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RÉSUMÉ 

Cette thèse s’inscrit dans le cadre d’une cotutelle internationale entre l’Université de Bourgogne 

Franche-Comté en France et l’Université de Sherbrooke au Canada. Elle porte sur le 

développement d'un biocapteur miniature pour la détection et la quantification de bactéries dans 

des milieux liquides complexes. La bactérie visée est l’Escherichia coli (E. coli), régulièrement 

mise en cause dans des épidémies d'infections alimentaires, et parfois meurtrière. 

La géométrie du biocapteur consiste en une membrane en arséniure de gallium (GaAs) sur 

laquelle est déposé un film mince piézoélectrique d’oxyde de zinc (ZnO). L'apport du ZnO 

structuré en couche mince constitue un réel atout pour atteindre de meilleures performances du 

transducteur piézoélectrique et consécutivement une meilleure sensibilité de détection. Une 

paire d'électrodes déposée sur le film de ZnO permet de générer, sous une tension sinusoïdale, 

des ondes acoustiques se propageant dans le GaAs, à une fréquence donnée. La face arrière de 

la membrane, quant à elle, est fonctionnalisée avec une monocouche auto-assemblée (SAM) 

d'alkanethiols et des anticorps contre l’E. coli, conférant la spécificité de la détection. Ainsi, le 

biocapteur bénéficie à la fois des technologies de microfabrication et de bio-fonctionnalisation 

du GaAs, déjà validées au sein de l’équipe de recherche, et des propriétés piézoélectriques 

prometteuses du ZnO, afin d’atteindre potentiellement une détection hautement sensible et 

spécifique de la bactérie d’intérêt. Le défi consiste à pouvoir détecter et quantifier cette bactérie 

à de très faibles concentrations dans un échantillon liquide et/ou biologique complexe. 

Les travaux de recherche ont en partie porté sur les dépôts et caractérisations de couches minces 

piézoélectriques de ZnO sur des substrats de GaAs. L’effet de l’orientation cristalline du GaAs 

ainsi que l’utilisation d’une couche intermédiaire de Platine entre le ZnO et le GaAs ont été 

étudiés par différentes techniques de caractérisation structurale (diffraction des rayons X, 

spectroscopie Raman, spectrométrie de masse à ionisation secondaire), topographique 

(microscopie à force atomique), optique (ellipsométrie) et électrique. Après la réalisation des 

contacts électriques, la membrane en GaAs a été usinée par gravure humide. Une fois fabriqué, 

le transducteur a été testé en air et en milieu liquide par des mesures électriques, afin de 

déterminer les fréquences de résonance pour les modes de cisaillement d’épaisseur. Un 

protocole de bio-fonctionnalisation de surface, validé au sein du laboratoire, a été appliqué à la 

face arrière du biocapteur pour l’ancrage des SAMs et des anticorps, tout en protégeant la face 

avant. De plus, les conditions de greffage d’anticorps en termes de concentration utilisée, pH et 

durée d’incubation, ont été étudiées, afin d’optimiser la capture de bactérie. Par ailleurs, l’impact 

du pH et de la conductivité de l’échantillon à tester sur la réponse du biocapteur a été déterminé. 

Les performances du biocapteur ont été évaluées par des tests de détection de la bactérie cible, 

E. coli, tout en corrélant les mesures électriques avec celles de fluorescence. Des tests de 

détection ont été réalisés en variant la concentration d’E. coli dans des milieux de complexité 

croissante. Différents types de contrôles ont été réalisés pour valider les critères de spécificité. 

En raison de sa petite taille, de son faible coût de fabrication et de sa réponse rapide, le 

biocapteur proposé pourrait être potentiellement utilisé dans les laboratoires de diagnostic 

clinique pour la détection d’E. coli. 

Mots-clés : biocapteur à ondes acoustiques, bio-interface, Arséniure de Gallium, couches 

minces piézoélectriques d’oxyde de zinc, bactéries.
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ABSTRACT 

This thesis was conducted in the frame of an international collaboration between Université de 

Bourgogne Franche-Comté in France and Université de Sherbrooke in Canada. It addresses the 

development of a miniaturized biosensor for the detection and quantification of bacteria in 

complex liquid media. The targeted bacteria is Escherichia coli (E. coli), regularly implicated 

in outbreaks of foodborne infections, and sometimes fatal.  

