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Résumeé

Cette these aborde deux thématiques cheres a la matiere molle, a savoir, 'apparition
d’interaction médiées par le milieu entre objets de taille nanométrique ou micrométrique,
et la notion de tension de surface dans les systémes hors de 1’équilibre.

La premiere partie de cette these est consacrée a ’étude de systemes dans lesquelles
les interactions entre particules sont médiées par un champ fluctuant. Nous étudions
dans un premier temps un systeme hors d’équilibre et nous montrons que l’existence
d’interactions médiées associées a l'activité des particules qui place le systéme hors de
I’équilibre conduit a la formation de structures complexes. Nos prédictions s’appuient
sur des méthodes de mécanique statistique mais surtout sur des méthodes de dynamique
non-linéaire utilisées pour prédire 'apparition de motifs dans les systémes dans lesquels il
existe une quantité conservée. Le seconde étude de cette partie est dédiée a I'explication
des interactions émergentes observées expérimentalement dans des systemes de particules
colloidales insérées dans des phases lamellaires lyotropiques. En partant de la description
microscopique des interactions entre particules et couches de surfactants, nous calculons
de facon exacte la force effective qui émerge entre particules seulement. Ces résultats
analytiques sont ensuite utilisés pour distinguer et identifier, parmi deux types possibles
d’interactions entre lamelles et particules, lequel est observé dans notre systeme expéri-
mental a 1’étude.

La seconde partie de cette these s’attache a identifier la notion de tension de surface
dans les fluides actifs. Nous parvenons a proposer une définition de la tension de surface
qui relie les forces macroscopiques aux forces microscopiques existant entre particules, ou
entre particules et un mur confinant. Lorsque le fluide actif est en contact avec un mur,
la tension de surface solide-fluide est en général d’'une nature plus complexe que celle que
I’on peut définir pour son analogue d’équilibre. Par ceci, nous entendons que la valeur
mesurée de la tension de surface peut dépendre de la géométrie ou d’autres détails de
I’appareil de mesure utilisé. Nous montrerons également que des appareils de mesure cor-
rectement choisis permettent d’accéder a une tension de surface intrinseque au matériau
(et non plus a la géométrie), caractéristique d’une variable d’état d’équilibre. Les sé-
parations de phases de type liquide-vapeur peuvent étre également rencontrées dans les
assemblées de particules auto-propulsées, lorsque celles-ci sont sujettes a une séparation
de phase induite par la motilité. Nous montrons alors que la tension de surface associée
a I'interface liquide-vapeur possede une définition mécanique cohérente avec avec son in-
terprétation d’équilibre.

Mots clefs : Physique statistique, Matiere molle, Formation de patterns, Matiere active






Abstract

This thesis focuses on two topics ubiquitous in soft matter: first, mediated interactions
between nano-to-micrometer sized objects, second, surface tension in out-of-equilibrium
systems.

The first part of this thesis is devoted to the properties of a system of particles whose
interactions are mediated by a fluctuating background. We start with a nonequilibrium
study and we show that the combination of mediated interactions and of the nonequilib-
rium drive leads to complex structures. Our predictions, beyond statistical mechanical
methods, rest on extending the methods of nonlinear dynamics in pattern forming sys-
tems, to systems with a local conservation law. The second study of this part is dedicated
to an equilibrium experimental system of colloidal particles embedded in lyotropic lamel-
lar phases. Relying on a bottom-up approach, we implement the details of the interaction
between each colloidal particle and each lamella to come up with an exact description
of the effective force emerging between colloids. These analytical results are then used
to discriminate between two types of interaction, both being possibly encountered in
experiments.

The second part of this thesis focuses on the notion of surface tension for interfaces
involving active fluids. We will come up with a definition relating macroscopic forces
to microscopic ones, either between particles or, when applicable, between particles and
a confining medium. When the active fluid is in contact with a solid boundary, the
solid-fluid surface tension is, in general, a more complex quantity than its equilibrium
counterpart. By this we mean that its value may depend on the geometry or other details
of the measuring device. We will also show that a carefully designed probe allows us to
access an equation-of-state-abiding surface tension akin to its equilibrium counterpart.
Liquid-vapor interfaces can also be encountered in assemblies of self-propelled particles
when these undergo a motility-induced phase separation. We show also that the sur-
face tension associated to a liquid-vapor interface possesses a mechanical definition that
echoes the equilibrium one.

Keywords: Statistical Physics, Soft Matter, Pattern Formation, Active Matter
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Introduction

The emergent properties of a system made of a large number of interacting agents are
probably the most gripping phenomena encountered in physics. Whether molecules, col-
loids, bacteria, agents may be of very different nature, size and shape. Statistical Physics
strives to predict the behavior of such complex assemblies at scales directly accessible to
observation. The broad spectrum of approaches commonly used in statistical physics (me-
chanics, classical or quantum, computer simulations, analytical computations...), along
with the numerous fields to which these considerations may apply (thermodynamics,
chemistry, biophysics, hydrodynamics, economics...) have profoundly seduced the stu-
dent I was.

In particular, the fact that the behavior of biological systems could be qualitatively
and quantitatively captured by physics and mathematics was quite appealing to me. In
general, for systems which feature an energy imbalance between injection in and dissi-
pation out of their environment, predicting the steady state is impossible because the
details of the dynamics play a role in the final state (whereas they are, remarkably and
surprisingly, irrelevant to infer the steady state of systems in equilibrium). Yet, there is a
class of nonequilibrium systems for which the out-of-equilibrium drive occurs at the very
scale of the agents composing the system. In such systems, referred to as active matter
systems, where particles are identical, and where the system does not a priori break any
spatial symmetry, physicists are inclined to focus on a finite number of intensive quanti-
ties such as density, (effective) temperature [LMCOS8], pressure [Sol+15], etc., that echo
the equilibrium ones, and that may define the state of the system [Gin+15], or at least
that may help to characterize its steady state.

In addition, for nano-to-micrometer-scale systems that are typically encountered in
soft matter and biology, another layer might drive the system to a second level of com-
plexity. In these systems, particles are indeed most of the time embedded in a medium,
typically a fluid-like material and, in addition to direct physical interactions between
agents that still exist, there is also the possibility for a particle to modify the surrounding
medium, which in return, affects the motion and the stationary position of other parti-
cles. Such indirect interactions are said to be mediated by the medium in such systems.
Several examples come to mind: passive nano-particles embedded in liquid crystals that
develop non-local interactions [Pou+97], but also membrane-deforming active proteins at
the membrane surface [NF17], or quorum-sensing bacteria that interact via sensing and
secreting a chemical agent released in the medium. In these systems, what mediates the
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interaction can, most of the time, be described by a field (density, elasticity, height or
thickness of an interface,...), and the spatial variations of the field impact the particles’
behavior. In equilibrium, with a coarse-grained description to linear order, what controls
the (free) energy cost of a field gradient is (surface) tension. A question that we take up
in this thesis is whether there exists a similar quantity for nonequilibrium systems, and
this question is in line with the previous one: it is part of the search for thermodynamic
quantities which would give hints on the behavior of the system.

These considerations lead us to formulate general questions that guide our research
as physicists. For instance, to what extent is it possible to coarse-grain nonequilibrium
systems? How to get rid of irrelevant degrees of freedom? Is it possible to integrate out a
background field with which particles interact? Can we extract a class of nonequilibrium
systems whose behavior can be described by an effective free energy? Is it possible to
come up with meaningful state variables for out-of-equilibrium systems?

The work of this thesis will be devoted to answering, on specific cases, different aspects
of the questions phrased out above.

This thesis is divided in two parts. The first part is dedicated to the study of two
different systems that have a common basis, namely, many particles embedded in an
elastic medium. In both cases, we use a continuous description for the medium, whereas
we use an individual resolution for particles. Because of the local interaction between
the particles and the medium, particles end up interacting with each other and these
interactions govern their different phases. In Chapter 1 we will start with review on
mediated interactions in statistical physics and in soft matter, with particular emphasis
on recent experimental realizations. In Chapter 2, aiming at describing the collective
effects induced by active state flips of proteins in the biological membrane, we build a
simplified active model retaining the minimal and major physical ingredients. This allows
us to carry out analytical derivation of the boundaries of the phase diagram. We also
explore the different pattern formation regimes, whose multitude stems from the existence
of a conserved field, namely the density of particles. This bottom-up approach is also
useful to track down the dissipation in the system at the particle level. At the end of
the chapter, we open on the various descriptions we can choose for the elastic field, along
with a hydrodynamic description we should adopt to model the lipid bilayer faithfully.
In Chapter 3, we embark on an equilibrium description of colloidal particles embedded
in an aqueous lamellar phase made of lipids or surfactants. By means of Monte Carlo
simulations and X-ray scattering experiments, we are able to distinguish between our
different theoretical models.

In Part II, we focus on an another class of active particles, namely self-propelled ac-
tive particles. With the secret and remote goal of understanding wetting and interface
phenomena in active liquids, we focus on the first step: that of understanding surface
tension. In Chapter 4 we review the different approaches one can follow to apprehend
surface tension, both from its microscopic and from its macroscopic mechanical defini-
tions. In Chapter 5 we introduce a Virial derivation for the surface tension of active
fluids, in the spirit of the analogous derivation for the pressure by Clausius. We then
focus, in Chapter 6, on specific experimental setups that allow for a mechanical mea-
surement of surface tension between an active fluid and a solid, or between an active
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liquid and its vapor. These setups are notably useful to pinpoint the inherent difficulty
of such measurements: steady state currents generically dress up our force measurement,
hence leading to an a priori probe-dependent surface tension. Our approach will combine
Monte Carlo simulations and analytical computations.
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Chapter 1

Mediated interactions in soft matter

1.1 Where are mediated interactions relevant?

Let us start with a macroscopic example. We all have in mind the attraction or the
repulsion that occur between air bubbles or cereal grains at the surface of a liquid, a phe-
nomenon referred to as ‘the Cheerios effect’. To quantitatively predict the phenomenon,
one never returns to a microscopic level description. Instead, an effective theory com-
bining surface tension and buoyancy is invoked, and one adopts a continuous description
for the surface of the fluid. With these ingredients, we are able to interpret the Cheerios
effect in terms of an effective force between floating objects [VMO05]. Though intuitive
and simple, this example already shows that the general approach of the physicist is to
eliminate as many degrees of freedom as possible without losing any information that
would be essential to the prediction of the motion of the observed particles. In addition,
in this example, coarse-graining up to the macroscopic scale has led to a non-fluctuating
description of the fluid. Thermal fluctuations can indeed be neglected in the dynamics
of macroscopic objects, but they always play a role in the definition of the macroscopic
thermodynamic quantities like pressure and surface tension.

The former setup provides a macroscopic example of a soft matter system where inter-
actions are mediated by the medium. When are we prompted to think in term of mediated
interactions? Assuming scale separation between the particles and the constituents of the
medium in which they are embedded, one typically considers mediated interactions when
the particles deform the embedding medium and when there is an energy cost associated
to this deformation. This local deformation can propagate (the coarse-grained medium
displays for instance some elasticity), and the cost needed to embed a second particle
in the medium is different from the cost needed to embed the first particle. Since the
deformation created by an object varies with the distance from this object, the energy
cost depends on the distance between the embedded objects. In addition, embedding an
object in a medium reduces the configuration space in which the medium is allowed to
fluctuate. If several particles are placed in the medium, the fluctuations of the medium
are constrained by the relative position of the particles. The restriction of the configura-



20 Chapter 1. Mediated interactions in soft matter

tion space for the medium (associated to a loss of entropy) can induce, in average, what
are called fluctuation-induced forces between the particles. Again, these forces depend
on the relative position of the particles.

Why are these mediated effective interactions relevant? In general, physicists may
be committed to exhibiting collective behaviors, or collective organization, of particles
at different scales, and this because collective behaviors of particles usually explain the
macroscopic properties of a material. Especially in soft matter, materials may present
interesting properties, endowed with names that reflect the sense of humor of who dis-
covered them: materials can be flabby or granular, neither solids, nor fluids... Such great
level of complexity mainly stems from molecular constituents with a large number of
degrees of freedom, which physicists are yearning to eliminate. To predict phase behav-
iors, effective theories and effective interactions have eventually proven very useful, for
instance in the description of polymers and liquid crystals.

Here, we choose to focus on a certain class of systems where a scale separation occurs
between the particles, typically nano-to-micrometer-sized objects, and the constituents
of the medium in which they are embedded. As formerly stated, the collective behav-
ior of these particles has continuously drawn the interest of physicists because they see
possible ways to achieve functionalization of materials [BG70; LM79; Ham03; Fir401;
Lew-+13; LYS14]. Relying on mediated interactions only, without considering the details
of the embedding medium, facilitates the predictions on the phase behavior. Following a
bottom-up approach, several experimental groups have focused on the mediated interac-
tion between a couple of objects when embedded in media such as giant vesicles [Van+16;
SD16], lamellar phases, smectic and nematic liquid crystals [Pou+97; Eva+13], or non
polar Newtonian fluids [Bri4-13]. The latter reference actually provides an interesting
example where mediated interactions lead to a transition to collective motion of the
particles. Let us review here some of the recent experimental realizations.

Thanks to recent progress in real-time imaging with optical microscopy, it is possi-
ble to measure the full time-realization of the position of particles embedded in a giant
unilamellar vesicle, and thus to access to effective interaction potential between parti-
cles. In Ref. [Van+16], the authors show that the curvature deformation caused by the
micrometer-sized colloids embedded in the vesicle membrane leads to attraction between
particles, see Fig. 1.1. The amplitude of this attraction is ~ 3kgT for particles two
diameters away from each other. This result is also interesting because deformations
go far beyond the linear regime. In the linear regime, the repulsion of the inclusions
when they each impose the same local curvature, whatever the sign of the curvature, is
predicted [FG15].

At smaller scales, it becomes very difficult to optically resolve inclusions in lipid mem-
branes [Sez+17]. Imaging proteins in biological membranes is of paramount importance
to test hypotheses on protein cooperation in cell signalling. Many theoretical and exper-
imental works have indeed focused on the interactions between membrane proteins that
can deform the biological membrane. Depending on their shape and conformation, pro-
teins may impose a local curvature. Recent experiments have succeeded in isolating such
proteins and they have pinpointed the strong coupling that occurs between the protein
conformation and the local shape of the membrane [Fri414]. These measurements are
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Figure 1.1 — Left: Measurement of effective interaction between two colloidal particles
embedded in a giant unilamellar vesicle as a function of their geodesic separation s, for
different values of the membrane tension o. Center: confocal image of colloids (green)
wrapped by the vesicle membrane (magenta). Scale bar is 1 pm. Right: cross-section of
the simulation of two particles (green) adhered to a coarse-grained membrane (magenta) at
separation s = 1.5D,,, with the diameter of the particles D, = 0.98+0.03 pm. Reproduced
from Ref. [Van+16].

performed with electron microscopy (see Fig. 1.2) and they seem particularly difficult
to achieve in vivo. Without the possibility of imaging proteins, computer simulations

Figure 1.2 — Left: Ring formed of proteins called ATP-Binding Cassette transporters
(ABC-transporters) in a lipid membrane. Black bar represents 5nm. Center: Compu-
tation from electron-microscopy showing the structure of the ring. Right: zoom on two
ABC-transporters embedded in the lipid bilayer (blue domain). Reproduced and adapted
from Ref. [Fri+1}].

are intensively used to bring answers to questions on collective effects between proteins
induced by the local deformation the latter enforce on the membrane. In particular,
recent simulations have focused on transmembrane domain of proteins embedded in the
lipid membrane [WBS09a; Kat+16], or on curvature inducing proteins at the membrane
surface [NF17]. For many protein channels, such as the potassium channel KcsA, the
transmembrane domain can change size, for instance due to a pH variation [Sum-+14]
or to the action of a chemical substrate. The conformational change may lead to the
local deformation of surrounding lipids that adopt new conformation and orientation.
When there is a large discrepancy between the transmembrane domain of the protein
and the hydrophobic width of the bilayer, the protein displays what is called a hydropho-
bic mismatch. Such a mismatch is believed to induce effective elastic interactions between
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Figure 1.3 — Top: side view of simulations of proteins embedded in a lipid bilayer.
The hydrophobic tail of the lipids is in pink, the hydrophilic head is in grey. Top left:
a membrane protein with a hydrophobic mismatch. The transmembrane domain of size
¢ = 2.3nm is smaller than the hydrophobic width of the bilayer. Top right: membrane pro-
tein with no hydrophobic mismatch; hydrophobic transmembrane domain is ¢ = 3.1 nm.
Bottom: top view of two proteins getting closer to each other because their hydrophobic
mismatch locally favors a lipid-disordered phase. Grey line: phase separation line between
the lipid-ordered and lipid disordered phase in the membrane. Reproduced and adapted
from Ref. [Kat+16].

proteins [WBS09a], and may also induce a first-order phase transition in the membrane
between a liquid-ordered phase of lipids far from the protein and a liquid-disordered phase
of lipids around the protein, see Fig. 1.3 adapted from [Kat+16].

The former examples have focused on interactions mediated by a quasi two-dimensional
medium, namely the lipid bilayer. Yet, other types of mediated interactions can also be
encountered in bulk fluids. In particular, it might seem easier to achieve self-organization
of particles into complex structures if interactions are anisotropic, thus creating pref-
erential directions of assembling. To do so, anisotropic fluids like liquid crystals are
more likely to mediate anisotropic interactions than isotropic fluids (e.g. water). In
Ref. [LMS09], the authors explicitly show that faceted colloidal polygons display multi-
polar elastic interactions in a nematic liquid crystal. For instance, triangles and pentagons
interact via dipolar interactions, whereas squared-shape colloids display quadrupolar in-
teractions. In an other experiment, using laser-tweezers to guide the clustering process,
spherical colloidal particles have been assembled into 3D crystals in a nematic fluid. The
new colloidal crystal exhibits interesting electrostriction properties [Nyc+13|. Research
on nematic colloids also extends in the direction of externally tunable colloids [Eva+-13].
These can optically be shaped and deformed by a laser while in the liquid crystal bath.
The colloid can be considered as an active particle, in the sense that its conformational
changes, externally driven, break the thermodynamic equilibrium imposed by the bath.

Finally, colloidal condensation can occur with fluctuation-induced forces. These forces
should be mentioned since they exist in many soft matter systems. More specifically
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No display

Figure 1.4 — Different colloidal particles embedded in a nematic liquid crystal. Left:
sequence of two squared colloids, orienting then getting closer, reproduced from [LMS09].
Center: 3D crystal of colloids, fluorescent confocal polarizing microscopy (top), and
schematic view in the nematic (bottom), reproduced from [Nyc+13] . Right: colloidal
rod in a nematic, and deformed rod under the action of a laser scan along the red arrow
(schematic view on the right), reproduced from [Eva+13].

Figure 1.5 — Colloids in a critical water-lutidine mixture. On the left part, colloids
spread on one layer. Indeed, the left part is coated with a hydrophilic substrate, and
Casimir-like interactions are attractive between the colloids and the plate. The right part
is coated with a hydrophobic substrate and colloids are subjected to repulsive critical
Casimir forces. They arrange in 3D clusters. Reproduced and adapted from [Soy+08].

here, what we have in mind are the Casimir-like forces emerging between particles that
constrain a fluctuating medium. These forces have been measured between a colloidal
particle and a plate in a critical binary mixture of water and lutidine [Her+08]. The
constraint on the medium is implemented here through the coating of the material which
induces preferential affinity of the material surface for either water or lutidine. Long-range
fluctuations of the relative density of the fluids are thus constrained by the surfaces.
Similarly to the force, predicted by Casimir [Cas48|, that appears between two metal
plates in vacuum and which is due to the quantum fluctuations of the electromagnetic
field, in this setup also a force develops between the field-constraining objects. Using
this effect, colloidal particles have been assembled on selected areas of a plate with a
chemically-patterned coating, see Fig. 1.5.

As we have just explained, mediated interactions can be found almost everywhere in
soft matter. Identifying their origin is often instrumental to achieve bottom-up design of
new materials, or to achieve accurate manipulation of micrometer-sized objects. It can be
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challenging to analytically extract these interactions, especially when working with out-of-
equilibrium systems for which relying on thermodynamics is impossible. Hydrodynamics
effects can also be difficult to treat since they may lead to long-range correlations. In the
following, we review some of the theoretical approaches that make it possible to predict
the emerging mediated interactions.

1.2 How to deal with the mediated interactions?

1.2.1 Equilibrium systems

Long time and stationary properties of a given physical system are often the easiest one
to access, especially in equilibrium. Among common question marks having to do with
collective behavior: Has a condensation of particles occurred? Is the system fluid? Is it
a solid? In these cases, if the system is in equilibrium, the dynamics has no influence
on the configurations in the final state, no matter how complicated the microscopic dy-
namics might be. Extracting the mediated interaction between the particles amounts to
integrating out the degrees of freedom of the underlying field with which particles locally
interact. At the end of the procedure, one obtains an effective Hamiltonian containing
the particles’ position (or particles density) only. Then, from this effective interaction,
with less degrees of freedom to analyze, it can be easier to construct the phase diagram,
using the standard tools from statistical physics of interacting particles. Let’s add, in
passing, a small comment on Hamiltonians at this point. In soft matter, Hamiltonians
might refer to already coarse-grained free energies. The use of a word instead of the other
(Hamiltonian or free energy) depends on the scale at which we look. For instance, we
usually refer to the Helfrich Hamiltonian to describe the bending and tension energy of
a given profile of the membrane bilayer. The concepts of bending energy and surface
tension are meaningful when the degrees of freedom of the underlying lipids have all been
integrated out. The membrane is then described as a two-dimensional sheet. The bend-
ing modulus and the tension thus always implicitly depend on temperature. The Helfrich
Hamiltonian for the membrane can be considered as a free energy of the lipid phase for
a given curvature profile!.

Let us come back to the integration of the underlying field. It turns out that this
procedure can be carried out analytically when the interaction Hamiltonian is at most
quadratic in the field, provided that the background field is also described by a Gaussian
Hamiltonian. Then, the effective force between particles can be directly obtained from
the minimization of the Hamiltonian. However, an elastic description for the field and
the couplings is not always possible. Especially when the particles locally constrain the
value of the field. For instance, a protein imposes the local curvature of the membrane
bilayer [NF17], a silica colloid tightly binds to adjacent bilayers of surfactants and fixes

LAt smaller scales, we encounter again a similar hierarchy when considering Van der Waals interac-
tions. Indeed, these interactions are mediated by the fluctuations of the electromagnetic field [CP48]
that we have integrated out to get effective interactions. These interactions are then absorbed in the
Hamiltonian of interacting particles. They are even usually considered as pairwise forces, which cannot
be the case of fluctuation-induced forces.
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the interlayer width at that position (see Chapter 3), etc. When considering such strong
couplings, mediated interactions always contain the ‘athermal’ elastic interaction and
the interaction induced by the fluctuations. Sometimes, for some peculiar Hamiltonians,
interactions mediated by the medium can artificially be split between an elastic interac-
tion and a fluctuation-induced interaction, or Casimir-like interaction. Such a separation
can be used to explicitly pinpoint the role of these fluctuation-induced interactions since
they display universal features. For instance, in the case of critical binary mixtures
(Fig. 1.5), the critical Casimir forces are proportional to temperature and depend only
on the geometry of the interacting objects. The force between two plates of area S,
separated by a distance L in a bath of a critical binary mixture at temperature 7" reads
Fo = kgTO(T(L/E5)V)S/L? [KDI1; Gam+09a], with 7 = (T — T.)/T, the reduced tem-
perature, & the non-universal amplitude coming from the correlation length divergence
at critical point (£(7 — 07) = & 777), and v the universal exponent (v = 0.6301(4)
for the three-dimensional Ising universality class) [Gam+09a; PV02]. In general, me-
diated interactions contain both the elastic contribution and the Casimir one, and one
contribution cannot be isolated from the other.

All in all, when looking at systems in equilibrium, the dynamics can be bypassed to
infer the stationary states. By calculating the partition function, we access the interaction
energies, along with stationary correlations. We will follow this approach in Chapter 3
to predict the collective behaviors of colloidal particles embedded in lamellar phases of
water and surfactants in equilibrium.

1.2.2 Out-of-equilibrium systems

For nonequilibrium systems; it is no longer possible to integrate out the degrees of freedom
of the field, starting from the Hamiltonian only. Instead, we need to know how particles
move and how the background field evolves with time to infer mediated interactions.
Even if one would like to access the steady state only, it turns out that nonequilibrium
steady states depend on the details of the dynamics. To predict the steady states, one no
longer has a “miracle recipe” as in equilibrium. Rather, one follows several ad hoc routes
which are impossible to thoroughly list here. Nonetheless, we wish to mention a couple
of standard approaches, often used in a combination to fuel the predictions on a given
model.

If enough computing power is available, simulating the full system — the dynamics of
each particle, along with the dynamics of the medium — is an option. Implementing and
running complex simulations can prove time-greedy though. To simplify the problem,
a good starting point is to describe the ensemble of particles as a density field, and to
extract an evolution equation for the density of particles. Since particles evolve with a
stochastic dynamics, the evolution of the density field is stochastic as well. Sometimes,
inferring the stochastic equation on the density field, without coarse-graining, is possible.
Most of the time, however, some coarse-graining is needed to close the coupled partial
differential equations that describe the system under study. In the end, it may be easier
to carry out predictions from the obtained coupled PDEs. In particular, performing a
linear stability analysis to predict the destabilization of a spatially homogeneous phase
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is often useful.

In the next chapter, we are combining the two approaches described above to infer
the steady states of our system of diffusing active particles interacting with a background
Gaussian field. The PDEs description will prove useful as it allows us to rationalize the
phase diagram (both the phase boundaries and the ordered nature of these phases).



Chapter 2

Field mediated interactions between
active spins

The goal of this chapter is to build a generic model belonging to the same family of
systems as those described in Chapter 1. We shall consider a system of independent
point-like particles performing a Brownian motion while interacting with a Gaussian
fluctuating background. These particles are in addition endowed with a discrete two-
state internal degree of freedom that is subjected to a nonequilibrium source of noise.
We explore the phase diagram of the system with Monte Carlo simulations and a mean-
field analysis. Our model, in that we consider point-like particles interacting with the
field only, is new. The following results are new also. By means of a weakly nonlinear
analysis on the coupled PDEs describing the evolution of our system, we account for
the parameter-dependence of the boundaries of the phase and pattern diagram in the
stationary state. We show in addition that the patterns created by the active noise
survive a small amount of equilibrium. Finally, we compute the entropy production rate
in our active system and we relate it to the different regimes observed in the simulations.
This work was accomplished under the joint supervision of Jean-Baptiste Fournier and
Frédéric van Wijland.

2.1 Introduction

An early approach to the question of why and how active particles, e.g., proteins in cell
membranes, self-organize appeared in Ref. [Che04; CC06; CM10]. In a parallel series of
works on reactive two-state particle systems, spinodal decomposition coupled to active
flips between the states has been shown to lead to a wealth of complex patterns. These
have been described in Ref. [OS87; OB88; PF98; GSJ94; GDM95]. A common feature
to these approaches, necessary for the active flips to produce non trivial patterns, is
the requirement to start from directly interacting objects, either by assuming two-body
interactions or in a coarse-grained form by describing these in terms of an ad hoc Cahn-
Hilliard field.
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Here, we resolve particles at the individual level and we assume their individual motion
to be diffusive. We further endow our particles with a two-state, spin-like, internal degree
of freedom that can be switched by an external drive (this is where activity will come into
play). Second, we choose to describe the embedding medium by a coarse-grained field.
Third, we consider a coupling between the medium and the degrees of freedom —both
spin and position— of the particles, that will lead to mediated interactions. In order to
focus on the latter, we omit from our model any direct interaction (hard-core, attractive
or else) between particles. The dynamics of the medium itself is assumed to be assumed
local and purely relaxational (model A-like). The out-of-equilibrium nature of the system
comes from the active conformation switch of the particle that breaks detailed balance.
Beyond proteins in biomembranes, such externally driven conformational changes can
also be found in synthetic soft-matter systems (see [Fri+14; GS18; Che04] for recent
references).

