

(n−1)!
, if codim ΣM[j] = 1,

0, otherwise.
(2.1.9)

Similarly to the manifold’s case, the constants α̃i, γj,i do not depend on gTM ,hL
p
, hE . When

Θ = ω, α̃1, β̃1 are given by (2.1.5) and (2.1.6) after replacing M byM.
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Corollary 2.1.6. The set {T (gTM, hL
p⊗E) : p ∈ N} detects the singularities of codimension 1.

Remark 2.1.7. 1. Since for the stabilizers Gx of x ∈ M, there are only finitely many possible
values of {|Gx|, x ∈ M}, one can take q ∈ N, such that Gx acts as identity on Lqx for any x ∈ M ;
thus, qθj ∈ 2πN (see (2.5.5)) and the asymptotic expansion for p = qk, k ∈ N has only terms
pn−i log p, pn−i for i ∈ N in (2.1.7).

2. We see that Theorem 2.1.5 is a generalization of Theorem 2.1.1, but to facilitate, we present
firstly a proof of Theorem 2.1.1 and then explain the necessary modifications to get Theorem 2.1.5.

3. The coefficients α̃i, β̃i are the orbifold’s versions of αi, βi. Rigorously, this means that
each αi, βi is an integral of a local quantity and α̃i, β̃i are just the integrals of the same quantities
defined in an orbifold chart. Thus, by Theorem 2.1.5 we see that if the singularities ofM appear in
codimension at least 2, the coefficients of pn−1 log p, pn−1 of the expansion of log T (gTM, hL

p⊗E)
are given by the same formulas as in Theorem 2.1.3. In general, we may express the coefficient
κj,0 with the help of Mellin transform (see Theorem 2.5.12, (2.5.50)), but we don’t pursue the
simplification of this formula.

When an orbifoldM is obtained as a quotient of a transversal locally free CR S1-action on a
smooth CR manifold, Theorem 2.1.5 gives a refinement of the main result of Hsiao-Huang [68],
see Section 2.5.3 for detailed explanation.

Now we describe some history of related problems and propose some directions in which
our results might be useful. In the article [28], Bismut-Vasserot generalized [27] by computing
the asymptotic expansion of log T (gTM , hE⊗Sympζ), as p → +∞, where (ζ, gζ) is a Hermitian
Griffiths-positive vector bundle and (E, hE) is a holomorphic Hermitian vector bundle. Recently,
Puchol [101] obtained a generalization of this result to the family case. Let’s describe his result
more precisely.

Let π : X → B be a proper holomorphic Kähler fibration with a compact fiber M in the sense
of [22, Definition 1.4], i.e. there exists a closed (1,1)-form ωfam such that its restriction on the
fibers of π gives a Kähler form. Let (E, hE) be a holomorphic Hermitian vector bundle over X .
We suppose that the direct image sheaf R•π∗E is locally free, i.e. the Dolbeaut cohomology of
E along the fibers is a holomorphic bundle. In [24], Bismut-Köhler introduced the torsion form
T (ωfam, h

E), which is a smooth differential form on B, satisfying

T (ωfam, h
E)[0] = −2 log T (gTM , hE), where [0] denotes 0-degree component, (2.1.10)

∂∂

2π
√
−1
T (ωfam, h

E) =
∑
i

(−1)ich(H i(M,E|M), hH
i(M,E|M ))−

∫
M

Td(TM, hTM)ch(E, hE),

where hH•(M,E|M ) is L2-metric, and ch(·, ·), Td(·, ·) are the corresponding Chern and Todd forms.
In particular, we see that the second identity gives a refinement of Grothendieck-Riemann-Roch
theorem on the level of differential forms. In [35] Freixas-Burgos-Liţcanu gave an axiomatic
definition of those torsion forms and later used this result in [34] to generalize the arithmetic
Grothendieck-Riemann-Roch theorem. See [88] and [66], [63] for another interesting applications
of torsion forms in Arakelov geometry.

Puchol in [101] obtained the first term of the asymptotic expansion of T (ωfam, Fp) when Fp is
the direct image of the sheaf associated to the increasing powers p of a line bundle, which is positive
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along fibers. The main result of Bismut-Vasserot in [28] follows from considering the direct image
of the canonical line bundle on the projective fibration associated to the vector bundle Fp on a
“family” of manifolds over a point. In [19, §3], Bismut generalized the definition of torsion forms
to the case of a holomorphic fibration (which is not necessarily Kähler). It is natural to expect
that one can combine our result with [19, §3] and [101] to get a general asymptotic expansion
of the torsion forms for a holomorphic fibration. However in this paper we only work with the
analytic torsion under the assumptions of Bismut-Vasserot in [27]. We hope, in this way we can
present clearly the ideas and avoid to introduce the sophisticated techniques as Toeplitz operators
(cf. [85, §7]), Bismut superconnection [15], etc. We hope to come back to the general case very
soon.

A similar question in realms of the real analytic torsion was considered in [94], [26]. See also
[11], [33] for related topics. For the analytic torsion on orbiolds, see [83], [61]. See [118], [119]
for the application of the analytic torsion to the moduli space of K3 surfaces and [87] for the ap-
plication in Calabi-Yau theefolds. There are many applications of the analytic torsion in Arakelov
geometry, see [78] and later works of these authors, where they proved Lefschetz fixed point for-
mula in Arakelov geometry. The results on the equivariant analytic torsion play an important role
in their proof.

This article is organized as follows. In Section 2 we recall some properties of the Mellin trans-
form and the definition of the holomorphic analytic torsion. We give a proof of Theorem 2.1.1,
relying on some technical tools, which we prove later in Section 3. In Section 3 we also explain
some facts about diagonal and off-diagonal expansion of the heat kernel of the operator �Lp⊗E/p.
In Section 4 we prove Theorem 2.1.3, we compare it with [73] and we give a relation to the
arithmetic Riemann-Roch theorem. In Section 5 we recall the basics of the orbifolds, we prove
Theorem 2.1.5 and we describe a connection between Theorem 2.1.5 and [68].

Notation. In this article denote by N∗ the set N \ {0}, by T (1,0)M the holomorphic tangent
bundle of M (see §2.2) and by T (0,1)M := T (1,0)M the antiholomorphic tangent bundle,

T ∗(0,1)M = (T (0,1)M)∗, Ω(0,j)(M,E) = C∞
(
M,Λj(T ∗(0,1)M)⊗ E

)
,

Ω(0,•)(M,E) = ⊕Ω(0,j)(M,E), Ω(0,>0)(M,E) = ⊕j>0Ω(0,j)(M,E).

Let N be the number operator on the Z-graded vector space Ω(0,•)(M,E), i.e.

N · α = jα, α ∈ Ω(0,j)(M,E). (2.1.11)

This induces a Z2-grading ε = (−1)N on Ω(0,•)(M,E). In general, let A be an operator which acts
on Z2-graded vector space (V, ε), its supertrace is defined as Trs

[
A
]

= Tr
[
εA
]
. Sometimes, to

make things more precise, we denote its trace/supertrace by TrV [A],Trs
V [A].

Note. This chapter has been published in the same form as it appears here in [53].

2.2 Asymptotics of heat kernels, Theorem 2.1.1
This is an introductory section. In Section 2.1 we recall the definition of the holomorphic analytic
torsion. In Section 2.2 we recall some machinery for studying it and we give a proof of Theorem
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2.1.1. Compared to [27] and [85, §5.4], the major contribution of this section is Proposition 2.2.10.

2.2.1 Holomorphic analytic torsion
Before explaining our geometric situation, let’s recall the Mellin transform:

Definition 2.2.1 (The Mellin transform). Let f ∈ C∞(]0,+∞[) satisfies the following assump-
tions

1. There exists m ∈ N such that for any k ∈ N, there is an asymptotic expansion as t→ +0

f(t) =
∑k

i=−m fit
i + o(tk), (2.2.1)

2. There are λ,C > 0 such that for t� 1

|f(t)| ≤ Ce−tλ. (2.2.2)

The Mellin transform of f is the function M
[
f
]
, defined on the complex half-plane Re z > m by

M
[
f
]
(z) := 1

Γ(z)

∫ +∞
0

f(t)tz−1 dt. (2.2.3)

It is well-known that M
[
f
]

extends holomorphically around 0, and we have (cf. [12, Lemma 9.35])

M
[
f
]
(0) = f0,

M
[
f
]′

(0) =
∫ 1

0

(
f(t)−

∑0
i=−m fit

i
)
dt
t

+
∫ +∞

1
f(t) dt

t
+
∑−1

i=−m
1
i
fi − Γ′(1)f0.

(2.2.4)

Notation 2.2.2. Let’s suppose that a function f :]0,+∞[→ R satisfies (2.2.1). We denote fi by
f [i].

Now let’s recall the main object of this article: the analytic torsion. Let (M,J) be a complex
manifold with complex structure J . Let gTM be a Riemannian metric on TM compatible with J ,
and let Θ = gTM(J ·, ·) be the associated (1, 1)-form. We call (M, gTM ,Θ) a Hermitian manifold.

Let (M, gTM ,Θ) be a compact Hermitian manifold of complex dimension n. The Riemann
volume form dvM is given by

dvM := 1
n!

Θn. (2.2.5)

Let’s denote by rM the scalar curvature of gTM and by 〈·, ·〉 the C-linear extension of gTM to
TM ⊗R C. We denote by T (1,0)M the i-eigenspace of J ∈ End(TM ⊗R C) and by T (0,1)M

the−i-eigenspace. Then gTM induces a Hermitian metric hT (1,0)M on T (1,0)M by the isomorphism
X 7→ (X−iJX)/

√
2, X ∈ TM . Let’s denote byRdet the curvature of the Chern (Hermitian holo-

morphic) connection over (detT (1,0)M,hdet), where hdet is the Hermitian metric on detT (1,0)M
induced by hTM . In other words,

RT (1,0)M = (∇T (1,0)M)2, Rdet = Tr
[
RT (1,0)M

]
, (2.2.6)

where∇T (1,0)M is the Chern connection on (T (1,0)M,hT
(1,0)M).
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Now, letE be a holomorphic vector bundle onM with a Hermitian metric hE . We call (E, hE) a
holomorphic Hermitian vector bundle. We denote by∇E its Chern connection and byRE = (∇E)2

its curvature.
Let’s denote by 〈·, ·〉L2 the L2-scalar product on Ω(0,•)(M,E), defined by

〈α, α′〉L2 :=
∫
M
〈α, α′〉h(x) dvM(x), for any α, α′ ∈ Ω(0,•)(M,E), (2.2.7)

where 〈·, ·〉h is the pointwise Hermitian product on Λ(T ∗(0,1)M)⊗E, induced by hT (1,0)M and hE .
Let ∂E be the Dolbeaut operator acting on the Dolbeaut complex Ω(0,•)(M,E). We denote by

∂E∗ the formal adjoint of ∂E with respect to 〈·, ·〉L2 . The Kodaira Laplacian is given by

�E := ∂E ∂E∗ + ∂E∗∂E. (2.2.8)

The operator �E preserves the Z-grading on Ω(0,•)(M,E). We also define

DE :=
√

2(∂E + ∂E∗), then (DE)2 = 2�E. (2.2.9)

By Hodge theory, the operator �E has finite dimensional kernel. We denote by P the orthogonal
projection onto this kernel and by P⊥ = Id − P the orthogonal projection onto its orthogonal
complement. By the standard facts on heat kernels (see [12, Theorem 2.30, Proposition 2.37]), we
can define the zeta-function: for z ∈ C,Re z > n we set

ζE(z) := −M
[
Trs

[
N exp(−u�E)P⊥

]]
. (2.2.10)

Definition 2.2.3. The analytic torsion of Ray-Singer of (E, hE) is defined as

T (gTM , hE) := exp
(
−1

2
ζ ′E(0)

)
. (2.2.11)

Remark 2.2.4. Let det(�E|Ωi) be the regularized determinant of �E|Ω(0,i)(M), then

T (gTM , hE) =
∏

i det
(
�E|Ωi

)−(−1)ii/2
. (2.2.12)

2.2.2 Asymptotics of the analytic torsion on manifolds
In this section we present a proof of Theorem 2.1.1. We follow closely the strategy of the proof of
the main theorem in [27] and we defer the proof of some technical details to Section 2.3.3.

Let (M, gTM ,Θ) be a compact Hermitian manifold and let (E, hE), (L, hL) be holomorphic
Hermitian vector bundles over M . We suppose that (L, hL) is a positive line bundle, i.e.

RL(U,U) > 0, for any U ∈ T (1,0)M. (2.2.13)

We denote by�p the Laplacian associated to Lp⊗E and by ζp, p ∈ N the zeta-function ζLp⊗E . For
x, y ∈ M , we denote by exp(−u�p/p)(x, y) the smooth kernel with respect to the volume form
dvM of the heat operator exp(−u�p/p).
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Theorem 2.2.5 ( [27, Theorem 4], [40, Theorem 1.2]). There are smooth sections ai,u(x), i ∈ N
of ⊕l≥0End(Λl(T ∗(0,1)M)⊗ E) over M such that for every u > 0, we have

exp(−u�p/p)(x, x) =
∑k

i=0 ai,u(x)pn−i +O(pn−k−1), as p→ +∞, (2.2.14)

and the estimate is uniform in x ∈M and u, as u varies in a compact subspace of ]0,+∞[.

For the proof of the following proposition see Section 2.3.3.

Proposition 2.2.6. There are smooth sections a[j]
i (x) of ⊕l≥0End(Λl(T ∗(0,1)M)⊗ E) such that

ai,u(x) =
∑k

j=−n a
[j]
i (x)uj + o(uk), (2.2.15)

as u→ 0, for any k ∈ N. Moreover, there are ci, di > 0 such that for any u� 1, x ∈M∣∣a[>0]
i,u (x)

∣∣ ≤ ci exp(−diu), (2.2.16)

where [> 0] means the projection onto positive degree terms.

The estimation (2.2.16) was proved in [40, Theorem 1.2]. Now we can restate Theorem 2.1.1
in a precise way

Theorem 2.2.7. There are local coefficients αi, βi ∈ R, i ∈ N such that for any k ∈ N, as p→ +∞

ζ ′p(0) =
∑k

i=0 p
n−i (αi log p+ βi) + o(pn−k), (2.2.17)

as p→∞, where

αi =
∫
M

Trs

[
Na

[0]
i (x)

]
dvM(x), βi = −Mu

[ ∫
M

Trs

[
Nai,u(x)

]
dvM(x)

]′
(0). (2.2.18)

To prove Theorem 2.2.7, we need to introduce the constants bp,i ∈ R for i ≥ −n, p ∈ N∗, which
satisfy the following asymptotic expansion for any k ∈ N (cf. [12, Theorem 2.30])

p−nTrs

[
N exp(−u�p/p)

]
=
∑k

i=−n bp,iu
i + o(uk+1), as u→ +0. (2.2.19)

We also need the next three propositions, for their proof see Section 2.3.3.

Proposition 2.2.8. As p→∞, the following expansion holds for any k ∈ N

bp,i =
∑k

j=0 b
[j]
i p
−j + o(p−k), with b

[j]
i =

∫
M

Trs

[
Na

[i]
j (x)

]
dvM(x). (2.2.20)

The following propositions are essential extensions of [27, Theorem 2] (cf. [85, §5.5]). They form
the core of the proof.

Proposition 2.2.9. For any k ∈ N, u0 > 0 there exist C > 0 such that for any u ∈]0, u0[, p ∈ N∗:

pk
∣∣∣(p−nTrs

[
N exp(−u�p/p)

]
−

0∑
j=−n

ujbp,j

)
−

k−1∑
i=0

p−i
(∫

M

Trs

[
Nai,u(x)

]
dvM(x)−

0∑
j=−n

ujb
[i]
j

)∣∣∣ ≤ Cu. (2.2.21)

48



On the full asymptotic of the analytic torsion

Proposition 2.2.10. For any k ∈ N, u0 > 0 there are c, C > 0 such that for u > u0, p ∈ N∗:

pk
∣∣∣p−nTrs

[
N exp(−u�p/p)

]
−

k−1∑
j=0

p−j
∫
M

Trs

[
Naj,u(x)

]
dvM(x)

∣∣∣ ≤ C exp(−cu). (2.2.22)

We point out that both of those Propositions are obtained for k = 0 in [27, Theorem 2]. The
proof of Proposition 2.2.9 for any k is more-or-less parallel to the case k = 0. However, in
Proposition 2.2.10, the original spectral gap approach works only for k = 0.

Proof of Theorem 2.2.7. We introduce the function

ζ̃p(z) = pz−nζp(z). (2.2.23)

It satisfies the following
p−nζ ′p(0) = − log(p)ζ̃p(0) + ζ̃p

′
(0), (2.2.24)

ζ̃p(z) = −p−nMu

[
Trs

[
N exp(−u�p/p)

]]
(z). (2.2.25)

We remark that Theorem 2.2.7 “follows” formally from Theorem 2.2.5, (2.2.4), (2.2.24) and
(2.2.25). Now we are going to make this reasoning precise.

Using (2.2.4) and (2.2.25), we obtain

ζ̃p
′
(0) =−

∫ 1

0

(
p−nTrs

[
N exp(−u�p/p)

]
−

0∑
j=−n

bp,ju
j
) du
u

−
∫ +∞

1

p−nTrs

[
N exp(−u�p/p)

] du
u
−

−1∑
j=−n

bp,j
j

+ Γ′(1)bp,0, (2.2.26)

ζ̃p(0) =− bp,0. (2.2.27)

The following notation makes sense due to Proposition 2.2.6:

ν [i] = −Mu

[ ∫
M

Trs

[
Nai,u(x)

]
dvM(x)

]′
(0). (2.2.28)

By (2.2.4) and (2.2.20), we have

ν [i] = −
∫ 1

0

(∫
M

Trs

[
Nai,u(x)

]
dvM(x)−

0∑
j=−n

ujb
[i]
j

) du
u

−
∫ +∞

1

∫
M

Trs

[
Nai,u(x)

]
dvM(x)

du

u
−

−1∑
j=−n

1

j
b

[i]
j + Γ′(1)b

[i]
0 . (2.2.29)

Suppose that the following limit holds for any k ∈ N

limp→+∞ p
k
(
ζ̃p
′
(0)−

∑k−1
i=0 ν

[i]p−i
)

= ν [k]. (2.2.30)
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Then from (2.2.24), (2.2.26), (2.2.27), (2.2.28), (2.2.30) and Proposition 2.2.8, we obtain Theorem
2.2.7.

Now let’s prove (2.2.30). By (2.2.26) and (2.2.29) it suffices to prove that for k ∈ N, as p→∞,

1)

∫ 1

0

pk
((
p−nTrs

[
N exp(−u�p/p)

]
−

0∑
j=−n

ujbp,j

)
−

k−1∑
i=0

p−i
(∫

M

Trs

[
Nai,u(x)

]
dvM(x)−

0∑
j=−n

ujb
[i]
j

))du
u

→
∫ 1

0

(∫
M

Trs

[
Nak,u(x)

]
dvM(x)−

0∑
j=−n

ujb
[k]
j

) du
u
, (2.2.31)

2)

∫ +∞

1

pk
(
p−nTrs

[
N exp(−u�p/p)

]
−

k−1∑
j=0

p−j
∫
M

Trs

[
Naj,u(x)

]
dvM(x)

)
→
∫ +∞

1

∫
M

Trs

[
Nak,u(x)

]
dvM(x)

du

u
, (2.2.32)

3)pk
(
bp,j −

k−1∑
i=0

b
[i]
j p
−i
)
→ b

[k]
j . (2.2.33)

The first and second limits are consequences of Lebesgue dominated convergence theorem and
Propositions 2.2.9, 2.2.10 correspondingly. The third one is a consequence of Proposition 2.2.8.

Now, we will prove that αi, i ∈ N do not depend on gTM , hL, hE . Let c ∈ R → gTMc , hLc , h
E
c

be some variations of the metrics on TM,L,E. We suppose that gTMc is compatible with the
complex structure J ofM . We denote by ∗c the Hodge-star operator associated to gTMc and by�p,c
the Kodaira Laplacian, associated to gTMc , hLc , h

ξ
c. From [23, Theorems 1.18], there are constants

Mp
j,c, j ≥ −1, p ∈ N∗ such that for any k ∈ N, we have

− Trs

[(
(∗c)−1∂∗c

∂c
+ p(hLc )−1∂h

L
c

∂c
+ (hEc )−1∂h

E
c

∂c

)
exp(−u�p,c/2)

]
=

k∑
j=−1

Mp
j,cu

j + o(uk). (2.2.34)

Now, from [23, (1.117)], we have

−2
∂

∂c
log T (gTMc , hL

p⊗E
c ) = −Mp

0,c + Trs

[
(∗c)−1∂∗c

∂c
Pc

]
, (2.2.35)

where Pc is the orthogonal projection onto ker(�p,c) with respect to gTMc , hLc , h
E
c . We remark that

− Trs

[(
(∗c)−1∂∗c

∂c
+ p(hLc )−1∂h

L
c

∂c
+ (hEc )−1∂h

E
c

∂c

)
exp(−u�p,c/2p)

]
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=
k∑

j=−1

Mp
j,cp
−juj + o(uk). (2.2.36)

Now, from (2.2.36) we see that, similarly to Proposition 2.2.8, Mp
0,c has an asymptotic expan-

sion of the form (2.2.20), as p → ∞. From [85, Theorem 4.1.1] we see that the asymptotics of
Trs

[
(∗c)−1 ∂∗c

∂c
Pc
]

contains only powers of p. Thus, the change of the metric doesn’t affect αi, since
only the powers of p appear in the asymptotics of (2.2.35).

2.3 Heat kernel of the high power of positive line bundle
Here we recall some fundamental results about the asymptotic expansion of the heat kernel of
�p/p. For this we use the localization procedure of [46, §2], [86, §3 .4]. In our context this
procedure is more natural than the one from [85], [40] since it respects the degrees of differential
forms. This property permits us to give simple proofs of long-time estimates on the heat kernel
(see Theorems 2.3.9, 2.3.10). Certainly, the original localization procedure from [85], [40] also
gives the final result, but then one has to inevitably use some results on the Bergman kernel.

This section is organized as follows. In Section 3.1 we recall how to localize the calculation of
the asymptotic expansion and how to tackle this localisation. Almost all the results of Section 3.1
appeared in [85] and were inspired by [25]. In Section 3.2 we recall the off-diagonal expansion
of the heat kernel of the local version of the operator �p/p. Finally, in Section 3.3 we prove
Propositions 2.2.6, 2.2.8, 2.2.9, 2.2.10; thus, completing the proof of Theorem 2.2.7.

2.3.1 Localization of the asymptotic expansion of the heat kernel
In this section we recall a localization procedure from [46] of the asymptotic expansion of
exp(−u�p/p)(x, x), x ∈M as p→ +∞. We conserve the notation from Section 2.2.

To work with non Kähler metrics we recall the definition of Bismut connection. Let
(X, gTX ,ΘX) be a Hermitian manifold. Let SB be a 1-form with values in the antisymmetric
elements of End(T (1,0)X), which satisfies (see [16, Definition 1.4])

〈SB(U)V,W 〉 = 1
2

√
−1
(
(∂ − ∂)ΘX

)
(U, V,W ). (2.3.1)

Definition 2.3.1 ( [16, (1.15)], cf. also [85, Definition 1.2.9]). The Bismut connection∇B on TX
is defined by∇B = ∇TX + SB, where ∇TX is the Levi-Civita connection on (TX, gTX).

The connection∇B preserves the complex structure of TX . Its family version was also defined
by Bismut in [19, §3.6 and Theorem 3.8.1].

Theorem 2.3.2 (Bismut-Vasserot [27, Theorem 1]). There exists c > 0 such that

Spec(�p) ⊂ {0} ∪ [cp,+∞[, ker(�p) ⊂ Ω(0,0)(M,Lp ⊗ E), for p� 1.
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For e = v(1,0) + v(0,1) ∈ T (1,0)M ⊕ T (0,1)M = TM ⊗R C we denote by c(e) the operator on
Ω(0,•)(M), defined by

c(e) =
√

2(v(1,0),∗ ∧ −iv(0,1)), (2.3.2)

where ∧ and i are the exterior and interior product respectively. Let e1, . . . , e2n be an orthonormal
frame of (TM, gTM) and e1, . . . , e2n its dual frame. We define

c(ei1 ∧ ei2 ∧ · · · ∧ eij) = c(ei1)c(ei2) · · · c(eij), (2.3.3)

for 0 < i1 < . . . < ij ≤ n. We extend this operation C-linearly for any B ∈ Λ•(T ∗M ⊗R C).
We take x ∈ M . Let ψ : M ⊃ U → V ⊂ Cn be a holomorphic local chart such that

B(0, 4ε) ⊂ V and the restriction of E over U is trivial, where

0 < ε < rinj/4, where rinj is the injectivity radii of M . (2.3.4)

We denote in the sequel X0 := TxM ' U . We denote by ρ : R→ [0, 1] a smooth positive function
such that

ρ(u) =

{
0, for |u| > 4,
1, for |u| < 2.

(2.3.5)

We define a Riemannian metric gTX0(Z) = gTM(ρ(|Z|/ε)Z) over X0. We choose a holomorphic
frame of E over U and we introduce the Hermitian product hE0 on E0 = X0 × Ex over X0

by hE0(Z) = hE(ρ(|Z|/ε)Z), where hE is the matrix of the Hermitian product in the chosen
holomorphic frame. Then gTX0 , hE0 coincide with gTM and hE over B(0, 2ε) and with trivial
structures gTMx , hEx away from B(0, 4ε). We denote by RE0 the Chern curvature of (E0, h

E0) and
by Θ0 the Hermitian form associated to gTX0 .

Let σ be a holomorphic frame of L over U . It defines a trivialisation ψ : L|U → U × C. We
define a function φ(Z), Z ∈ X0 by e−2φ(Z) = |σ|2hL(Z). Let’s denote by φ[1] and φ[2] the first and
second order Taylor expansions of φ at x, i.e.

φ[1](Z) =
n∑
j=1

( ∂φ
∂zj

(x)zj +
∂φ

∂zj
(x)zj

)
, (2.3.6)

φ[2](Z) = Re
( n∑
j,k=1

( ∂2φ

∂zj∂zk
(x)zjzk +

∂2φ

∂zj∂zj
(x)zjzk

))
, (2.3.7)

where (z1, . . . , zn) are the complex coordinates of Z. We define a function φε(Z) over X0 by

φε(Z) = ρ(|Z|/ε)φ(Z) + (1− ρ(|Z|/ε))
(
φ(x) + φ[1](Z) + φ[2](Z)

)
. (2.3.8)

Let hL0
ε be the metric on L0 := X0 × C defined by |1|2

h
L0
ε

= e−2φε(Z). Let ∇L0 be the Chern

connection on (L0, h
L0
ε ) and let RL0

ε be the curvature of it. Then by [46, (2.28)]

RL0
ε is positive for ε > 0 small enough. (2.3.9)
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From now on, we fix ε > 0 which satisfies (2.3.4) and (2.3.9). We trivialize L0 by a unitary section
Sx of (L0, h

L0
ε ), which we write as

Sx = eτ1 with τ(0) = φ(x), (2.3.10)

where the function τ is given by τ(Z) = φ(x)− 2
∫ 1

0
(iZ∂φε)tZdt , so that Sx satisfies∇L0

Z Sx = 0.
By abuse of notation, we drop ε from the notation introduced before.

We define a positive function k : X0 → R by the identity

dvX0(Z) = k(Z) dvTxM(Z), (2.3.11)

where dvTxM , dvX0(Z) are the Riemann volume forms on X0, induced by gTMx and gTX0 respec-
tively. We see, in particular, that k(0) = 1. We denote by hdet0 the Hermitian metric, induced on
detT (1,0)X0 by gTX0 .

We define a smooth self-adjoint section ΦE0 of ⊕i≥0End(Λi(T ∗(0,1)X0)⊗ E0) over X0 by

ΦE0
:= 1

4
rX0 + 1

2
c(RE0 +Rdet0) + 1

2

√
−1c(∂∂Θ0)− 1

8
|(∂ − ∂)Θ0|2, (2.3.12)

where rX0 is the scalar curvature of gTX0 and Rdet0 is the Chern curvature of (detT (1,0)X0, h
det0).

We denote by ∇B,Λ0,•
0 the natural extension of the Bismut connection ∇B of (X0, g

TX0) on
Λ•(T ∗(0,1)X0) (see [85, (1.4.27)]). We set

Lp,x := ∆B,Λ0,•
0 ⊗L

p
0⊗E0 + 1

2
pc(RL0) + ΦE0 , (2.3.13)

where ∆B,Λ0,•
0 ⊗L

p
0⊗E0 is the Bochner Laplacian on Λ•(T ∗(0,1)X0)⊗ Lp0 ⊗ E0 associated with

∇B,Λ0,•
0 ⊗L

p
0⊗E0 := ∇B,Λ0,•

0 ⊗ 1⊗ 1 + 1⊗∇Lp0 ⊗ 1 + 1⊗ 1⊗∇E0 , (2.3.14)

and gTX0 , hL0 , hE0 . By the trivialization as above, we have Λ•(T ∗(0,1)X0) ⊗ Lp0 ⊗ E0 '
Λ•(T

∗(0,1)
x M) ⊗ Lpx ⊗ Ex. The operator Lp,x preserves Z-grading on Ω(0,•)(X0, L

p
x ⊗ Ex) and

the following formula holds (see [16, Theorem 1.3])

Lp,x = 2
(
∂
X0

p + ∂
X0∗
p

)2
, (2.3.15)

where ∂
X0

p is the Dolbeaut operator acting on Ω(0,•)(X0, L
p
0 ⊗ E0), and ∂

X0∗
p is its adjoint with

respect to the L2-norm induced by gTX0 , hL0 and hE0 . Then Lp,x is self-adjoint with respect to this
norm.

All the constructions made here could be performed uniformly in a neighbourhood of x ∈ M .
For the rest of this article we denote by Cm(M) the Cm-norm with respect to the parameter x.

By (2.3.15) and the positivity of RL0 , we have

Theorem 2.3.3 ( [27, Theorem 1] cf. also the proof of [85, Theorem 1.5.7, 1.5.8]). There is µ > 0
such that

Spec(Lp,x) ⊂ {0} ∪ [µp,+∞[, ker(Lp,x0) ⊂ Ω(0,0)(X0, L
p
0 ⊗ E0), for p� 1.
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For (Z,Z ′) ∈ X0×X0 we denote by exp(−uLp,x)(Z,Z ′) the smooth kernel of the heat operator
exp(−uLp,x) with respect to the volume form dvX0 . We have

Lemma 2.3.4 ( [85, Lemma 1.6.5, (5.5.73)]). There are constants C, c > 0, l ∈ N such that
uniformly on p ∈ N∗, u ∈]0,+∞[, x ∈M and Z,Z ′ ∈ TxM ; |Z|, |Z ′| < ε, we have∣∣∣ exp(−u�p/p)(expx(Z), expx(Z

′))− exp(−uLp,x/(2p))(Z,Z ′)
∣∣∣ ≤ Cpl exp(−cp/u). (2.3.16)

Remark 2.3.5. Since the proof of Lemma 2.3.4 relies on finite propagation speed of solutions
of the hyperbolic equations [85, Theorem D.2.1] and on the fact that �p is essentially self-adjoint
operator, and those facts hold for orbifolds (see [83, p.230]), Lemma 2.3.4 itself holds for orbifolds.

More properties of the asymptotics of heat kernel. Now we recall a procedure of replacing a
discrete parameter p ∈ N in the construction of Lp,x to a continuous t ∈ [0, 1]. This permits us to
interpret the asymptotic expansion in p as an instance of a Taylor expansion in t.

We recall that we fixed a unitary section Sx of Lx, so that we can say that Lp,x, p ∈ N∗ act on
Ω(0,•)(X0, E0), which is independent of p. For s ∈ Ω(0,•)(X0, E0), Z ∈ X0, t = 1/

√
p, we set

(Sts)(Z) := s(Z/t),

∇t := S−1
t tk1/2∇B,Λ0,•

0 ⊗L
p
0⊗E0k−1/2St,

Lt2,x := S−1
t t2k1/2Lp,xk

−1/2St.

(2.3.17)

By [85, (1.6.31)] the definition of ∇t, L
t
2,x extends for t ∈]0, 1]. Moreover, the operator Lt2,x is

self-adjoint with respect to (2.3.18).
In what follows, we will repeatedly use the results from [85]. Their localization procedure is

different from ours, but their arguments apply directly when one chooses the Sobolev norms as

‖s‖2
t,0 :=

∫
X0

∥∥s(Z)
∥∥2

t,h
dvTxM(Z), (2.3.18)

‖s‖2
t,m :=

m∑
k=0

2n∑
i1,...,lk=1

∥∥∥∇t,ei1
. . .∇t,eik

s
∥∥∥2

t,0
, (2.3.19)

where s ∈ Ω(0,•)(X0, E0), ‖·‖t,h (Z) is the pointwise norm induced by gTX0(tZ), hE0(tZ), and
e1, . . . , e2n are as in (2.3.3).

Let w1, . . . , wn be an orthonormal frame of (T
(1,0)
x M,hT

(1,0)M
x ) and let w1, . . . , wn be its dual

frame. We denote by∇0,· the connection on the vector bundle Λ•(T ∗(0,1)X0)⊗E0 and by L0
2,x the

operator on Ω(0,•)(X0, E0), defined by the formulas

∇0,· := ∇· + 1
2
RL
x (Z, ·),

L0
2,x := −

∑
i∇2

0,ei
+ 2

∑
i,j R

L
x (wi, wj)w

j ∧ iwi −
∑

iR
L
x (wi, wi).

(2.3.20)

Lemma 2.3.6 ( [85, Lemma 1.6.6]). The family of operators∇t, L
t
2,x is smooth in t and

∇t → ∇0, Lt2,x → L0
2,x, as t→ 0. (2.3.21)

54



On the full asymptotic of the analytic torsion

We define the operators O1,O2, . . . by the following expansion, as t→ 0,

Lt2,x = L0
2,x + tO1 + t2O2 + · · ·+ tkOk + o(tk), k ∈ N. (2.3.22)

We also denote by exp(uLt2,x)(Z,Z
′) the smooth kernel of the heat operator exp(−uLt2,x) with

respect to dvTxM . Then for t = 1/
√
p, we have (cf. [85, (1.6.66)])

exp(−uLp,x/p)(Z,Z ′) = pn exp(−uLt2,x)(Z/t, Z ′/t)k−1/2(Z)k−1/2(Z ′). (2.3.23)

Now we recall some properties of the operator Lt2,x. The reason why we are interested in it is
Lemma 2.3.4 and (2.3.23). By [85, (4.2.31), (4.2.40)], we have

Proposition 2.3.7. The function t ∈]0, 1] → exp(−uLt2,x)(0, 0) extends smoothly to [0, 1] by
taking the value exp(−uL0

2,x)(0, 0) at t = 0. All its derivatives are uniformly bounded on x ∈ M
and u, varying in a compact subset of ]0,+∞[. Moreover,

∂2i+1

∂t2i+1
exp(−uLt2,x)(0, 0)|t=0 = 0 (2.3.24)

By Lemma 2.3.4, Proposition 2.3.7 and (2.3.23), we see that in Theorem 2.2.5 we have

ak,u(x) =
1

(2k)!

∂2k

∂t2k
exp(−uLt2,x/2)(0, 0)|t=0. (2.3.25)

Theorem 2.3.8. For t ∈ [0, 1], there are sections Bt,r ∈ ⊕j≥0C∞(M,End(Λj(T ∗(0,1)M) ⊗ E)),
r ∈ Z, r ≥ −n, such that for any k,m ∈ N, u0 > 0 there is C > 0 such that for any u ∈]0, u0]∣∣∣ exp(−uLt2,x/2)(0, 0)−

k∑
r=−n

Bt,r(x)ur
∣∣∣
Cm(M×[0, t0])

≤ Cuk+1, (2.3.26)

where the second coordinate of M × [0, t0] represents t. Moreover,

∂2i+1

∂t2i+1
Bt,r(x)|t=0 = 0. (2.3.27)

Proof. The proof of (2.3.26) is done in [85, (5.5.91)]. By (2.3.24) and (2.3.26), we get (2.3.27).

By Theorem 2.3.3 and (2.3.17) there are t0, µ > 0 such that for t ∈ [0, t0], we have

Spec(Lt2,x) ⊂ {0} ∪ [µ,+∞[, ker(Lt2,x) ⊂ Ω(0,0)(X0, E0). (2.3.28)

We fix t0, which satisfies (2.3.28). From now on, we only work with t < t0.
Recall that Lt2,x preserves Z-grading on Ω(0,•)(X0, E0). We denote by Lt,>0

2,x the restriction of
the operator Lt2,x on the positive degree. From (2.3.28),

exp(−uLt,>0
2,x ) = Fu(L

t
2,x)|Ω(0,>0)(X0,E0), (2.3.29)

where Fu(Lt2,x)|Ω(0,>0)(X0,E0) is the restriction on positive degree terms of the operator Fu(Lt2,x)
defined in [85, (4.2.21), (4.2.22)] . We denote by exp(−uLt,>0

2,x )(Z,Z ′);Z,Z ′ ∈ X0 the smooth
kernel of the heat operator exp(−uLt,>0

2,x ) with respect to the volume form dvTxM on X0. Then
exp(−uLt,>0

2,x )(Z,Z ′) is the restriction of exp(−uL2,x)(Z,Z
′) on positive degree.
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Theorem 2.3.9. For any u0 > 0,m ∈ N, there are constants c, C > 0, such that for u > u0∣∣ exp(−uLt,>0
2,x /2)(0, 0)

∣∣
Cm(M×[0, t0])

≤ C exp(−cu), (2.3.30)

where second coordinate of M × [0, t0] represents t. Moreover, we have

a
[>0]
k,u (x) =

1

(2k)!

∂2k

∂t2k
exp(−uLt,>0

2,x /2)(0, 0)|t=0,
∂2k+1

∂t2k+1
exp(−uLt,>0

2,x /2)(0, 0)|t=0 = 0,

(2.3.31)
where [> 0] means the projection onto positive degree terms.

Proof. Estimation (2.3.30) is a consequence of [85, Corollary 4.2.6, (4.2.31)] and (2.3.29). The
identities (2.3.31) follow directly from (2.3.24), (2.3.25), (2.3.30) and the discussion before Theo-
rem 2.3.9.

2.3.2 Off-diagonal estimations of the heat kernel and related quantities
In this section we explain some results concerning off-diagonal expansion of the heat kernel of
Lt2,x. We don’t claim originality on those results, as some of them already appeared in [85, §4.2,
§5.5] and some were implicit. This section is only used in the proof of Theorem 2.1.5 in Section
2.5. We fix t0 as in (2.3.28). We have the following off-diagonal version of Theorem 2.3.9.

Theorem 2.3.10. For any m ∈ N, u0 > 0 there are c, C, C ′ > 0 such that for any x ∈ M,u ≥
u0, Z, Z

′ ∈ TxM , we have the following inequality∣∣ exp(−uLt,>0
2,x )(Z,Z ′)

∣∣
Cm(M×[0, t0])

≤ C(1 + |Z|+ |Z ′|)C′ exp(−cu− c|Z − Z ′|2/u), (2.3.32)

where the second coordinate of M × [0, t0] represents t.

Proof. By [85, Theorem 4.2.5], we get for some c, C, C ′ > 0∣∣ exp(−uLt2,x)(Z,Z ′)
∣∣
Cm(M×[0, t0])

≤ C(1 + |Z|+ |Z ′|)C′ exp(cu− c|Z − Z ′|2/u). (2.3.33)

By [85, Corollary 4.2.6, (4.2.31)] and (2.3.29), we get∣∣ exp(−uLt,>0
2,x )(Z,Z ′)

∣∣
Cm(M×[0, t0])

≤ C(1 + |Z|+ |Z ′|)C′ exp(−cu− c|Z − Z ′|), (2.3.34)

for some c, C, C ′ > 0. We multiply (2.3.33) and (2.3.34) with suitable powers to get (2.3.32).

Theorem 2.3.11. For any m ∈ N, u0, c0 > 0 there are c, C, C ′ > 0 such that for x ∈M,u ∈]0, u0]
and Z,Z ′ ∈ TxM, |Z − Z ′| ≥ c0 we have the following inequality∣∣ exp(−uLt2,x)(Z,Z ′)

∣∣
Cm(M×[0, t0])

≤ C(1 + |Z|+ |Z ′|)C′ exp(−c|Z − Z ′|2/u), (2.3.35)

where the second coordinate of M × [0, t0] represents t.
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Proof. The proof of this theorem proceeds exactly as in [85, Theorem 4.2.5] with only one modi-
fication. One has to change the condition for [85, (4.2.12)] by the following one: for any m,m′ ∈
N, c, c0 > 0 there are c′, C, C ′ > 0 such that for u ∈]0, u0], h ≥ c0, a ∈ C, | Im a| ≤ c′ the
following inequality holds (cf. [85, (4.2.12)])

|a|m|K(m′)
u,h (a)| ≤ C exp(−c′h2/u), (2.3.36)

where Ku,h is defined in [85, (4.2.11)]. We leave the details to the reader.

We denote v :=
√
u. Let ∆TxM be the Bochner Laplacian on (TxM, gTMx ). We set

Lt3,x := ρ(|Z|/ε)Lt2,x + (1− ρ(|Z|/ε))∆TxM , (2.3.37)

with ρ as in (2.3.5) and ε > 0 satisfying (2.3.4), (2.3.9). We denote

Lt,v4,x := S−1
v uLt3,xSv, with v =

√
u, (2.3.38)

and Sv is as in (2.3.17). We introduce the Sobolev norms

‖s‖2
t,v,0 :=

∫
X0

∥∥s(Z)
∥∥2

h
dvTxM(Z), (2.3.39)

‖s‖2
t,v,m :=

m∑
k=0

2n∑
i1,...,lk=1

∥∥∥∇ei1
. . .∇eik

s
∥∥∥2

t,0
, (2.3.40)

where s ∈ C∞(X0,Λ(T
∗(0,1)
Z X0) ⊗ E0), ‖·‖h is the pointwise norm induced by gTMx , hEx , ∇ is a

usual derivative and e1, . . . , e2n are as in (2.3.3). We denote by Hm
t,v,m ∈ N the Sobolev spaces

induced by those norms.
Then, similarly to [25, Theorem 11.26], [85, Theorem 1.6.7], there are c1, c2 > 0 such that for

t ∈]0, 1], v ∈]0, 1], we have the following estimations

Re〈Lt,v4,xs, s〉t,v,0 ≥ c1‖s‖2
t,v,1 − c2‖s‖2

t,v,0 , (2.3.41)

for s ∈ C∞(X0,Λ(T
∗(0,1)
Z X0)⊗ E0) of compact support.

Then, similarly to [85, Theorem 1.6.8], for any λ ∈ C as in [85, Figure 1.1], the inverse operator
(λ − Lt,v4,x)

−1 is bounded as an operator operator on H0
t,v. Then one can define the heat operator

exp(−wLt,v4,x), w > 0 by the integration over a contour of (λ − Lt,v4,x)
−1 as it was done in [85,

(1.6.48)].
Similarly, we define the heat operator exp(−wLt3,x), w > 0. Even though the operatorsLt3,x, L

t,v
4,x

are not self-adjoint, by [85, (1.6.31)], their adjoints are of the same form as the operators them-
selves. Thus, all the arguments on the estimation of the kernels of exp(−wLt3,x), exp(−wLt,v4,x) can
be repeated line in line from [85].

Now, similarly to (2.3.23), we have

exp(−uLt3,x)(Z,Z ′) = u−n exp(−Lt,v4,x)(Z/v, Z
′/v), (2.3.42)

where we denote by exp(−Lt3,x)(Z,Z ′), exp(−Lt,v4,x)(Z,Z
′) the smooth kernels of the heat oper-

ators exp(−Lt3,x), exp(−Lt4,x) corresponding to the volume form dvTxM . We have the following
analogue of Lemma 2.3.4, which follows from [85, (5.5.81)] and (2.3.42)
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Proposition 2.3.12. There exists u0 > 0 such that for any m ∈ N, there are c, C > 0 such that for
any u > u0, Z, Z

′ ∈ TxM, |Z|, |Z ′| < ε, we have∣∣ exp(−uLt2,x)(Z,Z ′)− u−n exp(−Lt,v4,x)(Z/v, Z
′/v)

∣∣
Cm(M×[0, t0])

≤ C exp(−c/u), (2.3.43)

where the second coordinate of M × [0, t0] represents t.

Proposition 2.3.13. For any v0 > 0,m ∈ N there are c, C, C ′ > 0 such that for Z,Z ′ ∈ TxM , we
have∣∣ exp(−Lt,v4,x)(Z,Z

′)
∣∣
Cm(M×[0, t0]×[0, v0])

≤ C(1 + |Z|+ |Z ′|)C′ exp(−c|Z − Z ′|2), (2.3.44)

where the second and third coordinates of M × [0, t0]× [0, v0] represents t and v respectively.

Proof. When we fix v = 1, this proposition is a special case of [85, Theorem 4.2.5]. In general,
since the operator Lt,v4,x depends smoothly on (t, v), we may repeat the argument of the proof
of [85, Theorem 4.2.5] as if the parameter t in that theorem had two components (t, v).

2.3.3 Proof of Propositions 2.2.6, 2.2.8, 2.2.9, 2.2.10
Here we finally prove Propositions 2.2.6, 2.2.8, 2.2.9, 2.2.10; thus, completing the proof of Theo-
rem 2.2.7. Then we also explain Remark 2.1.4.

Proof of Proposition 2.2.6. From Theorem 2.3.8 and (2.3.25), we get (2.2.15) with

a
[j]
k (x) =

1

(2k)!

∂2k

∂t2k
Bt,j(x)|t=0. (2.3.45)

Now (2.2.16) follows from Theorem 2.3.9.

Proof of Proposition 2.2.8. Firstly, we make a connection between bp,i and Bt,i, t = 1√
p
, defined in

Theorem 2.3.8. By Theorem 2.3.8, Lemma 2.3.4 and (2.3.23) we see that there is l ∈ N such that
for any k ∈ N, there exist c, C, C ′ > 0 such that for any p ∈ N∗, u ∈]0, 1], we have∣∣p−n exp(−u�p/p)(x, x)−

∑k
r=−nBt,r(x)ur

∣∣ ≤ Cuk+1 + Cpl exp(−cp/u) ≤ C ′uk+1, (2.3.46)

thus, by (2.2.19), we have

bp,i =
∫
M

Trs

[
NBt,i(x)

]
dvM(x), t = 1/

√
p. (2.3.47)

From (2.3.27), we get the estimation from (2.2.20) with

b
[j]
i =

1

(2j)!

∂2j

∂t2j

(∫
M

Trs

[
NBt,i(x)

]
dvM(x)

)
|t=0. (2.3.48)

Finally, (2.2.20) follows from (2.3.45) and (2.3.48).
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Proof of Proposition 2.2.9. By Theorem 2.3.8 and (2.3.24) we see that for any k ∈ N;u0, t0 > 0
there exists C > 0 such that for any u ∈]0, u0], t ∈]0, t0], we have

∣∣∣ 1

t2k

[
exp(−uLt2,x/2)(0, 0)−

0∑
r=−n

urBt,r(x)

−
k−1∑
i=0

t2i

(2i)!

∂2i

∂t2i

(
exp(−uLt2,x/2)(0, 0)−

0∑
r=−n

urBt,r(x)
)
|t=0

]∣∣∣ ≤ Cu, (2.3.49)

for any x ∈M . We conclude by Lemma 2.3.4, (2.3.23), (2.3.25), (2.3.47) and (2.3.48).

Proof of Proposition 2.2.10. We distinguish 2 cases:
1. u >

√
p. In this case we proceed similarly to [85, Theorem 5.5.11]. Theorem 2.3.2 implies

the first inequality in the following series of estimations and the second one is true by Theorem
2.2.5

p−n+kTr
[

exp(−u�(>0)
p /p)

]
≤ p−nTr

[
exp(−�(>0)

p /p)
]
pk exp(−u−1

p
cp) (2.3.50)

≤ C ′pk exp(−cu/2) exp(−cu/2) ≤ C ′′ exp(−cu/2).

Now, by Proposition 2.2.6 we obtain the following estimate for some ci, di, d′, d > 0 and any
x ∈M

pk−j
∣∣Trs

[
Naj,u(x)

]∣∣ ≤ cjp
k−j exp(−dju) ≤ d′ exp(−du/2). (2.3.51)

Then (2.2.22) follows from (2.3.50) and (2.3.51).
2. u ≤ √p. This case is subtler. Let t = 1/

√
p. By Theorem 2.3.9, we have

pk
∣∣∣ ∫M Trs

[
N exp(−uLt2,x/2)(0, 0)

]
dvM(x)

−
∑k

i=0 p
−i ∫

M
Trs

[
Nai,u(x)

]
dvM(x)

∣∣∣ ≤ C exp(−cu). (2.3.52)

We conclude by Lemma 2.3.4, (2.3.23), (2.3.52) and inequality e−cp/u ≤ e−c
√
p/2e−cu/2.

Proof of Remark 2.1.4. Here we prove that the calculation of the asymptotics of the analytic tor-
sion in Theorem 2.1.1 commutes with derivatives over the base in a family of manifolds.

More precisely, let π : X → B be a proper holomorphic submersion of complex manifolds. We
note by Tπ the relative tangent bundle. Let L, E be respectively a holomorphic line and vector
bundles over X . We endow L, E with Hermitian metrics hL, hE , and suppose that the metric hL

is positive along the fibers. We endow the fibers Ms := π−1(s), s ∈ B with a Kähler metric gTMs ,
which is smooth in s ∈ B. Let’s denote by T (gTMs , hL

p⊗E|Ms) for p ∈ N, the analytic torsion of
Lp ⊗ E|Ms associated with gTMs , hL|Ms , h

E|Ms . Then by Theorem 2.1.1, for any s ∈ B, there are
local coefficients αi(s), βi(s) ∈ R, i ∈ N such that for any k ∈ N, as p→ +∞, we have

−2 log T (gTMs , hL
p⊗E|Ms) =

∑k
i=0 p

n−i(αi(s) log p+ βi(s)
)

+ o(pn−k). (2.3.53)
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First of all, from [23, Theorem 1.3], for any compact K ⊂ B, there is p0 such that for p ≥ p0, the
function log T (gTMs , hL

p⊗E|Ms) is smooth over K, for p ≥ p0. We will explain that the functions
αi(s), βi(s) are also smooth in s ∈ B and for any l ∈ N, we have

∥∥∥− 2 log T (gTMs , hL
p⊗E|Ms)−

k∑
i=0

pn−i
(
αi(s) log p+ βi(s)

)∥∥∥
C l(K)

≤ cpn−k, (2.3.54)

for some c > 0. From the proof of Theorem 2.1.1, we see that it is enough to explain why Theorem
2.2.5 and Propositions 2.2.6, 2.2.8, 2.2.9, 2.2.10 hold uniformly in C k(π−1(K)), for any k ∈ N.
For brevity, we prove only the extension of Theorem 2.2.5, as other extensions are done in a similar
way. For s ∈ B, we denote by�p,s the Kodaira Laplacian on Ms associated with (Lp⊗E)|Ms . We
need to prove that there are smooth sections ai,u(x), i ∈ N of⊕j≥0End(Λj(T ∗(0,1)π)⊗E) over X ,
such that for any l ∈ N, u > 0, there is c > 0 such that for any p ∈ N∗, we have

∥∥∥ exp(−u�p,π(x)/p)(x, x)−
k∑
i=0

ai,u(x)pn−i
∥∥∥

C l(π−1(K))
≤ cpn−k−1. (2.3.55)

But to do so, essentially, we have to repeat the proof of [85, Theorem 4.2.5] with practically no
change, since x, varying in the fiber, is already treated as a parameter in it. We need only to replace
the words “uniformly on x ∈Ms” by “uniformly on x ∈ π−1(K)”.

2.4 Proof of Theorem 2.1.3
In this section we calculate the coefficients α1, β1 from Theorem 2.1.1. More precisely, in Section
4.1 we fix the notation and we derive the formal expressions for α1, β1 in terms of a1,u. In Section
4.2 we prove Theorem 2.1.3. For this we express O1,O2 in terms of creation and annihilation
operators and we use the Duhamel’s formula for the derivative of the heat kernel to calculate
explicitly A(u). This is the most technical part of the article. In Section 4.3 we verify Theorem
2.1.3 on the projective line, we describe how Theorem 2.1.3 is related to arithmetic Riemann-
Roch theorem [106] and we make a connection between Theorem 2.1.3 and a result from the
article [73, §4] by Klevtsov-Ma-Marinescu-Wiegmann.

2.4.1 Formal expressions for α1, β1

Recall that (M, gTM ,Θ) is a compact Kähler manifold of complex dimension n and (E, hE), (L, hL)
are holomorphic Hermitian vector bundles over M . We suppose

Θ = ω =

√
−1

2π
RL. (2.4.1)

We take x ∈ M . For the calculation we use the localization procedure from [85, §1.6.2], where
authors use the normal coordinates instead of holomorphic. We do so since some part of the
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calculation was done in this context before. The formula (2.3.25), which is the only prerequisite
we need from Section 2.3, still holds for this localization, since it relies on the wave-propagation
technique (see [85, Theorem 4.2.3]). In this section every notation from Section 3 should be
thought in the realms of the localization procedure from [85, §1.6.2].

For the sake of convenience, in this section we use the following notation

A(u) =

∫
M

Trs

[
Na1,u(x)

]
dvM(x),

R(u) = Cu

∫
M

Trs

[
Ne−2πuN Id

Λ•(T
∗(0,1)
x M)⊗Ex

]
dvM(x).

(2.4.2)

Proposition 2.4.1. For any u > 0, we have

limp→∞ p
(
p−nTrs

[
N exp(−u�p/p)

]
−R(u)

)
= A(u), (2.4.3)

and the convergence is uniform as u varies in a compact subset of ]0,+∞[.

Proof. It follows from definitions of A(u), R(u) and Theorems 2.2.5, 2.4.3.

Now by (2.2.18), we have the following identities (see Notation 2.2.2)

α1 = A[0], β1 = −M [A]′(0). (2.4.4)

2.4.2 Proof of Theorem 2.1.3
In this section we prove Theorem 2.1.3. For this we give an explicit formula for a1,u(x), A(u) and
then plug it in (2.4.4).

Let w1, . . . , wn be an orthonormal basis of (T
(1,0)
x M,hT

(1,0)
x M) and let w1, . . . , wn be its dual

basis. For j = 1, . . . , n, the vectors e2j−1 = 1√
2
(wj + wj), e2j =

√
−1√
2

(wj − wj) form an orthonor-
mal basis of TxM . This basis identifies TxM and R2n. Let’s introduce the complex coordinates
(z1, . . . , zn) on Cn ' R2n such that Z = z + z and wj =

√
2 ∂
∂zj
, wj =

√
2 ∂
∂zi

. We may consider
z, z as vector fields by identifying z to

∑
i zi

∂
∂zj

and z to
∑

i zi
∂
∂zi

,
Now we define creation and annihilation operators (see (2.3.20), (2.4.1))

bj = −2∇
0,

∂
∂zj

= −2
∂

∂zj
+ πzj, b+

j = 2∇
0,

∂
∂zj

= 2
∂

∂zj
+ πzj. (2.4.5)

We recall that by 〈·, ·〉 we mean the C-bilinear extension of gTM . From now on, we use Einstein
summation convention.

Theorem 2.4.2. The following identities hold

L0
2,x =

∑
j

bjb
+
j + 4πN, O1 = 0, (2.4.6)
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O2 =
1

3

〈
RTM
x

(
z,

∂

∂zi

)
z,

∂

∂zj

〉
b+
i b

+
j +

1

3

〈
RTM
x

(
z,

∂

∂zi

)
z,

∂

∂zj

〉
bibj (2.4.7)

− 1

3

〈
RTM
x

(
z,

∂

∂zi

)
z,

∂

∂zj

〉
bib

+
j −

1

3

〈
RTM
x

(
z,

∂

∂zi

)
z,

∂

∂zj

〉
b+
i bj

− 2RE
x

( ∂

∂zi
,
∂

∂zi

)
− rMx

6

+
2

3

〈
RTM
x

(
z,

∂

∂zi

) ∂

∂zi

∂

∂zj

〉
b+
j −

2

3

〈
RTM
x

(
z,

∂

∂zi

) ∂

∂zi
,
∂

∂zj

〉
bj

+
π

3

〈
RTM
x (z, z)z,

∂

∂zi

〉
b+
i −

π

3

〈
RTM
x (z, z)z,

∂

∂zi

〉
bi

−RE
x

(
z,

∂

∂zi

)
b+
i +RE

x

(
z,

∂

∂zi

)
bi

−RΛ•(T ∗(0,1)M)
x

(
z,

∂

∂zi

)
b+
i +RΛ•(T ∗(0,1)M)

x

(
z,

∂

∂zi

)
bi

+ 2Rdet
x

( ∂

∂zi
,
∂

∂zj

)
wj ∧ iwi + 4RE

x

( ∂

∂zi
,
∂

∂zj

)
wj ∧ iwi .

Proof. In [40, Theorem 5.1] (cf. [85, Theorem 4.1.25]) authors obtained this result in degree (0, 0).
In O2, the last 2 lines of its formula is the only contribution of non-zero degree. Theorem 2.4.2
was obtained in [84, Theorem 2.2] for Spinc-Dirac operator.

From (2.3.20), (2.4.1), (2.4.6) and Mehler formula for harmonic oscillator (see [85, Appendix
E 2.2]), we get

Theorem 2.4.3. We have the following identity

exp(−uL0
2,x)(Z, 0) = e−4πuNC2u exp(−B2u‖Z‖2)Id

Λ•(T
∗(0,1)
x M)⊗Ex

, (2.4.8)

where the operator N is defined in (2.1.11), Z = (z1, . . . , zn),‖Z‖2 =
∑
|zi|2 and

Bu =
π

2 tanh(πu)
, Cu =

1

(1− e−2πu)n
. (2.4.9)

From Duhamel’s formula (see [40, Theorem 4.17]), (2.3.25) and (2.4.6), we get

a1,u(x) = −
∫ u/2

0

∫
X0
e−vL

0
2,x(0, Z)(O2e

−(u/2−v)L0
2,x)(Z, 0)dZ dv (2.4.10)

From (2.4.10), to calculate a1,u we have to calculate O2e
−uLt2,x(Z, 0) for Z ∈ TxM . To simplify

this calculation, we omit the terms of the form P (z1, z1, z2, · · · , zn) exp(−vL0
2,x/2)(Z, 0), where

P is a monomial with different degrees of zi and zi for some i ∈ N∗, i ≤ n, since from Theorem
2.4.3 those terms disappear after the integration in Z in (2.4.10). We denote by∼ the identification
up to such omission. We note
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Rijkl = 〈RTM
x ( ∂

∂zi
, ∂
∂zj

) ∂
∂zk
, ∂
∂zl
〉, RE

ij
= RE

x

(
∂
∂zi
, ∂
∂zj

)
,

RΛ
ij

= RΛ0,•(T ∗M)
x

(
∂
∂zi
, ∂
∂zj

)
, Rdet

ij
= Rdet

x

(
∂
∂zi
, ∂
∂zj

)
,

(2.4.11)

where Rdet is the Chern curvature of (detT (1,0)M,hdet) for the induced by hT
(1,0)M Hermitian

metric hdet. We constantly use the following well-known symmetries of the curvature tensor

Riijj = Rijji = Rjjii = Rjiij, Rijkl = Rklij. (2.4.12)

Lemma 2.4.4. For u > 0, Z ∈ TxM , we have

(O2e
−uLt2,x)(Z, 0) ∼

[2

3
Riijj|zi|2|zj|2(2π2 − δijπ2)− 4

3
Riijj − 2RE

ii

+ 2πRE
ii
|zi|2 + 2πRΛ

ii
|zi|2 + 2Rdet

ij
wj ∧ iwi + 4RE

ij
wj ∧ iwi

]
e−uL

t
2,x(Z, 0). (2.4.13)

Proof. From Theorem 2.4.2, we get

(O2e
−uLt2,x)(Z, 0) ∼ (2.4.14)[1

3
(2− δij)Riijj

(
zizjb

+
i b

+
j + zizjbibj

)
+

1

3
(1− δij)Riijj

(
zizjbib

+
j + zjzib

+
i bj
)

+
1

3
Riijj

(
zjzjbib

+
i + zjzjb

+
i bi
)
− 2RE

ii
− 1

6
rMx

+
2

3
Riijj

(
zjb

+
j − zjbj

)
− π

3
(2− δij)Riijjzjzj

(
zib

+
i + zibi

)
+RE

ii

(
zib

+
i + zibi

)
+RΛ

ii

(
zib

+
i + zibi

)
+ 2Rdet

ij
wj ∧ iwi + 4RE

ij
wj ∧ iwi

]
e−uL

t
2,x(Z, 0),

where δij is the Kronecker delta. We have the following formulas from Theorem 2.4.3

(bie
−uLt2,x)(Z, 0) = (π + 2B2u)zie

−uLt2,x(Z, 0),

(b+
i e
−uLt2,x)(Z, 0) = (π − 2B2u)zie

−uLt2,x(Z, 0).
(2.4.15)

Let’s recall the following identity

rMx =
∑

i,j〈R(ei, ej)ei, ej〉 = 2
∑

i,j〈R(wi, wi)wj, wj〉 = 8
∑

i,j Riijj. (2.4.16)

From (2.4.14), (2.4.15) and (2.4.16), we get (2.4.13).

Lemma 2.4.5. For u > 0 and x ∈M , we have

a1,u(x) =

[
− 4

3
Riijj(1− e−2πu)−2

(u
2

(1 + 4e−2πu + e−4πu)− 3

4π
(1− e−4πu)

)
(2.4.17)
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+
4

6
Riijju+RE

ii
u− 2RE

ii
(1− e−2πu)−1

(u
2

+
u

2
e−2πu − 1

2π
(1− e−2πu)

)
− 2RΛ

ii
(1− e−2πu)−1

(u
2

+
u

2
e−2πu − 1

2π
(1− e−2πu)

)
−
(
Rdet
ij
wj ∧ iwi + 2RE

ij
wj ∧ iwi

)
u

]
e−2πuN

(1− e−2πu)n
.

Proof. From Theorem 2.4.3 and the fact that exp(−uLt2,x), u > 0 is a semigroup, we get∫ u

0

dv

∫
X0

e−vL
0
2,x(0, Z)e−(u−v)L0

2,x(Z, 0)dZ = u
e−4πuN

(1− e−4πu)n
. (2.4.18)

Similarly, we get∫ u

0

dv

∫
X0

e−vL
0
2,x(0, Z)|zj|2e−(u−v)L0

2,x(Z, 0)dZ (2.4.19)

=
e−4πuN

π(1− e−4πu)n+1

(
u+ ue−4πu − 1

2π
(1− e−4πu)

)
,∫ u

0

dv

∫
X0

e−vL
0
2,x(0, Z)|zi|2|zj|2e−(u−v)L0

2,x(Z, 0)dZ (2.4.20)

=
e−4πuN2δij

π2(1− e−4πu)n+2

(
u(1 + 4e−4πu + e−8πu)− 3

4π
(1− e−8πu)

)
.

We get (2.4.17) from Lemma 2.4.4, (2.4.10), (2.4.18) and (2.4.19).

Now, we introduce the functions g1, g2, g̃2, g̃3 : R→ R by

g1(u) =
e−2πu

1− e−2πu
, g2(u) =

e−2πu

(1− e−2πu)2
,

g̃2(u) =
ue−2πu

(1− e−2πu)2
, g̃3(u) =

ue−2πu

(1− e−2πu)3
.

(2.4.21)

Lemma 2.4.6. For u > 0, we have

A(u) = −rk(E)

∫
M

c1(TM)
ωn−1

(n− 1)!

(
g2(u) + n

2
g1(u)− 2πg̃3(u)

)
−
∫
M

c1(E)
ωn−1

(n− 1)!

(
ng1(u)− 2πg̃2(u)

)
. (2.4.22)

Proof. Let ai,j ∈ End(E); i, j = 1, . . . , n then

Trs

[
e−2πuN

]
= rk(E)(1− e−2πu)n, (2.4.23)

Trs

[∑n
k,l=1 ak,lw

k ∧ iwle−2πuN
]

=
∑n

j=1(−1)je−2πju
∑n

k=1 TrE[ak,k]
(
n−1
j−1

)
(2.4.24)
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= −TrE
[∑n

i=1 ai,i
]
e−2πu(1− e−2πu)n−1.

By taking derivatives of those identities, we get

Trs

[
Ne−2πuN

]
= −rk(E)ne−2πu(1− e−2πu)n−1, (2.4.25)

Trs

[
N
∑n

i,j=1 ai,jw
i ∧ iwje−2πuN

]
= −TrE

[∑n
i=1 ai,i

]
e−2πu(1− ne−2πu)(1− e−2πu)n−2.

By (2.4.11), we have∑
iR

Λ
ii

= 1
2
〈RT (1,0)M(wk, wk)wi, wj〉wj ∧ iwi =

∑
i,j R

det
ij
wj ∧ iwi . (2.4.26)

For a 2-form α, we define the function Λω [α] by the identity Λω [α] ω
n

n!
= α ωn−1

(n−1)!
, then

rMx = 8
∑

i,j Riijj = 4
∑

iR
det
ii

= 4πΛω

[
c1(T (1,0)M,hT

(1,0)M)
]
,∑

i Tr
[
RE
ii

]
= πΛω

[
c1(E, hE)

]
.

(2.4.27)

By Lemma 2.4.5, (2.4.16), (2.4.25), (2.4.26) and (2.4.27) to get

Trs

[
Na1,u(x)

]
= −rk(E)Λω

[
c1(T (1,0)M,hT

(1,0)M)
](
g2(u) + n

2
g1(u)− 2πg̃3(u)

)
− Λω

[
c1(E, hE)

](
ng1(u)− 2πg̃2(u)

)
. (2.4.28)

By (2.4.2) and (2.4.28) we deduce (2.4.22).

Proof of Theorem 2.1.3. We verify that as u→ 0,

g1(u) = g
[−1]
1 u−1 − 1

2
+O(u), g2(u) = g

[−2]
2 u−2 + g

[−1]
2 u−1 − 1

12
+O(u),

g̃2(u) = g̃
[−1]
2 u−1 +O(u), g̃3(u) = g̃

[−2]
3 u−2 + g̃

[−1]
3 u−1 +O(u).

(2.4.29)

From Lemma 2.4.6, (2.4.4) and (2.4.29), we get (2.1.5).
Let ζ(z) be the Riemann zeta function. By (2.4.21), we have

M
[
g1

]
(z) = 1

Γ(z)

∫ +∞
0

∑
j≥1 e

−2πjuuz−1 du = (2π)−zζ(z), (2.4.30)

Similarly, we get

M
[
g2

]
(z) = (2π)−zζ(z − 1), M

[
g̃2

]
(z) = z(2π)−(z+1)ζ(z),

M
[
g̃3

]
(z) = z(2π)−(z+1)

(
ζ(z − 1) + ζ(z)

)
/2.

(2.4.31)

We recall that
ζ ′(0) = −1

2
log(2π), ζ(0) = −1

2
, ζ(−1) = − 1

12
. (2.4.32)

From Lemma 2.4.6, (2.4.4), (2.4.30), (2.4.31) and (2.4.32), we get (2.1.6).
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2.4.3 Relations to previous works
Verification. The analytic torsion of CPn for n ≥ 1 with trivial line bundle was computed by
Gillet-Soulé and Zagier in [65] and it played an important role in the formulation and proof of the
arithmetic Riemann-Roch theorem by Gillet-Soulé in [66]. Later, it was reobtained by Bost in [32]
as a direct consequence of Bismut-Lebeau immersion theorem [25], [17].

Let’s denote now byM = CP1 and by L = O(1) the hyperplane line bundle. We endowO(−1)
with the Hermitian metric induced from the inclusionO(−1) ↪−→ C2 : ([z], λz) 7→ λz, z ∈ C2\{0}.
Let hL be the dual Hermitian metric on L = O(−1)∗. The Fubiny-Study metric gTM on TM is
by definition the metric, associated to the positive 2-form ω = c1(L, hL) = 1

2π

√
−1RL. By [77,

Theorem 18] or [73, (12), (73), (74)]1, we get for p ≥ 1

2 log T (gTM , hL
p
) = 2

∑p
j=1(p− j) log(j + 1)− (p+ 1) log(p+ 1)!

− 4ζ ′(−1) + 1
2
(p+ 1)2 − log(2π)

2
p− 2

3
log(2π). (2.4.33)

By [97, (5.11.1), (5.17.2), (5.17.5)], we have the following asymptotic expansions of Barnes G-
function and factorial as p→ +∞

log
∏p−1

i=1 i! = 1
2
p2 log p− 3

4
p2 + 1

2
log(2π)p− 1

12
log p+ ζ ′(−1) +O(p−1),

log p! = p log p− p+ 1
2

log p+ 1
2

log(2π) + 1
12
p−1 +O(p−2).

(2.4.34)

We note that from [97] we can actually get each coefficient in the expansion of log T (gTM , hL
p
).

We substitute (2.4.34) into (2.4.33) and we get, as p→ +∞

2 log T (gTM , hL
p

) = −1
2
p log p− 2

3
log p− 1

6
log(2π)− 7

12
− 2ζ ′(−1) +O(p−1). (2.4.35)

Since
∫
M
c1(TM) = 2, this formula coincides with Theorem 2.1.3 for E is trivial.

To check the coefficients of c1(E) for general n-dimensional manifold M , the reader may com-
pare the coefficients of kn−1 log k and kn−1 from Theorem 2.1.3 applied for E = L, p = k− 1 and
E = OM , p = k.

Connection with the arithmetic Riemann-Roch theorem. Now let’s describe an informal con-
nection between ζ ′(−1), which appears in Theorem 2.1.3, and the one which appears in the R-
genus of Gillet-Soulé.

Let X be an arithmetic variety in the sense of the book of Soulé [106, p. 55]. In [64], Gillet-
Soulé defined arithmetic Chow groups ĈH

k
(X), for k ∈ N. Those groups are generated by

pairs (Z, gZ), where Z is a cycle of codimension k and gZ is a current over X(C) of bi-degree
(k − 1, k − 1), for which ∂∂

2π
√
−1
gZ + δZ is smooth. There is an intersection pairing ĈH

r
(X) ×

ĈH
q
(X)→ ĈH

r+q
(X) and pushforward operations for morphisms between arithmetic varieties.