The adopted geometry of the biosensor consists of a gallium arsenide (GaAs) membrane with a 

thin layer of piezoelectric zinc oxide (ZnO) on its front side. The contribution of ZnO structured 

in a thin film is a real asset to achieve better performances of the piezoelectric transducer and 

consecutively a better sensitivity of the detection. A pair of electrodes deposited on the ZnO 

film allows the generation of acoustic waves propagating in GaAs under a sinusoidal voltage, at 

a given frequency. The backside of the membrane is functionalized with a self-assembled 

monolayer (SAM) of alkanethiols and antibodies against E. coli, providing the specificity of the 

detection. Thus, the biosensor benefits from the microfabrication and bio-functionalization 

technologies of GaAs, validated within the research team, and the promising piezoelectric 

properties of ZnO, to potentially achieve a highly sensitive and specific detection of the bacteria 

of interest. The challenge is to be able to detect and quantify these bacteria at very low 

concentrations in a complex liquid and/or biological sample. 

The research work was partly focused on the deposition and characterization of piezoelectric 

ZnO thin films on GaAs substrates. The effect of the crystalline orientation of GaAs and the use 

of a titanium/platinum buffer layer between ZnO and GaAs were studied using different 

structural (X-ray diffraction, Raman spectroscopy, secondary ionization mass spectrometry), 

topographic (atomic force microscopy), optical (ellipsometry) and electrical characterizations. 

After the realization of the electrical contacts on top of the ZnO film, the GaAs membrane was 

micromachined using chemical wet etching. Once fabricated, the transducer was tested in air 

and liquid medium by electrical measurements, in order to determine the resonance frequencies 

for thickness shear mode. A protocol for surface bio-functionalization, validated in the 

laboratory, was applied to back side of the biosensor for anchoring SAMs and antibodies, while 

protecting the top side. Furthermore, different conditions of antibody immobilization such as 

the concentration, pH and incubation time, were tested to optimize the immunocapture of 

bacteria. In addition, the impact of the pH and the conductivity of the solution to be tested on 

the response of the biosensor has been determined. The performance of the biosensor was 

evaluated by detection tests of the targeted bacteria, E. coli, while correlating electrical 

measurements with fluorescence microscopy. Detection tests were completed by varying the 

concentration of E. coli in environments of increasing complexity. Various types of controls 

were performed to validate the specificity criteria. Thanks to its small size, low cost of fabrication 

and rapid response, the proposed biosensor has the potential of being applied in clinical diagnostic 

laboratories for the detection of E. coli. 

Keywords: Acoustic wave biosensor, bio-interface, Gallium arsenide, piezoelectric Zinc oxide 

thin films, bacteria. 
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Chapter 1: Introduction 

1.1 General context 

The detection and identification of bacteria is a major concern for food safety and medicine. 

Most bacterial infections are related to the presence of bacteria in drinking water, food, and 

cooling or aeration systems that provide favorable conditions for their development. In order to 

prevent these infections, it is necessary to be able to detect and identify as soon as possible the 

presence of these pathogens. 

Conventional analytical instruments for the detection of bacteria are generally voluminous, 

complex, costly and not sensitive enough for some application areas such as the agri-food sector. 

Moreover, the phases of sample preparation, incubation, and exploitation of the results often 

greatly increase the total duration of the analysis. For instance, results for an enzyme-linked 

immunosorbent assay (ELISA) can take about 24 hours if the test is done locally [1]. In other 

cases, it may take several days to weeks. 

The last few decades have seen continued growth of the interdisciplinary field of biosensors due 

to the increased need for a rapid, sensitive and selective detection of pathogenic agents [2]. 

Biosensors offer interesting features such as real-time, on-site detection of pathogens utilizing 

the selectivity of biomolecules. They are known to provide fast and accurate results and have 

been found to have applications in various sectors including clinical diagnostics, environmental 

monitoring and food industry [3], [4]. 

Despite a large market potential for biosensors in these vast areas, very few commercial 

achievements have emerged in spite of a significant amount of research work carried out in the 

world [5]. The major obstacle to the industrial development of biosensors is the low sensitivity 

in the case of complex samples, and the environmental instability resulting in poor propagation 

of biosensing devices into the market [6]. To overcome these drawbacks, our research has been 

oriented towards the development of an acoustic wave biosensor allowing the detection of 

bacteria in liquid environments with high accuracy and specificity. 