Even with the simplifying assumptions that have led to our model, our particles do
evolve far from equilibrium, and no free-energy based method is available. Predicting
collective phenomena thus requires to implement a variety of approaches, both numerical
(Monte Carlo) and analytical (mean-field equations, noiseless reaction-diffusion equa-
tions). We present the details of the model and in particular its key parameters in
Section 2.2. Its stationary phase diagram is explored in Section 2.3, by means of Monte
Carlo dynamical simulations, both for our active system and its equilibrium counterpart
(that we properly define). A variety of patterned phases emerge in some regions of our
parameter space. The subsequent mean-field analysis of Section 2.4 allows us to under-
stand the phase boundaries of the phase diagram given by our simulations. This very
good qualitative (and good quantitative) agreement between the solution of the mean-
field partial differential equations (PDE) and dynamical simulations suggests that the
mean-field approach might also prove powerful to describe the physical nature of our
patterned phases. Thus, in Section 2.5, we embark into a linear and a nonlinear analysis
of these equations, which allows us to describe the pattern content of our physical prob-
lem. Particular emphasis is placed on the extra mathematical difficulty of dealing with
a conserved mode in a pattern forming system, a question that was hitherto sidelined in
the existing literature of active inclusions in membranes [RBL0O5b; RBLO05al. As it will
turn out, this is the existence of the conserved mode (expressing that particles are con-
served, regardless of their internal spin state) that gives birth to a rich phenomenology of
patterns. Our analysis of such patterns will draw from recent theoretical work [Rie92a;
MCO00; CMO03; Win06]. In our final two sections, we discuss the role of the nonequilibrium
drive in producing patterned phases. To this end we introduce, in Section 2.6, a model
that interpolates between the active system and its equilibrium counterpart. This allows
us to probe the robustness of patterns with respect to a partial restoration of reversibility
(via tunable coupling to the same thermal bath the particles and the field are in contact
with). To further pinpoint at the microscopic level the processes by which entropy is
created in our active system, we establish a spatial map of entropy production that we
superimpose to the patterns we obtain. The various regimes observed throughout our
simulations can be reasonably rationalized using this versatile entropy production as a
quantitative indicator. This last piece of our analysis can be found in Section 2.7.
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2.2 Model

The first ingredient of our model is a fluctuating field ¢ standing for the surround-
ing medium in which our particles are embedded. Our analysis is confined to a two-
dimensional medium. We choose to use a free field with a Gaussian Hamiltonian endowed
with the following features: the value of the field at rest and without particles is 0, and
the field has a finite correlation length £&. The Hamiltonian of the field then reads

Hoz/d2$

with £ = \/¢/r. We assume the medium is in contact with a thermostat at temperature

500+ 5(VoP|. (2.1)

T. We further assume a separation of scales between the medium constituents and the
particles, so that the medium can be described by a continuous field on a continuous space.
However we retain the individual localized nature of the particle which we describe by
their position 7. The value ¢(7y) of the field at the position 7y of particle k is elastically
constrained to the value ¢, by the internal degree of freedom Sy = *1 of the particle.
This leads us to use the following interaction energy between N particles and the field

N
Fow = 3" 0 (8(rs) — Sin)”, 22
k=1
where B is the strength of the particle-field coupling. Note that, as discussed in the
introduction, particles experience no direct interactions (not even hard-core repulsion).
The Ising spin variable Sy refers to the two internal states the particle is assumed to
be found in. More realistic models will of course be system-dependent. For instance,
to describe conically shaped proteins that locally constrain lipid membrane curvature,
a Helfrich Hamiltonian [Hel73] should be used instead of Eq. (2.1). A description of
the membrane thickness with the Landau-Ginzburg Hamiltonian (2.1) is perhaps bet-
ter adapted to the description of protein-protein interactions experiencing hydrophobic
mismatch interactions and coarse-grained packing interactions, already existing in pure
one-component lipid bilayer [WBS09b]. Once energy functions are specified, we turn to
the question of how to implement dynamical evolution. Regarding the background field
itself, discarding possible conservation laws or hydrodynamic interactions (either or both
could prove relevant in a variety of physical systems), we resort to a purely relaxational
dynamics consistent with the contact to a thermal bath at temperature 7"

Oid(z, 1) = —r&;sz + V2T (1), (2.3)
(C(x, )C(2, 1)) = d(x — a")o(t — 1), (2.4)

where H = Hy + Hyy, I' is a mobility coefficient, T is the temperature in energy units
and ((x,t) a Gaussian white noise with zero average. As far as particles are concerned,
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their (low Reynolds) motion is described by an overdamped Langevin equation:

T uo 4 T, (25)
(€0 (W) = apdued(t — 1), (26)

where p is a mobility coefficient, and the £g(t) are the components of independent Gaus-
sian white noises with zero average. We use the simplifying assumption that &, and (
are independent. So far, at fixed spin variables, our dynamics is consistent with detailed
balance. The nonequilibrium drive will arise from the dynamics the spins are endowed
with. With an external source of energy (such as photons or ATP in biological systems)
in mind, we introduce temperature and state independent flipping rates a and ~:

Sp=—1 % S = +1. (2.7)

For the purpose of benchmarking genuinely nonequilibrium effects, we shall later intro-
duce a detailed-balance preserving spin-flip dynamics. The final simplifying step is to
work in terms of dimensionless parameters. We introduce a characteristic size a which
will be used to spatially discretize the field ¢, we normalize energies by T', times by
a’/(Tc) and we absorb c¢ in a redefinition of the field ¢. We thus carry out the re-
placements x/a — x, Tct/a* — t, cd? )T — ¢*, cd3/T — ¢, a*r/c — r, B/c — B,
Tu/(Tc) = p, a*a/(T'c) — a and a*y/(I'c) — ~. In a nutshell, rescaling time, space,
fields and constants boils down to a = ¢ =T =T = 1. Our model being now defined, we
present the results of our numerical Monte Carlo-based exploration of its properties.

2.3 Numerical simulations

We perform Monte Carlo dynamical simulations on a two dimensional square lattice of
size L, x L, with periodic boundary conditions. The Gaussian field is defined on each site
(i,7) and takes continuous real values ¢;;. The field ¢ evolves according to the explicit
stochastic Euler scheme corresponding to the dimensionless form of Eq. (2.3):

Gig(t + At) =0y (t) — At [rés;(t) — V2oi;(t)

> (2.8)
+ B Y (60, () — Spdo)| + G(0,2A0),
k=1
where the discrete Laplacian is defined as
V2hi; = div1jo1 + Gi1j + Gijur + bij1 — 4oy, (2.9)

rr = (ix, jr) being the position of the particle k on the lattice, and G(0,2At) being a
Gaussian variable of mean 0 and variance 2At.

At each time step, we update the field, and then the particles’ positions. The particles
lie on the lattice sites. Since our model involves non-interacting particles, we a priori allow
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for several particles to occupy the same lattice site. We implement a tower sampling
algorithm [Kra06] to choose what action a particle should do, namely, either jump on a
neighboring site, or stay on the same site or flip its spin. The total energy variation when
the particle k£ moves from site (i, ji) to (i, ;) is given by

B
AHy, s = 5(%,1; — Gipgi) (it g1 + Dirji — 2005k)- (2.10)

The following jump probability P, ;) i) between times ¢ and ¢ + A¢ implements a
discrete version of the Langevin equation (2.5):

(2.11)

AHrk -7y

Py )iy g = pALexp <—

According to our model, the spin flip probability of particle k, P,f , is fixed by the rates «
and v, except when we consider detailed-balance preserving flipping rates for the purpose
of comparison to the out-of-equilibrium case. Each case will be specified below. We take
At small enough to ensure that the probabilities verify

> Pty + B <1, (2.12)

(85:3%)

then the probability P}’ that particle k& neither jumps nor flips is given by P’ = 1 —

2.3.1 Equilibrium benchmark

Though we are mostly interested in the active system, for the purpose of discussion and
comparison we first study the system with spin flips that preserve the detailed balance
condition. This is useful to sort out generic collective phenomena already present in our
equilibrium Hamiltonian from those induced by activity. In this equilibrium benchmark
system, the probability of a spin flip, say from spin up to spin down, between ¢ and ¢+ At
is

2

where 7 is an inverse time-scale and where Hyy (resp. Hy|) refers to the energy of the

PL(1—=1) = nAtexp (—}M) , (2.13)

system when spin k is up (resp. down).

When endowed with this equilibrium reversible dynamics the particles+field system
already displays a nontrivial phase diagram explored with dynamical Monte Carlo sim-
ulations (see Fig. 2.1). When the coupling B with the field is small, a paramagnetic
fluid (the average value of the spins is zero) is observed. When the coupling is increased,
the system displays a paramagnetic-ferromagnetic transition. When the density is small,
further increasing the coupling yields a phase separation between a paramagnetic gas and
a ferromagnetic liquid (Fig.2.1¢). As a consistency check, we verified that the equilibrium
phase diagrams do not depend on dynamical parameters. The specific simulations shown
in Fig. 2.1 were performed with p =5, n = 1.
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Figure 2.1 — Phase diagram (a) and (b), and snapshot (c) of the equilibrium system.
(a) m = 0.01, ¢g = 8. (b) r = 0.01, ¢9 = 2. Solid lines: mean-field predictions for
the paramagnetic—ferromagnetic transition (blue) and for the binodal curve of the phase
separation (gray). The corresponding dashed lines are the frontiers given by the Monte
Carlo simulations. Phase coexistence is achieved for larger values of B out of the range
of the plot. (c) Snapshot of the particle positions (left) and the corresponding underlying
field ¢ (right) in the phase coexistence region for » = 0.01, B = 0.26, ¢y = 8, pp = 0.05.
In the left snapshot, spin up particles are in yellow, spin down particles are in purple.



2.4. Mean-field behavior 33

2.3.2 Active system

In the active system, the flipping probabilities corresponding to Eq. (2.7) are given by

At if Sy = +1
P,g‘z{V ok = (2.14)

If flipping rates are symmetric (o = ) the average magnetization is zero and the system
cannot develop a homogeneous ferromagnetic state. In the asymmetric case, it is conve-
nient to define the total flip rate w = a + v and the mean fraction s = a/w of spin-up
particles in steady state. The flipping rates are thus given by a = sw and v = (1 — s)w.

In the following, we explore the phase diagram of the system for s = 1/2 (Fig. 2.2,
top). When the coupling B to the field is weak, the system remains homogeneous (and
paramagnetic). At low densities, when increasing B, finite size clusters of both magne-
tization appear (see Fig. 2.3a). At higher densities, the phenomenology becomes richer.
Increasing B from the homogeneous phase, macroscopic stripes of both magnetization
(Fig. 2.3b) are observed. As B is further increased, the stripes harbor the continuous
nucleation of small lumps of particles of opposite magnetization (Fig. 2.3¢). These lumps
grow, drift, then merge with adjacent bands of same magnetization. Increasing B again,
the proliferation of lumps leads to a system of micro-clusters (Fig. 2.3d). In the patterned
phase (stripes or clusters), increasing the flipping frequency w yields local mixing of the
spins, which results in the homogeneization of the whole system (Fig. 2.4, top).

If now asymmetric flipping rates (s # 1/2) are considered, the phase diagram features
similar transitions. The homogeneous phase is however ferromagnetic since the mean
number of spins up and spins down is different. In addition, because of the breaking of the
up-down symmetry, hexagonal patterns can be observed (see Fig. 2.5). In the following
section, we work out a mean-field analysis which predicts the transition between different
regimes. The appearance of lumps lies at the transition between two different pattern
forming regimes.

2.4 Mean-field behavior

2.4.1 Equilibrium free energy

We briefly treat the equilibrium case where particles are allowed to flip while respecting
detailed balance (equilibrium benchmark). Our goal is to determine the phase diagram
of the system. We first identify a conserved field, p = p* + p~, and a non conserved field
1 = pt — p~. From the Hamiltonian H, we write down a mean-field free energy density:

JMF = g¢2 + BPTD@ — ¢0)® + Bp;ww + ¢p)*

p+Yy. p+v  p—ty. p—1
In In
2 2 2 2

(2.15)
+

+

)
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Figure 2.2 — Top: Monte Carlo phase diagram in space (pg, B) in the nonequilibrium
steady-state. Bottom: Solved-PDE (Sec. 2.4.3) phase diagram in space (pg, B). Param-
eters: r = 0.01, ¢9 = 8, p =5, s = 1/2 and w = 0.2). Solid burgundy line: pattern
apparition threshold determined from a linear stability analysis (see Eq. (2.40)).
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Figure 2.3 — Snapshots of the system corresponding to points in the phase diagram
(po, B) shown in Fig. 2.2. In the left snapshots, spin up particles are in yellow, spin down
particles are in purple. Parameters: same as in Fig. 2.2. (a) po = 0.1, B = 0.2: micro
clusters. (b) po = 0.4, B = 0.15: stripes. (c¢) po = 0.4, B = 0.20: stripes with lumps. (d)
po = 0.4, B = 0.25: unstructured stripes, micro clusters.
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Figure 2.4 — Top: Monte Carlo phase diagram in space (w, B) in the nonequilibrium
steady-state. Bottom: Solved-PDE (Sec. 2.4.3) phase diagram in space (w, B). Parame-
ters: r = 0.01, s = 1/2, po = 0.3, ¢o = 8, u = 5. Solid burgundy line: pattern apparition
threshold computed from linear stability analysis (see Eq. (2.40) in the section on the
patterns analysis). Weakly nonlinear analysis predicts that rolls are stable to squares
close to B(U. Solid yellow line: pattern apparition threshold computed from linear stabil-
ity analysis (see Eq. (2.40)). Weakly nonlinear analysis predicts that squares are stable to
rolls close to BZ. Rolls become unstable to squares at (w, B) = (1.77,0.1956) for pp = 0.3
(see Sec. 2.5.3).
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Figure 2.5 — Snapshots of (a) Monte Carlo simulation, (b) PDEs solution, in the strongly
asymmetric case (s = 0.9) in the nonequilibrium steady-state. In the top-left snapshot,
spin up particles are in yellow, spin down particles are in purple. The PDEs solution
exhibit stable hexagonal pattern which is partly destroyed in the Monte Carlo simulation.
See Sec. 2.4.3 for details on the mean field solution. Parameters: » = 0.02, B = 0.16,
po=0.1, g =10, p =5, w = 0.25, s = 0.9, and N = 9000 in the Monte Carlo simulation.

where the first three terms are directly inferred from the energy functional H, while the
last two ones reflect the particles’” entropy. Since p is the only conserved quantity, we min-
imize fyr with respect to ¢ and 1. We obtain ¢ = B/ (r+ Bp) and ¢ = ptanh(Bgpgo).
This imposes a self-consistent equation on ¢ = Bggp tanh(Bpg¢)/(r+ Bp) similar to what
is obtained for the magnetization in the Ising model. Searching for homogeneous phases,
yields either ¢ = 0 (paramagnetic phase), or ¢ # 0 (ferromagnetic phase). At low val-
ues of B, the system is uniform and there is a continuous paramagnetic—ferromagnetic
transition at BMY) = (1 + /1 +4r #3/p)/(262). At higher values of B, we numerically
solve the double tangent construction on fyr(p) (already minimized with respect to
and ¢). The system undergoes a phase separation between a low density paramagnetic
phase and a high density ferromagnetic phase. These mean-field predictions correspond
to the continuous lines of Fig. 2.1 while the results of the Monte Carlo simulations are
indicated by the dashed lines. We have checked that the agreement is all the better as
we are working at large ¢.

2.4.2 Mean field dynamics

We consider now the original model of interest where flips are fixed by an external and
independent source of energy. Out of equilibrium, we can no longer rely on the free energy
to construct the phase diagram. Since particles execute Brownian motions, we consider
the noiseless limit of the Dean—Kawasaki equations [Dea96] for the up and down particle
densities. Taking spin exchange into account (and neglecting the corresponding Poisson
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noise as well), we arrive at the deterministic evolution equations for p*:

)
Opt = pV - [ptVv aj;)h?] +ap” — ", (2.16)
)
dp~ =pV - [p~V aj;hfF] —ap +p" (2.17)
o =V?¢—rd— Bp* (¢ — dg) — Bp~ (¢ + ¢o). (2.18)

It will prove convenient to write these equations in terms of the conserved field p, and of
the non-conserved field ¥. We also parametrize the rates a and v by means of w = a+~
and s = «/w (the latter being the steady-state fraction of spin up particles). The
dynamical evolutions of the fields then read

Op = pN*p+puBV - [(pd — o) V9], (2.19)

Opp = uV*) + pB'V - (Y — pgo) V¢ (2.20)
—w+ (25 — 1wp, '

01 = V*¢ —r¢ — Bpo + Booip. (2.21)

These three equations are the starting point of our analysis of the patterns that form in
the steady-state of our system. It is important to note that s = % will play a special
role because then these equations are invariant upon the up-down symmetry (p, 1, ¢) —
(p, =1, —¢). Before we embark in a detailed analytical study of their pattern content,
we begin with a numerical solution of these nonlinear coupled PDEs.

2.4.3 Numerical solution of the coupled partial differential equa-
tions

We shall show that the numerical solution of the nonlinear coupled PDEs (which are
noiseless) is relevant to analyze the stochastic simulations to the extent that phases and
phase boundaries are quite faithfully captured. The coupled PDEs are solved on a lattice
of size L, x L, = 150 x 150. The three fields p*, p~ and ¢ are discretized in time and
space; an explicit Euler scheme to update the three fields is implemented. The explicit
Euler scheme is easy to implement and it converges in the domains of the phase diagram
we are interested in. Our discretized equations take the following form:

pi;(t + At) = plh(t)+At [uv%jj

+ uB V(i (¢i; — d0)Vatiis)
+ uB Vy(p;;(@j — $0)Vy9ij)

— P+ ap{j] (1),

(2.22)
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Figure 2.6 — (a) Snapshot of PDEs solution with w = 0.1 and B = 0.106. (b) Snapshot
of PDEs solution with w = 0.5 and B = 0.18. In (a) we observe extended stripe-like
patterns, while in (b) pattern localization occurs in the direction transverse to the stripes.
Parameters: r = 0.01, po = 0.3, ¢9 =8, p =5, s = 1/2.

i (t + At) = ¢;(1)+AL [VZC%' — T i
— Bo(d; — 60) (2.23)
— Bpyj (i + 00)] (1),
and the discretized equation on p~ is formally identical to the discretized equation on p*

up to the exchange p* < p~, ¢g — —¢o, a <+ 7. The discrete spatial derivatives of any
field g;; are defined as

1

Vagij = §(Qi+1,j — Gi-15), (2.24)
1

vygij = §(Qz‘,j+1 - gi,j—1)7 (225)

and the Laplacian has already been defined in Eq. (2.9). We confirm that different initial
conditions lead to same stationary density profiles. We check the conservation of total
density, namely (L, L,)™! 3= Pij = po, along with the positivity of p* and p~ on each site.

To ease comparison of the PDE solution with the Monte Carlo simulation, the PDE
phase diagram is plotted Fig. 2.4 (bottom) for the same physical parameters as those of
the Monte Carlo results of Fig. 2.4 (top). The results of the PDEs numerical solution
match the results of the Monte Carlo simulations. The solution of the PDEs is also
in good agreement with the predictions obtained from a weakly nonlinear analysis in
Section 2.5.2: we can observe either homogeneous patterns (Fig. 2.6, top), or spatially
localized patterns (Fig. 2.6, bottom), depending on the parameters. The coming section
is devoted to an analysis of these patterns.
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2.5 Pattern analysis

2.5.1 Linear stability analysis

By resorting to a linear stability analysis (LSA), the range of parameters for which a
uniform stationary state is destabilized can be found. While LSA tells us about the first
unstable mode, the question of which are the selected modes that eventually build up
into patterns requires a full analysis of the nonlinear equations. The homogeneous and
stationary solution to Eqs. (2.19), (2.20), (2.21) is characterized by the following values
of the fields

pr = po, (2.26)
Y = (25 — 1) po, (2.27)
on = (25 — 1)3750 %o, (2.28)
with
F=r+Bp=¢7 (2.29)

where € is the renormalized correlation length of the field ¢. We set p1 = p — pn,
Wy =1 — 1y, and ¢ = ¢ — ¢, and we expand Eqgs. (2.19), (2.20), (2.21) to linear order
in the py, ¢1, 1, fields. We expand the fields in Fourier modes ~ ¢**® and we arrive at a
linear system for the Fourier components 9;(p1, 11, ¢1)T = M (p1, 11, ¢1)T with

—pk? 0 —1Bpodo(2s — 1)(Bpo /T — 1)k?
M = (2s — 1w —pk?* —w  —uBpogo[(2s — 1)2Bpy/7 — 1]k |, (2.30)
—B2p0¢0(25 - 1)/7: B¢0 —k2 -7
with & = ||k||. The eigenvalues of M can be shown to be always real which excludes

oscillating patterns close to the threshold. We denote them by o;, with 0y < 09 <
o3. Solving det M (k) = 0 yields the modes for which temporal growth is marginal.
In practice, we have det M = —p?k?Q(k?), where Q(X) = X2 + 1 X + ¢ is degree 2
polynomial, with

B3 R3(27 — Bpo)(1 - 25)°

_Wo . 2 2
q1 = E +r— B p0¢0 + 7:2 s (231)
w -
©= (7 — B?por* (1 — 25)%). (2.32)

Three different physical cases must be distinguished, depending on the roots X_, X of
Q.
e case (i): ¢¢ > 0 and go > 0, or ¢» < ¢?/4, then @ has no real positive roots. One
can show that the three eigenvalues of M are negative: the homogeneous state is
stable.

o case (ii): go < 0 then @ has only one positive root X ;. We set k, = X}F/Q. In this
regime, unstable modes go from k£ = 0 to & = k, and we numerically observe either
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Figure 2.7 — Phase diagram from the linear stability analysis in space (qi1,¢2). Solid
brown line: boundaries between domains given by the LSA. Dashed brown: boundary
from numerical solution of the PDEs. When w = 0 we observe coarsening if ¢g; < 0 and a
stable homogeneous state if g; > 0. Regime (i): the homogeneous state is stable. Regime
(ii)a: we numerically observe coarsening. Regime (ii)b: we numerically observe pattern
formation. In both regimes (ii)a and (ii)b, the LSA predicted unstable modes down to
k — 0, yet the system behavior can be very different from (ii)a to (ii)b. Regime (iii):
finite wavelength patterns at stability threshold.
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Figure 2.8 — Larger eigenvalue o3(k) in regime (ii)a (top left) and regime ii(b) (bottom
left), and the corresponding solution of the PDEs (right). In the left part, the other
eigenvalues are strictly negative and are out of range of the plot. Blue dot: minimal
wavenumber ki, = 27/L sampled in the simulation. The instability is correctly captured
in both cases. While the linear stability analysis gives similar results in both cases, the
solution of PDEs (right column) shows coarsening in one case, and pattern formation in
the other case. Parameters: r = 0.02, B = 0.16, pg = 0.1, ¢9 = 9, u =5, s = 0.9. Top:
w = 10w.. Bottom: w = 0.5w,. Critical value w. defined in eq. (2.38).
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coarsening, or pattern formation depending on the sign of ¢;, as shown in Fig. 2.8.
When w is non zero, we sit in regime (ii) where g < 0 is equivalent to

2 1 Bpo\? r

which surprisingly does not depend upon the dynamical parameters. Physically,
the instability comes from the frustrated field ¢ whose value at rest and without
particles is 0, different from ¢; in the presence of particles with non-symmetric
flipping rates. This regime is referred to as type IIg in [CH93].

o case (iii): ¢2/4 > ¢ > 0; patterns appear at finite wavelength (referred to as type
I, in [CH93]). We have X_, X, > 0 and we set kx = X1/*. The cigenvalue o3 (k)
is positive for k € [k_,ky]. At the onset of instability, the only growing mode is
indexed by k. with, at the threshold, k. = k_ = k..

Note also that when w = 0 we observe an equilibrium coarsening of the two populations
of particles, under the condition ¢; < 0 (which is equivalent to sitting in the equilibrium
ordered phase).

In summary, (ii) and (iii) are the two regimes where the homogeneous state is desta-
bilized. For nonzero flipping rates, the only way to transition from regime (i) to regime
(ii), or from regime (iii) to (ii), is by changing the equilibrium parameters, namely r, B,
po, ¢o and s. By contrast, at fixed equilibrium parameters, we transition from regime
(i) to regime (iii) by changing w or u. In the following, we will focus on the transition
caused by a change in the dynamics, and consequently, on instabilities starting at finite
wavelength.

We begin our analysis with the simpler s = 1/2 symmetric case, where the number of
particles of each spin is identical in the steady-state. This ensures, after Eq. (2.33), that
we are always in the pattern forming regime (iii). The matrix M is now block diagonal
and eigenvalues can be cast in a compact form:

o1 = —pk?, (2.34)
oy = ; (=7 —w— 1+ pk* = VA), (2.35)
oy = ; (=F —w— (1+ Wk +VA), (2.36)
with
A=K (p—1)+w— 7+ 4uk’psB*¢g > 0. (2.37)

For the purpose of discussion we use w = « + 7y as the control parameter. Physically, we
recall that for high flipping rates, the system remains homogeneous since particles locally
efficiently mix, whereas for w = 0, the system undergoes an equilibrium coarsening (see
phase diagram Fig. 2.4). Solving ¢? — 4¢, = 0 yields a critical value of w:

we = u(Boov/po — VF)?, (2.38)
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below which the homogeneous system is no longer stable. To study the system close
to this transition, we write w = w, — €2, where the distance to the threshold £ > 0
becomes our control parameter. Since we sit in regime (iii), destabilization occurs at a
mode k. = ky > 0 when ¢ = 0. Thus, when w < w,, o3(k) > 0 for k € [k_, k], with

B2 — 7~k (0B — 7 — Q) — 470
k. =
+ \/§ )

and where = w/u. The condition of existence of the k1 modes (namely that X, are

(2.39)

real) is given by

Bao/po = \/7’—|—Bpo—|—\/w/,u. (2.40)

At w = w, equality is achieved in Eq. (2.40) and this allows us to infer the critical
wavelength of patterns \. = 27/k. = 27 (fw./u)~ /4. This suggests that close to the
threshold the patterns spatial periodicity A, could be the combination \, = 27 /k, =
2 (7w /p) M4,

This prediction has been checked in simulations of a quasi 1D system of size 1000 x 10
to force pattern formation along one direction, hence allowing us to achieve a good
precision on the wavelength. We note on Fig. 2.9 that the prediction on the pattern
periodicity A, applies beyond the pattern formation threshold. Interestingly enough, A,
can be expressed as the geometric mean of the renormalized correlation length & of the
Gaussian field ¢ in presence of inclusions and of the typical diffusion length ¢4 ~ \/m of
a particle between two flips. The formula A, ~ (££4)"/2, expresses, at the level of a cluster,
the balance between accretion via interactions vs. loss by diffusion. It would certainly be
interesting to see )\, emerge from a handwaving argument. Finally, it is worth noticing
that close to threshold the selected wavelength does not depend upon the field mobility:
it is only the particles’ mobility with respect to the spins’ flipping rate that matters. An
estimate of the diffusion time of a particle over a characteristic correlation length € of the
field is t; &~ £2/(2p). On the other hand, the correlation time ¢, of the field over a scale
€ is given by t4 &~ 1/(27). Hence particles are fast with respect to the field when t4 < tg,
or 1 < p. In Fig. 2.9, one can indeed see that the selected wavelength does not change,
whether particles are slow or fast with respect to the field. We now turn to an analysis
of the patterns that form beyond threshold.