1Notice the last two terms, which appear because the metric considered in the article [73] differs from our metric
by a factor 2π.
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Let E be an algebraic vector bundle over X with a Hermitian metric hE invariant under the
complex conjugation over X(C). Then a pair E := (E, hE) is a Hermitian vector bundle over

X in the sense of [106, p. 84]. Let ĉh(E) ∈ ⊕kĈH
k
(X)Q be the arithmetic Chern character. It

satisfies the usual axioms of a Chern character, but it does depend on the choice of the metric.
When hE is replaced by hE0 , the difference ĉh(E, hE) − ĉh(E, hE0 ) is given by (0, c̃h(hE, hE0 )),
where c̃h(hE, hE0 ) is the Bott-Chern secondary characteristic class (cf. [21, (1.124)]).

Let f : X → B be a proper morphism between arithmetic varieties, smooth on generic fiber
X(Q). Let E be a Hermitian vector bundle over X . Grothendieck and Knudsen-Mumford defined
an algebraic line bundle λ(E) over B, see [76]. The fiber at every point y ∈ B is the alternated
tensor product λ(E)y = ⊗q≥0(detHq(f−1(y), E))(−1)q . The line bundle λ(E) induces a holomor-
phic line bundle over the set of complex points B(C). Over X(C), the Kähler form ω induces a
Hermitian metric hTf on the relative tangent bundle TfC. This defines a Hermitian vector bundle
TfC := (TfC, h

Tf ). Then one defines Quillen metric on λ(E) overB(C) as a product of L2 metric
and analytic torsion of the fiber, see [23, Definition 1.12, Theorem 1.15]. Thus, we get a Hermitian
line bundle λ(E) overB(C). The arithmetic Riemann-Roch theorem of Gillet-Soulé [66, Theorem
VIII.1’] says

ĉ1(λ(E)) = f∗(ĉh(E)T̂d(TfC))− (0, f∗(ch(EC)Td(TfC)R(TfC))), (2.4.36)

where T̂d(TfC) ∈ ⊕kĈH
k
(X)Q is the arithmetic Todd class of TfC and R is the additive genus

of Gillet-Soulé defined by the power series R(z)

R(z) =
n odd∑
n≥1

(
2
ζ ′(−n)

ζ(−n)
+

n∑
j=1

1

j

)
ζ(−n)

zn

n!
. (2.4.37)

Now let’s suppose B = Spec(Z). Then ĈH
1
(B) = R, and by [106, Lemma VIII.1.1], we have

ĉ1(λ(E)) =
∑n

q=0(−1)q
(
log #Hq(X,E)tors − log VolL2(Hq(X,E))

)
+2 log T (X,E), (2.4.38)

where VolL2(Hq(X,E)R) is the L2 co-volume of the integer lattice H(X,E)free, which is the free
part in cohomologyHq(X,E)⊗R and T (X,E) is the analytic torsion associated with E and TfC.

Let’s consider the simplest case when X is a projective plane from previous paragraph. For the
coordinates z0, z1 on C2, we identify the basis of H0(CP1,O(p)) with homogeneous polynomials
xj = zj0z

p−j
1 , j = 0, . . . , p of degree p. By the fact that {xj} form an orthogonal basis in cohomol-

ogy with respect to‖·‖L2 , by
∥∥xj∥∥L2 = j!(p − j)!/(p + 1)!, H1(CP1,O(p)) = 0 for p ≥ 1 and

some calculations with characteristic and secondary characteristic classes, we have∑1
q=0(−1)q log VolL2(Hq(CP1,O(p))) =

∑p
j=0 log

∥∥xj∥∥L2

= 2 log

p∏
1

j!− (p+ 1) log(p+ 1)!, (2.4.39)
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f∗(ĉh(E)T̂d(TfC))− (0, f∗(ch(EC)Td(TfC)R(TfC)))

= 1
2
(p+ 1)2 − 4ζ ′(−1)− log(2π)

2
p− 2 log(2π)

3
. (2.4.40)

This goes in line with (2.4.33), (2.4.36) and (2.4.38). Now, by (2.4.34) and (2.4.39), we have, as
p→∞

1∑
q=0

(−1)q log VolL2(Hq(CP1,O(p))) = −1

2
p2 − 1

2
p log p+

( log(2π)

2
− 1
)
p

− 2

3
log p+ 2ζ ′(−1) +

1

2
log(2π)− 13

12
+O(p−1). (2.4.41)

Thus, the right-hand side of (2.4.41) contains 2ζ ′(−1) in the constant term. It is an interesting
question if one could understand the appearance of ζ ′(−1) in the asymptotics of the first summand
in the right-hand-side of (2.4.38) for a general arithmetic variety without using Theorem 2.1.3.

Relation with the result of Klevtsov-Ma-Marinescu-Wiegmann [73]. Now let’s describe a
result from [73, §4]. We denote by M a Riemann surface and by gTM0 , gTM1 Riemann metrics on
M . Let L be a holomorphic line bundle over M and let hL0 , h

L
1 be Hermitian metrics such that L is

positive with respect to any of hL0 , h
L
1 . Let R̊L

i ∈ End(T (1,0)M) be defined as in (2.1.2) with respect
to (hLi , g

TM
i ). We denote by ∆gTMi

, dvi,M the scalar Laplacian and the volume form associated to
gTMi . Then [73, (73)] says

2 log T (gTM1 , hL
p

1 )− 2 log T (gTM0 , hL
p

0 ) = F1 −F0, (2.4.42)

where

Fi = −1

2

∫
M

p log
(pR̊L

i

2π

)
ω − 1

3

∫
M

log
(pR̊L

i

2π

)
c1(TM)

− 1

48π

∫
M

log
(
R̊L
i

)
∆gTMi

(
log R̊L

i

)
dvi,M +O(p−1). (2.4.43)

The authors observed the equality between the first two terms of the expansion of F1 and the
first two terms of the expansion of 2 log T (gTM1 , hL

p

1 ) (see (2.1.4)), so they conjectured that the third
and forth terms will also coincide. We see by Theorem 2.1.3 that the third term of the asymptotic
expansion of 2 log T (gTM1 , hL

p

1 ) is −1
3

∫
M
c1(TM), which coincides with the third term of F1. The

forth term of the asymptotic expansion of 2 log T (gTM1 , hL
p

1 ) is

− 1
24

rk(E)
(
24ζ ′(−1) + 2 log(2π) + 7

) ∫
M
c1(TM), (2.4.44)

and in F1 it is 0. So the conjecture is valid for the third term, but not for the forth.
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2.5 General asymptotic expansion for orbifolds, Theorem 2.1.5
In this section we prove Theorem 2.1.5. The general framework of Section 2.2.2 stays the same.
We are still able to do the localization in the calculation of the asymptotic expansion of the analytic
torsion. Once we localize the problem, the analysis differs from the manifold’s case only in the
neighbourhood of singular points, where the problem reduces to the G−manifold case and the
results of Section 2.3.2 could be applied.

This section is organized as follows. In Section 5.1 we recall the definition of an orbifold and fix
some notation. In Section 5.2 we prove some technical lemmas which facilitate further exposition.
In Section 5.3 we establish Theorem 2.5.12, which is the full statement of Theorem 2.1.5. We also
explain how this theorem implies the main result of Hsiao-Huang [68].

2.5.1 Orbifold preliminaries
In this section we recall some definitions from orbifolds theory. The content here is taken almost
verbatim from the article [83, §1.1] and the book [85, §5.4].

We define a categoryMs as follows: the objects ofMs are the class of pairs (G,M) where M
is a connected smooth manifold and G is a finite group acting effectively on M . Let (G,M) and
(G′,M ′) be two objects, then a morphism Φ : (G,M)→ (G′,M ′) is a family of open embeddings
φ : M →M ′ satisfying:

1. For each φ ∈ Φ, there is an injective group homomorphism λφ : G → G′ such that φ is
λφ-equivariant.

2. For g ∈ G′, φ ∈ Φ, we define gφ : M → M ′ by (gφ)(x) = g(φ(x)) for x ∈ M . If
(gφ)(M) ∩ φ(M) 6= ∅, then g ∈ λφ(G).

3. For φ ∈ Φ, we have Φ = {gφ, g ∈ G′}.

Definition 2.5.1 (Definition of an orbifold). LetM be a paracompact Hausdorff space and let U
be a covering ofM consisting of connected open subsets. We assume U is dense, i.e.

For any x ∈ U ∩ U ′, U, U ′ ∈ U , there is U ′′ ∈ U such that x ∈ U ′′ ⊂ U ∩ U ′.
Then an orbifold structure V onM is the following:

1. For U ∈ U ,V(U) = ((GU , Ũ) → U) is a ramified covering, giving an isomorphism U '
Ũ/GU .

2. For U, V ∈ U , U ⊂ V , there is a morphism φV U : (GU , Ũ) → (GV , Ṽ ) that covers the
inclusion U ⊂ V .

3. For U, V,W ∈ U , U ⊂ V ⊂ W , we have φWU = φWV ◦ φV U . If U ′ is a dense refinement of
U we say that the restriction V ′ of the orbifold structure V to U ′ is equivalent to V . A pair ofM
and an equivalence class [V ] is called an orbifold.

Remark 2.5.2. This definition corresponds to “an effective orbifold” in the standard terminology.
In Definition 2.5.1, we can replace Ms by a category with manifolds with additional struc-

ture (orientation, Hermitian or Riemannian structure) as objects and maps, which preserve this
structure, as morphisms. So we can define oriented, Hermitian or Riemannian orbifolds.
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Let (M, [V ]) be an orbifold. For each x ∈M, we can choose a small neighbourhood (Gx, Ũx)→
Ux such that x ∈ Ũx is a fixed point of Gx. The isomorphism class of Gx doesn’t depend on the
choice of a chart. Let’s defineMsing = {x ∈M : |Gx| 6= 1}.

Definition 2.5.3. An orbifold vector bundle E over an orbifold (M,V) is defined as follows: E is
an orbifold, for U ∈ U , (GEU , p̃U : ẼU → Ũ) is a GEU -equivariant vector bundle and (GEU , ẼU) is
an orbifold structure of E such that the transition maps in this structure are given by equivariant
maps of those vector bundles. Moreover, (GU = GEU/K

E
U , Ũ), KEU = ker(GEU → Diffeo(Ũ)) is an

orbifold structure ofM. If KEU = {1}, we call E a proper orbifold vector bundle.

For example, the orbifold tangent bundle TM of an orbifoldM is defined by (GU , T Ũ → Ũ),
for U ∈ U . It is a proper orbifold vector bundle. Let E → M be an orbifold vector bundle. A
section s :M→ E is smooth (or holomorphic ifM is a complex orbifold), if for each U ∈ U , s|U
is covered by a GEU -invariant smooth (or holomorphic) section s̃U : Ũ → ẼU .

For an oriented orbifoldM and a form α overM (i.e., a section of Λ•(T ∗M)) we define∫
M α := 1

|GU |

∫
Ũ
α̃U , where supp α ⊂ U ∈ U (2.5.1)

We can extend this definition by R-linearity to any differential form with compact support.

Lemma 2.5.4 (cf. [85, Lemma 5.4.3]). We can choose local coordinates Ũx ⊂ Rn (or Cn if orbifold
is complex) such that the finite group Gx acts linearly (or C-linearly) on Ũx.

Let (1), (h1
x), · · · , (hρxx ) be all the conjugacy classes in Gx. Let ZGx(hjx) be the centralizer of

hjx in Gx. We also denote by Ũhjx
x the fixed point set of hjx in Ũx. Then we have a natural bijection

{(y, (hjy))|y ∈ Ux, j = 1, · · · , ρy} '
ρx∐
j=1

Ũhjx
x /ZGx(h

j
x).

Definition 2.5.5 (Strata of an orbifold). We can globally define

ΣM = {(x, (hjx))|x ∈M, Gx 6= 1, j = 1, · · · , ρx}

and endow ΣM with a natural orbifold structure defined by{
(ZGx(h

j
x)/K

j
x, Ũ

hjx
x )→ Ũhjx

x /ZGx(h
j
x)
}

(x,Ux,j)
,

where Kj
x is the kernel of the representation ZGx(hjx) → Diff(Ũhjx

x ) and Diff(Ũhjx
x ) is the set of

diffeomorphisms of Ũhjx
x .

Till the end of this section we denote by

ΣM[j], j ∈ J the connected components of ΣM, nj = dimC ΣM[j], (2.5.2)

mj = |Kj| the multiplicity of ΣM[j], (2.5.3)

where Kj was defined in Definition 2.5.5. We have a natural map π : ΣM→M, (x, (hjx)) 7→ x.
Then π|ΣM[j] is an embedding.
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2.5.2 General setup and some auxiliary lemmas
Let’s fix a compact Hermitian orbifold (M, gTM,Θ) of complex dimension n. Then its strata ΣM
is naturally a Hermitian orbifold. We fix x ∈ ΣM[j] and we denote by

gj ∈ Gx some element such that (x, gj) ∈ ΣM[j].

Let’s denote by Ñj the normal vector bundle to Ũ
gj
x in Ũx. We introduce the projection π(j) :

Ñj → ΣM[j]. We see that Ñj is naturally endowed with the Hermitian metric. We denote by
dvN its Riemannian volume form. Exponential mapping gives a map φ from the neighbourhood
of the zero section of Ñj to the neighbourhood of π(ΣM[j]) inM. We define a function kj in this
neighbourhood of π(ΣM[j]) by

φ∗dvM(x, Z) = kj(x, Z)((φπ)∗dvΣM[j](x)) ∧ dvN (x, Z), (2.5.4)

where dvM, dvΣM are the Riemannian volume forms ofM and ΣM respectively. We extend the
function kj to the whole Nj in such a way that all its derivatives are bounded.

Let (E , hE) be a Hermitian proper orbifold vector bundle onM. By Lemma 2.5.4, we can define
the operator ∂E locally on each local chart Ũ and patch it globally. As usually, we define the oper-
ators ∂E∗,�E . By [83], the heat operator exp(−t�E) has a smooth kernel exp(−t�E)(x, y), x, y ∈
M with respect to dvM.

Let (L, hL) be a holomoprhic Hermitian proper positive orbifold line bundle onM. We denote
by θj ∈ 2πQ, j ∈ J the number such that for any x ∈ π(ΣM[j])

the action of gj ∈ Gx on Lx is given by e
√
−1θj . (2.5.5)

This number is independent of the choice of x and gj . We denote by �p the Laplacian �Lp⊗E and
define the analytic torsion T (gTM, hL

p⊗E) as in Definition 2.2.3. We have

Theorem 2.5.6 ( [85, Theorem 5.4.9]). There exists µ > 0 such that for any p� 1, we have

Spec(�p) ⊂ {0} ∪ [µp,+∞[, ker(�p) ⊂ Ω(0,0)(M,Lp ⊗ E).

Locally, over an orbifold chart, we define the function k (see (2.3.11)) and the operators
L̃p,x, L̃t2,x, L̃

t,v
4,x (see (2.3.13), (2.3.17) and (2.3.38)) as we did in the manifolds case. Those ob-

jects are Gx-invariant. For brevity, we note for w > 0

e−wL
t
2,x = exp(−wL̃t2,x), e−wL

t,v
4,x = exp(−wL̃t,v4,x). (2.5.6)

Now we write down some simple corollaries of Section 2.3.2, which simplify largely the proof of
Theorem 2.1.5. Here and after, let (g1, g2) ∈ Gx ×Gx acts on

(ξ1, ξ2) ∈ (Λ•(T ∗(0,1)
y M)⊗ Lpy ⊗ Ey)⊗ (Λ•(T ∗(0,1)

z M)⊗ Lpz ⊗ Ez)∗, y, z ∈M, by

(g1, g2)(ξ1, ξ2) = (g1ξ1, g2ξ2) ∈ (Λ•(T ∗(0,1)
g1y
M)⊗Lpg1y ⊗ Eg1y)⊗ (Λ•(T ∗(0,1)

g2z
M)⊗Lpg2z ⊗ Eg2z)

∗.
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Lemma 2.5.7. For any j ∈ J, u > 0 fixed, the function∫
Z∈Ñj,x Trs

[
N(gj, 1)e−uL

t
2,x(g−1

j Z,Z)
]
(k−1kj)(x, tZ) dvNj(Z) (2.5.7)

is differentiable in (x, t) ∈M× [0, 1] and it’s derivatives ∂a+b

∂xa ∂tb
|t=0 vanish for b odd.

Proof. First of all, the integral makes sense due to Theorem 2.3.10 and to the fact that the action
of gj on Ñj,x has no fixed points. Due to the Gx-invariance of L̃t2,x and the fact that gj acts by
isometries, the integral doesn’t depend on the choice of gj .

The first part is a consequence of the Lebesgue dominated convergence theorem and Theorem
2.3.11. The vanishing result follows from the Duhamel’s formula (2.4.10) (cf. [40, Theorem 4.17]),
[85, Theorem 4.1.7] and the fact that exp(−uL̃0

2,x)(g
−1
j Z,Z) is an even function in Z (cf. [85,

Appendix D]).

Lemma 2.5.8. For any j ∈ J , the function∫
Z∈Ñj,x Trs

[
N(gj, 1)e−L

t,v
4,x(g−1

j Z,Z)
]
(k−1kj)(x, tvZ) dvNj(Z) (2.5.8)

is differentiable in (x, t, v) ∈ M × [0, 1] × [0,+∞[ and it’s derivatives ∂a+b+c

∂xa ∂tb ∂vc
|t=0,v=0 vanish

whenever b or c is odd.

Proof. By Proposition 2.3.13, the proof is the same as in Lemma 2.5.7.

We fix t0 as in (2.3.28).

Lemma 2.5.9. For any m ∈ N∗, u0 > 0 there are c, C > 0 such that for any u ∈]0, u0]; j ∈ J∣∣∣ ∫
Z∈Ñj,x

Trs

[
N(gj, 1)e−uL

t
2,x(g−1

j Z,Z)
]
(k−1kj)(x, tZ) dvNj(Z)

− u−nj
∫
Z∈Ñj,x

Trs

[
N(gj, 1)e−L

t,v
4,x(g−1

j Z,Z)
]
(k−1kj)(x, tvZ) dvNj(Z)

∣∣∣
Cm(M×[0, t0])

≤ C exp(−c/u). (2.5.9)

Proof. Let’s fix ε > 0 small enough. We break up the integral∫
Z∈Ñj,x

Trs

[
N(gj, 1)e−uL

t
2,x(g−1

j Z,Z)
]
(k−1kj)(x, tZ) dvNj(Z) (2.5.10)

into two parts I1 =
∫
|Z|≤ε and I2 =

∫
|Z|>ε. Similarly, we break the integral∫

Z∈Ñj,x
Trs

[
N(gj, 1)e−L

t,v
4,x(g−1

j Z,Z)
]
(k−1kj)(x, tvZ) dvNj(Z) (2.5.11)

into two parts J1 =
∫ ′
|Z|≤ε/v and J2 =

∫ ′
|Z|>ε/v. By Theorem 2.3.11 and Proposition 2.3.13, there

are constants c, C > 0 such that |I2|Cm′ (M), |J2|Cm′ (M) ≤ C exp(−c/u). By Proposition 2.3.12,
we get the estimate |I1 − J1|Cm′ (M) ≤ C exp(−c/u).
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Lemma 2.5.10. For any u0 > 0,m ∈ N there exist c, C > 0 such that for any u > u0, j ∈ J∣∣ ∫
Z∈Ñj,x Trs

[
N(gj, 1)e−uL

t
2,x(g−1

j Z,Z)
]
(k−1kj)(x, tZ) dvNj(Z)

∣∣
Cm(M×[0, t0])

≤ C exp(−cu). (2.5.12)

Proof. It follows from Lebesgue dominated convergence theorem and Theorem 2.3.10.

Lemma 2.5.11. For any u0 > 0;m, k′ ∈ N, there exists C > 0 such that for any u ∈]0, u0], v =√
u, j ∈ J , we have∣∣∣ ∫

Z∈Ñj,x
Trs

[
N(gj, 1)e−uL

t
2,x(g−1

j Z,Z)
]
(k−1kj)(x, tZ) dvNj(Z)

−
k′+nj∑
h=0

uh

(2h)!

∂2h

∂v2h

(∫
Z∈Ñj,x

Trs

[
N(gj, 1)e−L

t,v
4,x(g−1

j Z,Z)
]

· (k−1kj)(x, tvZ) dvNj(Z)
)
|v=0

∣∣∣
Cm(M×[0, t0])

≤ Cuk
′+1. (2.5.13)

Proof. This follows immediately from Lemmas 2.5.8, 2.5.9.

2.5.3 Proof of Theorem 2.1.5
In this section we prove Theorem 2.1.5. Then we will show that Theorem 2.1.5 gives a refinement
of the main result of Hsiao-Huang [68]. One of the main ingredients here is Lemma 2.5.13, which
localizes the calculation of the asymptotic expansion of the heat kernel near the singular locus.
Once this lemma is established, the main strategy of the proof is the same as in the manifold’s case
from Section 2.2.2. The only technical modification will consist in exploiting the results of Section
2.3.2 on off-diagonal expansion of the heat kernel. We use the notation from Section 2.5.2.

We begin by giving the definition of the sections ãi,u of the vector bundle End(Λ•(T ∗(0,1)M)⊗
E), which are the orbifold’s counterparts of ai,u, defined in Theorem 2.2.5. If x ∈ M is nonsin-
gular, we define ãi,u(x) by (2.3.25). If x is singular, we define the following local section (see
(2.5.6))

a′k,u(x) =
1

(2k)!

∂2k

∂t2k
e−uL

t
2,x/2(0, 0)|t=0. (2.5.14)

It is GU -invariant over an orbifold neighbourhood Ũ , so it gives a section of End(Λ•(T ∗(0,1)M)⊗
E) over Ũ/GU , which we denote by ãi,u.

We prove in Proposition 2.5.15 that ãi,u has an expansion of the form (2.2.1) as u → 0 (so
Notation 2.2.2 makes sense), and we can perform the Mellin transform for the trace of ãi,u. Now
let’s state Theorem 2.1.5 precisely.

Theorem 2.5.12. There are α̃i, β̃i ∈ R, i ∈ N and γj,i, κj,i ∈ R, j ∈ J, i ∈ N such that the
asymptotic expansion (2.1.7) holds, as p→∞. Moreover,

α̃i =
∫
MTrs

[
Nãi

[0](x)
]
dvM(x), β̃i = −Mu

[ ∫
MTrs

[
Nãi,u(x)

]
dvM(x)

]′
(0). (2.5.15)
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Also there are functions cj,u,i, j ∈ J, u ∈]0,+∞[, i ∈ N on ΣM[j], given by (2.5.27), such that
1. For x ∈ M the value cj,u,i(x) depends only on the local geometry of M in x and on the

action of gj ∈ Gx on the normal bundle Ñj,x,
2. The equations (2.2.1), (2.2.2) hold for the functions u 7→ cj,u,i(x), u > 0, so we can apply

the Mellin transform, and Notation 2.2.2 makes sense. We have the following identities:

γj,i =
∫

ΣM[j] c
[0]
j,i(x) dvΣM[j](x), κj,i = −Mu

[∫
ΣM[j] cj,u,i(x) dvΣM[j](x)

]′
(0). (2.5.16)

Finally, the identities (2.1.8), (2.1.9) hold and the proportion κj,0/Vol(ΣM[j]) depends only on the
action of gj ∈ Gx, (x, gj) ∈ ΣM[j] on the normal bundle Ñj,x of a fixed point x ∈ ΣM[j], and for
cj from (2.1.9), we have a precise formula

cj = −nrk(E)
(

det(Id− gj|Ñj)
)−1/2

. (2.5.17)

Now we give a proof of Theorem 2.5.12. Let ε > 0 be small enough, we introduce

A(p, u) =

∫
M\B(Msing ,ε)

Trs

[
N exp(−u�p/p)(x, x)

]
dvM(x)

+ pn
∫
B(Msing ,ε)

Trs

[
Ne−uL

t
2,x/2(0, 0)

]
dvM(x).

B(p, u) =
∑
j∈J

1

mj

pnje
√
−1θjp

∫
ΣM[j]

∫
Z∈Ñj,x

Trs

[
N(gj, 1)e−uL

t
2,x/2(g−1

j Z,Z)
]

· (k−1kj)(x, tZ) dvNj(Z) dvΣM[j](x).

(2.5.18)

The following Lemma which explains the difference of the manifold’s case and the orbifold’s case,
and why the results from Section 2.3.2 are necessary for the orbifold’s case.

Lemma 2.5.13. For ε > 0 small enough, there are c, C > 0 such that for any p ∈ N∗, u > 0:

Trs

[
N exp(−u�p/p)

]
= A(p, u) +B(p, u) +O(pC exp(−cp/u)). (2.5.19)

Proof. We suppose ε satisfies (2.3.4) and (2.3.9). Let f : R → [0, 1] be a smooth even function,
which satisfies

f(v) =

{
1, for |v| ≤ ε/2,

0, for |v| ≥ ε.
(2.5.20)

For u > 0, a ∈ C we denote holomorphic even functions Fu, Gu on C by (cf. [85, (1.6.13)])

Fu(a) =

∫ +∞

−∞
eiva exp(−v2/2)f(

√
uv)

dv√
2π
,

Gu(a) =

∫ +∞

−∞
eiva exp(−v2/2)(1− f(

√
uv))

dv√
2π
.

(2.5.21)
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Then we have (cf. [85, (1.6.14)])

Fu(vDp) +Gu(vDp) = exp(−v2D2
p/2). (2.5.22)

By [85, Proposition 1.6.4, (5.5.72)], there are c, C > 0, k ∈ N such that for any x, x′ ∈ M, p ∈
N∗, u > 0 ∣∣Gu/p(

√
u/pDp)(x, x

′)
∣∣ ≤ Cpk exp(−cp/u). (2.5.23)

We construct an open cover of B(Msing, ε) by a finite number of balls Bi := B(xi, εi), i ∈ I
for εi < 2ε and xi ∈ Msing. We require that x ∈ B(π(ΣM[j]), ε) ∩ Bi implies xi ∈ π(ΣM[j]),
for a natural embedding π : ΣM → M. We construct a partition of unity ρi subordinate to
Bi, i ∈ I . We implicitly identify a neighbourhood of 0 ∈ TxiM, parametrized by variable Z, with
a neighbourhood of xi.

By the identity gFu/p(
√
u/pDp) = Fu/p(

√
u/pDp)g and finite propagation speed of solutions

of the hyperbolic equations, we have the identity (cf. [85, (5.4.18)])

Fu/p(
√
u/pDp)(expxi(Z), expxi(Z))

=
∑

g∈Gxi
(g, 1)Fu/p(

√
u/pD̃p)(expxi(g

−1Z̃), expxi(Z̃)), (2.5.24)

where Z ∈ TxiM, |Z| ≤ ε, Z̃ ∈ TxiŨxi represents Z in the orbifold chart Ũxi of xi.
In the following series of identities we use Remark 2.3.5, (2.3.23), (2.5.3), (2.5.23), (2.5.24)

and the fact that k is Gx-invariant.∫
B(Msing ,ε)

Trs

[
N exp(−u�p/p)(x, x)

]
dvM(x) (2.5.25)

=
∑

j∈I p
n
∫
B(xj ,εi)

ρj(x)Trs

[
Ne−uL

t
2,x/2, 0)

]
dvM(x)

+
∑

j∈I
∫
B(xj ,εj)

ρj(Z)Trs

[
N
∑

g∈Gxj \{1}
(g, 1) exp(−u ˜Lp,π(j)(Z)/(2p))(g

−1Z,Z)
]
dvM(Z)

+O(pC
′
exp(−cp/u))

= pn
∫
B(Msing ,ε)

Trs

[
Ne−uL

t
2,x/2(0, 0)

]
dvM(x)

+ pn
∑

j∈J
1
mj
e
√
−1θjp

∫
ΣM[j]

∫
Z∈Ñj,x,|Z|≤ε Trs

[
N(gj, 1)e−uL

t
2,x/2(g−1

j Z/t, Z/t)
]

· (k−1kj)(x, tZ) dvNj(Z)dvΣM[j](x) +O(pC exp(−cp/u)),

After a change of variables Z → Z/t and an application of Theorems 2.3.10, 2.3.11 we conclude.

The terms A(p, u), B(p, u) appear in each proof till the end of this section. Due to the finite
propagation speed of solutions of the hyperbolic equations, the analysis of A(p, u) is always the
same as in Section 2.2.2. The main contribution here is the analysis of B(p, u). The following
proposition is an orbifold’s version of Theorem 2.2.5.

Proposition 2.5.14. For any k ∈ N and u > 0 fixed, we have as p→ +∞
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Trs

[
N exp(−u�p/p)

]
=

k∑
i=0

pn−i
∫
M

Trs

[
Nãi,u(x)

]
dvM(x)

+

k+nj−n∑
i=0

∑
j∈J

pnj−i

mj

e
√
−1θjp

∫
ΣM[j]

cj,u,i(x) dvΣM[j](x) + o(pn−k), (2.5.26)

where

cj,u,i(x) =
1

(2i)!

∫
Ñj,x

Trs

[
N(gj, 1)

∂2i

∂t2i

(
e−uL

t
2,x/2(g−1

j Z,Z)(k−1kj)(x, tZ)
)
|t=0

]
dZ, (2.5.27)

and the term o(pn−k) is uniform as u varies in compact subsets of ]0,+∞[.

Proof. By Lemma 2.3.4, Proposition 2.3.7 and (2.5.18), we get

A(p, u) =
∑k

i=0 p
n−i ∫

MTrs

[
Nãi,u(x)

]
dvM(x) + o(pn−k). (2.5.28)

By Lemma 2.5.10, (2.5.18) and (2.5.27), we get

B(p, u) =
∑k+nj−n

i=0

∑
j∈J

1
mj
pnj−ie

√
−1θjp

∫
ΣM[j] cj,u,i(x) dvΣM[j](x) + o(pn−k). (2.5.29)

Now, Lemma 2.5.13, (2.5.28) and (2.5.29) imply the proposition.

The next proposition is an analogue of Proposition 2.2.6. It implies that we can do the Mellin
transform in u for ãi,u(x), cj,u,i(x); thus, the statement of Theorem 2.5.12 makes sense.

Proposition 2.5.15. There are smooth sections ãi
[l](x), i ∈ N, l ∈ Z, l ≥ −n of the vector bundle

End(Λ•(T ∗(0,1)M)⊗ E) such that the following asymptotic expansion holds for any k ∈ N:

ãi,u(x) =
∑k

l=−n ãi
[l](x)ul + o(uk), as u→ 0. (2.5.30)

Moreover, there are ci, di > 0 such that we have the following estimation

|Nãi,u(x)| ≤ ci exp(−diu). (2.5.31)

Similarly for i ∈ N, j ∈ J, h ∈ Z, h ≥ −nj there are functions c[h]
ji (x) on ΣM[j] such that for any

k ∈ N, we have the following asymptotic expansion, as u→ 0:

cj,u,i(x) =
∑k

h=−nj c
[h]
ji (x)uh + o(uk). (2.5.32)

Moreover, there are ci, di > 0 such that we have the following estimation

|cj,u,i(x)| ≤ ci exp(−diu). (2.5.33)
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Proof. The statements about ãi,u(x) are proved in the same way as Proposition 2.2.6. Estimation
(2.5.32) follows from Lemma 2.5.11 and (2.5.27). Moreover, it proves that

c
[h]
jk (x) =

1

(2k)!(2(h+ nj))!

∫
Z∈Ñj,x

Trs

[
N(gj, 1)

· ∂2(k+h+nj)

∂t2k∂v2(h+nj)

(
e−L

t,v
4,x/2(g−1

j Z,Z)(k−1kj)(x, tvZ)
)
|t=0,v=0

]
dZ. (2.5.34)

Estimation (2.5.33) follows from Lemma 2.5.10 and (2.5.27).

We also have the following version of Proposition 2.2.8 and (2.2.19).

Proposition 2.5.16. For p ∈ N∗ there are b̃p,i ∈ C, i ∈ Z, i ≥ −n and b̃j,p,i ∈ C, j ∈ J, i ∈ Z, i ≥
−nj such that for any k ∈ N, we have the following asymptotic expansion, as u→ 0:

Trs

[
N exp(−u�p/p)

]
= pn

k∑
i=−n

b̃p,iu
i +
∑
j∈J

pnj

mj

e
√
−1θjp

k∑
i=−nj

b̃j,p,iu
i + o(uk), (2.5.35)

We also have the following expansions as p→ +∞

b̃p,i =
∑k

l=0 b̃i
[l]
p−l + o(p−k), with b̃i

[l]
=
∫
MTrs

[
Nãl

[i](x)
]
dvM(x), (2.5.36)

b̃j,p,i =
∑k

h=0 b̃ji
[h]
p−h + o(p−k), with b̃ji

[h]
=
∫

ΣM[j] c
[i]
jh(x) dvΣM[j](x). (2.5.37)

Moreover, for x ∈ ΣM[j], b̃j,p,i(x) depends only on the geometry of M[j], Nj at x and on the
action of gj on Ñj,x.

Proof. Similarly to Proposition 2.2.8, by (2.5.18), we get

A(p, u) = pn
∑k

i=−n b̃p,iu
i + o(uk). (2.5.38)

This proves (2.5.36). Now let’s denote for j ∈ J, i ∈ N, i ≥ −nj

b̃j,p,i =
1

(2(i+ nj))!

∫
ΣM[j]

∫
Z∈Ñj,x

∂2(i+nj)

∂v2(i+nj)

(
Trs

[
N(gj, 1)e−L

t,v
4,x/2(g−1

j Z,Z)
]

· (k−1kj)(x, tvZ)
)
|v=0 dvNj(Z) dvΣM[j](x). (2.5.39)

By Lemma 2.5.11 and (2.5.18), we get

B(p, u) =
∑

j∈J
1
mj
pnje

√
−1θjp

∑k
i=−nj b̃j,p,iu

i + o(uk). (2.5.40)

By Lemma 2.5.13, (2.5.38) and (2.5.40), we get (2.5.35). Now (2.5.37) follows from Lemma 2.5.8
and (2.5.34).
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Now we prove the orbifold’s analogue of Proposition 2.2.9.

Theorem 2.5.17. For any k ∈ N, u0 > 0 there exists C > 0 such that for u ∈]0, u0], p ∈ N∗, we
get

pk
∣∣∣∣Trs

[
N exp(−u�p/p)

]
− pn

0∑
i=−n

b̃p,iu
i −
∑
j∈J

pnj

mj

e
√
−1θjp

0∑
i=−nj

b̃j,p,iu
i (2.5.41)

−
n+k∑
h=0

pn−h
(∫
M

Trs

[
Nãh,u(x)

]
dvM(x)−

0∑
i=−n

b̃i
[h]
ui
)

−
k+nj∑
h=0

∑
j∈J

pnj−h

mj

e
√
−1θjp

(∫
ΣM[j]

cj,u,h(x) dvΣM[j](x)−
0∑

i=−nj

b̃ji
[h]
ui
)∣∣∣∣ ≤ Cu.

Proof. We apply (2.5.18) and the same techniques as in Proposition 2.2.9 to get that there exists
C > 0 such that for any u ∈]0, u0], p ∈ N∗,

pk
∣∣∣(A(p, u)− pn

∑0
i=−n b̃p,iu

i
)

−
∑n+k

h=0 p
n−h( ∫

MTrs

[
Nãh,u(x)

]
dvM(x)−

∑0
i=−n b̃i

[h]
ui
)∣∣∣ ≤ Cu. (2.5.42)

By Lemma 2.5.11, (2.5.18), (2.5.27), (2.5.37) and (2.5.39) we have

pk
∣∣∣(B(p, u)−

∑
j∈J

1
mj
pnje

√
−1θjp

∑0
i=−nj b̃j,p,iu

i
)
−
∑k+nj

h=0

∑
j∈J

1
mj
pnj−h

· e
√
−1θjp

( ∫
ΣM[j] cj,u,h(x) dvΣM[j](x)−

∑0
i=−nj b̃ji

[h]
ui
)∣∣∣ ≤ Cu. (2.5.43)

Now, by Lemma 2.5.13, (2.5.42) and (2.5.43), we get (2.5.41).

Now we prove the orbifold’s analogue of Proposition 2.2.10.

Theorem 2.5.18. For any k ∈ N, u0 > 0 there exists c, C > 0 such that for u > u0, p ∈ N∗

pk
∣∣∣∣Trs

[
N exp(−u�p/p)

]
−

n+k∑
i=0

pn−i
∫
M

Trs

[
Nãi,u(x)

]
dvM(x)

−
k+nj∑
i=0

∑
j∈J

1

mj

pnj−ie
√
−1θjp

∫
ΣM[j]

cj,u,i(x) dvΣM[j](x)

∣∣∣∣ ≤ C exp(−cu). (2.5.44)

Proof. We have to distinguish two cases:
1. u >

√
p. Similarly to Proposition 2.2.10, we get by Theorem 2.5.6 and Proposition 2.5.14.

Trs

[
N exp(−u�p/p)

]
≤ exp(−cu), ãi,u(x) ≤ exp(−cu). (2.5.45)
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We conclude by (2.5.33), (2.5.45) and inequality exp(−cu) ≤ exp(−c√p/2) exp(−cu/2).
2. u ≤ √p. Similarly to Proposition 2.2.10, we get

pk
∣∣∣A(p, u)−

∑n+k
i=0 p

n−i ∫
MTrs

[
Nãi,u(x)

]
dvM(x)

∣∣∣ ≤ C exp(−cu). (2.5.46)

By Lemma 2.5.10, (2.5.18) and (2.5.27), we have

pk
∣∣∣B(p, u)−

∑k+nj
i=0

∑
j∈J

1
mj
pnj−ie

√
−1θjp

∫
ΣM[j] cj,u,i(x) dvΣM[j](x)

∣∣∣ ≤ C exp(−cu). (2.5.47)

We conclude by Lemma 2.5.13, (2.5.46), (2.5.47) and inequality e−cp/u ≤ e−c
√
p/2e−cu/2.

Now, we can repeat the argument of Theorem 2.2.7 to get (2.1.7). The identities (2.1.8) follow
from (2.1.4) and (2.5.14). The identities (2.5.16) are proved in the same way as (2.2.18).

Now let’s explain why the constants α̃i, γj,i do not depend on gTM ,hLp , hE . In [83, Theorem
0.1], Ma proved an analogue of the anomaly formula for orbifolds. Due to this formula, we have
an analogous formula to (2.2.35). By [41, Theorems 1,2] the asymptotic expansion of the Bergman
kernel has only terms of the form pi, pie

√
−1θjp. Similarly to Proposition 2.5.16, we conclude that

the orbifolds analogue of the term Mp
0,c has only terms of the form pi, pie

√
−1θjp in its asymptotic

expansion. Thus, under the change of the metric, only the coefficients of the terms pi, pie
√
−1θjp

change, so the constants α̃i, γj,i do not depend on gTM ,hLp , hE

Now let’s prove (2.1.9). To simplify our calculation, we work under the assumption Θ = ω.
We have the following formula [85, Appendix E 2.2]

(gj, 1)e−uL
0
2,x(g−1

j Z,Z)

= e−4πuNC2u exp
(
− π

tanh(2πu)
‖Z‖2 +

π

sinh(2πu)
〈g−1
j Z,Z〉

)
. (2.5.48)

By (2.4.25), we get

Trs

[
N(gj, 1)e−uL

0
2,x(g−1

j Z,Z)
]

= −rk(E)ne−4πu 1

1− e−4πu

· exp
(
− π

tanh(2πu)
‖Z‖2 +

π

sinh(2πu)
〈g−1
j Z,Z〉

)
. (2.5.49)

We denote by φj,k, k = 1, . . . , n− nj the angles of the rotation of the map gj|Ñj,x . From (2.5.27),
(2.5.49), we see

cj,u,0(x) = − rk(E)ne−πu sinh(πu)n−nj−1

2
∏n−nj

k=1

√
cosh(πu)2 − 2 cos(φj,k) cosh(πu) + 1

. (2.5.50)

Since φj,k /∈ 2πZ for k ∈ 1, . . . ,mj , the function cj,u,0(x) is continuous at u = 0. We get (2.1.9),
(2.5.17) from (2.5.16) and (2.5.50).
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Relation between Theorem 2.1.5 and the result of Hsiao-Huang in [68]. In a recent article
[68], Hsiao-Huang considered a compact connected strongly pseudoconvex CR manifold X with
a S1-transversal locally-free CR action. They considered a rigid CR vector bundle E over X
(being rigid is equivalent to being a pull-back of the holomorphic orbifold vector bundle E over
the quotientM = X/S1, see [68, Definition 2.4]). They decomposed the space Ω(0,•)(X,E) into
Fourier components

Ω(0,•)
p (X,E) = {u ∈ Ω(0,•)(X,E)|(eiθ)∗u = eipθu, for all θ ∈ [0, 2π[}, p ∈ Z. (2.5.51)

Now, the restriction ∂b,p of the tangential Cauchy-Riemann operator ∂b endows Ω
(0,•)
p (X,E) with

a structure of a differential complex. We endow X with S1-invariant Riemannian metric gTX ,
compatible with CR-structure and S1-action, i.e. gTX is the orthogonal sum of a pull-back of
J-invariant metric over the complex orbifold (X/S1, J) and the trivial metric induced on the S1-
directions, see [68, p.4, last paragraph]. We endow E with S1-invariant Hermitian metric hE

satisfying rigidity assumption, i.e. it is a pull-back of a Hermitian metric on X/S1, see [68, Defi-
nition 2.5]. Then we can endow Ω

(0,•)
p (X,E) with the Hermitian metric induced by the L2-scalar

product. We denote by�b,p the Kohn Laplacian, defined by�b,p = ∂b,p∂
∗
b,p+∂

∗
b,p∂b,p.We associate

the analytic torsion T̃p(gTX , hE) to �b,p, as in the case of Kodaira Laplacian (see Definition 2.2.3,
(2.2.10)). The main result in the article [68, Theorem 1.1] is the calculation of the first term of the
asymptotic expansion of log T̃p(g

TX , hE), as p→ +∞.
Let X be a circle bundle associated to the dual of a positive line bundle L over a compact

Hermitian complex manifold M . Let E be a vector bundle over a quotient manifold M = X/S1

and E is a vector bundle π∗E for π : X → M . The authors constructed a chain isometry [68, p.2,
operator Am] between differential complexes (Ω

(0,•)
p (X,E), ∂p,b) and (Ω(0,•)(M,Lp ⊗ E), ∂L

p⊗E).
Thus, Spec�b,p = Spec�L

p⊗E and T̃p(gTX , hE) = T (gTM , hL
p⊗E). By [68, (1.4), (1.5)] in this

case their result is equivalent to the original result of Bismut and Vasserot [27].
Now, in general it has been proven by Ornea and Verbitsky [98, Theorems 1.11, 5.1] that a

compact connected strongly pseudoconvex CR manifold X with a S1-transversal locally-free CR
action is a circle bundle associated to the dual of a positive line bundle L over a compact Hermitian
orbifoldM = X/S1. Similarly to the case whenM is a manifold, there is a chain isometry be-
tween differential complexes (Ω

(0,•)
p (X,E), ∂p,b) and (Ω(0,•)(M,Lp ⊗ E), ∂L

p⊗E). Then Theorem
2.1.5 gives the asymptotic expansion of log T (gTM, hL

p⊗E), p→ +∞. After reformulating this in
terms of geometric objects on X , as it was done in the case whereM is a manifold in [68, (1.4),
(1.5)], Theorem 2.1.5 implies the main theorem of the article [68, Theorem 1.1]. We also point
out that the fractional powers on p in fact do not indeed appear in the asymptotic expansion of
log T̃p(g

TX , hE).
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Analytic torsion for surfaces with cusps
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Chapter 3

Relative compact perturbation theorem and
anomaly formula.

Abstract. We define and study the analytic torsion associated with a Riemann surface with cusps
and a Hermitian vector bundle having at most logarithmic singularities around cusps.

More precisely, we fix a compact Riemann surface and a finite set of points, which we call
cusps. We fix a Kähler metric defined away from from those points such that it can be expressed
as the Poincaré metric over a punctured disk in some local holomorphic coordinates around the
cusps. We fix a holomorphic vector bundle over the total space of the compact Riemann surface
and endow it with a Hermitian metric defined away from the cusps. We suppose that this metric
has at most logarithmic singularities, coming from the induced metric on the negative power of the
canonical line bundle twisted by the divisor line bundle associated with the divisor of cusps.

Then we define the analytic torsion associated with this data. We provide a relation between this
analytic torsion and the analytic torsion of a surface with flattened Kähler and Hermitian metrics.
Then we establish the anomaly formula, which generalizes the Polyakov formula and describes
how the analytic torsion changes under the change of the metric and the Hermitian structure. The
results of this paper will be used in the sequel to study the Quillen metric in families.

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
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Compact perturbation theorem and anomaly formula

3.1 Introduction
The goal of this article is to define and study the analytic torsion associated with a Riemann surface
with hyperbolic cusps and a holomorphic Hermitian vector bundle with at most logarithmic singu-
larities around the cusps. To define the analytic torsion, we use the regularization of the heat trace,
obtained by subtracting a universal contribution coming from the model case of CP1 \ {0, 1,∞}.

We provide a relation between this analytic torsion the analytic torsion of the compactified
surface. Then we prove the anomaly formula, which describes how this analytic torsion changes
with the change of metric and Hermitian structure on the vector bundle.

We stress out that in our definition we do not require the metric to be of constant scalar curvature
everywhere, so the metric of the surface can be as “bad” as we wish over a compact part of the
surface. Also we do not put any restriction neither on the holomorphic vector bundle, neither on the
Hermitian metric over it. In particular, we do not suppose that it comes from some representation
of the associated Fuchsian group.

More precisely, let M be a compact Riemann surface, DM = {PM
1 , . . . , PM

m } be a finite set of
distinct points inM . Let gTM be a Kähler metric on the punctured Riemann surfaceM := M\DM .

For ε ∈]0, 1], i = 1, . . . ,m, let zMi : M ⊃ V M
i (ε) → D(ε) := {z ∈ C : |z| ≤ ε} be a local

holomorphic coordinate around PM
i . We denote

V M
i (ε) := {x ∈M : |zMi (x)| < ε}. (3.1.1)

We say that gTM is Poincaré-compatible with coordinates zM1 , . . . , z
M
m if for any i = 1, . . . ,m,

there is η > 0 such that gTM |VMi (η) is induced by the Hermitian form

√
−1dzMi dz

M
i∣∣zMi ln |zMi |
∣∣2 . (3.1.2)

We say that gTM is a metric with cusps if it is Poincaré-compatible with some holomorphic coor-
dinates near DM . A triple (M,DM , g

TM) of a Riemann surface M , a set of punctures DM and a
metric with cusps gTM is called a surface with cusps (cf. [93]).

For example, if a pointed surface (M,DM) is stable, i.e. the genus g(M) of M satisfies

2g(M)− 2 +m > 0, (3.1.3)

then, by the uniformization theorem (cf. [49, Chapter IV], [9, Lemma 6.2]), there is the canonical
hyperbolic metric gTMhyp of constant scalar curvature −1 on M . Once again, by the uniformization
theorem, there are local holomorphic coordinates zMi of PM

i , i = 1, . . . ,m, such that gTMhyp is
induced by (3.1.2) in the neighbourhood of DM . Thus, (M,DM , g

TM
hyp ) is a surface with cusps.

Let ξ be a holomorphic vector bundle over a complex manifold X with a Hermitian metric hξ

over X . A pair (ξ, hξ) is called a Hermitian vector bundle over X .
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From now on, we fix a surface with cusps (M,DM , g
TM) and a Hermitian vector bundle (ξ, hξ)

over it. We denote by ωM := T ∗(1,0)M the canonical line bundle over M . Let OM(DM) be the
line bundle associated to the divisor DM . The twisted canonical line bundle on M is defined as

ωM(D) := ωM ⊗ OM(DM). (3.1.4)

The metric gTM endows the line bundle ωM (resp. ωM(D)) with the induced Hermitian metric
‖·‖ωM (resp. with ‖·‖M via the canonical isomorphism ωM(D) ' ωM ) over M . In other worlds,
there is ε > 0, such that for the canonical section sDM of OM(DM), over V M

i (ε), we have∥∥dzMi ∥∥ωM =
∣∣zMi ln |zMi |

∣∣, ∥∥dzMi ⊗ sDM/zMi ∥∥M =
∣∣ ln |zMi |∣∣. (3.1.5)

We denote by �ξ⊗ωM (D)n the Kodaira Laplacian associated with (M, gTM) and (ξ ⊗
ωM(D)n, hξ ⊗‖·‖2n

M ).
In this article, apart from the discussion of the L2-norm, we only consider the restriction of

�ξ⊗ωM (D)n on the sections of degree 0.
Assume first m = 0, then the analytic torsion was defined by Ray-Singer [103, Definition

1.2] as the regularized determinant of �ξ⊗ωM (D)n . More precisely, let λi, i ∈ N be the non-zero
eigenvalues of �ξ⊗ωM (D)n . By Weyl’s law, for Re(s) > 1, the associated zeta-function

ζM(s) :=
∑

λsi , (3.1.6)

is well-defined and it is holomorphic in that region. Moreover, as it can be seen by the small-
time expansion of the heat kernel and the classical properties of the Mellin transform, it extends
meromorphically to C. This extension is holomorphic at 0, and the analytic torsion is defined by

T (gTM , hξ ⊗‖·‖2n
M ) := exp(−ζ ′M(0)). (3.1.7)

By (3.1.6) and (3.1.7), we may interpret the analytic torsion as

T (gTM , hξ ⊗‖·‖2n
M ) :=

∞∏
i=0

λi. (3.1.8)

Now, assume m > 0. Then M is non-compact, and the heat operator associated to �ξ⊗ωM (D)n is
no longer of trace class. Also the spectrum of �ξ⊗ωM (D)n is not discrete in general. Thus, neither
the definition (3.1.7), nor the interpretation (3.1.8) are applicable, and another approach should be
used.

Suppose for the moment that (M,DM) satisfies (3.1.3). Let gTMhyp be the canonical hyperbolic
metric of constant scalar curvature−1. We denote by Z(M,DM )(s), s ∈ C the Selberg zeta-function,
which is given for Re(s) > 1 by the absolutely converging product:

Z(M,DM )(s) =
∏
γ

∞∏
k=0

(1− e−(s+k)l(γ))2, (3.1.9)
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where γ runs over the set of all simple closed non-oriented geodesics on M with respect to gTMhyp ,
and l(γ) is the length of γ. The function Z(M,DM )(s) admits a meromorphic extension to the whole
complex s-plane with a simple zero at s = 1 (see for example [44, (5.3)]). We denote by‖·‖hyp

M the
norm induced by gTMhyp on ωM(D) over M .

In this situation, for l ∈ Z, l < 0, Takhtajan-Zograf in [107, (6)] proposed the analogue of the
analytic torsion defined via Selbrerg zeta function as

TTZ(gTMhyp , (‖·‖
hyp
M )2n) :=

exp
(

(g(M) + 2−m) log(2)
3
− χ(M) c0

2

)
· Z ′

(M,DM )
(1), for n = 0,

exp(−c−nχ(M)/2) · Z(M,DM )(−n+ 1), for n < 0,

(3.1.10)
where χ(M) = 2− 2g(M)−m is the Euler characteristics of M , and for k ∈ N∗, we put

c0 = 4ζ ′(−1)− 1
2

+ ln(2π),

ck =
∑k−1

l=0 (2k − 2l − 1)
(

ln(2k + 2kl − l2 − l)− ln(2)
)

+ (1
3

+ k + k2) ln(2)

+ (2k + 1) ln(2π) + 4ζ ′(−1)− 2(k + 1
2
)2 − 4

∑k−1
l=1 ln(l!)− 2 ln(k!).

(3.1.11)

Remark 3.1.1. To explain the values ck, k ∈ N, it was shown by Phong-D’Hoker [44, (7.30)], [45,
(3.6)] (see also [104], [29, (50)] and [99, (9)]), that the definition (3.1.10) coincides with (3.1.7)1.
In other words, the two definitions are compatible for M stable, m = 0, gTM = gTMhyp and n ≤ 0.

The advantage of the definition (3.1.10) is an explicit formula in terms of “simple” geometric
objects and, thus, suitability for the variational-type arguments (see [107], [51]). However, it only
works for the complete hyperbolic metric gTMhyp of constant scalar curvature −1 on M and trivial
Hermitian vector bundle (ξ, hξ).

Our first goal of this article is to give a definition (see Definition 3.2.16) of the analytic torsion
T (gTM , hξ ⊗ ‖·‖2n

M ) for n ≤ 0,2 which generalizes both (3.1.7) and (3.1.10). Our definition is
done using formula (3.1.7), where in place of a trace we use a regularized version of it, obtained
as subtracting a universal spectral contribution of CP1 \ {0, 1,∞}. Later [56] we show that our
definition actually coincides with (3.1.10) for hyperbolic surfaces of constant scalar curvature and
(ξ, hξ) trivial (thus, extending the results of Phong-D’Hoker [44, (7.30)], [45, (3.6)]).

In this article, after giving a formal definition of the determinant of the Laplacian, we provide
two results for computing it. The first one, Theorem A, which we also call the relative compact
perturbation theorem, expresses the quotient of two Quillen norms associated with surfaces with
the same number of cusps through a quotient of two Quillen norms associated with surfaces without
cusps. The second one, Theorem B, which we also call the anomaly formula, explains how the
Quillen norm changes under the change of gTM , hξ. It shows that although the Quillen norm
is a global invariant, the variation of it, induced by the change of the metric and the Hermitian

1It’s easy to see that T (gTMhyp , (‖·‖
hyp
M )2n) corresponds to det′( 1

2∆−n ) in the notation of [45, (1.1)], [29, (3)]. Since
for c > 0, by [45, §3], we have det′(c∆−n ) = det′(c∆+

−n), coefficients (3.1.11) for k ∈ N∗ can be read of from [29,
(50)] for c = 1/2 (cf. [60, Definition 4.2]) and for k = 0 from [44, (7.23), (7.30)], [104, Corollary 1] (cf. [59, (6.3)]).

2By Serre duality, if one prefers to work with positive line bundles, we can interpret it as the analytic torsion of the
vector bundle ξ∗ ⊗ ω−n+1

M (DM )−n associated to (gTM , (hξ)∗ ⊗‖·‖−2nM ⊗ (‖·‖ωM )2), for n ≤ 0.
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structure, can be expressed as an integral of a local quantity. We see that this local quantity has
an explicit contribution localized near the cusps. This contribution does not have analogues for
compact surfaces and it describes the variation of the Poincaré-compatible coordinates induced by
the variation of Kähler metric. The study of the heat kernel associated to hξ ⊗‖·‖2n

M on a surface
with cusps (M,DM , g

TM) plays the foremost role in our approach.
Now let’s describe our results more precisely. For n ≤ 0, we explain in the end of Section 3.2.1

how to endow the complex line(
detH•(M, ξ ⊗ ωM(D)n)

)−1

:=
(
ΛmaxH0(M, ξ ⊗ ωM(D)n)

)−1 ⊗ ΛmaxH1(M, ξ ⊗ ωM(D)n), (3.1.12)

with the L2-norm ‖·‖L2 (gTM , hξ ⊗‖·‖2n
M ). In the compact case it coincides with the L2-norm

induced by the harmonic forms associated with gTM and hξ ⊗ ‖·‖2n
M . Then we define the Quillen

norm on the complex line (3.1.12) by

‖·‖Q (gTM , hξ ⊗ ‖·‖2n
M ) = T (gTM , hξ ⊗ ‖·‖2n

M )1/2 ·‖·‖L2 (gTM , hξ ⊗ ‖·‖2n
M ). (3.1.13)

To motivate, when m = 0, this coincides with the usual definition of the Quillen norm from [21,
1.64] and [23, Definition 1.5].

Now let’s give some definitions, which are essential for our first theorem.

Definition 3.1.2 (Flattening of a metric). Let (M,DM , g
TM) be a surface with cusps. We say that

a (smooth) metric gTMf over M is a flattening of gTM if there is ν > 0 such that gTM is induced by
(3.1.2) over V M

i (ν), and
gTMf |M\(∪iVMi (ν)) = gTM |M\(∪iVMi (ν)). (3.1.14)

The supremum of all ν > 0, satisfying (3.1.14) is called the tightness of the flattening.

Figure 3.1: An example of a flattening. The regions between the dashed lines are isometric.

Let (N,DN , g
TN) be another surface with cusps and let gTNf be a flattening of gTN . We say that

the flattenings gTMf and gTNf are compatible, if for any i = 1, . . . ,m, we have

((zNi )−1 ◦ zMi )∗(gTMf |VMi (ν)) = gTNf |V Ni (ν), (3.1.15)

for some ν > 0, satisfying (3.1.14) and

gTNf |N\(∪iV Ni (ν)) = gTN |N\(∪iV Ni (ν)). (3.1.16)

86



Compact perturbation theorem and anomaly formula

Similarly, we define the notion of flattenings‖·‖f
M ,‖·‖f

N for Hermitian norms‖·‖M ,‖·‖N . We say
that the flattenings‖·‖f

M ,‖·‖f
N are compatible if they satisfy similar conditions to (3.1.14), (3.1.16),

and for any i = 1, . . . ,m, we have

((zNi )−1 ◦ zMi )∗
(
‖·‖M /‖·‖f

M

)
|VMi (ν) =

(
‖·‖N /‖·‖

f
N

)
|V Ni (ν). (3.1.17)

Remark 3.1.3. The definitions of flattenings gTMf of gTM and‖·‖f
M of‖·‖M are independent, and

there is no relation between them as in (3.1.5).

Figure 3.2: An example of compatible flattenings. The striped regions are isometric.

Theorem A (Relative compact perturbation). Let (M,DM , g
TM), (N,DN , g

TN) be two surfaces
with the same number of cusps. Let (ξ, hξ) be a Hermitian vector bundle over M of rank rk(ξ).
We denote by‖·‖M ,‖·‖N the norms induced by gTM , gTN as in (3.1.5) on ωM(D) and ωN(D) over
M andN respectively. Let gTMf , gTNf ,‖·‖f

M ,‖·‖f
N be compatible flattenings of gTM , gTN ,‖·‖M‖·‖N

respectively. Then for any n ∈ Z, n ≤ 0, we have

2 ln
(
‖·‖Q

(
gTM , hξ ⊗ ‖·‖2n

M

)/
‖·‖Q

(
gTMf , hξ ⊗ (‖·‖f

M)2n)
)

− 2rk(ξ) ln
(
‖·‖Q

(
gTN ,‖·‖2n

N

)/
‖·‖Q

(
gTNf , (‖·‖f

N)2n)
)

=

∫
M

c1(ξ, hξ)
(

2n ln(‖·‖f
M /‖·‖M) + ln(gTMf /gTM)

)
. (3.1.18)

In other words, the relative Quillen norm can be computed through a compact perturbation.

Remark 3.1.4. a) Philosophically, Theorem A should be interpreted as the anomaly formula, which
permits “erasing” the cusps. To make this analogy even more apparent, we rewrite (3.1.18) in the
following form (cf. (3.1.23))

2 ln
(
‖·‖Q

(
gTM , hξ ⊗ ‖·‖2n

M

)
/‖·‖Q

(
gTMf , hξ ⊗ (‖·‖f

M)2n
))

− 2rk(ξ) ln
(
‖·‖Q

(
gTN ,‖·‖2n

N

)
/‖·‖Q

(
gTNf , (‖·‖f

N)2n
))

=

∫
M

T̃d
(
ω−1
M , gTMf , gTM

)
c1

(
ξ, hξ

)
+

∫
M

c1

(
ξ, hξ

)
c̃h
(
ωM(D)n, (‖·‖f

M)2n,‖·‖2n
M

)
. (3.1.19)
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b) Suppose that (ξ, hξ) is trivial in the ν-neighbourhood of the cusps, where ν > 0 is the
tightness of the flattenings gTMf and‖·‖f

M . Then we simplify Theorem A to

‖·‖Q
(
gTM , hξ ⊗ ‖·‖2n

M

)
‖·‖Q

(
gTMf , hξ ⊗ (‖·‖f

M)2n
) =

‖·‖Q
(
gTN ,‖·‖2n

N

)rk(ξ)

‖·‖Q
(
gTNf , (‖·‖f

N)2n
)rk(ξ)

. (3.1.20)

In fact, in our proof of Theorem A, we reduce the main statement to (3.1.20).
c) It is possible to restate Theorem A in the way, which doesn’t use the language of compatible

flattenings. It says that the quantity

2rk(ξ)−1 ln
(
‖·‖Q

(
gTM , hξ ⊗ ‖·‖2n

M

)/
‖·‖Q

(
gTMf , hξ ⊗ (‖·‖f

M)2n)
)

− rk(ξ)−1

∫
M

c1(ξ, hξ)
(

2n ln(‖·‖f
M /‖·‖M) + ln(gTMf /gTM)

)
(3.1.21)

depends only on the integer n ∈ Z, n ≤ 0 and the functions (gTMf /gTM)|VMi (1)◦(zMi )−1 : D∗ → R,
(‖·‖f

M /‖·‖M)|VMi (1)◦(zMi )−1 : D∗ → R, for i = 1, . . . ,m. This reformulation is particularly useful
when one studies the variation of the Quillen norm in a family setting.

d) For n = 0 and (ξ, hξ) trivial, Theorem A was proved by Jorgenson-Lundelius in [71, Theorem
7.3] and Albin-Aldana-Rochon in [3, Theorem 5.2]. The fact that the geometry near the cusps of
(M, gTM) and (N, gTN) coincides is used extensively in their proofs. This doesn’t hold in our case
due to the presence of (ξ, hξ), and the techniques we use are different even in the case when (ξ, hξ)
is trivial. We note that in [3, Definition 2.2], authors also consider funnel singularities.

The main feature of our techniques is that they are implicit, and unlike [71], we avoid studying
the precise contribution of the continuous spectrum to the heat kernel.

Our next result explains how the Quillen norm changes under the conformal change of the
metric with cusps. Let’s recall that by [21, Theorem 1.27], the Bott-Chern classes of a vector
bundle ξ with Hermitian metrics hξ1, hξ2 are natural differential forms (strictly speaking, those are
classes of differential forms, see Remark 3.1.7b)) defined so that they satisfy

∂∂

2π
√
−1

T̃d(ξ, hξ1, h
ξ
2) = Td(ξ, hξ1)− Td(ξ, hξ2),

∂∂

2π
√
−1

c̃h(ξ, hξ1, h
ξ
2) = ch(ξ, hξ1)− ch(ξ, hξ2),

(3.1.22)

where Td, ch are Todd and Chern forms. By [21, Theorem 1.27], we have the following identities

c̃h(ξ, hξ1, h
ξ
2)[0] = 2T̃d(ξ, hξ1, h

ξ
2)[0] = ln

(
det(hξ1/h

ξ
2)
)
. (3.1.23)

If, moreover, ξ := L is a line bundle, we have

c̃h(L, hL1 , h
L
2 )[2] = 6T̃d(L, hL1 , h

L
2 )[2] = ln(hL1 /h

L
2 )
(
c1(L, hL1 ) + c1(L, hL2 )

)
/2, (3.1.24)

where c1 is the first Chern form.
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Definition 3.1.5. For a surface with cusps (M,DM , g
TM), the Wolpert norms‖·‖Wi on the complex

lines ωM |PMi , i = 1, . . . ,m, are defined by ‖dzMi ‖Wi = 1. It induces the Wolpert norm‖·‖W on the
complex line ⊗mi=1ωM |PMi .

Remark 3.1.6. Since the Poincaré-compatible coordinates are uniquely defined up to a multipli-
cation by a unimodular complex number, the norms‖·‖Wi are well-defined. They were originally
defined by Wolpert in [117, Definition 1] for hyperbolic surfaces of constant scalar curvature −1.

Theorem B (Anomaly formula for metrics with cusps). Let gTM , gTM0 be two metrics on M such
that both triples (M,DM , g

TM), (M,DM , g
TM
0 ) are surfaces with cusps. We denote by‖·‖M ,‖·‖0

M

the norms induced by gTM , gTM0 on ωM(D), and by‖·‖W ,‖·‖W0 the associated Wolpert norms. Let
hξ, hξ0 be two Hermitian metrics on ξ over M . Then the right-hand side of the following equation
is finite, and

2 ln
(
‖·‖Q

(
gTM0 , hξ0 ⊗ (‖·‖0

M)2n
)/
‖·‖Q

(
gTM , hξ ⊗ ‖·‖2n

M

))
=

∫
M

[
T̃d
(
ωM(D)−1, ‖·‖−2

M , (‖·‖0
M)−2

)
ch
(
ξ, hξ

)
ch
(
ωM(D)n,‖·‖2n

M

)
+ Td

(
ωM(D)−1, (‖·‖0

M)−2
)
c̃h
(
ξ, hξ, hξ0

)
ch
(
ωM(D)n,‖·‖2n

M

)
+ Td

(
ωM(D)−1, (‖·‖0

M)−2
)
ch
(
ξ, hξ0

)
c̃h
(
ωM(D)n,‖·‖2n

M , (‖·‖0
M)2n

)][2]

− rk(ξ)

6
ln
(
‖·‖W /‖·‖W0

)
+

1

2

∑
ln
(

det(hξ/hξ0)|PMi
)
.

(3.1.25)

Remark 3.1.7. a) The anomaly formula was firstly proved by Polyakov in [100] for m = 0, n = 0
and (ξ, hξ) trivial, who used it to compute some integrals over random surfaces which arise in
mathematical physics. It was generalized by Bismut-Gillet-Soulé [23, Theorem 1.23] for m = 0,
but in any arbitrary dimension. Form = 0, in [50], Fay gave an alternative proof of (3.1.25), which
doesn’t use the formalism of heat kernels. Our proof relies on the anomaly formula for m = 0.

b) Strictly speaking, the integral in (3.1.25) is not well-defined, since c̃h, T̃d are only well-
defined as classes up to an element of the form ∂α + ∂β. Since a priori nothing is known about
the growth of α, β near DM , the integrals of ∂α and ∂β over M might not converge (leave alone
being equal to 0 by “Stokes theorem”). For the purposes of this article, however, it is enough to
think of c̃h, T̃d as forms, defined by (3.1.23) and (3.1.24). An alternative way to interpret those
classes is through the Bott-Chern theory for pre-log-log Hermitian vector bundles, introduced by
Burgos Gil-Kramer-Kühn in [36] (cf. [55, §2.4]).

c) Experts will notice the difference between the terms under the integral in the right-hand side
of (3.1.25) and the terms, which appear in the right-hand side of the anomaly formula of Bismut-
Gillet-Soulé [23, Theorem 1.23] (see (3.3.3)), where in the arguments of Todd class and secondary
Todd class we have ωM in place of ωM(D). However, this difference is not a real issue, since for
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the current of integration δDM along DM , we have the following identities over M :

T̃d
(
ω−1
M , (‖·‖ωM)−2, (‖·‖ω,0M )−2

)
= T̃d

(
ωM(D)−1, ‖·‖−2

M , (‖·‖0
M)−2

)
,[

Td
(
ω−1
M , (‖·‖ω,0M )−2

)][2]
=
[
Td
(
ωM(D)−1, (‖·‖0

M)−2
)][2]

+
1

2
δDM ,[

c̃h
(
ωM(D)n,‖·‖2n

M , (‖·‖0
M)2n

)][0]|DM = 0,

(3.1.26)

where [0], [2] stand for the part of degree 0 and 2, and in the second identity we used
Poincaré–Lelong equation. Nevertheless, we prefer to state Theorem B in the given form, since
in the sequel we will use that the Hermitian line bundles (ωM(D),‖·‖M), (ωM(D),‖·‖0

M) are pre-
log-log with singularities along DM in the terminology of Burgos Gil-Kramer-Kühn [36], and the
Hermitian line bundles (ωM ,‖·‖ωM), (ωM ,‖·‖ω,0M ) do not satisfy those properties.

d) Let φ : M → R be a smooth function such that

gTM0 = e2φgTM , (3.1.27)

In the case when φ has compact support in M , Theorem B follows from the anomaly formula of
Bismut-Gillet-Soulé (see Theorem 3.3.1), Theorem A and (3.1.26).

The difference between Theorem B and Theorem 3.3.1 is in the last two terms of (3.1.25):

−rk(ξ)

6
ln
(
‖·‖W /‖·‖W0

)
+

1

2

∑
ln
(

det(hξ/hξ0)|PMi
)
. (3.1.28)

For n = 0 and (ξ, hξ) trivial, Albin-Aldana-Rochon in [2, Theorem 2.9] got a version of Theo-
rem B. Here authors do not require φ to be of compact support but have some extra decay at cusps
(see [2, (2.11)]). The conformal transformations for φ with this type of decay assumptions do not
alter the Wolpert norm, and, thus, the terms (3.1.28) do not appear. We note that in [2], authors
also consider funnel singularities. The anomaly formula for surfaces with only funnel singularities
was proved before by Borthwick-Judge-Perry, [31].

In our applications [55, Theorems C, D], [56, Theorem 1.2], we use substantially that by ap-
plying anomaly formula, we can trivialize the Poincaré-compatible coordinates horizontally in the
family of Riemann surfaces with hyperbolic cusps. Thus, the appearance of the terms (3.1.28) is
of fundamental importance in what follows.

e) Similar theorem appeared in the paper of Lundelius [81, Theorem 1.1] for n = 0 and (ξ, hξ)
trivial. However, we disagree with his result, as it differs from ours in the last two terms of (3.1.25).
From [81, p. 226, line 4], his proof should only work for φ of compact support in M .

To motivate this paper, we discuss several applications of Theorems A, B, which are proved
in the sequel [55], [56]. All those results are done in a family setting, i.e. we fix a holomorphic,
proper map π : X → S of complex analytic manifolds such that for every t ∈ S, the space
Xt := π−1(t) is a complex curve with at most double point singularities. We also fix disjoint
sections σ1, . . . , σm : S → X , which avoid singular points of the fibers, and we denote by DX/S

the divisor, given by Im(σ1) + . . .+ Im(σm).
1. Regularity and asymptotics of the Quillen norm in a degenerating family of surfaces, [55,

Theorem C]. We consider the determinant line bundle λ(j∗(ξ ⊗ ωX/S(D)n)) := (detR•π∗(ξ ⊗
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ωX/S(D)n))−1, n ≤ 0, where ξ is a holomorphic vector bundle over X and ωX/S(D) := ωX/S ⊗
OX(DX/S) is the twisted relative canonical line bundle. We endow the vector bundles ξ, ωX/S(D)
with Hermitian metrics hξ,‖·‖X/S satisfying some mild hypotheses. Let |∆| be the locus of singular
curves of π. We define the Quillen norm‖·‖Q on λ(j∗(ξ ⊗ ωX/S(D)n)) over S \ |∆|, as a family
version of (3.1.13). Then we study the regularity and singularities of‖·‖Q near |∆|. We also explicit
some conditions under which the renormalized Quillen norm is continuous at the singular fibers.

