mSAT: a Sat/SMT /McSat library

Guillaume Bury

June 13, 2017

1 Introduction

The goal of the mSAT library is to provide a way to easily create automated
theorem provers based on a Sat solver. More precisely, the library, written in
OCaml, provides functors which, once instantiated, provide a Sat, SMT or McSat
solver.

Given the current state of the art of SMT solvers, where most Sat solvers are
written in C and heavily optimised!, the mSAT library does not aim to provide
solvers competitive with the existing implementations, but rather an easy way
to create reasonably efficient solvers.

mSAT currently uses the following techniques:

e 2-watch literals scheme

e Activity based decisions

e Restarts

Additionally, mSAT has the following features:
e Local assumptions

e Proof/Model output

e Adding clauses during proof search

1Some solvers now have instructions to manage a processor’s cache

Contents
1 Introduction

2 Sat Solvers: principles and formalization
2.1 Idea
2.2 Inferencerules
2.3 Invariants, correctness and completeness

3 SMT solver architecture
3.1 Idea e
3.2 Formalization and Theory requirements

4 McSat: An extension of SMT Solvers
4.1 Motivation andidea
4.2 Decisions and propagations
4.3 First order terms & Models
4.4 Inferencerules

5 McSat theories
5.1 Equality
5.2 Uninterpreted functions and predicates
5.3 Arithmetic.

=W w W

(S I

2 Sat Solvers: principles and formalization

2.1 Idea

2.2 Inference rules

The SAT algorithm can be formalized as follows. During the search, the solver
keeps a set of clauses, containing the problem hypotheses and the learnt clauses,
and a trail, which is the current ordered list of assumptions and/or decisions
made by the solver.

Each element in the trail (decision or propagation) has a level, which is
the number of decision appearing in the trail up to (and including) it. So for
instance, propagations made before any decisions have level 0, and the first
decision has level 1. Propagations are written a ~>¢ T, with C the clause that
caused the propagation, and decisions a +, T, with n the level of the decision.
Trails are read chronologically from left to right.

In the following, given a trail ¢t and an atomic formula a, we will use the
following notation: a € t if a +—, T or a ~»¢ T isin t, i.e. a € t is a is
true in the trail . In this context, the negation — is supposed to be involutive
(i.e. =—a = a), so that, if a € ¢ then =—a =a € t.

There exists two main Sat algorithms: DPLL and CDCL. In both, there exists
two states: first, the starting state Solve, where propagations and decisions are
made, until a conflict is detected, at which point the algorithm enters in the
Analyse state, where it analyzes the conflict, backtracks, and re-enter the Solve
state. The difference between DPLL and CDCL is the treatment of conflicts
during the Analyze phase: DPLL will use the conflict only to known where to
backtrack/backjump, while in CDCL the result of the conflict analysis will be
added to the set of hypotheses, so that the same conflict does not occur again.
The Solve state take as argument the set of hypotheses and the trail, while the
Analyze state also take as argument the current conflict clause.

We can now formalize the CDCL algorithm using the inference rules in Fig-
ure 1. In order to completely recover the Sat algorithm, one must apply the
rules with the following precedence and termination conditions, depending on
the current state:

e If the empty clause is in S, then the problem is unsat. If there is no more
rule to apply, the problem is sat.

e If we are in Solve mode:

1. First is the rule ConFLICT;

2. Then the try and use PROPAGATE;

3. Finally, is there is nothing left to be propagated, the Decipk rule is
used.

e If we are in Analyze mode, we have a choice concerning the order of appli-
cation. First we can observe that the rules ANALYZE-PROPAGATE, ANALYZE-
DEecisioN and ANALYZE-RESOLUTION can not apply simultaneously, and we

will thus group them in a super-rule ANaryze. We now have the choice of
when to apply the Backsump rule compared to the Anaryze rule: using
Backjump eagerly will result in the first UIP strategy, while delaying it
until later will yield other strategies, both of which are valid.