2.5.2 Weakly nonlinear analysis

In order to gain insight into nonlinear effects at s = 1/2, we can derive an amplitude
equation for the fields by extending the approach of Swift and Hohenberg [SH77]. A
direct, though naive, way of proceeding would be to extract the equations for the relevant
fields for which we can find modes with exponential growth. In particular, in the basis
where M is diagonal, there is only one direction (corresponding to eigenvalue o3) along
which we observe the temporal growth of the Fourier modes (see Fig. 2.10). The eigen-
fields are given by the LSA. By denoting D = P~!M P where the transformation matrix
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Figure 2.9 — Normalized wavenumber k;*P(fw/ 1) ~*/* measured from the simulation as
a function of the mobility p of the particles. The wavenumber is given by the pattern
wavelength and reads kP = 27 / AyP. Fixed parameters: r = 0.01, s = 0.5. We vary B,
¢o and pg = N/(L;L,) for each simulation. We vary also u and w such that we always sit in
the pattern forming regime. In particular, we set w as a fraction of w. = p(Bo+/po —V7)2
For w = 0.3w. the relation k;** = (fw/ 1)Y/* is still valid. This equality is no longer true
when w < 0.1w.. As p changes from 107! to 102, we sit in different regimes where the
particles are slow or fast with respect to the field dynamics.
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Figure 2.10 — Eigenvalues of M as a function of k in the homogeneous stable regime
(left), and in the pattern forming regime (iii) (right). o3 is the highest eigenvalue and is
positive in the pattern formation regime. Left: w > w.. Right: w < w.. Parameters:
r=0.01, B=0.3, pg=0.4, ¢po =5, u=1,5s=0.5.
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P writes
1 0 0
P=10 a(k) bk)|, (2.41)
0 1 1
with
(- k4w —VA
a(k) = >Bon , (2.42)
(- pE+i—w+VA
b(k) = 3By , (2.43)

we define (U, V,W)T = P~(py, 41, ¢1)T, with py, 1, and ¢; which are no longer infinites-
imally small perturbations. The new fields (U, V, W) now verify U ~ ¢! V ~ e72' and
W ~ e%3'. However, we have to be careful: the existence of the conserved quantity p
implies that the mode k£ = 0 is marginal for the field U and has to be taken into ac-
count [CF85; Rie92b; MCO00]. Indeed nonlinear terms couple modes k& — 0 with modes
k ~ k. in products O(UW). In the absence of a marginal growth, it would be correct to
focus only on modes with exponential growth around k. and we could expand oy, 0o and
o3 around € = 0 and k£ ~ k.. This would lead to neglect terms of the form V¢WP? and
UIWP (for ¢ > 1 and p > 0) since they exponentially go to 0 when k ~ k.. Interestingly,
one of the erroneous conclusions we would arrive at is that square patterns could never
be stable, in conflict with observations of PDEs’ solution. Now keeping both relevant
fields U and W, the evolution equations read

ﬁtU = 01U+N1<U, W), (244)
8tW = 0'3W +N2(U, W), (245)

where A and N, are nonlinear operators that couple U and W. To lowest order in &, we
find that N; contains terms ~ O(W?) and that A5 contains terms ~ O(UW). Thus, U
will saturate to O(WW?), which renormalizes O(W?) terms in N5. Of course, this previous
analysis holds for the case s = 1/2, where equations are invariant upon the (p, v, ¢) —
(p, =, —¢) symmetry. If s # 1/2, new terms appear in nonlinear equations (2.44) and
(2.45). To lowest order, new terms in A will take the form O((2s — 1)W?), O((2s —
1)2W) and O((2s — 1)?W?3) such that the resulting equations remain consistent with
the symmetry (p, ¥, ¢,s) — (p, =, —gzﬁ,% — 5). These terms are directly responsible for
the stability of hexagonal patterns [CMO03] as confirmed in the numerical simulations (see
Fig. 2.5). We are now going to derive, in a pragmatic fashion, the amplitude equations for
the fields when s = 1/2. Our derivation is inspired by the methods presented in [Win06].

We sit in the regime where patterns appear and we ask what the selected patterns
beyond threshold are? Weakly nonlinear analysis begins by noticing that o3 ~ &2 —a(k? —
k%)?, above the pattern threshold. We work in units of the the slow time scale by defining
T = £2t; similarly in units of the large wavelength scale, we set X = ex which governs
the evolution of the envelope of the fast growing patterns that develop at wavenumber k..
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The stationary homogeneous solution is perturbed when w < w.. We expand the fields
in a power series of the parameter €. In the symmetric case s = 1/2, the stable patterns
are usually rolls and squares [CMO03]. To study their relative stability in two dimensions,
using 1, = ¢, = 0, the expansion for the fields reads

p=po+RX,Y)+ D "pule,y, X,Y), (2.46)
n=1
b= "Pu(r,y,X,Y), (2.47)
n=1
¢ = ZEngbn(l',y,X, Y)v (248)
n=1

with Y = ey, and where R(X,Y’) is the large scale envelope of the marginal mode k = 0
that has to be added in the expansion of the conserved field with the appropriate scaling to
obtain a closure relation (see [CF85; MCO00]). The functions p,,, ¥, and ¢,, are expected to
be products of slow dynamics envelopes and fast growing patterns. These considerations
allow us to write differential operators with the chain rule, namely, 9, — 0, + €0y,
0, — 0y + 0y and 9, — £20r. Next, we expand Eq. (2.19), (2.20), (2.21) to successive
orders to get a closed set of equations. In the canonical case of the Swift-Hohenberg
equation [SH77; CH93|, the closed relation for the lowest order amplitude is obtained to
order O(g?). In our case of existence of a conserved quantity, we have to extract field
evolution up to order O(e?) to get a closed system of equations. We are going to proceed
recursively to extract the evolution of the fields. To order O(e), we find the following
system:

P1
L] =0, (2.49)
¢1
with
v 0 0
L=] 0 uV?—w, —uBpsoV?|, (2.50)
0 Baoyg VZ—7

and where V? = 92 + 82. The solution of this system reads

pi(x,y, X,Y) =0, (2.51)
Uiz, y, X,Y) =P (X, Y)e*" + Q1(X,Y)e™ ¥ + c.c., (2.52)
o1(z,y, X, Y) =My, (2.53)

with A\ = Begy/(F + k?) a simple scalar coefficient, P, and @); are scalar functions of
X and Y, and where c.c. stands for complex conjugate. To order O(g?), the system we
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arrive at is

P2
Lo | =CP(p1,¢1,01) (2.54)
?2

with ¢ = (Cl(Q), C2(2), Céz))T a vector which only depends on first order fields. The com-
ponents of ¢® read

G =Bloo (110261 + D1 0.
+ ¢0(¢15§¢1 + 0y110,¢1)

(2.55)
— p0(0:61)" — pod105¢1
- Po(ay¢1)2 - /10(25135@1)1],
&P =2u[Bpogo(Dux + Byy )1 — (Duox + Dy )], (2.56)
(7 = = 2(0ux + Oy ). (2.57)
The solution of Eq. (2.54) reads:
pa =X P (XY )™ + \QF (X, Y)e v
+ 2)\2P1 (XJ Y)Ql (X7 Y)eikc$+ikcy (258)
+ 20,P (X, Y)QH(X, Y )ekertkey 4 ¢ e
Py =Py(X,Y)e™" + Qa(X,Y)e™ ¥ + c.c., (2.59)
do =M [Po(X,Y) + 2zkcﬁ1]€28XP1(X, Y)]etke
A .
+ A\ [QQ(X, Y) + Zikcf _|_1k-2 ale(X7 Y)]ezkcy (260)

+ c.c.,

with Ay = —BA1(poA1 — ¢0)/2 = MN2(k? 4+ r)/2 and where Q7 is the complex conjugate of
Q1. At O(g?), we find the equation on P; (resp. Q1) by collecting the terms proportional
to e (resp. e*<¥) in the two equations involving 13 and ¢3. A linear combination
of these equations allows us to eliminate the second order amplitudes P, and (), and
to extract the time evolution on P; and Q;. To order O(e®) we arrive at the following
equations:

OrPy =a,1 Py + a0xx P

— a3| PPy — as|Q1|* Py — asRPy
OrQ1 =a1Q1 + ax0yy @y

- GS‘Ql‘le - a4|P1|2Q1 —asRGy

(2.61)

(2.62)
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with
,,7.’
P 2.
= (2.63)
)
. 4u1;:c\/f | (2.64)
Boo(pk? +7)y/po
L Boukedt (Be (k2 + 1) — B0t +2 (k2 + 7)) (265)
’ 2(k2 +7)” (uk2po B2¢3 + (k2 +7)°) |
| 2uk2BP3 (Bpod} (K2 + 1) + (k2 +7)°) (2.66)
(k2 + 7)2 (k2o B263 + (K2 + 7)) |
kBB (K + ) (2.67)

(k2poB293 + (k2 +7)*

To order O(g*), we close the system with the time evolution of R(X,Y"), which is obtained
by extracting coefficients of the mode k£ = 0 in the p; equation. We obtain

OrR =V R + k1 (0% | P + 03|Q1 )

(2.68)
+ ko (05 | P + 0% |Q1]7),
with

_ pBreg(kE— 1)

R1 = (l{;g n f)Q R (269)
pB*g (k2 4 1)

= — . 2.

& CEGE (2:70)

We then perform a change of scale to fall back onto the canonical system found in [CMO03;
MCO00]. Setting

T — T/ay; (2.71)
X = XyJay/ay ; Y = Yy/as/as; (2.72)
P — PhjJaifaz 5 Q1 — Quy/ai/as; (2.73)
R — Ral/a5, (274)
we define

g=" 50, (2.75)

as
b= >0, (2.76)

a2
by = L E )G (2.77)

2@2(13

by = L R2)0s (2.78)
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Figure 2.11 — Pattern phase diagram predicted from the weakly nonlinear analysis. Blue
line: existence of critical frequency w.. Yellow dashed line: g = 1 is the stability boundary
of roll with respect to squares when w < w.. Blue bullet, orange triangle and green square
correspond to different simulations performed with same density py = 0.4 but different B
and w to keep w = 0.9w.. Blue bullet: B = 0.1, we observe stripes in PDE solution and
large clusters in Monte Carlo simulations. Orange triangle: B = 0.26, we observe pattern
localization in PDE solution and small clusters in the simulation. Green square: B = 0.3,
we observe square patterns in PDE solution and small clusters in the simulation. The
blue bullet, the orange triangle and the green square correspond to the patterns shown in
Figs. 2.12a, d and c, respectively. Magenta cross: L, = L, = 175 yields square patterns
similar to Fig. 2.12c, whereas L, = L, = 300 yields localized stripes similar to Fig. 2.12d.

and we finally obtain

orP, =P, + 0xx P,

(2.79)
— |PPP = g|Q1’ Py — RP;
13, =@+ 0
rQ1 =@ 52/1/@1 2 (2.80)
—|Q1°Q1 — 9| PA|"Q1 — RO,
OrR =0, V2R + b,V (|P|* + Q4
T 1 2 V(|PL” + Q1)) (2.81)

+b3(9% — 0% )(|1Pa* — @1,

with V = 9% + 02.

2.5.3 Roll and square stability

As we now deal with amplitude equations (2.79), (2.80) and (2.81) in a canonical form, the
results obtained by [CMO03] are now directly transposable to our analysis. In particular, we
can extract the stability boundaries of roll and square patterns, and predict modulational
instabilities. The outcome of this analysis is that

— when by + b3 > by, rolls are unstable to one-dimensional disturbances (phase or
amplitude modulation along the wave vector of patterns);
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— if by —b3 > by rolls undergo a two-dimensional instability, which is expressed through
a transverse modulation of the rolls; see the dashed line in the phase diagram of
Fig 2.11;

— if g > 1, squares are unstable to rolls. Squares also undergo a modulational insta-
bility when by > (14 ¢)b1/2 (we do not observe such patterns in the PDE solution);
it turns out that in our model the condition for rolls to be unstable to squares is
the same as the two-dimensional instability for rolls, and is thus described by the
same dashed line in Fig 2.11.

Since we have b3 < 0, the condition by — b3 > b; preempts by + b > by; it is shown in
[CMO03] that the former then controls pattern formation. This explains why we observe
the two-dimensional instability for rolls in Fiig 2.12d. In our model, squares and transverse
modulated rolls may exist separately at the same point of parameter space but they are
ultimately selected by the geometry, the size, and the aspect ratio of the system (see
magenta cross, Fig 2.11).

2.6 From equilibrium system to active system

So far, we have focused on the active system where spin flips are driven by a noise inde-
pendent of temperature. Our analysis of the corresponding reaction-diffusion equations
has shown the existence of a wealth of stationary patterns controlled by the values of the
parameters of our model. These patterns simply do not exist in equilibrium when flips
are controlled by temperature. To what extent does restoring a fraction of equilibrium
spin flips within active flips suppresses the patterns we have obtained? Conversely, is
adding a bit of activity over otherwise equilibrium flips sufficient to drive the system to
a patterned stationary state? This section is about exploring the model system obtained
by interpolating between fully active spin flips and equilibrium ones.

To implement both active and temperature controlled flips, the flipping rate w(Sk, ¢)
for spin S is now the sum of the active rate and the equilibrium rate which depends on
the field value at the particle’s location ¢y = ¢(7y):

sw + nePoreo = - if S, = —1

, 2.82
(1 — s)w + ne=Bo% %0 =t if S, = +1 (282)

w(Sk, ) = {

and where 7 is the equilibrium flipping rate if spins did not interact with the Gaussian
field.
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Figure 2.12 — Simulation and solution of the PDEs close to pattern apparition threshold
(a,b,c,d,e), and for w far below w, (f,g). Shared parameters: r = 0.01, pg = 0.4, ¢g = 8,
u=>5. For (a), (b), (c), (d) and (e) we have w = 0.9w,. For (f) and (g) we have w = 0.2w,.
(a) B = 0.1, PDEs solution shows stripes in agreement with Fig. 2.11. (b) B = 0.1, Monte
Carlo (MC) simulation shows structures of same size. (¢) B = 0.3, square pattern (PDE).
(d) B = 0.26, pattern localization (PDE). (e) B = 0.26, micro clusters (MC). (f) B = 0.22,
stripes and localized clusters (PDE). (g) B = 0.22, stripes, clusters and lumps (MC).
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2.6.1 Mean-field analysis

The mean-field equations are the same as Eq. (2.16) — (2.18) with « (resp. 7) changed
into w~ (resp. wt):

19)
Ot =V - [p*vai)“ﬁ Fump —wtpt, (2.83)
O = V- [p—v%f) ME) oy et (2.80)
O =V>¢—rd— Bpt(d— ¢o) — Bp (¢ + ¢o). (2.85)

First, we search for a homogeneous stationary solution of this system. The self-consistent
equation now verified by ¢, is more involved. We find that a homogeneous solution has

Ph = Po, (2.86)

on = G(on) (2.87)
f

Yn = ?%¢h, (2.88)

where the function G(¢y,) is given by

Glén) = Bioo (25 — 1)w + 2nsinh(Boppo)

T w + 21 cosh(Baopgo) %o- (2.89)

We show a graphical solution of G(¢p,) = ¢y, in Fig. 2.13. We remark on Fig. 2.13(a) that
the active fraction s does not play a significant role when equilibrium flips are of the same
order of magnitude as the active flip w. By contrast, when equilibrium flips are negligible,
the homogeneous state is completely controlled by the fraction s (see Fig. 2.13b). The
most interesting regime is for 2n/w ~ 107! where the self-consistent equation has up
to five solutions for some parameters (see Fig. 2.13c), unlike what we can observe in
equilibrium (one or three solutions) or for the full active regime (one solution only).
Finding out about the relative stability of these solutions comes first. This is the purpose
of the following subsection.

2.6.2 Linear stability analysis

We now perform a linear stability analysis of equations (2.83), (2.84) and (2.85), and
study the stability for the different solutions of the self-consistent equation ¢, = G(¢y,).
We restrict ourselves to the case s = 1/2 which contains already rich physics. With this
choice of s, we still have an up down symmetry for the spins, thus ¢, = 0 is always a ho-
mogeneous and stationary solution. We perform LSA around this solution and the results
are shown on Fig. 2.14(a). The results are interesting when compared to the existence
of other solutions of the self-consistent equations (see Fig. 2.14(b)). In particular, the
homogeneous state develops patterns before other solutions for ¢, appear (case w = 0.45
for instance). In addition, we observe in th explicit PDEs’ solutions that the final state
of the system depends on initial conditions: even if the homogeneous state ¢, = 0 is not
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Figure 2.13 — Graphic solution of equation G(¢p,) = ¢. Parameters: r = 0.01, B = 0.3,
po=0.5, ¢9 =5, p =1 and w = 0.1. When n ~ w the solution is close to the equilibrium
one and s does not play important role.

stable, the system may prefer creating patterns instead of having a full ferromagnetic
order, which is also stable. To predict, at low cost, as a way of rationalizing our results,
the final state of the system in this bi-stability regime, we can exhibit a mean field “free
energy' F' whose minima are the possible homogeneous solutions for ¢ (F' is not a free
energy since we are far from equilibrium). For a homogeneous density pg, the evolution
equation of the homogeneous field ¢ simply becomes

OF
d¢’
with F(¢) = (r+Bpo)$*/2— po In (w + 21 cosh(Bgyp)) an even function of ¢ displayed on
Fig. 2.14(c) for different values of w. The global minimum of the function F' corresponds

0p = — (2.90)

indeed to the final state of the magnetization, namely (¢) = 0 or (¢) > 0, as observed in
the PDE solution (see Fig. 2.15).

To sum up this section, we have seen that introducing a small amount of equilibrium
in the dynamics of particle flip does not destroy the patterns. Furthermore, depending
on its initial state, the system is now able to display either patterns, or ferromagnetic
order, in striking contrast with a full active or equilibrium case where only one option is
accessible. We now turn to the analysis of energy dissipation in the active system, and
more precisely, we address the question of origin and of the location of entropy production.
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Figure 2.14 — For different values of w: (a) Most unstable eigenvalues from linear in-
stability analysis around ¢, = 0. (b) Graphical solving of the self-consistent equation
for the 'magnetization’ field ¢. (¢) Mean field free energy F'(¢). Starting from the value
w = 0.5 and decreasing w yields different regimes. We observe successively a homogeneous
state with zero magnetization, a patterned phase, and then a homogeneous ferromagnetic
phase when such a state has the minimum energy. Other parameters: r = 0.01, B = 0.3,
po=0.5, 00 =5, u=1,1n=0.005 and s = 0.5.
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Figure 2.15 — Stationary state for the field ¢ as given by the PDE evolution Egs. (2.83),
(2.84), (2.85) from a non-homogeneous initial state. (a) Initial conditions for the field ¢
with (¢) = 0 in the left part of the box and (¢) = 6 in the right part of the box, and
p = 0.5+ (noise) everywhere. (b) Steady state for ¢ when w = 0.1. (c¢) Steady state for ¢
when w = 0.3. Other parameters: r = 0.01, B = 0.3, pg = 0.5, ¢9 =5, p =1, n = 0.005
and s = 0.5.
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2.7 Entropy production

Entropy production is a quantity that provides a measure of the degree of irreversibility
of the dynamics of the system. In some cases it can simply be connected to the rate of
energy dissipated by the system into the environment. We view entropy production as
an elegant way to pinpoint the physical ingredients that are responsible for driving the
system out of equilibrium. When spatially resolved, in the spirit of [Nar+17], entropy
production may be used to connect the emerging structures, at a local level, with dissi-
pation. While the nonequilibrium drive has been identified as the key ingredient for the
generation of patterns, whether the genuinely nonequilibrium processes operate at the
pattern boundaries, or within the bulk of the system, is a question of interest to us.

To estimate the total entropy production along a trajectory (in the whole phase space),
we have to evaluate the probability of a trajectory relative to the probability of the time
reversed trajectory [1.S99]. This question can be asked for various collections of degrees
of freedom; we choose to focus on a single particle of position X (¢) = X; interacting with
the Gaussian field ¢(x,t) = ¢;(z). We restrict our derivation to a one dimensional system
to keep the notation simple. The system evolves according to Eqs. (2.3) and (2.5) with
T =T =1, and the spin flips from +1 to —1 (resp. from —1 to +1) with finite rate v
(resp. «). The spin S; jumps a finite number of times over an interval [0, x|, and S; is
right continuous. The Hamiltonian H will also be right continuous as a function of time.
On an interval [0,¢p] we define ¢t; = jtp/N and t;41 —t; = tp/N = At. The probability
of a noise history for the particle is given by

Plelér) = exp (—; z Asf) . (2.91)

Using the Ito convention, the probability of a trajectory {X(¢)}o<t<t, is equal to the
probability of observing the corresponding noise history. We thus have

P[X|XI] = P[f|§1] (2-92)
—1 N T OH ?
=exp @ Jz:;) At [th + Math[th, ¢tj (Xt])]] (293)
—1 T OH ?
~ exp o /0 dr [XT + ,ua—XT[XT, ¢T(XT)]] : (2.94)

where the set of points at which H is discontinuous is of measure zero. At initial time
tr = 0, we start with X (0) = X, ¢(x,0) = ¢7(z) and S(0) = S; and the system evolves
to a final time tp. We can define the time reversed noise history through &(7) = &(tp —7)
and the reversed trajectory is then X(7) = X (tp — 7) such that X(0) = X(tr) = X;.
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Entropy creation along a path is given by

o P
PIX(MIX
—— [ <X +M§§I P (X~ no L Vr (2.95)

/ x50 (2.96)

Similarly, since we have a Langevin equation for the field ¢, entropy creation of a field
trajectory reads

P tr 0H
In WL”W@”:_/lh/aaLﬂ. (2.97)
P[¢($,T)|¢](l’)] 0 T 5¢([I§',T>
We also have entropy creation related to the realization of the sequence of flips. If we

start from a down configuration and if we slice time into intervals of duration At then
entropy creation for a flip history writes

P
i 2O e (2.98)
P[S(7)|S51] g
where 0, = —1, 0 or 1, depending on the initial and final values of the spin. We want to

relate these previous results to the energy difference between the final time and the initial
time. Let us start from the energy difference to see what terms appear in the calculation.
We have

N—
Z th+17 ¢tj+17 Stj+1]

H(tr) =
) =0 (2.99)
[tha (rbt]; St]-]
N— o0H
Z tXtJ 8X tha gbtja St]+1]
A t.iXt., t'aSt' 1 .
#8061 i 08, 2100
+ H[Xy,, ¢, S0, — H[Xy,, b1, St
+ o(At)
tr OH
:/mhaﬂxme
¢T 7'7 ¢Ta ST]‘|
/ M (2.101)

+ Z lH[tha ¢t§a Stz]
ta

- H[Xt;a ¢t;7 Sta}] )
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and where the spin flips at time t,, with I and ¢, denoting the times right after and
right before the flip, respectively. We can now compute the entropy produced along any
path:

P[X‘ra¢7(x) S ’XI>¢I( ) ]
P[mev( , S, X1, 61(), Si
/0 dr (X X /8ng5 )> + 5., ln?; (2.102)
= — [H(tp) — H(0)] + 6, In =~
v
(2.103)
+ Z [H[chbtaﬂ St;] - H[Xt;7¢t;= Sta]l
= — [H(tp) — H(0)] + 8, In &
K (2.104)

+ > 2B¢oS,- ¢r,(X1,).

la

Dividing this result by ¢z and taking the limit ¢tz — oo yields the entropy production
rate 0. We immediately see that the first two terms in Eq. (2.104) vanish when divided
by the total duration tr as tr is taken asymptotically large, since they are bounded. In
the stationary state, the entropy production thus simplifies into

= i S,- X 2.105

o tFIE{lOO tF 0<taz<tF ta gbta( ta) ( )
. 2B

= tim ZTON, (5, 01, (X)) (2.106)

with Ny, the number of flips in [0,¢r]. For a variable that flips between two states at
fixed rates a and ~y, this number is given by

a”y
o+

N, =2 tr, (2.107)

F

when tp — o0, and thus scales like O(tr). We can further simplify the expression of
entropy production:

0:4B¢0 at (S Dto (X1)) (2.108)

= 4Bgow s(1 = ){S,: 1, (X.,)). (2.109)

The average (S,;- ¢, (X4,)) is however more complicated to compute because it depends
on the whole dynamics. We are now considering two important limiting cases: (i) the
time between two flips is large with respect to the particle-field dynamics, (ii) the time
between two flips is small in that respect. In (i), we typically witness pattern formation.
In this situation, the field at the particle’s location has the same sign as the spin before
the flip, and thus scales like O(¢oS;-). We can further say that the field can equilibrate
between flips, thus the field ¢ is equal to ¢ . which satisfies the self-consistent equation
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¢s.c. = Boopo tanh(Bpods.c.)/(r+ Bpo) (see Section 2.4.1) in the bulk of each microphase.
In this case the entropy production rate reads:

O, = ABdods.cws(l — s). (2.110)

In regime (ii) of fast flipping, patterns disappear, and S(¢) and ¢;(X;) are almost uncorre-
lated. We can actually predict that the entropy production rate saturates when w — oo.
We notice that for N particles we have, by definition, ¥)(z,t) = S8, Sk(t)6(z — X5 (t))
and thus for one particle ¥(z,t) ~ S;. We thus approximate (S,- ¢, (X,)) with its
continuum description, namely (1;¢;(X;)). From the evolution equations of the fields,
we compute ¢ X 0p) + 1 X 0y (where 0yp is given in Eq. (2.20) and 0;¢ is given in
Eq. (2.21)) to reconstruct a time derivative of a correlation, which is 0 in steady state.
In the particular case of symmetric flips s = 1/2, we have:

0= 0, (o)
_ <¢(w2w + BV - [(6 — pdo) V] — wb) (2.111)

+ (V¢ —ré — Bpg + B¢o¢)>
= —w(yg) + Boo(¥), (2.112)

w—0o0

which yields (¢¢) Pl Bo{1)?) Jw, from which we infer the produced entropy for s = 1/2:

Owsoo ¢ B2, (2.113)

In our numerical experiments, we start to measure entropy production at time 0 and we
define the entropy production rate for a particle k at time ¢ as

_ 2B¢y
ot

ox(t) > SE b (X5, (2.114)

0<tor<t

where the t,; are the time of flips of particle k. In Fig. 2.16 (left), we display the
convergence of the entropy production rate towards its stationary state value for 100
particles (out of N = 6479 in the simulation), starting from a homogeneous state (¢) = 0
and all particles spin up. Measuring entropy production for different values of w, we
recover that entropy production rate saturates when w — oo, and we find the value we
predicted in Eq. (2.110) for w — 0. These results are displayed in Fig. 2.16 (right), where
the graph also shows that the critical flipping rate predicted by the LSA matches the
transition observed in entropy production.

