Confinement électromagnétique sub-longueur d'onde et couplage entre nano-structures photoniques : Calcul de forces et de moments optiques - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2019

Sub-wavelength electromagnetic confinement and coupling between photonic nano-structures : Calculation of optical forces and torques

Confinement électromagnétique sub-longueur d'onde et couplage entre nano-structures photoniques : Calcul de forces et de moments optiques

Résumé

This thesis work is a contribution to the numerical modeling of new optical devices based on photonic nano-structures such as photonic crystals, plasmonic nano-antennas or enhanced-transmission metamaterials. The objective is to enhance the light confinement in these structures to further use it as a source of trapping to manipulate resonant or non-resonant metallo-dielectric particles.The first part is devoted to the modeling of the local electrostatic field generated by the application of a DC voltage across two electrodes, on a nano-structured dielectric acting as an active material in electro-optical modulators. The idea is to enhance the local electrostatic and optical fields in the material to induce a more substantial modification of its local index, thus leading to an amplification of its nonlinear effects. In particular, we have shown that by optimizing the geometrical shape of the electrodes, the local electrostatic field can be further exalted inside the material leading to exacerbate the electro-optical effect by a factor 6.The second part concerns the modeling of optical forces and moments acting in nanostructures by the Finite Difference Time Domain Method (FDTD). After presenting the principle of modeling of the optical forces and torques, a specific application is considered to study the translational and rotational motions of a dielectric disk placed at the output side of a quarter-wave plate made of metamaterial formed of coaxial apertures with elliptical section engraved in an opaque metal film. On the other hand, we show how an optical tweezer based on Diabolo nano-antennas can be used to sort and arrange dielectric nanoparticles according to their size by tuning the wavelength of the incident beam.The third and last part is dedicated to the study of optical trapping of metallo-dielectric nano-particles and the coupling between different optical nano-resonators according to the distance separating them and according to their natures. A detailed study is presented to analyze and understand the properties (scattering, absorption, extinction,) of these nano-resonators at the sub-wavelength scale. An application has been processed on the trapping of dielectric nano-particles by an optical nano-tweezers based on a photonic crystal coupled to a Bowtie nano-antenna.
Ce travail de thèse constitue une contribution à la modélisation numérique de nouveaux dispositifs optiques à base des nano-structures de la photonique tel que les cristaux photoniques, les nano-antennes plasmoniques ou les métamatériaux à transmission exaltée. L’objectif est d’exploiter les propriétés de confinement de la lumière dans ces structures pour exalter davantage ce confinement ou les utiliser comme source de piégeage afin de manipuler des nano-particules métallo-diélectriques résonantes ou non-résonantes. La première partie est consacrée à la modélisation du champ électrostatique local généré par l’application d’une tension continue aux bornes de deux électrodes, sur un diélectrique nano-structuré jouant le rôle de matériau actif dans des modulateurs électro-optiques. L’idée est d’exalter les champs électrostatique et optique locaux dans le matériau pour induire une modification plus conséquente de son indice local, conduisant ainsi à une amplification des effets non-linéaires dans ce dernier. Nous avons notamment montré qu’en optimisant la forme géométrique des électrodes et des paramètres géométriques de la structure, le champ électrostatique local peut être exalté davantage dans le matériau d’un facteur 6.La deuxième partie concerne la modélisation des forces et moments optiques agissant dans des nano-structures par la méthode des différences finies dans le domaine temporel (FDTD). Après avoir présenté le principe de calcul des forces et moments optiques, une application a été considérée pour étudier le mouvement de translation et de rotation d’un disque diélectrique placé à la sortie d’une lame quart d’onde à base de métamatériau formé d’ouvertures coaxiales à section elliptique gravées dans un film métallique opaque. D’autre part, nous avons montré qu’une pince optique à base d’une nano-antenne Diabolo peut être utilisée pour trier et arranger des nano-particules diélectriques en fonction de leur dimension en maniant la longueur d’onde du faisceau incident. La troisième et dernière partie est dédiée à l’étude de piégeage de nano-particules métallo-diélectriques et au couplage entre différents nano-résonateurs en fonction de la distance qui les sépare et en fonction de leurs natures. Une étude approfondie et détaillée est présentée pour analyser et comprendre les comportements de ces nano-résonateurs à l’échelle sub-longueur d’onde. Une application a été traitée portant sur le piégeage de nano-particules diélectriques par une nano-pince optique à base d’un cristal photonique couplé à une nano-antenne Bowtie.
Fichier principal
Vignette du fichier
these_A_NOUHOALI_Ali_2019.pdf (147.69 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03028214 , version 1 (27-11-2020)

Identifiants

  • HAL Id : tel-03028214 , version 1

Citer

Ali Nouho Ali. Confinement électromagnétique sub-longueur d'onde et couplage entre nano-structures photoniques : Calcul de forces et de moments optiques. Optique / photonique. Université Bourgogne Franche-Comté; Université de Djibouti, 2019. Français. ⟨NNT : 2019UBFCD057⟩. ⟨tel-03028214⟩
147 Consultations
8 Téléchargements

Partager

Gmail Facebook X LinkedIn More