The hypotheses, which we put on ‖·‖X/S are mild enough to include the case of hyperbolic
surfaces. In this particular case, the asymptotics of the associated analytic torsion was studied
before by Wolpert [115], Lundelius [81], Jorgenson-Lundelius [72], and many others. The paper
of Bismut-Bost [20] neither considers the case of hyperbolic cusps nor the singularities of the
metric near the singular fibers. However, their result plays a fundamental role in our study.

2. Curvature theorem for surfaces with cusps, [55, Theorem D]. We show that the metric
‖·‖Q from previous paragraph is good enough, so that one can define its Chern form as a current.
Then we give an explicit formula for this current, which refines the Riemann-Roch-Grothendieck
theorem on the level of currents.

In particular, if we consider the family of hyperbolic surfaces, this extends the curvature theorem
of Takhtajan-Zograf [107, Theorem 1] over the moduli space of curves to its Deligne-Mumford
compactification. If we consider the case when there is no cusps, we get a generalization of Bismut-
Bost [20, Théorème 2.1] to the case of degenerating metrics.

3. Restriction and compatibility theorems, [56]. We relate the restriction of the renormalized
Quillen norm‖·‖Q at the locus of singular fibers |∆| with the Quillen norm of the normalization of
singular fibers. By a combination of this result with the analogical statement for Takhtajan-Zograf
analytic torsion (see (3.1.10)), we deduce the compatibility between our definition of the analytic
torsion and the one of Takhtajan-Zograf. This generalizes the result of Jorgenson-Lundelius [72,
Corollary 4.3], where authors did it for hyperbolic surfaces, (ξ, hξ) trivial and n = 0.

Let’s describe how the present article is related to mathematical physics. Indeed, in [73],
Klevtsov-Ma-Marinescu-Wiegmann related the asymptotics of the generating functional for the
integer quantum Hall effect when the flux of the magnetic field through a Riemann surface tends to
infinity, and the asymptotics of the analytic torsion associated to an increasing power of a positive
line bundle. As the anomaly formula for Riemann surfaces played an essential role in their study
(see [73, Theorem 2]), the present article lays a foundation to extend their result to the case of
surfaces with hyperbolic cusps.

Finally, let’s discuss how the theory developed here can be adapted to the orbifold Riemann
surfaces due to recent interest in orbifold setting (see [61], [109]). By combining the definition
of the analytic torsion here and of the orbifold analytic torsion due to Ma [83], for an orbisurface
(M, gTM) with cusps DM ⊂ M , we may define the analytic torsion T (gTM , hξ ⊗‖·‖2n

M ), where
n ≤ 0 and‖·‖M is the induced norm on the orbifold twisted line bundle ωM(D). Similarly to the
manifolds case, this definition should generalize the definitions of the analytic torsion for stable
hyperbolic orbisurfaces and (ξ, hξ) trivial due to Takhtajan-Zograf [109], Freixas-von Pippich [61].

Since our methods in the proof of Theorem A are purely local, the analogue of Theorem A
would still hold for orbisurfaces. Since we got Theorem B by combining Theorem A and the
anomaly formula of Bismut-Gillet-Soulé [21, Theorem 1.23], by replacing the last reference by its
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orbifold analogue of Ma [83, Theorem 0.1], it is possible to get an analogue of Theorem B. Then
by combining the calclucation of the norm for the Mumford isomorphism in the orbifold setting
due to Freixas-von Pippich [61] and the anomaly formula, it should be possible to get the orbifold
analogue of Mumford isometry for any orbisurface with metric with cusps and a Hermitian vector
bundle over it. We hope to return to this question very soon.

We note that our definition of the analytic torsion is related to the definition of the relative
analytic torsion due to Lundelius and Jorgenson-Lundelius, which was given for (ξ, hξ) trivial and
n = 0 in [81], [70], [71] (see Remarks 3.1.7e), 3.2.17c)), and the definition of Albin-Rochon (see
Remark 3.2.17d)), which was given for (ξ, hξ) trivial and n = 0 in [4, §7.1].

The b-trace of Melrose [90], used in the definition of Albin-Rochon, should also give the def-
inition of the analytic torsion in our case, however we decided to work in a relative setting, and
b-trace does not appear here explicitly. This gives us more flexibility to establish some estimates
on the heat kernel which are used extensively in the proof of Theorem A.

Now, let’s describe the structure of this paper. In Section 2, we develop spectral theory for
surfaces with cusps. We introduce the notion of the analytic torsion and Quillen norm, which are
used throughout the article. In Section 3, we prove Theorem A. For this, we study the families
of metrics which “converge” to the metric with cusps in a special way. In Section 4, we prove
Theorem B. The main idea is to use Theorem A and to obtain Theorem B by the anomaly formula
of Bismut-Gillet-Soulé [21, Theorem 1.23].

Notation. For ε > 0 and (M,DM), (N,DN), ξ as in the statement of Theorem A, we denote

D(ε) = {u ∈ C : |u| < ε}, D∗(ε) = {u ∈ C : 0 < |u| < ε},
D := D(1), D∗ = D∗(1),

ωM(D) := ωM ⊗ OM(DM),

Eξ,n
M := ξ ⊗ ωM(D)n, En

N := ωN(D)n.

(3.1.29)

By gTD∗ we denote the metric on D∗, induced by (3.1.2), and by dvD∗ the associated Riemannian
volume form. By Spec(A) we denote the spectrum of a self-adjoint operator A, acting on some
Hilbert space. We denote by BM(x, r) the geodesic ball of radius r > 0 around x ∈ M in a
Riemannian surface M with Riemannian metric gTM .

We denote by LX � LY the holomorphic line bundle over X × Y , which is given by π∗XLX ⊗
π∗YLY for some line bundles LX , LY over the complex manifoldsX and Y respectively and natural
projections πX : X × Y → X and πY : X × Y → Y .

Note. This part of the thesis can be found on the ArXiv, see [54].

3.2 Spectral theory of surfaces with cusps
In this section we study spectral properties of surfaces with cusps and define the analytic torsion.

More precisely, in Section 2.1 we set up the notation and state the spectral gap theorem. In
Section 2.2 we state several estimations of the heat kernel associated with a hyperbolic surface,
we define the regularized heat trace and the analytic torsion. Section 2.3 is the most technical one.
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Here we prove the estimations on the heat kernel of the hyperbolic punctured disc. Finally, in
Section 2.4 we prove the statements from Sections 2.1, 2.2.

3.2.1 The setting of the problem and the spectral gap theorem
Let (M,DM , g

TM) be a Riemann surface with cusps and let (ξ, hξ) be a Hermitian vector bundle
over M . We denote by‖·‖M the Hermitian norm induced by gTM on ωM(D) (see (3.1.4)) over M .

Let α, α′ ∈ C∞c (M,Eξ,n
M ). The L2-scalar product is defined by

〈α, α′〉L2 :=
∫
M
〈α(x), α′(x)〉hdvM(x), (3.2.1)

where dvM is the Riemannian volume form on (M, gTM), and 〈·, ·〉h is the pointwise Hermitian
product induced by hξ,‖·‖M . By (3.1.2), the right-hand side of (3.2.1) is finite for n ≤ 0.

We define the Hilbert space (L2(Eξ,n
M ), 〈·, ·〉L2), as the L2-completion of the space C∞c (M,Eξ,n

M )
with respect to 〈·, ·〉L2 . Sometimes when we want to insist on the choice of gTM , hξ and‖·‖M , we
denote this space by L2(gTM , hξ ⊗ (‖·‖M)2n).

We denote by �E
ξ,n
M the Kodaira Laplacian on C∞c (M,Eξ,n

M ), given by

�E
ξ,n
M := (∂

Eξ,nM )∗∂
Eξ,nM , (3.2.2)

where (∂
Eξ,nM )∗ is the formal adjoint of ∂

Eξ,nM with respect to 〈·, ·〉L2 . Since (M, gTM) is complete,
the operator �E

ξ,n
M is essentially self-adjoint on L2(Eξ,n

M ) (cf. [85, Corollary 3.3.4]). We denote its
closure by the same symbol.

In this article we are mostly interested in the heat operator exp(−t�E
ξ,n
M ), t > 0. We denote

exp⊥(−t�E
ξ,n
M ) := exp(−t�E

ξ,n
M )− PM , (3.2.3)

where PM is the orthogonal projection onto ker(�E
ξ,n
M ). We denote by

exp(−t�E
ξ,n
M )(x, y), exp⊥(−t�E

ξ,n
M )(x, y) ∈ (Eξ,n

M )x � (Eξ,n
M )∗y, for x, y ∈M, (3.2.4)

the smooth kernels of exp(−t�E
ξ,n
M ), exp⊥(−t�E

ξ,n
M ) with respect to dvM . Then

exp(−t�E
ξ,n
M )(x, x), exp⊥(−t�E

ξ,n
M )(x, x) ∈ End(ξ)x, for x ∈M. (3.2.5)

In Section 3.2, we fix gTM , hξ,‖·‖M and remove them from some notation: by | · |h×h we mean
the pointwise norm on (ωk

M
⊗Eξ,n

M )∗� (ωl
M
⊗Eξ,n

M ), k, l ∈ Z induced by hξ,‖·‖M , gTM ; by | · | we
mean either the modulus of a complex number, or the pointwise norm on the vector bundle End(ξ)
induced by hξ. We defer the proof of the next theorem until Section 3.2.4.

Theorem 3.2.1. For n ≤ 0, the operator�E
ξ,n
M has a spectral gap near 0. More precisely, we have

H0(M,Eξ,n
M ) = ker(�E

ξ,n
M ), (3.2.6)

and there is µ > 0 such that
Spec

(
�E

ξ,n
M

)
∩ ]0, µ] = ∅. (3.2.7)
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Remark 3.2.2. As it would follow from our proof, there are c1, c1 > 0 such that the set

Spec
(
�E

ξ,n
M

)
∩ [0, c1

√
−n+ c2] is discrete (3.2.8)

for any (M, gTM), (ξ, hξ),‖·‖M and n ≤ 0. We leave the verification of the details to the interested
reader. For n = 0, (ξ, hξ) trivial, and c2 = 1/4, this was proved by Müller in [93, §6].

For n = 0, our proof of Theorem 3.2.1 relies on the result of Müller [93, §6, Proposition 6.9],
who proves Theorem 3.2.1 for n = 0 and (ξ, hξ) trivial. In case of n < 0, we obtain Theorem
3.2.1 by gluing the estimates in the neighbourhood of cusp, coming from Nakano’s inequality
(cf. [85, Theorem 1.4.14]), and the estimates away from the cusps coming from the spectral gap
for the Dirichlet Laplacian of a surface with boundary.

Finally, let’s discuss the construction of the L2-norm‖·‖L2 (gTM , hξ ⊗‖·‖2n
M ) on the line bundle

(3.1.12). By the isomorphism (3.2.6), we may endow H0(M,Eξ,n
M ) with the L2-scalar product

induced by (3.2.1). Similarly to the analysis in the proof of (3.2.6), we have a natural isomorphism

ker(�
Eξ,nM
1 ) =

{
H1(M,Eξ,n

M ), for n = 0,

H1(M,Eξ,n
M ⊗ OM(DM)), for n ≤ −1,

(3.2.9)

where�E
ξ,n
M

1 = ∂
Eξ,nM (∂

Eξ,nM )∗ is the Kodaira Laplacian associated with 1-forms with values inEξ,n
M .

We induce the L2-scalar product on H1(M,Eξ,n
M ) by the natural inclusion

H1(M,Eξ,n
M ) ↪−→ H1(M,Eξ,n

M ⊗ OM(DM)), α 7→ α⊗ sDM , (3.2.10)

where sDM is the canonical holomorphic section of OM(DM). Those scalar products induce the
natural L2-norm‖·‖L2 (gTM , hξ ⊗‖·‖2n

M ) on the line bundle (3.1.12).

3.2.2 Relative spectral theory for surfaces with cusps
The main goal of this section is to define the analytic torsion for any (ξ, hξ), n ≤ 0, m ∈ N. This
extends the relative definition due to Jorgenson-Lundelius [71, Definition 1.9], which they gave in
the case n = 0 and (ξ, hξ) trivial. The challenge here is that unlike in [71], the precise contribution
of the continuous spectrum to the heat kernel is unknown, moreover the local geometry near the
cusp depends on (ξ, hξ). We circumvent this difficulty by the analytic localization techniques of
Bismut-Lebeau [25, §11] and by the parametrix construction for the heat kernel (cf. [12, §2.4,
2.5]). The parametrix construction is particularly useful when we would estimate the effect of
non-triviality of (ξ, hξ) (see Theorem 3.2.6 and (3.2.20)).

We fix n ∈ Z. Let the function ρM : M → [1,+∞[ be given by

ρM(x) =

{
1 for x ∈M \ (∪iV M

i (1/2)),√
| ln |zi(x)|| for x ∈ V M

i (1/2), i = 1, . . . ,m.
(3.2.11)

Remark 3.2.3. The function (ρM(x))−2 is proportional to the injectivity radius at point x of (M, gTM).
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We denote by d(·, ·) the distance function on (M, gTM). Now we can state the main theorems
of this section. Their proofs are delayed until Section 3.2.4.

Theorem 3.2.4. For any l, l′ ∈ N, there are c, c′, C > 0 such that for any t > 0, x, x′ ∈ M , we
have∣∣(∇x)

l(∇x′)
l′ exp(−t�E

ξ,n
M )(x, x′)

∣∣
h×h ≤ CρM(x)ρM(x′)t−1−(l+l′)/2·

· exp(ct− c′ · d(x, x′)2/t), (3.2.12)

where ∇ is induced by the Levi-Civita connection and the Chern connections of (ξ, hξ) and
(ωM(D),‖·‖M). Also, if n ≤ 0, then there are c, C > 0 such that for any t > 0, we have∣∣(∇x)

l(∇x′)
l′ exp⊥(−t�E

ξ,n
M )(x, x′)

∣∣
h×h ≤ CρM(x)ρM(x′)t−4−l−l′ exp(−ct). (3.2.13)

Remark 3.2.5. a) By Remark 3.2.3, we see that for n = 0, (ξ, hξ) trivial and k, l = 0, (3.2.12) is
exactly the Moser’s estimate [92, p. 115-117] (cf. [38, Theorem VIII.8]) for a hyperbolic surface.
The proof of (3.2.12) is different from [92, p. 115-117] and it uses an explicit construction of the
parametrix of the heat kernel.

b) By using the same techniques as in the proof of (3.2.13), we may deduce that for any l, l′ ∈ N,
there is C > 0 such that∣∣(∇x)

l(∇x′)
l′ exp(−t�E

ξ,n
M )(x, x′)

∣∣
h×h ≤ CρM(x)ρM(x′)t−4−l−l′ . (3.2.14)

The estimate (3.2.14) is unfortunately not enough for our needs, since we use (3.2.12) in the proof
of (3.2.15). However, by Remark 3.2.18, if one considers only (ξ, hξ) which are trivial around the
cusps, then the estimate (3.2.14) is enough to prove (3.2.17), and all the analysis associated with
the parametrix construction is not necessary.

Now, let M,N and all related notions be as in the statement of Theorem A.

Theorem 3.2.6. For any k ∈ N, there are ε, c, c′, C > 0 such that for any t > 0, u ∈ C, |u| ≤ ε:∣∣∣ exp(−t�E
ξ,n
M )
(
(zMi )−1(u), (zMi )−1(u)

)
− Idξ · exp(−t�EnN )

(
(zNi )−1(u), (zNi )−1(u)

)∣∣∣
≤ C| ln |u|| exp(ct) ·min

{
| ln |u||−k + exp(−c′(ln | ln |u||)2/t); (3.2.15)

|u|1/3 + exp(−c′/t)
}
. (3.2.16)

Moreover, if n ≤ 0, then there are ς < 1 and c, C > 0 such that∣∣∣ exp⊥(−t�E
ξ,n
M )
(
(zMi )−1(u), (zMi )−1(u)

)
− Idξ · exp⊥(−t�EnN )

(
(zNi )−1(u), (zNi )−1(u)

)∣∣∣
≤ C| ln |u||ςt−4 exp(−ct). (3.2.17)
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Remark 3.2.7. As we explain in the course of the proof of Theorem 3.2.6, if (ξ, hξ) is trivial around
the cusps, then the estimates (3.2.15), (3.2.16) could be easily improved to∣∣∣ exp(−t�E

ξ,n
M )
(
(zMi )−1(u), (zMi )−1(u)

)
− Idξ · exp(−t�EnN )

(
(zNi )−1(u), (zNi )−1(u)

)∣∣∣
≤ C| ln |u|| exp(−c′(ln | ln |u||)2/t). (3.2.18)

To prove (3.2.15), (3.2.16) in full generality, we use Duhamel’s formula and (3.2.12).

Theorem 3.2.8. There are smooth bounded functions aM,n
ξ,j : M → End(ξ), j ≥ −1 such that for

any x ∈M , t0 > 0, k ∈ N, there is C > 0 such that for any t ∈]0, t0], we have

∣∣∣ exp(−t�E
ξ,n
M )
(
x, x
)
−

k∑
j=−1

aM,n
ξ,j (x)tj

∣∣∣ ≤ Ctk. (3.2.19)

Moreover, if x ∈M \ (∪iV M
i (e−t

−1/3
)), then C can be chosen independently of t ∈]0, t0] and x.

Also, there is ε > 0, such that for any l ∈ N, j ≥ −1, there is C > 0 such that for any u ∈ C,
0 < |u| ≤ ε, i = 1, . . . ,m, we have∣∣∣(∇u)

l
(
aM,n
ξ,j

(
(zMi )−1(u)

)
− Idξa

N,n
j

(
(zNi )−1(u)

))∣∣∣
h
≤ C|u|1/3, (3.2.20)

where ∇ is induced by the Levi-Civita connection and Chern connections associated with (ξ, hξ)
and (ωD(0),‖·‖D).

From now on till the end of this section, we denote by

P := CP1 \ {0, 1,∞}, (3.2.21)

and by gTP the unique hyperbolic metric of constant scalar curvature −1 over P with cusps at
DP = {0, 1,∞}. We use the notations ‖·‖P , V P

i (ε), En
P , . . . and denote by zP the Poincaré-

compatible coordinate of 0 ∈ CP1 of (P, gTP ).

Definition 3.2.9. We define the regularized heat trace by

Trr[ exp⊥(− t�E
ξ,n
M )
]

:=

∫
M\(∪iVMi (η))

Tr
[

exp⊥(−t�E
ξ,n
M )(x, x)

]
dvM(x)

−m · rk(ξ)

3
·
∫
P\(∪iV Pi (η))

Tr
[

exp⊥(−t�EnP )(x, x)
]
dvP (x) (3.2.22)

+
∑
i

∫
D∗(η)

(
Tr
[

exp⊥(−t�E
ξ,n
M )
(
(zMi )−1(u), (zMi )−1(u)

)]
− rk(ξ)Tr

[
exp⊥(−t�EnP )

(
(zP )−1(u), (zP )−1(u)

)])
dvD∗(u),

where η > 0 is such that Theorem 3.2.6 and (3.1.2) hold.
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Remark 3.2.10. a) From the fact that there is a holomorphic automorphism of CP1 permuting DP

and inducing the isometry on (P, gTP ), the coordinate zP in (3.2.22) can be changed to a Poincaré-
compatible coordinate associated with 1 or∞, and this would result in the same definition.

b) Essentially, in our definition of the regularized heat trace, we take out the diverging part of the
usual heat trace. This idea is very similar to the famous b-trace, defined by Melrose in [90, Lemma
4.62], which was used in the context of Riemann surfaces with cusps by Albin-Rochon [4].

Proposition 3.2.11. The Definition 3.2.9 makes sense and it is independent of ε > 0. We also have

Trr[ exp⊥(−t�E
ξ,n
M )
]

:= lim
r→0

(∫
M\(∪iVMi (r))

Tr
[

exp⊥(−t�E
ξ,n
M )(x, x)

]
dvM(x)

− rk(ξ)

3

∫
P\(∪iV Pi (r))

Tr
[

exp⊥(−t�EnP )(x, x)
]
dvP (x)

)
. (3.2.23)

Proof. The first two integrals in the right-hand side of (3.2.22) are bounded by (3.2.13). The last
one is bounded by (3.2.17) and the fact that for any ς < 1, we have∫

D(ε)

√
−1dudu

|u|2| ln |u||2−ς
≤ +∞. (3.2.24)

The independence on ε > 0 is trivial. The formula (3.2.23) follows trivially from (3.2.17).

A similar quantity Trr[ exp(−t�E
ξ,n
M )
]

(see also [71, Definition 1.1] for the relative version) is
defined similarly to (3.2.22), where we put exp in place of exp⊥. It is well-defined by (3.2.15),
(3.2.24) and the fact that for any c′ > 0 and ε > 0 small enough, there is C > 0 such that for any
t > 0:∫

D(ε)

exp
(
− c′(ln | ln |u||)2/t

)√−1dudu

|u|2| ln |u||
≤ Ct1/2 exp

(
− (c′/2)(ln | ln ε|)2/t

)
. (3.2.25)

By (3.2.6), the relation between Definition 3.2.9 and Tr
[

exp(−t�E
ξ,n
M )
]

is given by

Trr[ exp⊥(−t�E
ξ,n
M )
]

= Trr[ exp(−t�E
ξ,n
M )
]
− dimH0(M,Eξ,n

M ) +
rk(ξ)

3
dimH0(P ,En

P ). (3.2.26)

Remark 3.2.12. In [71, §3], Jorgenson-Lundelius defined the relative heat trace

Trrel
[

exp⊥(−t�E
ξ,n
M ); exp⊥(−t�EnN )

]
(3.2.27)

for (ξ, hξ) trivial and n = 0. Directly from the definition, in this case we have

Trrel
[

exp⊥(−t�E
ξ,n
M ); exp⊥(−t�EnN )

]
= Trr[ exp⊥(−t�E

ξ,n
M )
]
− rk(ξ)Trr[ exp⊥(−t�EnN )

]
,

Trr[ exp⊥(−t�E
ξ,n
M )
]

=
1

3
Trrel

[
3 exp⊥(−t�E

ξ,n
M );m exp⊥(−t�EnP )

]
, (3.2.28)

where 3 exp⊥(−t�E
ξ,n
M ) (resp. m exp⊥(−t�EnP )) means the heat operator on M tM tM (resp.

on P t · · · t P ) with the induced geometry.

97



Compact perturbation theorem and anomaly formula

By Theorem 3.2.8, the functions Tr
[
aM,n
ξ,j (x)

]
, aP,nj (x) are integrable overM and P respectively.

For j ≥ −1, we denote

AM,n
ξ,j,0 :=

∫
M

Tr
[
aM,n
ξ,j (x)

]
dvM(x)− rk(ξ)

3

∫
P

aP,nj (x)dvP (x),

AM,n
ξ,j = AM,n

ξ,j,0 − dimH0(M,Eξ,n
M ) +

rk(ξ)

3
dimH0(P ,En

P ).

(3.2.29)

Proposition 3.2.13. For any t0 > 0, k ∈ N, there is C > 0 such that for any t ∈]0, t0], we have

∣∣∣Trr[ exp⊥(−t�E
ξ,n
M )
]
−

k∑
j=−1

AM,n
ξ,j t

j
∣∣∣ ≤ Ctk. (3.2.30)

Proof. First of all, by (3.2.26), it is enough to prove that for any t0 > 0, k ∈ N, there is C > 0
such that for any t ∈]0, t0], we have

∣∣∣Trr[ exp(−t�E
ξ,n
M )
]
−

k∑
j=−1

AM,n
ξ,j,0t

j
∣∣∣ ≤ Ctk. (3.2.31)

By Theorem 3.2.8, for any t0 > 0, k ∈ N, there is C > 0 such that for any t ∈]0, t0], we have∣∣∣∣ ∫
M\(∪iVMi (e−t

−1/3
))

[
Tr
[

exp(−t�E
ξ,n
M )(x, x)

]
−

k∑
j=−1

Tr
[
aM,n
ξ,j (x)

]
tj
]
dvM(x)

∣∣∣∣ ≤ Ctk,

∣∣∣∣ ∫
P\(∪iV Pi (e−t

−1/3
))

[
exp(−t�EnP )(x, x)−

k∑
j=−1

aP,nj (x)tj
]
dvP (x)

∣∣∣∣ ≤ Ctk.

(3.2.32)

Since for u ∈ C, 0 < |u| ≤ e−t
−1/3 , we have t−1/3 ≤ | ln |u||, by (3.2.15), (3.2.24) and (3.2.25),

for any k ∈ N there are c, C > 0 such that for any t ∈]0, t0], i = 1, . . . ,m, we have∫
D(e−t

−1/3
)

∣∣∣∣Tr
[

exp(−t�E
ξ,n
M )
(
(zMi )−1(u), (zMi )−1(u)

)]
− rk(ξ) exp(−t�EnP )

(
(zP )−1(u), (zP )−1(u)

)∣∣∣∣dvD∗(u) ≤ Ctk + C exp(−ct−1/2). (3.2.33)

Also, by (3.2.20), for any j ∈ N, i = 1, . . . ,m there are c, C > 0, such that we have∫
D(e−t

−1/3
)

∣∣∣Tr
[
aM,n
ξ,j

(
(zMi )−1(u)

)]
− rk(ξ)aP,nj

(
(zP )−1(u)

)∣∣∣dvD∗(u) ≤ C exp(−ct−1/3). (3.2.34)

We see that (3.2.31) holds by (3.2.32), (3.2.33) and (3.2.34).
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Proposition 3.2.14. For any t0 > 0, there are c, C > 0 such that for any t ≥ t0, we have∣∣∣Trr[ exp⊥(−t�E
ξ,n
M )
]∣∣∣ ≤ C exp(−ct). (3.2.35)

Proof. By Theorem 3.2.4 since ρM is bounded over M \ (∪iV M
i (η)), η > 0 for some c, C > 0 and

for any t ≥ t0, we get∣∣∣∣ ∫
M\(∪iVMi (η))

Tr
[

exp⊥(−t�E
ξ,n
M )(x, x)

]
dvM(x)

∣∣∣∣ ≤ C exp(−ct),∣∣∣∣ ∫
P\(∪iV Pi (η))

Tr
[

exp⊥(−t�EnP )(x, x)
]
dvP (x)

∣∣∣∣ ≤ C exp(−ct).
(3.2.36)

By (3.1.2), (3.2.17) and (3.2.24), we deduce that there are c, C > 0 such that for any t ≥ t0, we
have∣∣∣ ∫

D(η)

(
Tr
[

exp⊥(−t�E
ξ,n
M )
(
(zMi )−1(u), (zMi )−1(u)

)]
− rk(ξ)Tr

[
exp⊥(−t�EnP )

(
(zP )−1(u), (zP )−1(u)

)])
dvD∗(u)

∣∣∣ ≤ C exp(−ct). (3.2.37)

We conclude by (3.2.36) and (3.2.37).

Definition 3.2.15. We define the regularized spectral zeta function ζM(s) for s ∈ C, Re(s) > 1 by

ζM(s) =
1

Γ(s)

∫ +∞

0

Trr[ exp⊥(−t�E
ξ,n
M )
]
ts
dt

t
. (3.2.38)

By Propositions 3.2.13 and 3.2.14, the function ζM(s) is holomorphic for Re(s) > 1 and has a
meromorphic extension to the entire s-plane. Classically, this extension, which we also denote by
ζM(s), is holomorphic at s = 0.

Definition 3.2.16. We define the analytic torsion by

T (gTM , hξ ⊗‖·‖2n
M ) := exp(−ζ ′M(0)) · TTZ(gTP ,‖·‖2n

P )m·rk(ξ)/3. (3.2.39)

Remark 3.2.17. a) In the forthcoming paper we show that under the conditions (3.1.3), we have

T (gTMhyp , (‖·‖
hyp
M )2n) = TTZ(gTMhyp , (‖·‖

hyp
M )2n). (3.2.40)

For the moment, we content ourselves by noting that (3.2.40) holds for M = P by the choice of
the last multiplicand in (3.2.39).

b) Explicitly, we have the following identity (see Proposition 3.2.13 for the definition of aM−1):

ζ ′M(0) =

∫ 1

0

(
Trr[ exp⊥(−t�E

ξ,n
M )
]
−
AM,n
ξ,−1

t
− AM,n

ξ,0

)dt
t
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+

∫ +∞

1

Trr[ exp⊥(−t�E
ξ,n
M )
]dt
t

+ AM,n
ξ,−1 − Γ′(−1)AM,n

ξ,0 . (3.2.41)

c) By (3.2.38), the relation between the relative analytic torsion, defined by Jorgenson-Lundelius
[71] for (ξ, hξ) trivial and n = 0, and our definition is

T rel(gTM , 1; gTN , 1) =
T (gTM , 1)

T (gTN , 1)
. (3.2.42)

d) In [4], Albin-Rochon , for n = 0, gave an alternative definition of the analytic torsion
TAR(gTM). By [5, (1.24)], [4, §7] and (3.2.15), the relation between their definition and ours
is

TAR(gTM)

TAR(gTN)
=
T (gTM , 1)

T (gTN , 1)
, (3.2.43)

for M,N as in the statement of Theorem A. Their definition is based on b-trace of Melrose [90],
see Remark 3.2.10b).

e) In his thesis [58, Corollary 8.2.2], Freixas explicitly evaluated (see (3.1.9))

logZ ′
(P ,DP )

(1) = 4ζ ′(−1) + log 2π +
10

9
log 2. (3.2.44)

By combining (3.1.10), (3.2.44), we may give an explicit formula for TTZ(gTP , 1) in (3.2.39).

3.2.3 Heat kernel on the punctured hyperbolic disc and elliptic estimates
In this section we recall the well-known construction [12, §2.4, 2.5] of the parametrix, applied for
the heat kernel on the punctured hyperbolic disc, endowed with a Hermitian vector bundle. We
also prove the elliptic estimates for Kodaira Laplacian on a punctured hyperbolic disc.

Let’s explain the setting in this section. Let (ξ, hξ) be Hermitian vector bundle over D. Let

ωD(0) := ωD ⊗ OD(0) (3.2.45)

be the twisted canonical line bundle as in (3.1.4), and let ‖·‖D be the norm on ωD(0) over D∗,
induced by gTD∗ as in (3.1.5). We denote by the same symbol restriction of hξ to D∗. By Cartan’s
Theorem A, we fix a holomorphic trivialization e1, . . . , erk(ξ) of ξ over D. We may always chose it
in such a way that it becomes a normal trivialization (cf. [43, Proposition V.12.10]), i.e. we have

hξ(ei, ej)(u) = δij +O(|u|2). (3.2.46)

Let �ξ⊗ωD(0)n , n ∈ Z be the Kodaira Laplacian associated with hξ ⊗‖·‖2n
D on (D∗, gTD∗). Let

exp(−t�ξ⊗ωD(0)n)(z1, z1) ∈ (ξ ⊗ ωD(0)n)∗z1 � (ξ ⊗ ωD(0)n)z2 , for z1, z1 ∈ D∗, (3.2.47)

be the smooth kernel of the heat operator exp(−t�ξ⊗ωD(0)n) with respect to the volume form dvD∗ .
We consider the covering

ρ : H→ D∗, z 7→ e
√
−1z. (3.2.48)
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The metric gTH := ρ∗(gTD
∗
) is equal to the standard hyperbolic metric on the upper half-plane.

The Deck transformations of ρ are generated by the isometry

U : H→ H, z 7→ z + 2π. (3.2.49)

Let‖·‖H be the norm on ωH, given by ρ∗(‖·‖D). For z = (x, y) := x+
√
−1y, we have

gTHz =
dx2 + dy2

y2
, ‖dz‖H (z) = y. (3.2.50)

Let �ξ⊗ωnH be the Kodaira Laplacian associated with gTH, ρ∗(hξ)⊗‖·‖2n
H on (H, gTH), and let

exp(−t�ξ⊗ωnH)(z1, z2) ∈ (ρ∗(ξ)⊗ ωnH)∗z1 � (ρ∗(ξ)⊗ ωnH)z2 , for z1, z2 ∈ H, (3.2.51)

be the smooth kernel of the heat operator exp(−t�ξ⊗ωnH) with respect to the Riemannian volume
form dvH on H, induced by gTH. For z1, z2 ∈ D, the relation between (3.2.47) and (3.2.51) is given
by

exp(−t�ξ⊗ωD(0)n)(z1, z2) =
∑
i∈Z

exp(−t�ξ⊗ωnH)(z̃1, U
iz̃2), (3.2.52)

where z̃i ∈ H, ρ(z̃i) = zi for i = 1, 2.
Since (H, gTH) is a compete manifold, we may use the framework of [12, §2.4, 2.5] to construct

the parametrix of exp(−t�ξ⊗ωnH). Let us briefly recall the main steps of this construction. By doing
so, we also provide some uniform estimates on the heat kernels.

We denote by d(z1, z2), z1, z2 ∈ H the Riemannian distance associated with gTH, we have

d
(
(x1, y1), (x2, y2)

)
= 2 ln

(√
(x1 − x2)2 + (y1 − y2)2 +

√
(x1 − x2)2 + (y1 + y2)2

2
√
y1y2

)
.

(3.2.53)
Let ψ : R→ [0, 1] be a smooth even function such that

ψ(u) =

{
1 for |u| < 1/2,

0 for |u| > 1.
(3.2.54)

For k ∈ N, z1, z2 ∈ H, t > 0, let kξ⊗ω
n
H

t,k ∈ C∞(H×H, (ρ∗(ξ)⊗ ωnH)� (ρ∗(ξ)⊗ ωnH)∗) be given by
(cf. [12, (2.7)])

k
ξ⊗ωnH
t,k (z1, z2) :=

ψ(d(z1, z2)2)

t
exp

(
− d(z1, z2)2

4t

)( k∑
i=0

tiΦξ
i,n(z1, z2)

)
, (3.2.55)

where Φξ
i,n ∈ C∞(H×H, (ρ∗(ξ)⊗ωnH)� (ρ∗(ξ)⊗ωnH)∗), i ≥ 0 are symmetric (i.e. Φξ

i,n(z1, z2) =

(Φξ
i,n(z2, z1))∗) and given by the procedure, described in [12, Theorem 2.26]. We denote by Φi,n,

i ≥ 0 those sections associated to (ξ, hξ) trivial. Now let’s state the main result of this section.
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Theorem 3.2.18. The sections Φξ
i,n are uniformly C∞-bounded in the following sense: for any

i, l, l′ ∈ N, there is C > 0 such that for any z1, z2 ∈ H, we have∣∣(∇z1)
l(∇z2)

l′Φξ
i,n(z1, z2)

∣∣
h×h ≤ C, (3.2.56)

where ∇ is induced by the Levi-Civita connection and Chern connections associated with (ξ, hξ),
(ωH(0),‖·‖H), and | · |h×h is the associated pointwise norm.

Moreover, for any i, l, l′ ∈ N, there is C > 0 such that for any z1, z2 ∈ H, we have∣∣∣(∇z1)
l(∇z2)

l′
(
Φξ
i,n − Idξ · Φi,n

)
(z1, z2)

∣∣∣
h×h
≤ C exp(−(Im z1 + Im z2)/6). (3.2.57)

Proof. Let’s fix z0 ∈ H, z0 = (x0, y0). For z ∈ H, r > 0 we denote by BH(z, r) ⊂ H the
hyperbolic disc of radius r around z. We consider the isometry

gz0 : (H, gTH)→ (H, gTH), (x, y) 7→ ((x− x0)/y0, y/y0). (3.2.58)

As gz0(z0) = (0, 1) :=
√
−1, we have gz0(B

H(z0, 1)) = BH(
√
−1, 1). We recall that by the proce-

dure, described in [12, Theorem 2.26], the sections Φξ
i,n(z, ·) are defined locally, i.e. they depend

only on the restriction of (H, gTH), (ξ, hξ) over BH(z, 1), and if d(z, z2) > 1, then Φξ
i,n(z, z2) = 0.

Moreover, if one changes “smoothly” the parameters gTH, hξ, then the sections Φξ
i,n(z, ·) change

smoothly “at the same rate”. Let’s make the last point precise and adapt it for our situation.
Let hξz, h

ξ,0
z , z ∈ H be two families of Hermitian metrics on (g−1

z ρ)∗ξ over BH(
√
−1, 1), and let

Φξ
i,n,z(
√
−1, ·), Φξ,0

i,n,z(
√
−1, ·) be the corresponding sections from (3.2.55). Suppose that there is

f : R+ → R+ such that for any l ∈ N, there is C > 0 such that for any z2 ∈ BH(
√
−1, 1):∣∣∇l(hξz)(z2)

∣∣
h

≤ C,∣∣∇l(hξz − hξ,0z )(z2)
∣∣
h
≤ Cf(Im z).

(3.2.59)

From the procedure, described in [12, Theorem 2.26], the sections Φξ
i,n,z(
√
−1, ·), Φξ,0

i,n,z(
√
−1, ·)

are obtained iteratively by applying the Laplacian associated with hξz and hξ,0z to Φξ
i−1,n,z(

√
−1, ·)

and Φξ,0
i−1,n,z(

√
−1, ·) respectively and integrating over the geodesics of length ≤ 1, emanating

from
√
−1. Thus, for any l ∈ N there is C > 0 such that for any z2 ∈ BH(

√
−1, 1), we have∣∣(∇z2)

lΦξ
i,n,z(
√
−1, z2)

∣∣
h

≤ C,∣∣(∇z2)
l
(
Φξ
i,n,z − Φξ,0

i,n,z

)
(
√
−1, z2)

∣∣
h
≤ Cf(Im z),

(3.2.60)

or, as we stated before, the sections Φξ
i,n,z(
√
−1, ·), Φξ,0

i,n,z(
√
−1, ·), i ≥ 0 change “at the same

rate”.
Now, let hξz, z ∈ H be defined by

hξz := ((g−1
z ρ)∗hξ)|BH(

√
−1,1). (3.2.61)
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Let the frame e1, . . . , erk(ξ) be as in (3.2.46). Then for z ∈ H, z2 = (x, y) ∈ BH(
√
−1, 1), we have

hξz((g
−1
z ρ)∗ei, (g

−1
z ρ)∗ej)(z2) = hξ(ei, ej)(e

−yy0+
√
−1(xy0+x0)). (3.2.62)

Let hξ,0z , z ∈ H be defined by

hξ,0z ((g−1
z ρ)∗ei, (g

−1
z ρ)∗ej)(z2) = δij, (3.2.63)

where δij is the Kronecker delta symbol. Let Φξ
i,n,z(
√
−1, ·), Φξ,0

i,n,z(
√
−1, ·) be the sections from

(3.2.55), associated with‖·‖H |BH(
√
−1,1), gTH|BH(

√
−1,1) and hξz, h

ξ,0
z respectively. Then by the lo-

cality of Φξ
i,n,z(
√
−1, ·), Φξ,0

i,n,z(
√
−1, ·), for any z2 ∈ BH(

√
−1, 1), we have

Φξ
i,n,z(
√
−1, z2) = Φξ

i,n(z, g−1
z (z2)), Φξ,0

i,n,z(
√
−1, z2) = Idξ · Φi,n(z, g−1

z (z2)). (3.2.64)

By the symmetry of Φξ
i,n,z and (3.2.64), to complete the proof of Theorem 3.2.18, it is enough to

prove the analogue of (3.2.59) for f(x) = exp(−x/3).
Now, by the formula (3.2.53), we have

min
{

Im z : z ∈ BH(
√
−1, 1)

}
≥ 1/6. (3.2.65)

By (3.2.46), (3.2.62) and (3.2.65), we have (3.2.59) for f(x) = exp(−x/3), which finishes the
proof.

To compare kξ⊗ω
n
H

t,k (x, y) with the heat kernel, we recall the definition of the “defect”:

r
ξ⊗ωnH
t,k (z1, z2) :=

(
∂t +�ξ⊗ωD(0)n

D,x
)
k
ξ⊗ωnH
t,k (z1, z2). (3.2.66)

The following theorem says, in particular, that as one increases k ∈ N, the kernel kξ⊗ω
n
H

t,k (z1, z2)
more and more accurately “satisfies” the properties defined by the heat kernel.

Theorem 3.2.19. For any t0 > 0, the family of kernels kξ⊗ω
n
H

t,k (z1, z2), t ∈]0, t0], z1, z2 ∈ H defines

a uniformly bounded family of operators Kξ⊗ωnH
t,k on C∞c (H, ρ∗(ξ) ⊗ ωnH) such that for any s ∈

C∞c (H, ρ∗(ξ) ⊗ ωnH), the sections Kξ⊗ωnH
t,k (s) converge, as t → 0, to s over any compact subset of

H with all it’s derivatives.
Moreover, for any l, l′, l′′ ∈ N, there are c′, C > 0 such that for any t ∈]0, t0], z1, z2 ∈ H:∣∣(∇z1)

l(∇z2)
l′(∂t)

l′′k
ξ⊗ωnH
t,k (z1, z2)

∣∣
h×h ≤ Ct−1−(l+l′)/2−l′′ · ψ(d(z1, z2)2/2)

· exp(−c′ · d(z1, z2)2/t), (3.2.67)∣∣(∇z1)
l(∇z2)

l′(∂t)
l′′r

ξ⊗ωnH
t,k (z1, z2)

∣∣
h×h ≤ Ctk−(l+l′)/2−l′′ · ψ(d(z1, z2)2/2)

· exp(−c′ · d(z1, z2)2/t). (3.2.68)

Proof. The first statement is done as in [12, Theorem 2.29]. The estimate (3.2.67) follows directly
from (3.2.55) and (3.2.56). The proof of (3.2.68) uses (3.2.56), but otherwise it is done in the same
way as [12, Theorem 2.29].
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This theorem means that kξ⊗ω
n
H

t,k (z1, z2) is the parametrix of the heat equation in the sense of [12,
p.77]. Thus, we may construct the heat kernel by the procedure, which follows. For k, k′ ∈ N,
z, z′ ∈ H, we denote

q
ξ⊗ωnH
t,k,k′ (z, z

′) :=

∫
t∆k′

∫
Hk′

k
ξ⊗ωnH
t−tk′ ,k

(z, zk′)r
ξ⊗ωnH
tk′−tk′−1,k

(zk′ , zk′−1) · · ·

· · · rξ⊗ω
n
H

t1,k
(z1, z

′) dvH(zk′)⊗ · · · ⊗ dvH(z1)dvt∆k′
(t1, . . . , tk′), (3.2.69)

where ∆k′ is the standard k′-simplex, and dvt∆k′
(t1, . . . , tk′) is the standard volume form over t∆k′ .

Now let’s explain why (3.2.69) is well-defined. The integration over Hk′ in (3.2.69) is well-defined
since by (3.2.54), (3.2.55) and (3.2.66), the functions under the integral vanish if the arguments
are too distant, so all the integrations are done in a compact subset. The integration over t∆k′

is well-defined for k ≥ 1 by (3.2.55) and (3.2.68). By the same reasons, it is easy to see that if
k ≥ (l + l′)/2 + l′′ + 1, then the partial derivatives (∂z1)

l(∂z2)
l′(∂t)

l′′q
ξ⊗ωnH
t,k,k′ (z1, z2) exists.

Theorem 3.2.20. For any t0 > 0, k ∈ N∗ and l, l′, l′′ ∈ N, there are c′, C > 0 such that for any
t ∈]0, t0], z1, z2 ∈ H and k′ ∈ N satisfying k ≥ (l + l′)/2 + l′′ + 1, we have∣∣∣(∇z1)

l(∇z2)
l′(∂t)

l′′q
ξ⊗ωnH
t,k,k′ (z1, z2)

∣∣∣
h×h
≤ Ck′tkk

′−l−l′−2l′′

(k′ − 1)!
exp(−c′ · d(z1, z2)2/t). (3.2.70)

Moreover, for any t ∈]0, t0], z1, z2 ∈ H, k ∈ N∗, the series
∞∑
k′=0

(−1)k
′
q
ξ⊗ωnH
t,k,k′ (z1, z2), (3.2.71)

converges to exp(−t�ξ⊗ω
n
H

H )(z1, z2) in C 2k−2(H × H), and for any l, l′, l′′ ∈ N, satisfying k ≥
(l + l′)/2 + l′′ + 1, there is C > 0 such for any t ∈]0, t0], z1, z2 ∈ H, we have∣∣∣(∇z1)

l(∇z2)
l′(∂t)

l′′
(

exp(−t�ξ⊗ωnH)− kξ⊗ω
n
H

t,k

)
(z1, z2)

∣∣∣
h×h

≤ Ctk−l−l
′−2l′′ exp(−c′ · d(z1, z2)2/t). (3.2.72)

Proof. First of all, we note that by the weighted mean inequality and the triangle inequality, for
k′ ∈ N, t > tk′ > . . . > t1 > 0, and z, z′, z1, . . . , zk′ ∈ H, we have

exp
(
− c′d(z, zk′)

2

t− tk′

)
exp

(
− c′d(zk′ , zk′−1)2

tk′ − tk′−1

)
· · ·

· · · exp
(
− c′d(z1, z

′)2

t1

)
≤ exp

(
− c′

t
d(z, z′)2

)
. (3.2.73)

We also note that the integration over each variable z1, . . . , zk′ is done over a hyperbolic ball of
radius 1, which has a constant volume, independently of the choice of its center. From now on,
the proof remains verbatim with [12, Lemma 2.22, Theorem 2.23], where one has to replace the
appropriate estimates by (3.2.67), (3.2.68) and use (3.2.73) to bound the exponentials.
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Now let’s apply all this theory to the study of the heat kernel on the punctured hyperbolic disc.
We summarize all the important results, which will be used in Section 3.2.4, in the following
theorem, which is a local analogue of (3.2.12) and Theorem 3.2.8.

Theorem 3.2.21. For any l, l′, l′′ ∈ N, there are t0 > 0 c, c′, C > 0 such that for any t ∈]0, t0],
u, v ∈ D∗, we have∣∣∣(∇u)

l(∇v)
l′(∂t)

l′′ exp(−t�ξ⊗ωD(0)n)(u, v)
∣∣∣
h×h
≤ Ct−1−(l+l′)/2−l′′

·
(
1 + | ln |u||

)1/2(
1 + | ln |v||

)1/2
exp

(
− c′ · d(u, v)2/t

)
. (3.2.74)

Moreover, there are bounded sections aD
∗,n

ξ,j ∈ C∞(D∗,End(ξ)), j ≥ −1 such that there are
c′, C > 0 such that for any u ∈ D∗, k ∈ N and t ∈]0, t0], we have

∣∣∣ exp(−t�ξ⊗ωD(0)n)(u, u)−
k∑

j=−1

aD
∗,n

ξ,j (u)tj
∣∣∣

≤
(

1 + | ln |u||
)(
Ctk +

C

t
exp

(
− c′

t| ln |u||2
))
. (3.2.75)

Moreover, for any j ≥ −1, there is C > 0 such that for any u ∈ D∗, we have∣∣∣(∇u)
l
(
aD
∗,n

ξ,j − Idrk(ξ)a
D∗,n
j

)
(u)
∣∣∣
h×h
≤ C|u|1/3, (3.2.76)

where we trivialized ξ as in the beginning of this section.

Before proving this theorem, let’s prove the following technical

Lemma 3.2.22. There is t0 > 0 such that for any z1, z2 ∈ H, t ∈]0, t0], satisfying d(z1, U
iz2) ≤

d(z1, z2) for any i ∈ Z, we have∑
exp

(
− d(z1, U

iz2)2/t
)
≤ C

((
Im(z1) + 1

)(
Im(z2) + 1

))1/2

exp
(
− d(z1, z2)2/(2t)

)
.

(3.2.77)

Proof. We decompose the sum in (3.2.77) into two parts: for i2 ≤ 4 Im(z1) Im(z2) and the com-
plementary. Trivially, by the assumption, the first part is bounded by

4
((

Im(z1) + 1
)(

Im(z2) + 1
))1/2

exp
(
− d(z1, z2)2/(2t)

)
. (3.2.78)

Now, by choosing t0 small enough, we see that

exp
(
−
(

ln
i2

Im(z1) Im(z2)

)2

/t
)
≤ Im(z1) Im(z2)

i2
. (3.2.79)
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By (3.2.89) and (3.2.79), we see that∑
i2>4 Im(z1) Im(z2)

exp(−d(z1, U
iz2)2/t)

≤
(

Im(z1) Im(z2)
)
· exp

(
− d(z1, z2)2/(2t)

) ∑
i2>4 Im(z1) Im(z2)

i−2

≤
(

Im(z1) Im(z2)
)1/2 · exp

(
− d(z1, z2)2/(2t)

)
. (3.2.80)

Thus, we conclude by (3.2.78) and (3.2.80).

Proof of Theorem 3.2.21. Let u, v ∈ D∗, and let ũ, ṽ ∈ H be such that ρ(ũ) = u, ρ(ṽ) = v. Then
Im(ũ) = | log |u||, Im(ṽ) = | log |v||. By (3.2.52), (3.2.72) and Lemma 3.2.22, we have∣∣∣(∇u)

l(∇v)
l′(∂t)

l′′
(

exp(−t�ξ⊗ωD(0)n)(u, v)−
∑
i∈Z

k
ξ⊗ωnH
t,k (ũ, U iṽ)

)∣∣∣
h×h

≤ Ctk−(l+l′)/2−l′′(1 + | ln |u||
)1/2(

1 + | ln |v||
)1/2

exp
(
− c′ · d(u, v)2/t

)
. (3.2.81)

Now, by (3.2.89), there is C > 0 such that for any z1, z2 ∈ H, we have

#
{
i ∈ Z : d(z1, U

iz2) < 2
}
≤ C

(
(Im(z1) + 1)(Im(z2) + 1)

)1/2
. (3.2.82)

Thus, the number of non-zero terms in the sum under the module in (3.2.81) is bounded by the
right-hand side of (3.2.82). So, by (3.2.67) and (3.2.81), we get (3.2.74).

Now, by (3.2.53), there is C > 0 such that for any z ∈ D∗ and i ∈ Z∗, we have

d(z, U iz) ≥ C

| ln |z||
. (3.2.83)

Thus, from Lemma 3.2.22, (3.2.81) and (3.2.83), we get (3.2.75) for

aD
∗,n

ξ,j (z) := Φ
ξ⊗ωnH
j+1 (z̃, z̃), where z̃ ∈ H, ρ(z̃) = z, and j ≥ −1. (3.2.84)

Now, (3.2.76) follows from (3.2.57) and (3.2.84).

Finally, as an application of the ideas from the proof of Theorem 3.2.18, let’s establish the
following elliptic estimates.

Lemma 3.2.23. For any α > 0, k ∈ N, there is C > 0, such that for any n ∈ Z, σ ∈ C∞(D∗, ξ ⊗
ωD(0)n), x ∈ D∗, we have∣∣∇kσ(x)

∣∣
h
≤ C| log |x||1/2

∑2+k
i=0 (n4(2+2k−i) + 1)

∥∥(�ξ⊗ωD(0)n)iσ
∥∥
L2(BD∗ (x,α))

. (3.2.85)

Remark 3.2.24. Similar results have appeared in a recent article of Auvray-Ma-Marinescu [9, §4].
Our methods of proof are, however, fundamentally different.
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Proof. We conserve the notations from the proof of Theorem 3.2.18.
We denote by �ξ⊗ω

n
H

z the Kodaira Laplacian on BH(
√
−1, 1) associated to gTH, hξz ⊗‖·‖

2n
H . Let

∇z be the connection on BH(
√
−1, 1) induced by the Chern connection associated to hξz,‖·‖H and

the Levi-Civita connection on (H, gTH).
The family of metrics hξz over BH(

√
−1, 1) has bounded geometry by (3.2.59). From this, the

fact that gz ∈ Aut(H) preserves gTH and [85, Lemma 1.6.2], we deduce that for any 0 < α < 1,
k ∈ N, there is C > 0, such that for any z ∈ H, n ∈ Z, σ1 ∈ C∞(BH(

√
−1, 1), ρ∗(ξ)⊗ ωnH):∣∣(∇k

zσ1)(
√
−1)

∣∣
h
≤ C

∑2+k
i=0 (n4(2+2k−i) + 1)

∥∥(�
ξ⊗ωnH
z )iσ1

∥∥
L2(BH(

√
−1,α))

. (3.2.86)

Now, for σ̃ ∈ C∞(H, ρ∗(ξ)⊗ωnH), we denote σ1 := ((gz)
−1)∗σ̃. Then by the fact that gz ∈ Aut(H)

preserves gTH, we trivially have∣∣(∇k
zσ1)(

√
−1)

∣∣
h

=
∣∣(∇kσ̃)(z)

∣∣
h
,∥∥(�

ξ⊗ωnH
z )iσ1

∥∥
L2(BH(

√
−1,α))

=
∥∥(�ξ⊗ω

n
H)iσ̃

∥∥
L2(BH(z,α))

.
(3.2.87)

From (3.2.86) and (3.2.87), we deduce the following elliptic estimate on H:∣∣(∇kσ̃)(x̃)
∣∣
h
≤ C

∑2+k
i=0 (n4(2+2k−i) + 1)

∥∥(�ξ⊗ω
n
H)iσ̃

∥∥
L2(BH(x̃,α))

. (3.2.88)

Now, by (3.2.53), for any i 6= 0, we have

d(z1, U
iz2) ≥ ln

(
i2/(Im(z1) Im(z2))

)
. (3.2.89)

By (3.2.89), we deduce that for any α, there is C ′ > 0 such that for any x ∈ D∗(1/2), x̃ ∈ H, such
that ρ(x̃) = x, we have

#
{
ỹ ∈ BH(x̃, α) : ρ(ỹ) = y

}
≤ C ′ · | log |x||. (3.2.90)

Thus, by (3.2.90) and the fact that the restriction ρ|BH(x̃,α) : BH(x̃, α) → BD(x, α) is a surjection,
we deduce that for any σ ∈ C∞(D∗, ξ ⊗ ωD(0)n), x ∈ D∗ and x̃ ∈ H such that ρ(x̃) = x, we have∥∥(�ξ⊗ω

n
H)i(σ ◦ ρ)

∥∥
L2(BH(x̃,α))

≤ (C ′)1/2| log |x||1/2 ·
∥∥(�ξ⊗ω

n
D )iσ

∥∥
L2(BD∗ (x,α))

(3.2.91)

By (3.2.91) and (3.2.88) applied for σ̃ := ρ∗σ, we deduce (3.2.85) for C := C(C ′)1/2.

Lemma 3.2.25. For any β > 1, k ∈ N, n ∈ Z, there is C > 0, such that for any σ ∈ C∞(D∗, ξ ⊗
ωD(0)n), x ∈ D(x/(2β)) \ {0}, we have∣∣∇kσ(x)

∣∣
h
≤ C| log |x||3+k

∑2+k
i=0

∥∥(�ξ⊗ωD(0)n)iσ
∥∥
L2(D(β|x|)\D(|x|/β))

. (3.2.92)

Proof. We use the notation from the proof of Lemma 3.2.23.
First, let’s prove that for any γ > 1, k ∈ N, n ∈ Z, there is C > 0, such that for any z ∈ H,

σ̃ ∈ C∞(H, ρ∗(ξ)⊗ ωnH), we have the following elliptic estimate on H:∣∣(∇kσ̃)(z)
∣∣
h
≤ C| Im z|2+k

∑2+k
i=0

∥∥(�ξ⊗ω
n
H)iσ̃

∥∥
L2(BH(z,γ/ Im z))

. (3.2.93)
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Similarly to (3.2.87), we see that in the notations (3.2.86), to prove (3.2.93), it is enough to prove
that for any 1 > δ > 0, there exists C > 0 such that the following estimate holds∣∣(∇k

zσ1)(
√
−1)

∣∣
h
≤ Cδ−(2+k)

∑2+k
i=0

∥∥(�
ξ⊗ωnH
z )iσ1

∥∥
L2(BH(

√
−1,δ))

. (3.2.94)

However, as the family of metrics hξz, z ∈ H has bounded geometry and gTH differs from the
standard Euclidean metric over BH(

√
−1, 1) ⊂ C by a smooth function, we deduce that it is

enough to prove that for a standard Kodaira Laplacian � on C, for any 1 > δ > 0, k ∈ N, n ∈ Z,
σ′ ∈ C∞(D(δ)), we have∣∣(∇kσ′)(0)

∣∣
h
≤ Cδ−(2+k)

∑2+k
i=0

∥∥�iσ′∥∥
L2(D(δ))

. (3.2.95)

But (3.2.95) follows from a standard elliptic estimate on a disc (cf. [85, Lemma 1.6.2]) by using
the transformation σ′′(x) := σ′(δx).

Directly from (3.2.91), there is C ′ > 0 such that for any σ ∈ C∞(D, ξ⊗ωD(0)n), x ∈ D(1/2)\
{0} and x̃ ∈ H such that ρ(x̃) = x, we have∥∥(�ξ⊗ω

n
H)i(σ ◦ ρ)

∥∥
L2(BH(x̃,γ/ Im(x̃)))

≤ C ′| log |x||1/2
∥∥(�ξ⊗ω

n
D )iσ

∥∥
L2(BD(x,γ/| log |x||)) (3.2.96)

From (3.2.96) and (3.2.93) applied for σ̃ = σ ◦ ρ, we get∣∣∇kσ(x)
∣∣
h
≤ C| log |x||5/2+k

∑2+k
i=0

∥∥(�ξ⊗ωD(0)n)iσ
∥∥
L2(BD(x,γ/| log |x||)). (3.2.97)

However, by (3.2.53), we see that for any β > 1, there is γ > 0 such that for any z ∈ D(1/(2β)),
we have BD(z, γ/| log |z||) ⊂ D(βz) \D(z/β). From this and (3.2.97), we deduce (3.2.92).

Remark 3.2.26. Let’s choose a family of Hermitian metrics hξη, η ∈]0, 1] instead of hξ, for

hξη(ei, ej)(u) :=
(
1− ψ(|u|2/η)

)
hξ(ei, ej)(u) + ψ(|u|2/η)δij, (3.2.98)

where ψ is defined in (3.2.54), ei, i = 1, . . . , rk(ξ) is as in (3.2.46). Then all the estimates of this
chapter would continue to hold uniformly over η ∈]0, 1].

Let’s briefly explain this point. First of all, as all the results of this section rely on Theorem
3.2.18, it is enough to explain why the uniform analogue of (3.2.59) holds, as it is the main step
in the proof of Theorem 3.2.18. But this is due to the fact that for the Hermitian metrics hξz,η,
z = (x0, y0) ∈ H, defined in the notation of Theorem 3.2.18 by (compare with (3.2.61))

hξz,η := ((g−1
z ρ)∗hξη)|BH(

√
−1,1), (3.2.99)

we have (compare with (3.2.62))

hξz,η((g
−1
z ρ)∗ei, (g

−1
z ρ)∗ej)(z2) = hξη(ei, ej)(e

−yy0+
√
−1(xy0+x0)). (3.2.100)

Now, if a smooth function f(y), y > 0 satisfies f(y) = 0, y > 1, then the function f(e−y/η),
y ∈ R has bounded derivatives uniformly on η > 0. From this observation, (3.2.100) implies that
for hξ,0z defined as in (3.2.63), the following uniform analogue of (3.2.59) holds:∣∣(∂x)l(∂y)l′(hξz,η)(z2)

∣∣
h

≤ C,∣∣(∂x)l(∂y)l′(hξz,η − hξ,0z )(z2)
∣∣
h
≤ Ce− Im z/3.

(3.2.101)
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Finally, let’s mention one consequence of Remark 3.2.26. We add a subscript η to all the objects
which depend on hξη instead of hξ.

Lemma 3.2.27. For any α > 0, k ∈ N, there is C > 0, such that for any n ∈ Z, σ ∈ C∞(D, ξ ⊗
ωD(0)n), x ∈ D, we have∣∣∇k

ησ(x)
∣∣
h,η
≤ C| log |x||1/2

∑2+k
i=0 (n4(2+2k−i) + 1)

∥∥(�ξ⊗ωD(0)n

η )iσ
∥∥
L2
η(BD(x,α))

. (3.2.102)

Proof. Same as the proof of Lemma 3.2.23, as by (3.2.101), the family hξz,η is bounded.

3.2.4 Proofs of Theorems 3.2.1, 3.2.4, 3.2.6, 3.2.8
In this section we finally present the proofs of Theorems 3.2.1, 3.2.4, 3.2.6 and 3.2.8.

Proof of Theorem 3.2.1. First of all, for n ≤ 0, there is C > 0 such that for any z ∈ D∗(1/2):

C <
(
|z|2(ln |z|)2−2n

)−1
. (3.2.103)

Let gTMsm be some smooth metric overM , and let‖·‖sm
M be some smooth Hermitian norm on ωM(D)

over M . By (3.2.103), there is C > 0 such that gTMsm ⊗ (‖·‖sm
M )2n ≤ CgTM ⊗‖·‖2n

M . Thus, we have

ker(�E
ξ,n
M ) ⊂ L2

(
gTMsm , hξ ⊗ (‖·‖sm

M )2n
)
. (3.2.104)

Let s ∈ ker(�E
ξ,n
M ). By (3.2.104) and the classical L2-extension theorem (cf. [85, Lemma 2.3.22]),

s extends holomorphically to V M
i (ε). In other words

ker(�E
ξ,n
M ) ⊂ H0(M,Eξ,n

M ). (3.2.105)

By the finiteness of the volume of (M, gTM), see (3.2.24), we see that that each holomorphic
section lies in L2(gTM , hξ ⊗ ‖·‖2n

M ), i.e.

H0(M,Eξ,n
M ) ⊂ ker(�E

ξ,n
M ). (3.2.106)

We deduce (3.2.6) by (3.2.105) and (3.2.106).
For n = 0, our proof of Theorem 3.2.1 relies on the result of Müller [93, §6, Proposition 6.9],

who proves Theorem 3.2.1 for n = 0 and (ξ, hξ) trivial. In case of n < 0, we obtain Theorem
3.2.1 by gluing the estimates in the neighbourhood of cusp, coming from Nakano’s inequality
(cf. [85, Theorem 1.4.14]), and the estimates away from the cusps coming from the spectral gap
for the Dirichlet Laplacian of a surface with boundary.

Let’s show that (3.2.7) holds for n < 0 and any (ξ, hξ). In [93, §6], Müller proved (3.2.8)
for (ξ, hξ) trivial, n = 0 and c2 = 1/4, see Remark 3.2.2. This implies, in particular, that (3.2.7)
holds for (ξ, hξ) trivial and n = 0 (see [93, Proposition 6.9]). He proved (3.2.8) in this case by
studying explicitly the spectrum of Kodaira Laplacian of the von Neumann problem in the cusp
and using the scattering matrix to relate the continuous spectrum of the manifolds. If the vector
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bundle (ξ, hξ) is trivial around the cusps, the presence of it doesn’t change the Hermitian structure
around DM . Thus, the result of Müller extends line by line to the case n = 0 and (ξ, hξ) trivial
around the cusps, which we summarize in

Spec(�E
ξ,n
M ) ∩ [0, 1/4] is discrete. (3.2.107)

Now, let hξ be any Hermitian metric on ξ. We will prove that there is k ∈ N and F ⊂ L2(Eξ,n
M ),

codimF = k, such that we have

inf
s∈F

{
〈�E

ξ,n
M s,�E

ξ,n
M s〉L2

〈s, s〉L2

}
> 0. (3.2.108)

Then, by the min-max theorem (cf. [85, (C.3.3)]), (3.2.6) and (3.2.108), we get (3.2.7).
We choose η ∈]0, 1/2] small enough, so that (3.1.2) is satisfied for any i = 1, . . . ,m. For

each i = 1, . . . ,m, we fix a normal trivialization of ξ over V M
i (η), i.e. a local holomorphic

frame e1, . . . , erk(ξ) of ξ over V M
i (η) as in (3.2.46). Let hξη be a Hermitian metric on ξ such that it

coincides with hξ over M \ (∪iV M
i (η)) and over V M

i (η) it is given by (compare with (3.2.98))

hξη((z
M
i )−1(u))(ei, ej) = (1− ψ(|u|2/η))hξ((zMi )−1(u))(ei, ej) + ψ(|u|2/η)δij, (3.2.109)

where ψ is defined in (3.2.54), ei, i = 1, . . . , rk(ξ) is as in (3.2.46), and δij is the Kronecker delta
symbol. Then (ξ, hξη) is trivial around the cusps, and there is C > 0 such that for any η ∈]0, 1/2],
we have

(hξη)
−1
∂hξη
∂zMi

(
(zMi )−1(u)

)
≤ C|u|. (3.2.110)

We denote by �E
ξ,n
M

η the Kodaira Laplacian on (M, gTM), associated with hξη. Then over V M
i (η),

we have

(∂
ξ
)∗ =

(
‖dzMi ‖ωM

)2( ∂

∂zMi
+ (hξη)

−1
∂hξη
∂zMi

)
· ι∂/∂zMi , (3.2.111)

where ι is the contraction and ∗ is the adjoint with respect to the L2-scalar product induced by hξη.
By (3.2.2) and (3.2.111), we deduce

�
Eξ,nM
η −�E

ξ,n
M =

∑
i

|zMi |2(ln |zMi |)2
(

(hξη)
−1
∂hξη
∂zMi

− (hξ)−1 ∂h
ξ

∂zMi

) ∂

∂zMi
. (3.2.112)

We denote by 〈·, ·〉L2
η

the L2-scalar product induced by gTM , hξη. We fix η > 0 small enough
so that 2hξ > hξη > hξ/2. Then we have 2〈·, ·〉L2 > 〈·, ·〉L2

η
> 〈·, ·〉L2/2. Now, by (3.2.112) and

Cauchy inequality, for s ∈ C∞c (M,Eξ,n
M ), as the support of (3.2.112) lies in ∪V M

i (η1/2/2), by
(3.2.110):

〈�E
ξ,n
M s, s〉L2 ≥ 1

2
〈�E

ξ,n
M

η s, s〉L2
η
− 2Cm|η2 ln |η||

(
〈s, s〉L2

η
· 〈�E

ξ,n
M

η s, s〉L2
η

)1/2
. (3.2.113)
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We fix η > 0 small enough so that 4Cm|η2 ln |η|| ≤ 1/16, and put

F :=
〈{
s ∈ dom

(
�
Eξ,nM
η

)
: �

Eξ,nM
η s = λs, for λ < 1/4

}〉⊥
, (3.2.114)

where the orthogonal complement is taken with respect to 〈·, ·〉L2
η
. Since (ξ, hξη) is trivial around the

cusps, by (3.2.107), the space F is of finite codimension. By (3.2.113) and (3.2.114), for s ∈ F :

〈�E
ξ,n
M s, s〉L2

〈s, s〉L2

≥ 1

4

(〈�Eξ,nMη s, s〉L2
η

〈s, s〉L2
η

)1/2((〈�Eξ,nMη s, s〉L2
η

〈s, s〉L2
η

)1/2

− 1

4

)
≥ 1

32
. (3.2.115)

Also, by Cauchy inequality, we have(
〈�E

ξ,n
M s,�E

ξ,n
M s〉L2

〈s, s〉L2

)1/2

≥ 〈�
Eξ,nM s, s〉L2

〈s, s〉L2

(3.2.116)

Then (3.2.115) and (3.2.116) imply (3.2.108), and thus (3.2.7) holds for n = 0 and any (ξ, hξ).
We remark that similarly to (3.2.113), we have

〈�E
ξ,n
M

η s, s〉L2
η
≥ 1

2
〈�E

ξ,n
M s, s〉L2 − 2m|η2 ln |η||

(
〈s, s〉L2 · 〈�E

ξ,n
M s, s〉L2

)1/2
. (3.2.117)

From (3.2.108) and (3.2.117), in a similar fashion as we got (3.2.108), we deduce that there exists
µ > 0 such that for any η small enough, we have

Spec
(
�
Eξ,nM
η ∩]0, µ]

)
= ∅. (3.2.118)

Now let’s show that (3.2.7) holds for n < 0 and any (ξ, hξ). Similarly, we prove that there are
k ∈ N, F ⊂ L2(Eξ,n

M ), codimF = k satisfying (3.2.108). Then, as before, we would get (3.2.7).
Let η0 > 0 be chosen such that gTM is induced by (3.1.2) over ∪iV M

i (η0), and∣∣[√−1Rξ,ΛTM ]
∣∣ ≤ 1/4, over ∪iV M

i (ε0), (3.2.119)

where Rξ is the curvature of the Chern connection on (ξ, hξ), and ΛTM is the contraction with the
Hermitian norm induced by gTM . Such ε0 exists since as (ξ, hξ) is a Hermitian vector bundle over
M and ΛTM = O(|zMi ln |zMi ||2)dzMi dz

M
i over V M

i (ε0), which can be made arbitrarily small by
replacing ε0 by a smaller number.

Let ρ : M → [0, 1] be a smooth cut-off function satisfying

ρ(x) =

{
1 for x ∈ ∪iV M

i (ε0/2),

0 for x ∈M \ (∪iV M
i (ε0)).