Finally, another way to extract interesting information from our calculation for en-
tropy production is to define a local entropy production rate or density of entropy produc-
tion such that o = [ d®ro(r). Returning to a two-dimensional system, from Eq. (2.105),
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Figure 2.16 — Left: Entropy Production Rate of 100 particles out of N = 6479 particles
in the simulation. Each dot represents the entropy production rate oy (t) of a particle k at
time ¢. Blue line: average entropy production rate ¢ (t) = + SN, ok(t). Parameters: r =
0.01, B=0.18, pp = 0.2, ¢9 = 8, p =5, s = 0.5, w = 0.922. Right: Entropy production
rate as a function of the flipping parameter w. The dashed blue vertical line indicates the
pattern apparition threshold w. predicted by mean field analysis. Parameters: r = 0.01,
B =0.18, pp =0.2, o =8, o =5 and s = 0.5.
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Figure 2.17 — Snapshot of the system. Left: field ¢. Right: entropy production density.
Parameters: r = 0.01, B = 0.106, pg = 0.3, ¢g = 8, u = 5.

we can identify such an entropy production density for a system with N particles:

N
o(r) = lim 12 2Bgo > SE o, (r)o(r — X[ ), (2.115)
k=1 t ok

t—o00
ak<t

where the (t,1)aen are the instants of flip of particle k, and where X} is the position of
particle k at time t. We are now able to establish a map of the entropy production rate
within the stationary state. In our simulations, though we observe diffusion of the whole
pattern, the entropy production rate converges over a much smaller time scale, and we
thus reach a “stationary state” before pattern blurring. In Fig. 2.17, we see that entropy
production is localized within the bulk of the stripes. In other words, dissipation occurs in
the bulk and not specifically at the boundaries of patterns. While the existence of patterns
is a genuine nonequilibrium effect, one cannot interpret the role of the nonequilibrium
drive in terms of a stabilizing effective surface tension at the boundaries of the ordered
domains.
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2.8 Conclusion

Our goal was to explore and predict the emergence of collective phenomena in assem-
blies of active particles whose interactions are mediated by a fluctuating medium. We
have done so on the basis of a minimal model in which particles diffuse while locally
constraining the medium deformation. Activity is introduced by means of an internal
degree of freedom that controls the interaction with the background field. This internal
degree of freedom fluctuates independently of the bath temperature, and thus breaks the
equilibrium nature of the dynamics of the whole system.

By means of Monte Carlo simulations and of a mean-field analysis of the dynami-
cal equations, we have shown that this system displays a wealth of pattern formation
regimes. When patterns appear, their wavelength is given by the geometric mean of
the characteristic correlation length of the underlying elastic field and of the diffusion
length of particles between two active flips. This geometric mean property is reminis-
cent of the typical wavelength emerging in crystal growth and in the Mullins-Sekerka
instability [LM77]. This coincidence might a posteriori be perceived as little surprising
since we have at stake, in both systems, interactions favoring phase separation (a surface
tension ingredient) competing with a diffusive process. In addition, as the number of
particles is conserved in the system, patterns can be localized on a small fraction of the
system size [MC00; CMO3]. Recent theoretical work also suggests that pattern analy-
sis in systems with a conserved quantity can be carried out far from pattern apparition
threshold [HF18]. Applying such analysis to our system would certainly enrich our con-
clusions. We have also examined how to interpolate between equilibrium dynamics and
active dynamics for the flips since we reasonably expect that the flips might also feature
temperature induced fluctuations. This interpolation has shown that the patterns could
survive a moderate amount of equilibrium. Finally, we addressed the question of energy
dissipation and entropy production in the active system. We have seen that entropy pro-
duction vanishes for low flipping rates, as expected, and that it saturates for large flipping
rates. We have also seen that entropy is produced within the bulk of the patterns, as
opposed to other active systems where it is localized at the phase boundaries [Nar+17].

We are now at a stage where our model should be made more realistic. This may
be achieved in a variety of directions. The Hamiltonian for the field can be adapted to
specific systems we want to describe. Typically, we could use a Helfrich Hamiltonian to
work on biological membranes. The field dynamics may also be changed. If the field now
stands for a molecular density, we expect it to evolve according to a conserved dynamics
(Cahn-Hilliard, Allen-Cahn). To focus on active proteins in the biological membrane, we
also believe that hydrodynamic effects should be taken into account. This would certainly
imply dealing with non-local equations, with the drag in a two-dimensional liquid layer
(the lipid leaflet), and with the three-dimensional bulk liquid, which drives the system to
another level of complexity, along with a (probably) richer behavior.
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Chapter 3

Colloidal particles in lamellar phases

In this chapter, we build an equilibrium model that accounts for experimental results
obtained for colloidal particles embedded in a lamellar phase. Our approach takes into
account the finite size of the colloids, the discrete nature of the layers, and includes the
Casimir-like effect of fluctuations. We will focus on two possible interactions between
the colloids and the lamellae: either i) colloids are strongly adherent to the adjacent
membranes, or ii) the colloids and lamellae undergo excluded-volume interactions only.
In a second part, we present the results of Monte Carlo simulations based on the two-
body effective interaction derived for two colloids. Both models i) and ii) predict finite-size
aggregates. Model i) agrees semi-quantitatively, without any adjustable parameters, with
the experimental data measured on silica nanospheres inserted within lyotropic lamellar
phases. The results of this chapter have been published in [Zak+19].

3.1 Introduction

Assembling nanoparticles into structured macroscopic materials is one of the Holy Grail
of material science (see Chapter 1). One of the aims of such realizations is to create versa-
tile materials that present both electronic, optic or magnetic properties of some inorganic
materials, and the mechanical properties (elasticity, viscosity) of organic materials. In
addition, endowing these materials with bio-compatibility opens the route for many med-
ical applications such as accurate imaging, tumor tracking, or drug delivery [Guo+10].
Materials designed from lyotropic liquid crystals seem particularly promising.

Before focusing on the specific system we consider in this chapter, let us recall the
definitions of the two main classes of liquid crystals. We usually distinguish between
thermotropic and lyotropic liquid crystals. Thermotropic liquid crystals are made of one
compound, and the temperature is their only control parameter. At low temperature,
they may display both positional order and orientational order. In latter case, the liquid-
crystal phase is referred to as smectic or discotic. At higher temperature, positional
order is destroyed and orientational order may still exist: this is the nematic phase.
For even higher temperatures, order is destroyed and we recover an isotropic liquid.
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Lyotropic liquid crystals are quite different in their composition. They are obtained by the
dissolution of one or several compounds into a solvent (often water). These compounds
can self-assemble in such entities as micelles or bilayers. The structure of the phase
depends on two control parameters which are the temperature and the concentration of
the solute.

Both categories of liquid crystals are used to design hybrid materials with original
properties. In 1970, Brochard and de Gennes suggested that including magnetic parti-
cles into nematic liquid crystals would strongly enhance the magnetic response of the
material [BG70]. Experimental realizations followed for magnetic inclusions in lyotropic
phases [LM79]. Practically, thermotropic liquid crystals are intensively used in the dis-
play technologies. They also offer a good medium to achieve a bottom-up self-assembly
of nano-particles [Pra+09; LYS14; Woj+09; Cou+12; Lew+13]|. Lyotropic liquid crys-
tals, however, may appear as better candidates to achieve self-assembly of particles at
nanoscale and microscale.There are several reasons. First, their elastic moduli are lower
than those of thermotropics, so that the induced interactions between particles can be
weaker (comparable to kgT'). Second, their physical properties (spacing, flexibility, elec-
trical charge, etc.) are easily tuned via the composition [Liu410; Ven+11]. Third, they
are intrinsically heterogeneous (alternating layers of amphiphilic molecules and water),
and thus offer the possibility of hosting, in the bulk phase, particles with different chemi-
cal affinities [WER99; Fir+01]. Hence, they can be used as a host phase for the particles,
or even used as physical templates for nano-particle synthesis [Sur+05].

We draw our attention to the lyotropic lamellar phases. Here, our objective is to
build a generic model from which we can analytically extract the effective interactions
between the particles embedded into the lamellar phases. We call effective interactions,
the attractive or repulsive interactions between the particles, mediated by the lamellar
phase. With the effective interactions, it will be possible to predict the particles’ phase
behavior (size and formation of particle aggregates, stability of the phases).

This chapter will be structured as follows. In Section 3.2, we define the model for
the lamellar phase only (without the particles). We use a discrete Gaussian model to de-
scribe each lamella individually, a common approach for lyotropic lamellar phases [Ho191;
LSB95; Safd4]. What is new, however, is our way to implement the coupling between
the colloidal particles and the lamellae. In Section 3.3, we consider two specific limit
cases. We will first treat the case of colloids that are strongly adherent to their adja-
cent lamellae. Then, we will focus on colloids that display excluded-volume interactions
only. In both cases the couplings to the lamellae are nonlinear, which implies that the
effective interactions possess both an elastic component (coming from the elasticity of
the medium), and a Casimir-like component (coming from the thermal fluctuations of
our constrained lamellar phase). Our approach takes these two components into account.
Finally, in Section 3.4, we will relate our results to real experiments. We will recall the
different orders of magnitude for the physical parameters at stake. By means of Monte
Carlo simulations we will be able to discriminate between our different models when we
compare the in silico structure factor to the experimental one. I have mostly contributed
to Sections 3.2 and 3.3. In Section 3.5, we present the results of our collaboration with
Doru Constantin and Paolo Galatola. The different contribution are the following: Doru
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Constantin directed the experiments and extracted the structure factor in experimental
systems, and Paolo Galatola implemented the Monte Carlo simulations. This work was
accomplished under the supervision of Jean-Baptiste Fournier.

3.2 Lamellar phase model

Lamellar phases are stacks of membranes in an aqueous environment. Membranes inter-
act through different mechanisms: attractive Van der Waals forces, repulsive hydration
forces at very short separations, screened electrostatic forces, and the so-called Helfrich
long-range repulsion arising from the loss of entropy associated with the confinement of
the transverse membrane fluctuations [Hel78]. The latter may dominate for membranes
with weak bending rigidities, i.e., typically for surfactant systems [RS88]. There may
also be attractive fluctuation-induced interactions originating from counterion correla-
tions [Jho+10].

Lipids form lamellar phases of bilayer membranes where the layer spacing d is usually
comparable to the membrane thickness 0, i.e., a few nm. Conversely, surfactant systems
can form lamellar phases with d > §, and even unbound lamellar phases. An exact
theoretical modelization of the elasticity of lamellar phases, taking into account all the
different interactions, is very difficult to achieve. We therefore limit ourselves to the
discrete Gaussian elastic theory of lamellar phase [Hol91; LSB95; Safo4], as described
below.

3.2.1 Definition

We consider a lamellar phase consisting of N parallel membranes of thickness J (see
Fig. 3.1). We assume that in the homogeneous, equilibrium state, the thickness of the
water layers between the membranes is w and the repeat distance is d, with

d=w+24. (3.1)

In a Cartesian reference frame (r,z2) = (x,y, z), we parametrize the shape of the n-th
membrane by the height function z,(r) = nd+ h,(r), which represents its elevation above
the plane z = 0. In addition to the bending energy of each membrane [Hel73], the elastic
energy H, or Hamiltonian, includes the most general interaction that is quadratic in the
h,’s, couples only adjacent membranes, and complies with global translational invariance.
Note that the effects induced by the membrane tension become relevant at the micrometer
scale, far beyond the typical size of the embedded particles, their interaction range and
the size of the lamellar structure. The tension is then neglected in the Hamiltonian, which
thus reads [Hot91; LSB95; Saf94]:

-1

H=>" /d% [’; (v%nf + ? (hnst — hn)?] . (3.2)

n=0
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Figure 3.1 — Parametrization of the lamellar phase (cross section). The membranes,
of thickness d, are drawn in gray and their midsurfaces are represented as black lines.
The average lamellar spacing and water thickness are d and w, respectively. The layer
displacements are described by the functions h,(r) and the gap between the layers by the
functions H,(r), as indicated. Two colloidal particles are represented as black disks: the
one on the left is a membrane-excluding colloidal particle having only excluded volume
interactions with the membranes, the one on the right is a membrane-binding colloidal
particle that sticks to the membranes.

Here, x is the bending stiffness of the membranes and B is an effective compression
modulus, which accounts for all the interactions between the layers. As such, nothing
in the model prevents the layers to cross each other. We have simply assumed that
the membrane undulations are gentle enough so that the Gaussian approximation of the
curvature energy can be used [Hel73]. The bulk moduli for layer compression and layer
curvature [Gen69] are By = Bd and K = r/d, respectively.

It is convenient to work with dimensionless quantities. We use kg1 to normalize
the energies, ¢ = (k/B)Y* to normalize » and all the lengths parallel to (z,y), and
§ = &\/ksT/k to normalize h, and all the lengths parallel to z, including d, 0, w
and the colloidal particles diameters, hereafter called a and b. From now on, unless
otherwise specified, all quantities will be in dimensionless form (i.e., normalized). Thus,
the Hamiltonian (3.2) becomes

= (e[l 2, L 2
H=Y [dr [2 (F2h)” + 5 (s = ha)?] (3.3)
n=0

It is also convenient to work in Fourier space. We thus define

1 N-1 L oL Ond i
hog=—— / / h,(r)e =" e " d%pr, 3.4
Q.9 L\/NT;) A ( ) ( )
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with L the lateral size of the membrane, and the inverse Fourier transform

ho(1) = . \/_Zh 0.4 e, (3.5)

Assuming periodic boundary conditions in all directions, the wavevectors are quantified
according to Q = 2mm/(Nd) € [—-n/d,n/d[ and q = (¢s,q,) = (2rm/L,2n¢/L), with
m, ¢ € Z. The elastic Hamiltonian takes then the simple form [Saf94]:

H= Z A (@ )hgqh-q—q (3.6)
Qq
with
A(Q,q) = ¢* +2(1 — cos Qd). (3.7)

3.2.2 Fluctuations

The fluctuations of the lamellar phase (in the absence of colloidal particles) are obtained
in a standard way by adding an external field Jg 4 to the partition function [CL95]:

= / (H D[hn]> exp (—7—[ + Z J—Q,—qhQ,Q)
n=0 Q,q

Joad -0
= Zyexp A e P 3.8
: (QZ A@ ) (85)
where Zj is the partition function of the lamellar phase and D[h,] denotes functional

integration over all shapes of membrane n. We shall denote by (...) the statistical
average over the membrane fluctuations. By differentiation, we obtain

P?InZz
(hoqhora) =
Q,9"'Q' ,q ain’ian;Q/’iq/

6Q+Q/6‘I+q 3.9
s AQ9) 39

The gap between layers p and p + 1, at position r, is given by
H,(r) = w+ hpia(r) — hy(r). (3.10)
Its average (H,(r)) is w. Using equs (3.5) and (3.9), we obtain its correlation function

(Ho(0)Hy(r)) —w® = NI 3 0.0 iQpd igr — GS(T)’ (3.11)

™

where the factor 27 was introduced for later convenience. In the thermodynamic limit,

() / d¢/ q(1 — cos ¢) cos(qu)Jo(qr)’ (3.12)

q* +2(1 — cos ¢)
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with, in particular, Go(0) = 1, Go(r) = 2J1(r)K1(r), where J; and K; are Bessel functions
(see [Weia; Weib]), G,(0) = 1/(1 — 4p?) and G,(c0) = 0.

It follows that the standard deviation of the gap, or, equivalently of the layer spac-
ing, is given by o = ,/G(0)/(27) = 1/v/27. In dimensionful form, this gives ¢ =
&\/kpT/(2rk) (in agreement with ref. [Pet+98]). Note that our Gaussian Hamilto-
nian (3.2) takes into account the repulsion of the layers by means of a soft harmonic
repulsive potential. Since the layers cannot physically interpenetrate, the consistency of
the model requires w > o, i.e., in dimensionless form, w > 1/v/27 ~ 0.4. Note that
this condition is true for the parameters given in Table 3.1, for both lipid and surfactant
lamellar phases.

Let us also compute the correlation (Hy(0)h, (7)) between the membrane gaps and the
layer displacements. This correlation will show up in the calculation of the deformation
of the lamellar phase induced by the colloidal particles. We have

1 e il 1

_ iQpd igr — FP(T)
(Ho(0)hy(r)) = W% TG (3.13)

In the thermodynamic limit,

Ly(r) = o / do /  — DePlolgr) (3.14)

q* +2 (1 —cos¢)

with, in particular, I',(0) = 1/(4p — 2) and I',(c0) = 0.

3.3 Interactions between colloidal particles

Sens and Turner studied the interactions between particles in lamellar phases in a series
of papers [PM97; TS97; TS98; ST01]. They described the particles by pointlike couplings
inducing either a local pinching, a local stiffening or a local curvature of the membrane.
Dealing with both thermotropic and lyotropic smectics, they used the three-dimensional
smectic elasticity expressed in terms of a continuous layer displacement function [GP93].
This approach yields the asymptotic interaction between colloidal particles and thus the
collective phase behavior when the colloidal particles are dispersed, but the obtained
interaction has a peculiar divergence for colloidal particles in the same layer.

An approximate cure to this problem was proposed in ref. [TFL13] by the introduction
of a high wavevector cutoff of the order of the inverse smectic spacing, i.e., a microscopic
cutoff length at the scale where the continuous description fails. Another difficulty, in-
herent to linear couplings, is that the fluctuation corrections to the interactions are not
accounted for. For smectics, since colloidal particles are always significantly larger than
the smectic period, modeling a colloidal particle in a more realistic manner requires in-
troducing a multipolar development [T'S98], or an effective coat larger than the particle
where the deformation is small enough to use a multipolar approach [TFL13]. Choos-
ing the multipoles coefficients is difficult, however, in particular because enforcing strict
boundary conditions make them in general dependent on the distances between the col-
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loidal particles. Finally, as shown in ref. [SK03], rotational invariance and the associated
non-linear effects can yield important modifications in the far-field deformations and thus
in the interaction potentials.

In this study, as discussed in Section 3.1, we use a different approach, based on a
discrete model for the layers. This approach applies to lyotropic lamellar phases, but not
to continuous smectic phases. It has the advantage, however, that the colloidal particle-
lamellar coupling is taken into account in an almost exact manner. We therefore expect
to obtain reliable interactions at all separations, including in particular the fluctuation-
induced corrections.

3.3.1 Membrane-binding colloidal particles

a. Partition function

Let us start by considering colloidal particles that adhere strongly to the neighboring
bilayers, as the particle on the right in Fig. 3.1. We consider a first colloidal particle of
diameter a binding to layers n = 0 and n = 1 at the in-plane position (x,y) = 0, and a
second one of diameter b binding to layers n = p and n = p 4+ 1 at the in-plane position
(x,y) = R. We model their binding as a simple constraint on the gaps between their
neighboring membranes on the axis normal to the undeformed membranes:

Hy(0) = a, H,(R)=Db. (3.15)

The partition function of the system (at fixed projected positions, 0 and R, of the colloidal
particles) is therefore given by

Zpind = / CH_: D[hn]> §(Ho(0) — a) §(H,(R) — b) e ™. (3.16)

Note that, in our treatment, in-plane and out-of-plane thermal fluctuations of the particle
positions are decoupled: Brownian motion along the layer normal is accounted for in the
model, implicitly for membrane-binding colloidal particles, since we integrate over the
fluctuations of the layers to which the particles are bound, and explicitly for membrane-
excluding particles (see Section 3.3.2), since we integrate over their heights. We thus
obtain their effective interaction potential at fixed projected in-plane positions. In Sec-
tion 3.5, we shall use this potential to investigate the collective behavior of the particles
using a Monte Carlo Metropolis algorithm.

Note also that for the sake of simplicity we account for electrostatic effects only via
an effective hard-core radius, measured in aqueous solution (see Section 3.5.2.)

Using the Fourier representation both of the delta functions and of the layer displace-
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ments yields

d)\ 7,Qd
0(Ho(0) — a) =/ e VR Laqh@ale oD (3.17)
> d ipu(w— i e'Qd_1)ei@rdeiar
0(Hy(R) —b) = / Sl Ty g laale et (3.18)
The partition function then reads
Ty = dA d,u oM w—a)+ip(w—b)
o 27
X e ZQQ% (@:D)hq,qh-q,—~qa —hq.e5-q, q] (319)
with
emiQd 1 giQd _

So.q =1\ e i@rdeTiaR 4 g (3.20)

1
+1
LvN a LvN

where we have added an external field Jg, that will be used to compute the average
deformation of the lamellar phase in the presence of the colloidal particles. Performing
the Gaussian integrals, and discarding irrelevant constant factors, yields

Zbind = /d)x du e w=a)Fip(w=b) 3 D g ¢ A SQaS-2—a
e (det M)*1/26_%(575’)M71(S,5’)T+% Zqu m‘]@m}—@,—q’ (321)

where M (R, p) is a symmetric 2 X 2 matrix with elements:

2 1 —cosQd  Go(0)

My = May = = )
NEL AQq) | 2
2 1 —cosQd Gp(R)
M d "R) =2 3.22
12 NL2 % A(Q7 q) COS(Qp + q ) 27T Y ( )
where we recognize the correlation function of the layer spacing, and
I S (3.23)
s=w-—a —|— , 3.23
“TAQ.q)
s=w-> —|— Z 0, e 1eZdeeiq'R (3.24)
TAQ,q)

Taking the thermodynamic limit N — oo and L — 0o, we obtain for Jg 4 = 0, apart
from an irrelevant constant factor,

—-1/2

Zina = (1= Gy(R)?)

X exp (— W(a —w) (b Ui)__Gj(Cjé;f)(a )| U w)) . (3.25)
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b. Interaction free energy

The total free energy — In(Zyq) of the system yields, after subtracting the value for
infinitely separated colloidal particles, the interaction free energy of the two colloidal

particles:
Fyna(R, p) = Fi3 (R, p) + Fila(R, p) (3.26)
with
FGs = ;m (1-Gu(R)?), (3.27)
ol 21G,(R) 1 G (R)(a - b)2
Lo 2GR Gplifla = 0| 2

In order to get the dimensionful form of these interactions, one has to multiply these
expressions by kpT and add an extra factor vB/kgT in front of (w — a)(w — b) and
(a —b)%

The interaction F$2, which is thus directly proportional to the temperature, is a
Casimir-like interaction, caused by the restriction of the layer fluctuations induced by
the binding of the colloidal particles. Casimir interaction between extended manifolds
immersed in correlated fluids, including smectic lamellar phase, are well-known (although
usually difficult to measure) [FG78; Gam+09b; APP91; LK92|. A peculiarity, here,
is that the objects (the colloidal particles) are smaller than the fluctuating elements
of the medium (the layers). The interaction Fgl , is an athermal “elastic” interaction,
proportional to vkB (it depends on temperature only through x and B) and it is caused
by the deformation of the layers induced by the colloidal particles. Note that if a = b = w,
in which case the colloidal particles do not deform the layers, the elastic interaction
vanishes while the fluctuation-induced Casimir interaction remains.

c. Average deformation

The average deformation of the lamellar phase is given by

D10 Zoin 1 0 [(s,8)M (s, )7]

(h-Q,~q)bind = -3 : (3.29)
yielding, for a layer n,
a—w—Gy(R)(b—w)
<hn (r)>bind (R)2 F'n«(T)
b—w— ( — w)Gp(R)
| — .
n G Tl = R, (3.30)

where T, is the correlation function (3.13). The deformation (h{!(7)) induced by just
one colloidal particle, of diameter a, is obtained by taking R — oo (infinite separation of
the colloids) in the right-hand side of eqn (3.30). Since G,(R) =0 and I',,_,(|r —R|) =0
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in this limit, this deformation writes
<h$11)(1°)>bmd = (a —w)Ty,(r). (3.31)

Note that the deformation set by two colloidal particles is not simply the superposition
of the deformations set by each individual colloidal particle. This non-linearity comes
from the membrane thickness constraint imposed by the particles.

The deformation above a single colloidal particle, of diameter a, placed between layers
0 and 1, is therefore given by

a—w

(1) R

(3.32)
It is independent of the elastic constants since a, w, and h,, are normalized with respect
to the same length.

For the consistency of our model, we must verify that the gap between the membranes
bound to the colloidal particles and the adjacent ones remain positive despite the defor-
mation. In particular, we must have (H;(0)) > 0. Given eqns (3.32) and (3.10), this
yields the consistency condition 0 < a < 4w for a colloidal particle of diameter a.

3.3.2 Membrane-excluding colloidal particles

a. Partition function and free energy

Let us now consider colloidal particles that interact with the membranes only through
excluded volume forces, as the particle on the left in Fig. 3.1. We take a first colloidal
particle of diameter a placed between layers n = 0 and n = 1 at the in-plane position
(z,y) = 0, and a second one of diameter b placed between layers n = p and n = p + 1
at the in-plane position (z,y) = R. We model their presence in between the layers by
imposing that the gaps between their neighboring membranes, on the axis normal to
the undeformed membranes, cannot be smaller than their diameter. Such a constraint
corresponds to the Hamiltonians of the infinite well type:

0 if z, € [20(0) + 252, 2, (0) — 2£9],

Ha(za) :{ O (3.33)
+00 otherwise,

Hb(Zb) — 1z [ZP( )+ 2 ZP—H( ) 2 ] (334)
400 otherwise,

where z, (resp. 2) is the height of the particle of diameter a (resp. b) and z,(r) =
pd + hy,(7) is the height of the center of the membrane number p at the in-plane position
T

The partition function, at fixed projected positions 0 and R of the colloidal particles,
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0 R

Figure 3.2 — Zoom on two colloids of diameter a and diameter b, interacting via excluded-
volume interaction with the lamellae. We denote by g and ¢’ the gaps at their respective
position.

is then given by

N-1
Zo = / (H D[hn]> dz, dzy e~ T Halza) PHb ()] (3.35)
n=0

Integrating the Boltzmann weights associated to the infinite wells gives simply
/dza e~ Mez) — (Hy(0) — a) © (Ho(0) —a), (3.36)
/ dzye @) = (H,(R) — b)© (H,(R) — b), (3.37)
where Hy(0) —a (resp. H,(R) —b) is the gap available to the first (resp. second) colloidal
particle and the Heaviside functions © are such that the integrals vanish when the gaps are

smaller than the colloidal particles diameters. Using the relation ©(x—a) = faoo dgé(x—yg),
the partition function becomes

Zu= | (ﬁ D[hn]) [ o [ (o) — ) -

x 0(Hy(0) — g)o(Hy(R) — g')e ™™

(3.38)

Using the constraint Hy(0) = g and H,(R) = ¢’, then integrating on the layer displace-
ment, we can map the problem onto that of binding colloidal particles, yielding

Zun(R.p) = / g /b T (g - )5 — b) Zomals ). (3.39)

where Zyina(g, ¢’') is the partition function for binding colloidal particles of diameters g
and ¢', obtained by replacing a and b by g and ¢’ in eq. (3.25). This expression can be
understood if one thinks of integrating first over the gaps g € [a, 0] and ¢’ € [b, 00| of
the layers surrounding the colloidal particles, then over the other degrees of freedom at
fixed gaps: the integration of the membrane degrees of freedom at fixed gaps gives the
partition function (3.25) for membrane-binding colloidal particles, while the integration
over the particle positions gives the entropic contributions ¢ — a and ¢’ — b, see Fig. 3.2.
The interaction free energy for two membrane-excluding colloidal particles is therefore
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given by
Zex (R, p)
Zex(+00,p)’

which can be easily calculated numerically by a double integration. Note that it is no

Fx(R,p) = —In (3.40)

longer possible here to extract separately an elastic contribution and a Casimir one.

b. Average deformation of the layers

The average deformation of the layers can be calculated by adding to the partition func-
tion (3.35) an external field J as in eqns (3.19)-(3.20). From the relation (h_g _q)ex =

(1/ZeX)aZeX/aJQ,q‘J=Ov using aZbind(ga9,)/8JQ,11’J=0 = <h7Q,fq>bind X Zbind(gag/) yields
in direct space:

(i) ox = Zl / g /b g (9= a)(g' — B){on(r)uind Zoma (9, ). (3.41)

with (h,(7))pina the average layer deformation at projected position 7 for two colloidal
particles of diameters g and ¢’. This expression can also be understood intuitively, since
(hn (7)) bind Zbing is the integral over all the microstates corresponding to fixed gaps g and
g" of h,(r) multiplied by exp(—H).