In this context, the thesis work presented in this document aims to develop a miniaturized 

ZnO/GaAs-based acoustic biosensor for the detection and quantification of bacteria on site in 



Chapter 1: Introduction   

2 

 

complex liquid media, and in particular “Escherichia coli” (E. coli). It is based on the results 

previously obtained in the fields of design and microfabrication of piezoelectric GaAs 

membranes and the development and characterization of GaAs-thiol bio-interfaces [7]–[15]. 

1.2 Background in the research group 

We aim to develop a highly efficient GaAs based resonant biosensor. The choice of GaAs is 

justified by several years of development and studies within the "BioMicroDevices" research 

group at FEMTO-ST (Franche-Comté Électronique Mécanique Thermique et Optique - 

Sciences et Technologies) institute. The objective of this project is to develop a low-cost, 

resonant biosensor allowing the detection and quantification of specific biological entity.  

The research was initiated by a PhD student, Alex Bienaimé, whose thesis entitled "Gallium 

Arsenide microsensor for the detection of molecules in a fluid" [7] was directed by Pr. Thérèse 

Leblois and Dr. Céline Elie-Caille, and defended in 2012. His work gave a solid foundation on 

the design, fabrication, functionalization and testing of these devices. In the framework of this 

thesis, dimensioning of the resonant structure was carried out as well as the selection of the 

GaAs crystallographic cut [8]. Moreover, microfabrication procedures, particularly chemical 

wet etching, were tested and evaluated to provide the desired surface structuration in a highly 

reproducible way and at low manufacturing cost [9]. However, electrical measurements have 

shown the limitations of the transducer in achieving the expected performances (sensitivity, 

quality factor ...). On the other hand, a mixed architecture of alkanethiols was selected for the 

immobilization of immunoreceptors [10], and several surface characterizations were performed 

to control the surface state, the establishment of thiolates self-assembled monolayers (SAM) 

and the topography of the GaAs substrate [11]. Nevertheless, further analysis was needed to 

better understand the phenomena at the GaAs-biomolecule interface. For that, a collaboration 

was established with Professor Jan J. Dubowski of Université de Sherbrooke, whose research 

activities in the 3IT (Institut Interdisciplinaire d'Innovation Technologique) institute revolve 

around III-V semiconductors and GaAs based biosensing devices. Consequently a co-supervised 

thesis was launched with a new PhD student, Vivien Lacour, entitled "Optimization of a GaAs 

acoustic wave microsensor and its bio-interface for the detection of pathogens in liquid media" 

[12]. During this thesis, two techniques were used to produce GaAs membranes: chemical wet 

etching and chlorinated plasma etching. Despite some masking defects, this last technique 
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allowed, to obtain very interesting results for the etching of nearly 200 μm thick membranes. 

On the other hand, the SAMs based bio-interfaces were deeply analyzed using Fourier-transform 

infrared (FTIR) spectroscopy. The study of the self-assembly process of solubilized molecules 

in water/ethanol solutions showed the formation of densely packed SAMs. An extensive work 

was carried out on the aspects of regeneration of the bio-interface, chemically [13] and by photo-

oxidation in liquid medium. This latter gave promising perspectives for SAMs patterning to 

attach different antibodies for a multiplexed detection [14]. The results obtained in the frame of 

this thesis (defended in 2016) have allowed a better understanding of the kinetics of formation 

of SAMs on GaAs surface, as well as the regeneration processes aiming to reduce the operating 

cost of the sensor. Nevertheless, the sensor still showed some limitations such as the high 

sensitivity to the environmental parameters [16] and the low quality factors obtained 

experimentally (Q = 4135 at 6.72 MHz) compared with the theoretical values (Q = 282915), 

which could be due to microfabrication constraints [12]. Therefore, further research was 

necessary to achieve better performance and reliability of the sensor, which justifies the work 

presented in this thesis. 

1.3 Research objectives 

Despite the limitations of the sensor, the outlook with respect to the estimated mass sensitivity 

remained promising. The theoretical sensitivity has been determined at 0.1 ng/Hz by analytical 

modeling for a 50 μm thick GaAs membrane at 33.36 MHz [7]. This means that the capture of 

100 bacteria of E. coli on the surface of the sensor would generate a shift of 1 Hz of the resonant 

frequency. Based on literature review and preceding work in both research teams at FEMTO-

ST and 3IT institutes, the following general question was formulated: 

"How to improve the performances of the existing GaAs based acoustic micro-biosensor 

through modifications of its architecture?" 