(3.2.120)

For s ∈ C∞c (M,Eξ,n
M ), we have

〈�E
ξ,n
M s, s〉L2 = 〈�E

ξ,n
M (ρs), ρs〉L2
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+ 〈�E
ξ,n
M ((1− ρ)s), (1− ρ)s〉L2 + 2〈�E

ξ,n
M (ρs), (1− ρ)s〉L2 . (3.2.121)

By Cauchy inequality, we see that there is c1 > 0 such that for any ε > 0, we have∣∣〈�Eξ,nM (ρs), (1− ρ)s〉L2

∣∣ ≤ ∣∣〈ρ(�E
ξ,n
M s), (1− ρ)s〉L2

∣∣+
∣∣〈[�Eξ,nM , ρ]s, (1− ρ)s〉L2

∣∣, (3.2.122)

Since [�E
ξ,n
M , ρ] is a differential operator of order 1 with support in a compact subspace ofM , there

is C > 0 such that for any s ∈ C∞c (M,Eξ,n
M ), we have∥∥[�E

ξ,n
M , ρ]s

∥∥2

L2 ≤ C
(∥∥�Eξ,nM s

∥∥2

L2 +‖s‖2
L2

)
. (3.2.123)

By (3.2.123) and Cauchy inequality, there is c2 > 0 such that for any ε > 0, we have∣∣〈[�Eξ,nM , ρ]s, (1− ρ)s〉L2

∣∣ ≤ ε
(∥∥�Eξ,nM s

∥∥2

L2 +‖s‖2
L2

)
+ (c2/ε)‖(1− ρ)s‖2

L2 ,∣∣〈ρ(�E
ξ,n
M s), (1− ρ)s〉L2

∣∣ ≤ ‖�Eξ,nM s‖2
L2 + ‖(1− ρ)s‖2

L2 .
(3.2.124)

Thus, by (3.2.121), (3.2.122) and (3.2.124), we see that

〈�E
ξ,n
M s, s〉L2 + (3 + 2c1/ε)‖�E

ξ,n
M s‖2

L2 ≥ 〈�E
ξ,n
M (ρs), ρs〉L2

+ 〈�E
ξ,n
M ((1− ρ)s), (1− ρ)s〉L2 − 4ε‖s‖2

L2 − (2 + 2c2/ε)‖(1− ρ)s‖2
L2 . (3.2.125)

Recall that by Nakano’s inequality (cf. [85, Theorem 1.4.14]), we have

〈�E
ξ,n
M (ρs), ρs〉L2 ≥ 〈[

√
−1REξ,nM ,ΛTM ](ρs), ρs〉L2 , (3.2.126)

where REξ,nM is the curvature of the Chern connection on Eξ,n
M . We decompose

REξ,nM = Rξ + nIdξ ·RωM (D), (3.2.127)

where RωM (D) is the curvature of the Chern connection on (ωM(D),‖·‖M). Now, by (3.1.2), over
V M
i (η0), we have

[
√
−1RωM (D),ΛTM ] = −1/2. (3.2.128)

We conclude by (3.2.119), (3.2.126), (3.2.127) and (3.2.128) that for d := −n/2 − 1/4 > 0, we
have

〈�E
ξ,n
M (ρs), ρs〉L2 ≥ d‖ρs‖2

L2 . (3.2.129)

As the closure of M \ (∪iV M
i (ε)) is a compact manifold with boundary, the Dirichlet problem

for �E
ξ,n
M on M \ (∪iV M

i (ε)) has a discrete set of eigenvalues. Let φ1, φ2, . . . be the eigenvectors
corresponding to the eigenvalues in the increasing order. There exists k ∈ N such that for any s,
satisfying s ⊥ (1− ρ)φi, i = 1, . . . , k, we have

〈�E
ξ,n
M ((1− ρ)s), (1− ρ)s〉L2 ≥ (2 + d+ 2c2/ε)

∥∥(1− ρ)s
∥∥2

L2 . (3.2.130)
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Thus, we conclude from (3.2.125), (3.2.129) and (3.2.130) that for some c1, c2 > 0, k ∈ N and for
any ε > 0 and s satisfying s ⊥ (1− ρ)φi, i = 1, . . . , k, we have

〈�E
ξ,n
M s, s〉L2 + (2 + 2c1/ε)‖�E

ξ,n
M s‖2

L2 ≥ (d/2− 4ε)‖s‖2
L2 . (3.2.131)

We set F = 〈(1−ρ)φ1, . . . , (1−ρ)φk〉⊥, where the orthogonal complement is taken with respect to
the L2-scalar product. Then we take ε = d/16 and deduce (3.2.108) from (3.2.116) and (3.2.131).

We recall that the function ρM : M → [1,+∞[ was defined in (3.2.11). To prove Theorems
3.2.4 and 3.2.6, we need the following technical

Lemma 3.2.28. For any α > 0, k ∈ N, there isC > 0, such that for any n ∈ Z, σ ∈ C∞(M,Eξ,n
M ),

x ∈M , we have∣∣∇kσ(x)
∣∣
h
≤ CρM(x)

∑2+k
i=0 (n4(2+2k−i) + 1)

∥∥(�E
ξ,n
M )iσ

∥∥
L2(BM (x,α))

. (3.2.132)

Proof. Let ε > 0. For x ∈M \(∪iV M
i (ε)), the estimate (3.2.132) follows from [85, Lemma 1.6.2].

For x ∈ V M
i (ε), the estimate (3.2.132) follows from Lemma 3.2.23.

To prove Theorem 3.2.4, we need the following

Lemma 3.2.29. Let f(t), t > 0 be a semigroup of operators acting on L2(Eξ,n
M ) with smooth

kernels f(t, x, y), x, y ∈ M associated with dvM(y). Suppose that for any l, l′, l′′ ∈ N, there are
some t0 > 0, c′, C1 > 0, such that for any t ∈]0, t0], x, y ∈M , we have∣∣∣(∇x)

l(∇y)
l′(∂t)

l′′f(t, x, y)
∣∣∣
h×h
≤ C1t

−1−(l+l′)/2−l′′ρM(x)ρM(y) exp(−c′d(x, y)2/t). (3.2.133)

Then there are c, C > 0 such that for any t > 0, x, y ∈M , we have∣∣∣(∇x)
l(∇y)

l′(∂t)
l′′f(t, x, y)

∣∣∣
h×h
≤ Ct−1−(l+l′)/2−l′′

· ρM(x)ρM(y) exp(ct− c′d(x, y)2/t). (3.2.134)

Proof. There are essentially three different cases to consider x, y ∈ M \ (∪iV M
i (1/2)), x ∈

V M
i (1/2), y ∈ V M

j (1/2) for some i 6= j and x, y ∈ V M
i (1/2) for some i = 1, . . . ,m. We

only treat the last one, which is the most difficult one, and we leave the rest to the reader.
We denote u = zMi (x), v = zMi (y). Let’s prove by induction that there exists c, C > 0 such that

for any k ∈ N, t < 2kt0, we have∣∣∣(∇u)
l(∇v)

l′(∂t)
l′′f(t, u, v)

∣∣∣
h×h
≤ Ct−1−(l+l′)/2−l′′(1 + | ln |u||)1/2(1 + | ln |v||)1/2

· exp
(
c(2n − n)− c′

t
· d(u, v)2

)
. (3.2.135)
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Now, for k = 0, (3.2.135) is simply (3.2.133). Once the induction step is done, (3.2.135) would
imply (3.2.134). For simplicity, we treat the case l = l′ = l′′ = 0, as the generalization is
straightforward.

Let k ∈ N and 2k−1t0 ≤ t < 2kt0, then by the semigroup property, we have∣∣f(2t, u, v)
∣∣
h×h ≤

∫
M

∣∣f(t, u, z)
∣∣
h×h ·

∣∣f(t, z, v)
∣∣
h×hdvM(z) (3.2.136)

Without losing the generality, suppose |u| ≤ |v|. We decompose the integration over M into four
parts: over V M

i (|u|), over V M
i (|v|)\V M

i (|u|), over V M
i (1/2)\V M

i (|v|) for i = 1, . . . ,m, and over
M \ (∪V M

i (1/2)). We will suppose that |u| is small enough, as if it is not, then the treatment of
all those cases reduces to the last one, which is the easiest one. Before treating those cases, let’s
recall some facts about the geometry of (D∗, gTD∗) and the induced S1-action by rotations. First of
all, by (3.1.2), for any u0 ∈ V M

i (1/2), the length of the S1-orbit of u0 is given by 2π/| ln(|u0|)|.
Thus, by triangle inequality and S1-symmetry, for any u1 ∈ V M

i (1/2), we have

d(|u0|, |u1|) ≤ d(u0, u1) ≤ d(|u0|, |u1|) + min

{
2π

| ln |u0||
;

2π

| ln |u1||

}
. (3.2.137)

Also, by a trivial calculation, we have

d(|u0|, |u1|) =
∣∣∣ ln | ln |u0|| − ln | ln |u1||

∣∣∣. (3.2.138)

Let z ∈ V M
i (1/2), by abuse of notation, we denote z := zMi (z).

Let’s treat the integration over |z| < |u|. By (3.2.137), we have

d(z, v) ≥ d(|u|, |v|) ≥ d(u, v)− 2π

| ln |u||
. (3.2.139)

By (3.2.138) and (3.2.139), since u is small enough, we deduce

d(z, v)2 ≥ d(|u|, |v|)2 ≥ d(u, v)2 − 4π. (3.2.140)

From the induction hypothesis (3.2.135), (3.2.139) and (3.2.140), we deduce∫
|z|<|u|

∣∣f(t, u, z)
∣∣
h×h ·

∣∣f(t, z, v)
∣∣
h×hdvM(z) ≤ 2C2t−2(1 + | ln |u||)1/2

· (1 + | ln |v||)1/2 exp
(
c(2 · 2n−1 − 2(n− 1)) +

4πc′

t
− c′

t
d(u, v)2

)
·
∫
|z|<|u|

exp
(
− c′

t
d(|u|, |z|)2

)√−1dzdz

|z|2 ln |z|
. (3.2.141)

Now, by (3.2.138), there exists C2 > 0 such that for any t > 0, we have∫
|z|<|u|

exp
(
− c′

t
d(|u|, |z|)2

)√−1dzdz

|z|2 ln |z|
= 4π

∫ ∞
0

exp
(
− c′

t
r2
)
dr ≤ C2

√
t. (3.2.142)
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From (3.2.141) and (3.2.142), we deduce∫
|z|<|u|

∣∣f(t, u, z)
∣∣
h×h ·

∣∣f(t, z, v)
∣∣
h×hdvM(z)

≤ 2C2C2 exp(4π2c′/t)t−3/2
(
1 + | ln |u||

)1/2(
1 + | ln |v||

)1/2

· exp
(
c
(
2 · 2n−1 − 2(n− 1)

)
− c′

t
d(u, v)2

)
(3.2.143)

Thus, by choosing c, C appropriately, by using the bounds on t, we bound the contribution from
the integral over {|z| < |u|} by the right-hand side of (3.2.135).

Now let’s treat the integral over |u| < |z| < |v|. From (3.2.137), (3.2.138) and the boundness
of the Gaussian integral, for some C > 0, we deduce∫

|u|<|z|<|v|
exp

(
− c′

t

(
d(u, z)2 + d(v, z)2

))√−1dzdz

|z|2 ln |z|

≤ 2π

∫ ln | ln |v||

ln | ln |u||
exp

(
− c′

t

((
y − ln | ln |u||

)2
+
(

ln | ln |v|| − y
)2
))
dy

= 2π

∫ d(|u|,|v|)

0

exp
(
− c′r2

t
− c′

t

(
d(|u|, |v|)− r

)2
)
dr = 2π exp

(
− c′

2t
d(|u|, |v|)2

)
·
∫ d(|u|,|v|)/2

−d(|u|,|v|)/2
exp

(
− c′r2

2t

)
dr ≤ C

√
t exp

(
− c′

2t
d(|u|, |v|)2

)
. (3.2.144)

From the induction hypothesis (3.2.135), (3.2.140) and the bounds on t, we bound the contribution
of the integration over |u| < |z| < |v| by the right-hand side of the induction step (3.2.135).

The integral over |v| < |z| < 1/2 is treated similarly to the integral over |z| < |u|.
The integral over z ∈M \ ∪iV M

i (1/2) is the easiest one and it follows from (3.2.73).

Proof of Theorem 3.2.4. Let’s prove (3.2.13) first. From Lemma 3.2.28, there is C > 0, such that
for any x, x′ ∈M , we have∣∣(∇x)

l(∇x′)
l′ exp⊥(−t�E

ξ,n
M )(x, x′)

∣∣
h×h ≤ CρM(x)ρM(x′)·

·
2+l∑
i=0

2+l′∑
j=0

∥∥∥(�E
ξ,n
M )i exp⊥(−t�E

ξ,n
M )(�E

ξ,n
M )j

∥∥∥0,0

, (3.2.145)

where ‖·‖0,0 is the operator norm between the corresponding L2 spaces. For any l ∈ N, c > 0,
there is C > 0 such that for any t > 0, we have

supu≥c u
l exp(−tu) ≤ Ct−l exp(−ct/2). (3.2.146)

By Theorem 3.2.1, for any i, j ∈ N, there are c, C > 0 such that for any t ≥ 0, we have∥∥∥(�E
ξ,n
M )i exp⊥(−t�E

ξ,n
M )(�E

ξ,n
M )j

∥∥∥0,0

≤ Ct−(i+j) exp(−ct). (3.2.147)
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From (3.2.145) and (3.2.147), we get (3.2.13).
Let’s proceed with a proof of (3.2.12). By Lemma 3.2.29, it’s enough to prove it for t < t0 for

some t0 > 0. We fix ε > 0 small enough, and consider several cases.
Case 1: x, x′ ∈ M \ (∪iV M

i (ε)). The estimate (3.2.12) for small t is classical and it is proved
by using finite propagation speed of solutions of hyperbolic equations (cf. [85, Theorems D.2.1,
4.2.8]) and the parametrix estimates of the heat kernel similar to [12, §2.4, 2.5].

Case 2: x ∈ V M
i (ε), x′ /∈ V M

i (2ε), for some i = 1, . . . ,m. In this case, we prove the estimate
(3.2.12) for t < t0 by using finite propagation speed of solutions of hyperbolic equations.

More precisely, for r > 0, we introduce smooth even functions (cf. [85, (4.2.11)])

Kt,r(a) =

∫ +∞

−∞
exp(
√
−1v
√

2ta) exp
(
− v2

2

)(
1− ψ

(√2tv

r

)) dv√
2π
,

Gt,r(a) =

∫ +∞

−∞
exp(
√
−1v
√

2ta) exp
(
− v2

2

)
ψ
(√2tv

r

) dv√
2π
,

(3.2.148)

where ψ : R → [0, 1] was defined in (3.2.54). Let K̃t,r, G̃t,r : R+ → R be the smooth functions
given by K̃t,r(a

2) = Kt,r(a), G̃t,r(a
2) = Gt,r(a). Then the following identities hold

exp(−t�E
ξ,n
M ) = G̃t,r(�

Eξ,nM ) + K̃t,r(�
Eξ,nM ). (3.2.149)

By the finite propagation speed of solutions of hyperbolic equations (cf. [85, Theorems D.2.1,
4.2.8]), the section G̃t,r(�E

ξ,n
M )
(
y, ·
)
, y ∈ M , depends only on the restriction of �E

ξ,n
M onto

BM(y, r). Moreover, we have

supp G̃t,r(�
Eξ,nM )

(
y, ·) ⊂ BM(y, r). (3.2.150)

From (3.2.149) and (3.2.150), we get

exp(−t�E
ξ,n
M )(y, z) = K̃t,r(�

EnN )(y, z) if d(y, z) > r. (3.2.151)

From (3.2.148), for any r0 > 0 fixed, there exists c′ > 0 such that for any m ∈ N, there is C > 0
such that for any t ∈]0, 1], r > r0, a ∈ R, the following inequality holds (cf. [85, (4.2.12)])

|a|m|Kt,r(a)| ≤ C exp(−c′r2/t). (3.2.152)

Thus, by (3.2.152), for t ∈]0, 1], r > r0, a ∈ R+, we have

|a|m|K̃t,r(a)| ≤ C exp(−c′r2/t). (3.2.153)

Now, by (3.2.153), there exists c′ > 0 such that for any k, k′ ∈ N, there is C > 0 such that for any
t ∈]0, 1] and r > r0, we have∥∥∥(�E

ξ,n
M )kK̃t,r(�

Eξ,nM )(�E
ξ,n
M )k

′
∥∥∥0,0

≤ C exp(−c′r2/t), (3.2.154)
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where‖·‖0,0 is the operator norm between the corresponding L2-spaces. Thus, by Lemma 3.2.28,
for any l, l′ ∈ N, there are c′, C > 0 such that for any x, x′ ∈M , r > r0, we have∣∣(∇x)

l(∇x′)
l′K̃t,r(�

Eξ,nM )(x, x′)
∣∣
h×h ≤ CρM(x)ρM(x′) exp(−c′r2/t), (3.2.155)

We get (3.2.12) from (3.2.151) and (3.2.155) by taking r0 = 1
4
d(V M

i (ε),M \ V M
i (2ε)) and r =

1
2
d(x, y).

Case 3: x, x′ ∈ V M
i (2ε) for some i = 1, . . . ,m. In this case, we prove the estimate (3.2.12) for

t < t0 by (3.2.74) and by finite propagation speed of solutions of hyperbolic equations.
We choose a holomorphic trivialization e1, . . . , erk(ξ) of ξ over V M

i (ε). By the map Crk(ξ) → ξ,
given by (z1, . . . , zrk(ξ)) 7→ z1e1 +· · ·+zrk(ξ)erk(ξ), we induce the Hermitian metric hξ0 on the trivial
vector bundle ξ0 := Crk(ξ) over D(2ε). By using a bump function, we extend hξ0 to a Hermitian
metric on Crk(ξ) over D, which is trivial away from a compact set, and by abuse of notation, we
denote the resulting Hermitian metric by hξ0. Let �E

ξ0,n
D be the Kodaira Laplacian on (D, gTD∗)

associated with (ξ0 ⊗ ωD(0), hξ0 ⊗ (‖·‖D)2n).
We denote u := zMi (x), u′ := zMi (x′), r := dD∗(u, 2ε). Without losing the generality, we

suppose r < dD∗(u
′, 2ε). By (3.2.137) and (3.2.138), for some c > 0, we have

d(u, 2ε) ≥ ln | ln |u|| − c. (3.2.156)

From the fact that the restriction of �E
ξ,n
M onto BM(x, r) coincides with the restriction of �E

ξ0,n
D

onto BD(u, r), by the finite propagation speed of solutions of hyperbolic equations, we have

G̃t,r(�
Eξ,nM )

(
x, x′) = G̃t,r(�

E
ξ0,n
D )

(
u, u′), (3.2.157)

for En
D := ξ0 ⊗ ωD(D)n. Now, from (3.2.149) and (3.2.157), we get

exp(−t�E
ξ,n
M )(x, x′)− exp(−t�E

ξ0,n
D )(u, u′) = K̃t,r(�

Eξ,nM )(x, x′)− K̃t,r(�
E
ξ0,n
D )(u, u′).

(3.2.158)
Now, we conclude by (3.2.74), (3.2.155), (3.2.156) and (3.2.158).

Proof of Theorem 3.2.6. First of all, in the case when (ξ, hξ) is trivial around the cusps, by choos-
ing ε small enough in Case 3 of the proof of Theorem 3.2.4, we see that the Hermitian vector
bundle (ξ0, h

ξ
0) becomes trivial. Thus, (3.2.18) follows from (3.2.155), (3.2.158).

Now let’s prove the estimates (3.2.15), (3.2.16). Consider a family of Hermitian metrics hξε ,
ε ∈ [0, 1] on ξ such that they coincide with hξ over M \ (∪iV M

i (1/2)) and over V M
i (1/2), we have

hξε((z
M
i )−1(u))(ei, ej) := (1− εψ(4|u|2))hξ((zMi )−1(u))(ei, ej) + εψ(4|u|2)δij, (3.2.159)

where ψ is defined in (3.2.54), ei, i = 1, . . . , rk(ξ) is as in (3.2.46), and δij is the Kronecker delta

symbol. We denote by�E
ξ,n
M

ε the Kodaira Laplacian on (M, gTM), associated with hξε⊗‖·‖
2n
M . Then

we have (3.2.112) for η := ε. Moreover, (3.2.110) still holds uniformly on η := ε ∈ [0, 1]. By
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Duhamel’s formula (cf. [12, Theorem 2.48]), there exists ε0 > 0 such for any u ∈ V M
i (ε0), we

have

∂ε exp(−t�E
ξ,n
M

ε )(u, u) = −
∫ t

0

∫
v∈M

exp(−(t− s)�E
ξ,n
M

ε )(u, v)·

·
(
∂ε(�

Eξ,nM
ε )v exp(−s�E

ξ,n
M

ε )(v, u)
)
dvM(v)ds. (3.2.160)

Now, the operator (3.2.112) has support over V M
i (1/2), thus, the integration in (3.2.160) is done

only over V M
i (1/2). Using the coordinate function zMi , we identify V M

i (1/2) with D∗(1/2) ⊂
D. Now, since the family of Hermitian metrics (3.2.159) is smooth, the estimate (3.2.12) holds
uniformly in ε, and by (3.2.12), (3.2.110), (3.2.112), there is C > 0 such that∣∣∣∂ε exp(−t�E

ξ,n
M

ε )(u, u)
∣∣∣ ≤ C(1 + | ln |u||) exp(ct)

∫ t

0

∫
v∈D∗( 1

2
)

|v|(1 + | ln |v||) 1

t− s
·

· 1

s3/2
· exp

(
− d(u, v)2

4
(s−1 + (t− s)−1)

)
dvD∗(v)ds. (3.2.161)

For r ∈ R+, we decompose∫
v∈D∗( 1

2
)

|v|(1 + | ln |v||) exp
(
− d(u, v)2

4
(s−1 + (t− s)−1)

)
dvD∗(v)

=

∫
v∈BD(u,r)∩D∗( 1

2
)

+

∫
v∈D∗( 1

2
)\BD(u,r)

. (3.2.162)

Since for ũ ∈ H, ρ(ũ) = u, the restriction ρBH(Ũ ,r) : BH(ũ, r)→ BD(u, r) of the covering ρ from
Section 3.2.3 is a surjection, which reduces the distances, we have∫

v∈BD(u,r)

exp
(
− d(u, v)2

4
(s−1 + (t− s)−1)

)
dvD∗(v)

≤
∫
ṽ∈BH(ũ,r)

exp
(
− d(ũ, ṽ)2

4
(s−1 + (t− s)−1)

)
dvH(ṽ). (3.2.163)

However, since (H, gTH) is isometrically transitive, the right-hand side of (3.2.163) doesn’t depend
on ũ, i.e. it is a function of r > 0. Thus, in further estimation of the right-hand side of (3.2.163),
we may suppose that ũ =

√
−1.

Now let’s take r = 1. Over BH(
√
−1, r), the metric gTH is equivalent to the standard Euclidean

metric. Thus, by the Gaussian integral on C, for some C > 0, we have∫
ṽ∈BH(

√
−1,r)

exp
(
− d(

√
−1, ṽ)2

4
(s−1 + (t− s)−1)

)
dvH(ṽ) ≤ C

s−1 + (t− s)−1
. (3.2.164)

Now, there is C > 0 such that
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∫
v∈D∗( 1

2
)\BD(u,r)

exp
(
− d(u, v)2

4
(s−1 + (t− s)−1)

)
dvD∗(v)

≤
∫
v∈D∗( 1

2
)

exp
(
− (s−1 + (t− s)−1)/4

)
dvD∗(v)

≤ C exp
(
− (s−1 + (t− s)−1)/4

)
, (3.2.165)

where in the last line we used the fact that the volume of D∗(1/2) is finite. By (3.2.162), (3.2.163),
(3.2.164), (3.2.165), and by the fact that from (3.1.2) and (3.2.138), for v ∈ BD(u, 1), we have
|v| ≤ |u|1/e, we deduce that there are c, C > 0 such that∫

v∈D∗( 1
2

)

|v|(1 + | ln |v||) exp
(
− d(u, v)2

4
(s−1 + (t− s)−1)

)
dvD∗(v)

≤ C|u|1/e| ln |u||
s−1 + (t− s)−1

+ C exp
(
− c(s−1 + (t− s)−1)

)
. (3.2.166)

From (3.2.161) and (3.2.166), we get (3.2.16).
Now let’s prove (3.2.15). Now let’s fix k ∈ N and take r = d(|u|, | ln |u||−k). By (3.2.138):

r = −
∫ | ln |u||−k
|u|

dr

r| ln r|
≈ ln | ln |u||. (3.2.167)

Then by (3.2.164) and (3.2.165), as r ≥ 1, for some c, C > 0, we have∫
v∈BD(u,r)∩D∗( 1

2
)

exp
(
− d(u, v)2

4
(s−1 + (t− s)−1)

)
dvD∗(v)

=

∫
v∈BD(u,1)∩D∗( 1

2
)

+

∫
v∈(BD(u,r)∩D∗( 1

2
))\BD(u,1)

≤ C

s−1 + (t− s)−1

+ C exp
(
− c(s−1 + (t− s)−1)

)
. (3.2.168)

Also, by (3.2.167) and the fact that the volume of D∗(1
2
) is finite, there are c, C > 0, such that∫

v∈D∗( 1
2

)\BD(u,r)

exp
(
− d(u, v)2

4
(s−1 + (t− s)−1)

)
dvD∗(v)

≤ C exp
(
− c(ln | ln |u||)2(s−1 + (t− s)−1)

)
. (3.2.169)

By (3.2.162), (3.2.168) and (3.2.169), we have∫
v∈D∗( 1

2
)

|v|(1 + | ln |v||) exp
(
− d(u, v)2

4
(s−1 + (t− s)−1)

)
dvD∗(v)
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≤ C
( 1

s−1 + (t− s)−1
+ exp

(
− c(s−1 + (t− s)−1)

))(
1 + ln | ln |u||k

)
· | ln |u||−k + C exp

(
− c(ln | ln |u||)2(s−1 + (t− s)−1)

)
. (3.2.170)

By (3.2.161) and (3.2.170), we get (3.2.15).
Now let’s prove the estimate (3.2.17). We have the identity

exp(−t�E
ξ,n
M )(x, x′) = exp⊥(−t�E

ξ,n
M )(x, x′) +

∑
si(x)si(x

′)∗, (3.2.171)

where si is an orthonormal basis of H0(M,Eξ,n
M ) with respect to 〈·, ·〉L2 , see (3.2.1). From (3.2.6),

(3.2.15) and (3.2.171), we conclude that there are c′, C > 0, such that for any t > 0, u ∈ D∗(1/2):∣∣∣ exp⊥(−t�E
ξ,n
M )
(
(zMi )−1(u), (zMi )−1(u)

)
− Idξ · exp⊥(−t�EnN )

(
(zNi )−1(u), (zNi )−1(u)

)∣∣∣
≤ C exp(ct)

(
| ln |u|| exp(−c′(ln | ln |u||)2/t) + 1

)
. (3.2.172)

Also, from (3.2.13), there are c′, C > 0, such that for any t > 0, u ∈ D∗(1/2), we have∣∣∣ exp⊥(−t�E
ξ,n
M )
(
(zMi )−1(u), (zMi )−1(u)

)
− Idξ · exp⊥(−t�EnN )

(
(zNi )−1(u), (zNi )−1(u)

)∣∣∣
≤ C| ln |u||t−4 exp(−ct). (3.2.173)

By Cauchy inequality, we have

exp(−ct− c′(ln | ln |u||)2/t) ≤ | ln |u||−2
√
cc′ . (3.2.174)

We get (3.2.17) by multiplying appropriate powers of (3.2.172) with (3.2.173) and using (3.2.174).

Proof of Theorem 3.2.8. By finite propagation speed of solutions of hyperbolic equations and small-
time asymptotics of the heat kernel in a compact manifold, we get (3.2.19). Moreover, the constant
C from (3.2.19) could be chosen independently of x ∈M \ (∪iV M

i (ε)), for some ε > 0.
Now let’s suppose x ∈ V M

i (ε), for some i = 1, . . . ,m. We note u = zMi (x), and we use
(3.2.158) for h = dD∗(u, 2ε). Then by (3.2.75), (3.2.155) and (3.2.158), we see that there are
smooth sections aM,n

ξ,j : M → End(ξ), as described, and there is C > 0 such that for any x ∈ M ,
t ∈]0, t0]:

∣∣∣ exp(−t�E
ξ,n
M )
(
x, x
)
−

k∑
j=−1

aM,n
ξ,j (x)tj

∣∣∣ ≤ CρM(x)

(
tk +

1

t
exp

(
− c′

t| ln |zMi (x)||2
)

+ exp
(
− c(ln | ln |zMi (x)||)2/t

))
, (3.2.175)
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and for aD
∗,n

ξ,j , defined as in Theorem 3.2.21, we have

aM,n
ξ,j (x) = aD

∗,n
ξ,j (zMi (x)). (3.2.176)

From (3.2.175), we conclude that if x ∈ M \ (∪iV M
i (e−t

−1/3
)), then C in (3.2.75) can be chosen

independently of t ∈]0, t0] and x.
The statement (3.2.20) and the boundness of aM,n

ξ,j (x) follows from (3.2.76) and (3.2.176).

3.3 Compact perturbation of the cusp: a proof of Theorem A
In this section we prove Theorem A. The proof consists of two steps. In the first step, Section
3.3.2, we prove that by successive “flattenings” of the Hermitian metric hξ, the associated Quillen
norm converges to the Quillen norm associated with hξ. For this, essentially, we use the estimations
developed in Section 3.2.3 along with analytic localization techniques of Bismut-Lebeau [25, §11].
In the second step, Section 3.3.3, we restrict ourselves to the case when (ξ, hξ) is trivial near the
cusps, and we construct a family of flattenings which “approach” the cusp metric in such a way that
the associated analytic torsion converges. In this step we use the analytic localization techniques of
Bismut-Lebeau [25, §11] along with the maximal principle and some comparison results. Finally,
as we explain in Section 3.3.1, those two results are enough to give a complete proof of Theorem
A. Moreover, as we will see along the way, we actually prove Theorem B for gTM0 = gTM , i.e. for
the variation of hξ.

3.3.1 General strategy of a proof of Theorem A
Let’s recall the setting of the problem and describe the main idea of the proof more precisely. We
fix surfaces with cusps (M,DM , g

TM), (N,DN , g
TN), a Hermitian vector bundle (ξ, hξ) over M

and n ∈ Z as in the statement of Theorem A. We consider a family of Hermitian metrics hξη,
η ∈]0, 1/2] on ξ constructed in (3.2.109). The main goal of Section 3.3.2 is to prove the following
formula

lim
η→0
‖·‖Q

(
gTM , hξη ⊗ ‖·‖

2n
M

)
=‖·‖Q

(
gTM , hξ ⊗ ‖·‖2n

M

)
. (3.3.1)

As hξη|DM = hξ|DM , we see that (3.3.1) is compatible with Theorem B.
In Section 3.3.3 we construct specific families of flattenings gTMf,θ ,‖·‖

f,θ
M , θ ∈]0, 1] such that the

corresponding ν from (3.1.14) tends to 0, as θ → 0. We consider the flattenings gTNf,θ ,‖·‖
f,θ
N , which

are compatible to gTMf,θ ,‖·‖
f,θ
M , see (3.1.15), (3.1.17). Then we prove that for any Hermitian metric

hξ2 on ξ over M , for which (ξ, hξ2) is trivial around the cusps, we have

lim
θ→0

‖·‖Q (gTMf,θ , h
ξ
2 ⊗ (‖·‖f,θ

M )2n)

‖·‖Q (gTNf,θ , (‖·‖
f,θ
N )2n)rk(ξ)

=
‖·‖Q (gTM , hξ2 ⊗‖·‖

2n
M )

‖·‖Q (gTN ,‖·‖2n
N )rk(ξ)

. (3.3.2)

This is the most technical and challenging part of this section.
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Now let’s explain how (3.3.1) and (3.3.2) imply Theorem A. Recall that T̃d and c̃h are given
by (3.1.23) and (3.1.24). Let’s recall the following theorem of Bismut-Gillet-Soulé [23, Theorem
1.23]:

Theorem 3.3.1 (Anomaly formula). Let M be endowed with two (smooth) metrics gTM1 , gTM2 over
M . We denote by‖·‖ω1 ,‖·‖

ω
2 the Hermitian norms on ωM induced by gTM1 , gTM2 over M . Let ξ be a

holomorphic vector bundle with Hermitian metrics hξ1, hξ2 over M . We have the following identity

2 ln
(
‖·‖Q (gTM2 , hξ2)

/
‖·‖Q (gTM1 , hξ1)

)
=

∫
M

[
T̃d(ω−1

M
, (‖·‖ω1 )−2, (‖·‖ω2 )−2)ch(ξ, hξ1) + Td(ω−1

M
, (‖·‖ω2 )−2)c̃h(ξ, hξ1, h

ξ
2)
]
. (3.3.3)

Now, by Theorem 3.3.1, by the fact that the flattenings gTMf,θ ,‖·‖
f,θ
M and gTNf,θ ,‖·‖

f,θ
N are compatible,

and by the fact that (ξ, hξ) is trivial around the cusps, we see that the term inside of limit in left-
hand side of (3.3.2) doesn’t depend on the choice of the flattenings for θ small enough. Thus, for
any θ > 0 such that (ξ, hξη) is trivial over ∪iV M

i (θ) (for example, for θ2 < η), by (3.3.2), we have

‖·‖Q (gTMf,θ , h
ξ
η ⊗ (‖·‖f,θ

M )2n)

‖·‖Q (gTNf,θ , (‖·‖
f,θ
N )2n)rk(ξ)

=
‖·‖Q (gTM , hξη ⊗‖·‖

2n
M )

‖·‖Q (gTN ,‖·‖2n
N )rk(ξ)

. (3.3.4)

Now, by Theorem 3.3.1, for any θ ∈]0, 1], we have

2 ln
(
‖·‖Q

(
gTMf,θ , h

ξ
η ⊗ (‖·‖f,θ

M )2n
)/
‖·‖Q

(
gTMf,θ , h

ξ
2 ⊗ (‖·‖f,θ

M )2n
))

=

∫
M

Td
(
ω−1
M , gTMf,θ

)
c̃h
(
ξ, hξ2, h

ξ
η

)
ch
(
ωM(D)n, (‖·‖f,θ

M )2n
)
. (3.3.5)

From (3.3.4) and (3.3.5), for any θ2 < η, we have

2 ln
(
‖·‖Q

(
gTM , hξη ⊗ ‖·‖

2n
M

)
/‖·‖Q

(
gTMf,θ , h

ξ
2 ⊗ (‖·‖f,θ

M )2n
))

− 2rk(ξ) ln
(
‖·‖Q

(
gTN ,‖·‖2n

N

)
/‖·‖Q

(
gTNf,θ , (‖·‖

f,θ
N )2n

))
=

∫
M

Td
(
ω−1
M , gTMf,θ

)
c̃h
(
ξ, hξ2, h

ξ
η

)
ch
(
ωM(D)n, (‖·‖f,θ

M )2n
)
. (3.3.6)

Trivially, the following identity holds∫
M

Td
(
ω−1
M , gTMf,θ

)
c̃h
(
ξ, hξ2, h

ξ
η

)
ch
(
ωM(D)n, (‖·‖f,θ

M )2n
)

=

∫
M

Td
(
ω−1
M , gTMf,θ

)
c̃h
(
ξ, hξ2, h

ξ
η

)
+

∫
M

c̃h
(
ξ, hξ2, h

ξ
η

)
ch
(
ωM(D)n, (‖·‖f,θ

M )2n
)

−
∫
M

c̃h
(
ξ, hξ2, h

ξ
η

)
. (3.3.7)
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Now, by (3.1.22), (3.1.23) and (3.1.26), we have∫
M

Td
(
ω−1
M , gTM

)
c̃h
(
ξ, hξ2, h

ξ
η

)
=

∫
M

Td
(
ωM(D)−1,‖·‖−2

M

)
c̃h
(
ξ, hξ2, h

ξ
η

)
. (3.3.8)

Now, by (3.1.22) and Green identities, we have∫
M

(
Td
(
ω−1
M , gTMf,θ

)
− Td

(
ω−1
M , gTM

))
c̃h
(
ξ, hξ2, h

ξ
η

)
=

∫
M

T̃d
(
ω−1
M , gTMf,θ , g

TM
)(
c1

(
ξ, hξ2

)
− c1

(
ξ, hξη

))
+

1

2

∑
ln
(

det(hξ2/h
ξ
η)|PMi

)
. (3.3.9)

Similarly, by (3.1.22), we have∫
M

c̃h
(
ξ, hξ2, h

ξ
η

)(
ch
(
ωM(D)n, (‖·‖f,θ

M )2n
)
− ch

(
ωM(D)n,‖·‖2n

M

))
=

∫
M

(
c1

(
ξ, hξ2

)
− c1

(
ξ, hξη

))
c̃h
(
ωM(D)n, (‖·‖f,θ

M )2n,‖·‖2n
M

)
. (3.3.10)

By (3.3.6), (3.3.7), (3.3.8), (3.3.9) and (3.3.10), we get

2 ln
(
‖·‖Q

(
gTM , hξη ⊗ ‖·‖

2n
M

)
/‖·‖Q

(
gTMf,θ , h

ξ
2 ⊗ (‖·‖f,θ

M )2n
))

− 2rk(ξ) ln
(
‖·‖Q

(
gTN ,‖·‖2n

N

)
/‖·‖Q

(
gTNf,θ , (‖·‖

f,θ
N )2n

))
=

∫
M

(
T̃d
(
ω−1
M , gTMf,θ , g

TM
)

+ c̃h
(
ωM(D)n, (‖·‖f,θ

M )2n,‖·‖2n
M

))(
c1

(
ξ, hξ2

)
− c1

(
ξ, hξη

))
+

∫
M

Td
(
ωM(D)−1,‖·‖−2

M

)
c̃h
(
ξ, hξ2, h

ξ
η

)
+

∫
M

c̃h
(
ξ, hξ2, h

ξ
η

)
ch
(
ωM(D)n,‖·‖2n

M

)
+

1

2

∑
ln
(

det(hξ2/h
ξ
η)|PMi

)
.

(3.3.11)
We make θ → 0 in (3.3.11). By (3.3.2), the uniform bounds on gTMf,θ and ‖·‖f,θ

M from (3.3.43),
Lebesgue dominated convergence theorem and the fact that the Bott-Chern representatives of
Chern and Todd classes appear only in degree 0 in the first term of the right hand side of (3.3.11),
we deduce

2 ln
(
‖·‖Q

(
gTM , hξη ⊗ ‖·‖

2n
M

)
/‖·‖Q

(
gTM , hξ2 ⊗ (‖·‖M)2n

))
=

∫
M

Td
(
ωM(D)−1,‖·‖−2

M

)
c̃h
(
ξ, hξ2, h

ξ
η

)
+

∫
M

c̃h
(
ξ, hξ2, h

ξ
η

)
ch
(
ωM(D)n,‖·‖2n

M

)
−
∫
M

c̃h
(
ξ, hξ2, h

ξ
η

)
+

1

2

∑
ln
(

det(hξ2/h
ξ
η)|PMi

)
. (3.3.12)

Now we let η → 0. Then by (3.3.1), the fact that the first Chern forms of (ξ, hξη), η ∈]0, 1]
are uniformly bounded and by Lebesgue dominated convergence theorem, we get Theorem B for
gTM0 = gTM and hξ0 := hξ2, i.e trivial around the cusps. By applying this result twice for hξ := hξ,
hξ0 := hξ2 and hξ := hξ0, hξ0 := hξ2, and by taking the difference, we get Theorem B for gTM0 = gTM

and any hξ0. By this, Theorem 3.3.1, (3.3.4), (3.3.9) and (3.3.10) we deduce Theorem A.
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3.3.2 Flattening the Hermitian metric: a proof of (3.3.1)
In this section, we reduce Theorem A to the case (ξ, hξ) trivial near the cusps. For this, we prove
(3.3.1). As we explained in Section 3.3, we consider a family of Hermitian metrics hξη, η ∈]0, 1/2]

on ξ constructed in (3.2.109). We denote by �E
ξ,n
M

η the Kodaira Laplacian on (M, gTM), associated
with (ξ ⊗ ωM(D)n, hξη ⊗‖·‖

2n
M ). Similarly, for all the geometric objects we considered before, the

subscript η would mean that instead of hξ, we use hξη.

Theorem 3.3.2. For n ≤ 0, there is η0 > 0 such that the operators�E
ξ,n
M

η , η ∈]0, η0] have a uniform
spectral gap near 0, i.e. there is µ > 0 such that for any η ∈]0, η0], we have

H0(M,Eξ,n
M ) = ker(�

Eξ,nM
η ), (3.3.13)

Spec
(
�
Eξ,nM
η

)
∩ ]0, µ] = ∅. (3.3.14)

Proof. For n = 0, the statement of Theorem 3.3.2 is exactly (3.2.118). For n < 0, the proof of
Theorem 3.2.1 remains unchanged, since the first Chern form of (ξ, hξη) is bounded, and thus the
inequality (3.2.119) continues to hold.

In this section, we denote by ∇ the connection, induced by the Levi-Civita connection and the
Chern connections associated with (ξ, hξη) and (ωM(D),‖·‖M). We denote by d(·, ·) the distance
function on (M, gTM).

Lemma 3.3.3. For any l, l′ ∈ N, n ∈ Z, there are η0, C > 0, such that for any σ ∈ C∞
(
M ×

M, (Eξ,n
M )� (Eξ,n

M )∗
)
, x, x′ ∈M and any η ∈]0, η0], we have

∣∣(∇x)
l(∇x′)

l′σ(x, x′)
∣∣
h×h ≤ CρM(x)ρM(x′)

2+l∑
i=0

2+l′∑
i=0

∥∥∥(�
Eξ,nM
η,z )i(�

Eξ,nM
η,z′ )jσ(z, z′)

∥∥∥
L2,η

. (3.3.15)

Proof. Let ε > 0. For x ∈M \(∪iV M
i (ε)), the estimate (3.2.132) follows from [85, Lemma 1.6.2].

From x ∈ V M
i (ε), the estimate (3.2.132) follows from Lemma 3.2.27.

Theorem 3.3.4. For any l, l′ ∈ N, there are η0, c, c
′, C > 0 such that for any t > 0, x, x′ ∈ M ,

η ∈]0, η0], we have∣∣∣(∇x)
l(∇x′)

l′ exp(−t�E
ξ,n
M

η )(x, x′)
∣∣∣
h×h
≤ CρM(x)ρM(x′)t−1−(l+l′)/2·

· exp
(
ct− c′ · d(x, x′)2/t

)
. (3.3.16)

Also, if n ≤ 0, then there are c, C > 0 such that for any t > 0, η ∈]0, η0], we have∣∣∣(∇x)
l(∇x′)

l′ exp⊥(−t�E
ξ,n
M

η )(x, x′)
∣∣∣
h×h
≤ CρM(x)ρM(x′)t−4−l−l′ exp(−ct). (3.3.17)

Proof. By Remark 3.2.26, the proof of (3.2.12) works uniformly on η, thus, we get (3.3.16). Now,
(3.3.17) follows from Theorem 3.3.2 and Lemma 3.3.3.
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Theorem 3.3.5. For any k ∈ N, there are η0, ε1, c, c
′, C > 0 such that for any t > 0, u ∈ C, |u| ≤

ε1, η ∈]0, η0], i = 1, . . . ,m, we have∣∣∣( exp(−t�E
ξ,n
M

η )− exp(−t�E
ξ,n
M )
)(

(zMi )−1(u), (zMi )−1(u)
)∣∣∣

≤ C| ln |u|| exp(ct)
(
| ln |u||−k + exp(−c′(ln | ln |u||)2/t)

)
. (3.3.18)

Moreover, if n ≤ 0, then there are ς < 1 and c, C > 0 such that∣∣∣( exp⊥(−t�E
ξ,n
M

η )− exp⊥(−t�E
ξ,n
M )
)(

(zMi )−1(u), (zMi )−1(u)
)∣∣∣

≤ C| ln |u||ςt−4 exp(−ct). (3.3.19)

Proof. As the proof of Theorem 3.2.6 is based on (3.2.12), which works uniformly on η ∈]0, 1/2],
the analogue of (3.2.15) also works uniformly on η, which implies (3.3.18). The proof of (3.3.19)
remains identical to the proof of (3.2.17), one only has to use (3.3.17) instead of (3.2.17).

Theorem 3.3.6. There are smooth bounded functions aM,n
ξ,η,j : M → End(ξ), j ≥ −1 such that for

any x ∈M , t0 > 0, k ∈ N there is C > 0 such that for any t ∈]0, t0], η ∈]0, 1/2], we have

∣∣∣ exp(−t�E
ξ,n
M

η )
(
x, x
)
−

k∑
j=−1

aM,n
ξ,η,j(x)tj

∣∣∣ ≤ Ctk. (3.3.20)

Moreover, if x ∈M \ (∪iV M
i (e−t

−1/3
)), then C can be chosen independently of t ∈]0, t0] and x.

Also, there is ε1 > 0, such that for any l ∈ N, j ≥ −1, there is C > 0 such that for any u ∈ C,
0 < |u| ≤ ε1, i = 1, . . . ,m, η ∈]0, 1/2], we have∣∣∣(∇u)

l
(
aM,n
ξ,η,j − a

M,n
ξ,j

)(
(zMi )−1(u)

)∣∣∣
h
≤ C|u|1/3, (3.3.21)

Moreover, for any x ∈M \ (∪iV M
i (η1/2)), we have

aM,n
ξ,η,j(x) = aM,n

ξ,j (x). (3.3.22)

Proof. By Remark 3.2.26, the proof of Theorem 3.2.8 works uniformly on η. Thus, only the last
statement (3.3.22) needs to be justified, as we don’t have its analogue in Theorem 3.2.8. But it
simply follows from the fact that the coefficients of the small-time expansion of the heat kernel are
local and the fact that hξη coincides with hξ over M \ (∪iV M

i (η1/2)).

Theorem 3.3.7. There are η0, c
′, C > 0 such that for any t > 0, η ∈]0, η0] and x ∈ M \

(∪iV M
i (| ln η|−1)), we have∣∣∣( exp(−t�E

ξ,n
M

η )− exp(−t�E
ξ,n
M )
)
(x, x)

∣∣∣ ≤ CρM(x)2 exp(−c′(ln | ln η|)2/t). (3.3.23)
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Proof. We put r = d(V M
i (η1/2),M \ V M

i (| ln η|−1)). Then by (3.2.138), we have r ' ln | ln η|.
Similarly to (3.2.157), using (3.2.138) and the fact that hξη coincides with hξ over M \ (∪iV M

i (η)),
by the finite propagation speed of solutions of hyperbolic equations, there is c > 0 such that for
any x ∈M \ (∪V M

i (| ln η|−1)), we have

G̃t,r(�
Eξ,nM
η )(x, ·) = G̃t,r(�

Eξ,nM )(x, ·). (3.3.24)

Then, similarly to (3.2.158), we have (see (3.2.148))(
exp(−t�E

ξ,n
M

η )− exp(−t�E
ξ,n
M )
)
(x, x) =

(
K̃t,r(�

Eξ,nM
η )− K̃t,r(�

Eξ,nM )
)
(x, x). (3.3.25)

Now, similarly to (3.2.154), for any k, k′ ∈ N, there are c′, C > 0 such that for any t > 0, we have∥∥∥(�
Eξ,nM
η )k

(
K̃t,r(�

Eξ,nM
η )

)
(�

Eξ,nM
η )k

′
∥∥∥(0,0)

≤ C exp(−c′r2/t). (3.3.26)

From (3.3.15) and (3.3.26), similarly to (3.2.155), for some c′, C > 0 and for any x ∈M , we get∣∣∣K̃t,r(�
Eξ,nM
η )(x, x)

∣∣∣ ≤ CρM(x)2 exp(−c′r2/t). (3.3.27)

Now, from (3.2.155), (3.3.25) and (3.3.27), we get (3.3.23).

Now we can relate the regularized heat traces associated with hξη and hξ.

Theorem 3.3.8. There are c, C > 0, ς > 0, t0 > 0, such that for any t > t0, η ∈]0, e−3], we have∣∣∣Trr[ exp⊥(−t�E
ξ,n
M

η )
]
− Trr[ exp⊥(−t�E

ξ,n
M )
]∣∣∣ ≤ C

(
ln | ln η|

)−ς
exp(−ct). (3.3.28)

Proof. First of all, by (3.3.17) and (3.3.19), in the same way as in Proposition 3.2.14, we get∣∣∣Trr[ exp⊥(−t�E
ξ,n
M

η )
]
− Trr[ exp⊥(−t�E

ξ,n
M )
]∣∣∣ ≤ C exp(−ct). (3.3.29)

Now, by (3.2.26), we have

Trr[ exp⊥(−t�E
ξ,n
M

η )
]
− Trr[ exp⊥(−t�E

ξ,n
M )
]

= Trr[ exp(−t�E
ξ,n
M

η )
]
− Trr[ exp(−t�E

ξ,n
M )
]
. (3.3.30)

Trivially, there is C > 0 such that for any η ∈]0, e−3], we have∫
D(1/2)\D(| ln η|−1)

√
−1dzdz

|z|2| ln |z||
≤ C ln ln | ln η|. (3.3.31)

We decompose the integration in the definition of Tr
[

exp(−t�E
ξ,n
M

η )
]
, analogical to Definition

3.2.9, into two parts: over ∪iV M
i (| ln η|−1) and over M \ (∪iV M

i (| ln η|−1)). By bounding the first
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part of the integral corresponding to the right-hand side of (3.3.30) by (3.2.25), (3.3.18) and second
part by (3.3.23) and (3.3.31), we see that there are c, c′, C > 0 such that for any t > 0, η ∈]0, e−3],
we have

Trr[ exp(−t�E
ξ,n
M

η )
]
− Trr[ exp(−t�E

ξ,n
M )
]
≤ C exp(ct)

ln | ln η|

+ C(1 + t) ln ln | ln η| exp
(
ct− c′

t
(ln ln | ln η|)2

)
. (3.3.32)

By multiplying (3.3.29) and (3.3.32) with suitable powers, and using (3.2.174), (3.3.30), we get
(3.3.28).

Now, for j ≥ −1, we denote (compare with (3.2.29))

AM,n
ξ,η,j =

∫
M

Tr
[
aM,n
ξ,η,j(x)

]
dvM(x)− rk(ξ)

3

∫
P

aP,nj (x)dvN(x)

− dimH0(M,Eξ,n
M ) +

rk(ξ)

3
dimH0(P ,En

P ). (3.3.33)

The integrals in (3.3.33) converge by Theorem 3.2.8.

Proposition 3.3.9. For any t0 > 0, k ∈ N, there is C > 0 such that for any t ∈]0, t0], we have∣∣∣Trr[ exp⊥(−t�E
ξ,n
M

η )
]
−

k∑
j=−1

AM,n
ξ,η,jt

j
∣∣∣ ≤ Ctk. (3.3.34)

Proof. It is proved in the same way as Proposition 3.2.13 with one modification: instead of using
Theorems 3.2.6, 3.2.8, we use Theorems 3.3.5, 3.3.6.

Theorem 3.3.10. For any t0 > 0, there is C > 0, such that for any t ∈]0, t0], η ∈]0, e−3]:∣∣∣∣ ∫ 1

0

((
Trr[ exp⊥(−t�E

ξ,n
M

η )
]
−

0∑
j=−1

AM,n
ξ,η,jt

j
)

−
(

Trr[ exp⊥(−t�E
ξ,n
M )
]
−

0∑
j=−1

AM,n
ξ,j t

j
))dt

t

∣∣∣∣ ≤ C(ln ln | ln η|)−1/3. (3.3.35)

Proof. First of all, by Propositions 3.2.13, 3.3.9, we get∣∣∣∣(Trr[ exp⊥(−t�E
ξ,n
M

η )
]
−

0∑
j=−1

AM,n
ξ,η,jt

j
)
−
(

Trr[ exp⊥(−t�E
ξ,n
M )
]
−

0∑
j=−1

AM,n
ξ,j t

j
)∣∣∣∣ ≤ Ct.

(3.3.36)
Now, by (3.3.21) and (3.3.22), there are η0, C > 0 such that for any η ∈]0, η0], j = −1, 0, we have∣∣AM,n

ξ,η,j − A
M,n
ξ,j

∣∣ ≤ Cη1/6. (3.3.37)
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Also, by Theorem 3.3.7 and (3.3.31), there are η0, c
′, C > 0 such that for any t ∈]0, t0], η ∈]0, η0]:∫

M\(∪iVMi (| ln η|−1))

∣∣∣Tr
[(

exp(−t�E
ξ,n
M

η )− exp(−t�E
ξ,n
M )
)
(x, x)

]∣∣∣
≤ C ln ln | ln η| exp

(
− c′

t
(ln | ln η|)2

)
. (3.3.38)

Also, by (3.2.25) and (3.3.18), there are η0, c
′, C > 0 such that for any t ∈]0, t0], η ∈]0, η0], we

have∫
VMi (| ln η|−1)

∣∣∣Tr
[(

exp(−t�E
ξ,n
M

η )− exp(−t�E
ξ,n
M )
)
(x, x)

]∣∣∣
≤ C

ln | ln η|
+ C exp

(
− c′

t
(ln ln | ln η|)2

)
. (3.3.39)

Thus, by (3.3.30), (3.3.37), (3.3.38) and (3.3.39), there are c′, C > 0 such that for any t ∈]0, t0],
we have∣∣∣∣(Trr[ exp⊥(−t�E

ξ,n
M

η )
]
−

0∑
j=−1

AM,n
ξ,η,jt

j
)
−
(

Trr[ exp⊥(−t�E
ξ,n
M )
]
−

0∑
j=−1

AM,n
ξ,j t

j
)∣∣∣∣

≤ Cη1/6

t
+

C

ln | ln η|
+ C ln ln | ln η| exp

(
− c′

t
(ln ln | ln η|)2

)
. (3.3.40)

Now, by multiplying (3.3.36) and (3.3.40) with appropriate powers, and integrating on t from 0 to
1, we deduce Theorem 3.3.10.

Proof of (3.3.1). By Theorems 3.3.8, 3.3.10, (3.2.41), (3.3.37) and Lebesgue dominated conver-
gence theorem, we have

lim
η→0

T (gTM , hξη ⊗‖·‖
2n
M ) = T (gTM , hξ ⊗‖·‖2n

M ). (3.3.41)

However, trivially from (3.2.1), we have

lim
η→0
‖·‖L2 (gTM , hξη ⊗ ‖·‖

2n
M ) =‖·‖L2 (gTM , hξ ⊗‖·‖2n

M ). (3.3.42)

By (3.3.41) and (3.3.42), we get (3.3.1).

3.3.3 Flattening the Riemannian metric: a proof of (3.3.2)
In this section we introduce the notion of a tight family of flattenings, which “approach” the cusped
metric, and study some of its properties. We study how the relative heat trace converges as this
family of flattenings “converges” to the cusped metric, and from this study we deduce (3.3.2).

From now and till the end of Section 3.3, we suppose that (ξ, hξ) is trivial near the cusps.
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Definition 3.3.11. We say that the flattenings gTMf,θ ,‖·‖f,θ
M , θ ∈]0, 1] (cf. Definition 3.1.2) of gTM ,

‖·‖M are n-tight, n ∈ Z if they satisfy the following requirements:
1. We have gTMf,θ |M\(∪iVMi (θ)) = gTM |M\(∪iVMi (θ)) and similarly for‖·‖f,θ

M .

2. For all i = 1, . . . ,m, the following identity holds over V M
i (θ2) :

∥∥dzMi ⊗ sDM/zMi ∥∥f,θ

M
=

| ln θ|, where sDM is the canonical section of OM(DM).
3. There are flattenings gTMsm ,‖·‖sm

M of gTM ,‖·‖M and τ > 0 such that for any θ ∈]0, e−3]:

gTMsm ⊗ (‖·‖sm
M )2n ≤ gTMf,θ ⊗ (‖·‖f,θ

M )2n ≤ τ · gTM ⊗ ‖·‖2n
M ,

‖·‖sm
M ≤‖·‖

f,θ
M ≤‖·‖M .

(3.3.43)

4. We have the following analogue of Lemma 3.2.28: for any m ∈ {−n, n}, there is C > 0
such that for any σ ∈ C∞

(
M,Eξ,m

M

)
, θ ∈]0, e−3], and for any x ∈M , we have∣∣σ(x)

∣∣
h,θ
≤ CρM,θ(x)

∑2
i=0

∥∥(�
Eξ,mM
f,θ )iσ

∥∥
L2,θ

, (3.3.44)

where �E
ξ,m
M

f,θ is the Laplacian associated with gTMf,θ and hξ ⊗ (‖·‖f,θ
M )2m; | · |h,θ is the pointwise

norm induced by hξ and‖·‖f,θ
M ;‖·‖L2,θ is the L2 norm induced by gTMf,θ , h

ξ,‖·‖f,θ
M ; and the function

ρM,θ : M → [1,∞[ is given by

ρM,θ(x) =


1 for x ∈M \ (∪iVi(1/2)),√

| ln |zMi (x)|| for x ∈ V M
i (1/2) \ V M

i (θ3),

(ln θ)6 for x ∈ V M
i (θ3).

(3.3.45)

In Section 3.3.5, we show that for any n ∈ Z, n ≤ 0, n-tight families of flattenings exist.
We fix n ∈ Z, n ≤ 0 and n-tight families of flattenings gTMf,θ ,‖·‖f,θ

M , θ ∈]0, 1]. From (3.3.43):

gTMf,θ ≤ τ · gTM . (3.3.46)

Recall that �E
ξ,n
M is the Kodaira Laplacian associated to gTM , hξ and‖·‖M . We set µ > 0 as in

(3.2.7), and let τ be as in (3.3.43). We defer the proof of the following theorem until Section 3.3.4.

Theorem 3.3.12. The operator �E
ξ,n
M

f,θ has a uniform spectral gap near 0, i.e. for any θ ∈]0, e−3]:

ker(�
Eξ,nM
f,θ ) ' H0(M,Eξ,n

M ), (3.3.47)

Spec(�
Eξ,nM
f,θ )∩ ]0, µ/τ [= ∅. (3.3.48)

In what follows, we denote the smooth kernels of exp(−t�E
ξ,n
M

f,θ ), exp⊥(−t�E
ξ,n
M

f,θ ) with respect
to the Riemannian volume form dvM,θ induced by gTMf,θ by

exp(−t�E
ξ,n
M

f,θ )(x, y), exp⊥(−t�E
ξ,n
M

f,θ )(x, y) ∈ (Eξ,n
M )∗x � (Eξ,n

M )y, for x, y ∈M. (3.3.49)
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Theorem 3.3.13. There are c, C > 0 such that for any t > 0, x ∈M , θ ∈]0, e−3], we have∣∣∣ exp⊥(−t�E
ξ,n
M

f,θ )(x, x)
∣∣∣ ≤ CρM,θ(x)2t−4 exp(−ct). (3.3.50)

Proof. The proof is the same as the proof of Theorem 3.2.4, one only has to change the use of
Lemma 3.2.28 by (3.3.44) and of Theorem 3.2.1 by Theorem 3.3.12.

Theorem 3.3.14. There are c′, C > 0 such that for any t > 0, θ ∈]0, e−3] and x ∈ M \
(∪iV M

i (| ln θ|−1)), we have∣∣∣( exp(−t�E
ξ,n
M

f,θ )− exp(−t�E
ξ,n
M )
)
(x, x)

∣∣∣ ≤ CρM,θ(x)2 exp(−c′(ln | ln θ|)2/t). (3.3.51)

Proof. The proof is the same as the proof of Theorem 3.3.7.

We construct the flattenings gTNf,θ ,‖·‖f,θ
N , θ ∈]0, 1] of gTN ,‖·‖N , which are compatible with gTMf,θ ,

‖·‖f,θ
M . Trivially, the flattenings gTNf,θ , ‖·‖f,θ

N , θ ∈]0, 1] are n-tight. The following theorem is an
analogue of Theorem 3.2.6, and it forms the core of this section. Its proof is defered to Section
3.3.4.

Theorem 3.3.15. There are c, c′, C > 0, ς < 1 such that for any t > 0, θ ∈]0, e−3], i = 1, . . . ,m,
and u ∈ C, |u| ≤ | ln θ|−1, we have∣∣∣ exp(−t�E

ξ,n
M

f,θ )
(
(zMi )−1(u), (zMi )−1(u)

)
− Idξ exp(−t�E

n
N

f,θ )
(
(zNi )−1(u), (zNi )−1(u)

)∣∣∣
≤ C| ln max(θ, |u|)| · exp(−c′(ln | ln max(θ, |u|)|)2/t). (3.3.52)∣∣∣ exp⊥(−t�E

ξ,n
M

f,θ )
(
(zMi )−1(u), (zMi )−1(u)

)
− Idξ exp⊥(−t�E

n
N

f,θ )
(
(zNi )−1(u), (zNi )−1(u)

)∣∣∣
≤ C| ln max(θ, |u|)|ς · t−4 exp(−ct). (3.3.53)

Now, for brevity, we denote

Xθ(t) := Tr
[

exp⊥(−t�E
ξ,n
M

f,θ )
]
− rk(ξ)Tr

[
exp⊥(−t�E

n
N

f,θ )
]

− Trr[ exp⊥(−t�E
ξ,n
M )
]

+ rk(ξ)Trr[ exp⊥(−t�EnN )
]

(3.3.54)

Let’s use those theorems to study the convergence of heat traces. The main theorem here is

Theorem 3.3.16. There are c, c′, C > 0 such that for any t > 0, θ ∈]0, e−3], we have∣∣Xθ(t)
∣∣ ≤ C exp(−ct− c′(ln | ln θ|)2/t). (3.3.55)

Proof. Let’s denote

A⊥M(t) =

∫
M\(∪iVMi (| ln θ|−1))

(
Tr
[

exp⊥(−t�E
ξ,n
M

f,θ )(x, x)
]
− Tr

[
exp⊥(−t�E

ξ,n
M )(x, x)

])
dvM,θ(x),
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A⊥N(t) =

∫
N\(∪iV Ni (| ln θ|−1))

(
Tr
[

exp⊥(−t�E
n
N

f,θ )(x, x)
]
− Tr

[
exp⊥(−t�EnN )(x, x)

])
dvN,θ(x),

B⊥θ (t) =
∑
i

∫
D(| ln θ|−1)

(
Tr
[

exp⊥(−t�E
ξ,n
M

f,θ )
(
(zMi )−1(u), (zMi )−1(u)

)]
(3.3.56)

− rk(ξ)Tr
[

exp⊥(−t�E
n
N

f,θ )
(
(zNi )−1(u), (zNi )−1(u)

)])
dvθ(u),

B⊥(t) =
∑
i

∫
D(| ln θ|−1)

(
Tr
[

exp⊥(−t�E
ξ,n
M )
(
(zMi )−1(u), (zMi )−1(u)

)]
− rk(ξ)Tr

[
exp⊥(−t�EnN )

(
(zNi )−1(u), (zNi )−1(u)

)])
dvD∗(u),

and dvN,θ, dvθ are the Riemannian volume forms induced by gTNf,θ and ((zMi )−1)∗gTMf,θ correspond-
ingly. Then we have

Xθ(t) = A⊥M(t) + A⊥N(t) +B⊥θ (t) +B⊥(t). (3.3.57)

By (3.1.2), (3.3.31), (3.3.45) and (3.3.46), there is C > 0 such that for any θ ∈]0, e−3], we have∫
M\(∪iVMi (| ln θ|−1))

ρM,θ(x)2dvM,θ(x) ≤ C(ln ln | ln θ|). (3.3.58)

By Theorem 3.3.13, (3.2.13) and (3.3.58), there are c, C > 0 such that

|A⊥M(t)|, |A⊥N(t)| ≤ C(ln ln | ln θ|)t−4 exp(−ct). (3.3.59)

By (3.1.2), (3.2.24) and (3.3.46), for any ς < 1, there is C > 0 such that for any θ ∈]0, e−3], we
have ∫

VMi (| ln θ|−1)

∣∣ ln max(θ, |zMi (x)|)
∣∣ςdvM,θ(x) ≤ C. (3.3.60)

By (3.3.53) and (3.3.60), there are c, C > 0 such that

|B⊥θ (t)| ≤ Ct−4 exp(−ct). (3.3.61)

By (3.2.17) and (3.2.24), there are c, C > 0 such that

|B⊥(t)| ≤ Ct−4 exp(−ct). (3.3.62)

By (3.3.59), (3.3.61) and (3.3.62), for some c, C > 0, and for any t > 0, θ ∈]0, e−3], we have∣∣Xθ(t)
∣∣ ≤ C(1 + t−4)(ln ln | ln θ|) exp(−ct). (3.3.63)

Now, alternatively, we may also write

Xθ(t) = AM(t) + AN(t) +Bθ(t) +B(t), (3.3.64)

where AM(t), AN(t), Bθ(t), B(t) are as in (3.3.56), but we put exp in place of exp⊥.
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By Theorem 3.3.14 and (3.3.58), there are c′, C > 0 such that for any θ ∈]0, e−3], we have

|AM(t)|, |AN(t)| ≤ C(ln ln | ln θ|) exp(−c′(ln | ln θ|)2/t). (3.3.65)

By (3.3.46), we have ∫
VMi (| ln θ|−1)

| ln max(θ, |u|)|dvM,θ(x) ≤ C ln | ln θ|. (3.3.66)

By (3.3.52) and (3.3.66), for some c′, C > 0, we have

|Bθ(t)| ≤ C ln | ln θ| exp(−c′(ln ln | ln θ|)2/t). (3.3.67)

By (3.2.18) and (3.2.25), for some c′, C > 0, we have

|B(t)| ≤ C(1 + t) exp(−c′(ln ln | ln θ|)2/t). (3.3.68)

By (3.3.65), (3.3.67) and (3.3.68), we conclude that∣∣Xθ(t)
∣∣ ≤ C(1 + t)(ln | ln θ|) exp(−c′(ln ln | ln θ|)2/t). (3.3.69)

By multiplying (3.3.63) with power 1−µ ∈]1/2, 1] and (3.3.69) with power µ, for some c, c′, C >
0: ∣∣Xθ(t)

∣∣ ≤ C(1 + t)(1 + t−4)(ln | ln θ|)µ
(

ln ln | ln θ|
)

exp(−ct− c′µ(ln ln | ln θ|)2/t). (3.3.70)

By (3.2.174) and (3.3.70), we deduce (3.3.55) by taking µ small enough.

For s ∈ C, Re(s) > 1, let’s denote the approximated regularized zeta-function by

ζθM(s) =
1

Γ(s)

∫ +∞

0

Tr
[

exp⊥(−t�E
ξ,n
M

f,θ )
]
ts
dt

t
. (3.3.71)

As usually, ζθM(s) has a meromorphic extension to the entire s-plane, and this extension is holo-
morphic at 0. We recall that the zeta-function ζM was defined in Definition 3.2.15.

Proposition 3.3.17. For any θ ∈]0, e−3], the difference ζθM(s)− rk(ξ)ζθN(s)− ζM(s) + rk(ξ)ζN(s)
is a holomorphic function on C. Moreover, as θ → 0, we have

ζθM(s)− rk(ξ)ζθN(s)− ζM(s) + rk(ξ)ζN(s)→ 0, (3.3.72)

uniformly for s varying in a compact subset of C. In particular, as θ → 0, we have

T (gTMf,θ , h
ξ ⊗ (‖·‖f,θ

M )2n)

T (gTNf,θ , (‖·‖
f,θ
N )2n)rk(ξ)

→ T (gTM , hξ ⊗‖·‖2n
M )

T (gTN ,‖·‖2n
N )rk(ξ)

. (3.3.73)
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Proof. First of all, by Definition 3.2.15, (3.3.54) and (3.3.71), we have

1

Γ(s)

∫ +∞

0

Xθ(t)t
sdt

t
= ζθM(s)− rk(ξ)ζθN(s)− ζM(s) + rk(ξ)ζN(s), (3.3.74)

Now, by Theorem 3.3.16, the function Xθ(t) has subexponential growth near 0 and ∞, thus, by
(3.3.74), the left-hand side of (3.3.72) is a holomorphic function over C for any θ ∈]0, e−3].

Also, by Theorem 3.3.16, there are c, c′, C > 0, ς > 0 such that for any t > 0, θ ∈]0, e−3]:

Xθ(t) ≤ C| log θ|−ς exp(−ct− c′/t). (3.3.75)

In particular, by (3.3.75), as θ → 0, we have

Xθ(t)→ 0. (3.3.76)

By (3.3.74), (3.3.75), (3.3.76) and Lebesgue dominated convergence theorem, we deduce (3.3.72).
Now, (3.3.73) follows from Definitions 3.2.15, 3.2.16, (3.3.71) and (3.3.72).

We denote by‖·‖L2 (gTMf,θ , h
ξ ⊗ (‖·‖f,θ

M )2n) the L2-norm over the line bundle (3.1.12) induced by
gTMf,θ , hξ,‖·‖f,θ

M . By properties 1,3 of tight families and Lebesgue dominated convergence, we have

lim
θ→0
‖·‖L2

(
gTMf,θ , h

ξ ⊗ (‖·‖f,θ
M )2n

)
=‖·‖L2

(
gTM , hξ ⊗‖·‖2n

M

)
,

lim
θ→0
‖·‖L2

(
gTNf,θ , (‖·‖

f,θ
N )2n

)
=‖·‖L2

(
gTN ,‖·‖2n

N

)
.

(3.3.77)

From (3.3.73) and (3.3.77), as θ → 0, we get (3.3.2) for hξ2 := hξ.

3.3.4 Proofs of Theorems 3.3.12, 3.3.15
In this section we prove Theorems 3.3.12, 3.3.15, which were announced in Section 3.3.3. In the
proof of Theorem 3.3.12 we use the homogeneity of the Laplacian. In the proof of Theorem 3.3.15,
we use the analytic localization techniques, the maximal principle and sup-characterization of the
Bergman kernel. We recall that we suppose that (ξ, hξ) is trivial around the cusps.

Proof of Theorem 3.3.12. First of all, (3.3.47) is a consequence of Hodge theory for compact man-
ifolds. To prove (3.3.48), by (3.3.43), it is enough to prove the following: let τ > 0, gTM0 be a
Kähler metric on M and let ‖·‖0

M be a Hermitian norm on ωM(D) over M such that over M , we
have

gTM0 ⊗ (‖·‖0
M)2n ≤ τ · gTM ⊗‖·‖2n

M , (3.3.78)

‖·‖0
M ≤‖·‖M . (3.3.79)

Let 〈·, ·〉L2
0

be the L2-scalar product associated with gTM0 , hξ,‖·‖0
M , and let�E

ξ,n
M

0 be the associated
Kodaira Laplacian. Then for n ≤ 0, we have

inf
{

Spec
(
�E

ξ,n
M

)
\ {0}

}
≤ τ · inf

{
Spec

(
�
Eξ,nM
0

)
\ {0}

}
. (3.3.80)

133



Compact perturbation theorem and anomaly formula

Let’s prove this statement. By (3.2.24), we deduce

C∞(M,Eξ,n
M ) ⊂ Dom(�E

ξ,n
M ). (3.3.81)

In the following series of transformations, we use (3.3.79) and n ≤ 0 to get the inequality. For
s ∈ C∞(M,Eξ,n

M ) we have

〈�E
ξ,n
M

0 s, s〉L2
0

= 〈∂E
ξ,n
M s, ∂

Eξ,nM s〉L2
0
≥ 〈∂E

ξ,n
M s, ∂

Eξ,nM s〉L2 = 〈�E
ξ,n
M s, s〉L2 . (3.3.82)

Also, from (3.3.78), we have
〈s, s〉L2

0
≤ τ · 〈s, s〉L2 . (3.3.83)

From (3.3.82) and (3.3.83), we deduce

〈�E
ξ,n
M

0 s, s〉L2
0

〈s, s〉L2
0

≥ 〈�
Eξ,nM s, s〉L2

τ · 〈s, s〉L2

. (3.3.84)

We denote k = dimH0(M,Eξ,n
M ). By the min-max theorem (cf. [85, (C.3.3)]) and (3.3.81), we

have

inf
{

Spec
(
�E

ξ,n
M

)
\ {0}

}
= inf

F⊂C∞(M,Eξ,nM )

{
sup
s∈F

{
〈�E

ξ,n
M s, s〉L2

〈s, s〉L2

}
: dimF = k + 1

}
. (3.3.85)

Then (3.3.80) follows from (3.3.84) and (3.3.85).