Since for one isolated binding colloidal particle of radius ¢ we have (Hy)ping = g and
Zyina = Cexp[—m(g — w)?] (see eqn (3.25)), the average gap (Hél)> set by one hard-core
colloidal particle of radius a is given by

Ju (g —a)ge ™o
Jo (g —a)emlom?

—wt (2w 2 ) (3.42)
erfe[y/m(a — w)]

(HV)ex =

In what follows, we compare the mediated interactions experienced by binding colloids
to the one experienced by membrane-excluding colloids.

3.4 Typical results

3.4.1 Orders of magnitude

For the sake of completeness, we give here the parameters we can typically encounter
in experiments. We consider two types of lyotropic lamellar phases: lamellar phases
made of phospholipids such as the water/eggPC mixture, and lamellar phases made of
surfactants and co-surfactants such as the Ci9Ej5/hexanol/water mixture. Typical values
for the elastic parameters of lipid and surfactant lamellar phases are given below and
listed in Table 3.1.
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Table 3.1 — Elastic parameters for typical lipid and surfactant membranes. The last
three lengths are in dimensionless units.

& (J) B (Jm™) & § (nm) o w d
Egg PC 0.5x 1071 1 x 10 2.7:0.75 5.3 1.3 6.6
C12E;5 3.7x10721 6 x 108 50; 52 0.06 0.74 0.79

a. Lipid membranes

For lamellar phases made of egg PC lipids [Pet+98], the elastic constants are xk =~
0.5 x 1071 J, and typically B ~ 1x 10 Jm™ for w ~ 1nm, with § ~ 4nm and
d ~ 5nm. We thus obtain ¢ = (k/B)Y* ~ 2.7nm and & = VkpT/(Br)"* ~ 0.75 nm,
yielding in dimensionless form 6 ~ 5.3, w ~ 1.3 and d ~ 6.6. The structural formula of
an egg PC lipid is given in Fig. 3.3.

Oleoyl o Glycérol  Choline

\/\/\/\/\/\/\/\”/ \)\/ O\/\N -
. J o /\
Palmitoyl Phosphate

Figure 3.3 — Structural formula of an egg phosphatidylcholine (referred to as eggPC).
Reproduced from Wikipedia.

b. Surfactant membranes

For the Cj3E;5/hexanol/water system [FNR96; Bén+-08], with typically a hexanol/CjE5
ratio of 0.35 and a membrane fraction of ¢ ~ 7%, the elastic constants are x ~ 3.7 x 10721 J
and B~ 6 x 108 Jm™, with 6 ~2.9nm, d = §/¢ ~ 41.5nm and w ~ 38.5nm. We thus
obtain ¢ = (k/B)Y* ~ 50nm, & = VkgT/(Br)"* ~ 52nm, yielding in dimensionless
form 6 ~ 0.055, w ~ 0.74 and d ~ 0.79. The structural formula of Ci3E5 is given in
Fig. 3.4.

O

Figure 3.4 — Structural formula of Ci5E5, a non ionic surfactant. The addition of hex-
anol in the water/Ci2E5 mixture lowers the temperature at which the lamellar phase is

stable [JS92]. Experiments can then be carried out at room temperature. Reproduced
from Wikipedia.

3.4.2 Results for binding colloids

Lamellar phases made with lipids have a layer spacing typically comparable, or even
smaller, than the membrane thickness ~ 4 nm, so that only nano-particles will fit in such
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systems (see Section 3.4.1a.). We show in Fig. 3.5a the typical interaction energy between
membrane-binding colloidal particles and the corresponding lamellar phase deformation.
The values correspond to egg PC lipids with colloidal particles of diameters ~ 3nm. Two
colloidal particles in the same layer attract each other, while colloidal particles in different
layers repel one another. The maximum interaction energies are large with respect to
kgT. When the colloidal particles are separated by more than one empty layer, their
interaction becomes negligible compared to kgT. For such lipid lamellar phases the
Casimir component of the interaction energy is always negligible with respect to the
elastic one. In Fig. 3.5b we show the corresponding interaction energy and associated
lamellar phase deformation for two colloidal particles of different radii.

Lamellar phases made of surfactants can have a much larger layer spacing (see Sec-
tion 3.4.1a.), so that larger colloidal particles can fit in. They also have weaker elastic
constants, so that fluctuation effects are larger. We show in Figs. 3.5c and 3.5d the typ-
ical interaction energy and the corresponding lamellar phase deformation. The values
correspond to CqioE5 surfactants with colloidal particles of diameter ~ 27nm, as in the
experiments of ref.[Bén+08]. The behaviors are similar to those of lipid membranes, but
the energies are much smaller. Also the contribution of the Casimir interaction is no
longer negligible.

3.4.3 Results for excluded-volume colloids

We now compare in Fig. 3.6a the interaction energies between membrane-excluding and
membrane-binding colloidal particles for a lamellar phase made of egg PC lipids with
colloidal particles of diameters ~ 3nm, which is indeed the size of gold nanoparticles in
Ref. [Pan+11]. In Fig. 3.6b, we compare the interaction energies between membrane-
excluding and membrane-binding colloidal particles for a lamellar phase made of CioE5
surfactants with colloidal particles of diameter ~ 27 nm, as in Fig. 3.5 [Bén+08|.

In the case of egg PC lipids, the colloidal particles diameters are much larger than
the average water thickness. Then, the configurations that are effectively sampled by
the fluctuations do not significantly depend on whether the colloidal particles stick to
the layers or not, as spreading the layers further away from the colloidal particles costs
a large energy. This is why the interaction energies for the membrane-excluding and
membrane-binding cases are very close (see Fig. 3.6a).

Conversely, in the case of Ci3E5 surfactants, the colloidal particles diameters are taken
slightly smaller than the average water thickness. Therefore, the interaction between
membrane-excluding colloidal particles is of pure fluctuating (Casimir) origin: in the
absence of fluctuations, the colloidal particles sit anywhere in between the layers without
producing any deformation, whatever their distance. As seen in Fig. 3.6b, in this case,
the interaction energies for the membrane-excluding and membrane-binding cases differ
significantly, even though the overall behavior is similar. Due to the various contributions
to the free energies (elastic deformations, entropy associated to the fluctuations of the
membranes and of the colloidal particles) and their differences in the two situations, it is
difficult to get a qualititative understanding of the interaction energy variations between
the two situations.
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Figure 3.5 — (a) Interaction energy as a function of separation for membrane-binding
colloidal particles with diameters a = b = 3w in a lamellar phase with the parameters
of egg PC (see Section 3.4.1a.). The Casimir contribution to the interaction is less than
1% of the elastic part. colloidal particles in the same layer (p = 0), one layer apart
(p = 1), two layers apart (p = 2). Insets: Deformations of the lamellar phase, calculated
numerically using eqn (3.30), for R/d = 1.5 and N = 100. The membranes, in gray,
and the colloidal particles, in black, are represented at scale. (b) Same as (a) for colloidal
particles of diameter a = 4w and b = 2w. (c) Interaction energy as a function of separation
for binding colloidal particles of diameter a = b = 0.7w placed in the same layer in a
lamellar phase with the parameters of C12E5 (see Section 3.4.1b.). Black solid line (tot):
total interaction Fiing. Blue dashed line (el): elastic interaction Fﬁilnd. Red long-dashed
line (Cas): Casimir interaction FG2. Inset: numerically calculated deformation of the
lamellar phase, using eqn (3.30), for R/d = 1.5 and N = 100. The membranes and the
colloidal particles are represented at scale. (d) Same but for colloidal particles one layer

apart (p = 1).

3.5 Comparison with experiments

We now focus on only one experimental system made of silica colloidal particles of di-
ameter 27 nm embedded in a lamellar phase made of the Ci5E5/hexanol/water mixture
described in Section 3.4. The structure factor related to the particles position in this sys-
tem has been obtained with small-angle X-ray scattering [Conl0]. In order to have clues
on the interaction type between the silica beads and the lamellae (membrane-binding
or membrane-excluding), we perform Monte Carlo simulations (for each type of interac-
tions) of an ensemble of particles subjected to the pairwise forces we have analytically
computed in Section 3.3. The structure factors obtained in the different simulations are
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Figure 3.6 — Comparaison between the interaction energies of membrane-excluding col-
loidal particles (gray lines) and of membrane-binding colloidal particles (black lines, same
curves as in Fig. 3.5a, ¢ and d). Solid lines: colloidal particles in the same layer (p = 0),
long-dashed lines: colloidal particles one layer appart (p = 1), dashed-line: colloidal par-
ticles two layers apart (p = 2). (a) Lamellar phase with the parameters of egg PC and
colloidal particles of diameter a = b = 3w. (b) Lamellar phase with the parameters of
C12E5 and colloidal particles of diameter a = b = 0.7w.

then compared to the experimental ones. This offers a way to discriminate between the
different possible colloid-lamellae interactions.

Let’s write here a small comment on the Monte Carlo simulations (details are given
in Appendix A.1). Specifically, we do not simulate the different layers, since we can use
the effective potential that we have calculated in the previous sections, which effectively
integrates out the layers. We model the colloidal particle-lamellar phase system as a
finite number M of stacks of identical colloidal particles orthogonal to z-direction, each
one consisting of the same finite number N of particles confined in a disk of radius R,.
We suppose that the particles cannot change stack. Once we have fixed the layer in
which a particle diffuses, we know its two-body interaction with its neighbors from any
layers. Of course, forces are not really pairwise additive, neither in the model, nor in
the experimental system. However, we expect that such a simulation yields trustworthy
results for low density systems. The pairwise interaction we have computed takes into
account fluctuation-induced forces transmitted by the layers, and the vertical diffusion of
the beads.

We will first show some typical snapshots of the simulations, and then we compare
the different structure factors to the real system ones.

3.5.1 Monte Carlo simulations for colloids in the C3E5 lamellar
phase

In Fig. 3.7 we show a typical Monte Carlo snapshot of three successive layers (blue, red,
and green disks) for membrane-excluding colloidal particles of diameter 27 nm embedded
in a lamellar phase with the parameters of Ci5E5. The corresponding interaction energy
is displayed in Figs. 3.5c and 3.5d. To the membrane-mediated energy we added a hard
core interaction with an effective core diameter of 34 nm, as measured in aqueous solu-
tion (see Ref. [Bén+08; Zak+19]). Clearly, the colloidal particles in each layer tend to



3.5.  Comparison with experiments 79

aggregate in large clusters. Moreover, the clusters are statistically anticorrelated between
adjacent layers: clusters in a layer tends to face voids in the adjacent layers. This orga-
nization originates from the attractive interaction between two colloidal particles sitting
in the same layer (as shown in Fig. 3.5¢), and from the repulsive interaction between two
colloidal particles sitting one layer apart (see Fig. 3.5d).

-50 0 x 50  -50 0 x 50

Figure 3.7 — Typical snapshot of a Monte Carlo simulation of the membrane-excluding
colloidal particles (after equilibration) for the parameters of Cj2E5 (see Section 3.4.1b.)
for particles of diameter a = 27 nm and hard-core distance between colloidal particles of
34nm . The colloidal particles volume fraction is 2%. The colloidal particles in one layer
are represented as red disks. The blue and green disks represent the colloidal particles in
the two adjacent layers. The diameter of the disks corresponds to the hard-core distance.
(a) Colloidal particles in one layer. (b) Red disks: same layer of colloidal particles as in
(a); blue and green disks: colloidal particles in the two layers flanking the red one for the
same snapshot. Simulation by Paolo Galatola.

For the same parameters, the membrane-binding colloidal particles tend also to form
clusters, although they are less marked (see Fig. 3.8). To assess them, we show in the
inset of Fig. 3.8 the intra-layer structure factor Sy (solid line). For comparison, we also
show (dashed line) the structure factor Sy obtained by switching off the interactions, thus
taking into account only the hard core contribution. The first maximum at ¢ ~ 0.16 nm ™!
corresponds to the hard core diameter of the particles. At smaller wavevectors, the
structure factor in the presence of interaction shows a rise for ¢ — 0 that is absent in the
case of hard core only interaction (dashed line). This can be understood as due to the
form factor of random fluctuating clusters with a distribution of sizes down to 27 /quin,
where @i is the position of the minimum of S close to ¢ = 0. Indeed, ¢, gives an
upper estimate of the size of the peak at ¢ = 0. In the snapshot we have indicated this
size by sourrounding small clusters in two adjacent layers. This is compatible with the
fact that, as shown in Fig. 3.6b, the interaction energy for membrane-binding colloidal
particles has the same overall shape, but lower amplitude in comparison with membrane-
excluding ones. Increasing the particle concentration results in a similar cluster structure
in a denser system.
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Figure 3.8 — Typical snapshot of a Monte Carlo simulation of membrane-binding colloidal
particles (after equilibration) for the same parameters as in Fig. 3.7. The black disks are
in one layer and the red disks in an adjacent one. The diameter of the disks corresponds
to the hard core of the colloidal particles. Inset: structure factor Sp(g) inside the layers,
in the presence of the interparticle interaction (continuous line) and only with hard core
repulsion (dashed line), as a function of the in-plane wavevector ¢q. The position guin of
the minimum of Sy(q) gives an upper estimate of the width of the peak at ¢ = 0. The
corresponding length 27 /g, is materialized by the bar and by the diameter of the black
and red circles surrounding small clusters in two adjacent layers. Simulation by Paolo
Galatola.

3.5.2 Experimental structure factors

We compare the experimental structure factors with the structure factors from the Monte
Carlo simulations, described in Appendix A.1. Clearly, using only the hard-core repulsion
(dashed blue line in Fig. 3.9a), with an effective core diameter of 34 nm describing the
interaction measured in aqueous solution (the core is larger than the nominal diameter
of 27nm due to the electrostatic repulsion), does not fully account for the experimental
data on the left of the structure peak (¢ < 0.15nm™!).

Including the membrane-binding colloidal particles interaction, with the elastic pa-
rameters of CioE5 surfactants given in Table 3.1, captures quantitatively, with no ad-
justable parameters, the experimental points down to the small-angle increase (¢ >
0.05nm™1). The latter (¢ < 0.05nm™') is described qualitatively by the complete model,
while it is obviously absent in a hard-core system.

The membrane-excluding model (Fig. 3.9b) also predicts a small-angle increase, which
is however less important than for the binding case; overall, this model agrees less well
with the experimental data.
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Figure 3.9 — Experimental in-plane structure factors, as a function of the in-plane
wavevector g, for silica nanoparticles confined in lamellar phases at three different volume
concentrations ¢ [Bén+08] (black circles: ¢ = 1%; blue squares: ¢ = 2%; red trian-
gles: ¢ = 3%) and Monte Carlo predictions according to our model with the parameters
given in Section 3.4.1b. (solid lines). (a) Membrane-binding inclusions. (b) Membrane-
excluding inclusions. Black solid lines: ¢ = 1%; blue solid lines: ¢ = 2%; red solid
lines: ¢ = 3%. The dashed blue line in (a) is the simulated structure factor for ¢ = 2%
with only hard-core interactions. To obtain convergence, in the membrane-binding [resp.
membrane-excluding] case, the Monte Carlo averages are performed on 107 (resp. 2 x 108)
steps after equilibration on a system consisting of 7 layers having a reduced radius R = 20
(resp. R = 80). The membrane-excluding Monte Carlo simulations at 3% volume fraction
(figure b) are likely affected by small finite volume effects at the smallest wavevectors.

3.6 Conclusion

We treated in detail the interaction between hard spherical inclusions in lyotropic smec-
tics, for the limiting cases of membrane-excluding and membrane-binding particles. In
both cases, the interaction range is of the order of the elastic correlation length & =
(k/B)'* defined in Section 3.2. For membrane-binding colloidal particles of identical di-
ameters a, the interaction energy (3.26) at contact, in the limit a < &, is approximatively
given, in dimensionful form, by

kT
Fimi = 2= log C + % (C —4)VBr (a —w)* (3.43)

C= <Z>2 [m (i) + i +1log2 — 7] , (3.44)

with v ~ 0.577 the Euler constant. This contact energy varies from tens of kg1 for lipid

where

systems to fractions of kgT in dilute phases of single-chain surfactants. For systems of the
latter type we compared our predictions to experimental structure factors measured at
three concentrations of silica nanoparticles in a dilute lamellar phase of nonionic surfac-
tant, CioE5 here. We obtain semi-quantitative agreement with no adjustable parameters.
Remarkably, this agreement is significantly better for the membrane-binding model than
for the membrane-excluding one, consistent with strong adsorption of these surfactants
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onto silica surfaces, a result widely accepted in the literature (see, e.g., the discussion in
ref. [SAK10].)

The presence of the particles acts as a constraint on the membrane fluctuations, lead-
ing to an attractive “Casimir-like” component of the interaction, which is quite significant
(or even dominant) for the surfactant systems discussed above.

For strongly attractive systems, the liquid phase of particles is unstable with respect
to aggregation. The peculiar nature of the interaction (overall attractive in the plane
of the layers and repulsive across the layers) leads to the formation of flat, compact
and size-limited aggregates. As a concrete application, one could consider dispersing the
particles into a host lamellar phase with suitably chosen parameters so that they remain
well separated, and then inducing their aggregation by an external stimulus (temperature
change, controlled drying, etc) that increases the interparticle attraction. The resulting
assemblies could then be stabilized by various strategies [BET16].
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Surface tension of active fluids
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An elusive quantity?

Self-propelled active particles are driven out of equilibrium through a dissipative exchange
of energy and momentum with their environment, which endows them with anoma-
lous thermomechanical properties [Di 4+10; Sok+10; Mal+14; TYB14; YMM14; Sol+15;
Bia+15; SGJ17; Jun+17; Viz+17; Fil4+17]. Among these, the pressure exerted by ac-
tive systems on their confining vessels has recently attracted a lot of interest [Mal+414;
TYB14; YMM14; Sol+15; Nik+16; SJ16; MMM16; SGJ17; Jun+17; Fil4+17; Gin+18;
Fal+16]. In particular, the existence of an equation of state for the pressure extends to
a large subclass of these non-equilibrium and momentum-non-conserving systems. Their
defining feature is a self-propulsion force whose dynamics is independent of the positional
and angular degrees of freedom [Fil+17]. In particular, this includes the standard models
of active particles, such as run-and-tumble particles (RTPs), active Brownian particles
(ABPs) or active Ornstein-Uhlenbeck particles (AOUPs), in the presence of momentum-
conserving pairwise forces. For such systems, macroscopic mechanical properties echo the
equilibrium case with, for instance, equality of pressures in coexisting phases. There is
thus hope of a generalized thermodynamics for these systems, which are the focus of this
second part.

While pressure controls the bulk thermodynamic state of a system in equilibrium, its
interfacial properties rely on surface tension, perhaps the most elusive thermomechanical
quantity [Ber71; Mar+11] whose microscopic origin has been the topic of long-standing
debates [RW82]. Surface tension indeed controls a wealth of phenomena, from the demix-
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Figure 3.10 — Snapshot of a fluid of active Brownian particles confined by walls (red
lines) along the vertical direction. Periodic boundary conditions are taken along the
z-direction. Particles interact through pairwise forces. We observe a Motility-Induced
Phase Separation (MIPS) between the vapor (light region) and the liquid (dark region).
In steady state, the liquid completely wets the walls. Image courtesy of Yongfeng Zhao.
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ing of binary mixtures to the wetting of surfaces, or the instability of thin films and jets.
Given the atypical properties of active matter at interfaces, from the accumulation on
hard walls to the wetting of soft gels by swarming bacteria, the fate of surface tension
for active systems has naturally attracted attention [Bia+15; Pal+17]. In particular,
the surface tension of active particles at a liquid-gas interface in a system undergoing
Motility-Induced Phase Separation (MIPS) has been measured using an expression de-
rived by Kirkwood and Buff for Hamiltonian systems [KB49; Buf55]. Despite stable
interfaces [Bia+15; Sol+18; Pat+18], this liquid-gas surface tension has, somewhat sur-
prisingly, been found negative [Bia+15]. Its thermodynamic role has nevertheless been
confirmed: it controls the pressure drop through the boundary of a circular droplet of
radius R through a Laplace pressure given by AP = % [Sol+18]. This combination
of surprising and familiar aspects of interfacial physics provides the incentive to clarify
the microscopic origin of surface tension in these active systems and in particular its
mechanical implications, which have been ignored so far.

Accounting for capillary and wetting phenomena in active matter is a formidable pro-
gram which we attack by elucidating the interfacial properties of active fluids in contact
with a solid boundary. To do so, in the absence of an established thermodynamic route,
we will revert to mechanics. This second Part starts with an introductory chapter on sur-
face tension where we review the different definitions of surface tension and their physical
meaning. By introducing historical devices used to measure surface tension in equilib-
rium (see Chapter 4), we pave the road for a mechanical definition of surface tension for
active fluids. In Chapter 5, regarding surface tension as a macroscopic force whose action
is localized, we suggest a new approach based on the Virial to define and to compute the
surface tension of active fluids. Finally, in Chapter 6, we present our in silico measure-
ments of the surface tension of active fluids inspired by the setups presented in Chapter 4.
We point out geometries in which such measurements are dressed by macroscopic forces
specific to nonequilibrium systems. Chapter 6 will expose both new analytical results
and new numerical results. The work presented in Chapter 6 arises from a collaboration
with Yongfeng Zhao, Milos Knezevic, Adrian Daerr and Yariv Kafri. This work was
accomplished under the joint supervision of Julien Tailleur and Frédéric van Wijland.



Chapter 4

What is surface tension?

We begin this second part with a selected review on surface tension. We first start with
the macroscopic, phenomenological definitions of surface tension: surface tension as a
surface energy and surface tension as a force on a contact line. Then, we say a few words
about its mechanical origin. Finally, focusing on a specific setup inspired by the Langmuir
balance [Lan17], we will relate the free energy definition to a force measurement. As we
show, the mechanical approach we present in this chapter will prove relevant to define
the surface tension of active fluids.

4.1 The macroscopic approach

4.1.1 First contact

In order to increase the contact area between two phases, an operator has to perform
some work. At constant volume V and temperature 7', and at fixed number of particles
N, the work dW we have to provide to the system is 6W = ~vdA, with v the surface
tension and dA the newly created surface. Formally, the surface tension reads

OF

= — , 4'1
Lty N (4.1)

with F the free energy of the system. The definition endows v with the meaning of an
energy per unit area.

Let us take a simple wetting example where thinking in term of energy per surface
unit is relevant. We consider a system in equilibrium made of a liquid and its vapor,
confined by a solid container. At our disposal, we have the solid-liquid, solid-vapor and
liquid-vapor surface tensions, denoted vsr, vsv and vy, respectively. If the condition
Ysv > vsr + Yoy is fulfilled, it means that the (free) energy cost of creating a solid-vapor
interface is larger than the energy needed to create at the same time a liquid-vapor and
a liquid-solid interface. In other words, it is favorable to have a liquid layer between the
solid and the vapor: the liquid will completely wet the solid. Reciprocally, if we have
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Ysr > Ysv + Yoy, the solid ends up being completely dry.

Actually, this energetic approach of surface tension was developed alongside with the
mechanical approach. In 1804, working on capillary phenomena, Thomas Young first
suggested that the pressure drop P4 — Pp across an interface is related to the surface
tension and to the mean curvature of the interface:

PA—PBZV(};%—;Q), (4.2)
Ry and R, being the radii of curvature of the interface along two orthogonal direc-
tions [You05|. Later, Laplace gave mathematical grounds to this theory and thus attached
his name to the formula which is now known as the Laplace-Young formula. Young has
also addressed the theory of wetting on a solid. Typically, a drop of liquid laid on a
solid features a contact angle # with the solid at its wetting edges. In the case of partial
wetting, as opposed to the total wetting seen previously, the formula that relates the
three surface tensions and the wetting angle is the following;:

Ysv — YsL = YLv cos 0, (4.3)

with 8 € [0, 7]. In what follows, we shall put aside the theory of wetting that would lead
us too far. The interested reader is referred to [RW82; Gen85; GBQO04] and references
therein.

4.1.2 Measurement: the Wilhelmy plate experiment

Figure 4.1 — Left: Plate of length L and width a, dipped in a liquid. Right: zoom on
the system S and the forces applied on it.

Several methods are currently used to measure the surface tension. In order to mea-
sure the surface tension between two fluids, one can use the static, geometric approach
suggested by the formula (4.2) and (4.3). For instance, knowing the pressures P, and Pp
in each phase, one can easily measure the radius of curvature of a spherical drop of fluid
A inside fluid B and thus deduce the surface tension v45. The pendant drop method
relies on this measurement [Sta65].
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We also remind the reader that the surface tension, being a surface energy, can also
be interpreted as a linear force. This approach is widely used in practice to measure a
liquid-vapor surface tension. We are going to focus on the Wilhelmy plate apparatus,
which first, provides good insight into surface tension and, second, will prove relevant
to define the surface tension of the liquid-vapor interface of active liquids undergoing a
phase separation, see Section 6.3.1.

The Wilhelmy plate is made of an inert, easy to clean, material (typically platinum)
of length L and of small width a. The coating of the material plays no role as long as
the liquid has a strong affinity with the material. The plate is dipped in the liquid and
we pull it until breaking the double interface we have created, see Fig. 4.1. Indeed, the
theory of the measurement is not trivial [Mar+11], but it becomes easier to analyze when
the plate detaches from the liquid. The plate is attached to a Newton-metre. It measures
the force F' = Fe, needed to balance all the other forces that applies to a chosen system
S, see Fig. 4.1. The system S is made of the plate (mass m,,) and of the small liquid drop
(unknown mass for the moment) that will remain on the plate once the plate has detached
from the bulk of the liquid. The liquid exerts, on the system S, a tension T' = —Te,
that contains both the surface tension force and a hydrostatic pressure force. The system
weight is W = —We,, W > 0. Denoting by € the liquid width where it is the smallest,
the total perimeter is (2L + 2¢) and the contact surface between S and the liquid below
is eL. Since the contact surface tends to 0 when the width of liquid that constitutes the
double meniscus goes to 0, the only contribution to T" will be the surface tension force.
With a quasi-static protocol, the sum of the forces on S is null. The sum writes

F—-W-T=0 (4.4)
which reads before breaking at time ¢ = ¢,
F(ty) =W+ 2y (L +e), (4.5)

where vz is the (liquid-vapor) surface tension that we want to determine. When the
meniscus breaks, we have to wait for the system to relax to its new equilibrium position.
Then the force is given by

F(tH)=Ww. (4.6)
Hence with this new equilibrium we can have access to vy, which now reads

F(ty) = F(t)
2L '

v = (4.7)
In Fig. 4.2a), we show a typical measurement of the force as a function of the height of
the plate. For a fluid with surfactants, the air-liquid interface is stabilized and a vertical
liquid film of constant width may appear between the plate and the liquid bulk. The force
needed to pull the plate on a distance dz levels off (see Fig. 4.2b), and this force also
yields the surface tension of the liquid-gas interface. With this apparatus we do not need
to know the surface tension of the liquid-solid interface, nor the one of the solid-vapor
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Figure 4.2 — Idealized measurements with the Wilhelmy plate experiment with and
without surfactants. (a) Without surfactants. The interface breaks at time t,. Pulling
the plate then occurs at constant force (compensates exactly the weight). This is the most
common case. (b) Pulling from a solution with surfactants (a soap film forms between
the plate and the liquid). The force plateaus and the double meniscus does not break.

To summarize, we have presented here the macroscopic definitions of the surface
tension. We now turn to its microscopic origin.