2.3 Invariants, correctness and completeness

The following invariants are maintained by the inference rules in Figure 1:
Trail Soundness In Solve(S,t), if a € t then —a ¢ ¢

Conflict Analysis In Analyze(S,t,C), C is a clause implied by the clauses in
S, and Va € C.—a € t (i.e. C is entailed by the hypotheses, yet false in the
partial model formed by the trail ¢).

S

é , the set of hypotheses (usually written S) in s;

is equivalent to that of so.

Equivalence In any rule

These invariants are relatively easy to prove, and provide an easy proof of
correctness for the CDCL algorithm. Termination can be proved by observing
that the same trail appears at most twice during proof search (once during prop-
agation, and eventually a second time right after backjumping?). Correctness
and termination implies completeness of the Sat algorithm.

3 SMT solver architecture

3.1 Idea

In a SMT solver, after each propagation and decision, the solver sends the newly
assigned literals to the theory. The theory then has the possibility to declare
the current set of literals incoherent, and give the solver a tautology in which
all literals are currently assigned to L2, thus prompting the solver to backtrack.
We can represent a simplified version of the information flow (not taking into
account backtracking) of usual SMT Solvers, using the graph in fig 2.

Contrary to what the Figure 2 could suggest, it is not impossible for the the-
ory to propagate information back to the Sat solver. Indeed, some SMT solvers
already allow the theory to propagate entailed literals back to the Sat solver.
However, these propagations are in practice limited by the complexity of decid-
ing entailment. Moreover, procedures in a SMT solver should be incremental
in order to get decent performances, and deciding entailment in an incremen-
tal manner is not easy (TODO : ref nécessaire). Doing efficient, incremental
entailment is exactly what McSat allows (see Section 4).

2This could be avoided by making the BACKJUMP rule directly propagate the relevant
literal of the conflict clause, but it needlessly complicates the rule.
3or rather for each literal, its negation is assigned to T

Sat

b Solve(S, t) acC,CeS,~ad¢t
HOPAGATE Sove(S,t:a~c T) VbeCb#a—bet
Solve(S, t) a¢t,~adtaes
DrcipE Solve(S,t ::a vy, T) n = max_level(t) + 1
Solve(S, t)
CONFLICT CeSVaeC—act

Analyze(S,t,C)

Analyze(S,t :: a ~¢ T,D
ANALYZE-PROPAGATION yze(¢) -a ¢ D
Analyze(S, ¢, D)

Analyze(S,t :: a —, T,D)
A _ —a & D
NALYZE-DECISION Analyze(S.4, D) ¢

Analyze(S,t::a ~¢c T,D
ANALYZE-RESOLUTION yze(¢ T,D) —a €D

Analyze(S, ¢, (C — {a}) U (D — {—a}))

5 Analyze(S,t 2 avq T : t/,C) is_ uip(Cit:iarg Tt
ACKIUMP Solve(SU {C}, ¢) d < uip_level(C)
SMT
Sart Solve(S, t) TEC

Solve(SU {C1}, 1)

Figure 1: Inference rules for Sat and SMT

SAT Core Theory

| Decision (boolean) |

| Boolean propagation I Theory propagation

Figure 2: Simplified SMT Solver architecture

3.2 Formalization and Theory requirements

An SMT solver is the combination of a Sat solver, and a theory 7. The role of
the theory T is to stop the proof search as soon as the trail of the Sat solver
is inconsistent. A trail is inconsistent iff there exists a clause C, which is a
tautology of T (thus 7 F C), but is not satisfied in the current trail (each of its
literals has either been decided or propagated to false).

TODO:reword the following paragraph (inference rule Conflict-SMT renamed
to SMT)

Thus, we can add the ConrricT-SmT rule (see Figure 1) to the CDCL in-
ference rules in order to get a SMT solver. We give the ConrricT-SMT rule a
slightly lower precedence than the ConrricT rule for performance reason (de-
tecting boolean conflict is faster than theory specific conflicts).

So, what is the minimum that a theory must implement in practice to be
used in a SMT solver 7 The theory has to ensure that the current trail is
consistent (when seen as a conjunction of literals), that is to say, given a trail
t, it must ensure that there exists a model M of Tso that Ya € t. M E a, or if
it is impossible (i.e. the trail is inconsistent) produce a conflict.

