Construction de modèles de données relationnels temporalisés guidée par les ontologies
Auteur / Autrice : | Christina Khnaisser |
Direction : | Anita Burgun, Jean-François Ethier, Luc Lavoie |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique médicale |
Date : | Soutenance le 04/11/2019 |
Etablissement(s) : | Université Paris Cité en cotutelle avec Université de Sherbrooke (Québec, Canada) |
Ecole(s) doctorale(s) : | École doctorale Pierre Louis de santé publique : épidémiologie et sciences de l'information biomédicale (Paris ; 2000-....) |
Partenaire(s) de recherche : | Laboratoire : Centre de recherche des Cordeliers (Paris ; 2007-....) |
Jury : | Président / Présidente : Angela Bonifati |
Examinateurs / Examinatrices : Marc Cuggia | |
Rapporteur / Rapporteuse : Anne Bergeron, Rémi Bastide |
Mots clés
Résumé
Au sein d’une organisation, de même qu’entre des organisations, il y a plusieurs intervenants qui doivent prendre des décisions en fonction de la vision qu’ils se font de l’organisation concernée, de son environnement et des interactions entre les deux. Dans la plupart des cas, les données sont fragmentées en plusieurs sources non coordonnées ce qui complique, notamment, le fait de retracer leur évolution chronologique. Ces différentes sources sont hétérogènes par leur structure, par la sémantique des données qu’elles contiennent, par les technologies informatiques qui les manipulent et par les règles de gouvernance qui les contrôlent. Dans ce contexte, un système de santé apprenant (Learning Health System) a pour objectif d’unifier les soins de santé, la recherche biomédicale et le transfert des connaissances, en offrant des outils et des services pour améliorer la collaboration entre les intervenants ; l’optique sous-jacente à cette collaboration étant de fournir à un individu de meilleurs services qui soient personnalisés. Les méthodes classiques de construction de modèle de données sont fondées sur des règles de pratique souvent peu précises, ad hoc, non automatisables. L’extraction des données d’intérêt implique donc d’importantes mobilisations de ressources humaines. De ce fait, la conciliation et l’agrégation des sources sont sans cesse à recommencer parce que les besoins ne sont pas tous connus à l’avance, qu’ils varient au gré de l’évolution des processus et que les données sont souvent incomplètes. Pour obtenir l’interopérabilité, il est nécessaire d’élaborer une méthode automatisée de construction de modèle de données qui maintient conjointement les données brutes des sources et leur sémantique. Cette thèse présente une méthode qui permet, une fois qu’un modèle de connaissance est choisi, la construction d’un modèle de données selon des critères fondamentaux issus d’un modèle ontologique et d’un modèle relationnel temporel basé sur la logique des intervalles. De plus, la méthode est semi-automatisée par un prototype, OntoRelα. D’une part, l’utilisation des ontologies pour définir la sémantique des données est un moyen intéressant pour assurer une meilleure interopérabilité sémantique étant donné que l’ontologie permet d’exprimer de façon exploitable automatiquement différents axiomes logiques qui permettent la description de données et de leurs liens. D’autre part, l’utilisation d’un modèle relationnel temporalisé permet l’uniformisation de la structure du modèle de données, l’intégration des contraintes temporelles ainsi que l’intégration des contraintes du domaine qui proviennent des ontologies.