4.2 The microscopic origin

The starting point of the “Statistical Mechanical Theory of Surface Tension” by Kirkwood
and Buff [KB49] is based on a mesoscopic observation: the system is anisotropic close
to the interface and, as opposed to the isotropic and homogeneous bulk pressure in
each phase, there is an excess average force per unit area (or average stress) close to
the interface, in the direction parallel to the interface. This excess force per unit area
can be easily visualized with molecular dynamics simulations, as presented in [Mar+11],
adapted in Fig. 4.3. The tensor that encodes the (local) momentum flux density in all
the directions is called the stress tensor. We recall that a momentum flux density is
commensurable to a force per unit area, or a pressure. This tensor is commonly used
in the literature, and this is why, for the sake of completeness, we define this tensor
in this introductory chapter. We could however introduce surface tension by means of
mesoscopic forces only and this is what we will do in Chapter 5.

Here we focus on the interface between two fluids. Measuring macroscopic forces in
such a system is hard to perform without some solid probe (like the Wilhelmy plate for
instance), which we do not want to consider in this simple two-fluid system. Introducing
the concept of stress tensor can be useful if we want to consider the local force, or
momentum flux, exchanged between two subsystems separated by a fictitious interface.

For pairwise interacting particles, the stress tensor is the sum of two contributions:
a one-body (isotropic) contribution that comes from the flux of momentum across a
surface!, and a two-body contribution that comes from the pairwise forces between the
particles. To assess the two-body component of the local stress tensor, we compute
locally the force per unit area across a surface whose extension is comparable to the

!The pressure of an ideal gas contains this one-body component only. Indeed, for an ideal gas, no
force exists, neither between particles, nor between two subsystems separated by an imaginary interface.
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intermolecular force range. The complete stress tensor, for a fluid in equilibrium with
pairwise interactions, thus reads:

o =—kgTp(r)Iy+ 0@, (4.8)

with p(r) the average local density, I; the identity matrix, and o(® the stress coming from
the particles interactions. The stress tensor o is actually defined up to a zero divergence
stress tensor whose consideration plays no role for the final value of the surface tension.
These questions on the definition of the stress tensor have been closely examined by
Schofield and Henderson in [SH82].
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Figure 4.3 — Left: Schema of a liquid-vapor interface and links contributing to the stress
tensor parallel to the interface (green), and orthogonal to the interface (red). Right:
components of the two-body stress tensor o(?) close to the interface. (Drawings adapted
from Berry [Ber71] and Marchand et al. [Mar+11]).

Without performing the complete computation of Kirkwood and Buff, we can still
write down a few equations suggested by Berry who explains that “the tangentially ori-
ented test surfaces used to define the normal pressure see the depletion of molecules in
the liquid surface before the normally oriented test surfaces used to define the tangential
pressure” [Ber71]. In dimension d = 2, let us take a square test box, of side a, with a the
typical range of the particles’ attractive interaction. As argued by Berry, the liquid-vapor
surface tension originates from the anisotropy of the attractive forces. The repulsive forces
being short range, their contribution is approximately isotropic [Ber71; Mar+11]. The
one-body contribution is also isotropic. These isotropic contributions eventually simpli-
fies in the computation of surface tension [KB49], and this is why we can focus on the
attractive force contribution only. The virtual square box crosses the interface such that
the length in the liquid is (a—s) and the length in the vapor is s. To evaluate the different
components of the stress tensor, we can count the bonds, joining two particles, that cross
the test segment that splits the square in half. The bonds crossing the vertical segment
contribute to o,,, while the bonds crossing the horizontal segment contribute to o,,. In
an idealized vision of the interface, we consider the constant densities p; and py of the
liquid and the vapor on each side of the interface located at z = 0. The number of bonds
contributing to o, is simply

Ny = <;(pvs + pr(a — s))2 , (4.9)
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while the number of bonds contributing to o, is

2
< +a(% — , if s <a/2
NJ_ — pL 22 (a’SpV a(g S)pL) l S a/ (410)
pv (a(a —8)pL +a(s — %)pv) , ifs>a/2
The number of bonds in excess along x is thus
) (pr — pv)?s? if s <a/2
NH _ NJ_ — (2) (pL )OV) 7, I's % a/ (411)

(%)2 (pr — pv)*(a—s)%, if s >a/2.

This number is always positive, and maximal when s = a/2 and null for s = 0 and
s = a. This dependence on s is in agreement with the o,, — 0,, displayed in Fig. 4.3d.
In the bulk of each phase we recover Ny — N, = 0, which corresponds to the isotropy of
the stress tensor. This computation shows that there is an excess of attractive bonds in
the direction parallel to the interface, thus creating a positive stress, or tension, in that
direction.

At this point we would like to add an important comment. With the computation
above, we see that we can correctly interpret the stress anisotropy in term of local excess
tension if the system displays bulk phases in which the stress tensor is homogeneous
and isotropic. In other words, the stress tensor always contains the pressure and surface
tension contributions, but these two concepts appear only in the macroscopic limit when
we choose to call ‘pressure’ the contribution of the stress tensor in the bulk, and ‘surface
tension’ the stress in excess with respect to this bulk pressure close to the interface.
Translated into a mathematical formula, the surface tension is defined as the macroscopic
stress in excess with respect to the isotropic pressure P that already apply to a stripe of
length ¢ (¢ > a), perpendicular to the interface:

0/2
YLv = / Opedz + PL. (4.12)
—t/2

Using the fact that the normal component of the stress tensor o,, is constant everywhere
(and equal to —P) because we have mechanical equilibrium in the z-direction, we get
from Eq. (4.12) the celebrated Kirkwood-Buff formula [KB49]:

2/2
YLV = / (Umx - Uzz)dza (413)
—£/2

or more explicitly, after some calculations,

1 — )= (20 — )2 d
YLV = % //dradrbp@) (I‘a, I'b) (37(1 IL’b) (Za Zb) v (414)

)
Tab drab

with S the interface area, ro, = |r,—13|, U(r) the potential of interaction, and p® (r,, r,) =
> >0 2i(0(rg — 13)6(ry — 1j)) the pair correlation function. Eq. (4.14) is widely used in
practice to compute the surface tension in molecular dynamics simulations [RL76].



4.3. Free energy and closed container 93

We have thus presented the microscopical mechanical definition of surface tension.
At the beginning of this chapter, we have also seen that the surface tension could be
defined as the variation of the free energy with respect to a change of the interface
area, while keeping all other parameters constant. These two definitions lead to the
same results (see [OK60; NB77]), which confirms, in equilibrium, the interchangeability
of the two approaches. The thermodynamic approach is treated by Ono and Kondo
in [OK60]. Similar computations with the free energy were later performed by Navascués
and Berry [NB77] to compute the surface tension between a fluid and a solid.

In the next section, we will focus on a purposely simple system, namely an ideal gas
in a container. We will be able to explicitly link the transverse force on a wall to a surface
tension derived from the free energy. This system will play the role of a model system on
our route to the definition of the surface tension for active fluids.

4.3 Free energy and closed container

”L* “““ =90

0 h L

Figure 4.4 — Ideal gas at temperature 7" in a box. The bottom wall is made of a repulsive
potential V(z,y). In the domain y < 0, for z < h we have U = ’\2—1y2 (blue part), while
for x = h we have V = %yz (red part). The potential interpolates smoothly between the
two domains.

We consider N non interacting particles in a two-dimensional box. The system is
depicted on Fig. 4.4. The position of particle ¢ is denoted by r; = (x;,y;), with 0 < x; < L
and y; < L. If y; < 0, the particles are submitted to an external potential V(x,y). This
potential plays the role of a confining wall. We consider that the wall is made of two
materials with a transition region that extends over a width w close to abscissa x = h,
with w < L. More explicitly, for y < 0, the shape of the potential is the following:

%y{ if z €1[0,h — w,
Vir,y) =14 2y*,  ifzelh+w, L] (4.15)
g(x,y), ifxelh—wh+w),
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with g(x,y) any smooth and monotonous interpolation of V(x,y) between the points
h —w and h+w. For y > 0, V(x,y) = 0. The system is in equilibrium at temperature
T. The local density of particles is thus given by the Boltzmann-Gibbs distribution

p(x,y) = Ce PVY) (4.16)

with 8 = (kgT)~! and C a constant fixed by the normalization [[ dxdyp(z,y) = N. This

normalization yields C' = N( fOL dx ffoo dye=PV@¥))=1 or more precisely:
- N/L? N/

L+ L2 [P [0 dye PV 1 4 MarhOlwh)”

(4.17)

with ¢; = Mw/kBT/Aj the penetration length of the particles in wall j (with j = 1,2).
In the thermodynamic limit, N — oo and L — oo with N/L?* = py fixed, and we have
C = po. We can define the mechanical pressure exerted by the particles on the bottom
wall as the force per unit length (we are in d = 2) exerted by the particles on the wall,
projected along the normal e,. We can find this pedagogical computation for the pressure
in [Sok10]. Since particles experience the force —VV, the force they exert on the wall is
VV. Since the potential vanishes for y > 0, we integrate the force density along y from
—o00 to any point g, in the bulk. The pressure is thus defined as

1 L Yo
P=< / dz / dyCe PVED 9,V (1, ) (4.18)
0 —00
1 L
= kBTC/ dre BV (@ y=yp) (4.19)
L 0
= kgTC, (4.20)

which reduces to P = kgT'py in the thermodynamic limit, as expected. We also remark
that the details of the potential V' play no role in the thermodynamic pressure.

Similarly, we can compute the total transverse force f applied by the particles on the
bottom wall. The force has to be projected along x this time. We determine f| from

L Yb
Ji :/ dx/ dyCe PV, V (2, y) (4.21)
0 —00
C /yb d [efﬁv(x:Lry) 675V(I:0,y)]
= — 4.22
B -3 422
= kgTC(f — 0y), (4.23)

which reduces to fj = kgTpo(¢1 — {2) in the thermodynamic limit. How can we interpret
this force? We remark that its sign depends on the relative repulsion of the particles on
each part of the wall. For instance, if the left part (j = 1) is more repulsive than the right
part (7 = 2), we have ¢; < ¢, and the force is negative. If the bottom wall could move,
it would go to the left. In other words, the length of the most repulsive part shrinks.
Furthermore, the force does not depend upon the interpolation g(z,y) between the two
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parts of the wall. What we have here is actually an example of a Langmuir balance,
used to measure a difference of surface tensions for fluids [Lan17]. The parallel force f|
is the difference of the solid-gas surface tensions v, and 7, of parts 1 and 2, respectively.
Defining v; = —kgT pol;, we have fj = v — 1.

To confirm this interpretation of the force f, it is possible to rely on a free energy
computation. Let us add a comment on the definition of surface tension of a solid-fluid
interface at this stage. Experimentally, to increase the area of such an interface, the solid
material can be stretched. Such a procedure yields to a displacement of atoms in the
solid, which thus modifies the energy profile felt by the fluid at the solid interface. In
short, surface free energy is stretching dependent and has to be distinguished from surface
tension (or surface stress) which, multiplied by the area variation, yields the work needed
to stretch the interface. This distinction has been pointed out by Shuttleworth in [Shu50]
(see [DQO8; AS20] for a recent review). In our approach, the solid is not stretched but
the variation of interaction area between the solid and the fluid should be thought as
derived from a macroscopic displacement of the solid. This leads us to identify surface
tension with surface energy, in equilibrium. Out of equilibrium however, surface tension
will be accessed only through the forces (but no longer through the energy).

Let us come back to the free energy computation. To vary the length h by an amount
dw while keeping L? (the volume), T' and N constant, we provide, by definition, an energy
v1dw and we recover Yodw, such that the variation of the free energy of the system is
dF = yidw — vyodw. The free energy is given by F = —kgT In ZV, with Z the partition
function of a single particle, defined up to a multiplicative constant:

L L
Z :/ da:/ dy e~ PV @) (4.24)
0 —00

L 0
=L+ / dx / dye PV @), (4.25)
0 —00
We thus have:
oF _kgTNOZ
= —_— . 4.26
T TN Z  OhlrzrnN (4.26)

The dependence on h is hidden in V' (z,y) whose definition actually depends on h. We
can define V(z — h,y) = V(z,y), with V independent of h, so that we have V/0h =
OV (z — h)/Oh = =0V (z — h)/Oz, which yields

" — kBTN/ da:/ dy(—0,e™" ) (4.27)

_ kBTN/ dyle —BV(=hy) _ =BV (L— hy)} (4.28)

_ kBTN —BV(0y) _ fBV(L,y)]_ (4.29)
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This equation suggests that we can split the contribution of each wall according to

kgTN [©

= b / dye’ﬁv(o’y) = —kgTpols, (4.30)
kgTN [©

Yo = — B / dye_ﬁv(L’y) = —kgT pols, (4.31)

where we have taken the thermodynamic limit to simplify N/Z. This result confirms our
identification of the contributions of f, given in Eq. (4.23). The fact that the surface
tension is negative should not be puzzling for two reasons. First, we also find a negative
surface tension for hard spheres on a hard wall [NT79; HL99]. Second, we notice that in
the case of a soft confining wall (like the potential V'), the total volume occupied by the
particles cannot be precisely defined. Keeping the occupied volume L? constant — instead
of L(L + ¢;) for instance — when taking the derivative of the free energy with respect
to h might seem somehow arbitrary. This leads us to define a solid-gas surface tension,
among many others, up to an additive constant. In fact, the additive constant simplifies
away when we want to compute the total force f (a difference of surface tensions) felt by
the wall (and which has a clear physical meaning!). These considerations were carefully
addressed by Nijmeijer and Van Leeuwen in [NvL90].

Finally, in the case of the ideal gas, in the hard wall limit (stiffness A; — o00), the
penetration length of the particles in the wall goes to 0 and the surface tension defined in
(6.5) is 0. This makes sense since the free energy then only depends on the total volume
occupied by the particles, on the number of particles and on the temperature 7. These
parameters being kept constant in the definition of the surface tension, we necessary have
Videal gas = 0.

In the following chapters, we will focus on the surface tension of active systems.
We will not be able to rely on the free energy to define the surface tension. However,
the mechanical route is still accessible. In the next chapter, we present a new Virial
construction to derive the solid-fluid surface tension for active systems. Macroscopic
forces will be our starting point.



Chapter 5

A Virial approach to surface tension

In this chapter, we introduce a novel derivation for the microscopic expression of the
liquid-solid and liquid-vapor surface tension. Our derivation is valid for both equilibrium
systems and active liquids. The proofs we are going to present are based on a Virial
approach. We first review the Virial derivation that relates the pressure to the fluid
properties and we rigorously show its link to the microscopic description. Second, we
derive the microscopic expression for the solid-liquid surface tension of an active fluid.
The proof and the result are new. We also recover the Laplace law for an active fluid
confined in a spherical container.

5.1 The Virial for the pressure

In order to introduce our derivation of the microscopic equation for the surface tension,
we first derive the expression of pressure in an active fluid. The Virial derivation for
the pressure in the literature was historically presented for particles with Hamiltonian
dynamics or underdamped dynamics. The Virial is particularly convenient to derive the
expression of the pressure of an ideal gas, or to derive the pressure of a fluid of particles
with pairwise interactions. Indeed, the Virial route is usually concise, technically simple,
and thus appealing. Nonetheless, several hypotheses are needed to follow this route and
they are rarely mentioned in the literature. One of the goals of this chapter is to clarify
the underlying hypotheses of the Virial. We choose here to reproduce the proof for
overdamped particles in contact with a thermal bath. We also add the active force for
more generality, on top of interactions and of thermal noise.

We consider a general case of N interacting active particles, confined in a box. The
Langevin equation of motion for particle ¢ reads

r; = MF;” + MZFW + ,MF(; + 2kBTM i (51)
J

with p the mobility of particles, F}” the force exerted by the wall on particle i, F;; the
force exerted by particle j on particle 7, F'{ the active force, &, a zero mean, unit variance,
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Gaussian white noise, and 7" is the temperature. We define V = 3,(r; -r;)/2 the quantity
analogous to the Virial adapted to overdamped Langevin dynamics. If the particles are
confined in a volume Vj, then the noise averaged quantity (V) is constant in steady state,
and its time derivative is zero. We thus have

(Z - FY) +ZZ Fj; +Z ) + dNkgT, (5.3)

(2

where we have used It6’s lemma to obtain the second term in the rhs of Eq. (5.2) and d
is the dimension of space.

The pressure is the force exerted by the walls on the fluid of particles. In Eq. (5.3),
the pressure is thus hidden in the term -,(r; - F{"). We want to arrive at the identity
>i(r; - FY) = —dPVy, which is valid only when the range of the potential is much smaller
than the system size, which is guaranteed in the thermodynamic limit of interest to us
in this work.

We suggest two complementary approaches that will shed light on the vision we have
of the Virial. First one can adopt a mesoscopic approach. A pedagogical computation
from [WWG15] is reproduced here. Given a container of area S, one decomposes S in
surface elements 65, and the sum is split accordingly:

S F) =Y Y (- F). (5.4)

i 5S ilr;€68

In the limit 05 — 0, the r; are all identical when belonging to the same surface element.
Now using the mesoscopic definition of the pressure, the average force exerted by a surface
element is nothing but the pressure exerted by the container to confine the particles:
Yijrsess(Fi) = —P6Sn, with n a unitary vector normal to the surface element §.S. With
this definition, Eq. (5.4) becomes

D (i FY) =2 r- >, (FY) (5.5)

i 5S  i|r;e88

=—-> r-nPdS (5.6)
ss

—ﬁgr . PdS. (5.7)

Finally, assuming that the pressure is homogeneous in the container, by using the Stokes-
Ostrogradski theorem, one obtains

S, FY) = —P// V. rd’r = —dPV,. (5.8)
i Vi

Strictly speaking, the pressure is not homogeneous in the system, and close to the corners
of the box the correlator (r; - F{) is expected to vary a lot (over distances much smaller
than the system size). The previous computation has actually swept under the rug the
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Figure 5.1 — Rectangular box that confines the active liquid. We demonstrate the Virial
formula in this geometry.

difficulty of treating the edges of the container, and there is obviously a contribution to
the force from the parts where the pressure varies rapidly.

The second derivation that establishes Y, (r; - F}") = —d PV} is new. For pedagogical
reasons, we introduce here this rigorous proof to reinforce the foundations of the Virial
approach, and to give a flavor of the coming computation on surface tension. We here
express the sum with the particle density and we consider that the wall is described by a
confining potential V' (r) that has a small spatial extension. The force is thus defined as
the gradient of the potential: F*¥ = —VV. By means of this potential, we can rigorously
write:

S ) = [ drpe)Fr) (5.9

%

where p(r) = >;(0(r —r;)). Let us consider the two-dimensional case to simplify sub-
sequent manipulations. Consider a rectangular box as depicted in Fig. 5.1, where the
confining wall is defined as repulsive potential V(x,y) that starts at position £, on the x
axis, and extends to the position ¢, + o, where it diverges. Similarly for z < 0, the wall
extends from —¢, to —¢, — 0. On the y axis, the wall starts at position ¢, (resp. —¢,)
and extends to position ¢, + ¢ (resp. —¢, — o). The force exerted by the wall is thus
null in the region r € [—£,, (] x [=4,,¢,]. Let us focus on the term that comes from the
wall located at x = ¢,. The potential of the wall is translation invariant along y when

€ [—4,,¢,], i.e.: one can write F“(r) = F“(x) in this region of space. The term of
interest reads:

lpto Ly+o lp+o Ly
/ / dxdyp(r)F"(r) - v —/ / p(r (x)) - rdxdy + 1, (5.10)
ty—c I l
Lyp+o
I

p(x,y)0,V(z) xdxdy + I. (5.11)
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where

lyto lboto  ply+o
/ / dxdyp(r) / / dxdyp(r)F*(r)-r) (5.12)
by—o

is the contribution from the corners that is subdominant in the limit ¢, — oo. If one wants
to define the pressure as the average force exerted by the wall on the particles [Sok10;
Sol+15], one has to take the limit £, > . With a change of variable z = ¢, 4+ ¢ in (5.11)
the dominant term reads:

ly+to Ly o Ly
/ / p(x,y)0,V (z) zdxdy :/ / p(ly +e,9)0-V(ly +€)(ly +€)dedy (5.13)
Ly —y 0 —Ly
o Ly
=, / / p(ly +€,y)0:V (Ly + €)dedy
0o J-t,
o ply
+ / / p(ly +e,y)0-V (L, + €)ededy (5.14)
0o J-g

_0. /ey (/O ol +2,9)0.V (0, + e)dzs) dy + O(0)

—2,
(5.15)

0
¢, / Py + (o) (5.16)
~0,(20,)P, (5.17)

where we have replaced the sum along y by 2¢,F, when ¢, — oo. To leading order,
the pressure is indeed translational invariant along ¥, and the total force is simply the
homogeneous bulk pressure P, times the length of the wall. Now, we can perform the
exact same computation for the opposite wall located at x = —/,, and this will also give
a contribution ¢, (2¢,)F, to the sum (5.9). The walls located at y = £¢, will each give
a contribution of £,(2¢,)F, to the sum. If we define the total lengths of the system as
L, =2(, and L, = 2{,, we obtain to leading order in L, and L,:

_ Z(F;" 1) = —/ddrp(r)Fw(r) T (5.18)
—2L,L,P, (5.19)
= dVde, (520)

where V; is the total bulk volume and d the space dimension.

Now that we have established the equality that brings the pressure out, we come back
to our Virial formula (5.1) for active fluids. For ABPs, RTPs and AOUPs, the active
force reads F} = (vo/p)u; where u; is a unitary vector whose components verify the
correlations:

(e (Ol (1)) = 2808 p-le—ti/r. (5.21)



5.1. The Virial for the pressure 101

where 7 defines the correlation time.

We want to compute (u; - r;). In the steady state, the time derivative of (u; - r;)
vanishes. We get

5t<ri . ui> = ,U/<F;U . uz-) + :U/Z<F]Z : lli> + v()(ui : ui> - T<I'Z‘ . ui> (522)

j
= (Fy - wy) + p Y (Fji - wy) +vo — 7(r; - uy) (5.23)

J
— 0, (5.24)

which leads to
(r;-w;) = pur(FY-w;) + ur Z<Fﬂ ;) + voT. (5.25)
i#i

Using F{ = (vo/p)u; and Eq. (5.25), we obtain from Eq. (5.3) the following equation

=D (v FY) = dNkpT + 3 3 {ri - Fjo)

i i
+ VoT Z(F;ﬂ . 111'> + U()TZZ<F]'Z' . llz'> + UOT.
i i i
Finally, using the identity (5.20), the pressure for an active fluid reads
Py=Pa4 Py DLSFY ), (5.27)
v, %

where the equilibrium and active contributions read

_ NEgT | 1

ped _ . 9

vt T D B (5.25)
Nuv2t vt

pr=""0 4 Fji -w;), 5.29

respectively. Let us comment on the term V; ' 3°,(FY -u;) appearing in (5.27). This term
scales like the number of particle adsorbed at the boundaries N4, over the total volume
Vy of the system. In [SJ16], the authors confirm that N4y = o(N) in the thermodynamic
limit, which means that N4/V; vanishes in the thermodynamic limit. This validates the
fact that the pressure is a bulk state variable for a certain class of active liquids. At this
stage, we can actually focus on the precise scaling of this surface term V; ' S (FY - u;)
for particles confined in a spherical cavity. Indeed, for such a system, the pressure at the
wall P, is strictly homogeneous because of the rotational invariance. In particular, for
an ideal gas of active, the only correction to the bulk pressure comes from this surface
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term. Equation (5.27) simplifies and the Virial computation thus exactly yields

NkgT  Nvit vt
— > (Fy - w). 5.30

7

Py,

Using d x Vy = RSy_1, with R the radius of the (d — 1)-sphere of surface area Sy 1, we
get

Py

V., T dnwvi R

= (e ). (531
St 4
Since the particles at the wall point towards the wall in average, and because of the
rotational invariance, Y ,(F{’ - u;)/S;_1 has a finite value in the thermodynamic limit.
The formula (5.31) shows that the pressure of an ideal gas of active particles possesses
finite size corrections, and that these corrections scale as 1/R, which is reminiscent of
the Laplace-Young formula (which we discuss further once we have defined the surface
tension of an active liquid on a wall).
In the next section, we are going to see how we can extract the surface tension v of a
fluid-solid interface thanks to our modified Virial. We will also establish the link between

the surface tension and the correction to the pressure for particles in a sphere.

5.2 The Virial for planar interfaces

In the previous section, we have seen behind the scenes of a Virial derivation to the
equation of state. Let’s see if a similar route can be found to extract surface tension. The
Virial formula obviously contains subdominant contributions to the pressure (the term
I. in (5.11) for instance) that might be extracted in a computation. We see also in (5.8)
that the divergence of the position vector yields exactly the good thermodynamic scaling
for the pressure term. In what follows, we are going to astutely modify the starting point
of our Virial computation in order to extract the sub-extensive contributions only. We
will here consider a modified Virial V* = 3;(r; - r})/2, where r* will be a divergenceless
vector.

5.2.1 Surface tension in a rectangular box

We focus on the same two-dimensional setup as before, depicted in Fig. 5.1 and 5.2.
Particles are confined by a potential V' (z,y) that extends from —¢, — o to £, + o in the x
direction, and from —¢, — o to ¢, + o in the y direction. The particles are not subjected
to the wall force in the bulk, i.e.: V(z,y) =0 for (z,y) € [—ly, (] X [—4y, {,]. We define
L, = 20, and L, = 2{, the lengths of the box. How is the fluid-solid surface tension
defined for such a system? We do not consider any phase separation in the fluid here to
avoid dealing with the liquid-vapor surface tension in the first place (this will be dealt
with later). With this assumption in mind, we now use the classic mesoscopic approach
in which the total force exerted on the planar wall has two contributions. A contribution
from the pressure and a contribution from the surface tension. For instance, the total
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Figure 5.2 — Rectangular box that confines the active liquid. The total force on the
+
upper wall is F;y = P,L, — 2.

force exerted in the y direction by the particles located at the top wall, denoted ij+,
reads

lp+o by+o
Fey / / dxdyp(x,y)0,V (5.32)

bz—0

with P, = lim Lgﬁoo(Fu,nyr /L), and 7 can thus be seen as a macroscopic definition of the
fluid-solid surface tension. The factor 2 stands for the contribution of the two edges of
the wall. We notice that in two dimensions, surface tension has the dimension of a force,
while the pressure has the dimension of a force per unit length. In three dimensions,
familiar scalings are recovered (force per unit area for the pressure and force per unit
length for the surface tension).

Let us now show how defining the Virial using a divergenceless vector, we are able
to get rid of the pressure while retaining the surface contribution. In this rectangular
geometry, we use r{ = (z;, —y;). The time derivative of 3, (r; - r})/2 yields

0="> (r}- cg;> +0 (5.34)

%

7

(Z -F¥) +ZZ Fj; +Z ) (5.35)

where the translational noise correlations have cancelled each other using Ito calculus. We
are now going to show that the term Y, (r; - F}") contains the surface tension contribution
we are looking for.

With the microscopic density p(z,y), the Virial term of interest writes:

ly+o by+o
S = [ a [ dynteay - wenay) (639

—Ap—0 —ly—0o
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We define the linear force density, along the top wall for instance, located at y = +/,:

N lby+o
@ = [ duleno,v (5.37)

Y

where we recall that the wall diverges at ¢, + 0. The total force on the top wall is given

by:

lpto
Fiv" = / duf" (z) (5.38)

—lyp—0

We notice that the force density along x on the upper wall can actually be split as follows:
fy (@) = B+ 8y (), (5.39)

where P, is the average force density on the wall in the thermodynamic limit, and § f§y+ (x)
is a correction due to a wall or an interface in the z-direction. Physically, we have
6f§y+(x) =0 when —0, + ¢ < x < {, —{, with ¢ the typical width over which the system
displays a density different from the bulk (call this phase a ‘boundary layer’). The sign of
) f§y+(:€), or excess force density, depends on the particles considered. The definition of
~ should be independent of the width ¢ of the boundary layer, which we do not know in
advance. Hence (5.33) gives a nice definition of surface tension which does not explicitly
depend on ¢. The surface tension thus reads

v = —; L}Uiinoo(FyW — L, Py) (5.40)
1 laxto ot
=—= Z:}I—I>noo Y dzof,” (v) (5.41)
' Ly+o o+
= — Zignoo i dzdfy (z), (5.42)

where we have used the symmetry of the system (left walls and right walls are identical)
to go from second line to third line.