Proof of Theorem 3.3.15. This proof uses all the properties of tight families. The presence of the
line bundle ωM(D) makes analysis more difficult, and we have to consider 2 cases: θ3 < |u| <
| log θ|−1 and |u| ≤ θ3. The main feature exploited in the first case is that we have elliptic estimate
with the needed power of logarithm (3.3.44), (3.3.45). The main feature exploited in the second
case is the property 2 of tight families along with the maximal principle (cf. [38, p. 180]).

Let’s prove (3.3.52) for θ3 ≤ |u| ≤ | log θ|−1. We put r = d(u, 1/2), then by (3.2.138),
r ≈ ln | ln |u||. In this case, similarly to (3.2.157), by the fact that our flattenings are compatible,
(ξ, hξ) is trivial near the cusps, and by the finite propagation speed of solutions of hyperbolic
equations, we have

G̃t,r(�
Eξ,nM
f,θ )

(
(zMi )−1(u), ·

)
= Idξ · G̃t,r(�

EnN
f,θ )
(
(zNi )−1(u), ·

)
, (3.3.86)

where G̃t,r is as in (3.2.148). Then, similarly to (3.2.158), by (3.3.86), we have

exp(−t�E
ξ,n
M

f,θ )
(
(zMi )−1(u), ·

)
− Idξ · exp(−t�E

n
N

f,θ )
(
(zNi )−1(u), ·

)
= K̃t,r(�

Eξ,nM
f,θ )

(
(zMi )−1(u), ·

)
− Idξ · K̃t,r(�

EnN
f,θ )
(
(zNi )−1(u), ·

)
. (3.3.87)
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Now, similarly to (3.3.27), from (3.2.153), (3.3.44) and (3.3.87), for any θ3 ≤ |u|, |v| ≤ | log θ|−1,
we get∣∣∣ exp(−t�E

ξ,n
M

f,θ )
(
(zMi )−1(u), (zMi )−1(v)

)
− Idξ exp(−t�E

n
N

f,θ )
(
(zNi )−1(u), (zNi )−1(v)

)∣∣∣
h×h,θ

≤ C| ln |u|| exp(−c′(ln | ln |u||)2/t). (3.3.88)

In particular, (3.3.88) implies (3.3.52) for θ3 ≤ |u| ≤ | log θ|−1.
Let’s prove (3.3.52) for |u| ≤ θ3. We trivialize (ωM(D),‖·‖M), (ωN(D),‖·‖N) as in property

2 of tight families. Then, since (ξ, hξ) is trivialized around the cusps, for v, w ∈ D(θ3), we may

look at exp⊥(−t�E
ξ,n
M

f,θ )((zMi )−1(v), (zMi )−1(w)) and Idξ exp⊥(−t�E
n
N

f,θ )((zNi )−1(v), (zNi )−1(w)) as
at the functions over D(θ3)×D(θ3) with values in End(ξ|PMi ).

For v, w ∈ D(θ3), we denote

F (v, w, t) := exp(−t�E
ξ,n
M

f,θ )
(
(zMi )−1(v), (zMi )−1(w)

)
− Idξ exp(−t�E

n
N

f,θ )
(
(zNi )−1(v), (zNi )−1(w)

)
. (3.3.89)

We write F (v, w, t) = (Fkl(v, w, t))
dim ξ
k,l=1 for the components of the matrix from End(ξ|PMi ). We

notice that the functions Fkl(v, w, t) satisfy the heat equation with zero initial data in D(θ3) ×
D(θ3)×]0,+∞[, i.e. for any k, l = 1, . . . , dim ξ, we have( ∂

∂t
+�f,θ

)
Fkl(u, v, t) = 0 and lim

t→0
Fkl(u, v, t) = 0, (3.3.90)

where �f,θ is the Laplace–Beltrami operator induced by ((zMi )−1)∗gTMf,θ on D(θ3). Thus, by the
maximal principle (cf. [38, p. 180]), for |u| ≤ θ3, we get

|Fkl(u, u, t)| ≤ sup
τ ′∈[0,t]

sup
|w|=θ3

|Fkl(u,w, τ ′)|. (3.3.91)

By applying the maximal principle again, we get

|Fkl(u,w, τ ′)| ≤ sup
τ∈[0,τ ′]

sup
|v|=θ3

|Fkl(v, w, τ)|. (3.3.92)

By (3.3.88), there are c′, C > 0 such that for any θ ∈]0, e−3], and |v|, |w| = θ3, we have

|Fkl(v, w, τ)| ≤ | ln θ| exp(−c′(ln | ln θ|)2/τ). (3.3.93)

By (3.3.91), (3.3.92) and (3.3.93), we get (3.3.52) for |u| ≤ θ3. Thus, (3.3.52) is completely
proved.

Now let’s prove (3.3.53). By Theorem 3.3.13, there are c, C > 0 such that for any |u| ≤
| ln θ|−1, θ ∈]0, e−3], t > 0, we have
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∣∣∣ exp⊥(−t�E
ξ,n
M

f,θ )
(
(zMi )−1(u), (zMi )−1(u)

)
− Idξ exp⊥(−t�E

n
N

f,θ )
(
(zNi )−1(u), (zNi )−1(u)

)∣∣∣
≤ C(ln max(θ, |u|))12t−4 exp(−ct). (3.3.94)

Now, for any x, x′ ∈M , we have

exp(−t�E
ξ,n
M

f,θ )(x, x′) = exp⊥(−t�E
ξ,n
M

f,θ )(x, x′) +B
Eξ,nM
θ (x, x′), (3.3.95)

where BEξ,nM
θ (x, x′) is the Bergman kernel, defined by

B
Eξ,nM
θ (x, x′) =

∑
si(x)(si(x

′))∗θ, (3.3.96)

for an orthonormal base {si} of H0(M,Eξ,n
M ) with respect to the L2-scalar product induced by

gTMf,θ , hξ,‖·‖f,θ
M , and (·)∗θ is the dual with respect to | · |h,θ. By [39, Lemma 3.1], we have

B
Eξ,nM
θ (x, x) = max

{ |s(x)|2h,θ
‖s‖2

L2,θ

: s ∈ H0(M,Eξ,n
M ) \ {0}

}
. (3.3.97)

By (3.3.43) and the fact that n ≤ 0, we see that for any s ∈ C∞(M,Eξ,n
M ), we have

|s(x)|h,θ ≤ |s(x)|h,sm, ‖s‖L2,θ ≥‖s‖L2,sm , (3.3.98)

where | · |h,sm is the pointwise norm induced by hξ,‖·‖sm, and‖·‖L2,sm is the L2-norm induced by
hξ,‖·‖sm, gTMsm . From (3.3.97) and (3.3.98), we deduce

B
Eξ,nM
θ (x, x) ≤ B

Eξ,nM
sm (x, x), (3.3.99)

where BEξ,nM
sm (x, x′) is the Bergman kernel associated with hξ, ‖·‖sm, gTMsm . Thus, from (3.3.52),

(3.3.95) and (3.3.99), there is C > 0 such that for any θ ∈]0, 1/2], |u| < θ3, we have∣∣∣ exp⊥(−t�E
ξ,n
M

f,θ )
(
(zMi )−1(u), (zMi )−1(u)

)
− Idξ exp⊥(−t�E

n
N

f,θ )
(
(zNi )−1(u), (zNi )−1(u)

)∣∣∣
≤ C

(
1 + | ln max(θ, |u|)| exp

(
− c′(ln | ln max(θ, |u|)|)2/t

))
. (3.3.100)

By multiplying (3.3.94) with power µ ∈]0, 1/2[ and (3.3.100) with power 1− µ, we have∣∣∣ exp⊥(−t�E
ξ,n
M

f,θ )
(
(zMi )−1(u), (zMi )−1(u)

)
− Idξ exp⊥(−t�E

n
N

f,θ )
(
(zNi )−1(u), (zNi )−1(u)

)∣∣∣
≤ C| ln max(θ, |u|)|1+11µt−4 exp(−cµt− c′(ln | ln max(θ, |u|)|)2/t)

+ C| ln max(θ, |u|)|12µt−4 exp(−cµt). (3.3.101)

By (3.2.174) and (3.3.101), we finally get (3.3.53) by taking µ small enough.
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3.3.5 Existence of tight families of flattenings
Here we prove by an explicit construction that for any n ∈ Z, n ≤ 0, there are n-tight families
of flattenings gTMf,θ , ‖·‖f,θ

M (see Definition 3.3.11). To simplify the notation, for 0 < a < b, i =
1, . . . ,m, we denote (see (3.1.1))

CM
i (a, b) := V M

i (b) \ V M
i (a). (3.3.102)

As in Section 3.3.3, we suppose that (ξ, hξ) is trivial near the cusps.
Before giving the details, let’s describe in words our construction. The metrics gTMf,θ ,‖·‖f,θ

M are
equal to gTM ,‖·‖M over M \ (∪iV M

i (θ)). The metric‖·‖f,θ
M gets “flattened” over the set CM

i (θ2, θ)
so that it differs from‖·‖M by a multiplication by a function, which is bounded by a constant inde-
pendent of θ. Over V M

i (θ2),‖·‖f,θ
M is flat with a normalization as in property 2 of tight families. The

metric gTMf,θ coincide with gTM overM \(∪iV M
i (θ4)). It gets “flattened” over the setCM

i (θ4/4, θ4),
so that it differs from gTM by a bounded function. Finally, over V M

i (θ4/4) it is flat such that the
Riemannian manifolds (V M

i (θ4/4), gTMf,θ ) and (D(2), (dx2 + dy2)/(ln θ)2) are isometric up to a
multiplication by a constant independent of θ.

Now let’s make this description more precise by giving explicit formulas.
Let φ : [0,+∞[→ [0, 1] be some smooth decreasing function satisfying

φ(u) =

{
1 for u ∈ [0, 1],

0 for u ∈ [2,+∞[.
(3.3.103)

Fix θ ∈]0, 1/2]. We denote by‖·‖f,θ
M the Hermitian norm on ωM(D) such that‖·‖f,θ

M coincides
with‖·‖M over M \ (∪iV M

i (θ)), and over V M
i (θ), it satisfies∥∥∥dzMi ⊗ sDM/zMi ∥∥∥f,θ

M
(x) = | ln θ| ·

∣∣∣∣ ln |zMi (x)|
ln θ

∣∣∣∣φ(ln |zMi (x)|/ ln θ)

. (3.3.104)

Let the metric gTMf,θ coincide with gTM over M \ (∪iV M
i (θ4)), and over V M

i (θ4) be induced by(
|zMi ln |zMi ||2

|θ4 ln θ4|2

)φ(2|zMi |2/θ8)

·
√
−1dzMi dz

M
i

|zMi ln |zMi ||2
. (3.3.105)

Then we see that the metrics gTMf,θ ,‖·‖f,θ
M verify the description given in the beginning of the section.

Let �E
ξ,n
M

f,θ ,‖·‖L2,θ be the Kodaira Laplacian and the L2-norm induced by gTMf,θ , hξ ⊗ (‖·‖f,θ
M )2n.

Theorem 3.3.18. The flattenings gTMf,θ ,‖·‖
f,θ
M , θ ∈]0, 1/2] are n-tight.

Proof. We see directly from (3.3.104) and (3.3.105) that all the requirements for tightness are
trivially satisfied with only one exception - the estimate (3.3.44). As gTMf,θ and‖·‖f,θ

M coincide with
gTM and‖·‖M over M \ (∪iV M

i (θ)), by Lemma 3.2.28, (3.2.138), it is enough to prove that for any
n ∈ Z, there is C > 0 such that for any σ ∈ C∞(M,Eξ,n

M ), x ∈ V M
i (θ1/2), the estimate (3.3.44)

holds.
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Let’s prove (3.3.44) for x ∈ CM
i (θ3, θ1/2). Let’s denote by‖·‖f,θ

D the Hermitian norm on ωD(0)
(see (3.2.45)), given by the formula (compare with (3.3.104))

∥∥dz ⊗ s0/z
∥∥f,θ

D (z) = | ln θ| ·
∣∣∣∣ ln |z|ln θ

∣∣∣∣φ(ln |z|/ ln θ)

. (3.3.106)

We denote by �ω
n
D

f,θ the Kodaira Laplacian on (D∗, gTD∗) associated to (ωD(0)n, (‖·‖f,θ
D )2n).

By (3.2.138), for x ∈M \(∪iV M
i (θ3)), we haveB(x, ln(4/3)) ⊂M \(∪iV M

i (θ4)). By this, the
fact that gTM coincides with gTMf,θ over M \ (∪iV M

i (θ4)) and the fact that (ξ, hξ) is trivial around
the cusps, we see that to prove (3.3.44) for x ∈ CM

i (θ3, θ1/2), it is enough to prove that for any
n ∈ Z, there is C > 0 such that for any σ′ ∈ C∞(D, ωD(0)n), z ∈ D(θ1/2) \D(θ3), we have

∣∣σ′(z)
∣∣
h,θ
≤ C| log |z||1/2

2∑
i=0

∥∥(�
ωnD
f,θ )iσ′

∥∥
L2(BD(z,ln(4/3))),θ

. (3.3.107)

Let’s prove (3.3.107). Recall that for z0 ∈ H, in (3.2.58), we have defined gz0 ∈ Aut(H), and
in (3.2.48), we have defined the covering map ρ : H→ D∗.

By proceeding in the same way as in the proof of Lemma 3.2.23, we see that it is enough to
prove that for any z0 ∈ H, the family of metrics

‖·‖f,θ
z0,H :=

(
(g−1
z0
ρ)∗‖·‖f,θ

D
)
|BH(

√
−1,1) (3.3.108)

is uniformly C∞-bounded for θ ∈]0, 1/2] and z0 ∈ H such that ρ(z0) ∈ D(θ1/2)\D(θ3). However,
similarly to (3.2.62), for any z0 = (x0, y0) ∈ H, z2 = (x, y) ∈ BH(

√
−1, 1), by (3.3.104), we have∥∥∥∥(g−1

z0
ρ)∗(dz ⊗ s0/z)

| log θ|

∥∥∥∥f,θ

z0,H
(z2) =

∥∥∥∥dz ⊗ s0/z

| log θ|

∥∥∥∥f,θ

D
(e−yy0+

√
−1(xy0+x0))

=
(
yy0/| log θ|

)φ(yy0/| log θ|)
, (3.3.109)

which is uniformly bounded for (x, y) ∈ BH(
√
−1, 1) and | log θ|/2 ≤ y0 ≤ 3| log θ|. But since

ρ(z0) ∈ D(θ1/2)\D(θ3) if and only if | log θ|/2 ≤ y0 ≤ 3| log θ|, we conclude that (3.3.107) holds
for z ∈ D(θ1/2) \D(θ3). Thus, (3.3.44) holds for x ∈ V M

i (θ1/2) \ V M
i (θ3).

Let’s prove (3.3.44) for x ∈ CM
i (θ4/4, θ3). Since the Hermitian line bundle (ωM(D),‖·‖f,θ

M )
is trivial over V M

i (θ2), without loss of generality we may and we will suppose n = 0. Since
CM
i (|x|/2, 2|x|) ⊂ CM

i (θ4/8, 2θ3), by Lemma 3.2.25, we have

∣∣σ(x)
∣∣ ≤ C(ln θ)3

2∑
j=0

∥∥(�E
ξ,n
M )jσ

∥∥
L2(CMi (θ4/2,2θ3))

. (3.3.110)

By a trivial calculation, we have( |z ln |z||2

θ8| ln θ4|2
)−ψ(|z|2/θ8) ∂

∂z

( |z ln |z||2

θ8| ln θ4|2
)ψ(|z|2/θ8)
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=
(ψ(|z|2/θ8)(ln |z|+ 1/2)

z ln |z|
+ ln

( |z ln |z||2

θ8| ln θ4|2
)
ψ′(|z|2/θ2))zθ−8

)
, (3.3.111)

By (3.3.105) and (3.3.111), there is C > 0 such that for any θ ∈]0, 1/2], we have

|�(gTM/gTMf,θ )| < C(ln θ)2, |∂(gTM/gTMf,θ )|h,θ < C| ln θ|, (3.3.112)

over CM
i (θ4/8, 2θ3). As (ωM(D),‖·‖f,θ

M ) is trivial over V M
i (2θ3), the following identity holds

�
Eξ,nM
f,θ = (gTM/gTMf,θ ) ·�E

ξ,n
M . (3.3.113)

By (3.3.110), (3.3.112) and (3.3.113), we get (3.3.44) for x ∈ CM
i (θ4, θ3).

Let’s prove (3.3.44) for x ∈ V M
i (θ4). First of all, we recall that by Sobolev inequality and

standard elliptic estimates, we have for some C > 0 and any h ∈ C∞(D(2)), x ∈ D(1):∣∣h(x)
∣∣ ≤ C

∑2
i=0

∥∥�ih∥∥
L2
st
, (3.3.114)

where‖·‖L2
st

is the L2-norm induced by the standard Euclidean metric gst over D(2), and � is the
Kodaira Laplacian induced by gst. We denote by gst,θ the rescaled Euclidean metric given by

gst,θ :=
dx2 + dy2

(ln θ)2
. (3.3.115)

Let ‖·‖L2
st,θ

be the L2-norm induced by gst,θ, let �θ be the Kodaira Laplacian induced by gst,θ.
Analogically to (3.3.113), the estimation (3.3.114) implies that∣∣h(x)

∣∣ ≤ C(ln θ)4
∑2

i=0

∥∥�iθh∥∥L2
st,θ
, (3.3.116)

By (3.3.105), the spaces (D(2), gst,θ) and (V M
i (θ4), gTMf,θ ) are isometric up to a constant indepen-

dent of θ. Thus, by (3.3.116), we deduce (3.3.44) for x ∈ V M
i (θ4).

Now, all the cases have been considered, thus, the proof of Theorem 3.3.18 is finished.

3.4 The anomaly formula: a proof of Theorem B
In this section we prove Theorem B. First of all, we recall that in Section 3.3 we proved Theorem
B for gTM0 = gTM , i.e. when we have only the variation of hξ. Thus, it’s left to prove Theorem
B for hξ0 = hξ and under the supposition that (ξ, hξ) is trivial around the cusps. Let’s describe the
idea of the proof. We construct a family of flattenings which “approach” the cusp metric and we
use Theorem A to relate the corresponding relative Quillen norms. Then we apply the anomaly
formula Bismut-Gillet-Soulé [23, Theorem 1.23] (see Theorem 3.3.1) and calculate the limit of the
right-hand side of (3.3.3), as the family of flattenings “approach” the cusp metric.

Before giving a proof of Theorem B, let’s fix some notation. By suppositions of Theorem B,
for ε > 0 , there are holomorphic functions hφi : D(ε) → D(1), i = 1, . . . ,m, such that gTM0 is
Poincaré-compatible with coordinates hφi (zMi ) around PM

i ∈ DM . We note

z0,M
i := hφi (zMi ). (3.4.1)
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By Definition 3.1.5 of the Wolpert norm, we have the following identity

ln
(
‖·‖W /‖·‖W0

)
=
∑

ln
∣∣(hφi )′(0)

∣∣. (3.4.2)

First of all, let’s describe why the right-hand side of (3.1.25) is finite. For ε > 0, in V M
i (ε):

c1

(
ωM(D), (‖·‖M)2

)
|M =

∂∂

2π
√
−1

ln
(
‖s‖2

M

)
= O

(
|zMi ln |zMi ||−2

)
, (3.4.3)

where s is a local holomorphic frame of ω(DM). Similar estimation holds for the norm‖·‖0
M . The

identity (3.1.27) says
e2φdzMi dz

M
i∣∣zMi ln |zMi |
∣∣2 =

dz0,M
i dz0,M

i∣∣z0,M
i ln |z0,M

i |
∣∣2 . (3.4.4)

By (3.1.5) and (3.4.4), we see that over V M
i (ε), we have

ln
(
‖·‖0

M /‖·‖M
)

= O
(
| ln |zMi ||−1

)
. (3.4.5)

By (3.1.23), (3.1.24), (3.2.24), (3.4.3) and (3.4.5), we conclude that the right-hand side of (3.1.25)
is finite.

Now let’s describe the precise family of flattenings we choose. Recall that the function
ψ : R → [0, 1] was defined in (3.2.54). Let gTMf,θ be a metric over M such that it coincides with
gTM away from ∪iV M

i (θ), and over V M
i (θ) it is induced by∣∣∣zMi ln |zMi |
∣∣∣−2ψ(ln |zMi |/ ln θ)√

−1dzMi dz
M
i , (3.4.6)

for all i = 1, . . . ,m. Similarly, let ‖·‖f,θ
M be the smooth metric on ωM(D) over M such that it

coincides with‖·‖M away from ∪iV M
i (θ), and over V M

i (θ), i = 1, . . . ,m, we have∥∥∥dzMi ⊗ sDM/zMi ∥∥∥f,θ

M
=
∣∣∣ ln |zMi |∣∣∣ψ(ln |zMi |/ ln θ)

, (3.4.7)

where sDM is the canonical section of OM(DM), div(sDM ) = DM .
For ε > 0, i = 1, . . . ,m, we denote

V 0,M
i (ε) := {x ∈M : |z0,M

i (x)| ≤ ε}. (3.4.8)

Let gTM0,f,θ,‖·‖
f,θ
0,M be the flattenings of gTM0 ,‖·‖0

M , compatible with the flattenings gTMf,θ ,‖·‖
f,θ
M (cf.

(3.1.15), (3.1.16)). More precisely, the metrics gTM0,f,θ,‖·‖
f,θ
0,M coincide with gTM0 ,‖·‖0

M away from
∪iV 0,M

i (θ), and over V 0,M
i (θ) the metric gTM0,f,θ is induced by

∣∣∣z0,M
i ln |z0,M

i |
∣∣∣−2ψ(ln |z0,Mi |/ ln θ)√

−1dz0,M
i dz0,M

i . (3.4.9)
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Also, for sDM as in (3.4.7), we have∥∥∥dz0,M
i ⊗ sDM/z

0,M
i

∥∥∥f,θ

0,M
=
∣∣∣ ln |z0,M

i |
∣∣∣ψ(ln |z0,Mi |/ ln θ)

. (3.4.10)

Let’s denote by‖·‖ω,0f,θ,M,‖·‖ωf,θ,M the norms on ωM over M induced by gTM0,f,θ and gTMf,θ respectively.
Proof of (3.1.25). By Theorem A, for any θ ∈]0, 1], we have

2 ln

(
‖·‖Q (gTM0 , hξ ⊗ ‖·‖2n

0,M)

‖·‖Q (gTM , hξ ⊗ ‖·‖2n
M )

)
= 2 ln

(
‖·‖Q

(
gTM0,f,θ, h

ξ ⊗ (‖·‖f,θ
0,M)2n

)
‖·‖Q

(
gTMf,θ , h

ξ ⊗ (‖·‖f,θ
M )2n

) ). (3.4.11)

We show that the limit of the right-hand side of (3.4.11), as θ → 0 is exactly the right-hand side of
(3.1.25). Then Theorem B would follow from (3.4.11).

We denote by‖·‖ωf,θ,M ,‖·‖ω,0f,θ,M the norms on ωM induced by gTMf,θ and gTM0,f,θ. Set

Φ(θ) :=
[
T̃d
(
ω−1
M , (‖·‖ωf,θ,M)−2, (‖·‖ω,0f,θ,M)−2

)
ch
(
ξ, hξ

)
ch
(
ωM(D), (‖·‖f,θ

M )2n
)

+ Td
(
ω−1
M , (‖·‖ω,0f,θ,M)−2

)
ch
(
ξ, hξ

)
c̃h
(
ωM(D), (‖·‖f,θ

M )2n, (‖·‖f,θ
0,M)2n

)][2]

. (3.4.12)

Then, by Theorem 3.3.1, we have

2 ln

(
‖·‖Q

(
gTM0,f,θ, h

ξ ⊗ (‖·‖f,θ
0,M)2n

)
‖·‖Q

(
gTMf,θ , h

ξ ⊗ (‖·‖f,θ
M )2n

) ) =

∫
M

Φ(θ). (3.4.13)

where T̃d and c̃h are given by (3.1.23) and (3.1.24). We decompose the right-hand side of (3.4.13)
into integrals over M \ (∪i(V M

i (θ) ∪ V 0,M
i (θ))) and over V M

i (θ) ∪ V 0,M
i (θ), i = 1, . . . ,m.

Since the flattenings gTM0,f,θ, g
TM
f,θ and ‖·‖f,θ

0,M ,‖·‖f,θ
M coincide with gTM0 , gTM and ‖·‖0

M ,‖·‖M over
M \ (∪i(V M

i (θ) ∪ V 0,M
i (θ))), and the quantities under the integration in the anomaly formula are

local, we see by Lebesgue dominated convergence theorem, by the finiteness of the right-hand side
of (3.1.25) and by (3.1.26), that the integral of Φ(θ) over M \ (∪i(V M

i (θ) ∪ V 0,M
i (θ))) converges

to the integral part in the right-hand side of (3.1.25), as θ → 0.
Now let’s study the contribution over ∪i(V M

i (θ)∪V 0,M
i (θ)) of the integral in (3.4.13). We note

that in the case when φ from (3.1.27) has compact support in M , this integral is actually zero for θ
sufficiently small (which is consistent with the statement of Theorem B).

From the discussion above, (3.4.2), (3.4.13), and the fact that we restrict ourselves to the case
(ξ, hξ) trivial around the cusps, Theorem B would follow from the following

Lemma 3.4.1. As θ → 0, we have∫
VMi (θ)∪V 0,M

i (θ)

Φ(θ)→ −rk(ξ)

6
ln |(hφi )′(0)|. (3.4.14)
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Proof. All the subsequent formulas should be regarded as being valid over V M
i (θ) ∪ V 0,M

i (θ). By
(3.4.6) and (3.4.7), we have

c1

(
ωM , (‖·‖ωf,θ,M)2

)
= −
√
−1∂∂

2π

(
ψ
(

ln |zMi |/ ln θ
)
·
(
2 ln |zMi |+ 2 ln | ln |zMi ||

))
=

[
ln |zMi |ψ′′

(
ln |zMi |/ ln θ

)
2|zMi ln θ|2

+
ψ′
(

ln |zMi |/ ln θ
)

|zMi |2 ln θ

+O

(
ln | ln |zMi ||
|zMi ln |zMi ||2

)]
−
√
−1dzMi dz

M
i

2π
, (3.4.15)

c1(ωM(D), (‖·‖f,θ
M )2) = −

√
−1∂∂

2π

(
ψ
(

ln |zMi |/ ln θ
)
·
(
2 ln | ln |zi||

))
= O

(
ln | ln |zMi ||
|zMi ln |zMi ||2

)
dzMi dz

M
i . (3.4.16)

By dz0,M
i = (hφi )′(zMi ) · dzMi and ln | ln |z0,M

i || = ln | ln |zMi ||+O(1/| ln |z0,M
i ||), we deduce

ln
(
‖·‖ω,0f,θ,M /‖·‖ωf,θ,M

)
= ψ

(
ln |z0,M

i |/ ln θ
)(

ln |z0,M
i |+ ln | ln |z0,M

i ||
)

− ψ
(

ln |zMi |/ ln θ
)(

ln |zMi |+ ln | ln |zMi ||
)
− ln |(hφi )′(zMi )|

= ln |(hφi )′(0)|
(
− 1 + ψ

(
ln |zMi |/ ln θ

)
+ ψ′

(
ln |zMi |/ ln θ

) ln |zMi |
ln θ

)
+O

(
ln | ln |zMi ||
| ln |zMi ||

)
, (3.4.17)

ln
(
‖·‖f,θ

0,M /‖·‖f,θ
M

)
= ψ

(
ln |z0,M

i |/ ln θ
)

ln | ln |z0,M
i ||

− ψ
(

ln |zMi |/ ln θ
)

ln | ln |zMi || = O

(
ln | ln |zMi ||
| ln |zMi ||

)
. (3.4.18)

Finally, from (3.4.15) and the analogical statement for‖·‖ω,0f,θ,M, we easily get

∂∂ ln
(
‖·‖ω,0f,θ,M /‖·‖ωf,θ,M

)
= O

(
ln | ln |zMi ||
|zMi ln |zMi ||2

)
dzMi dz

M
i . (3.4.19)

From Theorem 3.3.1, (3.1.23), (3.1.24) and (3.4.15) - (3.4.19), we get∫
VMi (θ)∪V 0,M

i (θ)

Φ(θ) = −rk(ξ)

3

∫
VMi (θ)∪V 0,M

i (θ)

[
c1

(
ωM , (‖·‖ωf,θ,M)2

)
ln

(‖·‖ω,0f,θ,M

‖·‖ωf,θ,M

)
+O

(
ln | ln |zMi ||
|zMi ln |zMi ||2

)
dzMi dz

M
i

]
. (3.4.20)
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From (3.4.15), (3.4.17) and (3.4.20), we get

lim
θ→0

∫
VMi (θ)∪V 0,M

i (θ)

Φ(θ) =
2 ln |(hφi )′(0)|

3
· rk(ξ)

· lim
θ→0

∫ θ1/2

θ

1

r

(
ψ′′
( ln r

ln θ

) ln r

2(ln θ)2
+ ψ′

( ln r

ln θ

) 1

ln θ

)(
− 1 + ψ

( ln r

ln θ

)
+ ψ′

( ln r

ln θ

) ln r

ln θ

)
dr

= −2 ln |(hφi )′(0)|
3

· rk(ξ) ·
∫ 1

1/2

(
− ψ′(u) + ψ′(u)ψ(u) + uψ′(u)2

− uψ′′(u)/2 + uψ′′(u)ψ(u)/2 + u2ψ′(u)ψ′′(u)/2
)
du,

(3.4.21)

where in the last identity we used the change of variables u := ln r/ ln θ. By the integration by
parts and (3.2.54), we have∫ 1

1/2

ψ′(u)du = −1,

∫ 1

1/2

uψ′′(u)ψ(u)du =
1

2
−
∫ 1

1/2

uψ′(u)2du,∫ 1

1/2

uψ′′(u)du = 1,

∫ 1

1/2

u2ψ′(u)ψ′′(u)du = −
∫ 1

1/2

uψ′(u)2du,∫ 1

1/2

ψ′(u)ψ(u)du = −1

2
.

(3.4.22)

We get (3.4.14) from (3.4.21), (3.4.22).
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Chapter 4

Regularity, asymptotics and curvature
theorem.

Abstract. We study the Quillen metric on the determinant line bundle associated with a family of
complex curves with cusps, which admit singular fibers.

More precisely, we fix a family of complex curves, which admit at most double-point singu-
larities. We endow the fibers of this family with Kähler metrics, defined away from a finite set of
points. We suppose that the metrics on the fibers have Poincaré-type singularities near the fixed
points, and that those points form a divisor on the total space of the family, which is disjoint from
the singularities of the fibers.

We fix a holomorphic vector bundle over the total space of the family and endow it with a
Hermitian metric defined away from the fixed points. We suppose that this metric has at most
logarithmic singularities, coming from the induced norm on the negative power of the relative
canonical line bundle twisted by the divisor line bundle associated with the divisor of the fixed
points.

The determinant line bundle associated with the holomorphic line bundle is naturally endowed
with the Quillen metric defined using the analytic torsion from the first paper of this series [54].
We study the regularity of this Quillen metric and its asymptotics near the locus of singular curves.
The singularities of the asymptotics turn out to be reasonable enough, so that the curvature of the
Chern connection of the determinant line bundle endowed with the Quillen norm is well-defined
as a current over the base. We derive the explicit formula for this current, which gives a refinement
of Riemann-Roch-Grothendieck theorem at the level of currents. This generalizes the curvature
formulas of Takhtajan-Zograf and Bismut-Bost.

Our assumptions on the degeneration of the metric are very mild, and our study applies to the
family of degenerating pointed hyperbolic surfaces. As a consequence, we get some regularity
results on the Weil-Petersson form over the moduli space of pointed curves. Those regularity
results are enough to conclude a well-known fact, originally due to Wolpert, that the Weil-Petersson
volume of the moduli space of pointed curves is a rational multiple of a power of π.

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.2 Families of nodal curves and related notions . . . . . . . . . . . . . . . . . . . . . . . . . 158
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4.2.6 Existence of pre-log-log metrics of infinite order . . . . . . . . . . . . . . . . . . . . 167

4.3 Regularity and singularities: a proof of Theorem C . . . . . . . . . . . . . . . . . . . . . 168
4.3.1 Pushforward of differential forms in f.s.o. . . . . . . . . . . . . . . . . . . . . . . . . 169
4.3.2 Some properties of the Quillen metric . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.3.3 Proof of Theorem C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

4.4 Potential theory for log-log currents, a proof of Theorem D . . . . . . . . . . . . . . . . . 176
4.4.1 Potential theory for currents with log-log growth . . . . . . . . . . . . . . . . . . . . 176
4.4.2 Proof of Theorem D and Corollaries 4.1.7, 4.1.8 . . . . . . . . . . . . . . . . . . . . 179

4.5 Applications to the moduli space of stable pointed curves . . . . . . . . . . . . . . . . . . 181
4.5.1 Orbifold structure of M g,m and C g,m . . . . . . . . . . . . . . . . . . . . . . . . . . 181
4.5.2 Pinching expansion and proof of Corollaries 4.1.10, 4.1.12, 4.1.16, 4.1.18, 4.1.20 . . . 184

4.1 Introduction
We study the Quillen metric on the determinant line bundle associated with a family of complex
curves with cusps, which admit singular fibers.

To make things slightly more formal, we recall that for complex manifolds X and S, a proper
holomorphic map π : X → S and a holomorphic vector bundle ξ over X , the construction of
Grothendick-Knudsen-Mumford [76] (cf. also [23, §3]) associates the “determinant of the direct
image of ξ” - the holomorphic line bundle over S, which we denote by det(R•π∗ξ). In the special
case when the cohomology groupsH•(π−1(·), ξ) have constant dimension, they form holomorphic
vector bundles, and we have a natural isomorphism det(R•π∗ξ) = ⊗i(ΛmaxH i(π−1(·), ξ))(−1)i . If
X and S are quasiprojective and π is projective, by a theorem of Riemann-Roch-Grothendieck (cf.
[30, §7]), the first Chern class of det(R•π∗ξ) is expressed as a push-forward by π of characteristic
classes of ξ and the relative tangent bundle TX/S.

Assume temporarily that π is a Kähler fibration, i.e. it is a submersion such that there exists a
closed (1, 1)-form on X such that its restriction to the fibers of π gives a Kähler form. In this case,
Bismut-Gillet-Soulé in [23] gave an analytic construction of the line bundle λ(j∗ξ), which they
proved in [23, Theorem 3.14] to coincide with (det(R•π∗ξ))

−1. Now, endow the vector bundles
ξ, TX/S with Hermitian metrics hξ and hTX/S over X . As the dimension of the cohomology of
the fibers might change from point to point, the L2-metric of the fibers on the line bundle λ(j∗ξ) is
not necessarily continuous. Nevertheless, Bismut-Gillet-Soulé in [23, Theorems 1.3, 1.6] showed
that the Quillen norm ‖·‖Q on λ(j∗ξ), defined as a product of the holomorphic analytic torsion
and the L2-metric of the fiber, is smooth. When π is trivial of relative dimension 1, this metric
was previously defined by Quillen in [102]. The curvature theorem of Bismut-Gillet-Soulé [23,
Theorem 1.9] expresses the curvature of the Chern connection on (λ(j∗ξ),‖·‖2

Q) as an integral
over the fibers of π of the differential form associated by Chern-Weil theory with a cohomological
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class appearing on the right-hand-side of Riemann-Roch-Grothendieck theorem. Thus, curvature
formula of Bismut-Gillet-Soulé gives a refinement of Riemann-Roch-Grothendieck theorem.

One of the main goals of this article is to prove a generalisation of the curvature formula of
Bismut-Gillet-Soulé in relative dimension 1. In this generalisation our fibers are allowed to have
hyperbolic cusps and double-point singularities. Moreover, the Hermitian metric hξ is also allowed
to have logarithmic singularities at cusps.

More precisely, let π : X → S be a family of complex curves with ordinary singularities.
We denote by ΣX/S ⊂ X the submanifold of singular points of the fibers (see Corollary 4.2.3),
and by ∆ := π∗(ΣX/S) the divisor of singular fibers. Let DX/S ⊂ X be a divisor induced by a
submanifold |DX/S| intersecting π−1(|∆|) transversally and such that π||DX/S | : |DX/S| → S is
locally an isomorphism. In other words, we suppose that for any s ∈ S, there is a neighbourhood
U of s, and disjoint holomorphic sections σ1, . . . , σm : U → X of π, which do not pass through
singular points such that over U the following identity holds

DX/S|π−1(U) := Im(σ1) + · · ·+ Im(σm). (4.1.1)

Those sections would model the positions of cusps in our family.
Let the norm‖·‖ωX/S on the canonical line bundle ωX/S (see Section 4.2.2) over X \ (π−1(∆) ∪

|DX/S|) be such that its restriction over each nonsingular fiber Xt := π−1(t), t ∈ S \ |∆| of π
induces the Kähler metric with cusps at |DX/S|∩Xt (see Definition 4.2.5). The goal of this article is
to study the Quillen norm associated with the family of cusped curves (π : X → S,DX/S,‖·‖ωX/S).
The Quillen norm here uses the analytic torsion, defined in the first article of this series [54].

We denote by ‖·‖WX/S the Wolpert norm induced by ‖·‖ωX/S (see Definition 4.2.6) on the line
bundle det(π∗(ωX/S||DX/S |)). This norm measures how the local structure of the metric ‖·‖ωX/S
changes in the neighborhood of |DX/S|.
Construction 4.1.1. For a complex manifold Y and a divisor D0 ⊂ Y , let ‖·‖div

D0
be the singular

norm on OY (D0), defined by
‖sD0‖div

D0
(x) = 1, (4.1.2)

where sD0 , div(sD0) = D0, is the canonical section of the divisor D0, and x ∈ Y \ |D0|.
We endow the twisted canonical line bundle

ωX/S(D) := ωX/S ⊗ OX(DX/S) (4.1.3)

with the canonical Hermitian norm ‖·‖X/S over π−1(S \ |∆|)\ |DX/S|, induced by‖·‖ωX/S ,‖·‖div
DX/S

.

Let ξ be a holomorphic vector bundle overX , and let hξ be a Hermitian metric over π−1(S\|∆|).
For n ≤ 0, we endow the line bundle det(R•π∗(ξ ⊗ ωX/S(D)n))−1 with the Quillen norm

‖·‖Q (gTXt , hξ ⊗ ‖·‖2n
X/S), t ∈ S \ |∆|, (4.1.4)

over S \ |∆|, defined as the product of the L2-norm and the analytic torsion of the fiber (see
Definition 4.2.8). We denote det ξ := Λmaxξ, and by hdet ξ the Hermitian metric on det ξ induced
by hξ. Now, we denote the norm
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‖·‖Ln
:=
(
‖·‖Q (gTXt , hξ ⊗ ‖·‖2n

X/S)
)12 ⊗

(
‖·‖WX/S

)−rk(ξ)

⊗
(
‖·‖div

∆

)rk(ξ) ⊗
(

det(π∗(h
det ξ||DX/S |)

)3 (4.1.5)

on the line bundle

Ln := det
(
R•π∗(ξ ⊗ ωX/S(D)n)

)−12 ⊗
(

det(π∗(ωX/S||DX/S |)
)−rk(ξ)

⊗ OS(∆)rk(ξ) ⊗
(

det(π∗(det ξ||DX/S |)
)6
. (4.1.6)

Our first goal is to study - under various assumptions on the data - the regularity of ‖·‖Ln
over

S \ |∆| and its singularities near ∆. We show that the singularities of ‖·‖Ln
are reasonable enough

to define the curvature of the Chern connection of (Ln, (‖·‖Ln
)2) as a current over S. Then we

compute this current explicitly, which would give us a refinement of Riemann-Roch-Grothendieck
theorem on the level of currents. In particular, when π : X → S is a family of hyperbolic surfaces
without singular fibers and (ξ, hξ) is trivial, we get Takhtajan-Zograf formula1 [107, Theorem 1].
When the metrics hξ,‖·‖X/S are smooth, i.e. there are no cusps and no degeneration of the metric
near singular fibers, we get a formula of Bismut-Bost [20, Théorème 2.2]. Thus, our formula
unifies those two curvature theorems.

Now let’s state precisely the different assumptions on the data, which we consider in this article.
Assumption S1. The Hermitian metric hξ extends smoothly overX; the Hermitian norm‖·‖X/S

extends smoothly over X \ |DX/S| and it is pre-log-log of infinite order, with singularities along
DX/S (cf. Definition 4.2.14).

Assumption S2. The divisor ∆ has normal crossings. The Hermitian metric hξ is pre-log-log
with singularities along π−1(∆) (cf. Definition 4.2.14); the Hermitian norm‖·‖X/S is pre-log-log
with singularities along π−1(∆) ∪DX/S .

Assumption S3. The divisor ∆ has normal crossings. The Hermitian metric hξ extends
smoothly over X; the Hermitian norm‖·‖X/S is continuous over X \ (ΣX/S ∪ |DX/S|), has log-log
growth with singularities along ΣX/S ∪ |DX/S| (cf. Definitions 4.2.13), is good in the sense of
Mumford on X \ |DX/S| with singularities along π−1(∆) (cf. Definition 4.2.14), and the cou-
pling of c1(ωX/S(D),‖·‖2

X/S) with two smooth vertical vector fields over X \ (ΣX/S ∪ |DX/S|) is
continuous over X \ (ΣX/S ∪ |DX/S|) and has log-log growth with singularities along |DX/S| (cf.
Definition 4.2.11b)).

Remark 4.1.2. a) If ∆ has normal crossings, then, trivially, S1 implies both S2 and S3.
b) In Proposition 4.2.23, we prove that for any π : X → S, DX/S as before, there is a Hermitian

norm‖·‖X/S on ωX/S over X \ |DX/S| satisfying Assumption S1.

Let’s motivate those assumptions. Assumption S1 is more of a laboratory example to show the
strongest regularity result for‖·‖Ln

we could achieve. Also it generalizes to the non-compact case
the hypothesises from Bismut-Bost [20] (cf. Bismut [18]). Assumption S2 and S3 are interesting
because the main example of degenerating hyperbolic surfaces (see Construction 4.5.2) satisfies

1In fact, Takhtajan-Zograf used a version of analytic torsion defined through lengths of closed geodesics. In [56],
we show that their definition is compatible with ours.
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them (see Proposition 4.5.6). Assumption S2 is well-adapted to the curvature theorem, Theorem
D, and Assumption S3 - to the continuity theorem, Theorem C.

Now let’s argue why instead of more well-known notion of good vector bundles due to Mum-
ford [95] (see Definition 4.2.14), we use the notion of pre-log-log vector bundles due to Burgos
Gil-Kramer-Kühn [36] (see Definition 4.2.14). By Proposition 4.5.6, for our main example of hy-
perbolic surfaces from Construction 4.5.2, the metric‖·‖hyp

X/S is good. This is stronger than being
pre-log-log (see for example [36, Lemma 4.26]). As it easily follows from formulas for Bott-
Chern classes of degree 0, the Bott-Chern classes associated with good metrics is not necessarily
of Poincaré growth (see Definition 4.2.11d)), cf. [36, §4.5]. Nevertheless, as it was proved by Bur-
gos Gil-Kramer-Kühn [36, Theorem 4.55] (cf. Theorem 4.2.19) in its equivalence class one can
choose a representative which is pre-log-log. Now, the Bott-Chern classes enter naturally in the
anomaly formula and the definition of Deligne norms [42, (6.3.1)]. Thus, Deligne norm associated
with good Hermitian vector bundles is not good in general. Pre-log-log condition is a natural con-
dition to form a class of metrics, such that the associated Deligne norms (see Freixas [58, Theorem
5.1.3]) and renormalized Quillen norms (see Theorem C2) almost2 stay in this class. We will make
this point more clear and use it extensively in our forthcoming paper [57] on Deligne-Mumford
isometry.

To describe the singularities of the norm (4.1.5) near |∆|, we need the following notions.

Definition 4.1.3. Let Y be a complex manifold and let D0 be a divisor in Y .
a) Suppose D0 has normal crossings and the function f : Y \ |D0| → R is continuous and has

log-log growth along D0 (see Definition 4.2.11a)). We denote by [f ]L1 the current over Y , given
by the L1-extension of f over Y . We say that f is nice with singularities along D0 if the currents
∂[f ]L1 , ∂[f ]L1 , ∂∂[f ]L1 are defined by the integration against continuous forms over Y \ |D0|,
which have log-log growth along D0 (see Definition 4.2.11b)).

b) Let x ∈ D0 and let U ⊂ Y , x ∈ U be an open subset. Let h1, . . . , hk, k ∈ N be local
holomorphic functions such that dhi(x) 6= 0, i = 1, . . . , k and n1, . . . , nk ∈ N are such that D0 is
defined over U by {hn1

1 h
n2
2 · · ·h

nk
k = 0}. We say that a smooth function f : Y \ |D0| → R is very

nice with singularities along D0 if for any x ∈ D0 there are smooth functions f0, . . . , fk : U → C:

f = f0 +
k∑
1

fi|hi|2 ln |hi|. (4.1.7)

c) Let L be a holomorphic line bundle over Y , and let hL be a continuous Hermitian metric on
L over Y \ |D0|. For x ∈ Y , fix a local holomorphic frame υ of L in a neighbourhood U of x. We
say that hL is very nice (resp. nice) with singularities along D0 if for any x and υ, the function
lnhL(υ, υ) is very nice (resp. nice) with singularities along D0.

Remark 4.1.4. a) Trivially, for D0 with normal crossings, every very nice Hermitian metric with
singularities along D0 is nice Hermitian metric with singularities along D0.

2As we say in Theorem C2, the renormalized Quillen norm associated with a pre-log-log Hermitian vector bundle
is nice in the sense of Definition 4.1.3. The notion of niceness is slightly less stronger than the notion of pre-log-log
Hermitian vector bundle. Hovewer, as it follows from elliptic regularity (see also the proof of Corollary 4.1.8), a nice
vector bundle is pre-log-log if and only if its curvature is smooth over S \ |∆|.
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b) For a Hermitian metric hL, which is either nice or very nice, we define the first Chern class
as a current over Y by

c1(L, hL) :=
∂∂[lnhL(υ, υ)]L1

2π
√
−1

. (4.1.8)

We note that with such a definition it is trivial that c1(L, hL) is a closed current and the associated
cohomological class coincides with c1(L).

Our first result describes the singularities of the norm (4.1.4) near |∆|.

Theorem C (Continuity theorem). Let π : X → S be a family of complex curves with at most
double point singularities. Let ΣX/S be the submanifold of singular points on the fibers, and let
∆ := π∗(ΣX/S) be the divisor of singular curves. Let ξ be a holomorphic vector bundle over X ,
and let hξ be a Hermitian metric on ξ over π−1(S \ |∆|).

Let DX/S ⊂ X be a divisor induced by a submanifold |DX/S| intersecting π−1(|∆|) transver-
sally and such that π||DX/S | : |DX/S| → S is locally an isomorphism. Let the norm‖·‖ωX/S on the
canonical line bundle ωX/S over X \ (π−1(∆)∪ |DX/S|) be such that its restriction over each non-
singular fiber Xt := π−1(t), t ∈ S \ |∆| of π induces the Kähler metric with cusps at |DX/S| ∩Xt

(see Definition 4.2.5).
We use the same notation for the line bundle Ln (see (4.1.6)), and the norm‖·‖Ln

(see (4.1.5)).
1) Under Assumption S1, the norm‖·‖Ln

is very nice with singularities along ∆ (hence, smooth
over S \ |∆|).

2) Under Assumption S2, the norm‖·‖Ln
is nice with singularities along ∆.

3) Under Assumption S3, the norm‖·‖Ln
is continuous over S.

Remark 4.1.5. a) When m = 0, Theorem C1 gives the result of Bismut-Bost [20, Théorème 2.2].
However, we note that the proof presented here relies on [20, Théorème 2.2]. In [57], we give
another proof of Theorem C, which relies on the extension of Deligne-Mumford isomorphism
and regularity results for Deligne metrics. This would give us, in particular, an alternative proof
of [20, Théorème 2.2], which depends only on the results of Bismut-Gillet-Soulé [23], and not on
the results of Bismut-Bost [20].

b) In the forthcoming paper [56], under Assumption S3, we exhibit a relation between the
restriction of Ln over the singular locus and the Quillen norm of the normalisation of the singular
fibers. In other words, this theorem describes the behaviour of a Quillen norm under adjunction of
cusps obtained by degeneration. In particular, it gives a geometric interpretation of the continuous
extension of‖·‖Ln

onto the singular locus.

We note that by Theorems C.1, C.2 and Remark 4.1.4.b), the current c1(Ln, ‖·‖2
Ln

) is well-
defined over S. The next theorem gives an explicit expression for this current.

We recall that the Chern and Todd forms of the Hermitian vector bundle (ξ, hξ) are defined as

ch(ξ, hξ) = rk(ξ) + c1(ξ, hξ) + 1
2
c1(ξ, hξ)2 − c2(ξ, hξ) + · · · ,

Td(ξ, hξ) = rk(ξ) + 1
2
c1(ξ, hξ) + 1

12

(
c1(ξ, hξ)2 + c2(ξ, hξ)

)
+ · · · ,

(4.1.9)

where the dots mean higher degree terms.
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Theorem D (Curvature theorem). We use the notations from Theorem C. Under Assumption S1
(resp. S2), the current

π∗

[
Td(ωX/S(D)−1,‖·‖−2

X/S)ch(ξ, hξ)ch(ωX/S(D)n,‖·‖2n
X/S)

](2,2)

(4.1.10)

is L1
loc(S) (resp. has log-log growth along ∆ in the sense of Definition 4.2.11b), so in particular,

it is also L1
loc(S)). We denote by the same symbol the trivial L1-extension of this current over S.

This extension is closed. Moreover, the following identity of currents over S holds

c1

(
Ln, ‖·‖2

Ln

)
= −12π∗

[
Td
(
ωX/S(D)−1,‖·‖−2

X/S

)
ch
(
ξ, hξ

)
ch
(
ωX/S(D)n,‖·‖2n

X/S

)](2,2)

.

(4.1.11)

Remark 4.1.6. a) Assume S1 holds and m = 0, then Theorem D is exactly the curvature formula
of Bismut-Bost [20, Théorème 2.1]. We note, however, that the proof of Theorem D in this case
relies on [20, Théorème 2.1].

b) Assume S2 holds, then our proof relies on the curvature theorem of Bismut-Gillet-Soulé [23,
Theorem 1.9], on the proof of Theorem C and on potential theory of log-log currents, which we
develop in Section 4.4.1. In [57], we give an alternative proof, which uses the extension of Deligne-
Mumford isomorphism.

Let’s say a word about the way we prove this theorem. For simplicity, we suppose that there are
no singular fibers, i.e. |∆| = ∅. Then our previous result, [54, Theorem A], permits us to compare
the Quillen metric associated with the cusped metric and the Quillen metric associated with the
compact metric. Once we apply [54, Theorem A] to a family of cusped Riemann surfaces, we get
a family of compact Riemann surfaces. Then, after some easy calculations, we see that Theorem
D reduces to the curvature theorem of Bismut-Gillet-Soulé [23, Theorem 1.9], which finishes the
proof.

For a complete proof of the following two corollaries, see Section 4.4.

Corollary 4.1.7. We use the notation of Theorem C. Assume S2 and S3 hold. Then the trivial L1-
extension of the current (4.1.10) from Theorem D has a local continuous potential over S, which
can be written explicitly through a product of the‖·‖Ln

-norm of a holomorphic frame of Ln.

Corollary 4.1.8. We use the notation of Theorem C. Assume S2 holds, and assume that the current
(4.1.10) is smooth over S. Then the Hermitian norm‖·‖Ln

on the line bundle Ln is smooth over
S.

Remark 4.1.9. If hξ and‖·‖X/S satisfy S1, and the forms c1(ξ, hξ), c2(ξ, hξ), c1(ωX/S(D),‖·‖X/S)
vanish in the neighbourhood of ΣX/S , then the current (4.1.10) is smooth over S.

Now let’s describe some of the applications of those results to the moduli space Mg,m of m-
pointed stable curves of genus g, 2g − 2 + m > 0. We denote by M g,m the Deligne-Mumford
compactification of Mg,m, by ∂Mg,m := M g,m \Mg,m the compactifying divisor, by Cg,m and
C g,m the universal curves over Mg,m and M g,m respectively. We denote by Π : C g,m →M g,m the
universal projection. We denote byDg,m the divisor on C g,m, formed bym fixed points. We denote
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by ωg,m the relative canonical line bundle of Π and by ωg,m(D) the twisted relative canonical line
bundle:

ωg,m(D) := ωg,m ⊗ OC g,m
(Dg,m). (4.1.12)

By the uniformization theorem (cf. [49, Chapter IV], [9, Lemma 6.2], [10]), we endow ωg,m(D)

with the Hermitian norm ‖·‖hyp
g,m, such that its restriction over each fiber of π induces by Con-

struction 4.1.1 the canonical hyperbolic metric of constant scalar curvature −1. This endows the
determinant line bundle λ(j∗(ωg,m(D)n)), n ≤ 0, which is also sometimes called the Hodge line
bundle, with the induced Quillen metric‖·‖Q,ng,m. Also the line bundle det(Π∗(ωg,m||DX/S |)) is en-
dowed with the associated Wolpert norm‖·‖Wg,m. We denote by ωWP the Weil-Petersson form over
Mg,m (cf. Section 4.5.1). The following corollaries will be proved in Section 4.5.2.

Corollary 4.1.10. The norm

‖·‖H,ng,m := (‖·‖Q,ng,m)12 ⊗ (‖·‖Wg,m)−1 ⊗ ‖·‖div
∂Mg,m

(4.1.13)

on the line bundle

λH,ng,m := λ(j∗(ωg,m(D)n))12 ⊗ (det(Π∗(ωg,m||DX/S |)))
−1 ⊗ OM g,m

(∂Mg,m) (4.1.14)

is good in the sense of Mumford with singularities along ∂Mg,m. Moreover, it extends continu-
ously over M g,m and it is smooth over Mg,m.

Remark 4.1.11. It is possible to deduce the result of Corollary 1.2.14 from Deligne’s isomorphism
[42, Théorème 11.4], from Riemann-Roch arithmetic theorem for pointed stable surfaces, proved
in this form by Gillet-Soulé in [66] (cf. [65, Proposition 1.5.2]) for m = 0, n ≤ 0, by Freixas
in [59, Theorem 6.2] for m ∈ N, n = 0 and in [60, Theorem 6.2] for n < 0, m ∈ N, and by
”goodness” of the associated Deligne metric, proved by Freixas in [58, Theorem 5.2.1 and Remark
5.2.4]. Our proof is different because we get Corollary 4.1.10 directly from Theorem C2.

By Corollary 4.1.10 and Remark 4.1.4, we see that the first Chern form of (λH,ng,m, (‖·‖
H,n
g,m)2) is

well-defined as a current over M g,m. Let’s state the curvature theorem in this context.

Corollary 4.1.12. We use the notation from Corollary 4.1.10. The form ωWP has log-log growth
along the boundary ∂Mg,m of the moduli space of curves. We denote by [ωWP ]L1 its L1-extension
to M g,m. This extension is closed. Moreover, the following identity of currents over M g,m holds

c1

(
λH,ng,m, (‖·‖

H,n
g,m)2

)
= −π−2

(
6n2 − 6n+ 1

)[
ωWP

]
L1 . (4.1.15)

Remark 4.1.13. a) Recall that in [117, Theorem 5], Wolpert proved that
c1(det(Π∗(ωg,m||DX/S |)), (‖·‖

W
g,m)2) is equal up to an explicit constant to a Kähler form on

Mg,m, which was defined previously by Takhtajan-Zograf in [107, (8)]. In [114, Corollary 5.11],
Wolpert expressed ωWP as an integral

∫
π
c1(ωg,m(D), (‖·‖hyp

g,m)2)2. By those results, we see that
Theorem D extends the curvature theorem of Takhtajan-Zograf [107, Theorem 1] from Mg,m to
M g,m. Our methods are very different from the methods of Takhtajan-Zograf, as we don’t use the
variational approach with Beltrami differentials.
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b) The fact that the Weil-Petersson form has log-log growth along the boundary ∂Mg,m also
follows from an old result of Masur [89, Theorem 1]. The fact that the current [ωWP ]L1 is closed
was previously proved by Wolpert in [113, Theorem 2.3]. See also the recent article of Melrose-
Zhu [91] for related results.

c) It is possible to deduce the result of Corollary 4.1.12 from the Deligne isomorphism and the
arithmetic Riemann-Roch theorem for pointed stable surfaces, proved by Gillet-Soulé and Freixas
(see Remark 4.1.11), and some properties of “good” metrics, see Mumford [95, Proposition 1.2].
Our proof of Corollary 4.1.12 is very different. In fact, Corollary 4.1.12 follows directly from
Theorems C2, D. Note also that in this case several technical difficulties disappear in the proof
of Theorem D because the Weil-Petersson metric is smooth on Mg,m. In particular, the potential
theory for log-log type currents, which we develop in §4.4.1, is not necessary, because we can
simply use the results of Mumford [95, Proposition 1.2].

As a direct consequence of Corollary 4.1.12 and Remark 4.1.4b), we get

Corollary 4.1.14. We use the notation from Corollary 4.1.12. The cohomological class of π−2 ·[
ωWP

]
L1 in H2(M g,m,R) coincides with c1(λH,ng,m).

Remark 4.1.15. Corollary 4.1.14 is originally due to Wolpert, let’s see how it follows from his
results.

In [113, Theorem 1.3], Wolpert has shown that ωWP can be written nicely in Fenchel-Nielsen
coordinates. From this formula, he deduced in [113, §2] that the form ωWP extends smoothly
to the differential form ωFNWP over the space M

FN

g,0 , which is homeomorphic to M g,0, but with
differential structure coming from Fenchel-Nielsen coordinates. Then, by studying the regularity
of the application i : M

FN

g,0 → M g,0, he concluded in [113, Theorem 4.1] that the cohomology
class [ωWP ], induced by the current [ωWP ]L1 , and the cohomology class [ωFNWP ], induced by the
differential form ωFNWP , coincide.

Then in [111, Lemma 5.4], for m = 0, Wolpert proved the identity π−2 · [ωFNWP ] = c1(λH,ng,m). He
did it by constructing explicitly 2+[g/2] analytic 2-cycles in M g,0, which generate the cohomology
group H6g−8(M g,0,R), and then he explicitly evaluated the intersection pairing of [ωFNWP ] and
c1(λH,ng,m) with those 2-cycles to show that [ωWP ] and [ωFNWP ] coincide. The expression of ωWP in
terms of Fenchel-Nielsen coordinates plays a fundamental role in his calculation. As it was later
remarked by Arbarello-Cornalba [7, end of §1], the reasoning of Wolpert works for any m ∈ N.
By combining all those results, we get Corollary 4.1.14 from the results of Wolpert.

We note that our proof is very different, and it doesn’t appeals neither to Fenchel-Nielsen coor-
dinates, neither to an explicit construction of the generators of H6g−8(M g,0,R).

Let’s state the following corollaries, regarding the Weil-Petersson form.

Corollary 4.1.16. The Weil-Petersson form ωWP has a local continuous potential.

Remark 4.1.17. Corollary 4.1.16 was originally proved by Wolpert in [112, §2]. He later used it
to give a complex-analytic proof of the ampleness of Weil-Petersson form, which was originally
proved by Knudsen-Mumford [76], [74], [75]. Our method of the proof is constructive, and doesn’t
use ∂∂-lemma, thus, it is very different from the non-constructive proof in [112, §2].
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Corollary 4.1.18. We can decompose the Weil-Petersson form ωWP as

ωWP = −π2α + dβ, (4.1.16)

for some smooth forms α, β over Mg,m. Moreover, there is a smooth Hermitian metric hsm on
λH,0g,m over M g,m such that

α = c1(λH,0g,m, hsm), (4.1.17)

and β, dβ have log-log growth along ∂M g,m. In particular, we have∫
Mg,m

ω
∧(3g−3+m)
WP = (−π2)3g−3+m

∫
M g,m

c1(λH,0g,m)∧(3g−3+m). (4.1.18)

As a consequence, we see that the left-hand side of (4.1.18) is a rational multiple of a power of π.

Remark 4.1.19. a) The decomposition (4.1.16) can be also deduced from studying the singularities
of the Deligne metric on the Deligne-Weil product, as it was done implicitly by Freixas in his PhD
thesis [58, Theorem 5.1.3].

b) The identity (4.1.18) was originally proved by Wolpert in [113, Corollary 5.3, Lemma 5.4],
see also Remark 4.1.15. Our proof of (4.1.18) is very different.

c) Similarly, local index formulas have been used by Takhtajan-Zograf in [108, §5.3, §5.4] to
give an alternative approach of computing symplectic volumes of the moduli spaces of parabolic
bundles, which were originally calculated by Witten in [110, Formula 3.18].

Finally, let’s describe our last application. For this, let’s recall that Deligne in [42, §7] defined
a holomorphic line bundle 〈ωg,m(D), ωg,m(D)〉 over M g,m, which is now called the Deligne-Weil
product. For m = 0, in [42, §8], he endowed it with the Hermitian norm ‖·‖Del

g,m, which is now
called the Deligne norm. Later, Freixas in his PhD thesis [58, Theorem 5.1.3] generalized the
construction of this norm for m ∈ N. The natural isomorphism

λH,0g,m →
〈
ωg,m(D), ωg,m(D)

〉−1 (4.1.19)

was constructed by Mumford in [96, p. 102] for m = 0. Then Freixas in [59, Theorem 3.10]
extended it for m ∈ N. Those isomorphisms are canonical and can be characterized uniquely up
to a multiplication by −1 as the morphisms which respect Z-structure of the corresponding line
bundles, coming from the fact that M g,m and C g,m can be equipped with a structure of arithmetic
varieties, for which Π is an arithmetic morphism in the sense of the book of Soulé [106]. see [76],
[74], [65, §1.5], [59], [42].

When one applies the general isomorphism of Deligne [42, Construction 7.5] to the universal
family of punctured stable curves, one gets an isomorphism

λH,0g,m → λH,ng,m ⊗
〈
ωg,m(D), ωg,m(D)

〉6n2−6n
. (4.1.20)

For m = 0, the isomorphism (4.1.20) was also constructed by Mumford [96, Theorem 5.10 and
p. 102]. The isomorphism (4.1.20) respects the induced Z-structure. This is due to the fact
that by [42], the construction of Deligne works for schemes over any ring and his construction is
compatible with the base change.
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Corollary 4.1.20. The isomorphisms (4.1.19), (4.1.20) over M g,m are isometries up to a constant
when the line bundles are induced by‖·‖Del

g,m and‖·‖H,ng,m .

Remark 4.1.21. a) For isomorphism (4.1.19), this fact was firstly proved for m = 0 up to an
undetermined constant by Deligne in [42]. He relied extensively on the theory of Bismut-Gillet-
Soulé [21], [22], [23]. Later, the constant was computed explicitly by Gillet-Soulé in [65, Propo-
sition 1.5.2], [66] for m = 0, where authors relied heavily on arithmetic Riemann-Roch theorem.
By using those results, Freixas in [59, Theorem 6.1] developed the arithmetic Riemann-Roch the-
orem for hyperbolic surfaces with cusps and proved that (4.1.19) is an isometry up to an explicit
constant for any m ∈ N. In his theory he used the version of the analytic torsion defined through
the lengths of closed geodesics as in Takhtajan-Zograf [107]. He relied heavily on the results of
the asymptotics of the Selberg Zeta Function due to Wolpert [115].

For isomorphism (4.1.20), this was firstly proved by Deligne [42, Théorème 11.4] in the case
m = 0. He also proved that the constant up to which this isometry holds is 1. In [60, Theorem
6.1], Freixas extended the result of Deligne for any m ∈ N by using the definition of the analytic
torsion through the lengths of closed geodesics. As we prove in our forthcoming paper [56], this
definition of the analytic torsion coincides with our definition.

b) Although our methods do not determine precisely the norm of the isomorphism, they have
an advantage of being a 1-paragraph consequences of the curvature theorem, Theorem D. In fact,
from Theorem D we deduce that the norm of the isomorphisms (4.1.19), (4.1.20) is pluriharmonic
over M g,m. Thus, it is a constant. For more details, see §4.5.2.

Finally, let’s mention that in the related work of Albin-Rochon [4], authors obtain local family
index formula for the direct image R•π∗(ωg,m(D)n) over Mg,m. They are able to do to because
the dimension of the cohomology of the fiber does not vary in a family, and thus R•π∗(ωg,m(D)n)
forms a holomorphic vector bundle over Mg,m. In our situation, the cohomology of the fiber may
vary, and similarly to [21], [22], [23], we work only with the first Chern form.

Now let’s describe the plan of this article. In Section 2, we recall the basic definitions of the
subject, we recall the definition of the Quillen metric, different notions of singularities of vector
bundles and Bott-Chern forms. In Section 3, we prove an analytic proposition, which studies the
singularities of a push-forward of a differential form in f.s.o. Then we use it to prove Theorem
C. In Section 4, we develop potential theory for currents of log-log growth and then we prove
Theorem D and Corollaries 4.1.7, 4.1.8. In Section 5, we recall the necessary prerequisites related
to the moduli space of pointed stable curves and prove Corollaries 4.1.10, 4.1.12, 4.1.16, 4.1.18,
4.1.20.

Notation. For ε > 0, we denote

D(ε) = {z ∈ C : |z| < ε}, D∗(ε) = {z ∈ C : 0 < |z| < ε}. (4.1.21)

For a vector space E, we denote detE := ΛmaxE.
For a holomorphic vector bundle ξ over a complex manifold X with a Hermitian metric hξ over

X , the pair (ξ, hξ) is called a Hermitian vector bundle over X .
For a divisor D0 ⊂ Y in a complex manifold Y , we denote by sD0 the canonical holomorphic

section of OY (D0), div(sD0) = D0, and by δD0 the current of integration along D0. For a current
T over Y \D0, which is in L1

loc(Y ), we denote by [T ]L1 the L1 extension of T over Y .
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Let α = (α1, . . . , αq) ∈ Nq, q ∈ N be a multi-index. We denote by |α| =
∑
αi.

Note. This part of the thesis can be found on the ArXiv, see [55].

4.2 Families of nodal curves and related notions
In this section we recall the relevant notations. More precisely, in Section 2.1, we recall the notion
of the analytic torsion from the first paper of these series, [54] (for related notions of analytic
torsions, see Lundelius [81], Jorgenson-Lundelius [70], [71]; Albin-Rochon [5], [4]; see also [54,
§2.2] for a brief summary about the connections between those definitions). In Section 2.2, we
recall the definition of holomorphic families of Riemann surfaces with ordinary singularities, we
define the notion of a family of surfaces with cusps and the Wolpert norm on the restriction of
the relative canonical line bundle to the cusps. In Section 2.3, we recall the properties of the
determinant line bundle due to Grothendick-Knudsen-Mumford [76] and Bismut-Gillet-Soulé [23].
We also recall the definition of the Quillen norm for non-compact surfaces, which was done in [54].
In Section 2.4, we recall several notions of singularities of Hermitian metrics on holomorphic line
bundles. In Section 2.5, we recall the theory of Bott-Chern currents for singular Hermitian metrics
and prove some useful properties of those currents. Finally, in Section 2.6, we prove that the class
of pre-log-log metrics of infinite order is not empty.

4.2.1 The analytic torsion
Let M be a compact Riemann surface, and let DM = {PM

1 , . . . , PM
m } be a finite set of distinct

points in M . Let gTM be a Kähler metric on the punctured Riemann surface M = M \DM .
For ε ∈]0, 1[, i = 1, . . . ,m, let zMi : M ⊃ V M

i (ε) → D(ε) = {z ∈ C : |z| ≤ ε} be a local
holomorphic coordinate around PM

i , and

V M
i (ε) := {x ∈M : |zMi (x)| < ε}. (4.2.1)

We say that gTM is Poincaré-compatible with coordinates zM1 , . . . , z
M
m if for any i = 1, . . . ,m,

there is ε > 0 such that gTM |VMi (ε) is induced by the Hermitain form
√
−1dzMi dz

M
i∣∣zMi ln |zMi |
∣∣2 . (4.2.2)

We say that gTM is a metric with cusps if it is Poincaré-compatible with some holomorphic co-
ordinates of DM . A triple (M,DM , g

TM) of a Riemann surface M , a set of punctures DM and a
metric with cusps gTM is called a surface with cusps (cf. [93]).

From now on, we fix a surface with cusps (M,DM , g
TM) and a Hermitian vector bundle (ξ, hξ)

over it. We denote by ωM := T ∗(1,0)M the canonical line bundle over M . We denote by‖·‖ωM the
norm induced on ωM by gTM over M . Let OM(DM) be the line bundle associated with the divisor
DM . The twisted canonical line bundle is defined as

ωM(D) := ωM ⊗ OM(DM). (4.2.3)
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The metric gTM endows by Construction 4.1.1 the line bundle ωM(D) with the induced Hermitian
metric‖·‖M over M .

We denote by �ξ⊗ωM (D)n the Kodaira Laplacian associated with gTM and (ξ ⊗ ωM(D)n, hξ ⊗
‖·‖2n

M ). In this article we only consider the action of �ξ⊗ωM (D)n on the sections of degree 0.
We recall that form = 0, the analytic torsion was defined by Ray-Singer [103] as the regularized

determinant of �ξ⊗ωM (D)n . More precisely, let λi, i ∈ N be the non-decreasing sequence of non-
zero eigenvalues of �ξ⊗ωM (D)n . Classically, the associated zeta-function

ζM(s) :=
∑

λsi (4.2.4)

is defined for Re(s) > 1, s ∈ C and it extends meromorphically to the entire s-plane. This
extension is holomorphic at 0, and the analytic torsion is defined by

T (gTM , hξ ⊗‖·‖2n
M ) := exp(−ζ ′M(0)). (4.2.5)

However, for m > 0, the heat operator associated with �ξ⊗ωM (D)n is no longer of trace class.
Thus, the definition (4.2.5) is no longer applicable, but, as it was shown in the previous paper of
this series [54, §2.2], by taking out the diverging part in the definition of the heat trace, we can
extend the definition of zeta-function ζM(s) to define the analytic torsion T (gTM , hξ ⊗‖·‖2n

M ) for
m ≥ 0 by the same formula (4.2.5).