4 McSat: An extension of SMT Solvers

4.1 Motivation and idea

McSat is an extension of usual SMT solvers, introduced in [2] and [1]. In usual
SMT Solvers, interaction between the core SAT Solver and the Theory is pretty
limited : the SAT Solver make boolean decisions and propagations, and sends
them to the theory, whose role is in return to stop the SAT Solver as soon as the
current set of assumptions is incoherent. This means that the information that
theories can give the SAT Solver is pretty limited, and furthermore it heavily
restricts the ability of theories to guide the proof search (see Section 3.1).

While it appears to leave a reasonably simple job to the theory, since it com-
pletely hides the propositional structure of the problem, this simple interaction
between the SAT Solver and the theory makes it harder to combine multiple
theories into one. Usual techniques for combining theories in SMT solvers typi-
cally require to keep track of equivalence classes (with respect to the congruence
closure) and for instance in the Nelson-Oppen method for combining theories
(TODO : ref nécessaire) require of theories to propagate any equality implied
by the current assertions.

McSat extends the SAT paradigm by allowing more exchange of information
between the theory and the SAT Solver. This is achieved by allowing the solver
to not only decide on the truth value of atomic propositions, but also to decide
assignments for terms that appear in the problem. For instance, if the SAT
Solver assigns a variable x to 0, an arithmetic theory could propagate to the
SAT Solver that the formula x < 1 must also hold, instead of waiting for the
SAT Solver to guess the truth value of z < 1 and then inform the SAT Solver
that the conjunction : x = 0 A -z < 1 is incoherent.

This exchange of information between the SAT Solver and the theories results
in the construction of a model throughout the proof search (which explains the
name Model Constructing SAT).

The main addition of McSat is that when the solver makes a decision, instead
of being restricted to making boolean assignment of formulas, the solver now can
decide to assign a value to a term belonging to one of the literals. In order to do
so0, the solver first chooses a term that has not yet been assigned, and then asks
the theory for a possible assignment. Like in usual SMT Solvers, a McSat solver
only exchange information with one theory, but, as we will see, combination
of theories into one becomes easier in this framework, because assignments are
actually a very good way to exchange information.

Using the assignments on terms, the theory can then very easily do efficient
propagation of formulas implied by the current assignments: it is enough to
evaluate formulas using the current partial assignment. The information flow
then looks like fig 3.

4.2 Decisions and propagations

In McSat, semantic propagations are a bit different from the propagations used
in traditional SMT Solvers. In the case of McSat (or at least the version pre-
sented here), semantic propagations strictly correspond to the evaluation of
formulas in the current assignment. Moreover, in order to be able to correctly
handle these semantic propagations during backtrack, they are assigned a level:
each decision is given a level (using the same process as in a Sat solvers: a
decision level is the number of decision previous to it, plus one), and a formula
is propagated at the maximum level of the decisions used to evaluate it.

We can thus extend the notations introduced in Section 2.2: t +,, v is a
semantic decision which assign ¢ to a concrete value v, a ~», T is a semantic
propagation at level n.

SAT Core Theory

Decision | Assignment

| Boolean propagation t :I Theory propagation |

Figure 3: Simplified McSat Solver architecture

For instance, if the current trail is {z 1 0,2 +y + 2 = 0 o T,y 3 0},
then x + y = 0 can be propagated at level 3, but z = 0 can not be propagated,
because z is not assigned yet, even if there is only one remaining valid value for
z. The problem with assignments as propagations is that it is not clear what to
do with them during the Analyze phase of the solver, see later.