In the following, we are going to show that the modified Virial, in the hard wall limit,
yields the surface tension we have defined in (5.42). Let us now focus on the force along
y in the up right corner (corner (D):

bpto Ly+o
Ly = / da / dy yp(z, y)o,V. (5.43)
0 0

We are going to perform a change of variable y = ¢, + ¢, with /¢, — 0 in order to keep
the leading order terms, and we are going to split the force density into the mean force
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density P, plus a force density that varies along x. We have

lpto Ly+o
= / dx / dy yp(z,y)0,V (5.44)
lpto
:/ dx/ de (U, +¢)p(x, by, +€)0,V (5.45)
lyto Le+o
= <€y/ dxfﬁ-” ) + (/ dx/ deep(z, 4, + £)0, V) (5.46)
0
fx‘f'o' €1+0'
= éy/ dx P, + Ey/ dxéf&’ () + M (5.47)
’ ’ lyp+o
= Ul Py + lyo Py + 1, / s f&" (x) + M (5.48)
0
with

byt+o o byt+o o
|M| = / dx/ deep(x, L, +€)0,V </ dx/ de |lep(z, L, +€)0,V| (5.49)

0 — 0 _

Y N
< a/ dx| i (z)| (5.50)
0

< o(Poly + |v]) (5.51)

It is important to notice that in the hard wall limit, {,0P, < £, foﬁg dxd f§y+($) =
O(fy7). Hence, defining M, = ({,0 P, + M) one gets M, ~ O(o({, + {,)), negligible in
the limit ¢ — 0 (hard wall). The result is the same when computing the force along y in
the up-left corner (labelled as (2)). We obtain

by+o
Ly + Iy = By(26,)0, + 21, / 510" (2) d + 20 (5.52)
0
One notices that the force density on the y direction is odd with respect to variable z.

For x > 0, the force density verifies f§y+(x) =— ffy_(—a:), with ffy_(x) the force density
on the wall at y = —¢,. For the bottom-left corner (3) we have by symmetry:

0 0
I3, = / dx / dy yp(z,y)0,V (5.53)
bp—0 Ly—0o
UEIJrG N
— 00, P+, / deS {2 () + M) (5.54)
0
Thus the contributions of the down corners along y read:

lpto
Ly + Loy = Py(20)0, + 21, /0 510" (2) d + 2! (5.55)
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Finally, the total contribution along y reads
lpto N
I, =1y + Iy + I3y + 14y = P L, L, + 2L, / (5ij (z) do + 4M,, (5.56)
0

where we have used 2¢, = L, and 2{, = L,.. Similarly along = we have:

Ly+o
0

Finally, combining (5.56) and (5.57) the volume terms cancel out in the modified Virial:

—Z FY-r)=1,—1, (5.58)

ly+o bp+o
= 2L, / 515" (y) dy — 2L, / Sff" (x)dw + 4M, — 4M],  (5.59)
0 0

= —2C*y + O(o), (5.60)

with C* = (L, — L,), a linear combination that depends on our definition of r*, and
v = e TS (y) dy = — Z i) S ff () dz. Note also that fe =S f§y+(x) dx is indeed
a finite number when ¢, — oo because ) ffy (x) =0 for x < ¢, — ¢, with ¢ a small width.

We are now able to express the surface tension as a function of the microscopic
correlators. Injecting (5.60) in (5.35) one gets

== 5. L) —L (ZZ Fj; +Z ) (5.61)

)

We can be more specific by looking at the surface tension of ABPs, RTPs or AOUPs on
a hard wall. Again, the active force reads F{ = (vo/p)u; with the correlations of u; given
by Eq. (5.21). We now have to compute the correlator (r}-u;). We extend the definition
of the * operator to any vector A such that A* = (A,, —A,). Similarly to Eq. (5.24), we
take the time derivative of (rf - u;), and we finally get:

(rf-w) = pr(FY-ul) +7u Z(Fﬂ ~ul) + o7 (u; - ul). (5.62)
i

We recall that in steady state, (u;-u}) = 0 since u; is isotropic on its full history. Injecting
(5.62) in (5.61), we finally obtain the surface tension of a fluid of active particles on a
hard wall:

1T o0 (ZZ ji T ooy ) (Fyiou +UOTZF“’ ) (5.63)

i gF (VEC

While our derivation above applied to the case d = 2, this result can be naturally extended
to higher dimensions. The coefficient C* obviously depends on the dimension, and scales
like the contact area between the fluid and the wall.

We can actually relate this result to the finite size correction we have obtained for
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the pressure of an active ideal gas in a spherical cavity. Without pairwise interactions
between particles in (5.63), we arrive at the expression of the surface tension of an ideal
gas of active particles on a planar hard wall:

yz—iﬁGm%}mw@». (5.64)

A nice property of this correlator is that it is non zero only for particles at the wall. Let
us focus on the d = 2 case. The renormalizing factor C* = (L, — L,)) is equivalent to L,
in the thermodynamic limit when we add the constraint L, /L, — co. Thus, 2C* is then
nothing but the total length 2L, of the fluid-solid interface (bottom wall 4+ upper wall).

*

One observes the same extensive scaling ~ L, for Y, (F{ - u]

£y which becomes equivalent

to > ;(Fy - w;) in the L, /L, — oo limit, since the contributions of the side walls are now
negligible. By symmetry and with this extensive scaling in the interface length, one can
isolate the surface tension ~ of active particles on a single planar wall of length L:

sz_jg; (F* - u,). (5.65)

1

We are now able to identify the correction to the pressure that active particles exert on
a (d — 1)-sphere of radius R. Specifically, for particles in a circle, the correction to the
pressure reads (see Eq. (5.31)):

1 VoT 1 VoT . 1
: FY . u) = — | 227 « 9oxlim — Fv . w, ,
Rark 2T ) }{(QWR:K ”£§6¢rzgf i “J) (5.66)
v
S, 5.67
R7 ( )

where we have used the rotational invariance of the correlator, {2, being a circular sector
of angle ¢, and we have used (5.65) to obtain the surface tension of a wall of length Re.
One thus obtain P, = Py —+/R, which is indeed the Laplace-Young formula for an active
gas in eq. (5.31).

5.2.2 Mesoscopic shortcut

The detailed proof of the validity of the Virial route leads us to simply describe the
pressure and the surface tension as they were historically considered: the pressure as a
homogeneous surface force, and the surface tension as a force localized in the corners of
the system. The simplified derivation for the surface tension can be applied in d = 2 or
d = 3 as shown below.

a. In dimension d =2

In the limit of hard walls, the external force density along a side of the box is naturally
decomposed into pressure and surface tension contributions, as depicted in Fig. 5.3. Using
this decomposition, a direct evaluation shows that (3, F&*' - r}) = yL, + (L, — L,) —

vLy+P,L,L,— P,L,L,. The pressure contribution cancels out, since r* is divergenceless,
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Figure 5.3 — Rectangular box that confines the active liquid in the hard-wall limit ¢ — 0.
In the mesoscopic description, the walls exert a homogeneous pressure P, on the fluid,
and the surface tension contribution «y is localized in the corners.

and Eq. (5.35) leads to our modified Virial for the surface tension:

v = —2(Lwl_Ly) > (xr- (7:;)“ +3 FH->> . (5.68)

i

Similarly, one can recover in a few steps, using the mesoscopic description, the surface
tension in dimension d = 3.

b. In dimension d = 3

We consider an active fluid in a cubic box. Again, we suppose that the fluid is composed
of a single phase. We adopt a mesoscopic definition of the tension v, similarly to what
we usually do for the pressure. We define V = Y ,(r; - r})/2 with r = (z,y,2), r* =
(Aa, Ayy, A 2), and we take the coefficients (Az, Ay, A.) = (3, %, —1) to have V - r* = 0.
More generally, we will consider the operator * such that for any vector a we have
a* = (ay/2,a,/2,—a,). We recall the Langevin equation of motion:

I, = IMF;U + /LZ Fﬂ + ILLF;I + 4/ 2]€BT/.L i (569)
J
The modified Virial yields

0= (x] - Fi) + 3 > (] - Fyi) + (] - F), (5.70)

% %

Using the mesoscopic definition of surface tension, we split the force exerted by a wall on
the fluid in its two main contributions, namely, the pressure force exerted by the surface,
and the surface tension exerted by the edges of the face. This follows the rigorous proof
we have established in Section 5.2.1. The faces are indexed by k, and Cj denotes the
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Figure 5.4 — Cubic geometry to compute the surface tension with the modified Virial.
contour of the face k, along which the fluid is submitted to the surface tension.
0= 2 i Fi) 4 22 0ri - ) + Dl (5.71)
= # Pt dS+ Y. O wdlr(r) -1 +ZZ Fj; +Z (5.72)
S kE JCk
:—Pb// V- r*dv+zyk7§ n; x de) r—i—zz ]Z+Z (5.73)
=S (o) e+ ST R + 320 (5.7)
k Ck
_Zyk/ V x (r* x ny) ndek+ZZ Fj +Z (5.75)
Sk

The unit vectors 75 and n; which depend on the face k are such that d€ x 1, = dfny, see

Fig. 5.4. In short, 7 is in the plane of face £ and points toward the interior of the face,

and ny is the normal of the face that points toward the exterior of the parallelepiped.

Let us compute explicitly the first term in the r.h.s. for ny = +e, and n, = +e, for

instance (e, and e, play symmetric roles). For n;, = +e,, this term reads

/ V x (r* xex)-exdzdy:/ V x(—ze, — =
St S

L
:// —dzdy
ST 2

1

= *S:m
2

and for n; = e, we have

/ V x (r* x e,) - e, dzdy :/ V x (yex
ST st 2

= // —1ldxdy
s

- _Sza

e.) - e,dzdy

e,) - e, dxdy

(5.76)
(5.77)

(5.78)

(5.79)

(5.80)

(5.81)
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Considering that v, = v is the same for all the hard walls, taking into account the
contribution of all the faces, one obtains

= (S, + 5, — 25.) +ZZ Fj; +Z (5.82)

yielding the surface tension:

1= (ST ma - St ). 559

with C* = %Sx + %Sy — S., a linear combination of the surface areas that depends on
our definition of r*. In the rectangular box in dimension 2, we had C* = L, — L,, when
defining r* = (z, —y).

Defining the surface tension as a force per unit length on a contour has paved the road
for the computation of the surface tension in the case of a phase-separated system. In
what follows, the system undergoes a liquid-vapor phase separation and the two phases
are separated by a horizontal planar interface.

5.2.3 Virial with a phase separation

Up to now, we had consider a single-phase fluid in our parallelepiped box, such that
the only surface tension we could extract was the fluid-solid surface tension. Here, we
consider that the fluid undergoes a phase separation. In the confining box, we find the

fne_s.
W Sy
AT Gl Zp

z 5
. d
a Sy

> A R
X

Figure 5.5 — Cubic geometry with a phase separation. The plane z = 2, defines the
interface between the liquid and the vapor.

vapor in mechanical equilibrium with the liquid, and we consider that the interface is
parallel to the zy-plan, and located at z = z, (see Fig. 5.5). With this new interface, the
system is now split into two parts. With our mesoscopic approach, we still consider that
the pressure P, is homogeneous in the system. This rests on the hypothesis that pressure
is equilibrated, which is a correct hypothesis for the class of active particles we consider
here. However, three different surface tensions now apply to the particles on the edges.
The upper part, of side areas S} and Sy, contains the vapor, and the particles in this
part are thus subjected to the solid-vapor surface tension. We label with index k, the
different contours on which the linear force is the solid-vapor surface tension vgy. The
lower part, of side areas S¢ and S;l , contains the liquid, and the particles in this part are
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subjected to the solid-liquid surface tension. We label with index k, the different contours
on which the linear force is the solid-liquid surface tension 7sr. Finally, the contour of
the liquid-vapor interface is subjected to the liquid-vapor surface tension, denoted vy .
This contour will be denoted C.,. Again, we compute the time derivative of our modified
Virial (V*), and we obtain (see Eq. (5.70)):

0=2.0r] PW+ZZ Fi) + 2 (e (5.84)

= Z Yoy dlTy, () - TF + Z YsrdlTy, (1) - T +§£ YovdlT,, (r) - r*
ku Y Chy ka VCrq Cap (5.85)

+ZZ Fi) + 2 (x)

= ’ysv(SZ + Su — S ) + ’YSL(Sd + Sd — S ) — ’)/Lvsz

I Z Z Fj)) + Z (5.86)

As previously, we have used the Stokes theorem to go from the second line to the third
line.

This computation shows the principal difficulty of the Virial: since we have considered
all the particles, we capture all the surface tension contributions in the same equation. In
order to isolate one of the surface tension, one must take the appropriate thermodynamic
scaling. For instance, imposing Sy + S;' = S, and Se 4 S;j = S,, it is possible to extract
the liquid-vapor surface tension, even if the correlators keep a record of all the particles.
In this case, the liquid-vapor surface tension reads

Vv = o (ZZ F;;) + Z ) , (5.87)

where we recover the usual equilibrium correlator that defines the surface tension of a
fluid-fluid interface when the active force is taken to 0.

In the next chapter, we are finally addressing the question of the measurement of
the surface tension for an active fluid. In particular, we will relate the surface tension
obtained with the Virial derivation to the surface tension measured in adapted mechanical
setups implemented in computer simulations.
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Chapter 6

Measuring surface tension of active
fAuids

In this chapter, we present practical setups that allow for direct measurements of surface
tension in active fluids. These new results provide a direct physical interpretation of
surface tension in active systems in terms of tangential forces. Starting from first prin-
ciples, they complement existing approaches that defined surface tension from in silico
measurement of local correlators. In practice, we first give a mechanical definition of
surface tension for an active liquid on a solid boundary in Sections 6.1 and 6.2 before
addressing the liquid-vapor surface tension in Section 6.3.

6.1 A delicate measurement

6.1.1 The Langmuir experiment

The setup we have presented in Section 4.3 will now prove useful to define the surface
tension of active fluids on a wall. Let’s define the setup that we are going to use to carry
out our numerical experiments, and let’s state what we are going to measure.

Our version of the Langmuir balance [Lan17] to measure the solid-gas surface tension
is implemented as follows. We consider particles in a rectangular box. To confine the
particles we use an external potential V'(r). In the upper region, this potential mimics
two walls glued together with a smooth junction extending over a width w, see Fig. 6.1.
The definition of V(r) is the following:

K(y — Ly)* A1 + 2252 (banh 21 + 1)), ify > Ly,

Ky?, if y <0,
V(r) = qs(Le — ), if 2> Ly, (6.1)
kxd, if v <0,

0, f0<ax<L,,0<y<L,,
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where x, A; and Ay fix the stiffness of the potential and [ is the length of Wall 1. The
different contributions on x and y add on when particles are in the corners. In short,
the upper region interpolates between two repulsive potentials which, a few w’s from the
junction, look like ~ ki (y — L,)* for Wall 1, and like ~ kX2(y — L,)* for Wall 2.

~ W
-

wall 1 i i wall 2

-10
gas

— - — — & — % — & — — g — —®
-

po1 = <p.(x1,yb)> Pre = </;(I27yb)>
-30

-40

Y -
0-- -I I----
; : w
P L, i

Figure 6.1 — Left: A sketch of the system setup with a single junction. Right: total force
exerted on the wall, in the z-direction, as a function of the width w of the junction. Blue
dots: passive particles. Red dots: active particles. Pink dashed line: Ay = ~9 — 1, with
~1 and 7o measured independently in a quasi-1d simulation. The value of Ay obtained
from the quasi-1d simulations for active particles and the value of Ay obtained from the
quasi-1d simulations for passive particles show a 0.1% discrepancy. Parameters: v = 5,
D, =1, At =103t~ 5 x 108, N = 384. Wall stiffness: A; = 10, A, = 0.1, x = 0.5.

In Section 4.3, we have seen that our Langmuir balance could be used to measure
the total force (in the direction x) F, that particles exert on the upper wall made of
two materials. This force F) is actually the difference Ay = 5 — v of surface tensions,
71 (resp. 72) being the surface tension between Wall 1 (resp. Wall 2) and a fluid in
equilibrium. In addition, the difference of surface tensions A~y does not depend on the
width w of the junction between the two walls, in equilibrium.

In the following, we shall test if these properties hold for a simple active fluid, such
as an ideal gas of active particles. The equation of motion of a particle i reads

f‘i = Vou; — /LV”V<I'Z'), (62)

where we have neglected thermal diffusion, and where the active force on particle ¢ enters
through (vo/p)u;, with vy the propulsion speed, p the mobility and u; = (cos6;, sin 6;)
is the orientation of the active force. The wall being flat at a distance ~ 2w from the
junction, we identify the total force along x on the upper wall with the total force along
x on the junction. This force thus simply reads

To 00
F, :/ d:c/ dyp(z,y)0,V, (6.3)
1 Yo

with 1y, an ordinate in the bulk of the system, =1 = L,/4, 2o = 3L,/4, and p(r) =
(>;0(r — r;)) the average density of particles where brackets represent averages over



6.1. A delicate measurement 115

the active-force statistics. Since we do not have access to the stationary measure of the
position of the active particles, we will directly measure the total force on the upper wall in
a computer simulation. Such a measurement is simply the sum of the force contributions
of each particle near the junction, and it reads

F, = Z (0:V (i, yi)) (6.4)

{i|z1<z;<z2;yi>yp}

We carry out the simulations with active Brownian particles (but again, RTPs or AOUPs
would lead to identical results). The angle 6; follows a random walk and its diffusion
coefficient is denoted D,. We measure the force F, for different values of the junction
width w. As shown in Fig. 6.1 (right, red dots), the force clearly depends on the width
of the junction. In other words, the transverse force does not (only) depend on the
possible intrinsic surface tensions between the gas and each of the two walls as it is the
case in equilibrium (blue dots). We numerically checked that, indeed, in equilibrium, the
transverse force exerted by the particles does not depend on the details of the junction.
To do so, we consider an ideal gas of overdamped Langevin particles in equilibrium
at temperature 7. Given the parameters x, A\; and Ay, we can actually compute the
temperature 1" which would lead to the same transverse force as the one measured for
active particles. The definition of « for an ideal gas is given in Eq. (4.30), and reads

v = —]{ZBTpo/ dyer(x,y)/T’ (65)

Yuw

where pg is the bulk density of particles in the thermodynamic limit, and y,, denotes the
ordinate where the confining potential starts. From this, for Vi.(y) = kAr(y — yw)?* (with
k =1,2), introducing the gamma function I'; the difference A~y reads

Ay = —po(kpT)**T (i) <(m\:1l)1/4 - (I{/\i)l/4> : (6.6)

In Fig. 6.1 (right), one can see that the force exerted by passive particles on the junction
(blue dots) matches exactly the force predicted (pink dashed line), and does not depend
on the width w of the junction.

In the following, we are going to carry out analytic computations in order to under-
stand the origin of the dependence of the force with the details of the junction.

6.1.2 Why does the active measurement give non-trivial re-
sults?

To elucidate analytically the dependence of F), on the width of the junction w, we start
from the dynamics of N non-interacting active particles, given in Eq. (6.2). The density
field p(r) = (>, 0(r — r;)) evolves according to the continuity equation

Oop=-V-J, J =vym — pVV (6.7)
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where the local orientation field m(r) = (3°, w;0(r — r;)) controls the contribution of the
active forces to the particle flow. From the definition (6.3), using Eq. (6.7), the tangential
force F, exerted on the upper wall can be written as

o %)
F,=Fp+ / / 20 (1, )y (6.8)
X1 yb ILL

where Fp is the total drag force experienced by particles around the junction

1 To 0o
Fp = —/ dx/ dyJ, = —p ) (1 - e,) (6.9)
H T Yb ]

i €[r1,22]3Yi > b

Equation (6.8) has an appealing physical interpretation in terms of force balance: the
total active force exerted by the particles, which is the second term on the r.h.s. of (6.8),
is split between the force exerted on the upper wall and the drag force, i.e. the force
exerted on the environment. Equation (6.8) can be further simplified when expressing
m(r) in steady state. Indeed, the evolution equation of the microscopic density (see, e.g.,
[Sol+15]) reads :

b = =V - [vguy) — pVV] + 77 10%) + noise terms, (6.10)
where 1(r,0) = ¥, 0(r — r;)0(0 — 6;) and 7 the auto-correlation time of the active force

(r = D! for ABPs in 2d); multiplying (6.10) by u, integrating over § and averaging over
noise realizations yields the evolution of m which simplifies in steady state into

Mo = —0p |})07’ (Qag + p(;w) — ,uTmaé?BV] (6.11)

where () measures the local nematic order through Q,s(r) = (3 ;(WiaWis — 0ap/2)0(r —
r;)), with Greek letters referring to space directions. Eq. (6.11) holds for all models of
active particles in which a local order m(r) decays exponentially in time because of the
stochastic dynamics of the active force. This covers, in particular, RTPs, AOUPs, and
ABPs; all simulations shown in this chapter are carried out with the latter.

Using Eq. (6.11), the isotropy of the bulk, translational invariance far from the junc-
tion, and that fyio dyQu.(z,y) = 0 for x = x; or = x5 (shown in Appendix B.1), the
force balance equation (6.8) can be rewritten as:

viT [
Fy=Fp——— [ dylp(xz,y) — pla1,9)], (6.12)
21“ Yo
or equivalently,
F, = Fp+ Ay (6.13)

with Ay = 45 — 741 and where we define v, (k =1, 2) as

VaT o Y
Ve = _2u( dyp(wr,y) — dypo)- (6.14)

Yo Yo
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Equations (6.13) and (6.14) form a central result of this chapter. First, Equation (6.14)
can be seen as an “equation of state” for ;. It is determined by the excess density
accumulated at the wall, compared to the bulk values in a translationally invariant system,
and thus solely depends on the interaction between the active fluid and wall . Second,
the Fp contribution strongly depends on the details of the junction: the presence of an
asymmetric potential combined with the nonequilibrium dynamics of the active particles
generates, as in a ratchet, steady currents which are bound to be junction-dependent; the
latter give rise to a non-zero drag force which contributes to the measure of F,.

Fig. 6.2 shows independent measurements of F,, Fp and A~y in a simulation. For the
junction centered at L,/2, we take zy = L,/4 and x5 = 3L, /4 for the bulk abscissas.
Also, the bulk ordinate y;, should verify L, — y, > ¢,, where ¢, = vy7 is the persistence
length of the particles. It turns out that ~ 2¢, is the distance at which correlators
have converged to their bulk values in a translationally invariant system. We thus take
Yy = Ly — 20,. Fig. 6.2 shows that, indeed, the dependence of I, on the width w of the
junction is entirely due to the variations of Fp, whereas A~ is independent of w. All in
all, the measurement F, appears to be given by the bare Ay dressed up by Fp, which
arises from the junction-dependent currents.
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Figure 6.2 — (a) Comparison between F, and the sum of the bare Ay and the junction-
dependent drag force Fp. A<y coincides with its independent measurements using
Eq. (6.14) in homogeneous systems bounded by upper potentials V; = V(z < [) and
Vo = V(x> 1) (dashed line). b) Map of the current around the junction for |J| > 1076,
The amplitude of the arrows are proportional to log |J/107°|; the color encodes its direc-
tions. In both figures, Ay =5, Ay =0.05, l = L,/2, v=15, D, =1, L, = 2L, = 1280. For
the current field, w = 0.01. Simulation results courtesy of Yongfeng Zhao.

In the 7 — 0 limit, with D = 027 fixed, active particles behave as equilibrium
colloids at an effective temperature kpTeg = D/p and, indeed, Eq. (6.14) reduces to
its equilibrium counterpart (6.5). The partial cancellation of the two integrals in (6.14)
then stems from the fact that, unlike active particles, passive ones have a steady-state
distribution which is a local function of the external potential V(x,y). In this limit, as
for true equilibrium systems, no currents survive in the steady state; Fp vanishes and F,
is then a direct measurement of the bare, equation-of-state-abiding contribution A~y.

In what follows, we explore the variations of the current and of the density with the
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distance from the center of the junction. We will see that long-range corrections to the
translationally invariant system must be taken into account.

6.1.3 The dipolar field created by the junction

Figure 6.3 shows how Ay and Fp vary when the system size L, changes for y, = L, —2(,
and for y, = L,/2, for a fixed junction width w. We normalize all quantities with the
bulk density p, such that when L, increases while keeping N constant, the normalized
pressure and surface tension remain identical (since they are one-body quantities for an
ideal gas).

Let us comment the results. For y, = L, — 2, as the system size increases, A~y
converges to the value Avyguasi—1a = 72 —"71 Where v, and 7, are obtained independently, in
a quasi-1d simulation (periodic boundary conditions along one direction). For y, = L, /2,
as the system size increases, Ay no longer converges towards AYquasi—14, surprisingly
(see Fig. 6.3, right). Instead, A~y seems to plateau, or to slightly increase. Recalling
the definition of Ay = —v2r/(2u) fyo: dyAp(y), where Ap(y) = p(x2,y) — p(x1,y), we
have roughly, for L, > ¢, [ ]f;l/z dyAp(y) = O(1) which is compatible with a power-law

decrease ~ i of the density difference.

0 yp = Ly — 21, 0 yp =Ly /2
-10 -10 ra—
—*—
20 20 ¢ —— 4y
—— Ay +Fp
— — — Av, quasi-1D
-30 -30 |
-40 -40
10° 102 103 10°

Figure 6.3 — Contributions to the total force on the junction as a function of the system
size for two different y,. Left: y, = L, —2(,, with £, = vo7 the run length of the particles.
Right: y, = L, /2.

Such a scaling Ap(r) ~ O(r~!) is actually reminiscent of the density profile that
emerges around an asymmetric object embedded in a fluid of active particles. In Ref. [Bae+18],
the authors show that the density profile around an asymmetric passive object centered
at the origin can be cast in the following form:

p(r) = py + TrT L O@?). (6.15)

The dipole moment p is equal to the total force exerted by the object on the active
particles:

p=-— / d*r' p(r') VU, (6.16)

where U(r) is the potential created by the passive object. Similarly for the current of



6.1. A delicate measurement 119

active particles, we have

p(p 2 -p)r
Jr)=—7—|5——7—]. 6.17
0 =g (5 - 20PN) (6.17)
One can access the dipole strength with numerical simulations, and the density profile
created by the junction can be compared to the one created by a artificial dipole located
(L;/2, L,) (at the junction), pointing in the = direction. The results are shown in Fig. 6.4
and display an excellent agreement between the results and the dipole ansatz. The scaling

for the current |J(r)| ~ O(r=2) has also been checked.

Yy = Ly — 21, v =Ly — 4l
1.02
R _ 101
[ISY I
~ ~
= = 1
< = 0.99
sim
0.98 dipole 0.98
0 500 1000 1500 0 500 1000 1500
x
yp = Ly/2 yp = 2l
1.02 1.02
_ 101 _ 101
[ISY I
~ ~
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Figure 6.4 — Density profile along x at different ordinate g, in the junction setup, com-
pared with the theoretical prediction of a dipolar field [Bae+18]. The junction between
the two walls can be assimilated with a dipole of strength p = —38.1 pointing in the a-
direction and located at the center of the junction when fitting the model parameters on
the data. The dipole strength matches the total force F,, = 39.1 exerted by particles on the
junction. Parameters: vg = 5, 7 = 1, w = 0.01, L, = 1280 = 256/, L, = 640 = 128/,
Wall stiffness: x = 0.5, A\; = 10, Ao = 0.1. Time step: At = 1073, t > 10%. Results
courtesy of Yongfeng Zhao.