4.2.2 Families of nodal curves
In this section we recall the definition of a holomorphic family of Riemann surfaces with ordinary
singularities (cf. Bismut-Bost [20]) and some of its properties. We introduce its cusped version,
which we call a family of surfaces with cusps, and we also define the Wolpert norm.

Definition 4.2.1. A holomorphic family of Riemann surfaces with ordinary singularities is a holo-
morphic, proper, surjective map π : X → S of complex manifolds, such that for every t ∈ S, the
space Xt := π−1(t) is a complex curve whose singularities are at most ordinary double points. As
a shortcut, we will call π a f.s.o. (from french “famille à singularités ordinaires”).

Proposition 4.2.2 ( [20, Proposition 3.1]). Let π : X → S be a f.s.o. Then for every x ∈ X , there
are local holomorphic coordinates (z0, . . . , zq) of x ∈ X and (w1, . . . , wq) of π(x) ∈ S, such that
π is locally defined by one of the following identities

wi = zi, for i = 1, . . . , q, (4.2.6)
w1 = z0z1; wi = zi, for i = 2, . . . , q. (4.2.7)

Corollary 4.2.3 ( [20, §3(a)]). Let π : X → S be a f.s.o., and let ΣX/S ⊂ X be the locus of double
points of the fibers of π. Then the following holds

a) ΣX/S is a submanifold of X of codimension 2;
b) the map π|ΣX/S : ΣX/S → S is a closed immersion;
c) the map π|X\ΣX/S : X \ ΣX/S → S is a submersion.

In particular, the direct image ∆ = π∗(ΣX/S) is a divisor in S.
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Notation 4.2.4. We use the notation ∆, ΣX/S for the divisor and the submanifold from Corrolary
4.2.3.

For a complex manifold X , we denote by ΠX the sheaf of holomorphic sections of the vector
bundle T ∗(1,0)X , and by ωX the line bundle det(T ∗(1,0)X).

Let’s recall the construction of the relative canonical line bundle ωX/S of a f.s.o. π : X → S.
Define the sheaf ΠX/S by the exact sequence:

π∗ΠS → ΠX → ΠX/S → 0. (4.2.8)

By Corollary 4.2.3, the exact sequence (4.2.8) becomes exact to the left when restricted to X \
ΣX/S:

0→ π∗ΠS|X\ΣX/S → ΠX |X\ΣX/S → ΠX/S|X\ΣX/S → 0. (4.2.9)

By taking determinants of (4.2.9), we deduce the isomorphism

ΠX/S|X\ΣX/S = (ωX ⊗ π∗ω−1
S )|X\ΣX/S . (4.2.10)

We define
ωX/S := ωX ⊗ π∗ω−1

S . (4.2.11)

Then ωX/S is the unique extension of ΠX/S|X\ΣX/S over X . This line bundle is called the relative
canonical line bundle of π : X → S.

Let x ∈ ΣX/S . Take local coordinates (z0, . . . , zq) on an open neighbourhood V of x ∈ X and
local coordinates (w1, . . . , wq) of π(x) ∈ S, as in (4.2.7). Then the manifold ΣX/S ∩V is given by

{z0 = 0 and z1 = 0}. (4.2.12)

Consider the sections dz0/z0 and dz1/z1 of ΠX , defined over the sets {z0 6= 0} and {z1 6= 0}
respectively. The images of dz0/z0 and −dz1/z1 in ωX/S coincide over {z0z1 6= 0}, since

dz0

z0

+
dz1

z1

= π∗
dw1

w1

. (4.2.13)

Thus, they define a nowhere vanishing section σ of ωX/S over V \ ΣX/S . Since ΣX/S is of codi-
mension 2, the section σ extends to a nowhere vanishing section over V of the line bundle ωX/S .

Definition 4.2.5 (Family of surfaces with cusps). A holomorphic family of Riemann surfaces with
ordinary singularities and cusps is a f.s.o. π : X → S, disjoint sections σ1, . . . , σm : S →
X \ΣX/S and a Hermitian metric‖·‖ωX/S on ωX/S over π−1(S \ |∆|)\ (∪i Im(σi)), such that for any
t ∈ S \ |∆|, the restriction of ‖·‖ωX/S over π−1(t)\ (∪mi=1σi(t)) induces the Kähler metric gTXt over
Xt \ (∪mi=1σi(t)) such that the associated triple (Xt, {σ1(t), . . . , σm(t)}, gTXt) becomes a surface
with cusps. As a short-cut, we call (π; {σ1, . . . , σm};‖·‖ωX/S) a f.s.c.

In fact, all the results of this article (except for Proposition 4.2.23) are local over the base. Thus,
we will always assume that one can write the divisor of cusps DX/S as in (4.1.1). We also denote
by DXt the restriction of DX/S on Xt := π−1(t), t ∈ S.
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Definition 4.2.6 (Wolpert norm). Let (π;σ1, . . . , σm;‖·‖ωX/S) be a f.s.c. Let t ∈ S \ |∆|, and let zi
be a holomorphic coordinate of σi(t) ⊂ Xt such that (see (4.2.2))

‖dzi‖ωX/S = |zi ln |zi||. (4.2.14)

By the uniformization theorem, such a holomorphic coordinate is uniquely defined up to a multi-
plication by a unitary complex constant. We define the norm‖·‖Wi on σ∗i (ωX/S) pointwise by

‖σ∗i dzi‖
W
i (t) = 1. (4.2.15)

The Wolpert norm‖·‖WX/S is defined as the product norm on ⊗iσ∗i (ωX/S), induced by‖·‖Wi .

We stress out that in general, we make no claims about the continuity of‖·‖WX/S .

Remark 4.2.7. Let (π; {σ1, . . . , σm};‖·‖ω,hyp
X/S ) be from Construction 4.5.2. Wolpert in [117, Def-

inition 1] defined the norm‖·‖W,hyp
X/S , which coincides with the norm from Definition 4.2.6 in this

particular case. In [117, Theorem 5] he showed that‖·‖W,hyp
X/S is smooth over S \ |∆|.

4.2.3 Determinant line bundles and Quillen norms
In this section we recall the notion of the determinant line bundle due to Grothendick-Knudsen-
Mumford [76] and then, similarly to Bismut-Gillet-Soulé [23], but basing on the definition of the
analytic torsion from [54, Definition 2.17], we introduce the notion of the Quillen norm on the
determinant line bundle.

Let π : X → S be a f.s.o., and let ξ be a holomorphic vector bundle over X . We denote

det(R•π∗ξ)t := detH0(Xt, ξ)⊗ (detH1(Xt, ξ))
−1, t ∈ S, (4.2.16)

where we identified ξ with its sheaf of holomorphic sections. By Grothendick-Knudsen-Mumford
[76] (cf. [20, Proposition 4.1]) the family of complex lines (det(R•π∗ξ)t)t∈S is endowed with a
natural structure of holomorphic line bundle det(R•π∗ξ) over S.

Now, suppose (π; {σ1, . . . , σm};‖·‖ωX/S) is a f.s.c. For t ∈ S \ |∆|, we denote by dvXt the
Riemannian volume form on Xt \ (∪mi=1σi(t)), induced by ‖·‖ωX/S on the fiber Xt. Endow the
twisted canonical line bundle ωX/S(D) with the norm ‖·‖X/S from Construction 4.1.1. Let ξ be
endowed with a Hermitian metric hξ over π−1(S \ |∆|). For n ∈ Z, n ≤ 0, we define the L2-scalar
product 〈·, ·〉L2 on C∞(Xt, ξ ⊗ ωX/S(D)n) and C∞(Xt, ξ ⊗ ωX/S(D)n ⊗ ωX/S) by

〈s1, s2〉L2 =

∫
Xt

〈s1(x), s2(x)〉hdvXt(x), (4.2.17)

where s1, s2 are either in C∞(Xt, ξ ⊗ ωX/S(D)n) or in C∞(Xt, (ξ ⊗ ωX/S(D)n)∗ ⊗ ωX/S), and
〈·, ·〉h is the pointwise Hermitian product induced by hξ,‖·‖ωX/S and‖·‖X/S . As we explained in [54,
Section 2.1], the right-hand side of (4.2.17) is finite, and (4.2.17) defines the L2-scalar product on
the vector spaces H0(Xt, ξ⊗ωX/S(D)n), H1(Xt, ξ⊗ωX/S(D)n). We denote by‖·‖L2 (gTXt , hξ ⊗
‖·‖2n

X/S) the induced L2-norm on the complex line (det(R•π∗(ξ ⊗ ωX/S(D)n))t)
−1.
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Definition 4.2.8. The Quillen norm on the line bundle (det(R•π∗(ξ⊗ωX/S(D)n)))−1 over S \ |∆|
is defined for t ∈ S \ |∆| by

‖·‖Q
(
gTXt , hξ ⊗ ‖·‖2n

X/S

)
:= T

(
gTXt , hξ ⊗ ‖·‖2n

X/S

)1/2 ·‖·‖L2

(
gTXt , hξ ⊗‖·‖2n

X/S

)
. (4.2.18)

4.2.4 Singular Hermitian vector bundles
In this section we recall several notions of singularities for Hermitian vector bundles. Then we
show that one can actually characterize the Grothendick-Knudsen-Mumford determinant line bun-
dle det(R•π∗(ξ ⊗ ωX/S(D)n))−1 as an extension of Bismut-Gillet-Soulé determinant line bundle
λ(j∗(ξ ⊗ ωX/S(D)n)) through the singularities of the Quillen metric.

We work with a complex manifold Y of dimension q + 1, a normal crossing divisor D0 ⊂ Y
and a submanifold F ⊂ Y .

Definition 4.2.9. A triple (U ; z0, . . . , zq; l) of an open set U ⊂ Y , coordinates z0, . . . , zq : U → C
and l ∈ N is called an adapted chart for D0 (resp. F ) at x ∈ |D0| (resp. x ∈ F ) if U =
{(z0, . . . , zq) ∈ Cq+1 : |zi| < 1, for all i = 0, . . . , q} and |D0| ∩ U (resp. F ∩ U ) is defined by
{z0 · · · zl = 0} (resp. {z0 = 0, . . . , zl = 0}).

Notation 4.2.10. Let (U ; z0, . . . , zq; l) be an adapted chart for D0. We denote

dζk =

{
dzk/(zk ln |zk|), if 0 ≤ k ≤ l,

dzk, if l + 1 ≤ k ≤ q.
(4.2.19)

Definition 4.2.11. a) [36, Definition 2.17] A differential form over Y \|D0| (resp. a locally bounded
section of the wedge algebra on cotangent space) has log-log growth of order k ∈ N (resp. weakly
log-log growth) on Y , with singularities along D0, if it can be expressed as a linear combination
of monomials constructed using dζk, dζk, k = 0, . . . , q with coefficients f ∈ C∞(Y \ |D0|) (resp.
f ∈ L∞(Y \ |D0|)) such that for any k,k′ ∈ Nq+1, |k| + |k′| ≤ K (resp. for k,k′ = 0), for some
adapted chart (U ; z0, . . . , zq; l) of D0 at x ∈ |D0|, and for some C > 0, p ∈ N, we have∣∣∣∂|k|

∂zk
∂|k
′|

∂zk′ f(z0, . . . , zq)
∣∣∣ ≤ C|z|−|k0|−|k′0|

l∏
k=0

(
ln | ln |zk||

)p
+ C, (4.2.20)

where k0,k′0 ∈ Nl+1 are the projections of k,k′ onto first l+1 components, and ∂|k|/∂zk, ∂|k
′|/∂zk′

are the multinomial notations for the differentiations. When we don’t precise k ∈ N, by our
convention, this means k = 0.

b) [58, Definition 2.1] A function f : Y \ F → C has log-log growth on Y , with singularities
along F (resp. has logarithmic singularities along F ), if for any x ∈ Y , for some adapted chart
(U ; z0, . . . , zq; l) of F at x, and for some C > 0, p ∈ N, we have

|f(z0, . . . , zq)| ≤ C
(

ln
∣∣ ln (maxlk=0{|zk|}

)∣∣)p + C,(
resp. |f(z0, . . . , zq)| ≤ C

∣∣ ln (maxlk=0{|zk|}
)∣∣p + C

)
.

(4.2.21)
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c) A function f : Y \ |D0| → C has logarithmic singularities of order k ∈ N along D0, if
f ∈ C∞(Y/|D0|,C), and for any k,k′ ∈ Nq+1, for some adapted chart (U ; z0, . . . , zq; l) of D0 at
x ∈ |D0|, and some C > 0, p ∈ N, we have∣∣∣∂|k|

∂zk
∂|k’|

∂zk′ f(z0, . . . , zq)
∣∣∣ ≤ C|z|−|k0|−|k′0|

l∏
k=0

| ln |zk||p + C, (4.2.22)

where k0,k′0 ∈ Nl+1 are the projections of k,k′ onto first l + 1 components.
d) [95, p. 240] A differential form over Y \ |D0| has Poincaré growth on Y , with singularities

along D0, if it can be expressed as a linear combination of monomials constructed using dζk, dζk,
k = 0, . . . , q with coefficients f ∈ C∞(Y \ |D0|) ∩ L∞(Y \ |D0|).

e) A current T over Y \ |D0| has log-log growth (resp. Poincaré growth) on Y with singularities
alongD0 if it is represented by integration of a L1

loc-form and there is a form α with log-log growth
(resp. Poincaré growth) on Y , with singularities along D0, such that −α ≤ T ≤ α.

f) [37, Definition 7.1] A differential form α is pre-log-log of order k ∈ N on Y , with singulari-
ties along D0, if α, ∂α, ∂α, ∂∂α have log-log growth of order k on Y , with singularities along D0.
Again, when the order is not precised, by our convention, we suppose k = 0.

g) [58, Definition 2.14] A smooth function f : Y \ |D0| → C is P-singular, with singularities
along D0, if ∂f , ∂f , ∂∂f have Poincaré growth on Y , with singularities along D0.

Proposition 4.2.12 (Burgos Gil-Kramer-Kühn [37, Proposition 7.6]). a) Any differential form Y \
|D0| with log-log growth with singularities along D0 is locally integrable.

b) If α is pre-log-log form on Y with singularities along D0, then

[dα]L1 = d[α]L1 . (4.2.23)

Definition 4.2.13. Let L be a holomorphic line bundle over Y and let hL be a smooth Hermitian
metric on L over Y \ (F ∪ |D0|). We say that the metric hL has log-log growth with singularities
along F ∪ |D0| if for any local holomorphic frame υ of L, the function lnh(υ, υ) , has log-log
growth on Y , with singularities along F ∪ |D0|.

Definition 4.2.14 ( [95, p. 242], [36, Definition 4.29] (cf. [58, Definition 3.1])). Let ξ be a holo-
morphic vector bundle over Y and let hξ be a Hermitian metric on ξ over Y \ |D0|. We say that the
metric hξ is pre-log-log of order k ∈ N (resp. good) with singularities along D0 if for any local
holomorphic frame e1, . . . , erk(ξ) of ξ, the functions hξ(ei, ej), i, j ∈ 1, . . . , rk(ξ), (det(H))−1, for
H = (hξ(ei, ej))

rk(ξ)
i,j=1 have logarithmic singularities of order k ∈ N (resp. order 0), and the entries

of the matrix (∂H)H−1, are pre-log-log of order k ∈ N (resp. P-singular), with singularities along
D0. Again, when the order is not precised, by our convention, we suppose k = 0.

For line bundles, we have the following easy criteria of pre-log-log and good conditions:

Proposition 4.2.15 ( [58, Proposition 3.2]). Let L be a holomorphic line bundle over Y and let
hL be a smooth Hermitian metric on L over Y \ |D0|. Then hL is pre-log-log (resp. good) with
singularities along D0 if and only if for every local holomorphic frame υ of L over U ⊂ Y , the
function lnhL(υ, υ) is pre-log-log (resp. P-singular), with singularities along D0.
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The following proposition explains how nice vector bundles can be used to precise the extension
of a given line bundle.

Proposition 4.2.16. Let (L′, hL
′
) be a continuous Hermitian line bundle over Y \ |D0|. Then there

is at most one holomorphic line bundle L over Y which extends L′ in such way that the Hermitian
metric hL′ becomes nice with singularities along D0 in the sense of Definition 4.1.3b).

Proof. The proof is similar to the proof of the statement about the good vector bundles proved by
Mumford in [95, Proposition 1.3] with only one change: for an open U ⊂ Y , the frames of L are
given by{

s ∈ C∞(U \ |D0|, L′) : lnhL
′
(s, s) has log-log singularities along D0

}
. (4.2.24)

From now on, the proof repeats [95, Proposition 1.3], and we leave it to the interested reader.

Now we use the notation from Theorem C. Theorem C and Proposition 4.2.16 gives us a
possibility to deduce the characterization through the Quillen metric of Grothendick-Knudsen-
Mumford determinant line bundle det(R•π∗(ξ⊗ωX/S(D)n))−1 from the as an extension of Bismut-
Gillet-Soulé determinant line bundle λ(j∗(ξ ⊗ ωX/S(D)n)).

Corollary 4.2.17. Suppose Assumption S2 (resp. S3) hold. Then the line bundle Ln over S, is the
only extension of the line bundle

λ
(
j∗(ξ ⊗ ωX/S(D)n)

)12 ⊗
(

det(π∗(ωX/S||DX/S |)
)−rk(ξ)

⊗ OS(∆)rk(ξ) ⊗
(

det(π∗(det ξ||DX/S |)
)6
, (4.2.25)

over S \ |∆|, for which the norm ‖·‖Ln
over S \ |∆| is nice with singularities along ∆ (resp.

continuous over S).

Proof of Corollary 4.2.17 modulo Theorem C. By Theorems C2, C3 we see that the extension Ln

satisfies the required properties. Now, Proposition 4.2.16 shows that there is at most one extension,
which finishes the proof.

4.2.5 Bott-Chern currents and pre-log-log Hermitian vector bundles
In this section we recall the theory of Bott-Chern currents associated with pre-log-log Hermitian
vector bundles, which was implicit in the paper [36] and which extends previous work of Bismut-
Gillet-Soulé [21, Theorem 1.29]. We work with a complex manifold Y , and a normal crossing
divisor D0 ⊂ Y .

Now, let’s define the vector space

Ppll(Y,D0) := ⊕iP (i,i)
pll (Y,D0), (4.2.26)
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where P (i,j)
pll (Y,D0) are the vector spaces of pre-log-log differential forms on Y of degree (i, j)

with singularities along D0. We denote

P ′pll
(i,i)(Y,D0) = ∂(P

(i−1,i)
pll (Y,D0)) + ∂(P

(i,i−1)
pll (Y,D0)),

P ′pll(Y,D0) := ⊕iP ′pll
(i,i)(Y,D0).

(4.2.27)

Then, by Definition 4.2.11f), we have P ′pll(Y,D0) ⊂ Ppll(Y,D0).
Let φ : Mk(C) → C be a polynomial map, which is invariant under conjugation. For a Her-

mitian vector bundle (ξ, hξ) over Y , we denote by φ(ξ, hξ) the differential form, constructed by
φ(ξ, hξ) = φ(− 1

2π
√
−1
·Rhξ), where Rhξ is the curvature of the Chern connection on (ξ, hξ).

Proposition 4.2.18. Let hξ be a Hermitian metric on ξ, which is pre-log-log of order k ∈ N (resp.
good) over Y \ D0 with singularities along D0. Then the form φ(ξ, hξ) is pre-log-log of order k
(resp. good) on Y with singularities along D0, and the induced current [φ(ξ, hξ)]L1 represents the
cohomology class of φ(ξ) ∈ H2k(Y,C).

Proof. This was proved for good Hermitian metrics by Mumford in [95, Theorem 1.4]. The proof
for pre-log-log Hermitian metrics remains identical, see [37, Proposition 7.25].

We consider a short exact sequence of vector bundles over Y , endowed with Hermitian metrics
over Y \D0, which are pre-log-log with singularities along D0.

0 −−−→ (E0, h
E0) −−−→ (E1, h

E1) −−−→ (E2, h
E2) −−−→ 0. (4.2.28)

Theorem 4.2.19. For φ as above, there is a unique way to attach to every exact sequence (E•, h
E•)

as in (4.2.28) a class φ̃(E•, h
E•) ∈ Ppll(Y,D0)/P ′pll(Y,D0) such that

a) 1
2π
√
−1
∂∂φ̃(E•, h

E•) = φ(E0 ⊕ E2, h
E0 ⊕ hE2)− φ(E1, h

E1).

b) If (4.2.28) induces an isometry (E1, h
E1) = (E0 ⊕ E2, h

E0 ⊕ hE2), then φ̃(E•, h
E•) = 0.

c) If Y ′ is another complex manifold, D′0 is a normal crossing divisor in Y ′, and f : Y ′ → Y is
a holomorphic map such that f−1(D0) ⊂ D′0, then φ̃(f ∗E•, f

∗hE•) = f ∗φ̃(E•, h
E•).

d) For a Hermitian exact square

0 0 0y y y
0 −−−→ (E0

0 , h
E0) −−−→ (E0

1 , h
E0

1 ) −−−→ (E0
2 , h

E0
2 ) −−−→ 0y y y

0 −−−→ (E1
0 , h

E1
0 ) −−−→ (E1

1 , h
E1

1 ) −−−→ (E1
2 , h

E1
2 ) −−−→ 0y y y

0 −−−→ (E2
0 , h

E2
0 ) −−−→ (E2

1 , h
E2

1 ) −−−→ (E2
2 , h

E2
2 ) −−−→ 0y y y

0 0 0

(4.2.29)
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we have in Ppll(Y,D0)/P ′pll(Y,D0):

φ̃(E1
• , h

E1
•)− φ̃(E0

• ⊕ E2
• , h

E0
• ⊕ hE2

•)− φ̃(E•1 , h
E•1 ) + φ̃(E•0 ⊕ E•2 , hE

•
0 ⊕ hE•2 ) = 0. (4.2.30)

Proof. This theorem was proved in [36, Theorem 4.64] for the pre-log-log vector bundles of infi-
nite order, but their proof remains valid for pre-log-log vector bundles. This is due to the fact that
in [36, Theorem 4.64], the estimates of the higher derivatives of the underlying metric are only
used in the estimates of higher derivatives of the Bott-Chern form.

Remark 4.2.20. a) By [21, Theorem 1.29], we see that if hEi are smooth, then φ̃(E•, h
E•) coincides

with the Bott-Chern form constructed in [21].
b) When the exact sequence (ξ•, h

ξ•) consists of two elements

(ξ•, h
ξ•) : 0 −−−→ (ξ, hξ) −−−→ (ξ, hξ0) −−−→ 0, (4.2.31)

we denote for simplicity
φ̃(ξ, hξ, hξ0) := φ̃(ξ•, h

ξ•). (4.2.32)

By Theorem 4.2.19a), we have

∂∂

2π
√
−1

φ̃(ξ, hξ, hξ0) = φ(ξ, hξ)− φ(ξ, hξ0). (4.2.33)

In this paper we will only need to consider the short exact sequences consisting of 2 terms. Never-
theless, we state the theorem for general short exact sequences, since in the forthcoming paper [57]
about Deligne-Mumford isometry, we use it in full generality.

c) It’s disputable if one needs the last axiom. In the original set of the axioms [21, Theorem 1.29]
for smooth metrics, the last axiom is shown to be a consequence of the first three [21, Theorem
1.20, Corollary 1.30].

Proposition 4.2.21. Let (E•, h
E•) be the exact sequence from (4.2.28). Taking into account the

isomorphism detE1 ' detE0 ⊗ detE2, we have

c̃h(E•, h
E•)[0] = ln det

(
(hE0hE2)/hE1

)
. (4.2.34)

Proof. First of all, we have
c̃h(E•, h

E•)[0] = c̃1(E•, h
E•). (4.2.35)

By the uniqueness of the Bott-Chern classes from Theorem 4.2.19, it is enough to see that (4.2.34)
satisfies the requirements of Theorem 4.2.19 for φ = Tr, i.e. representing the first Chern form.

Proposition 4.2.22. Let ξ be a holomorphic vector bundle over Y , and let hξ, hξ0 be pre-log-log
Hermitian metrics on ξ with singularities along D0. Then

c̃h(ξ, hξ, hξ0)[0] = ln det(hξ/hξ0). (4.2.36)

Moreover, if ξ is of rank 1, then we have

c̃h(ξ, hξ, hξ0)[2] =
1

2
ln det(hξ/hξ0) ·

(
c1(ξ, hξ0) + c1(ξ, hξ)

)
. (4.2.37)
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Proof. First of all, the identity (4.2.36) follows directly from Proposition 4.2.21.
Now, we note that for smooth metrics (4.2.37) follows from [21, Theorems 1.27, 1.30]. To

prove (4.2.37) in full generality, we point out that two pre-log-log Hermitian metrics hξ0, hξ1 on
holomorphic line bundles can be joined by a family of uniformly pre-log-log Hermitian line bun-
dles hξt such that (hξt )

−1∂th
ξ
t has uniform log-log growth. Take for example hξt := (hξ)t(hξsm)1−t

for some smooth Hermitian metric hξsm. Thus, the construction from [21, §e)] works perfectly well
for pre-log-log Hermitian line bundles. Thus, the reasoning of [21, Theorems 1.27, 1.30] still holds
in the pre-log-log case, and this implies (4.2.37) for pre-log-log Hermitian metrics.

4.2.6 Existence of pre-log-log metrics of infinite order
In this section we prove that the class of pre-log-log metrics of infinite order is not empty. More
formally, we prove

Proposition 4.2.23. For any f.s.o. π : X → S, a divisor DX/S in X induced by a submanifold
|DX/S| intersecting singular fibers transversally and such that π||DX/S | : |DX/S| → S is a local
isomorphism, there is a metric‖·‖X/S on ωX/S(D) over X \ |DX/S| which is pre-log-log of infinite
order with singularities along DX/S .

The idea of the proof is as follows. We would like to construct a smooth function h : U → C,
defined in a neighbourhood U around |DX/S| such that its restriction over each fiber becomes a
local holomorphic coordinate. If such a function exists, we can construct the needed metric by
gluing a smooth metric away from |DX/S| and a metric over the fibers obtained by the restriction
induced by the 2-form √

−1dhdh

|h log |h||2
(4.2.38)

However, it’s quite easy to see that the existence of such a function would imply that the normal
vector bundle to |DX/S| in X is trivial. Thus, in general, such h does not exist. Nevertheless, we
prove that such a function h exists, if we allow it to be multivalued with respect to a multiplication
by a unimodular function over the base.

To make it formal, let’s introduce some notation. For any open U ⊂ X , we define the set

C∞π,hol(U,C) =
{
f ∈ C∞(U,C) : f is holomorphic along the fibers of π

}
. (4.2.39)

Trivially, the multiplicative group C∞(π(U), S1) acts on C∞π,hol(U,C) by multiplication. Here we
view S1 injected in C as a unit circle.

For any open subset U ⊂ X , we define the set

Aπ(U) = C∞π,hol(U,C)/C∞(π(U), S1). (4.2.40)

By standard partition of unity argument, Aπ(U) form a sheaf over X , which we denote Aπ.

Lemma 4.2.24. There is a neighborhood V of |DX/S| and h ∈ Aπ(V ) such that {h = 0} = DX/S .
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Before giving a proof let’s see how it helps us to prove Proposition 4.2.23.

Proof of Proposition 4.2.23. Let V and h be as in Lemma 4.2.24. Then although the 2-form
(4.2.38) is not well-defined, its restriction over the fibers is perfectly well-defined. We denote
by‖·‖sing

X/S the norm on ωX/S(D) over V \ |DX/S| induced by the restriction of this form over each
fiber. Trivially, it is pre-log-log of infinite order with singularities along DX/S .

Let ‖·‖sm
X/S be a smooth metric on ωX/S(D) over X \ U for some U b V , |DX/S| ⊂ U . By

using partition of unity, we glue the norms ‖·‖sm
X/S and ‖·‖sing

X/S to get a norm ‖·‖X/S on ωX/S(D)

over X \ |DX/S|. As‖·‖sing
X/S is pre-log-log of infinite order with singularities along DX/S , the norm

‖·‖X/S is pre-log-log of infinite order with singularities along DX/S as well. Moreover, as h is
holomorphic over the fibers, the norm‖·‖X/S induces Kähler metric along the fibers with cusps at
DX/S . Thus, the norm‖·‖X/S satisfies the hypothesizes of Proposition 4.2.23.

Proof of Lemma 4.2.24. We will construct such neighborhood V and such section h explicitly. We
choose some covering {Ui, i ∈ I} of S. Let Vi be a neighborhood of DX/S ∩ π−1(Ui) such that
π(Vi) = Ui and there are local coordinates (zi0, z

i
1, . . . , z

i
q) of Vi such that

π(zi0, z
i
1, . . . , z

i
q) = (zi1, . . . , z

i
q). (4.2.41)

We suppose that Vi are small enough so that for any i, j ∈ I , the image of the functions zi0/z
j
0 over

Vi ∩ Vj is contained in some proper sector of C.
We denote fi := zi0, and consider it as an element in Aπ(Vi). Let ρi be a partition of unity in S

subordinate to {Ui, i ∈ I}. We define hi ∈ Aπ(Vi) by

hi = fi ·
∏
j∈I

Vj∩Vi 6=∅

(fj
fi

)ρj◦π
. (4.2.42)

Here, due to our supposition on the image of zj0/z
i
0, the function (fj/fi)

ρj◦π is well-defined over
Vi ∩ Vj up to a multiplication by a function, which is a pull-back of a smooth function over S.
By this and the definition of the partition of unity, we see that hi ∈ Aπ(Vi) glue into an element
h ∈ Aπ(∪i∈IVi), which satisfies the assumptions of the lemma.

4.3 Regularity and singularities: a proof of Theorem C
In this section we prove Theorem C. More precisely, in Section 3.1, we prove a technical proposi-
tion about the regularity of a push-forward of a differential form in f.s.o. In Section 3.2, we recall
the necessary prerequisites for the proof of Theorem C: the compactification theorem [54, Theo-
rem A], the anomaly formula for surfaces with cusps [54, Theorem B], and the result of Bismut-
Bost [20, Théorème 2.2], describing the asymptotics of the Quillen norm associated with a smooth
metric over the total space near the singular fibers. In Section 3.3, we use it to prove Theorem C.
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4.3.1 Pushforward of differential forms in f.s.o.
In this section we will study the singularities of a pushforward of a differential form in f.s.o. This
study will be used extensively in the proof of Theorem C. The main result of this section is

Proposition 4.3.1. Let π : X → S be a f.s.o., and let D ⊂ X be a divisor intersecting π−1(∆)
transversally and such that π|D : D → S is locally an isomorphism.

a) Let α be a smooth 2-form over X \ |D| with log-log growth of infinite order along D. Then
the function π∗[α] over S \ |∆| is very nice with singularities along ∆ (cf. Definition 4.1.3).

b) Suppose that ∆ has normal crossings. Let α be a pre-log-log differential 2-form over X \
(π−1(|∆|) ∪ |D|), with singularities along π−1(∆) ∪ D. Then the function π∗[α] over S \ |∆| is
nice with singularities along ∆ (cf. Definition 4.1.3).

c) Suppose that ∆ has normal crossings. Let α be a differential (1, 1)-form over X \ (ΣX/S ∪
|D|), such that it has Poincaré growth onX \|D|with singularities along π−1(∆), and the coupling
of α with smooth vertical vector fields over X \ (ΣX/S ∪|D|) is continuous and has log-log growth
with singularities along |D| (cf. Definition 4.2.11b)). Let f : X \ (ΣX/S ∪ |D|) → R be a
continuous function, with log-log growth along ΣX/S ∪ |D|. Then the function π∗[fα] extends
continuously over S.

Proof. The Proposition 4.3.1a) was proved by Igusa [69] in the case D = ∅ (for precisely this
version, see Bismut-Bost [20, Théorèmes 12.2, 12.3]). Now let’s describe the proof for D 6= ∅.

We take t0 ∈ S, and let U ⊂ S be a small neighbourhood of t0 such that π|D : D → S is an
isomorphism on each connected component over π−1(U). For simplicity, we suppose thatD|π−1(U)

has only one connected component. We choose coordinates (z0, . . . , zq) of (π|D)−1(t0) ∈ π−1(U)
and (w1, . . . , wq) of U as in (4.2.6), such that D is given by the equation {z0 = 0} in π−1(U).

For c > 0 small enough, we denote V1,c = {x ∈ U : |z0(x)| < c}, and decompose the
integration over the fiber in π∗[α] into two parts: (π|V1,c)∗[α] and (π|π−1(U)\V1,c)∗[α]. The function
(π|π−1(U)\V1,c)∗[α] induces very nice Hermitian metric on S \ |∆| with singularities along ∆ by the
mentioned result of Igusa.

Let’s treat the first part. Trivially, for any p ∈ Z, we have∫
|z1|<c

(ln | ln |z1||)p
√
−1dz1dz1

|z1 ln |z1||2
= 4π

∫ c

0

(ln | ln(r)|)pdr
r(ln(r))2

= 4π

∫ −2/ ln(c)

0

ln(y)pdy < +∞. (4.3.1)

Since α is pre-log-log over π−1(U) \ |D|, with singularities along D, by Lebesgue dominated
convergence theorem and (4.3.1), we deduce that

(π|V1,c)∗[α] is continuous. (4.3.2)

By taking horizontal derivatives with respect to the coordinates entering the definition of log-log
growth of infinite order of α, we deduce in the same way that the form (π|V1,c)∗[α] is smooth, which
concludes the proof.
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Now let’s prove 4.3.1b). It is essentially the repetition of the proof of [58, Theorem 5.1.3] from
the thesis of Freixas.

We take t0 ∈ S \ |∆|, and let U ⊂ S \ |∆| be a small neighbourhood of t0 as in the previous
case. As before, we suppose for simplicity that D|π−1(U) has only one connected component. We
choose coordinates (z0, . . . , zq) of (π|D)−1(t0) ∈ π−1(U) and (w1, . . . , wq) of U as before, and
let V1,c be defined as above. We decompose the integration over the fiber in π∗[α] into two parts:
(π|V1,c)∗[α] and (π|π−1(U)\V1,c)∗[α].

Trivially, as π|π−1(U)\V1,c is a submersion, and the form α is continuous over π−1(U) \ V1,c for
any c > 0, the form (π|π−1(U)\V1,c)∗[α] is continuous over U for any c > 0. By this and the identity

lim
c→0

(π|V1,c)∗[α] = 0, (4.3.3)

which follows from (4.3.1), we conclude that π∗[α] is continuous over S \ |∆|. Let’s prove that
π∗[α] has log-log growth along ∆.

We fix t0 ∈ |∆|. For simplicity, we suppose that the curve Xt0 = π−1(t0) has only one double
point singularity at x0 ∈ Xt0 . We choose coordinates (z0, . . . , zq) at x0 ∈ X and (w1, . . . , wq) at
t0 ∈ S as in (4.2.7). For c > 0 small enough, we denote U = {t ∈ S : |w1| < c} and

V2,c = {x ∈ π−1(U) : |z0(x)|, |z1(x)| < c}. (4.3.4)

Let’s prove that (π|V2,c)∗[α] has log-log growth along ∆. The divisor π−1(∆) is given over V2,c

by equations {z0 = 0}+ {z1 = 0}. Let c < 1/2. We note that since z0z1 = w1, the estimates

ln | ln |z0||, ln | ln |z1|| ≤ ln | ln |w1||, (4.3.5)

are valid in V2,c. By (4.3.5), there is a function f : S \ |∆| → R with log-log growth along ∆ such
that function (π|V2,c)∗[α] is bounded by

f ·
∫
Hw1,c

(√
−1dz0dz0

|z0 ln |z0||2
+

|dz0dz1|
|z0 ln |z0|||z1 ln |z1||

+

√
−1dz1dz1

|z1 ln |z1||2

)
, (4.3.6)

for Hw1,c = {(z0, z1) : z0z1 = w1; |z0|, |z1| < c}. Trivially, there is C > 0 such that for any
|ω1| < c2, we have ∫

Hw1,c

|dz0dz1|
|z0 ln |z0|||z1 ln |z1||

≤
∫
Hw1,c

√
−1dz0dz0

|z0 ln |z0||2
< C. (4.3.7)

By (4.3.6) and (4.3.7), we conclude that (π|V2,c)∗[α] has log-log growth along ∆.
Now, as before, for simplicity, we suppose thatD|π−1(U) has only one connected component. We

choose coordinates (z0, . . . , zq) of π−1(U) and (w1, . . . , wq) of U as in (4.2.6), and we conserve the
notation V1,c from the previous step. Moreover, we suppose that π−1(∆) is given by the equation
{z1 = 0} over V1,c. From (4.3.1), the fact that α has log-log growth along π−1(∆) ∪D, which is
given by {z0z1 = 0} in U , and the fact that π|V1,c is a submersion, we prove that (π|V1,c)∗[α] has
log-log growth along ∆.
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Finally, as π|π−1(U)\(V1,c∪V2,c) is a submersion, and the form α has log-log growth along π−1(∆),
the form (π|π−1(U)\(V1,c∪V2,c))∗[α] has log-log growth along ∆. Thus, we deduce that π∗[α] has
log-log growth along ∆.

Now, to prove that π∗[α] is nice, we have to study the distributional derivatives ∂[π∗[α]]L1 ,
∂[π∗[α]]L1 , ∂∂[π∗[α]]L1 . Let’s concentrate on the study of ∂[π∗[α]]L1 , as the others are similar.
First of all, by Fubini theorem, since π−1(∆) is Lebesgue negligible, we have[

π∗[α]
]
L1

= π∗
[
[α]L1

]
. (4.3.8)

By Stokes theorem, we have
∂π∗
[
[α]L1

]
= π∗

[
∂[α]L1

]
. (4.3.9)

By the fact that α is pre-log-log, and by Proposition 4.2.12, we have

∂[α]L1 = [∂α]L1 . (4.3.10)

Thus, by (4.3.8), (4.3.9) and (4.3.10), we see that it is enough to prove that the differential form
π∗[∂α] over S \ |∆| is continuous and has log-log growth along ∆. The continuity over S \ |∆|
is proved as before. Let’s prove that it has log-log growth along ∆. As before, we decompose
the integration π∗[∂α] into three parts: (π|V1,c)∗[∂α], (π|π−1(U)\(V1,c∪V2,c))∗[∂α] and (π|V2,c)∗[∂α].
Since π|V1,c and π|π−1(U)\(V1,c∪V2,c) are submersions, the first two parts are treated in the same way
as before. Let’s concentrate on the last part (π|V2,c)∗[∂α].

By (4.3.5) and (4.3.7), similarly to (4.3.6), there is a function f : S \ |∆| → R with log-log
growth along ∆ such that the form (π|V2,c)∗[∂α] is bounded by

f ·
∫
Hw1,c

√
−1dz0dz0

|z0 ln |z0||2

(
dz1

|z1 ln |z1||
+

dz1

|z1 ln |z1||
+ β

)
, (4.3.11)

where β is some bounded differential form in variables z2, . . . , zq. Now, by the identity z0z1 = w0

and |z0|, |z1| ≤ c, there is a constant C > 0 such that we have∣∣∣∣ ∫
Hw1,c

√
−1dz0dz0

|z0 ln |z0||2
dz1

z1| ln |z1||

∣∣∣∣
=

∣∣∣∣dw0

w0

∣∣∣∣ ∫
Hw1,c

√
−1dz0dz0

|z0 ln |z0||2 · | ln |w0/z0||
≤ C

∣∣∣∣ dw0

w0| ln |w0||

∣∣∣∣. (4.3.12)

By (4.3.11) and (4.3.12), we deduce that the form (π|V2,c)∗[∂α] has log-log growth along ∆.
Now let’s prove 4.3.1c). By the proof of Proposition 4.3.1b), we see that π∗[fα] is continuous

over S \ |∆|. Now, let t0 ∈ |∆|, U ∈ S and Vi,c, i = 1, 2, be as before. Trivially, since fα
is continuous over π−1(U) \ (V1,c ∪ V2,c), and π|π−1(U)\(V1,c∪V2,c) is a submersion, we see that
(π|π−1(U)\(V1,c∪V2,c))∗[fα] is continuous for any c > 0. Let’s prove that for i = 1, 2, we have

lim
c→0

(π|Vi,c)∗[fα] = 0, (4.3.13)
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If (4.3.13) holds, we would immediately conclude that π∗[fα] is continuous.
By the fact that (π|Vi,c)∗[fα] depends only on the coupling of fα with two vertical vector fields,

and the fact that those couplings have log-log growth on X \ ΣX/S with singularities along D, we
deduce (4.3.13) for i = 1 from (4.3.1).

Since α has Poincaré growth on X \ |D| with singularities along π−1(∆), and f has log-log
growth along ΣX/S , we deduce that there are C > 0, p ∈ N such that

(π|V2,c)∗[fα] ≤ C

∫
Hw1,c

(
(ln | ln |z0||)p

√
−1dz0dz0

|z0 ln |z0||2

+
(ln | ln |z0||)p(ln | ln |z1||)p|dz0dz1|

|z0 ln |z0|||z1 ln |z1||
+

(ln | ln |z1||)p
√
−1dz1dz1

|z1 ln |z1||2

)
, (4.3.14)

where Hw1,c is as in (4.3.6). By (4.3.1), (4.3.14) and Cauchy inequality, we deduce (4.3.13) for
i = 2, which finally proves that π∗[fα] is continuous over S.

The next proposition explains why Proposition 4.3.1 is well-suited to our Assumptions S1, S2,
S3. Let L be a holomorphic line bundle over X and let hLi , i = 1, 2 be smooth Hermitian metrics
on L over X \ (π−1(|∆|) ∪ |D|).

Proposition 4.3.2. a) Suppose that hLi , i = 1, 2 extend smoothly over X \ |D|, and they are pre-
log-log of infinite order, with singularities along D. Then there is a differential form α in the class
[c̃h(L, hL1 , h

L
2 )][2] ∈ Ppll(X \ π−1(|∆|), D), which satisfies the hypothesis of Proposition 4.3.1a).

b) Suppose that hLi , i = 1, 2 are pre-log-log, with singularities along π−1(|∆|)∪|D|. Then there
is a differential form α in the class [c̃h(L, hL1 , h

L
2 )][2] ∈ Ppll(X \ π−1(|∆|), D), which satisfies the

hypothesis of Proposition 4.3.1b).
c) Suppose that hLi , i = 1, 2 extend continuously over X \ (ΣX/S ∪ |D|), have log-log growth

with singularities along ΣX/S∪|D|, are good in the sense of Mumford onX \|D|with singularities
along π−1(∆), and the coupling with two vertical vector fields of c1(L, hLi ), i = 1, 2 are continuous
over X \ (ΣX/S ∪ |D|) and has log-log growth on X \ ΣX/S with singularities along D.

Then there is a function f and a differential form α such that fα is in the class
[c̃h(L, hL1 , h

L
2 )][2] ∈ Ppll(X \ π−1(|∆|), D), and they satisfy the hypothesis of Proposition 4.3.1c).

Proof. It follows directly from Propositions 4.2.15, 4.2.22. For Proposition 4.3.2c), take f =
[c̃h(L, hL1 , h

L
2 )][0] and α = (c1(L, hL1 ) + c1(L, hL2 ))/2.

4.3.2 Some properties of the Quillen metric
Let (M,DM , g

TM) be a surface with cusps. Let’s recall some notions from [54].

Definition 4.3.3 (Flattening of a metric, [54, Definition 1.2]). We say that a (smooth) metric gTMf

over M is a flattening of gTM if there is ε > 0 such that gTM is induced by (4.2.2) over V M
i (ε), and

gTMf |M\(∪iVMi (ε)) = gTM |M\(∪iVMi (ε)). (4.3.15)
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Similarly, we defined the notion of flattening‖·‖f
M for Hermitian norm‖·‖M . For brevity, we

state a version of [54, Theorem A, Remark 1.4.d)], which doesn’t use the language of compatible
flattenings from [54].

Theorem A (Compact perturbation). Let gTMf ,‖·‖f
M be some flattenings of gTM and‖·‖M respec-

tively, then the quantity

2rk(ξ)−1 ln
(
‖·‖Q

(
gTM , hξ ⊗ ‖·‖2n

M

)/
‖·‖Q

(
gTMf , hξ ⊗ (‖·‖f

M)2n)
)

− rk(ξ)−1

∫
M

c1(ξ, hξ)
(

2n ln(‖·‖f
M /‖·‖M) + ln(gTMf /gTM)

)
(4.3.16)

depends only on the number n ∈ Z, n ≤ 0 and the functions (gTMf /gTM)|VMi (1)◦(zMi )−1 : D∗ → R
and (‖·‖f

M /‖·‖M)|VMi (1) ◦ (zMi )−1 : D∗ → R, for i = 1, . . . ,m.

Now let’s recall the anomaly formula for surfaces with cusps, which explains how the Quillen
norm changes under the conformal change of the metric with cusps.

Let’s recall that by [21, Theorem 1.27] (cf. Theorem 4.2.19) and (4.1.9), the Bott-Chern forms
of a vector bundle ξ with (smooth) Hermitian metrics hξ1, hξ2 over M satisfy (see also (4.2.36),
(4.2.37))

T̃d(ξ, hξ1, h
ξ
2)[0] = c̃h(ξ, hξ1, h

ξ
2)[0]/2, (4.3.17)

If, moreover, ξ := L is a line bundle, we have

T̃d(L, hL1 , h
L
2 )[2] = c̃h(L, hL1 , h

L
2 )[2]/6. (4.3.18)

Theorem B (Anomaly formula for metrics with cusps). Let gTM , gTM0 be two metrics on M such
that both triples (M,DM , g

TM), (M,DM , g
TM
0 ) are surfaces with cusps. We denote by‖·‖M ,‖·‖0

M

the norms induced by gTM , gTM0 on ωM(D), and by‖·‖W ,‖·‖W0 the associated Wolpert norms. Let
hξ, hξ0 be two Hermitian metrics on ξ over M . Then the right-hand side of the following equation
is finite, and

2 ln
(
‖·‖Q

(
gTM0 , hξ0 ⊗ (‖·‖0

M)2n
)/
‖·‖Q

(
gTM , hξ ⊗ ‖·‖2n

M

))
=

∫
M

[
T̃d
(
ωM(D)−1, ‖·‖−2

M , (‖·‖0
M)−2

)
ch
(
ξ, hξ

)
ch
(
ωM(D)n,‖·‖2n

M

)
+ Td

(
ωM(D)−1, (‖·‖0

M)−2
)
c̃h
(
ξ, hξ, hξ0

)
ch
(
ωM(D)n,‖·‖2n

M

)
+ Td

(
ωM(D)−1, (‖·‖0

M)−2
)
ch
(
ξ, hξ0

)
c̃h
(
ωM(D)n,‖·‖2n

M , (‖·‖0
M)2n

)][2]

− rk(ξ)

6
ln
(
‖·‖W /‖·‖W0

)
+

1

2

∑
P∈DM

ln
(

det(hξ/hξ0)|P
)
.

(4.3.19)

Now, let’s recall the result of Bismut-Bost [20, Théorème 2.2] on the asymptotics of the Quillen
norm (see also Bismut [18] for its generalization to higher dimension and Ma [82] for the family
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version of [18]). For this, we fix a f.s.o. π : X → S and smooth Hermitian vector bundles
(ωX/S,‖·‖ω,smX/S ), (ξ, hξsm) over X . We denote by gTXtsm the metric on Xt, t ∈ S \ |∆|, induced by
(ωX/S,‖·‖ω,smX/S ), and by‖·‖Q (gTXtsm , hξsm) the Quillen norm on det(R•π∗ξ)

−1.

Theorem 4.3.4 (Continuity theorem of Bismut-Bost). The norm‖·‖Q (gTXtsm , hξsm)12 ⊗ (‖·‖div
∆ )rk(ξ)

on the line bundle det(R•π∗ξ)
−12 ⊗ OS(∆)rk(ξ) over S \ |∆| is very nice on S with singularities

along ∆ in the sense of Definition 4.1.3.

4.3.3 Proof of Theorem C
We use the notation from Theorem C and (4.1.1). Since all the statements are local, it suffices
to prove them in a neighbourhood U of t0 ∈ S. We prove them all at the same time in three
steps: in Step 1 we see that by Theorem B, we can trivialize the Poincaré-compatible coordinates
associated to gTXt . In Step 2, by Theorem A, we reduce the problem to the problem without cusps.
Finally, in Step 3, by the anomaly formula of Bismut-Gillet-Soulé (cf. Theorem B), we reduce the
problem to the problem with smooth metrics, which is exactly Theorem 4.3.4. For the proof of
Theorem C1, this step is unnecessary since the metrics, which are obtained after Step 2 are already
smooth. In the first two steps the reduction is done by modifying norms‖·‖ωX/S ,‖·‖X/S only in the
neighbourhood of |DX/S|.

Step 1. Let Vi,c, i = 1, . . . ,m, c > 0 (resp. U ) be a neighbourhood of σi(t0) (resp. t0) such that
for some local coordinates (z0, . . . , zq) of σi(t0) and (w1, . . . , wq) of t0 ∈ S, satisfying (4.2.6), we
have Vi,c = {x ∈ π−1(U) : |z0| < c} and {z0(x) = 0} = {σi(t) : t ∈ U}. For simplicity, we note
Vi := Vi,1. Let ν : R+ → [0, 1] be a smooth function satisfying

ν(u) =

{
1, if u < 1/2,

0, if u > 3/4.
(4.3.20)

We denote by‖·‖ω,0X/S the norm on ωX/S over π−1(U \ |∆|) \ |DX/S| such that‖·‖ω,0X/S coincides
with‖·‖ωX/S away from ∪iVi, and over (∪iVi) \ (π−1(|∆|) ∪ |DX/S|), we have

‖dz0‖ω,0X/S =
∣∣z0 ln |z0|

∣∣ν(|z0|) ·
(
‖dz0‖ωX/S

)1−ν(|z0|). (4.3.21)

Let ‖·‖0
X/S be the induced norm on ωX/S(D) as in Construction 4.1.1, and let gTXt0 , t ∈ S be

the induced metric with cusps on Xt. Then by Construction 4.1.1 and (4.3.21), we see that if hξ,
‖·‖X/S satisfy Assumptions S1 or S2 or S3, then hξ, ‖·‖0

X/S satisfy Assumptions S1 or S2 or S3
correspondingly. In fact, this property along with the fact that‖·‖ω,0X/S doesn’t vary in the horizontal
direction around the cusps are the only facts we need from the construction (4.3.21).

We denote by‖·‖W,0X/S the Wolpert norm (see Definition 4.2.6) on ⊗mi=1σ
∗
i ωX/S induced by gTXt0 .

By Theorem B, applied pointwise for the line bundle λ(j∗(ξ⊗ωX/S(D)n))12⊗(⊗mi=1σ
∗
i ωX/S)−rk(ξ),
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for any t ∈ U \ |∆|, we deduce

1

6
ln
(
‖·‖Q

(
gTXt0 , hξ ⊗ (‖·‖0

X/S)2n
)12 ⊗

(
‖·‖W,0X/S

)−rk(ξ)
)

− 1

6
ln
(
‖·‖Q

(
gTXt , hξ ⊗ (‖·‖X/S)2n

)12 ⊗
(
‖·‖WX/S

)−rk(ξ)
)

= π∗

[
T̃d
(
ωX/S(D)−1, ‖·‖−2

X/S , (‖·‖
0
X/S)−2

)
ch
(
ξ, hξ

)
ch
(
ωX/S(D)n,‖·‖2n

X/S

)
+ Td

(
ωX/S(D)−1, (‖·‖0

X/S)−2
)
ch
(
ξ, hξ

)
c̃h
(
ωX/S(D)n,‖·‖2n

X/S , (‖·‖
0
X/S)2n

)][2]

.

(4.3.22)
We note that the conformal factor corresponding to the change of the metric from‖·‖ωX/S to‖·‖ω,0X/S

is non-trivial in the neighborhood of the cusp. Thus, we use Theorem B with the conformal factor
which doesn’t have compact support in the punctured surface.

By Propositions 4.3.1, 4.3.2, we see that the right-hand-side of (4.3.22) is very nice on U \ |∆|
with singularities along ∆ under Assumption S1, it is nice on U \ |∆| with singularities along ∆
under Assumption S2, and it is continuous on S under Assumption S3. By this and (4.3.22), we see
that it is enough to prove Theorem C for the metrics‖·‖0

X/S ,‖·‖ω,0X/S ,‖·‖W,0X/S instead‖·‖X/S ,‖·‖ωX/S ,
‖·‖WX/S .

We note, however, that the norm‖·‖W,0X/S is trivial over U\|∆|, thus, it’s enough to prove Theorem

C for the norm ‖·‖Q
(
gTXt0 , hξ ⊗ (‖·‖0

X/S)2n
)12 ⊗ (‖·‖div

∆ )rk(ξ) on the line bundle det(R•π∗(ξ ⊗
ωX/S(D)n))−12 ⊗ OS(∆)rk(ξ) in place of the norm‖·‖Ln

on the line bundle Ln.
Step 2. We denote V ′i = Vi,1/2 ⊂ Vi, and by‖·‖ω,cmp

X/S the norm on ωX/S over π−1(U \ |∆|) such
that‖·‖ω,cmp

X/S coincides with‖·‖ω,0X/S away from ∪iV ′i , and over V ′i , we have

‖dz0‖ω,cmp
X/S = |z0 ln |z0||1−ν(2|z0|), (4.3.23)

where ν : R→ [0, 1] is as in (4.3.20). We denote by gTXtcmp the induced metric on Xt. We denote by
‖·‖cmp

X/S the norm on ωX/S(D) over π−1(U \ |∆|), such that‖·‖cmp
X/S coincides with‖·‖0

X/S away from
∪iV ′i , and over V ′i we have

‖dz0 ⊗ sDX/S/z0‖cmp
X/S = | ln |z0||1−ν(2|z0|). (4.3.24)

By (4.3.23), (4.3.24), we see that if hξ, ‖·‖0
X/S satisfy Assumptions S1 or S2 or S3, then hξ ⊗

(‖·‖cmp
X/S)2n,‖·‖ω,cmp

X/S satisfy Assumptions S1 or S2 or S3 for DX/S = ∅ correspondingly. In fact,
this property along with the fact that‖·‖ω,cmp

X/S doesn’t vary in the horizontal direction around the
cusps are the only facts we need from the construction (4.3.23).

Now, as the norms‖·‖ω,cmp
X/S ,‖·‖ω,0X/S ,‖·‖cmp

X/S ,‖·‖0
X/S do not vary in the horizontal direction around

the cusps, by Theorem A, we see that the function

2 ln
(
‖·‖Q

(
gTXtcmp , h

ξ ⊗ (‖·‖cmp
X/S)2n

)/
‖·‖Q

(
gTXt0 , hξ ⊗ (‖·‖0

X/S)2n
))

− π∗
[
c1(ξ, hξ)

(
nc̃1(ωX/S(D), (‖·‖0

X/S)2, (‖·‖cmp
X/S)2)
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− c̃1(ωX/S, (‖·‖ω,0X/S)2, (‖·‖ω,cmp
X/S )2)

)][2]

(4.3.25)

is constant over U \ |∆|. By Propositions 4.2.18, 4.3.1, 4.3.2, we see that the term under the
integration in (4.3.25) is very nice on U \ |∆| with singularities along ∆ under Assumption S1, it
is nice on U \ |∆| with singularities along ∆ under Assumption S2, and it is continuous on S under
Assumption S3. By this and (4.3.25), it is enough to prove Theorem C for the metrics hξ,‖·‖cmp

X/S ,
‖·‖ω,cmp

X/S instead of hξ,‖·‖0
X/S ,‖·‖ω,0X/S .

Step 3. Let hξsm,‖·‖sm
X/S ,‖·‖ω,smX/S be some smooth metrics on ξ, ωX/S(D) and ωX/S respectively

over X . We denote by gTXtsm the Riemannian metric on Xt, induced by‖·‖ω,smX/S . By the anomaly
formula of Bismut-Gillet-Soulé [23, Theorem 1.27] (cf. Theorem B for m = 0), for t ∈ U \ |∆|:

2 ln
(
‖·‖Q

(
gTXtcmp , h

ξ ⊗ (‖·‖cmp
X/S)2n

)/
‖·‖Q

(
gTXtsm , hξsm ⊗ (‖·‖sm

X/S)2n
))

= π∗

[
T̃d
(
ω−1
M , (‖·‖sm

M )−2, (‖·‖cmp
M )−2

)
ch
(
ξ, hξsm

)
ch
(
ωM(D)n, (‖·‖sm

M )2n
)

+ Td
(
ω−1
M , (‖·‖cmp

M )−2
)
c̃h
(
ξ, hξsm, h

ξ
)
ch
(
ωM(D)n, (‖·‖sm

M )2n
)

+ Td
(
ω−1
M , (‖·‖cmp

M )−2
)
ch
(
ξ, hξ

)
c̃h
(
ωM(D)n, (‖·‖sm

M )2n, (‖·‖cmp
M )2n

)]
.

(4.3.26)

By Theorem 4.2.19 and Propositions 4.2.18, 4.3.1, 4.3.2, the right-hand side of (4.3.26) is very
nice on U \ |∆| with singularities along ∆. By this and (4.3.26), we see that it is enough to prove
Theorem C for the metrics hξsm,‖·‖sm

X/S ,‖·‖ω,smX/S instead of hξ,‖·‖cmp
X/S ,‖·‖ω,cmp

X/S . But for hξsm,‖·‖sm
X/S ,

‖·‖ω,smX/S , Theorem C follows directly from Theorem 4.3.4 by Remark 4.1.2. Thus, we conclude
Theorem C.

Remark 4.3.5. Quite easily, we see that if in hypothesizes S2 instead of pre-log-log we demand all
the metrics to be good, the Hermitian norm‖·‖Ln

would become good.

4.4 Potential theory for log-log currents, a proof of Theorem D
In Section 4.1 we introduce the potential theory for currents with log-log growth and in Section
4.2 we use it to prove Theorem D. Then we deduce Corollaries 4.1.7, 4.1.8 from Theorem D.

4.4.1 Potential theory for currents with log-log growth
In this section we provide the potential theory for currents with log-log growth. We denote U =
{(z1, . . . , zq) ∈ Cq : |zi| < 1, for all i = 1, . . . , q}, and let Di ⊂ U be defined by the equation
{zi = 0}. We denote D = ∪li=1Di, for some l ≤ q. Before stating the main result of this section,
we need the following lemma.

Lemma 4.4.1. Let T be a closed (1, 1)-current over U \ D with log-log growth along D. Then
the trivial L1-extension [T ]L1 of T , is a closed current over U . Also, in a small neighbourhood of

173



Regularity, asymptotics and curvature theorem

D, the current [T ]L1 can be represented as a difference of two positive closed currents with log-log
growth along D.

Remark 4.4.2. If we could assume that current T is induced by integration of a smooth differential
form, Lemma 4.4.1 would follow from simple integration by parts, similar to [95, Proposition 1.2].
Such a supposition, however, is too strong for our needs, and we will use Skoda-El Mir’s theorem
to prove Lemma 4.4.1.

Proof. For p ∈ N, we denote the functions

a0
p(z, w) = (ln | ln |z|2|)p|w|2,
ap(z, w) = −(ln | ln |z|2|)p(ln | ln |w|2|)p,

(4.4.1)

over C2 \ {0} × C and C2 \ (C × {0} ∪ {0} × C) respectively. Then it’s easy to see that the
dominating terms of differential forms

√
−1∂∂a0

p(z, w),
√
−1∂∂ap(z, w) are given by

−
√
−1p(ln | ln |z|2|)p−1|w|2dzdz

|z ln |z|2|2
+
√
−1(ln | ln |z|2|)pdwdw, (4.4.2)

√
−1p(ln | ln |z|2|)p−1(ln | ln |w|2|)p−1

(
(ln | ln |z|2|)dwdw
|w ln |w|2|2

+
(ln | ln |w|2|)dzdz
|z ln |z|2|2

)
,

respectively. From this, we see that for some open neighbourhood V ⊂ U of S, the forms√
−1∂∂ap(z, w),

√
−1∂∂(ap(z, w) + a0

p(z, v)) are positive on C2 \ (C × {0} ∪ {0} × C) and
C3 \ (C2×{0} ∪C×{0}×C∪ {0}×C2) respectively. Now, any differential form α over U \D
with log-log growth along D can be bounded from above and below by a linear combination of

√
−1(ln | ln |zi|2|)p−1dzjdzj

|zj ln |zj|2|2
, i, j = 1, . . . , l,

√
−1(ln | ln |zi|2|)pdzjdzj, i = 1, . . . , l; j = 1, . . . , q.

(4.4.3)

So, since T has log-log growth along D, by (4.4.2), there are C > 0, p ∈ N such that for

Ap := (q + 1)
l∑

i,j=1

ap(zi, zj) +
l∑

i=1

q∑
j=1+l

a0
p(zi, zj), (4.4.4)

we have the following inequalities over V :

−C
√
−1∂∂Ap ≤ T ≤ C

√
−1∂∂Ap. (4.4.5)

Thus, the current T + C
√
−1∂∂Ap is closed, positive in V , and by (4.3.1), (4.4.4), (4.4.5) it has

finite mass. Thus, by Skoda-El Mir’s theorem (cf. [43, Theorem III.2.3]), [T + C
√
−1∂∂Ap]L1 is

a closed positive current over V . Similarly, [
√
−1∂∂Ap]L1 is a closed positive current over V . So

[T ]L1 = [T + C
√
−1∂∂Ap]L1 − C[

√
−1∂∂Ap]L1 (4.4.6)

is a closed current over U . Also (4.4.6) gives the needed decomposition of [T ]L1 as a difference of
positive currents.

174



Regularity, asymptotics and curvature theorem

Remark 4.4.3. Since our current is locally represented as a difference of two positive currents, its
Lelong numbers (cf. [43, Definition III.5.4]) are well-defined, see also Remark 4.4.7.

The main goal of this section is to prove the following

Proposition 4.4.4. Let φ : U \ D → R be a continuous function with log-log growth along D.
Suppose that for the induced current [φ] over U \D, the current

T :=
∂∂[φ]

2π
√
−1

, (4.4.7)

over U \D has log-log growth along D. Then we have the following identity of currents over U

∂∂[φ]L1

2π
√
−1

= [T ]L1 . (4.4.8)

Remark 4.4.5. When l = 1, this result implies Yoshikawa [118, Proposition 3.11], where he ob-
tained this for T of Poincaré growth. If T extends smoothly over U , Proposition 4.4.4 is a special
case of Bismut-Bost [20, Proposition 10.2]. We note, however, that in our applications, the condi-
tion of being pre-log-log and not smooth is essential, see Section 4.5.

To prove Proposition 4.4.4, we need the following weak analogue of Poincaré lemma for cur-
rents of log-log growth:

Lemma 4.4.6. Let T be a closed (1, 1)-current over U with log-log growth along D. For any
x ∈ U , there is a neighborhood V of x and a function ψ ∈ L1

loc(V ) with log-log growth along D,
satisfying

∂∂[ψ]L1

2π
√
−1

= [T ]L1 . (4.4.9)

Remark 4.4.7. This lemma, implies, that Lelong numbers of T (see Remark 4.4.3) vanish.

Proof. We recall that the functions Ap : U \ D → R, p ∈ N were defined in (4.4.4). Let C > 0,
p ∈ N be as in (4.4.5). By Siu [105, Proof of Lemma 5.3], since the current [T + C

√
−1∂∂Ap]L1

is closed and positive, there is an open subset V ′ ⊂ U and a plurisubharmonic (cf. [85, Definition
B.2.16]) function R over V ′, such that

√
−1∂∂R =

[
T + C

√
−1∂∂Ap

]
L1 . (4.4.10)

Moreover, since
0 < [2C

√
−1∂∂Ap − T ]L1 =

√
−1∂∂(3C[Ap]L1 −R). (4.4.11)

Thus, by plurisubharmonicity (cf. [47, Proposition A.15]), there is C0 > 0, such that almost every-
where, we have

−C0 + 3CAp ≤ R ≤ C0, (4.4.12)

in particular, since Ap has log-log growth along D, we deduce by (4.4.12) that R − C[Ap]L1 has
log-log growth along D. By (4.4.10), we get (4.4.9) for ψ := −2π(R− CAp).
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Proof of Proposition 4.4.4. Let ψ be a function on V ⊂⊂ U as in Lemma 4.4.6, such that

∂∂[ψ]L1

2π
√
−1

= [T ]L1 . (4.4.13)

We denote
χ = φ− ψ. (4.4.14)

Then χ is pluriharmonic on V \ D and has log-log singularities along D. We’ll prove that χ is
pluriharmonic on V . Once it will be done, Proposition 4.4.4 would follow from (4.4.7), (4.4.13)
and (4.4.14). Let z′ = (0, z′2, . . . , z

′
q) ∈ V be such that z′ /∈ Di for any i ≥ 2, i.e. zi 6= 0. Then the

function
χ0(z) := χ(z, z′2, . . . , z

′
q) (4.4.15)

is harmonic over D∗(ε), for some ε > 0, and has log-log growth along 0 ∈ D(ε). By [20, p. 71-
72], the function χ0 extends to a harmonic function over D(ε). By repeating this for z′ in a small
neighbourhood of fixed z′ in D1, we see that χ extends over V \ (∪li=2Di), such that it’s restriction
on discs {(z, z′2, . . . , z′n) : |z| ≤ ε} are harmonic. By the maximum principle and the fact that χ is
smooth over V \ (∪li=1Di), we see that this extension is actually locally bounded in V \ (∪li=2Di),
so by [43, Theorem 5.24], the function χ is pluriharmonic over V \ (∪li=2Di). By repeating this
argument for i = 2, . . . , l, we see that χ is actually pluriharmonic over V .

4.4.2 Proof of Theorem D and Corollaries 4.1.7, 4.1.8
We use the notation from Theorem D. The main ingredients of the proof are Theorems A, B,
Proposition 4.4.4 and the curvature theorem of Bismut-Bost [20, Théorème 2.2], which we now
recall.

We borrow the notation from Theorem 4.3.4. By Theorem 4.3.4, the Hermitian norm
‖·‖Q (gTXtsm , hξsm)12 ⊗ (‖·‖div

∆ )rk(ξ) is very nice over S with singularities along ∆. In particular,
by Remark 4.1.4, its first Chern form is well-defined.

Theorem 4.4.8 ( [20, Théorème 2.2]). The following identity of currents over S holds

c1

(
λ(j∗ξ)12 ⊗ OS(∆)rk(ξ),‖·‖Q (gTXtsm , hξsm)24 ⊗

(
‖·‖div

∆

)2rk(ξ)
)

= −12π∗

[
Td
(
ω−1
X/S, (‖·‖

ω,sm
X/S )−2

)
ch(ξ, hξsm)

][4]

. (4.4.16)

Proof of Theorem D. Let’s treat Assumption S1 first. As in Theorem C, the statement is local
over the base. So, for any t0 ∈ S, it is enough to prove (4.1.11) in some neighbourhood U ⊂ S
of t0. The fact that the current (4.1.10) is L1

loc(S) follows from Lebesgue dominated convergence
theorem and [20, Proposition 5.2]. The fact that its closure is a d-closed current follows from the
fact that it is obtained as a pushforward of a closed form and (4.3.8).

We denote the analogue of the norm (4.1.5), associated with‖·‖0
X/S , where in place by

‖·‖0
Ln

:=‖·‖Q (gTXt0 , hξ⊗(‖·‖0
X/S)2n)12⊗(‖·‖W,0X/S)−rk(ξ)⊗(‖·‖div

∆ )rk(ξ)⊗(⊗mi=1σ
∗
i h

det ξ)3. (4.4.17)
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By Proposition 4.2.12, (4.2.33), (4.3.21) and (4.3.22), we deduce that

c1

(
Ln,

(
‖·‖0

Ln

)2
)
− c1

(
Ln,

(
‖·‖Ln

)2
)

= −12π∗

[
ch(ξ, hξ)

(
Td
(
ωX/S(D)−1, (‖·‖0

X/S)−2
)

· ch
(
ωX/S(D)n, (‖·‖0

X/S)2n
)
− Td

(
ωX/S(D)−1,‖·‖−2

X/S

)
ch
(
ωX/S(D)n, ‖·‖2n

X/S

))][4]

. (4.4.18)

From (4.4.18), wee see that it is enough to prove (4.1.11) for the norms‖·‖ω,0X/S ,‖·‖0
X/S instead of

the norms‖·‖ωX/S ,‖·‖X/S .
By Proposition 4.2.12, (4.3.23), (4.3.24), and the fact that (4.3.25) is constant, we deduce

c1

(
λ
(
j∗(ξ ⊗ ωX/S(D)n)

)
,‖·‖Q (gTXtcmp , h

ξ ⊗ (‖·‖cmp
X/S)2n)2

)
− c1

(
λ
(
j∗(ξ ⊗ ωX/S(D)n)

)
,‖·‖Q (gTXt0 , hξ ⊗ (‖·‖0

X/S)2n)2
)

= π∗

[
Td
(
ω−1
X/S, (‖·‖

ω,0
X/S)−2

)
c1(ξ, hξ)ch

(
ωX/S(D)n, (‖·‖0

X/S)2n
)

− Td
(
ω−1
X/S, (‖·‖

ω,cmp
X/S )−2

)
c1(ξ, hξ)ch

(
ωX/S(D)n, (‖·‖cmp

X/S)2n
)][4]

.