4.3 First order terms & Models

A model traditionally is a triplet which comprises a domain, a signature and
an interpretation function. Since most problems, do not define new interpreted
functions or constants*, and built-in theories such as arithmetic usually have
canonic domain and signature, we will consider in the following that the do-
main D, signature, and intepretation of theory-defined symbols are given and
constant. For instance, there exists more than one first order model of Peano
arithmetic (ref nécessaire); in our case we want to choose one of them, and try
and extand it to satisfy the input problem, but we do not want to try and switch
model during the proof search.
In the following, we use the following notations:

e V is an infinite set of variables;

e (C is the possibly infinite set of constants defined by the input problem’s
theories®;

e S is the finite set of constants defined by the input problem’s type defini-
tions;

4Indeed, thses typically only come from built-in theories such as arithmetic, bit-vectors,
etc. ..
5For instance, the theory of arithmetic defines the usual operators +, —, x,/ as well as

1
0,-5,3,-2.3,...

max_level([]) =

max_level(t :: a >,

level(a,t :aws, T =t

T)=

max_level(t :: a ~¢ T) = max_level(t)
t')
’)

level(a,t::a~¢ T :t') = max_level(t)

max_lit(a, C,1)
is_uip(C,t)
uip_level(C,t) =1

Vb e C,(b+#a) — level(b,t) <n
Iar, T)€et,ae C Amax_lit(a,C,t)

Figure 4:

e T is the (infinite) set of first-order terms over V, C and S (for instance
a?f(0>7x+y7"');

e [is the (infinite) set of first order quantified formulas over the terms in
T.

An interpretation Z is a mapping from VU CUS to D. What we are in-
terested in, is finding an interpretation of a problem, and more specifically an
interpretation of the symbols in S not defined by the theory, i.e. non-interpreted
functions. An interpretation Z can easily be extended to a function from ground
terms and formulas to model value by recursively applying it:

Z(f(er,...,en)) =Ir(Z(e1),...,Z(en))

TODO: What do we do with quantified variables ? What kind of model do
we want for these 7

Partial Interpretation The goal of McSat is to construct a first-order model
of the input formulas. To do so, it has to build what we will call partial in-
terpretations: intuitively, a partial interpretation is a partial function from the
constants symbols to the model values. It is, however, not so simple: during
proof search, the McSat algorithm maintains a partial mapping from expressions
to model values (and not from constant symbols to model values). The intention
of this mapping is to represent a set of constraints on the partial interpretation
that the algorithm is building. For instance, given a function symbol f of type
(int — int) and an integer constant a, one such constraint that we would like to
be able to express in our mapping is the following: f(a) — 0, regardless of the
values that f takes on other argument, and also regardless of the value mapped
to a. To that end we introduce the notion of abstract partial interpretation.

Hary, T) €t,a € C Amax_lit(a, C,t) Al = max_level(C,t)

An abstract partial interpretation ¢ is a mapping from ground expressions
to model values. To each abstract partial interpretation correspond a set of
complete models that realize it. More precisely, any mapping o can be completed
in various ways, leading to a set of potential interpretations:

Complete(o) = {Z |Vt — v € 0,Z(t) = v}

Coherence An abstract partial interpretation o is said to be coherent iff there
exists at least one model that completes it, i.e. Complete(d) #). One example
of incoherent abstract partial interpretation is the following mapping:

a—0
b—0
fla) =0
f(b) =1

o =

Compatibility In order to do semantic propagations, we want to have some
kind of notion of evaluation for abstract partial interpretations, and we thus
define the partial interpretation function in the following way:

Vt € TUF.Yv € D. (VZ € Complete(o).Z(t) =v) = o(t) =v

The partial interpretation function is the intersection of the interpretation
functions of all the completions of o, i.e. it is the interpretation where all com-
pletions agree. We can now say that a mapping ¢ is compatible with a trail ¢
iff o is coherent, and Va € t.—(o(a) = L), or in other words, for every literal a
true in the trail, there exists at least one model that completes ¢ and where a
is satisfied.

Completeness We need one last property on abstract partial interpretations,
which is to specify the relation between the terms in a mapping, and the terms
it can evaluate, according to its partial interpretation function defined above.
Indeed, at the end of proof search, we want all terms (and sub-terms) of the
initial problem to be evaluated using the final mapping returned by the algo-
rithm when it finds that the problem is satisfiable: that is what we will call
completeness of a mapping. To that end we will here enumerate some sufficient
conditions on the mapping domain Dom(c) compared to the finite set of terms
(and sub-terms) T that appear in the problem.