Let us summarize our findings. We have seen that the surface tension of an active
fluid could not be directly measured by means of the Langmuir setup. The Langmuir
setup nonetheless pinpoints the role of the emerging currents, specific to nonequilibrium
dynamics, along with a long-range variation of the density, that are responsible for a
junction-dependent measurement of the difference of surface tension. The bare surface
tension, which depends only on the properties of the wall, could be isolated in the compu-
tation, but the question remains as to whether it is possible to directly measure this bare
surface tension. The question is all the more relevant that we have seen in Section 5.2.1
that the bare surface tension obtained with the Virial did control the pressure correction
to the bulk pressure in a circular cavity of radius R.
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6.2 Accessing the bare surface tension

6.2.1 A setup where currents do not contribute

The currents arising in the Langmuir setup, which prevents the direct measurement
of the bare surface tension, are due to the junction. Following [Bae+18], we expect
that a more symmetric setup would reduce the strength-—and thus the impact through
Fp—of currents. 1 thus suggested considering the setup depicted in Fig. 6.5, in which
the displacement of a piston allows one to access the surface tension between the fluid
and the walls of the container. The normal force balance on the piston indeed writes

kspring

7
.

yI?’;

0 b 0 pist.

Figure 6.5 — Left: Practical setup to measure the fluid-solid surface tension between
the fluid in the box and blue walls. On the grey wall, particles exert a force which is
the sum of a thermodynamic pressure and a surface tension contribution of two fluid-wall
interfaces. Right: Numerical implementation of this setup. We directly measure the
total force F), that particles exert on the grey wall.

Fy — kspring(Tpist. — o) = 0 where xp. and z, are the average and rest position of the
piston and

F, - / / dadyp(z, )0,V (2, y) (6.18)

is the total force exerted by the active fluid. Let us recall how F} can be related directly
to the surface tension between the active fluid and the upper and lower walls. In the
steady-state, using (6.7), F,, can be decomposed as

1 o o0
Fo=——(> &) +/ / dedyLm, (6.19)
/“'l' xT;>Tp Ty —00 ILL

Equation (6.11) expresses m, as the divergence of a vector, which allows to simplify (6.19)
into

o V3T

where we have used that all fields vanish at infinity and that [~ Q. (xy,y)dy = 0. We
have also set Fp = —p ' (3,.<,, @;). Introducing the bulk pressure in thermodynamic
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limit P, = v37po/(21), F, is finally given by
F,=Fp+PL, — 2y (6.21)

where v is again given by Eq. (6.14), assuming for simplicity that upper and lower walls
are identical.

It turns out that for this setup, Fp = 0. Indeed, from the continuity equation we can
integrate the fields in the region = > x;, which yields in steady state:

A pA A pA
0= 8t/ / dxdyp(z,y) = —/ / dzdyV - J (6.22)
Tp —A Ty —A

= —/J.ﬁds (6.23)
C

A
= / dy J. (v, y)dy, (6.24)
—A
where A refers to a coordinate ‘far beyond the wall’ without any particle, and where we
have used the divergence theorem between the first line and the second line, i being the
outward unitary vector normal to the displacement ds on the contour C. Since we have

[ dyJ. (s, y)dy = 0, then

Fp= —;fl/ / dyJ.(xp, y)dydx = 0. (6.25)
Ty —0o0

Independent numerical measurements of I, Fp, P, and v show that the contribution of
Fp is indeed null (see Fig. 6.6): the direct measurement of the bare surface tension can
now be realized in practice from the displacement of the piston (see the setup Fig. 6.5).
Small circulations can persist close to the corners of the setup, but their contributions to
the force cancel out because of the ffooo dyJ, = 0 constraint.

In summary, using this setup where currents do not contribute to the measurement,
it is now possible to directly access the bare surface tension of a fluid-solid interface. In
the hard-wall limit, this surface tension shall converge to the surface tension obtained
from the Virial derivation. The next paragraph addresses this question.

6.2.2 The hard-wall limit and the Virial surface tension

In the hard-wall limit, before embarking on the simulations, one can actually guess the

surface tension of an active ideal gas. Indeed, two length scales appear in the dimensional

/

analysis, namely p, /4 and voT, but one already has v ~ pg since v is a one-body quantity.

The parameters left being vy, 7, i, the surface tension on a hard wall simply reads

U3T2

v = Capo——ri, (6.26)
1

valid for any dimension, and where ¢, is a constant specific to the dimension. As expected,
v = capolz| F?| scales like a force in d = 2 and like a linear force in d = 3 (£, = vo7). In
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Figure 6.6 — Surface tension Ymeas. = —(Fy — P,Ly)/2, bulk surface tension ypyu, bare

surface tension 14 and drag force Fp, as a function of the length L,, for two different
values of the side wall stiffness ;. All values are renormalized by p;. Parameters: vy = 5,
T=1, N =1024, x = 0.05.

the equilibrium limit where 7 — 0 with D = 37 fixed, one also recovers e, = 0.

This prediction can be numerically checked using the Virial formula obtained in (5.63)
which gives, for the surface tension of an ideal gas in a rectangular box of size L, x L,
with L, # Ly

V=g ), (6.27)

where uf = (cos;, —sin ;). In addition, this correlator should agree with the previous
correlator (6.14) used to compute the surface tension for a wall of any shape. Figure 6.8
shows the variation of the surface tension with the speed wvg, for active particles on
a stiff wall!. The two correlators used to compute the surface tension give the same
results. The results also validate the scaling (v/py) ~ v with n = 3.01540.009, and the
scaling (vy/pp) ~ 7" with v = 2.00 & 0.02. The coefficient ¢4 has also been evaluated as
cqg = —0.40 £ 0.02 for ABPs and RTPs in dimension d = 2. To carry out the simulations
on RTPs, we have used a tumble rate o = D, = 771

The next step of this study is to implement interactions between active particles. In
particular, one would like to access the liquid-vapor surface tension through the measure-
ment of a force. The next section tackles this issue.

6.3 The liquid-vapor surface tension

We now consider active particles interacting via a short-range repulsive potential. When
the size o of the particles is small with respect to the persistence length vg7 of their
active motion, the system typically undergoes a phase separation (MIPS): a liquid phase

'In the simulations we take V(z,) = sz} with x = 10%, and z, being the penetration distance from
where the wall starts.
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Figure 6.7 — Left: Sketch of the setup used to measure the surface tension of the blue
wall. Right: Measurements of surface tension of the blue wall (stiffness x) for different
stiffness x, of the right wall. Surface tension vp, = —(Fy — PyLy)/(2ps) (blue squares),
and bulk surface tension Yhux = (—v§7/(200))([* p(@p, y)dy — yppp) (ved triangles).
Dashed lines: Tension measured for k = 5 (upper results) and x = 0.05 (lower results)
for a translationally invariant system (periodic boundary conditions in one direction).
Parameters: vo =5, 7 =1, N = 1024.

and a gaseous phase can coexist, and this behavior cannot be observed in equilibrium for
purely short-range repulsive particles [FM12; Sol+418].

The surface tension of an active liquid in mechanical equilibrium with its vapor has
been found negative (see Ref. [Bia+15]). While this observation is remarkable, it would
probably be more accurate to say that the quantity that was measured by the authors
of [Bia+15] is based on an analogy with equilibrium (using the anisotropy of the stress
tensor), which leads to a formula equivalent to the Kirkwood-Buff one in equilibrium.
The mechanical meaning, if any, of that quantity, was neither established nor discussed.
This surface tension is negative despite the interface being stable, and it has been shown
that this tension controls also the pressure discontinuity across a liquid-vapor interface
of a circular drop of radius R, according to a Young-Laplace formula AP = v/R (see
Ref. [Sol+18]).

Following a similar approach to the one presented above for active fluids in contact
with a solid wall, one would like to develop a mechanical setup that will allow for a direct
measurement of the liquid-vapor surface tension 7y of an active fluid. A first suggestion
might be to consider the previous current-free setup (see Fig. 6.5) in which the phase
separation is orthogonal to the wall on which the force is measured, see Fig. 6.9. Yet,
when MIPS occurs, the nucleation of the active liquid mainly takes place at the wall,
thus wetting walls that become homogeneously covered with the liquid layer. Hence, it
is not clear how to access the liquid-vapor surface tension with this method.

6.3.1 The Wilhelmy probe for active fluids

Since the active liquid homogeneously wets any stiffly repulsive wall, the Wilhelmy plate
experiment seems to be particularly suited (see Section 4.1.2). Indeed, considering an
object embedded the liquid phase, one can pull on it (with a spring for instance) and one
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Figure 6.8 — Check of the scaling v ~ v (left) and v ~ 72 (right) for the surface tension
of an active gas on a hard wall. Blue cross: v using the bulk correlator (6.14). Pink circles:
~ using the Virial correlator (6.27). We normalize the tension with the bulk density pp.

Parameters: L, = 2L, = 120, N = 1024, p =1, k = 10*, t ~ 5 x 105, At = 1073, Left:
7 = 1. Right: vy = 5.
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Figure 6.9 — Local forces applied on a wall in the initial state: gy, vy and ~ygr.

In stationary state, one cannot extract the vy surface tension since the active liquid
completely wets the walls.

directly measures the liquid-gas surface tension when the object leaves the liquid phase.
One should add that the object that plays the role of a probe must be fully symmetric,
otherwise long-range currents might lead to an unwanted drag force that would dress the
measurement of surface tension. Hence we choose a circular probe in dimension d = 2.

(_‘gl‘?ell) (éf?éll)

Liquid @ Vapor

Y L
* (

Figure 6.10 — Sketch of the setup used to access the liquid-vapor surface tension.

For interacting active particles, without thermal noise, the current J in the continuity
equation Oyp = —V - J takes the following form (see e.g. [Sol+18] from which we borrow
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the notations):
J=vom+ 1O — 4pVV(r), (6.28)

where again m(r) is the local average orientation field, V' (r) is the potential exerted by
the probe, and I (r) is the two-body interaction field and reads

10(r) = - / dr' u VU (e — ) (pr)p(r)), (6.29)

with p(r) = 3, d(r —r;) is the instantaneous density field, and U(r) is the two-body inter-
action potential. Similarly to the non-interacting case treated above, the local orientation
field in the steady state can be cast as follows:

Oa
My = —Taﬁ [UO(Qaﬁ + )02 6) + I,SB) - maaﬁv 5 (630)

where the correlation between the pairwise forces and the local orientation is encoded by
the tensor I C(MIB) which reads

18 = = [ dx'ud,U i = ¥ oG v ). (6.31)

Consequently, the total force on the probe can be computed by integrating the force
density in a region [—(,,{,] X [—4,,¢,] surrounding the probe, see Fig. 6.10. The total
force in the direction x reads

1 [l b
o / / (o + IO)dz dy + F, (6.32)
K, S,

where the drag force is indeed negligible in this geometry. In addition, I'”) is also the
divergence of a tensor, namely, the Irving-Kirkwood stress tensor [IK50]. We have I(?) =
1dpogy with

o) = [aw E= O ED e (- et - ),

2 r — /| 0
(6.33)
The integration of eq. (6.32) yields
by VoT b
F, :/ [—O<UO(me + g) + 1) — mx(?mV) + a}c};] dy
_fll ’u _Eac
Lo 0 (6.34)
+ / l—o (v0(Qay + 1) — m,0,V') + o—;ﬂ da.
—Ly 1% —Ly

The second integral in the r.h.s. of (6.34) vanishes since the vapor is isotropic along the
horizontal lines (from —/, to ¢,) at ordinate —¢, and ¢,. Moreover, the term m,0,V only
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contributes at the surface of the probe and can thus be discarded in the first integral.
Finally, since the system is homogeneous along the y-axis at « = ¢, the total force along
F, simplifies into

£y
F, = / AylGs — Gun(—La )], (6.35)
_gy
where o, is the sum of an active tensor and the Irving-Kirkwood stress tensor and it
reads
_ boT P (1) K
O =, (v0(Quz + 5+ 1)) + ok, (6.36)

and 0., = 04,(lz,y) is constant in the bulk of the liquid and in the bulk of the vapor
phase and it is given by

Gow = T(vog +19) + 01X, (6.37)
since there is no nematic order in the bulk of either phase.

What is the connection, if any, between this force F, and surface tension? Well,
first, when the capillary bridge has a constant width and no curvature (which is the case
for soap bubbles for instance), then the force on the object can be identified with the
two contributions of surface tension that the bulk fluid A exerts on the fluid B that is
wetting the probe, see Fig. 6.11 (left). In that case, since the bridge is flat, there are no
contributions from the Laplace pressure to the total force. A second situation is when the
bridge of width e is infinitely thin and, though there is a contribution to the force F}, from
the Laplace pressure AP, the pressure force scales like APe < ~ as already described
in Section 4.1.2. In these two cases where the liquid-vapor interfaces are parallel to the
x-axis, formula (6.35) has obviously the same physical content as that of the Kirkwood-
Buff expression of the surface tension (4.13) written in Chapter 4. Indeed, g5 being a
bulk tensor, it is also isotropic thus 7., = 7,,. Equation (6.35) then becomes

éy
F, = / 0Y[yy — Ous(—Lor ) (6.38)
= —2’)/Lv, (639)

which is our mechanical definition of the liquid-vapor surface tension.

The computation validates the fact that the liquid-vapor surface tension can indeed
be measured by means of a Wilhelmy probe. We now turn to the results of the computer
simulations.

6.3.2 Simulation results

We consider an active fluid that undergoes a motility induced phase separation. We
implement the dynamics of active Brownian particles of unit radius, interacting via a
short-range repulsive pairwise harmonic potential U(r) = 50(1 — r?)O(1 — r) where r is
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Figure 6.11 — Two cases where the force on the probe obviously reads F,, = —2~vyy. The

operator has to apply a force Fj;, on the object to maintain its position.
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Figure 6.12 — Snapshot of the two Wilhelmy probes (white circles) dipped in an active
liquid of active Brownian particles (dark blue). The light blue region is the vapor. The
fluid is confined by two vertical stiff walls located at x = 0 and = = 1536. We take periodic
boundary conditions in the y-direction. Parameters: vo =5, 7 = 5, L, = 512, L, = 1536.

the distance between the centers of the particles and © is the Heaviside step function.
The speed of the particles is vg = 5 and the rotational diffusion constant is D, = 0.2,
yielding a persistence length ¢, = 25. Thermal noise is not included in the dynamics. The
fluid is bounded in the x-direction by two stiff walls, which interact with the particles
with a Weeks-Chandler-Andersen potential V'(z) that reads

12 6

V(z) = 4e (% - %) +e, (6.40)

with ¢ = 5/2'/6 and € = 107, and where z is the penetration length of a particle into the
wall. We take periodic boundary conditions along the y-axis. For symmetry reasons, two
circular objects of radius 32 are placed at the interface between the liquid and the vapor
(white circles in Fig. 6.12, and their distance from the interface is gradually increased.
The circular probes interact with the particles also via the WCA potential. Measuring
the total force on the object will lead to a mechanical evaluation of the liquid-vapor
surface tension. The numerical simulations were implemented by Yongfeng Zhao.

In order to reduce fluctuations and to improve our precision, we fix the position of
the probes 200 away from the planar interface. A capillary bridge is created by the
active liquid, and we measure directly the force on the z-direction and the force on the
y-direction. The average density profile can be obtained from the simulations, and the
position of the interface is given by the mid-density curve. From the geometry and the
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Figure 6.13 — Left: Zoom on the left-probe region: density profile of the fluid of inter-
acting ABPs. We do observe an average steady interface between the liquid and the vapor.
Right: schema of the mesoscopic forces that the fluid in domain A and the vapor exert
on the fluid B. Since the fluid B is in mechanical equilibrium, then F4_, g+ Fprobe—B = 0,
but we also have Fyope—sB = —F; by Newton’s third law. Thus F, = Fa_,p.

force F,, v can be inferred. The force balance on the fluid region B (see 6.13) reads
0= (P — Py)l —2vypy cost — Fy, (6.41)

where Pr, Py, ¢ and 6 are defined in Fig. 6.13. Using the Laplace-Young formula for
active liquids [Sol+18] yields the pressure difference Py — P, = /R, where R is the
radius of curvature at the interface (see Fig. 6.13). The force on the object then reads

F,=—vv <}% + 2cos 9) : (6.42)

From 56 independent numerical simulations, we obtain the average force along the z-axis,
along with the force F}, on the y-direction. As expected, the average force along y is zero
since the system possesses a symmetry axis that joins the two centers of the probes. A
geometry analysis yields

(=217+5, (6.43)
R =278 + 10, (6.44)
cosf = 0.64 + 0.03, (6.45)

while the measurement on F), yields
F, =10.3 +£0.6. (6.46)
Finally, using (6.42), we obtain
yov = —4.9+0.2. (6.47)

The surface tension v,y is indeed negative, as previously computed with the Kirkwood-
Buff formula in [Bia+15]. In our simulation, the same value for 7.y is also recovered
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when using the Kirkwood-Buff formula on the quasi-planar liquid-vapor interface, far
from the probe. From the Kirkwood-Buff correlator, we find v = —4.80 + 0.01, (5%
error with the direct force measurement) thus showing the consistency of the Wilhelmy
probe measurement.

This result is interesting in the sense that it eventually agrees with the equilibrium
intuition one could gather on the liquid-vapor surface tension. Though the active liquid
completely wets the probe, the latter is expelled from the liquid (the force F, is positive).
An operator has to exert a negative force (the operator must push the object towards the
liquid) to maintain the object close to the interface. For phase separation in equilibrium,
the force F), is negative and one has to pull to remove the object from the liquid; this
pulling force is reflects the fact that the surface tension v,y is positive.

To summarize, in this Chapter, we have shown that, as in equilibrium, surface tension
can be defined in active fluids by considering the tangential forces exerted on an interface.
Focusing first on a solid-fluid interface, we have seen that any anisotropy of the boundary
is expected to lead to steady currents that contribute to the force balance. We nevertheless
identified a bare, equation-of-state abiding contribution to surface tension, which was
shown to share properties with its equilibrium counterpart. The success of the mechanical
measurement of the surface tension of a solid-fluid interface has led us to consider another
mechanical measurement, the liquid-vapor surface tension of an active fluid, inspired by
the Wilhelmy plate experiment. The force on the probe embedded in the fluid, close to
the interface, shows that the probe is expelled from the liquid, in agreement with our
equilibrium intuition on the liquid-vapor surface tension if the surface tension is negative.
Elucidating the mechanical implications of the surface tension of active fluids paves the
road to comprehension of surface wetting by active fluids, and may give insights to study
interfaces between active liquids made of different particle species [Ste+15; WWEF16]. Our
results apply to spherical active particles interacting via pairwise forces, but it should
be very interesting to extend the mechanical approach we have followed, for other class
of active particles such as quorum-sensing active particles [Fil+17], torque-interacting
active particles [CGS15], etc.
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Conclusion

This thesis has focused on two families of systems pertaining to the active branch of the
soft matter realm.

The first part of this thesis was devoted to the properties of a system of particles
whose interactions are mediated by a fluctuating background, and whose active nature
arises from a non-thermal source of noise. The combination of mediated interactions and
of the nonequilibrium drive was shown to lead to complex structures. Our predictions,
beyond statistical mechanical methods, rest on extending the methods of nonlinear dy-
namics in pattern forming systems, to systems with a local conservation law. The original
biophysical context behind our model is that of transmembrane proteins with chemically
driven changes of conformation. The model we have coined was design to filter out what
we believed to be the key ingredients of their physics. Many other soft matter systems
match the coarse description of our model, while they may belong to areas remote from
biophysics. Future research directions should be focused on narrowing the gap between
the model and the more realistic description of, say, transmembrane proteins, etc. This
requires to critically examine the statics and dynamics of the fluctuating background field,
the nature of the nonequilibrium drive, and the specifics of the coupling of the particles
to the background. This thesis also presents a system of particles with mediated interac-
tions — albeit in equilibrium — that directly connects to experimental observations. The
methods of statistical mechanics have allowed us to predict the details of the interactions
between two colloids embedded in a lamellar phase.

The second part emphasizes the notion of surface tension for interfaces involving active
fluids. We have come up with a definition relating macroscopic forces to microscopic ones,
either between particles or, when applicable, between particles and a confining medium.
When the active fluid is in contact with a solid boundary, the solid-fluid surface tension
is, in general, a more complex quantity than its equilibrium counterpart. By this we mean
that its value may depend on the geometry or other details of the measuring device. We
have also shown that a carefully designed probe allows us to access an equation-of-state-
abiding surface tension akin to its equilibrium counterpart. In active fluids, geometry
controls local steady currents that play a role in the value of surface tension. Liquid-
vapor interfaces can also be encountered in assemblies of self-propelled particles when
these undergo a motility-induced phase separation. Our mechanical definition at the
macroscopic level has led us to suggest an adapted Wilhelmy plate experiment able to
extract a value of surface tension which also agrees with its microscopic definition (the
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latter matches a previously postulated expression). After understanding the physics of a
solid-fluid or of a solid vapor interface, the next obvious, yet ambitious, step is to develop
a full theory of wetting and capillarity in active fluids.



Appendix A

Details on experiments of colloids in
lamellar phases

A.1 Monte Carlo simulations

To determine the predictions of our model when applied to many particles dispersed in
the lamellar phase, and to compute structure factors that can be compared to experi-
mental measurements, we perform a Monte Carlo simulation. We model the membrane-
mediated interaction between the colloidal particles by means of the interaction that we
have previously computed, which takes into account the presence of the lamellae and the
fluctuations of both the membrane and the particles in the normal z-direction. Note that
the in-plane fluctuations of the particles are implemented in the Monte Carlo algorithm.
Specifically, we model the colloidal particle-lamellar phase system as a finite number M
of stacks of identical colloidal particles orthogonal to z-direction, each one consisting of
the same finite number N of particles confined in a disk of radius R;. We suppose that
the particles cannot change stack. We also neglect the possibility of the particles to
promote defects in the lamellar phase. This is natural since we do not explicitly model
the layers and also reasonable in surfactant phases owing to the weak strength of the
interactions (smaller than kgT'). To simplify, we consider only the pairwise interactions
calculated above (i.e., we neglect multibody effects) and we take into account only the
contributions coming from particles in the same layer and one layer apart. Indeed, as we
saw in Section 3.3, the interaction decreases rapidly with the layer separation. Moreover,
since the interactions are short-ranged, we do not impose periodic boundary conditions
within each layer, but we do use periodic boundary conditions in the z-direction, such
that a small number (~ 7) of layers is enough for simulating an infinite system.

We start the simulation by placing the same number N of particles in each one of the
M layers according to a random uniform distribution respecting a given hard-core mini-
mum distance ag. We then pick at random one particle and we move it randomly inside a
circle of radius e. We compute the associated variation of the interaction energy and we
accept the movement according to the Metropolis rule, taking into account the hard-core
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constraint. The radius € is adjusted in order to have an acceptance ratio of ~ 50%. The
interaction energy between two colloidal particles is computed according to eqn (3.26)
[resp. (3.40)] for the membrane-binding (resp. membrane-excluding) case, where the
correlation functions Go(R) and G1(R) [see eqn (3.12)] can be expressed analytically in
terms of modified Bessel functions (as shown in [Zak+19]).

means of the structure factor [Yan+99; Conl0]:

S(q,Q)=MlN< 4 >

— So(a) + 23 Sula) cos(nQd), (A1)

After equilibration, we characterize the statistical order of the colloidal particles by
> expli(q- Ry +pQd)]
Jip

where R, is the position of the j-th particle of the p-th layer and g (resp. @) is the com-
ponent of the wavevector parallel (resp. perpendicular) to the lipid layers. The structure
factor is proportional to the Fourier transform of the two-particle correlation function.
Note that in eqn (A.1) we neglect the fluctuations of the colloidal particles in the z-
direction. The partial structure factors S, (q) describe the correlations between particles
n layers apart.

For a liquid-like order, the structure factors do not depend on the orientation of the
q vector and thus coincide with their average with respect to the orientation of gq:

Sn(q) - ]\41]\[ < i i Jo (q ‘Rip - Rj(p+n)‘)> , (AQ)

1,j=0 p=0

where ¢ is the modulus of ¢ and because of the periodic boundary conditions in the
direction perpendicular to the layers, layers p and p + M coincide.

A.2 Joint validation of the Monte Carlo simulations
and the Percus-Yevicz approximation

In the literature, the structure factors of pairwise interacting particles are often calculated
in the framework of the Ornstein-Zernicke relation with the approximate Percus-Yevick
closure, using the numerical method introduced by Lado [Lad67; Lad68]. Mapping our
multilayer problem to a multicomponent fluid, as done in ref. [Con10], we have computed
the equatorial structure factor S(q) = So(q)+251(q) that can be measured by small-angle
X-ray scattering with a scattering vector contained in the plane of the layers. At small
concentrations, we find that the Percus-Yevick approximation is reasonably good (see
Fig. A.1). However, at higher concentrations for our system the Lado algorithm does not
converge in general.



A.2. Joint validation of the Monte Carlo simulations and the Percus-Yevicz
approximation 135

-

S

1.0

0.8

0.0 0.1 0.2 0.3
q[nm™"]

Figure A.1 — Comparison of the equatorial structure factor S(q) = So(q) + 2S51(q), as
a function of the in-plane wavevector ¢, computed with a Monte Carlo simulation (full
lines) and the Percus-Yevick approximation (dashed lines). The black (resp. gray) curves
correspond to the membrane-binding (resp. membrane-excluding) case. The parameters
are the same as in Figs. 3.7 and 3.8.
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Appendix B

Details on the surface tension for
active fluids

B.1 Vanishing nematic tensor

The computation of the force on the junction exerted along e, leads us to integrate the
nematic tensor from the bulk to a point ‘deep in the wall’. In particular we can prove
that fyio dyQ..(xp,y) = 0 for a translationally invariant system in the direction e,. By
definition, we have

— <Z <0052 0; — ;) d(r—r;)) (B.2)
= <Z cos(26;)0(r —r;)) (B.3)

For active Brownian particles where the angle evolves according to

6; = \/2D,&,, (B.4)

with & a zero mean, unit variance, Gaussian white noise, using Ito calculus, we have

Quz = —4D;Qua — 3y<z cos(20;)9;6(r —1;)) — (%(Z c08(26;)i;0(r — r;)). (B.5)

The derivative along x vanishes for a translationally invariant system, and in steady state

we have:

1

Que = _TDT

%(Z cos(20;)y;0(r — 1;)), (B.6)
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which yields, after integration along ¥,
o 1
/ AYQue = E<Z cos(20;)vo sin 0;0(yy — ;)0 (2 — x;)). (B.7)
Yb T4
Since the bulk is isotropic in steady state, one finally gets

[ v =0 (B3)

Yo

B.2 Measurements in the computer simulations

In the computer simulation, the correlators are renormalized by the bulk density p, to
avoid increasing the number of particles when increasing the system size while keeping a
constant density. Since the pressure and the surface tension are one-body quantities for an
ideal gas, normalizing by p, yields conveniently a constant pressure and a constant solid-
gas surface tension when L, increases. In the quasi-1d simulations, v is thus computed

2 00 Yw
uT / / )
V== dyp(xy, y) — dyps | B.9
24upp < Yb ( ’ ) Yp ’ ( )

with p, = p(zs, yp). From these independent measurement of v, we deduce Avygyasi—14. For
the 2d-junction setup, A~ is directly obtained from the integrated the density difference:

as follows

UQT 00
Ay =——0 / dy|p(xa,y) — p(x1,y)], B.10
¥ 20 /., ylp(z2,y) — p(x1,9)] (B.10)

where p, = (p(21, ) + p(T2,46)) /2.
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