(4.4.19)

Now, since the norms‖·‖ω,0X/S ,‖·‖ω,cmp
X/S and‖·‖0

X/S ,‖·‖cmp
X/S coincide away from ∪V ′i , and over ∪V ′i

they vary only in the horizontal direction, we deduce that[
Td
(
ω−1
X/S, (‖·‖

ω,0
X/S)−2

)
ch
(
ωX/S(D)n, (‖·‖0

X/S)2n
)

− Td
(
ω−1
X/S, (‖·‖

ω,cmp
X/S )−2

)
ch
(
ωX/S(D)n, (‖·‖cmp

X/S)2n
)][4]

= 0. (4.4.20)

Thus, by (4.4.20), we can interpret c1(ξ, hξ) in the right-hand side of (4.4.19) as the Chern form
ch(ξ, hξ). By Poincaré-Lelong formula and (4.1.9), we deduce that

Td
(
ω−1
X/S, (‖·‖

ω,0
X/S)−2

)[2]
= Td

(
ωX/S(D)−1, (‖·‖0

X/S)−2
)[2]

+ δDX/S/2. (4.4.21)

Now, by Theorem 4.4.8 applied for ξ := ξ⊗ωX/S(D)n, hξ := hξ⊗(‖·‖cmp
X/S)2n and the metric gTXtcmp ,

t ∈ U induced by‖·‖ω,cmp
X/S , (4.4.19), (4.4.20) and (4.4.21), we deduce Theorem D in Assumption

S1.
Let’s treat Assumption S2. First of all, from Proposition 4.3.1, the current (4.1.10) has log-log

growth along ∆. Also, since (4.1.10) is a pushforward of a closed current, it is a d-closed current
over S \ |∆|. By Lemma 4.4.1, the L1-trivial extension of this current is also d-closed. Thus,
by Theorem C2 and Proposition 4.4.4, we see that it is enough to prove Theorem D over S \ |∆|
without the boundary term δ∆.

Now, as before, the statement is local over the base. So, for any t0 ∈ S \ |∆|, it is enough to
prove (4.1.11) in some neighbourhood U ⊂ S \ |∆| of t0.

Trivially, (4.4.18) still holds over U under Assumption S2 over U . Similarly (4.4.19) also con-
tinues to hold over U . Thus, by (4.4.18)-(4.4.21), we deduce that it is enough to prove Theorem D
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for‖·‖ω,cmp
X/S ,‖·‖cmp

X/S in place of‖·‖ωX/S ,‖·‖X/S . However, by Theorem 4.4.8 (in the current situation
it reduces to the special case of the curvature theorem of Bismut-Gillet-Soulé [23, Theorem 1.9]),
we get

c1

(
λ
(
j∗(ξ ⊗ ωX/S(D)n)

)
,‖·‖Q (gTXtcmp , h

ξ ⊗ (‖·‖cmp
X/S)2n)2

)
= −π∗

[
Td
(
ω−1
X/S, (‖·‖

ω,cmp
X/S )−2

)
ch(ξ, hξ)ch

(
ωX/S(D)n, (‖·‖cmp

X/S)2n
)][4]

, (4.4.22)

which finishes the proof of Theorem D under Assumption S2.

Proof of Corollary 4.1.7. Fix a local holomorphic frame υ of Ln. Then by Theorems C2, D and
(4.1.8), we have the identity

∂∂ ln(‖·‖2
Ln

)

2π
√
−1

= −12π∗

[
Td(ωX/S(D)−1,‖·‖−2

X/S)ch(ξ, hξ)ch(ωX/S(D)n,‖·‖2n
X/S)

]
. (4.4.23)

However, by Theorem C3, the function G is continuous, which finishes the proof by (4.4.23).

Proof of Corollary 4.1.8. It follows from Theorem C3, (4.4.23) and the regularity theory of elliptic
partial differential equations (cf. [62, Corollary 8.11]).

4.5 Applications to the moduli space of stable pointed curves
In this section we apply the results of Sections 4.3, 4.4 to study the Hodge line bundle on the moduli
space of pointed curves. This section is organized as follows: in Section 5.1, we recall the local
description of the moduli space M g,m of m-pointed stable curves of genus g and of the universal
projection map Π : C g,m → M g,m. Then we recall the definition of the Weil-Petersson metric
with Wolpert theorem, expressing it as a push-out of Chern forms under the universal projection
map. In Section 5.2 we recall the pinching expansion of the hyperbolic metric. From this, we see
that the twisted canonical line bundle ωg,m(D) over C g,m (see (4.1.12)) satisfies Assumptions S2,
S3. Then we prove Corollaries 4.1.10, 4.1.12, 4.1.16, 4.1.18, 4.1.20.

4.5.1 Orbifold structure of M g,m and C g,m

We follow closely the expositions of Wolpert [116], and we use the notation from Section 4.1.
We fix M := (M,DM) ∈ Mg,m. Let Γ be a Fuchsian group of type (g,m) such that M :=

M \ DM is isomorphic to the quotient Γ \ H of the hyperbolic space. Recall that the space of
Beltrami differentialsH1(M,T 1,0M⊗OM(−DM)) with the obvious action by the automorphisms
group Aut(M) gives a local chart for Mg,m in the following way. We take [ν0] ∈ H1(M,T 1,0M ⊗
OM(−DM)). By locally resolving ∂-equation around the cusps, we may choose a representative
ν ∈ C∞(M,ωM ⊗ T 1,0M ⊗ OM(−DM)) in the class [ν0], which has compact support in M :=
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M \ DM . Denote by νH the pull-back of ν on H. By a theorem of Ahlfors [1, Theorem V.5], if
|ν|C 0 < 1, then the Beltrami equation{

∂f ν(z) = νH(z)∂f ν(z), for z ∈ H,
∂f ν(z) = νH(z)∂f ν(z), for z ∈ C \H,

(4.5.1)

has a unique solution in the class of diffeomorphisms of C∪ {∞}, fixing 0, 1,∞ ∈ C∪ {∞}. We
denote

Γν := f νΓ(f ν)−1, (4.5.2)

then, classically (cf. [1, p. 69]), Γν is the Fuchsian group of type (g,m), and f ν defines a diffeo-
morphism

f̃ ν : Γ \H→ Γν \H, (4.5.3)

which is holomorphic if and only if [ν0] = 0.
Now, we choose ν1, . . . , νN ∈ C∞c (M,ωM ⊗ T 1,0M ⊗ OM(−DM)) such that the associated

cohomology classes form a basis in H1(M,T 1,0M ⊗ OM(−DM)). Let c > 0 be small enough.
For s = (s1, . . . , sN) ∈ D(c)N , we denote

ν(s) :=
∑

siνi. (4.5.4)

Now, let (Uα, zα) be an atlas of M . Then Wα := (f̃ ν(s) ◦ zα, s) is a chart mapping Uα ×
D(c)N → CN+1. This defines a holomorphic atlas on X0 := ∪s∈S(Γν(s) \ H), for which the
obvious projection π0 : X0 → D(c)N is a holomorphic submersion of codimension 1 (cf. [116,
§2.4.C]). Now, since the sections ν1, . . . , νN have compact support in M , by (4.5.1), the local
coordinate zMi of M , centered at PM

i ∈ DM extends to a holomorphic function zi : U ⊂ X0 →
D∗(ε), for some ε > 0 and open neighbourhood U of PM

i . Thus, the conformal completion of
D∗(ε) induces the compactification X of X0 such that X \ X0 = ∪mi=1 Im(σi) for some non-
intersecting holomorphic functions σi : D(c)N → X . Also, trivially, the action of Aut(M) over
H1(M,T 1,0M ⊗ OM(−DM)) induces the action on X , which preserves σ1, . . . , σm.

By Serre duality, for M := (M,DM) ∈Mg,m, we have the isomorphism

H1(M,T 1,0M ⊗ OM(−DM)) ' H0(M,ω2
M
⊗ OM(DM)). (4.5.5)

By the uniformization theorem, there is the unique hyperbolic metric gTMhyp of constant scalar
curvature −1 over M with cusps at DM . We endow the space H0(M,ω2

M
⊗ OM(DM)) ⊂

C∞(M,ω2
M
⊗OM(DM)) with the L2-scalar product from (4.2.17). This defines the Kähler metric

on M g,m, which is called the Weil-Petersson metric. The Weil-Petersson form, which we denote
by ωWP , is the Kähler form associated with the Weil-Petersson metric.

By the uniformization theorem, the relative canonical line bundle ωg,m of Π can be endowed
with the Hermitian metric‖·‖ω,hyp

g,m over Cg,m in such a way that the restriction of this metric over
each fiber induces the hyperbolic Kähler metric of constant scalar curvature −1 on the fibers. By
Teichmüller theory, this metric is smooth over Cg,m. Let Dg,m be the divisor in C g,m, which is
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formed by the fixed points of the fibers. We endow the twisted canonical line bundle ωg,m(D) (cf.
(4.1.12)) with the induced norm ‖·‖hyp

g,m as in Construction 4.1.1. The following interpretation of
ωWP lies in the core of our applications.

Theorem 4.5.1 (Wolpert [114, Corollary 5.11], (cf. [58, Corollary 5.2.2])). The following identity
of smooth forms over Mg,m holds:

ωWP = π2Π∗

[
c1

(
ωg,m(D),‖·‖hyp

g,m

)2
]
. (4.5.6)

Now, to describe the local structure of M g,m, C g,m near the boundary, we describe the defor-
mations of a pointed complex curve

(R,DR) ∈ ∂Mg,m, DR ⊂ R, #DR <∞ (4.5.7)

with double-point singularities ΣR = {q1, . . . , ql} ⊂ R, ΣR ∩DR = ∅.
We writeR \ ΣR = ∪ki=1Ri, for some open Riemann surfaces Ri. Then DR induces the marked

points D0
Ri

on Ri. We compactify each Ri to Ri by filling the created punctures, appearing after
deletion of the nodes, and denote

R0 = R \ (ΣR ∪DR), DRi := D0
Ri
∪ (Ri \Ri). (4.5.8)

Suppose that for any i = 1, . . . , k, the marked surfaces (Ri, DRi) are stable. We describe small
deformations of (R,DR) in terms of small deformations of (Ri, DRi) and so-called plumbing con-
struction, which we are going to describe now.

For every j = 1, . . . , l, the complex curve R \ {qj}, has a couple of punctures {aj, bj} at the
place of qj . For the punctures qj , we consider

1. A neighbourhoodAj of the puncture aj , biholomorphic to a punctured disc. We denote by Uj
the conformal completion of Aj , obtained by formally adding aj . Then Uj is biholomorphic
to an open disc. Let Fj : Uj → C be a holomorphic coordinate mapping with Fj(aj) = 0;

2. Similarly, a neighbourhood Bj of the puncture bj , its conformal completion Vj and a coordi-
nate mapping Gj : Vj → C satisfying Gj(bj) = 0;

3. A small complex parameter tj ∈ C.

We suppose that the sets Aj and Bj are mutually disjoint for j = 1, . . . , l, and they are disjoint
from DR. Let c > 0 be such that D(c) ⊂ C is contained in Im(Fj), Im(Gj), for all j. Assume that
|tj| < c2, for all j. We denote t = (t1, . . . , tl) ∈ D(c2)l. For d = (d1, . . . , dl) ∈ D(c)l, we note

Rd,∗ = R0 \ ∪lj=1

(
{|Fj| ≤ |dj|} ∪ {|Gj| ≤ |dj|}

)
. (4.5.9)

Consider the equivalence relation on points of Rt/c,∗ generated by: p ∼ q if there exists j =
1, . . . , l, such that |tj|/c ≤ |Fj(p)| ≤ c, |tj|/c ≤ |Gj(q)| ≤ c and Fj(p)Gj(q) = tj . Form the
identification space Rt = Rt/c,∗/ ∼. By the construction, DR induces the set of points DRt on
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Rt. We say that the compact pointed complex curve (Rt, DRt) is the plumbing construction for
(R,DR) associated with the plumbing data {(Uj, Vj, Fj, Gj, tj)}j . Trivially, we see that a set
X := ∪t∈D(c2)lRt can be endowed with a structure of a complex manifold, for which π : X →
D(c2)l is a proper holomorphic map of codimension 1.

Now let’s present a construction which combines the deformations using Beltrami differentials
and the plumbing families.

Construction 4.5.2. Let (R,DR), ΣR, (Ri, DRi), i = 1, . . . , k be as in (4.5.7), (4.5.8). Choose
a plumbing data {(Uj, Vj, Fj, Gj, tj)}j . Observe that one can take Uj, Vj so small so that there
are Beltrami differentials ν1, . . . , νN such that each of them is compactly supported in exactly one
connected component of R \ ∪j(Uj ∪ Vj) and the associated cohomology classes [ν1], . . . , [νN ]
form a basis in ⊕ki=1H

1(Ri, T
1,0Ri ⊗ ORi

(−DRi)). To simplify the exposition, we suppose that
k = 1, i.e. that R0 is connected. Let ν(s), s ∈ D(c)N be defined as in (4.5.4) for c small enough.

Let Γ be a Fuchsian group such that R0 is isomorphic to the quotient Γ \ H. We write Γs :=
f ν(s)Γ(f ν(s))−1 for f ν(s) as in (4.5.1) and define a Riemann surface R0

s := Γs \ H. Observe that
since the support of ν(s) is contained in R \ ∪j(Uj ∪ Vj), by (4.5.1),the coordinates Fj, Gj induce
holomorphic charts on R0

s . We can complete R0
s by adding points representing {Fj = 0} and

{Gj = 0}. By identifying those pairs of points, we get a compact complex curve Rs. The set of
singular points of Rs is in the obvious bijection with ΣR. Now, again by the fact that the support
of ν(s) is contained in R \ (∪j(Uj ∪ Vj)), the plumbing data {(Uj, Vj, Fj, Gj, tj)}j on R induces
the plumbing data on Rs. Thus, for t ∈ D(c)l, we form a complex curve Rs,t.

Proposition 4.5.3 (Wolpert [116, p. 434]). Construction 4.5.2 has the following properties:
a) The complex parameters (s, t) in S := D(c)N+l are local coordinates for local manifold

covers of M g,m in a neighbourhood of a point defined by (R,DR). The divisor of singular curves
∆ is given by {zN+1 = 0}+ · · ·+ {zN+l = 0}, thus, has normal crossings.

b) The set X := ∪(s,t)∈SRs,t can be endowed with a structure of a complex manifold such that
the projection π : X → S is a f.s.o.

c) The fixed points DR induce the holomorphic sections σ1, . . . , σm : S → X . Then
(π, σ1, . . . , σm) provides a description for local manifold covers of Π : C g,m →M g,m.

4.5.2 Pinching expansion and proof of Corollaries 4.1.10, 4.1.12, 4.1.16, 4.1.18,
4.1.20

In this section we will explain why the hyperbolic metric over the universal curve satisfies As-
sumptions S2, S3. For this, we recall the pinching expansion of the hyperbolic metric. Then we
establish Corollaries 4.1.10, 4.1.12, 4.1.16, 4.1.18, 4.1.20.

Pinching expansion describes the behaviour of the hyperbolic metric near the boundary of the
universal curve. It compares the hyperbolic metric with so-called grafted metric, which is more
accessible for analysis. We follow closely the description of Wolpert [116].

Let (R,DR), R0, ΣR, (Ri, DRi), i = 1, . . . , k be as in Section 4.5.1. Let {(Uj, Vj, Fj, Gj, tj)}j
be a plumbing data for R. Consider the plumbing construction Rs,t, (s, t) ∈ S := D(c)N+l,
c > 0. The grafted metric is built from the hyperbolic metric on R0 and the hyperbolic metric on
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a cylinder, see (4.5.16), (4.5.18). Let’s describe this construction more precisely.
Let gTR0

hyp be the hyperbolic metric of constant scalar curvature−1 with cusps on ∪ki=1(Ri, DRi).
Let uj , vj , j = 1, . . . , l be some Poincaré-compatible coordinates around ∪ki=1DRi with respect to
gTR

0 . We denote

αj =
∣∣(Fj ◦ u−1

j )′(0)
∣∣−1

, βj =
∣∣(Gj ◦ v−1

j )′(0)
∣∣−1

. (4.5.10)

We renormalize the coordinates

fj = αjFj, gj = βjGj, τj := αjβjtj. (4.5.11)

Trivially from Section 4.5.1, the plumbing construction for (Uj, Vj, Fj, Gj, tj) coincides with the
plumbing construction for (Uj, Vj, fj, gj, τj).

Let ν1,0 : R0 → [0, 1], ν2 : R→ [0, 1] be smooth functions, satisfying

ν1,0(x) =

{
1, for x ∈ R(1+δ)c,∗,

0, for x ∈ R0 \R(1−δ)c,∗.
(4.5.12)

ν2(w) =

{
0, for w < 1/2− 2δ,

1, for w > 1/2 + 2δ.
(4.5.13)

Since the function ν1,0 is zero in the pinching collar, it induces the functions ν1,s,t : Rs,t → [0, 1],
(s, t) ∈ D(c)N+l by zero away from R(1−δ)c,∗.

Let 0 < c, δ < 1 be some small real constants. Since f ′j(0), g′j(0) = 1, the inner boundary of
annuli {c < |fj| < 2c}, {c < |gj| < 2c} are approximately {uj = c} and {vj = c} respectively.

We suppose that c > 0 is chosen in such a way that the metric gTR0 is induced by
√
−1dujduj

|uj log |uj|2|2
, over

{
|fj| < 2c

}
,

√
−1dvjdvj

|vj log |vj|2|2
, over

{
|gj| < 2c

}
.

(4.5.14)

We denote by gCyl
j,1 the metric over the subset of Xt, given by{
|τj|1/2+2δ < |fj| < e2δc

}
=
{
e−2δ|τj|/c < |gj| < |τj|1/2−2δ

}
, (4.5.15)

which is induced by the Kähler form(
π

|uj| log |τj|

(
sin

π log |uj|
log |τj|

)−1)2√
−1dujduj. (4.5.16)

Similarly, we denote by gCyl
j,2 the metric over the subset of Xt, given by{

|τj|1/2+2δ < |gj| < e2δc
}

=
{
e−2δ|τj|/c < |fj| < |τj|1/2−2δ

}
, (4.5.17)
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which is induced by the Kähler form(
π

|vj| log |τj|

(
sin

π log |vj|
log |τj|

)−1)2√
−1dvjdvj. (4.5.18)

The grafted metric gTRs,tgft is given by

g
TRs,t
gft =

(
gCyl
j,1 (gCyl

j,2 /g
Cyl
j,1 )ν2(log |fj |/ log |τj |)

)1−ν1,s,t
(gTR0

hyp )ν1,s,t . (4.5.19)

E A B C D C' A'B' E'

Z X Y X' Z'

Figure 4.1: The grafted metric. Over the regions E,E ′, the metric gTRs,tgft is isometric to gTR0

hyp . Over
the regions A, A′ the metric gTRs,tgft is Poincaré-compatible with uj and vj respectively (see (4.2.2)).
Over the regions B, B′ the metric gTRs,tgft is a geometric interpolation between the Poincaré metric
and (4.5.16), (4.5.18) respectively. Over the regions C, C ′ the metric gTRs,tgft is given by (4.5.16)
and (4.5.18) respectively. Finally, over the region D, the metric gTRs,tgft is a geometric interpolation
between (4.5.16) and (4.5.18). The dashed lines represent that the boundary of the region, given
by the conditions {|fj| = const}, {|gj| = const}, and filled lines represent the boundary given by
{|uj| = const}, {|vj| = const}.

Remark 4.5.4. If fj = uj and gj = vj , then since ujvj = τj , the metrics gCyl
j,2 , gCyl

j,1 coincide over the
set {|τj|1/2+2δ < |fj| < |τj|1/2−2δ}, and the formula for gTRs,tgft becomes simpler. This corresponds
to the model grafting in the terminology of Wolpert [116].

Let’s recall the pinching expansion of the hyperbolic metric. Let’s denote by gTRs,thyp the hyper-
bolic metric with cusps on (Rs,t, DRs,t). The following results was proved in the compact case by
Wolpert [116, Expansion 4.2] and in the non-compact case by Freixas [58, Theorem 4.3.1]:

Theorem 4.5.5 (The pinching expansion). For (s, t) ∈ S \ |∆|, we have

g
TRs,t
hyp = g

TRs,t
gfh

(
1 +

∑
O
(
| log |tj||−2

))
, (4.5.20)

where the O-term is for the C∞ norm over Rs,t \DRs,t with respect to gTRs,thyp .

The metrics gTRs,thyp induce the Hermitian norm‖·‖ω,hyp
g,m on ωg,m over Cg,m \ Dg,m from Section

4.5.1. By Teichmüller theory, the norm‖·‖ω,hyp
g,m is smooth over Cg,m \Dg,m. We denote by‖·‖hyp

g,m

the induced norm on ωg,m(D). We denote by Σg,m the set on double points singularities in C g,m.
Then
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Proposition 4.5.6. The hyperbolic metric‖·‖hyp
g,m satisfies Assumptions S2 and S3.

Proof. We recall that the goodness and continuity of the hyperbolic metric was proved for compact
surfaces by Wolpert in [116, Theorem 5.8] and for non-compact by Freixas in [58, Theorem 4.0.1].
By [36, Lemma 4.26], any good line bundle is pre-log-log. Thus, Assumption S2 is satisfied by
‖·‖hyp

X/S .
By Proposition 4.5.3c), it is enough to prove that f.s.c. (π : X → S;σ1, . . . , σm;‖·‖hyp

X/S) from
Construction 4.5.2 satisfies Assumptions S3.

First of all, since the metric‖·‖hyp
X/S has constant scalar curvature −1, we see that the coupling

of c1(ωX/S(D), (‖·‖hyp
X/S)2) with two vertical vector fields is expressed through the coupling of the

fiberwise volume form. By the continuity and goodness of‖·‖hyp
X/S , we deduce that the coupling of

c1(ωX/S(D), (‖·‖hyp
X/S)2) with smooth vertical vector fields is continuous over X \ (ΣX/S ∪ |DX/S|)

and has log-log growth on X \ ΣX/S with singularities along |DX/S|.
Now let’s prove the fact that‖·‖hyp

X/S has log-log growth with singularities along ΣX/S ∪ |DX/S|.
First of all, by Theorem 4.5.5, it is enough to prove so for the Hermitian norm‖·‖gft

X/S induced by

g
TRs,t
gft on ωX/S(D). Trivially, we have

2

π
x ≤ sin(x) ≤ x, for x ∈ [0, π/2]. (4.5.21)

We fix C > 0 such that over D(2c), we have the inequalities

‖fj ◦ u−1
j ‖C 1 < C, ‖gj ◦ v−1

j ‖C 1 < C, (4.5.22)

are satisfied. Then by the identity fjgj = τj and (4.5.22), we deduce that there is C1 > 0 such that∣∣∣ log |τj| − log |uj| − log |vj|
∣∣∣ ≤ C1. (4.5.23)

By (4.5.16), (4.5.18), (4.5.21), (4.5.22) and (4.5.23), we deduce that there is C2 > 0 such that

∥∥duj/uj∥∥gft

X/S
≤

{
C2| log |uj||, over

{
|τj|1/2 < |gj| < e2δc

}
,

C2| log |vj||, over
{
|τj|1/2 < |fj| < e2δc

}
,

(4.5.24)

which implies by (4.2.13) that‖·‖gft
X/S has log-log growth with singularities along ΣX/S ∪ |DX/S|.

Now let’s explain some applications of Sections 4.3, 4.4. But before we drag the attention of the
reader to the fact that M g,m is an orbifold. However, since all the theorems of this article are local,
they can be applied in an orbifold chart, and the final statements continues to hold for families of
complex curves over an orbifold.

Proof of Corollaries 4.1.10. It is a direct consequence of Theorem C, Corollary 4.1.8, Remark
4.3.5 and Proposition 4.5.6.
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Proof of Corollary 4.1.12. It follows from Theorem D and Proposition 4.5.6.

Proof of Corollary 4.1.16. It follows from Theorem 4.5.1, Corollary 4.1.7 and Proposition 4.5.6.

Proof of Corollary 4.1.18. The decomposition (4.1.16) follows directly from Theorems C2, 4.5.1,
Proposition 4.5.6 and (4.2.33). Now let’s prove the identity (4.1.18). From (4.1.16), it is enough
to prove that for N := 3g − 3 +m and any i = 1, . . . , N , we have∫

Mg,m

αN−i(dβ)i = 0. (4.5.25)

Since dβ has log-log growth along ∂Mg,m and α is smooth over M g,m, we have∫
Mg,m

αN−i(dβ)i = lim
ε→0

∫
Mg,m\B(∂Mg,m,ε)

αN−i(dβ)i, (4.5.26)

where B(∂Mg,m, ε) is an ε-tubular neighbourhood of ∂Mg,m in M g,m. By Stokes theorem∫
Mg,m\B(∂Mg,m,ε)

αN−i(dβ)i

=

∫
Mg,m\B(∂Mg,m,ε)

d
(
βαN−i(dβ)i−1

)
=

∫
∂B(∂Mg,m,ε)

βαN−i(dβ)i−1. (4.5.27)

Trivially, for any k ∈ N, p ∈ N, we have the following identity

lim
ε→0

∫
|z0|=ε

|z1|,...,|zk|=ε

log | log |z0||p|dz0|
|z0 log |z0||

k∏
i=1

√
−1 log | log |zi||pdzidzi
|zi log |zi||2

= 0 (4.5.28)

As β, dβ have log-log growth and α is smooth, similarly to [95, Proposition 1.2], by (4.5.28):

lim
ε→0

∫
∂B(∂Mg,m,ε)

βαN−i(dβ)i−1 = 0 (4.5.29)

From (4.5.26), (4.5.27) and (4.5.29), we deduce (4.5.25).

Proof of Corollary 4.1.20. As it was proved by Deligne in [42, Proposition 8.5] for m = 0, and
Freixas in [58, Theorem 5.1.3, Corollary 5.1.4] for m ∈ N, the Hermitian norm ‖·‖Del

g,m on the
Deligne-Weil product 〈ωg,m(D), ωg,m(D)〉 is smooth over Mg,m, and over Mg,m we have

c1

(
〈ωg,m(D), ωg,m(D)〉,

(
‖·‖Del

g,m

)2
)

= π−2ωWP . (4.5.30)

By another result of Freixas, [58, Theorem 5.1.3], the Hermitian norm‖·‖Del
g,m on the Deligne-Weil

product 〈ωg,m(D), ωg,m(D)〉 is nice over M g,m, with singularities along ∂Mg,m. Thus, by Remark
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4.1.4, the first Chern form is well-defined as a current, and from Proposition 4.4.4, (4.5.30), we
have the following identity of currents over M g,m

c1

(
〈ωg,m(D), ωg,m(D)〉,

(
‖·‖Del

g,m

)2
)

= π−2
[
ωWP

]
L1 . (4.5.31)

By Corollary 4.1.12 and (4.5.31), the norm of the isomorphisms (4.1.19) and (4.1.20) is a pluri-
harmonic functions over M g,m. As M g,m is compact, we deduce that they are constant, which
finishes the proof.
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Chapter 5

Quillen metric for singular families of
Riemann surfaces with cusps.

Abstract. In this article we study the behaviour of the Quillen metric for the family of Riemann
surfaces with cusps when the additional cusps are created by degeneration.

More precisely, by our previous results, we see that the renormalisation of the Quillen metric
associated with a family of Riemann surfaces with cusps extends continuously over the locus of
singular curves. The main result of this article shows that, modulo some explicit universal constant,
this continuous extension coincides with the Quillen metric of the normalisation of singular curves.
This result shows that the Quillen metric is compatible with adjunction of cusps.

As an application, we obtain the compatibility between our definition of the analytic torsion
and the definition of Takhtajan-Zograf using lengths of closed geodesics. As another application,
we obtain the compatibility of the Quillen metric with clutching morphisms in the moduli space
of pointed stable curves.

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.2 Families of nodal curves and related notions . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.2.1 Determinant line bundles, Serre duality and Quillen norms . . . . . . . . . . . . . . . 199
5.2.2 Singular Hermitian vector bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.2.3 Quillen metric and hyperbolic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 206
5.2.4 Model grafting and pinching expansion . . . . . . . . . . . . . . . . . . . . . . . . . 208

5.3 Quillen metric near singular fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.3.1 Quillen metric in a smooth family of Riemann surfaces . . . . . . . . . . . . . . . . . 210
5.3.2 Proofs of Theorems 5.1.2, 5.1.4, 5.1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 215

5.1 Introduction
In this article we study the behaviour of the Quillen metric for the family of Riemann surfaces with
cusps when the additional cusps are created by degeneration.

Let X and S be complex manifolds, and let π : X → S be a proper holomorphic map. The
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construction of Grothendick-Knudsen-Mumford [76] (cf. also [23, §3]) associates for every holo-
morphic vector bundle ξ over X the “determinant of the direct image of ξ” - the holomorphic line
bundle over S, which we denote (cf. (5.2.40))

λ(j∗ξ)−1 := det(R•π∗ξ). (5.1.1)

Let’s fix a holomorphic, proper, surjective map π : X → S of complex manifolds, such that for
every t ∈ S, the space Xt := π−1(t) is a complex curve whose singularities are at most ordinary
double points (in the terminology of [20], [55], a f.s.o.). We denote by ΣX/S ⊂ X the submanifold
of singular points of the fibers (see Corollary 5.2.5). We denote by ∆ = π∗(ΣX/S) the divisor
formed by the locus of the singular fibers π. In this article we only consider π for which the
associated divisor ∆ has normal crossings.

Let σ1, . . . , σm : S → X \ΣX/S be disjoint holomorphic sections of π. We denote by DX/S the
divisor on X , given by

DX/S = Im(σ1) + · · ·+ Im(σm). (5.1.2)

Let the norm ‖·‖ωX/S on the canonical line bundle ωX/S (see (5.2.36)) over X \ (π−1(|∆|) ∪
|DX/S|) be such that its restriction over each nonsingular fiber Xt := π−1(t), t ∈ S \
|∆| of π induces the Kähler metric gTXt on Xt \ {σ1(t), . . . , σm(t)} such that the triple
(Xt, {σ1(t), . . . , σm(t)}, gTXt) is a surface with cusps in the sense of [54], [93], [59] (see Sec-
tion 5.2.1).

Construction 5.1.1. For a complex manifold Y and a divisor D0 ⊂ Y , let ‖·‖div
D0

be the singular
norm on OY (D0), defined by

‖sD0‖div
D0

(x) = 1, for any x ∈ Y \D0, (5.1.3)

where sD0 is the canonical section of the divisor D0 with div(sD0) = D0.
We endow the twisted canonical line bundle

ωX/S(D) := ωX/S ⊗ OX(DX/S) (5.1.4)

with the canonical norm ‖·‖X/S over X \ (π−1(|∆|) ∪ |DX/S|), induced by‖·‖ωX/S and‖·‖div
DX/S

.

Let (ξ, hξ) be a holomorphic Hermitian vector bundle over X . Let hdet ξ be the induced Hermi-
tian metric on det ξ := Λmaxξ. In [54, §2.1], we’ve seen that for n ≤ 0, the L2-scalar product1

〈α, α′〉L2 :=
1

2π

∫
Xt

〈α(x), α′(x)〉hdvXt(x), α, α′ ∈ C∞(Xt, ξ ⊗ ωX/S(D)n), (5.1.5)

where 〈·, ·〉h is the pointwise scalar product, dvXt is the induced Riemannian volume form on
(Xt, g

TXt), induces the natural L2-norm on the determinant line bundle λ(j∗(ξ⊗ωX/S(D)n)), n ≤
0 over S \ |∆|. In [54], [55] (cf. Definition 5.2.7), we’ve defined the Quillen norm‖·‖Q (gTXt , hξ⊗

1Our normalisation is different from the one used in [54], [55] by a factor 2π. The reason for such a normalisation
is to make things compatible with [42], [66], [25], [59], in particular, to make Serre duality an isometry, see (5.2.30).
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‖·‖2n
X/S) on the determinant line bundle λ(j∗(ξ ⊗ ωX/S(D)n)), n ≤ 0 over S \ |∆| as the product

of the analytic torsion of the fiber T (gTXt , hξ ⊗‖·‖2n
M ) from [54], and the L2-norm of the fiber, see

Section 5.2.1. As we explained in [55], this definition gives a non-compact 1-dimensional version
of the definition of the Quillen norm of Bismut-Gillet-Soulé [23] and generalizes the definition of
Quillen [102], which was given for n,m = 0 and π, (ξ, hξ) trivial.

Let’s denote by‖·‖WX/S the Wolpert norm on ⊗mi=1σ
∗
i (ωX/S) induced by‖·‖ωX/S (see Definition

5.2.2). The necessary definitions for the following passage are given in Definitions 5.2.11, 5.2.12.

We suppose that the Hermitian norm‖·‖X/S on ωX/S(D) extends continuously over

X \ (ΣX/S ∪ |DX/S|), has log-log growth with singularities along ΣX/S ∪ |DX/S|, is good
in the sense of Mumford on X \ |DX/S| with singularities along π−1(∆), and the coupling

of c1(ωX/S(D),‖·‖2
X/S) with two smooth vertical vector fields over X \ (ΣX/S ∪ |DX/S|)

has log-log growth with singularities along DX/S .
(5.1.6)

Then in [55, Theorem C3] (cf. Theorem 5.2.8) we proved that the norm

‖·‖Ln
:=
(
‖·‖Q (gTXt , hξ⊗‖·‖2n

X/S)
)12⊗

(
‖·‖WX/S

)−rk(ξ)⊗
(
‖·‖div

∆

)rk(ξ)⊗ (⊗mi=1σ
∗
i h

det ξ)3 (5.1.7)

on the line bundle

Ln := λ
(
j∗(ξ ⊗ ωX/S(D)n)

)12 ⊗ (⊗mi=1σ
∗
i ωX/S)−rk(ξ) ⊗ OS(∆)rk(ξ) ⊗ (⊗mi=1σ

∗
i det ξ)6 (5.1.8)

extends continuously over S. The main goal of this article is to give the precise value of this
extension.

More precisely, as ∆ has normal crossings, for any t ∈ S, by shrinking the base S, we may
always suppose that for some l ∈ N, the divisor ∆ decomposes in the neighbourhood of t as

∆ = k ·∆0 + k1 ·∆1 + · · ·+ kl ·∆l, (5.1.9)

where ∆i, i = 0, . . . , l are divisors induced by the submanifolds |∆i| and k, kj ∈ N∗, j = 1, . . . , l.
Let ∆0

j := ∆j ∩∆0 be the induced divisor on S ′ := |∆0|, and let ∆′ be the divisor on S ′ given by

∆′ := k1 ·∆0
1 + · · ·+ kl ·∆0

l . (5.1.10)

Let ι : S ′ → S be the obvious inclusion. We denote Z := π−1(S ′), Zt := π−1(t), t ∈ S ′, and let
ρ : Y → Z be the normalization of Z. We denote by π′ : Y → S ′ the family of surfaces, induced
by the following commutative square

Y
ρ−−−→ Xyπ′ yπ

S ′
ι−−−→ S

(5.1.11)

The restriction of the holomorphic sections σ1, . . . , σm on S ′ induce the holomorphic sections,
which we denote by σ′1, . . . , σ

′
m : S ′ → Y .
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Xt X0 Y0

t 0

ρ

Figure 5.1: A degenerating familiy. Our goal is to relate a norm on the line bundle at the singular
fiber with a norm on the line bundle on its normalisation. Points represent the elements inDX/S|Xt ,
DX/S|X0 and DY/S′|Y0 . Notice the added marked points on the normalisation.

Let ΣZ/S′ be the locus of points, which get normalized in ρ. The manifold ΣZ/S′ is a union of
some connected components of ΣX/S , thus, it has codimension 2 in X (see Corollary 5.2.5). Let

κ : ΣZ/S′ ↪→ X (5.1.12)

the obvious inclusion. Then the restriction of π′ to ρ−1(κ(ΣZ/S′)) is the covering of degree 2k, see
(5.1.9). By shrinking the base, we may suppose that it is a trivial cover, so there are holomoprhic
sections σ′m+1, . . . , σ

′
m+2k : S ′ → Y such that ρ−1(ΣZ/S′) = ∪2k

i=1 Im(σ′m+i) and ρ ◦ σ′m+2i−1 =
ρ ◦ σ′m+2i, i = 1, . . . , k. We define the divisor DY/S′ over Y by

DY/S′ := Im(σ′1) + · · ·+ Im(σ′m+2k). (5.1.13)

We also define the twisted canonical line bundle of π′ as follows

ωY/S′(D) := ωY/S′ ⊗ OY (DY/S′). (5.1.14)

Then, classically (cf. Section 5.2.1), we have the canonical isomorphism

ρ∗(ωX/S(D)) ' ωY/S′(D). (5.1.15)

Under assumptions (5.1.6), the isomorphism (5.1.15) induces the Hermitian norm‖·‖Y/S′ on ωY/S′(D)
over Y \ |DY/S′| by

‖·‖Y/S′ := ρ∗(‖·‖X/S). (5.1.16)

Let‖·‖ωY/S′ be the norm on ωY/S′ , which is induced by‖·‖Y/S′ as in Construction 5.1.1. Then‖·‖Y/S′
and‖·‖ωY/S′ are Hermitian norms over Y \ ((π′)−1(|∆′|) ∪ |DY/S′ |).
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We suppose that the norm‖·‖ωY/S′ over Y \ (π−1(|∆′|) ∪ |DY/S′ |) is such that its re-

striction over each nonsingular fiber Yt := π−1(t), t ∈ S ′ \ |∆′| of π′ induces the Kähler

metric gTYt , for which the triple (Yt, {σ′1(t), . . . , σ′m+2k(t)}, gTYt) is a surface with cusps.
(5.1.17)

We denote by‖·‖WY/S′ the Wolpert norm on⊗m+2k
i=1 (σ′i)

∗ωY/S′ , induced by‖·‖ωY/S′ . Now, similarly
to (5.1.7), (5.1.8), we define the norm

‖·‖L ′n :=
(
‖·‖Q (gTYt , ρ∗(hξ)⊗ ‖·‖2n

Y/S′)
)12 ⊗

(
‖·‖WY/S′

)−rk(ξ)

⊗
(
‖·‖div

∆′

)rk(ξ) ⊗
(
⊗m+2k
i=1 (σ′i ◦ ρ)∗hdet ξ

)3 (5.1.18)

on the line bundle

L ′
n := λ

(
j∗(ρ∗(ξ)⊗ ωY/S′(D)n)

)12 ⊗ (⊗m+2k
i=1 (σ′i)

∗ωY/S′)
−rk(ξ)

⊗ OS′(∆
′)rk(ξ) ⊗

(
⊗m+2k
i=1 (σ′i ◦ ρ)∗ det ξ

)6
. (5.1.19)

We denote by NΣZ/S′/X
(resp. NS′/S) the normal vector bundle of ΣZ/S′ in X (resp. of S ′ in S).

Since the fibers of X have only double-point singularities, the projection π induces the canonical
isomorphism (see (5.2.32), cf. also [18, (2.9)])

dπ2 : ∧2(NΣZ/S′/X
)⊗ (det ρ∗(Oρ−1ΣZ/S′

))→ κ∗π∗NS′/S. (5.1.20)

Also, for the relative tangent bundle TY/S ′ of π′ and for any i = 1, . . . , k, the normalization map
ρ induces the canonical isomorphism

(σ′m+2i−1)∗(TY/S ′)⊗ (σ′m+2i)
∗(TY/S ′)→ ∧2(NΣZ/S′/X

). (5.1.21)

We denote by ωS and ωS′ the canonical line bundles over S and S ′. By combining the duals of the
isomorphisms (5.1.20), (5.1.21), for i = 1, . . . , k, we get the canonical isomorphism

(ωS ⊗ ω−1
S′ )|S′ → (σ′m+2i−1)∗(ωY/S′)⊗ (σ′m+2i)

∗(ωY/S′). (5.1.22)

The following isomorphism is given by Poincaré residue morphism (cf. [67, p. 147])

(ωkS ⊗ OS(k∆0))|S′ → ωkS′ . (5.1.23)

By combining the isomoprhism (5.1.22), applied for each i = 1, . . . , k, the isomorphism (5.1.23)
and by multiplying by (⊗mi=1σ

∗
i ωX/S)−1 ⊗ OS(

∑
ki∆i), we get the canonical isomorphism((

⊗mi=1 σ
∗
i ωX/S

)−1 ⊗ OS(∆)
)∣∣

S′
→
(
⊗m+2k
i=1 (σ′i)

∗ωY/S′
)−1 ⊗ OS′(∆

′). (5.1.24)

For t ∈ S ′, we have the following exact sequence of sheaves (cf. [18, (5.53)])
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0→ OZt

(
j∗(ξ ⊗ ωX/S(D)n)

)
→ ρ∗OYt

(
j∗(ρ∗(ξ)⊗ ωY/S′(D)n)

)
→ OΣZ/S′

(
κ∗ξ ⊗ det(ρ∗Oρ−1ΣZ/S′

)
)
→ 0, (5.1.25)

where the first map is induced by the pull-back and (5.1.15), and the second map is the difference
of residue morphism at ρ−1(ΣZ/S′). The short exact sequence (5.1.25) of the line bundles over S ′

induces the canonical isomorphism (cf. [18, (5.55)])

λ
(
j∗(ξ ⊗ ωX/S(D)n)

)
|S′ → λ

(
j∗(ρ∗(ξ)⊗ ωY/S′(D)n)

)
⊗ det

(
π∗(κ

∗(ξ))
)
⊗ det

(
(π ◦ ρ)∗Oρ−1ΣZ/S′

)rk(ξ)
. (5.1.26)

We note that the square of det((π◦ρ)∗Oρ−1ΣZ/S′
) is canonically trivialized. From now on, we don’t

mention those powers explicitly. Trivially, we have an isomorphism

det
(
π∗(κ

∗(ξ))
)2 →

(
⊗2k
i=1 (σ′m+i ◦ ρ)∗ det ξ

)
⊗
(

detπ∗OΣZ/S′

)2·rk(ξ)
. (5.1.27)

The composition of the isomorphisms (5.1.24), (5.1.26) and (5.1.27) induce the canonical isomor-
phism

Ln|S′ → L ′
n ⊗

(
detπ∗OΣZ/S′

)12·rk(ξ)
, (5.1.28)

which is the protagonist of this paper.
For k ∈ N∗, we define

C0 = −6 log(π), Ck = −6(1 + k) log(2)− 6(1 + 2k) log(π)− 6 log((2k)!). (5.1.29)

Now we can state the main result of this article, which describes the continuous extension of
the norm (5.1.7) in terms of the same objects that we’ve used in the definition of (5.1.7).

Theorem 5.1.2 (Restriction theorem). Let π : X → S be a proper, holomorphic, surjective map
of complex manifolds, such that for every t ∈ S, the space Xt := π−1(t) is a complex curve whose
singularities are at most ordinary double points. We suppose that the divisor of singular curves ∆
decomposes as in (5.1.9). We use the notation for k ∈ N and S ′ as in (5.1.10).

Let σ1, . . . , σm : S → X be disjoint holomorphic sections of π, which do not pass through
singular points of the fibers. We denote by DX/S the divisor (5.1.2).

Let ‖·‖ωX/S be a Hermitian norm on the canonical line bundle ωX/S (see (5.2.36)) over X \
(π−1(|∆|) ∪ |DX/S|) such that its restriction over each Xt := π−1(t), t ∈ S \ |∆| induces the
Kähler metric gTXt on Xt \ {σ1(t), . . . , σm(t)} such that the triple (Xt, {σ1(t), . . . , σm(t)}, gTXt)
is a surface with cusps in the sense of [54], [93], [59] (see Section 5.2.1).

Let (ξ, hξ) be a holomorphic Hermitian vector bundle overX . We define‖·‖Ln
, Ln as in (5.1.7)

and (5.1.8). Let let family of complex curves π′ : Y → S ′ be constructed as in (5.1.11). We suppose
that assumptions (5.1.6) and (5.1.17) hold. We define‖·‖L ′n , L ′

n as in (5.1.18) and (5.1.19).
Then‖·‖Ln

extends continuously over S and under the isomorphism (5.1.28), we have

‖·‖Ln
|S′ = exp(m · rk(ξ) · C−n) ·‖·‖L ′n . (5.1.30)
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Remark 5.1.3. a) We note that a similar theorem was proved by Bismut in [18, Theorems 0.2, 0.3]
(cf Theorem 5.3.1). Let’s comment on the differences between Theorem 5.1.2 and [18, Theorems
0.2, 0.3].

First of all, Theorem 5.1.2 is for codimension 1 family, where fibers are endowed with metric
with cusps singularities, and the result [18, Theorems 0.2] works for families of any codimension
but with smooth metric. Also, the way we endow singular fibers with the metric is crucially
different. In our case even when the general fiber has no cusps, the metric on the normalization of
the singular fiber acquires at least two cusps. This is different from [18, Theorems 0.2, 0.3], where
author induce smooth metric on the normalization of the singular fiber. In particular, Theorem
5.1.2 doesn’t follow directly from [18, Theorems 0.2, 0.3] and anomaly formula.

b) We firstly prove Theorem 5.1.2 up to some undetermined universal constant. This proof is
based on our previous results concerning the Quillen norm for Riemann surfaces with cusps [54,
Theorems A, B] and on the mentioned result of Bismut [18, Theorem 0.3]. The reason why we
couldn’t get the precise constant by this method is that our compact perturbation theorem, [54,
Theorem A], is only proved in the relative setting for the moment being. In fact, to prove it in a
non-relative setting we use the proof of Theorem 5.1.2.

The evaluation of the constant C−n uses the calculations made by Freixas [59, Corollary 5.8],
[59, Theorem 5.3] (cf. Theorem 5.2.15), which were based on the asymptotics of the Selberg zeta
function due to Wolpert [115] and on a careful study of the degeneration of the L2-norm by Freixas.

Now, let’s describe our second result. We fix a compact Riemann surface M and a set of points
DM ⊂ M , #DM = m, m < +∞. We denote M := M \DM . Suppose that a pointed Riemann
surface (M,DM) is stable, i.e. the genus g(M) of M satisfies

2g(M)− 2 +m > 0, (5.1.31)

then, by the uniformization theorem (cf. [49, Chapter IV], [9, Lemma 6.2]), there is the canon-
ical hyperbolic metric gTMhyp of constant scalar curvature −1 on M with cusps at DM . We de-
note by‖·‖hyp

M the norm induced by gTMhyp on ωM(D) over M . Then, as we explain in [54, §2.1],
the triple (M,DM , g

TM
hyp ) is a surface with cusps (see Section 5.2.1), thus, the analytic torsion

T (gTMhyp , (‖·‖
hyp
M )2n) is well-defined in this case.

Alternatively, we denote by Z(M,DM )(s), s ∈ C the Selberg zeta-function, which is given for
Re(s) > 1 by the absolutely converging product:

Z(M,DM )(s) =
∏
γ

∞∏
k=0

(1− e−(s+k)l(γ))2, (5.1.32)

where γ runs over the set of all simple non-oriented closed geodesics on (M, gTMhyp ), and l(γ) is
the length of γ. The function Z(M,DM )(s) admits a meromorphic extension to the whole complex
s-plane with a simple zero at s = 1 (see for example [44, (5.3)]).

Let ζ(s) :=
∑∞

k=1 k
−s be the Riemann zeta function. For k ∈ N∗, we put

c0 = 4ζ ′(−1)− 1
2

+ log(2π),

ck =
∑k−1

l=0 (2k − 2l − 1)
(

log(2k + 2kl − l2 − l)− log(2)
)

+ (1
3

+ k + k2) log(2)

+ (2k + 1) log(2π) + 4ζ ′(−1)− 2(k + 1
2
)2 − 4

∑k−1
l=1 log(l!)− 2 log(k!).

(5.1.33)
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For k ∈ N, we denote by Bk : N2 → R, E : N2 → R the following functions

Bk(g,m) = exp
(

(2− 2g(M)−m)
ck
2

)
,

E(g,m) = exp
(

(g(M) + 2−m)
log(2)

3

)
.

(5.1.34)

In particular, we see that for any k ∈ N, (g,m) ∈ N2, we have

Bk(g +m, 0) = Bk(g,m) ·Bk(1, 1)m,

E(g +m, 0) = E(g,m) · E(1, 1)m.
(5.1.35)

Then, in case for hyperbolic surfaces and (ξ, hξ) trivial, for l ∈ Z, l < 0, Takhtajan-Zograf
in [107, (6)] proposed2 the analogue of the analytic torsion defined via Selbrerg zeta function as

TTZ(gTMhyp , 1) = E(g(M),m) ·B0(g(M),m) · Z ′
(M,DM )

(1),

TTZ(gTMhyp , (‖·‖
hyp
M )2l) = B−l(g(M),m) · Z(M,DM )(−l + 1).

(5.1.36)

Theorem 5.1.4 (Compatibility theorem). For any surface with cusps (M,DM , g
TM
hyp ), for which

gTMhyp has constant scalar curvature −1, the following identity holds

T (gTMhyp , (‖·‖
hyp
M )2n) = TTZ(gTMhyp , (‖·‖

hyp
M )2n). (5.1.37)

Thus, our definition of the analytic torsion is compatible with the definition of Takhtajan-Zograf.

Remark 5.1.5. For m = 0, i.e. when surfaces have no cusps, Theorem 5.1.4 was shown by Phong-
D’Hoker [44, (7.30)], [45, (3.6)] (see also [104], [29, (50)] and [99, (9)]). Our proof is based
on their result. We note that Albin-Rochon in [4] proved (5.1.37) up to a universal constant (see
also [55, (2.43)]). Our approach to (5.1.37) is based on degenerating families, which is different
from the one of Albin-Rochon.

Now let’s describe the applications of Theorems 5.1.2, 5.1.4 in the study of the moduli space
Mg,m of m-pointed Riemann surfaces of genus g ∈ N, 2g − 2 + m > 0. We denote by M g,m

the Deligne-Mumford compactification of Mg,m, by ∂Mg,m := M g,m \Mg,m the compactifying
divisor, by Cg,m and C g,m the universal curves over Mg,m and M g,m respectively. We denote by
Π : C g,m → M g,m the universal projection. We denote by Dg,m the divisor on C g,m, formed
by m fixed points. We denote by ωg,m the relative canonical line bundle of Π, by ⊗mi=1σ

∗
i ωg,m

the determinant of the restriction of ωg,m to the divisor Dg,m, and by ωg,m(D) the twisted relative
canonical line bundle,

ωg,m(D) := ωg,m ⊗ OC g,m
(Dg,m). (5.1.38)

By the uniformization theorem (cf. [49, Chapter IV], [9, Lemma 6.2], [10]), we endow ωg,m(D)

with the Hermitian norm ‖·‖hyp
g,m, such that its restriction over each fiber induces the canonical

2The constant in front of Selberg zeta function didn’t appear in [107], as their result is independent of it.

194



Quillen metric for singular families of Riemann surfaces with cusps

hyperbolic metric of constant scalar curvature−1 by Construction 5.1.1. This endows the determi-
nant line bundle λ(j∗(ωg,m(D)n)), n ≤ 0, (5.2.10), which is usually called the Hodge line bundle,
with the induced Quillen metric‖·‖Q,ng,m. We endow the line bundle ⊗mi=1σ

∗
i ωg,m with the associated

Wolpert norm‖·‖Wg,m, see Wolpert [117, Definition 1] (cf. [54, Definition 1.5] or Definition 5.2.2).
We recall that we proved in [55, Corollary 1.11] (cf. Theorem 5.2.8) that the norm

‖·‖H,ng,m := (‖·‖Q,ng,m)12 ⊗ (‖·‖Wg,m)−1 ⊗ ‖·‖div
∂Mg,m

(5.1.39)

on the line bundle

λH,ng,m := λ(j∗(ωg,m(D)n))12 ⊗ (⊗σ∗i ωg,m)−1 ⊗ OM g,m
(∂Mg,m) (5.1.40)

extends continuously over M g,m. Classically,‖·‖H,ng,m is smooth over Mg,m.
For the definition of the clutching morphisms

αij : M g−1,m+2 →M g,m,

βP(g1,m1),(g2,m2) : M g1,m1+1 ×M g2,m2+1 →M g,m,
(5.1.41)

where i < j, i, j = 1, . . . ,m + 2; m1,m2 ∈ N, g1, g2 ∈ N, m1 + m2 = m, g1 + g2 = g,
2g1 + m1 − 2 > 0, 2g2 + m2 − 2 > 0 and P ∈ {I, J ⊂ {1, 2, . . . ,m} : I ∩ J = ∅, I ∪ J =
{1, 2, . . . ,m}, |I| = m1, |J | = m2}, see Knudsen [74]. We recall that the compactifying divisor
∂Mg,m can be described in terms of (5.1.41) by (cf. [8, p.262])∣∣∂Mg,m

∣∣ =
(
∪ Im(αij)

)
∪
(
∪ Im

(
βP(g1,m1),(g2,m2)

))
. (5.1.42)

From now on and till the end of this article, for brevity, we drop the subscripts from α, β.
After an application of adjunction formula, which asserts the canonical triviality of the line

bundle Π∗(ωg,m(D)||Dg,m|), the isomorphism (5.1.28) specifies in this case to the isomoprhisms

α∗λH,ng,m ' λH,ng−1,m2
, (5.1.43)

β∗λH,ng,m ' λH,ng1,m1+1 � λ
H,n
g2,m2+1, (5.1.44)

which also remarkably respect the natural Z-structure of the line bundles (5.1.40), as it was proved
by Knudsen in [75, Theorem 4.2] (cf. [59]).

Theorem 5.1.6 (Restriction theorem on M g,m). a) The isomorphism (5.1.43) is an isometry if the
left-hand side is endowed with‖·‖H,ng,m , and the right-hand side with exp(m · C−n) ·‖·‖H,ng−1,m+2.

b) Similarly, the isomorphism (5.1.44) is an isometry if the left-hand side is endowed with‖·‖H,ng,m ,
and the right-hand side is endowed with the norm exp(m · C−n) · (‖·‖H,ng1,m1+1 �‖·‖

H,n
g2,m2+1).

Remark 5.1.7. For a special family of curves from Section 5.2.3, Freixas proved Theorem 5.1.6 for
n = 0 in [59, Corollary 5.8] and extended it for n ≤ 0 in [59, Theorem 5.3].

Instead of the usual definition Quillen norm, Freixas used its version, defined as a product of
(5.1.36) and the L2-norm. By Theorem 5.1.4, his results follows from Theorem 5.1.6. We note,
however, that the precise calculation of the constant Cn in Theorem 5.1.2, generalizing 5.1.6, relies
on the calculations of Freixas, which he obtained while proving those results.

195



Quillen metric for singular families of Riemann surfaces with cusps

Finally, we note that Theorem 5.1.2 suggest that the renormalization

T ren(gTXt , hξ ⊗ ‖·‖2n
X/S) := exp(m · rk(ξ)C−n/12) · T (gTXt , hξ ⊗ ‖·‖2n

X/S) (5.1.45)

is more natural from the point of view of restriction theorem. For (ξ, hξ) trivial and (M, gTM)
stable hyperbolic surface, this coincides with the normalization of Freixas in [59, Definition 2.2]
and [60, Definition 4.2].

Let’s describe the structure of this paper. In Section 2, we recall the definition of the Quillen
norm on the family of Riemann surfaces with cusps, the definition of Wolpert norm, and some
results from [54], [55], which study those norms. Then we recall an analogue of Theorem 5.1.2
due to Freixas about convergence of the Quillen norm for a special family of hyperbolic Riemann
surfaces, where the Quillen norm is defined using (5.1.36). In Section 3 we extend a result of
Bismut [18, Theorem 0.3] to Kähler family endowed with non-Kähler metric and give a proof of
Theorems 5.1.2, 5.1.4, 5.1.6.

Notation. For a complex manifold X , we denote by ΩX the sheaf of holomorphic sections of
the vector bundle T ∗(1,0)X , and by ωX the canonical line bundle det(T ∗(1,0)X) of X . For a divisor
D in X , we denote by sD the canonical meromorphic section of OX(D).

For ε > 0, we define

D(ε) = {u ∈ C : |u| < ε}, D∗(ε) = {u ∈ C : 0 < |u| < ε}. (5.1.46)

5.2 Families of nodal curves and related notions
In this section we recall the relevant notations. More precisely, in Section 2.1, we recall the notion
of the Quillen norm from [54], [21], [22], [23], the basic notions for families of Riemann surfaces
with cusps from [20], [55] and relevant results from [54], [55]. In Section 2.2, we recall several
notions of singularities of Hermitian metrics on holomorphic line bundles and a useful regularity
result for push-forward of differential forms from [55].

5.2.1 Determinant line bundles, Serre duality and Quillen norms
Let M be a compact Riemann surface, and let DM = {PM

1 , . . . , PM
m } be a finite set of distinct

points in M . Let gTM be a Kähler metric on the punctured Riemann surface M = M \DM .
For ε ∈]0, 1[, let zMi : M ⊃ V M

i (ε) → D(ε) = {z ∈ C : |z| ≤ ε}, i = 1, . . . ,m, be a local
holomorphic coordinate around PM

i , and

V M
i (ε) := {x ∈M : |zMi (x)| < ε}. (5.2.1)

We say that gTM is Poincaré-compatible with coordinates zM1 , . . . , z
M
m if for any i = 1, . . . ,m,

there is ε > 0 such that gTM |VMi (ε) is induced by the Hermitian form
√
−1dzMi dz

M
i∣∣zMi log |zMi |
∣∣2 . (5.2.2)
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We say that gTM is a metric with cusps if it is Poincaré-compatible with some holomorphic co-
ordinates of DM . A triple (M,DM , g

TM) of a Riemann surface M , a set of punctures DM and a
metric with cusps gTM is called a surface with cusps (cf. [93]).

From now on, we fix a surface with cusps (M,DM , g
TM) and a Hermitian vector bundle (ξ, hξ)

over it. We denote by ωM := T ∗(1,0)M the canonical line bundle over M . We denote by‖·‖ωM the
norm on ωM induced by gTM over M by the natural identification TM 3 X 7→ 1

2
(X − JX) ∈

T (1,0)M , where J is the complex structure of M . Let OM(DM) be the line bundle associated with
the divisor DM . The twisted canonical line bundle is defined as

ωM(D) := ωM ⊗ OM(DM). (5.2.3)

The metric gTM endows by Construction 5.1.1 the line bundle ωM(D) with the induced Hermitian
metric‖·‖M over M .

We recall here briefly the definition of the analytic torsion T (gTM , hξ ⊗‖·‖2n
M ) for m ∈ N

from [54, Definition 2.17].
Assume first m = 0, then the analytic torsion was defined by Ray-Singer [103, Definition 1.2]

as the regularized determinant of the Kodaira Laplacian �ξ⊗ωM (D)n associated with (M, gTM) and
(ξ⊗ωM(D)n, hξ⊗‖·‖2n

M ). More precisely, let λi, i ∈ N be the non-zero eigenvalues of�ξ⊗ωM (D)n .
By Weyl’s law, the associated zeta-function

ζM(s) :=
∑

λ−si , (5.2.4)

is defined for s ∈ C, Re(s) > 1 and it is holomorphic in this region. Moreover, we have

ζM(s) =
1

Γ(s)

∫ +∞

0

Tr
[

exp⊥(−t�ξ⊗ωM (D)n)
]
ts
dt

t
, (5.2.5)

where exp⊥(−t�ξ⊗ωM (D)n) is the spectral projection onto the eigenspace corresponding to non-
zero eigenvalues. Also, as it can be seen by the small-time expansion of the heat kernel and the
usual properties of the Mellin transform, ζM(s) extends meromorphically to the entire s-plane.
This extension is holomorphic at 0, and the analytic torsion is defined by

T (gTM , hξ ⊗‖·‖2n
M ) := exp(−ζ ′M(0)). (5.2.6)

By (5.2.4) and (5.2.6), we may interpret the analytic torsion as

T (gTM , hξ ⊗‖·‖2n
M ) :=

∞∏
i=0

λi. (5.2.7)

Now, assume m > 0. Then M is non-compact, and the heat operator associated to �ξ⊗ωM (D)n

is no longer of trace class. Also the spectrum of�ξ⊗ωM (D)n is not discrete in general. Thus, neither
the definition (5.2.6), nor the interpretation (5.2.7) are applicable.

In [54, Definition 2.10], for n ≤ 0, we defined the regularized heat trace
Trr[exp⊥(−t�ξ⊗ωM (D)n ] as a “difference” of the heat trace of �ξ⊗ωM (D)n and the heat trace of the
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Kodaira Laplacian�ωP (D)n corresponding to the 3-punctured projective plane P := P \{0, 1,∞},
P := CP 1, endowed with the hyperbolic metric gTP of constant scalar curvature −1 and the in-
duced metric‖·‖P on ωP (D) := ωP ⊗ OP (0 + 1 +∞). Then in [54, Definition 2.16], we defined
the regularized spectral zeta function ζM(s) for s ∈ C, Re(s) > 1 by

ζM(s) =
1

Γ(s)

∫ +∞

0

Trr[ exp⊥(−t�E
ξ,n
M )
]
ts
dt

t
. (5.2.8)

And we concluded in [54, p. 17], similarly to the case m = 0, the function ζM(s) extends mero-
morphically to C and 0 is a holomorphic point. Then in [54, Definition 2.17], we defined the
regularized analytic torsion as

T (gTM , hξ ⊗‖·‖2n
M ) := exp(−ζ ′M(0)/2) · TTZ(gTP ,‖·‖2n

P )m·rk(ξ)/3. (5.2.9)

Then for n ≤ 0, in [54, §2.1], we explain how to endow the complex line(
detH•(M, ξ ⊗ ωM(D)n)

)−1

:=
(
ΛmaxH0(M, ξ ⊗ ωM(D)n)

)−1 ⊗ ΛmaxH1(M, ξ ⊗ ωM(D)n), (5.2.10)

with the L2-norm‖·‖L2 (gTM , hξ ⊗‖·‖2n
M ) induced by the L2-scalar product (5.1.5). In the compact

case it coincides with the L2-norm induced on the harmonic forms.
The Quillen norm on the complex line is defined by

‖·‖Q (gTM , hξ ⊗ ‖·‖2n
M ) = T (gTM , hξ ⊗ ‖·‖2n

M )1/2 ·‖·‖L2 (gTM , hξ ⊗ ‖·‖2n
M ). (5.2.11)

To motivate, when m = 0, this coincides with the usual definition of the Quillen norm from
Quillen [102], Bismut-Gillet-Soulé [21, (1.64)] and [23, Definition 1.5].

Following [54], we say that a (smooth) metric gTMf over M is a flattening of gTM if there is
ν > 0 such that gTM is induced by (5.2.2) over V M

i (ν), and

gTMf |M\(∪iVMi (ν)) = gTM |M\(∪iVMi (ν)). (5.2.12)

Similarly, we defined a flattening‖·‖f
M of the norm‖·‖M .

Theorem 5.2.1 ( [54, Theorem A]). Let gTMf ,‖·‖f
M be flattenings of gTM ,‖·‖M . Then

2rk(ξ)−1 log
(
‖·‖Q

(
gTM , hξ ⊗ ‖·‖2n

M

)/
‖·‖Q

(
gTMf , hξ ⊗ (‖·‖f

M)2n
))

− rk(ξ)−1

∫
M

c1(ξ, hξ)
(

2n log(‖·‖f
M /‖·‖M) + log(gTMf /gTM)

)
(5.2.13)

depends only on the integer n ∈ Z, n ≤ 0, the functions (gTMf /gTM)|VMi (1) ◦ (zMi )−1 : D∗ → R
and (‖·‖f

M /‖·‖M)|VMi (1) ◦ (zMi )−1 : D∗ → R, for i = 1, . . . ,m.

Now let’s recall another natural norm associated with a surface with cusps
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Definition 5.2.2 ( [54, Definition 1.5]). For a surface with cusps (M,DM , g
TM), the Wolpert norms

‖·‖W,iM on the complex lines ωM |PMi , i = 1, . . . ,m, is defined by ‖dzMi ‖
W,i
M = 1. It induces the

Wolpert norm‖·‖WM on the complex line ⊗mi=1ωM |PMi .

Let’s recall that by [21, Theorem 1.27], the Bott-Chern forms of a vector bundle ξ with Hermi-
tian metrics hξ1, hξ2 are natural differential forms (strictly speaking, those are classes of differential
forms) defined so that they satisfy

∂∂

2π
√
−1

T̃d(ξ, hξ1, h
ξ
2) = Td(ξ, hξ1)− Td(ξ, hξ2),

∂∂

2π
√
−1

c̃h(ξ, hξ1, h
ξ
2) = ch(ξ, hξ1)− ch(ξ, hξ2),

(5.2.14)

where Td, ch are Todd and Chern forms. By [21, Theorem 1.27], we have the following identities

c̃h(ξ, hξ1, h
ξ
2)[0] = 2T̃d(ξ, hξ1, h

ξ
2)[0] = log

(
det(hξ1/h

ξ
2)
)
. (5.2.15)

If, moreover, ξ := L is a line bundle, we have

c̃h(L, hL1 , h
L
2 )[2] = 6T̃d(L, hL1 , h

L
2 )[2] = log(hL1 /h

L
2 )
(
c1(L, hL1 ) + c1(L, hL2 )

)
/2, (5.2.16)

where c1(L, hLi ), i = 1, 2, is the first Chern form.

Theorem 5.2.3 ( [54, Theorem B]). Let φ : M → R be a smooth function such that for the metric

gTM0 = e2φgTM , (5.2.17)

the triple (M,DM , g
TM
0 ) is a surface with cusps. We denote by‖·‖M ,‖·‖0

M the norms induced by
gTM , gTM0 on ωM(D), and by‖·‖WM , ‖·‖W,0M the associated Wolpert norms. Let hξ0 be a Hermitian
metric on ξ over M . Then the right-hand side of the following equation is finite, and

2 log
(
‖·‖Q

(
gTM0 , hξ0 ⊗ (‖·‖0

M)2n
)/
‖·‖Q

(
gTM , hξ ⊗ ‖·‖2n

M

))
=

∫
M

[
T̃d
(
ωM(D)−1, ‖·‖−2

M , (‖·‖0
M)−2

)
ch
(
ξ, hξ

)
ch
(
ωM(D)n,‖·‖2n

M

)
+ Td

(
ωM(D)−1, (‖·‖0

M)−2
)
c̃h
(
ξ, hξ, hξ0

)
ch
(
ωM(D)n,‖·‖2n

M

)
+ Td

(
ωM(D)−1, (‖·‖0

M)−2
)
ch
(
ξ, hξ0

)
c̃h
(
ωM(D)n,‖·‖2n

M , (‖·‖0
M)2n

)][2]

− rk(ξ)

6
log
(
‖·‖WM /‖·‖W,0M

)
+

1

2

∑
log
(

det(hξ/hξ0)|PMi
)
.

(5.2.18)

By a curve in this article we mean (cf. [8, Definition of nodal curve on p. 79]) an analytic space
such that every one of its points is either smooth or is locally complex-analytically isomorphic to
a neighbourhood of the origin in {(z0, z1) ∈ C2 : z0z1 = 0}.
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Let C be a curve with singularities ΣC ⊂ C. Let ρ : N → C be the normalization of C. For
brevity, we denote the twisted relative canonical bundle on N by

ωN(D) := ωN ⊗ ON(ρ−1ΣC). (5.2.19)

We recall that for a point p ∈ ρ−1(ΣC), and a local holomorphic coordinate z of p, the Poincaré
residue morphism Resp : (ωN ⊗ ON(ρ−1ΣC))|p → C, is defined by

Resp

(dz ⊗ sρ−1ΣC

z

)
= 1. (5.2.20)

Now, recall that the canonical sheaf ωC of C is defined (cf. [8, p.91]) as an invertible subsheaf

ωC ⊂ ρ∗(ωN(D)), (5.2.21)

defined by the following prescription. A section υ of ρ∗(ωN(D)), viewed as a section of ωN(D),
is a section of ωC if and only if for any x, y ∈ N , x 6= y such that ρ(x) = ρ(y), we have

Resx(υ) + Resy(υ) = 0. (5.2.22)

We denote by C∞Res(N,ωN(D)n) the set of smooth sections υ of ωN(D)n over N such that for any
x, y ∈ N , x 6= y, ρ(x) = ρ(y), we have

Resx(υ) = (−1)nResy(υ). (5.2.23)

By definition, we have the short exact sequence of sheaves

0→ ωC → ρ∗(ωN(D))
Res−−→ ⊕p∈ΣCOp → 0, (5.2.24)

where the last isomorphism is given by the map

υ 7→ ⊕p∈ΣC1p ·
(
Resxp(υ) + Resyp(υ)

)
, (5.2.25)

where xp, yp ∈ N are distinct points satisfying ρ(xp) = ρ(yp) = p. Then (5.2.24) and the resolution
of the sheaf ωN(D) by the sheaves of germs of holomorphic forms with values in ωN(D)n induce,
for any n ∈ Z, the natural isomorphisms

ρ∗ : H0
(
C, ωnC)→ ker(∂|C∞Res(N,ωN (D)n)),

ρ∗ : H1
(
C, ωnC)→ C∞(N,ωN ⊗ ωN(D)n)/ Im(∂|C∞Res(N,ωN (D)n)).

(5.2.26)

Serre duality (cf. [8, p. 90 - 91]) is the canonical isomorphism

H1(C, ωnC)→ (H0(C, ω1−n
C ))∗, (5.2.27)

given by the following pairing: for υ ∈ H1
(
C, ωnC) and α ∈ H0(C, ω1−n

C ), by (5.2.26), we define

(υ, α) =
−
√
−1

2π

∫
N

υ ∧ α. (5.2.28)
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The integration (5.2.28) is well-defined since only the poles of first order appear under the in-
tegral. By (5.2.23), Stokes and Residue theorems, (5.2.28) defines a pairing of H1(C, ωnC) with
H0(C, ω1−n

C ).
Now, when X is non-singular and ωX is endowed with a Hermitian norm‖·‖X , by (5.1.5), the

left-hand side and the right-hand side of (5.2.27) are endowed with the induced L2-norm ‖·‖L2 .
By using the description of Serre duality through the Hodge star operator (cf. [43, p. 310]), we
observe that for any υ ∈ H1

(
C, ωnC), we have

sup
{∣∣ ∫

N
υ ∧ β

∣∣2 : β ∈ H0
(
C, ω1−n

C ) \ {0}, ‖β‖L2 = 1
}

= 2π‖υ‖2
L2 . (5.2.29)

Thus, under the isomorphism (5.2.27), we have

(H1(C, ωnC),‖·‖L2) = (H0(C, ω1−n
C )∗,‖·‖−1

L2 ). (5.2.30)

Now let’s fix a holomorphic, proper, surjective map π : X → S of complex manifolds, such
that for every t ∈ S, the space Xt := π−1(t) is a curve (in the terminology of [20], [55], a f.s.o.).