A first way, is to have Dom(c) = T, i.e. all terms (and sub-terms) of the
initial problem are present in the mapping. While this is the simplest way to
ensure that the mapping is complete, it might be a bit heavy: for instance, we
might have to assign both x and 2x, which is redundant. The problem in that
case is that we try and assign a term for which we could actually compute the
value from its arguments: indeed, since the multiplication is interpreted, we do
not need to interpret it in our mapping. This leads to another way to have a
complete mapping: if Dom(o) is the set of terms of T' whose head symbol is

10

McSat

Solve(S, t) e _ ¢t
THEORY-DECIDE n = max_level(t) + 1

Solve(S,t i a =y v) Ot::ars, v compatible with ¢

) . Solve(S, t) oi(a)=T
ROPAGATE-THEORY Solve(S,t ::a~», T) t

. " Solve(S, t) THC
ONFLICT-MCSAT Analyze(S, t, O) Vae C,ma€tVoy(a) =1

Analyze(S,t :: a —, v,C)
Analyze(S, ¢, C)

ANALYZE- ASSIGN

Analyze(S,t :: a ~, T,C)
Analyze(S, t,C)

ANALYZE-SEMANTIC

Analyze(S,t:a—, = _,C) is_semantic(C)
Solve(S, t) n = slevel(C)

BACKJUMP-SEMANTIC

Figure 5: McSat specific inference rules

uninterpreted (i.e. not defined by the theory), it is enough to ensure that the
mapping is complete, because the theory will automatically constrain the value
of terms whose head symbol is interpreted.

4.4 Inference rules

In McSat, a trail ¢ contains boolean decision and propagations as well as semantic
decisions (assignments) and propagations. We can thus define o; as the mapping
formed by all assignments in ¢. This lets us define the last rules in Figure 5,
that, together with the other rules, define the McSat algorithm.

5 McSat theories

We can reformulate the constraints that a theory must respect to be a correct
McSat theory in a more intuitive way. First the assignments returned by th
theory must be consistent (i.e there exists a model which satisfies the assignem-
nts), and they must be compatible with the current assertions made by the
sat solvers, which means that the assertions that can be evaluated using the
assignments must not be false. Another way to put it is to say that for every

11

assertions there exists a model extendin the assignemnts, that satisfy the asser-
tion. This requirement is actually a lot weaker than the usual one required of
SMT theories, where the theory must ensure that there exists a model which
satisfies all assertions®

Since the requirements of an McSat theory are weaker, it is most of the
time, easy to take a SMT theory and transform it into a McSat one. The main
difference being the generation of unsatisfiability explanations which must take
into accounts the assignments.

TODO: formalize the notion of theory with an internal state 4 transitions

5.1 Equality

In order to handle genric equality, a very simple theory is enough. Given a set of
assertions containing equalities A— = {e; = f;}; and inequalities A == {a; #
b;};, we do the following:

e when asked for a value to assign to a term z, if there is an equation
z =1y € A_ where y is assigned to v”, then return v and stor & = ¥ as the
reason of the assignment, else returns an arbitrary term &

e when informed of a new assignment x — v:

— if there exists an equation x = y where y is assigned to a v’, such
that v # v/, then return UNSAT with an explanation consisting of
the least fixpoint of the set {x = y} by the function: g({e f}US) =
{reason(e), reason(f),e> f} U S

— if there exists an inequation x # y where y is assigned to v, then
return, the least fixpoint of the set {z # y} y the same function.

While that is sufficient, an easy upgrade is to use an union-find algorithm
to store the reflexive transitive relation of equalities in A—, in order to avoid to
depend on the order of the assignments of terms.

5.2 Uninterpreted functions and predicates

5.3 Arithmetic

References

[1] Devan Jovanovic, Clark Barrett, and Leonardo de Moura. The design and
implementation of the model constructing satisfiability calculus. 2013.

[2] Devan Jovanovic and Leonardo de Moura. A model-constructing satisfiabil-
ity calculus. 2013.

6Basically, the two quantifiers have exchanged places.
“If there are more than one such equations and not all v are equal, the next step will
automatically be triggered

12