Proposition 5.2.4 ( [20, Proposition 3.1]). For every x ∈ X , there are local holomorphic coordi-
nates (z0, . . . , zq) of x ∈ X and (w1, . . . , wq) of π(x) ∈ S, such that π is locally defined either by
one of the following identities

wi = zi, for i = 1, . . . , q, (5.2.31)
w1 = z0z1; wi = zi, for i = 2, . . . , q. (5.2.32)

Corollary 5.2.5 ( [20, §3(a)]). Let ΣX/S ⊂ X be the locus of double points of the fibers of π.
Then:

a) ΣX/S is a submanifold of X of codimension 2;
b) the map π|ΣX/S : ΣX/S → S is a closed immersion;
c) the map π|X\ΣX/S : X \ ΣX/S → S is a submersion.

In particular, the direct image ∆ = π∗(ΣX/S) is a divisor in S.

Notation 5.2.6. We use the notation ∆, ΣX/S for the divisor and the submanifold from Corrolary
5.2.5.

Let’s recall the construction of the relative canonical line bundle ωX/S of a f.s.o. π : X → S.
Define the sheaf ΩX/S by the exact sequence:

π∗ΩS → ΩX → ΩX/S → 0. (5.2.33)

By Corollary 5.2.5, the exact sequence (5.2.33) becomes exact to the left when restricted to X \
ΣX/S:

0→ π∗ΩS|X\ΣX/S → ΩX |X\ΣX/S → ΩX/S|X\ΣX/S → 0. (5.2.34)

By taking determinants of (5.2.34), we deduce the isomorphism

ΩX/S|X\ΣX/S = (ωX ⊗ π∗ω−1
S )|X\ΣX/S . (5.2.35)
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We define
ωX/S := ωX ⊗ π∗ω−1

S . (5.2.36)

Then ωX/S is the unique extension of the line bundle ΩX/S|X\ΣX/S over X . This line bundle is
called the relative canonical line bundle of π : X → S.

Let x ∈ ΣX/S . Take local coordinates (z0, . . . , zq) on an open neighbourhood V of x ∈ X and
local coordinates (w1, . . . , wq) of π(x) ∈ S, as in (5.2.32). Then the manifold ΣX/S ∩ V is given
by

{z0 = 0 and z1 = 0}. (5.2.37)

Consider the sections dz0/z0 and dz1/z1 of ΠX , defined over the sets {z0 6= 0} and {z1 6= 0}
respectively. The images of dz0/z0 and −dz1/z1 in ωX/S coincide over {z0z1 6= 0}, since

dz0

z0

+
dz1

z1

= π∗
dw1

w1

. (5.2.38)

Thus, they define a nowhere vanishing section σ of ωX/S over V \ ΣX/S . Since ΣX/S is of codi-
mension 2, the section σ extends to a nowhere vanishing section over V of the line bundle ωX/S .

Now, let s0 := π(x) ∈ ∆, x ∈ ΣX/S , and let ρ : Ys0 → Xs0 be the normalization of Xs0 at x.
Then by the discussion above, there is the canonical isomorphism

ρ∗ωX/S = ωYs0 ⊗ OYs0
(ρ−1(x)), (5.2.39)

which induces the isomorphism (5.1.15). The identity (5.2.38) implies that for the natural inclusion
is0 : Xs0 → X , the pull-back (is0)

∗ωX/S is canonically isomorphic to ωXs0 .
Now let’s fix disjoint sections σ1, . . . , σm : S → X \ ΣX/S and a Hermitian metric‖·‖ωX/S on

ωX/S over π−1(S \ |∆|) \ (∪i Im(σi)), such that for any t ∈ S \ |∆|, the restriction of ‖·‖ωX/S
over π−1(t) \ (∪iσi(t)) induces the Kähler metric gTXt over Xt \ (∪iσi(t)) such that the associ-
ated triple (Xt, {σ1(t), . . . , σm(t)}, gTXt) becomes a surface with cusps. As a short-cut, we call
(π;σ1, . . . , σm;‖·‖ωX/S) a f.s.c.

Now, let (ξ, hξ) be a Hermitian vector bundle over X . For t ∈ S, we denote

det(R•π∗(ξ ⊗ ωX/S(D)n))t := detH0(Xt, ξ ⊗ ωX/S(D)n)

⊗ (detH1(Xt, ξ ⊗ ωX/S(D)n))−1. (5.2.40)

By Grothendick-Knudsen-Mumford [76] (cf. [20, Proposition 4.1]), the family of complex lines
(det(R•π∗(ξ ⊗ ωX/S(D)n))t)t∈S is endowed with a natural structure of holomorphic line bundle
det(R•π∗(ξ ⊗ ωX/S(D)n)) over S. We denote

λ(j∗(ξ ⊗ ωX/S(D)n)) :=
(

det(R•π∗(ξ ⊗ ωX/S(D)n))
)−1

. (5.2.41)

Following [55], the pointwise Quillen norms induce the Quillen norm‖·‖Q
(
gTXt , hξ⊗‖·‖2n

X/S

)
on the line bundle λ(j∗(ξ ⊗ ωX/S(D)n)). Similarly, the pointwise Wolpert norms glue into the
Wolpert norm‖·‖WX/S on ⊗mi=1σ

∗
i ωX/S .
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Definition 5.2.7. The Quillen norm on the line bundle λ(j∗(ξ ⊗ ωX/S(D)n)), n ≤ 0 over S \ |∆|
is defined for t ∈ S \ |∆| by

‖·‖Q
(
gTXt , hξ ⊗ ‖·‖2n

X/S

)
:= T

(
gTXt , hξ ⊗ ‖·‖2n

X/S

)1/2 ·‖·‖L2

(
gTXt , hξ ⊗‖·‖2n

X/S

)
. (5.2.42)

Now we can recall the special case of continuity theorem

Theorem 5.2.8 ( [55, Theorem C3]). Suppose that assumption (5.1.6) holds. Then the Hermitian
norm (5.1.7) on the line bundle (5.1.8) extends continuously over S.

5.2.2 Singular Hermitian vector bundles
In this section we recall several notions of singularities for Hermitian vector bundles.

We work with a complex manifold Y of dimension q + 1, a normal crossing divisor D0 ⊂ Y
and a submanifold F ⊂ Y .

Definition 5.2.9. A triple (U ; z0, . . . , zq; l) of an open set U ⊂ Y , coordinates z0, . . . , zq : U →
C and l ∈ N is called an adapted chart for D0 (resp. F ) at x ∈ D0 (resp. x ∈ F ) if U =
{(z0, . . . , zq) ∈ Cq+1 : |zi| < 1, for all i = 0, . . . , q} and D0 ∩ U (resp. F ∩ U ) is defined by
{z0 · · · zl = 0} (resp. {z0 = 0, . . . , zl = 0}).

Notation 5.2.10. Let (U ; z0, . . . , zq; l) be an adapted chart for D0. We denote

dζk =

{
dzk/(zk log |zk|2), if 0 ≤ k ≤ l,

dzk, if l + 1 ≤ k ≤ q.
(5.2.43)

Definition 5.2.11. a) [58, Definition 2.1] A function f : Y \F → C has log-log growth on Y , with
singularities along F if for any x ∈ Y , for some adapted chart (U ; z0, . . . , zq; l) of F at x, and for
some C > 0, p ∈ N, we have

|f(z0, . . . , zq)| ≤ C
(

log
∣∣ log

(
maxlk=0{|zk|}

)∣∣)p + C. (5.2.44)

b) [95, p. 240] A differential form over Y \ D0 has Poincaré growth on Y , with singularities
along D0, if it can be expressed as a linear combination of monomials constructed using dζk, dζk,
k = 0, . . . , q with coefficients f ∈ C∞(Y \D0) ∩ L∞(Y \D0).

c) [58, Definition 2.14] A smooth function f : Y \ D0 → C is P-singular, with singularities
along D0, if ∂f , ∂f , ∂∂f have Poincaré growth on Y , with singularities along D0.

Definition 5.2.12 ( [95, p. 242]). Let L be a holomorphic line bundle over Y and let hL be a smooth
Hermitian metric on L over Y \D0. Then hL is good with singularities along D0 if and only if, for
every local holomorphic frame υ of L over U ⊂ Y , the function log hL(υ, υ) is P-singular, with
singularities along D0.

Remark 5.2.13. The original definition of Mumford differs from the one presented here. Their
equivalence is proved in [58, Proposition 3.2].
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Let π : X → S be a f.s.o. such that the corresponding divisor of singular curves ∆ has normal
crossings. Let D be a divisor on X such that π|D : D → S is a local isomorphism.

Proposition 5.2.14. Let α be a differential (1, 1)-form over X \ (ΣX/S ∪ |D|), such that it has
Poincaré growth on X \ |D| with singularities along π−1(∆), and the coupling of α with smooth
vertical vector fields over X \ (ΣX/S ∪|D|) is continuous and has log-log growth with singularities
along D (cf. Definition 5.2.11.a)). Let f : X \ (ΣX/S ∪ |D|)→ R be a continuous function, with
log-log growth along ΣX/S ∪ |D|.

Then for the normalisation ρ : Yt → Xt of Xt, t ∈ |∆|, the form ρ∗(fα) is integrable over Yt.
Moreover, the function π∗[fα] extends continuously over S, and the value of this extension is

π∗[fα](t) =
∫
Yt
ρ∗(fα). (5.2.45)

Proof. The first part of the statement was proved in [55, Proposition 3.1c)]. The second statement
follows directly from the proof of [55, Proposition 3.1c)].

5.2.3 Quillen metric and hyperbolic surfaces
In this section we recall the results of Freixas from [59] and [60], which describe how the Quillen
metric, defined using the version of analytic torsion due to Takhtajan-Zograf (see (5.1.36)), behaves
in a degenerating family of curves. The family he considers is a special case of plumbing family
construction, which is originally due to Wolpert [116, p. 434].

We fix a Riemann surface M with m fixed points DM = {PM
1 , . . . , PM

m } ⊂ M and a Riemann
surface T of genre 1 with one fixed point DT = {P T} ⊂ T . Take m copies (T i, P

T
i ) of (T , P T ).

Let g ∈ N be the genus of M . Clutching morphisms β (see (5.1.41)), applied to the pairs of points
{PM

1 , P T
1 }, . . . , {PM

m , P T
m}, realizes the pointed surface (M,m · T ) := (M,DM) ∪ (T 1, P

T
1 ) ∪

· · · ∪ (Tm, P
T
m) as a point in a compactifying divisor ∂Mg+m,0 of M g+m,0. The plumbing family

associated with (M,m · T ) is a family of pointed curves representing a transversal direction to
∂Mg+m,0 in M g+m,0. More precisely, we consider

1. Neighbourhood Ui of PM
i ∈ M , i = 1, . . . ,m biholomorphic to an open disc and a holo-

morphic coordinate mappings Fi : Ui → C with Fi(PM
i ) = 0;

2. Similarly, a neighbourhood V of P T ∈ T , and a holomorphic coordinate mapping G : V →
C satisfying G(P T ) = 0;

3. A small complex parameter t ∈ C.

We suppose that Ui are pairwise disjoint. Let c > 0 be such that D(c) ⊂ C is contained in Im(Fi),
i = 1, . . . ,m and Im(G). We take m copies G1, . . . , Gm of G, and regard them as functions acting
on T 1, . . . , Tm respectively. Let |t| < c2. For d ∈ D(c), we note

Rd,∗ =
(
M \ (∪mi=1{|Fi| ≤ |d|})

)
∪
(
T 1 \ {|G1| ≤ |d|}

)
∪ · · · ∪

(
Tm \ {|Gm| ≤ |d|}

)
. (5.2.46)

Consider the equivalence relation on points of Rt/c,∗ generated by:

p ∼ q if |t|/c ≤ |Fi(p)| ≤ c, |t|/c ≤ |Gi(q)| ≤ c, Fi(p)Gi(q) = t. (5.2.47)
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Form the identification space Xt = Rt/c,∗/ ∼. The curve Xt, t ∈ D(c2), is called the plumbing
construction for (M,m · T ) associated with the plumbing data (∪iUi, V,∪iFi, G, t). Trivially, we
see that a set X := ∪t∈D(c2)Xt can be endowed with a structure of a complex manifold, for which
π : X → S := D(c2) is a proper holomorphic map of codimension 1. This construction is also
called the Bers trick for M (cf. [13], [58, Construction 4.3.2]).

Figure 5.2: Plumbing family. The regions away from the dashed lines are isomorphic.

Now, suppose that the pointed surface (M,DM) is stable, i.e. it satisfies (5.1.31), and let gTMhyp

be the canonical hyperbolic metric of constant scalar curvature −1 on M \DM with cusps at DM .
Then one can take the functions Fi, i = 1, . . . ,m, from the plumbing construction to be Poincaré-
compatible coordinates zMi of PM

i (see (5.2.2)). Similarly, we make the choice for Gi = zT . The
plumbing family associated to this plumbing data is called the canonical plumbing family.

From now on, we fix the canonical plumbing family π : X → S := D(c2). Then the divisor of
singular curves is given by ∆ = m · {0}. We denote by

ρ : Y0 := (M ∪ T 1 ∪ · · · ∪ Tm)→ X0 (5.2.48)

the normalisation of the singular fiber. We denote by

ΣX/S = {Q1, . . . , Qm}, Qi = ρ(PM
i ), (5.2.49)

the set of singular points in X0. Let gTXthyp , t 6= 0 be the canonical hyperbolic metric of constant
scalar curvature−1 onXt\DXt with cusps atDXt . We denote by ZXt(s) the Selberg zeta-function
associated with Xt, given by the formula (5.1.32). Let‖·‖hyp

X/S be the Hermitian norm on ωX/S(D)

over X \ (π−1(|∆|) ∪ |DX/S|), induced from gTXthyp by Construction 5.1.1.
We consider the determinant line bundle λ(j∗(ωX/S(D)n)), n ≤ 0, and we endow it over S \∆

with the Takhtajan-Zograf version of Quillen norm (cf. [58, §6]), given by (compare with (5.2.42))

‖·‖TZQ
(
gTXthyp , (‖·‖

hyp
X/S)2n

)
:= TTZ

(
gTXthyp , (‖·‖

hyp
X/S)2n

)1/2 ·‖·‖L2

(
gTXthyp , (‖·‖

hyp
X/S)2n

)
. (5.2.50)

We construct the norm (compare with (5.1.7))

‖·‖TZLn
:=
(
‖·‖TZQ (gTXthyp , (‖·‖

hyp
X/S)2n)

)12 ⊗‖·‖div
∆ (5.2.51)

on the line bundle (compare with (5.1.8))

L TZ
n := λ

(
j∗(ωnX/S)

)12 ⊗ OS(∆). (5.2.52)

We denote by‖·‖hyp
M ,‖·‖hyp

T the norms on ωM(D), ωT (D) induced by the canonical hyperbolic
metrics gTMhyp , gTThyp of constant scalar curvature −1 on M \DM , T \DT with cusps at DM and DT
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respectively. We denote by‖·‖W,hyp
M ,‖·‖W,hyp

T the associated Wolpert norms on the complex lines
det(ωM |DM ) and det(ωT |DT ). Now, we define the norm (compare with (5.1.18))

‖·‖TZL ′n
:=
(
‖·‖TZQ (gTMhyp , (‖·‖

hyp
M )2n)⊗

(
‖·‖TZQ (gTThyp, (‖·‖

hyp
T )2n)

)m)12

⊗
(
‖·‖W,hyp

M ⊗ (‖·‖W,hyp
T )m

)−1 (5.2.53)

on the complex line (compare with (5.1.19))

L TZ
n
′ :=

(
λ
(
ωM(D)n

)
⊗ λ
(
ωT (D)n

)m)12

⊗
(

det(ωM |DM )⊗ (det(ωT |DT ))m
)−1

. (5.2.54)

Then the isomorphism (5.1.28) gives in our case the canonical isomorphism

L TZ
n |∆ → L TZ

n
′ ⊗
(
⊗mi=1 OQi

)12
. (5.2.55)

We recall that Ck, k ∈ N were defined in (5.1.29). The main theorem of this section is

Theorem 5.2.15 (Freixas, [59, Corollary 5.8], [59, Theorem 5.3]). The norm‖·‖TZLn
extends con-

tinuously over S, and, under the isomorphism (5.2.55), the following identity holds

‖·‖TZLn
|∆ = exp(m · C−n) ·‖·‖TZLn

′ . (5.2.56)

5.2.4 Model grafting and pinching expansion
The goal of this section is to recall model grafting construction and the pinching expansion of the
hyperbolic metric due to Wolpert [116]. For simplicity, we state his results only for the plumbing
family considered in Section 5.2.3. We conserve the notation from Section 5.2.3. To be compatible
with further notation, we denote

zi0 := zMi , zi1 := zTi . (5.2.57)

By the definition of plumbing family, the coordinates (zi0, z
i
1) serve as local holomorphic charts in

the neighbourhood Qi ∈ X . We denote

U(Qi, ε) = {x ∈ X : |zi0(x)| < ε, |zi1(x)| < ε}. (5.2.58)

Again, by the definition of plumbing family, in t-coordinates on S, we have

π(zi0, z
i
1) = zi0z

i
1. (5.2.59)

The canonical hyperbolic metric on M (resp. T ) with cusps at DM (resp. DT ) induces a metric
gTR

ε

hyp on Rε (see (5.2.46) for the definition of Rε). Let ε be so small, so that gTRεhyp is induced by
√
−1dzMj dz

M
j

|zMj log |zMj |2|2
, over

{
|zMj | < 2ε

}
,

√
−1dzTj dz

T
j

|zTj log |zTj |2|2
, over

{
|zTj | < 2ε

}
.

(5.2.60)
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We choose c = ε2 in the plumbing construction from Section 5.2.3. Now, since the manifold
X \ (∪ki=1U(Qi, ε)) is naturally isomorphic to the product Rε×D(ε2), the metric gTRεhyp induces the
Kähler metric gTXt on Xt \ (∪ki=1U(Qi, ε)).

The model grafted metric is built from the metric gTXt and the hyperbolic metric on a cylinder,
see (5.2.63). More precisely, let ν : X → [0, 1] be smooth function, satisfying

ν(x) =

{
0, for x ∈ X \ (∪ki=1U(Qi, 2ε)),

1, for x ∈ ∪ki=1U(Qi, ε).
(5.2.61)

For t ∈ D(ε2), we denote by gCyl
i,t the metric over the set{
(zi0, z

i
1) ∈ Xt : |t|/(2ε) < |zi0| < 2ε

}
, (5.2.62)

induced by the Kähler form(
π

|zi0| log |t|

(
sin

π log |zi0|
log |t|

)−1)2√
−1dzi0dz

i
0. (5.2.63)

We remark that due to the fact that over Xt, we have zi0z
i
1 = t, the expression (5.2.63) is symmetric

with respect to the change of variables zi0 ↔ zi1.
Following Wolpert [116], we define the model grafted metric gTXtgft as follows: over Xt \

(∪mi=1U(Qi, 2ε)), gTXtgft coincides with gTXt , and over U(Qi, 2ε), it is given by

gTXtgft =
(
gCyl
i,t

)ν
(gTXt)1−ν . (5.2.64)

This metric has the following nice properties

Proposition 5.2.16. The metric‖·‖gft
X/S induced by gTXtgft over X \ π−1(|∆|) extends continuously

over X \ ΣX/S . Moreover, it is good in the sense of Mumford on X \ π−1(|∆|) with singularities
along π−1(∆)

Proof. This is a trivial verification, see for example Wolpert [116, Lemma 1.5].

A B CD A'B'

Z X Y X' Z'

D'

Figure 5.3: The model grafting. Over the regions D ∪ A, D′ ∪ A′, the metric gTXtgft is isometric to
gTXt . Over the regions A, A′ it is Poincaré-compatible (see (5.2.2)) with coordinates zi0, zi1. Over
the regions B, B′ the metric gTXtgft is a geometric interpolation between gTXt and (5.2.63). Over the
region C, the metric gTXtgft is given by (5.2.63).
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Let’s denote by gTXthyp the hyperbolic metric of constant scalar curvature −1 on Xt. As usual,
we denote by‖·‖ω,hyp

X/S the induced Hermitian norm on ωX/S . The pinching expansion describes the
behaviour of gTXthyp near the singular fiber, it won’t be used explicitly in this article, however, it is
very important to understand the motivation behind the the metric gTXtκ from Section 5.3.2.

Theorem 5.2.17 (The pinching expansion, Wolpert [116, Expansion 4.2]). For t ∈ S \ |∆|, we
have

gTXthyp = gTXtgft

(
1 +O

(
| log |t||−2

))
, (5.2.65)

where the O-term is for the C k-norm over Xt for any k ∈ N with respect to gTXthyp .

Remark 5.2.18. We note that in [58, Theorem 4.3.1], Freixas proved Theorem 5.2.17 for degener-
ating families of hyperbolic surfaces with cusps.

5.3 Quillen metric near singular fibers
The goal of this section is to prove Theorems 5.1.2, 5.1.4, 5.1.6, which are the main statements
of this article. It is organized as follows. In Section 4.1 we generalize the result of Bismut [18,
Theorem 0.3] about the behaviour of the Quillen norm in a smooth Kähler family of degenerating
compact Riemann surfaces. In Section 4.2 we use this generalization with Theorems 5.2.1, 5.2.3,
5.2.8, 5.2.15 to prove Theorems 5.1.2, 5.1.4, 5.1.6.

5.3.1 Quillen metric in a smooth family of Riemann surfaces
In this section we describe a generalisation of the result of Bismut [18, Theorem 0.3] for non-
necessarily Kähler manifolds. This theorem describes the behaviour of the Quillen norm in a
smooth family of degenerating Riemann surfaces endowed with compact Riemann metric. It will
be used in Section 4.2, but it is also of some independent interest.

Let’s fix a holomorphic, proper, surjective map π : X → S of complex manifolds, such that
for every t ∈ S, the space Xt := π−1(t) is a curve (see Section 5.2.1). Let (ξ, hξ) be a Hermitian
vector bundle over X . Let gTX be a Riemannian metric over X , which is compatible with the
complex structure of X . By hTX we note the Hermitian metric on T (1,0)X induced by gTX by the
natural identification TX 3 Y 7→ 1

2
(Y − JY ) ∈ T (1,0)X , where J is the complex structure of X .

We denote by gTXt the restriction of the metric gTX on Xt, t ∈ S \ |∆|. Since gTX is compatible
with the complex structure, the metric gTXt is Kähler on Xt. We denote by ‖·‖Q (gTXt , hξ) the
Quillen norm on the line bundle λ(j∗ξ) over S \ |∆| (see (5.2.11)).

For simplicity, assume that dimS = 1, S = D(1) and |∆| = {0}. We write ΣX/S =
{Q1, . . . , Qk}. Let ρ : Y0 → X0 be the normalisation of X0. We denote

ρ−1(ΣX/S) = {P1, . . . , P2k}, (5.3.1)

where Pi are enumerated in such a way that ρ(P2j−1) = ρ(P2j) = Qj for j = 1, . . . , k. We denote
by gTY0 := ρ∗(gTX) the induced Riemannian metric on Y0 and by ‖·‖ωY0 the induced Hermitian
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norm on ωY0 . Since gTX is compatible with the complex structure, we see that gTY0 is Kähler on
Y0. We denote by‖·‖Q (gTY0 , ρ∗(hξ)) the induced Quillen norm on the complex line λ(ρ∗ξ).

Let‖·‖iΣX/S/X be the Hermitian norm induced by the natural isomorphism (5.1.21) on the com-
plex lines ωY0 |P2i−1

⊗ ωY0|P2i
, i = 1, . . . , k. More explicitly, let local holomorphic coordinates

zi0, z
i
1 around Qi ∈ X and t around 0 ∈ S be as in (5.2.59). We denote

ai = hTX
( ∂

∂zi0
,
∂

∂zi0

)
, bi = hTX

( ∂

∂zi0
,
∂

∂zi1

)
, ci = hTX

( ∂

∂zi1
,
∂

∂zi1

)
. (5.3.2)

Then, by definition, we have∥∥dzi0 ⊗ dzi1∥∥iΣX/S/X =
(
aici − |bi|2

)−1/2
(Qi). (5.3.3)

We denote by‖·‖ΣX/S/X
the induced norm on the complex line ⊗ki=1(ωY0|P2i−1

⊗ ωY0|P2i
).

Over S, we introduce the holomorphic line bundle

L := λ(j∗ξ)12 ⊗ OS(∆)2·rk(ξ). (5.3.4)

We endow it with a norm

‖·‖L :=‖·‖Q (gTXt , hξ)12 ⊗ (‖·‖div
∆ )2·rk(ξ). (5.3.5)

We bring the attention of the reader to the fact that the power of the divisor line bundle OS(∆) in
L is different from the construction (5.1.8) (cf. (5.1.7)). This is due to the fact that the geometric
setting in this section is different from Section 5.1, as here, for example, the assumption (5.1.17)
is not satisfied for the metric induced by gTXt , thus, the Wolpert norm is not well-defined and the
analogue of the norm (5.1.18), doesn’t make any sense.

We introduce the complex line

L ′ := λ(ρ∗ξ)12 ⊗ (⊗2k
i=1 det ρ∗(ξ)|Pi)6 ⊗ (⊗ki=1(ωY0|P2i−1

⊗ ωY0|P2i
))−2·rk(ξ). (5.3.6)

We denote by ‖·‖L ′ the norm on the complex line L ′ which is induced by ‖·‖Q (gTY0 , ρ∗(hξ)),
hξ and‖·‖ΣX/S/X

. Remark that the power of the line bundle (⊗ki=1(ωY0|P2i−1
⊗ ωY0 |P2i

)) in L ′ is
different from the construction (5.1.19) (cf. (5.1.18)).

Analogically to (5.1.28), one has the following canonical isomorphism

L |∆ → L ′ ⊗ (⊗ki=1OQi)
12·rk(ξ). (5.3.7)

Now we can state the main result of this section.

Theorem 5.3.1. The norm‖·‖cmp
L extends continuously over S. Moreover, under the isomorphism

(5.3.7), the following identity holds

‖·‖cmp
L |∆ = exp

(
rk(ξ) · k ·

(
24ζ ′(−1)− 6 log(2π)

))
·‖·‖cmp

L ′ . (5.3.8)
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Proof. First of all, let’s assume that gTX is Kähler. Then we argue that Theorem 5.3.1 is just a
restatement of [18, Theorem 0.3] due to Bismut.

To see this, let’s fix a holomorphic coordinate t on S such that |∆| = {t = 0}. We denote by
‖·‖∆ the Hermitian norm on OS(∆), characterized by

‖s∆/t
k‖∆ = 1. (5.3.9)

As div(s∆) = k{0}, we deduce that‖·‖∆ is smooth over S. By the definition of the singular norm
‖·‖div

∆ from (5.1.3), by (5.3.9), we have

‖·‖div
∆ = |t|−k ·‖·‖∆ . (5.3.10)

By (5.2.59), the isomorphism (5.1.24) specifies in our case to

OS(∆)||∆| →
(
⊗ki=1 (ωY0|P2i−1

⊗ ωY0|P2i
)
)−1

,(s∆

tk

)
|t=0 7→

(
⊗ki=1 (dzi0|P2i−1

⊗ dzi1|P2i
)
)−1

.
(5.3.11)

We denote by ‖dπ2‖ the norm of the isomorphism (5.3.11). By (5.3.9), we have∥∥dπ2
∥∥ :=

(∥∥⊗ki=1 (dzi0|P2i−1
⊗ dzi1|P2i

)
∥∥

ΣX/S/X

)−1

. (5.3.12)

We note that due to our normalisation of the L2-norm, (5.1.5), the difference between our definition
of the Quillen norm, and the one from [22], [23], [18], which we denote by‖·‖BGSQ , is

‖·‖Q (gTXt , hξ) = exp
(

log(2π) · χ(Xt, ξ|Xt)/2
)
·‖·‖BGSQ (gTXt , hξ), (5.3.13)

where χ(Xt, ξ|Xt) is the Euler characteristic, given by

χ(Xt, ξ|Xt) = dimH0(Xt, ξ|Xt)− dimH1(Xt, ξ|Xt). (5.3.14)

By Riemann-Roch theorem, the value χ(Xt, ξ|Xt) is constant over S \ |∆|.
We denote by ‖·‖ξQ (gTY0 , ρ∗(hξ)) the norm on the complex line λ(j∗ξ) ⊗ (⊗2k

i=1 det ξ|Pi)6 in-
duced by‖·‖Q (gTY0 , ρ∗(hξ)) and hξ. Similarly, due to our normalisation of the L2-norm, (5.1.5),
the difference between our definition of the norm‖·‖ξQ (gTY0 , ρ∗(hξ)), and the one from [22], [23],
[18], which we denote by‖·‖ξ,BGSQ (gTY0 , ρ∗(hξ)), is

‖·‖ξQ (gTY0 , ρ∗(hξ)) = exp
(

log(2π) · χ(Y0, ρ
∗(ξ)|Y0)/2

)
·‖·‖ξ,BGSQ (gTY0 , ρ∗(hξ)). (5.3.15)

We fix a smooth frame υ of λ(j∗ξ) over S. Then by [18, Theorem 0.3, (0.5), the fact that the
genus E is additive], under the isomorphisms (5.1.26), (5.1.27), the following identity holds

lim
t→0

(
log
(
‖υ(t)‖BGSQ (gTXt , hξ)

)
− rk(ξ)

6
log
(∥∥s∆(t)

∥∥
∆

))
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= log
(
‖υ(0)‖ξ,BGSQ (gTY0 , ρ∗(hξ))

)
+

rk(ξ)

6
log
∥∥dπ2

∥∥+ 2ζ ′(−1) · k · rk(ξ). (5.3.16)

Now, by (5.1.25) and the induced long exact sequence, we deduce

χ(Xt, ξ|Xt) = χ(Y0, ρ
∗(ξ))− k · rk(ξ). (5.3.17)

However, by (5.3.10), (5.3.12) and (5.3.16), we deduce that

lim
t→0

(
log
(
‖υ(t)‖Q(gTXt , hξ)

)
+

rk(ξ)

6
log
(∥∥∥s∆(t)

tk

∥∥∥div

∆

))
= log

(
‖υ(0)‖ξQ(gTY0 , ρ∗(hξ))

)
− rk(ξ)

6
log
(∥∥⊗ki=1 (dzi0|P2i−1

⊗ dzi1|P2i
)
∥∥

ΣX/S/X

)
+
(

2ζ ′(−1)− log(2π)

2

)
· k · rk(ξ), (5.3.18)

which means, in particular, that the norm ‖·‖L extends continuously over S. Moreover, as by
(5.3.11), the isomorphism (5.3.7) is given in our situation by(

υ12 ⊗
(s∆

tk

)2·rk(ξ))
||∆| 7→ υ(0)12 ⊗

(
⊗ki=1

(
dzi0|P2i−1

⊗ dzi1|P2i

))−2·rk(ξ)

, (5.3.19)

the continuous extension satisfies (5.3.8) by (5.3.18).
Now let’s prove (5.3.8) for metric gTX0 , which is not necessarily Kähler. We note that π is locally

projective (cf. Bismut-Bost [20, Proposition 3.4]), thus for some small neighbourhood U of 0 ∈ S,
we may find a Kähler metric gTX over π−1(U). As the statement of Theorem 5.3.1 is local over
the base, without losing the generality, we suppose from now on that gTX is defined over X . We
denote by ‖·‖0

L the norm on L , induced by gTX0 . The idea of the proof is to use the anomaly
formula of Bismut-Gillet-Soulé [23] (cf. Theorem 5.2.3 for m = 0) to relate the norms‖·‖0

L and
‖·‖L , and to study the limit of the right-hand side of this formula near the locus of singular curves.

We denote by‖·‖0
ΣX/S/X

the norm on the line bundle ⊗ki=1(ωY0|P2i−1
⊗ωY0|P2i

), induced by gTX0

as in (5.3.3). Similarly to (5.3.2), we denote by a0
i , b

0
i , c

0
i the corresponding functions associated

with gTX0 .
We argue that without losing the generality, we may suppose that a0

i , c
0
i = 1, b0

i = 0. This is
true since we could fix a Riemannian metric gTX∗ which is compatible with the complex structure
satisfying this assumption and then simply apply Theorem 5.3.1 twice for gTX∗ and gTX and for
gTX∗ and gTX0 . By combining the two results, we would get the original statement.

Now, by (5.3.3), we trivially have

2 log
(
‖·‖ΣX/S/X

/‖·‖0
ΣX/S/X

)
= −

k∑
i=1

log
(
aici − |bi|2

)
(Qi). (5.3.20)

Let the differential form F be given by

F = T̃d
(
TX/S, gTX/S, g

TX/S
0

)
ch
(
ξ, hξ

)
, (5.3.21)
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where TX/S is the vertical tangent bundle of π, and gTX/S, gTX/S0 are the Hermitian norms on
TX/S induced by gTX , gTX0 . By the anomaly formula of Bismut-Gillet-Soulé [23] (cf. Theorem
5.2.3 for m = 0), over X \ ΣX/S , we have

log
(
‖·‖L /‖·‖0

L

)
= 6

∫
Xt

F. (5.3.22)

Now, as the map π is a submersion away from ΣX/S , and the metrics gTX , gTX0 are smooth over X ,
by (5.3.20) and (5.3.22), to prove Theorem 5.3.1, it is enough to prove that for any i = 1, . . . , k,
the following holds

lim
ε→0

lim
t→0

∫
Xt∩U(Qi,ε)

F =
rk(ξ)

6
log
(
aici − |bi|2

)
(Qi). (5.3.23)

For brevity, we fix i = 1, . . . , k, and denote z0 := zi0, z1 := zi1. As z0
∂
∂z0
− z1

∂
∂z1

is a local
holomoprhic frame of TX/S, locally around Qi, we have

gTX/S
(
z0

∂

∂z0

− z1
∂

∂z1

, z0
∂

∂z0

− z1
∂

∂z1

)
= ai|z0|2 + ci|z1|2 − biz0z1 − biz1z0. (5.3.24)

By using the fact that z0z1 = t over Xt, we deduce that locally around Qi, we have

c1(TX/S, gTX)|Xt =
∂∂

2π
√
−1

(
log
(
ai|z0|2 + ci|z1|2 − biz0z1 − biz1z0

))
=

4(aici − |bi|2)|z0|2|t|2

(ai|z0|4 + ci|t|2 − biz2
0t− biz2

0t)
2

dz0dz0

2π
√
−1

+ o

(( |t|2
|z0|6

+
|z0|2

|t|2
)
dz0dz0

)
. (5.3.25)

As we are only interested in the limit (5.3.23), the calculation localizes around Qi, and only the
highest order terms matter. Thus, in the calculations, we may suppose that ai, bi, ci are constants
equal to ai(Qi), bi(Qi), ci(Qi) respectively, and we may suppress the o-term.

By making the change of variables y0 = z0|t|−1/2 and using (5.2.15), (5.2.16), we deduce that
as t→ 0 and ε→ 0, we have∫

Xt∩U(Qi,ε)

F ∼ −rk(ξ)

12

∫
|t|1/2/ε<|y0|<ε/|t|1/2

(
log

ai|y0|4 + ci − biy2
0 − biy2

0

|y0|4 + 1

)
·
(

(4aici − 4|bi|2)|y0|2

(ai|y0|4 + ci − biy2
0 − biy2

0)2
+

4|y0|2

(|y0|4 + 1)2

)
dy0dy0

2π
√
−1

. (5.3.26)

We make the change of variables x0 := y2
0 . The variable x0 “turns around” C twice, which kills

one of the two additional factors 2 appearing in the denominator in the following identity∫
Xt∩U(Qi,ε)

F ∼ −rk(ξ)

24

∫
|t|1/4/ε1/2<|x0|<ε1/2/|t|1/4

(
log

ai|x0|2 + ci − bix0 − bix0

|x0|2 + 1

)
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·
(

(4aici − 4|bi|2)

(ai|x0|2 + ci − bix0 − bix0)2
+

4

(|x0|2 + 1)2

)
dx0dx0

2π
√
−1

. (5.3.27)

By making the change of variables x0 := x0 · exp(arg(bi)), we see that the right-hand side of
(5.3.27) depends only on |b0| ∈ R. Thus, without losing the generality, we may assume that
b0 ∈ R. By writing x0 = x+

√
−1y, from (5.3.27), we see∫

Xt∩U(Qi,ε)

F ∼ rk(ξ)

24π

∫
|t|1/4/ε1/2<x2+y2<ε1/2/|t|1/4

(
log

ai(x
2 + y2) + ci − 2bix

x2 + y2 + 1

)
·
(

(4aici − 4b2
i )

(ai(x2 + y2) + ci − 2bix)2
+

4

(x2 + y2 + 1)2

)
dxdy. (5.3.28)

Now, we remark that by switching to polar coordinates, changing the integration over radius by the
integration over its square and applying tedious derivation by parts, for a, c > 0, b ∈ R, ac−b2 > 0,
we get the following identity∫ +∞

−∞

∫ +∞

−∞

(
log

a(x2 + y2) + c− 2bx

x2 + y2 + 1

)(
4ac− 4b2

(a(x2 + y2) + c− 2bx)2
+

4

(x2 + y2 + 1)2

)
dxdy

= 4π log(ac− b2). (5.3.29)

By (5.3.28) and (5.3.29), we get (5.3.23), which finishes the proof of Theorem 5.3.1.

5.3.2 Proofs of Theorems 5.1.2, 5.1.4, 5.1.6
In this section we will finally prove Theorems 5.1.2, 5.1.4, 5.1.6.

Proof of Theorems 5.1.2, 5.1.4. This is the most technical proof of the whole article. It consists of
4 steps, and we start with a short résumé of them. During Steps 1,2,3, we will subsequently reduce
Theorem 5.1.2 to simpler statements, and in Step 4 we will completely prove Theorems 5.1.2, 5.1.4.
More precisely, in Step 1 we see that by Theorem 5.2.3, we can trivialize the Poincaré-compatible
coordinates associated to gTXt (thus, the associated Wolpert norm). In Step 2, by Theorem 5.2.1,
we reduce the problem to the problem without cusps. In Step 3, by Theorem 5.3.1, the anomaly
formula of Bismut-Gillet-Soulé (cf. Theorem 5.2.3) and Theorem 5.2.1, we get Theorem 5.1.2
but instead of Cn, we have an undetermined constant A−n, which depends only on n, and not on
π : X → S or any other geometrical data. Finally, in Step 4, by applying Theorem 5.2.15 two times
and using the fact that the analytic torsion coincides with (5.1.36) for the 3-punctured hyperbolic
sphere (see [54, Remark 2.18a)]), we see that A−n = C−n, which would finish the proof of both
Theorems 5.1.2 and 5.1.4.

In the first two steps the reduction is done by modifying norms‖·‖ωX/S ,‖·‖X/S only in the neigh-
bourhood of |DX/S| and our technique is the same as in the proofs of [55, Theorems C, D].

We also note that by Theorem 5.2.3, we may suppose that near the singular locus, the Hermitian
vector bundle (ξ, hξ) is trivial over a small neighbourhood of |DX/S| ∪ ΣX/S .
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Finally, we note that by Theorem 5.2.8, it is enough to prove Theorem 5.1.2 only in the case
dimS = 1, S = D(1), |∆| = {0}. From now on we make those assumptions, and we conserve
the relevant notations from Section 5.3.1.

Step 1. Let Vi,c, i = 1, . . . ,m, c > 0 (resp. U ) be a neighbourhood of σi(t0) (resp. t0) such that
for some local coordinates (z0, . . . , zq) of σi(t0) and (w1, . . . , wq) of t0 ∈ S, satisfying (5.2.31),
we have Vi,c = {x ∈ π−1(U) : |z0(x)| < c} and {z0(x) = 0} = {σi(t) : t ∈ U}. For simplicity,
we note Vi := Vi,1. Let ν0 : R+ → [0, 1] be a smooth function satisfying

ν0(u) =

{
0, if u < 1/2,

1, if u > 3/4.
(5.3.30)

We denote by‖·‖ω,0X/S the norm on ωX/S overX \ (π−1(|∆|)∪|DX/S|) such that‖·‖ω,0X/S coincides
with‖·‖ωX/S away from ∪mi=1Vi, and over (∪mi=1Vi) \ (π−1(|∆|) ∪ |DX/S|), we have

‖dz0‖ω,0X/S =
∣∣z0 log |z0|

∣∣1−ν0(|z0|) ·
(
‖dz0‖ωX/S

)ν0(|z0|). (5.3.31)

Let‖·‖0
X/S be the norm on ωX/S(D) induced from‖·‖ω,0X/S as in Construction 5.1.1, and let gTXt0 ,

t ∈ S be the induced Kähler metric Xt \ DX/S with cusps at DX/S ∩ Xt. We denote by‖·‖W,0,iX/S ,
i = 1, . . . ,m, the Wolpert norms (see Definition 5.2.2) on σ∗i ωX/S induced by gTXt0 , and by‖·‖W,0X/S

the induced Wolpert norm on ⊗mi=1σ
∗
i ωX/S . Then by Construction 5.1.1 and (5.3.31), we see that

if ‖·‖X/S satisfies assumptions (5.1.6) and (5.1.17), then ‖·‖0
X/S satisfies assumptions (5.1.6) and

(5.1.17) as well.
In fact, this property along with the fact that ‖·‖ω,0X/S doesn’t vary in the horizontal direction

around the cusps are the only facts we need from the construction (5.3.31).
We denote by gTY00 the Kähler metric on Y0 \ DY0 , constructed from‖·‖0

Y0
:= ρ∗(‖·‖0

X/S) as in
Construction 5.1.1. We denote by‖·‖W,0Y0

the Wolpert norm on ⊗m+2k
i=1 (σ′i)

∗ωY0 induced by gTY00 .
As we supposed that (ξ, hξ) is trivial in a neighbourhood of |DX/S|, and the metrics ‖·‖X/S ,

‖·‖0
X/S differ only in the neighbourhood of |DX/S|, by Theorem 5.2.3, applied pointwise for the

line bundle λ(j∗(ξ⊗ωX/S(D)n))12⊗ (⊗mi=1σ
∗
i ωX/S)−rk(ξ), for any t ∈ S \ |∆|, we see that we have

1

6
log
(
‖·‖Q

(
gTXt0 , hξ ⊗ (‖·‖0

X/S)2n
)12 ⊗

(
‖·‖W,0X/S

)−rk(ξ)
)

− 1

6
log
(
‖·‖Q

(
gTXt , hξ ⊗ (‖·‖X/S)2n

)12 ⊗
(
‖·‖WX/S

)−rk(ξ)
)

= rk(ξ) ·
∫
Xt

(
T̃d
(
ωX/S(D)−1, ‖·‖−2

X/S , (‖·‖
0
X/S)−2

)
ch
(
ωX/S(D)n,‖·‖2n

X/S

)
+ Td

(
ωX/S(D)−1, (‖·‖0

X/S)−2
)
c̃h
(
ωX/S(D)n,‖·‖2n

X/S , (‖·‖
0
X/S)2n

))
.

(5.3.32)

We note that the conformal factor corresponding to the change of the metric from‖·‖ωX/S to‖·‖ω,0X/S

is non-trivial in the neighborhood of the cusp. Thus, we use Theorem 5.2.3 with the conformal
factor which doesn’t have compact support in the punctured surface.
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By applying Theorem 5.2.3, where instead of flattening, we choose a “partial flattening” applied
for the m points, coming from σ′1, . . . , σ

′
m, we get

1

6
log
(
‖·‖Q

(
gTY00 , ρ∗(hξ)⊗ (‖·‖0

Y0
)2n
)12 ⊗

(
‖·‖W,0Y0

)−rk(ξ)
)

− 1

6
log
(
‖·‖Q

(
gTY0 , ρ∗(hξ)⊗ (‖·‖Y0)

2n
)12 ⊗

(
‖·‖WY0

)−rk(ξ)
)

= rk(ξ) ·
∫
Y0

(
T̃d
(
ωY0(D)−1, ‖·‖−2

Y0
, (‖·‖0

Y0
)−2
)
ch
(
ωY0(D)n,‖·‖2n

Y0

)
+ Td

(
ωY0(D)−1, (‖·‖0

Y0
)−2
)
c̃h
(
ωY0(D)n,‖·‖2n

Y0
, (‖·‖0

Y0
)2n
))
.

(5.3.33)

By Proposition 5.2.14, we see that the right-hand-side of (5.3.32) extends continuously over S,
moreover, as t → 0, by (5.2.45), the right-hand side of (5.3.32) tends to the right-hand side of
(5.3.33). Thus, we see that it is enough to prove Theorem 5.1.2 for the metrics ‖·‖0

X/S , ‖·‖ω,0X/S ,
‖·‖W,0X/S instead of ‖·‖X/S , ‖·‖ωX/S , ‖·‖WX/S . We also note, that by (5.3.31), for i = 1, . . . ,m, the
following identity holds ∥∥dz0|σi(t)

∥∥W,0,i
X/S

=
∥∥dz0|σ′i(0)

∥∥W,0,i
Y/S′

= 1. (5.3.34)

Step 2. We denote by V ′i = Vi,1/2 ⊂ Vi, i = 1, . . . ,m. Let ‖·‖ω,cmp
X/S be the Hermitian norm

on ωX/S over X \ π−1(|∆|) such that‖·‖ω,cmp
X/S coincides with‖·‖ω,0X/S away from ∪mi=1V

′
i , and for

ν0 : R→ [0, 1] from (5.3.30), it is given over V ′i by

‖dz0‖ω,cmp
X/S = |z0 log |z0||ν0(2|z0|). (5.3.35)

We denote by gTXtcmp the induced Kähler metric on Xt. By (5.3.35), we see that if‖·‖ω,0X/S satisfies
assumptions (5.1.6) and (5.1.17), then‖·‖ω,cmp

X/S satisfies assumptions (5.1.6) and (5.1.17) as well,
but for DX/S = ∅, i.e. without the cusps. In fact, this property along with the fact that‖·‖ω,cmp

X/S

doesn’t vary in the horizontal direction around the cusps are the only facts we need from the
construction (5.3.35).

We denote by gTY0cmp the Kähler metric over Y0 \ ρ−1(ΣX/S) induced from‖·‖ω,cmp
X/S as in Section

1 for DX/S = ∅. We denote by‖·‖cmp
X/S the norm on ωX/S(D) over X \ π−1(|∆|), such that‖·‖cmp

X/S

coincides with‖·‖0
X/S away from ∪mi=1V

′
i , and over V ′i we have∥∥dz0 ⊗ sDX/S/z0

∥∥cmp

X/S
= | log |z0||ν0(2|z0|). (5.3.36)

We denote by‖·‖cmp
Y0

:= ρ∗(‖·‖cmp
X/S) the induced Hermitian norm on ωY0(D) over Y0 \ ρ−1(ΣX/S).

Now, since in gTXt0 , the Poincaré-compatible coordinates of the cusps are trivialized, by Theorem
5.2.1, we see that for t ∈ S \ |∆|, the following holds

2 log
(
‖·‖Q

(
gTXtcmp , h

ξ ⊗ (‖·‖cmp
X/S)2n

)/
‖·‖Q

(
gTXt0 , hξ ⊗ (‖·‖0

X/S)2n
))

= 2 log
(
‖·‖Q

(
gTY0cmp, ρ

∗hξ ⊗ (‖·‖cmp
Y0

)2n
)/
‖·‖Q

(
gTY00 , ρ∗hξ ⊗ (‖·‖0

Y0
)2n
))
, (5.3.37)
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where we didn’t mention the last term of (5.2.13) since (ξ, hξ) is trivial in the neighbourhood of
|DX/S|, and the norms‖·‖cmp

X/S ,‖·‖0
X/S differ only in the neighbourhood of |DX/S|. We denote by

‖·‖cmp
DX/S

the norm on OX(DX/S), given by‖·‖cmp
X/S /‖·‖

ω,cmp
X/S . Then the norm‖·‖cmp

DX/S
is trivial away

from ∪mi=1Vi and smooth over X .
By (5.1.24), (5.3.34) and (5.3.37), we see that it is enough to prove Theorem 5.1.2 for the

Hermitian vector bundles (ξ ⊗ OX(DX/S)n, hξ ⊗ (‖·‖cmp
DX/S

)2n), (ωX/S,‖·‖ω,cmp
X/S ) and DX/S = ∅,

instead of (ξ, hξ), (ωX/S,‖·‖ω,0X/S) and DX/S , given by (5.1.2). But as the Hermitian norm‖·‖cmp
DX/S

is
smooth over X , such a statement would follow from Theorem 5.1.2 for m = 0. Thus, we conclude
that to prove Theorem 5.1.2 in its full generality, it is enough to prove it only for m = 0. From
now on, we suppose m = 0.

Step 3. The main goal of this step is to show that Theorem 5.1.2 holds, but instead of C−n,
we have an undetermined constant A−n, which doesn’t depend on π : X → S and any other
geometrical data. The idea is to construct a metric‖·‖κX/S on ωX/S over X \ |π−1(∆)|, for which
the assumptions (5.1.6), (5.1.17) hold and to show that Theorem 5.1.2 holds for‖·‖κX/S but instead
of C−n, we have an undetermined constant A−n. Then, by the anomaly formula and Proposition
5.2.14, we deduce that Theorem 5.1.2 holds up to exp(k · rk(ξ) · A−n) for any norm‖·‖ωX/S , for
which the assumptions (5.1.6), (5.1.17) are satisfied.

We proceed in the following way. First, we construct a Riemannian metric gTX∼ preserving
the complex structure on X . This metric will be trivial in the neighbourhood of ΣX/S . By using
Theorem 5.3.1, we will study the asymptotics of the norm ‖·‖∼Ln

induced on the line bundle Ln

by‖·‖∼X/S . Then by modifying locally this metric in the neighbourhood of ΣX/S , we construct a
family of metrics gTXtκ on Xt for t ∈ S \ |∆|. This family degenerates to the hyperbolic metric at
the singular fiber through the family of degenerating hyperbolic cylinders. By applying anomaly
theorem and the previous result on the asymptotics of‖·‖∼Ln

, we compute the asymptotics of the
norm‖·‖κLn

induced on the line bundle Ln by gTXtκ . As our construction is local around ΣX/S , the
asymptotic we obtain would not depend on any geometry of π : X → S. Let’s make this reasoning
more precise...

Let local coordinates zj0, z
j
1 (cf. (5.3.1)) around Qj be as in (5.2.59). We suppose that D(1) ⊂

Im(zj0) ∩ Im(zj1). This is merely a question of normalisation, as for any coordinates zj0, z
j
1 of X

and t of S, and for any a ∈ C, we may change the coordinates by a · zj0, a · z
j
1 and a2 · t, and the

identity (5.2.59) would be preserved. We specify the function ν from (5.2.61) as follows

ν(x) =

{
1, for x ∈ X \ (∪ki=1U(Qi, 1)),

ν0(|zi0|2 + |zi1|2), for x ∈ U(Qi, 1).
(5.3.38)

By (5.3.30), the function (5.3.38) satisfies the generic conditions (5.2.61) for ε = 1/2.
We note that π is locally projective (cf. Bismut-Bost [20, Proposition 3.4]), thus, there is a

neighbourhood U of 0 ∈ S such that there is a Kähler metric gTX0 over π−1(U). As the statement
of Theorem 5.3.1 is local over the base, without losing the generality, we may suppose from now
on that gTX0 is defined over X .

We define the Riemannian metric gTX∼ over X so that it coincides with gTX0 over X \
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(∪ki=1U(Qi, 1)), and over U(Qi, 1) it is given by

gTX∼ = ν · gTX0 + (1− ν) · (|dzi0|2 + |dzi1|2). (5.3.39)

We note that gTX∼ is not necessarily Kähler, but it is trivially compatible with the complex structure
of X . We denote by gTXt∼ the induced Riemannian metric on Xt, t ∈ S \ |∆|, and by gTY0∼ the
induced Riemannian metric on Y0, constructed as in Section 5.3.1, i.e. by gTY0∼ = ρ∗(gTX∼ ), where
ρ : Y0 → X0 is the normalization map. Since gTX∼ is compatible with the complex structure of X ,
we see that the metrics gTXt∼ , gTY0∼ are Kähler.

We endow ωX/S with the Hermitian norm‖·‖∼,ind
X/S induced by gTX∼ over X \ ΣX/S . We define

the Hermitian norm‖·‖∼X/S on ωX/S over X as follows. Over X \ (∪ki=1U(Qi, 1)), we demand it to
be equal to‖·‖∼,ind

X/S , and over U(Qi, 1), we define it by∥∥dzi0/zi0∥∥∼X/S = ν ·
∥∥dzi0/zi0∥∥∼,ind

X/S
+ (1− ν). (5.3.40)

Trivially, the Hermitian norm ‖·‖∼X/S on ωX/S is smooth over X . Moreover, it is trivial on
∪ki=1U(Qi, 1/2). The norm ‖·‖∼Y0 := ρ∗(‖·‖∼X/S) over ωY0(D) is characterized as follows: over
Y0\(∪ki=1({|zi0| < 1}∪{|zi1| < 1})), it is induced by gTY0∼ as in Construction 5.1.1, over {|zij| < 1},
j = 0, 1, i = 1, . . . , k, it is given by∥∥dzij ⊗ sDY0/zij∥∥∼Y0 = (ν ◦ ρ) ·

∥∥dzij/zij∥∥∼,ind

X/S
+ (1− (ν ◦ ρ)). (5.3.41)

A B CD A'B' D'

X Y V Y' X'Z U' Z'U

X Y Y' X'Z

Figure 5.4: The metric gTXt∼ . Over the regions X,X ′, it is induced by gTX0 . Over the regions
Y, Y ′, it is an interpolation between gTX0 and |dz0|2 + |dz1|2, and over the region Z, it is given by
|dz0|2 + |dz1|2, where z0z1 = t.

We endow Ln with the metric‖·‖∼Ln
, induced by the Quillen norm‖·‖Q (gTXt∼ , hξ ⊗ (‖·‖∼X/S)2n)

and the singular norm (5.1.3). We endow L ′
n with the norm‖·‖∼L ′n , induced by the Quillen norm

‖·‖Q (gTY0∼ , ρ∗(hξ)⊗ (‖·‖∼Y0)
2n) and the norm‖·‖∼ΣX/S/X (see (5.3.3)) on ⊗ki=1(ωY0|P2i−1

⊗ ωY0|P2i
).

By (5.3.39), the norm‖·‖∼ΣX/S/X is characterized by the identity∥∥⊗ki=1 (dzi0|P2i−1
⊗ dzi1|P2i

)
∥∥∼

ΣX/S/X
= 1. (5.3.42)

The metrics gTXt∼ ,‖·‖∼X/S and gTY0∼ ,‖·‖∼Y0 satisfy the hypothesis of Theorem 5.3.1. Thus, for

A′−n := 24ζ ′(−1)− 6 log(2π), (5.3.43)
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for a smooth local frame υ of Ln, by (5.3.42), under the isomorphism (5.1.28), the following
identity holds

lim
t→0

(
log
(
‖υ(t)‖∼Ln

)
− k · rk(ξ) · log |t|

)
= log

(
‖υ(0)‖∼L ′n

)
+ k · rk(ξ) · A′−n. (5.3.44)

Now, let ν̃ : X → [0, 1] be defined as ν in (5.3.38), where in place of ν0(·), we put ν0(4·). Then
ν̃(x) = 1 for x ∈ X \(∪ki=1U(Qi, 1/2)). We define the metrics gTXtκ onXt, t ∈ S \|∆|, as follows:
over Xt \ (∪ki=1U(Qi, 1/2)) it coincides with gTXtκ , and over U(Qi, 1/2) it is given by

gTXtκ := ν̃ · gTXt∼ + (1− ν̃) · gCyl
i,t , (5.3.45)

where the metric gCyl
j,t was defined in (5.2.63). We also define the metric gTY0κ as follows: over

Y0 \ (∪ki=1U(Qi, 1/2)) it coincides with gTY0∼ , and over U(Qi, 1/2) it is given by

gTY0κ := (ν̃ ◦ ρ) · gTY0∼ +
(
1− (ν̃ ◦ ρ)

)
·
(
gPoinc
i,0 + gPoinc

i,1

)
, (5.3.46)

where the metrics gPoinc
i,0 , gPoinc

i,1 are the metrics induced by the Poincaré metric (5.2.2) with respect
to the coordinates zi0 and zi1. We denote by‖·‖κX/S the Hermitian norm on ωX/S induced by gTXtκ .
By (5.3.45), we see that the Hermitian norm‖·‖κX/S extends continuously over X \ ΣX/S , and the
assumptions (5.1.6) are satisfied. We define the norm‖·‖κY0 on ωY0(D) as follows

‖·‖κY0 = ρ∗(‖·‖κX/S). (5.3.47)

Then we see trivially that‖·‖κX/S satisfies assumptions (5.1.17), and by (5.3.45), (5.3.46), the asso-
ciated metric on Y0 \DY0 , constructed as in Section 1, coincides with gTY0κ .

Let’s pause and explain this construction. The metrics gTXtκ degenerate near the singular fibers
to a metric with cusps in the similar way as the hyperbolic metrics (see Theorem 5.2.17). The
advantage of the metrics gTXtκ over the hyperbolic one is that over the region ∪ki=1U(Qi, 1/2), it is
independent of any exterior data as π : X → S, and over Xt \ (∪ki=1U(Qi, 1/2)), the metric gTXtκ
coincides with a metric gTXt∼ , for which Theorem 5.3.1 holds.

A B CD A'B' D'

X Y V Y' X'Z U' Z'U

X Y Y' X'Z

Figure 5.5: The metric gTXtκ . Over the regions X, Y, Z, Z ′, Y ′, X ′ it coincides with gTXt∼ . Over the
regions U,U ′, it is an interpolation between gTXt∼ and the hyperbolic cylinder metric, (5.2.63), and
over the region V , it coincides with the hyperbolic cylinder metric, (5.2.63).

Let‖·‖W,κY0
be the Wolpert norm on ⊗ki=1(ωY0|P2i−1

⊗ ωY0|P2i
). By Definition 5.2.2 and (5.3.46)∥∥⊗ki=1 (dzi0|P2i−1

⊗ dzi1|P2i
)
∥∥W,κ
Y0

= 1. (5.3.48)
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We endow the holomorphic line bundle Ln with the Hermitian norm ‖·‖κLn
, induced by the

Quillen norm ‖·‖Q (gTXtκ , hξ ⊗ (‖·‖κX/S)2n) and the singular norm (5.1.3). We endow the com-
plex line L ′

n with the Hermitian norm ‖·‖κL ′n , induced by the Quillen norm ‖·‖Q (gTY0κ , ρ∗(hξ) ⊗
(‖·‖κY0)

2n) and the Wolpert norm‖·‖W,κY0
. By the anomaly formula of Bismut-Gillet-Soulé [23] (cf.

Theorem 5.2.3 for m = 0), we deduce that for any t ∈ S \ |∆|, we have

log
(
‖·‖κLn

/‖·‖∼Ln

)
(t) = 6

∫
Xt

G, (5.3.49)

where the differential form G is given by

G = rk(ξ) ·
(

T̃d
(
ω−1
X/S, (‖·‖

∼,ind
X/S )−2, (‖·‖κX/S)−2

)
ch
(
ωnX/S, (‖·‖

∼
X/S)2n

)
+ Td

(
ω−1
X/S, (‖·‖

κ
X/S)−2

)
c̃h
(
ωnX/S, (‖·‖

∼
X/S)2n, (‖·‖κX/S)2n

))
. (5.3.50)

We decompose ∫
Xt

G =

∫
Xt

G1 +

∫
Xt

G2, (5.3.51)

where G1 (resp. G2) is given by the same formula as (5.3.50), where in place of ‖·‖κX/S (resp.
‖·‖∼,ind

X/S ), we put ‖·‖∼X/S . By (5.3.50), (5.3.51) and the fact that the norms ‖·‖X/S , ‖·‖∼X/S , ‖·‖κX/S
coincide over X \ (∪mi=1U(Qi, 1)), we conclude that G and Gi, i = 1, 2 have support over
∪ki=1U(Qi, 1). Over U(Qi, 1), by (5.3.39), (5.3.40), (5.3.45), the following identities hold(∥∥∥zi0 ∂

∂zi0
− zi1

∂

∂zi1

∥∥∥∼,ind

X/S

)2∣∣
Xt

= |zi0|2 + |zi1|2,(∥∥∥zi0 ∂

∂zi0
− zi1

∂

∂zi1

∥∥∥∼
X/S

)2∣∣
Xt

= ν · (|zi0|2 + |zi1|2) + (1− ν),(∥∥∥zi0 ∂

∂zi0
− zi1

∂

∂zi1

∥∥∥κ
X/S

)2∣∣
Xt

= ν̃ ·
(
|zi0|2 + |zi0|2

)
+

4π(1− ν̃)

log |t|

(
sin

π log |zi0|
log |t|

)−1

.

(5.3.52)

By (5.3.52) and the fact that the norms‖·‖X/S ,‖·‖∼X/S ,‖·‖κX/S coincide over X \ (∪mi=1U(Qi, 1)),
the functions

∫
Xt
Gi : S \ |∆| → R, i = 1, 2, can be written as∫

Xt

Gi = rk(ξ) · k · fi(t), (5.3.53)

where fi : S \ |∆| → R depend only on the choice of the function ν0. Let’s study the functions fi
more precisely.

First, as the norm ‖·‖∼X/S is smooth over X , and the first Chern form of the norm ‖·‖κX/S has
Poincaré growth by Proposition 5.2.16, we conclude by (5.2.15), (5.2.16), (5.3.50) and (5.3.52)
that the following bound holds.

G2|Xt∩U(Qi,1) = O

(
log | log |zi0||

dzi0dz
i
0

|zi0 log |zi0||2

)
. (5.3.54)
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Thus, the functions f2 extends continuously over S. We denote AII−n := f(0).
Now let’s treat the function f1. By (5.3.25) and (5.3.52), for t ∈ S \ |∆|, we have the following

identity

c1(TX/S, gTX)|Xt∩U(Qi,1/2) =
4|zi0|2|t|2

(|zi0|4 + |t|2)2

dzi0dz
i
0

2π
√
−1

. (5.3.55)

Now, we note that the norm ‖·‖∼X/S is trivial over U(Qi, 1/2). By this, (5.2.15), (5.2.16) and
(5.3.50) we see that the following identity holds

f1(t) =
1

12

∫
2|t|<|zi0|<1/2

log
(
|zi0|2 + |t/zi0|2

) 4|zi0|2|t|2

(|zi0|4 + |t|2)2

dzi0dz
i
0

2π
√
−1

+ 2

∫
1/2<|zi0|<1

G1. (5.3.56)

By making change of variables y := zi0 · |t|−1/2, we see that∫
2|t|<|zi0|<1/2

log
(
|zi0|2 + |t/zi0|2

) 4|zi0|2|t|2

(|zi0|4 + |t|2)2

dzi0dz
i
0

2π
√
−1

= (log |t|) ·
∫

2|t|1/2<|y|<|t|−1/2/2

4|y|2

(|y|4 + 1)2

dydy

2π
√
−1

+

∫
2|t|1/2<|y|<|t|−1/2/2

log(|y|2 + |y|−2)
4|y|2

(|y|4 + 1)2

dydy

2π
√
−1

. (5.3.57)

Also, we see that ∫
y∈C

4|y|2

(|y|4 + 1)2

dydy

2π
√
−1

= −
∫ +∞

0

8r3dr

(r4 + 1)2
= −2. (5.3.58)

By a simple calculation, we see that the second summand in the right-hand side of (5.3.57) extends
continuously over {t = 0}. The same holds for the second summand in the right-hand side of
(5.3.56). Thus, by (5.3.56), (5.3.57), (5.3.58), we conclude that there is a constant AI−n such that

lim
t→0

(
f1(t) +

log |t|
6

)
= AI−n. (5.3.59)

Thus, by (5.3.49), (5.3.53) and (5.3.59), the norm‖·‖κLn
extends continuously over S. Moreover

lim
t→0

(
log
(
‖·‖κLn

/‖·‖∼Ln

)
(t) + k · rk(ξ) · log |t|

)
= 6k · rk(ξ) · (AI−n + AII−n). (5.3.60)

Now, by Theorem 5.2.1, (5.3.42), (5.3.46), (5.3.47) and (5.3.48), we deduce that the quantity

(rk(ξ) · k)−1 log
(
‖·‖κL ′n /‖·‖

∼
L ′n

)
:= A′′′−n (5.3.61)

depends only the choice of the function ν0. Thus, by (5.3.44), (5.3.60) and (5.3.61), we deduce
that under the isomorphism (5.1.28), the following holds

‖·‖κLn
|∆ = exp(k · rk(ξ) ·A−n) ·‖·‖κL ′n with A−n := A′−n + 6(AI−n +AII−n)−A′′′−n. (5.3.62)
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The essential difference between (5.3.44) and (5.3.62) is that (5.3.44) is a statement in realms of
Theorem 5.3.1, and (5.3.62) is a statement in realms of Theorem 5.1.2, which is exactly what we
need.

Now, let‖·‖X/S ,‖·‖Y0 be any norms which satisfy the assumptions of Theorem 5.1.2. We denote
by ‖·‖Ln

, ‖·‖L ′n the Hermitian norms on Ln,L ′
n, defined as in Theorem 5.1.2. By Proposition

5.2.14 and the anomaly formula of Bismut-Gillet-Soulé [23] (cf. Theorem 5.2.3 for m = 0),
applied for the line bundles Ln and L ′

n, we get

lim
t→0

log
(
‖·‖κLn

/‖·‖Ln

)
(t) = log

(
‖·‖κL ′n /‖·‖L ′n

)
. (5.3.63)

From (5.3.62) and (5.3.63), we deduce that the norm‖·‖Ln
extends continuously over S and under

the isomorphism (5.1.28), the following holds

‖·‖Ln
|∆ = exp(k · rk(ξ) · A−n) ·‖·‖L ′n , (5.3.64)

in other words Theorem 5.1.2 holds, but instead of Cn, we have an undetermined constant A−n.
Step 4. The goal of this step is to show that A−n = C−n and to prove Theorem 5.1.4.
For this we consider a stable pointed Riemann surface (M,DM) and the associated canonical

plumbing family π : X → S with the canonical hyperbolic norm ‖·‖hyp
X/S on ωX/S from Section

5.2.3.
Then, in the notations of Section 5.2.3, by a theorem of Phong-d’Hooker (cf. Remark 5.1.5),

the following identity of norms over S \ |∆| holds

‖·‖Q (gTXthyp , (‖·‖
hyp
X/S)2n) =‖·‖TZQ (gTXthyp , (‖·‖

hyp
X/S)2n). (5.3.65)

We apply this construction for (M,DM) := (T ,DT ), where (T ,DT ) is a 1-pointed torus,
considered in Section 5.2.3. Then by Theorem 5.2.15, Step 3 and (5.3.65), we get

exp(A−n/2) ·‖·‖Q (gTThyp, (‖·‖
hyp
T )2n) = exp(C−n/2) ·‖·‖TZQ (gTThyp, (‖·‖

hyp
T )2n). (5.3.66)

By applying (5.3.65) again, but now for any (M,DM), by Theorem 5.2.15, Step 3 and (5.3.66),
we see that for any (M,DM), m := #DM , we have

exp(m · A−n/2) ·‖·‖Q (gTMhyp , (‖·‖
hyp
M )2n) = exp(C−n/2) ·‖·‖TZQ (gTMhyp , (‖·‖

hyp
M )2n). (5.3.67)

However, by [54, Remark 2.18a)], our definition of the analytic torsion coincides with the definition
of Takhtajan-Zograf for the 3-punctured hyperbolic sphere P := P \ {0, 1,∞}, i.e.

‖·‖Q (gTPhyp, (‖·‖
hyp
P )2n) =‖·‖TZQ (gTPhyp, (‖·‖

hyp
P )2n). (5.3.68)

By combining (5.3.67) and (5.3.68), we get A−n = C−n, which finishes the proof of Theorem
5.1.2. Also by (5.2.11), (5.2.51) and (5.3.67), we deduce Theorem 5.1.4.

Proof of Theorem 5.1.6. By [55, Proposition 5.6], the norm‖·‖hyp
g,m satisfies assumptions (5.1.6) and

(5.1.17). Thus, Theorem 5.1.6 is a direct consequence of Theorem 5.1.2 and [55, Proposition 5.6].
The fact that the underlying spaces are orbifolds doesn’t pose any problem, as our methods are
local, and thus, can be applied on an orbifold chart.
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[42] P. Deligne. Le déterminant de la cohomologie. Contemp. Math., 67:93–177, 1987.

[43] J.-P. Demailly. Complex Analytic and Differential Geometry. 2012.

[44] E. D’Hoker and D. H. Phong. Multiloop amplitudes for the bosonic Polyakov string. Nu-
clear Phys. B, 269(1):205–234, 1986.

[45] E. D’Hoker and D. H. Phong. On determinants of Laplacians on Riemann surfaces. Comm.
Math. Phys., 104(4):537–545, 1986.

[46] T.-C. Dinh, X. Ma, and V.-A. Nguyên. On the asymptotic behavior of Bergman kernels for
positive line bundles. Pacific J. Math., 289(1):71–89, 2017.

[47] T.-C. Dinh and N. Sibony. Dynamics in several complex variables: endomorphisms of pro-
jective spaces and polynomial-like mappings. In Holomorphic dynamical systems, volume
1998 of Lecture Notes in Math., pages 165–294. Springer, Berlin, 2010.

[48] H. Fang, Z. Lu, and K.-I. Yoshikawa. Analytic torsion for Calabi-Yau threefolds. J. Differ-
ential Geom., 80(2):175–259, 2008.

[49] H. M. Farkas and I. Kra. Riemann surfaces, volume 71 of Graduate Texts in Mathematics.
Springer-Verlag, New York, second edition, 1992.

224



[50] J. D. Fay. Kernel functions, analytic torsion, and moduli spaces, volume 96 of Lecture Notes
in Mathematics. 1992.

[51] K. Fedosova, J. Rowlett, and G. Zhang. Second variation of Selberg zeta functions and
curvature asymptotics. ArXiv: 1709.03841. 2017.

[52] F. Ferrari and S. Klevtsov. FQHE on curved backgrounds, free fields and large N. J. High
Energy Phys., (12), 2014.

[53] S. Finski. On the full asymptotics of analytic torsion. J. Funct. Anal., 275(12):3457 – 3503,
2018.

[54] S. Finski. Analytic torsion for surfaces with cusps I. Compact perturbation theorem and
anomaly formula. ArXiv: 1812.10442, 63 p. 2018.

[55] S. Finski. Analytic torsion for surfaces with cusps II. Regularity, asymptotics, and curvature
theorem, ArXiv: 1812.11739, 38 p. 2018.

[56] S. Finski. Quillen metric for singular families of Riemann surfaces with cusps, 40 p. 2019.

[57] S. Finski. Deligne-Mumford isometry and Quillen metric for Riemann surfaces with cusps.
2019.
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