In order to answer this question, we relied on the preceding work and results in our research 

group to develop optimization tracks in terms of sensitivity and specificity. Through a new 

architecture of the transducer, we would be able to increase the quality factors and consequently 

the sensitivity of the sensor. Moreover, the adaptation of the processes for formation of the bio-

interface would improve the efficiency of the detection. To achieve the principal objective of 
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the thesis, it was necessary to define and fulfill specific intermediate objectives. Therefore, 

several aspects of research were investigated: the deposition and characterization of ZnO thin 

films on GaAs, the realization and characterization of the bio-interface and the testing of the 

sensor with the targeted bacteria. 

1.3.1 Hybridization of the sensor with ZnO 

GaAs-based sensor, although having many advantages, does not benefit from sufficient 

piezoelectric properties, which resulted in the limited performances of this transducer. Hence, 

to overcome this weakness point, we propose to modify the architecture of the sensor and retain 

GaAs for the biosensor part in contact with the liquid, profiting from its functionalization 

facilities and its ability to be regenerated and machined by conventional microfabrication 

techniques. On the other hand, we propose to combine GaAs with another material with better 

piezoelectric and mechanical properties: ZnO. The piezoelectric properties of ZnO have the 

potential to enhance the response of the GaAs membrane-based device. Consequently, the 

sensitivity of the sensor could be increased, while keeping low the cost of device manufacturing. 

1.3.2 Modeling of the ZnO/GaAs transducer 

Before proceeding to the microfabrication of the transducer, the previous hypothesis needs to 

be validated. Therefore, modeling of the transducer was performed analytically, using the 

equations of piezoelectricity. We determined the modes of bulk elastic waves that can be 

generated in the case of GaAs and ZnO respectively, as well as their velocities. Moreover, we 

calculated the resonant frequency and the electromechanical coupling coefficient for thickness 

shear mode. The latter was preferable because the detection needs to be performed in liquid. On 

the other hand, a finite elements simulation was carried out using Comsol Multiphysics® to 

dimension the transducer combining ZnO and GaAs together. The theoretical resonance values 

of the transducer with and without the ZnO layer were determined in order to evaluate the impact 

of ZnO on the performance of the transducer. 

1.3.3 Deposition and characterization of piezoelectric ZnO thin films on GaAs 

ZnO thin films with piezoelectric responses comparable to bulk single crystal ZnO are not so 

easy to obtain. Therefore, the deposition conditions should be optimized in order to achieve the 
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desired performance of the sensor. Through the state of the art of the commonly used deposition 

techniques, we choose the one allowing to obtain well oriented and textured films reproducibly. 

We investigated the use of a buffer layer for promoting the growth and quality of ZnO on GaAs 

and compared it to direct deposits. Moreover, we determined the effect of the crystallographic 

orientation of the substrate on the quality of the deposited films. A complete and systematic 

characterization of the deposited films was carried out to determine the optimal deposition 

parameters for obtaining device quality films. 

1.3.4 Realization and characterization of the bio-interface 

To ensure an efficient capture of bacteria, the bio-interface must be optimized. This applies to 

the SAM formation and the ligands immobilization. The first has been studied enough in the 

frame of the previous thesis and a mixed architecture has been already optimized. As for the 

ligands, the optimal parameters for their immobilization, in terms of concentration, pH and 

incubation time, were determined in this work using FTIR and fluorescence microscopy. This 

would allow us to achieve a maximum of recognition sites on the surface, and therefore improve 

the sensitivity for bacteria detection. 

1.3.5 Calibration of the sensor 

The evaluation of the performance of the device when it is subjected to different environments 

is essential to ensure the accuracy of the results. Therefore, we need to determine the impact of 

physico-chemical environmental parameters on the measurement, such as the impedance 

dependence to the pH or salt concentration of the solution to be tested. The influence of these 

parameters can differ according to the surface state. Hence, the measurements were performed 

with the following surface states: bare, chemically functionalized with SAM, bio-functionalized 

with antibodies and passivated. 

1.3.6 Detection tests with the targeted bacteria 

A lot of effort and research has been carried out in our group to develop GaAs-based acoustic 

transducers and to optimize the GaAs-biomolecule interface. However, the previous sensors 

were never confronted with bacterial models in order to evaluate their efficiency. Therefore, the 

continuation of the previous work must first involve the testing of the transducer combined with 
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the bio-interface. The sensitivity and full-scale range of the sensor were determined by 

performing detection tests in ideal (buffer) and complex media. Different controls were 

performed to validate the specificity of the bio-interface.  

1.4 Outline of the manuscript 

This thesis manuscript is structured in 6 chapters. In the present chapter, an introduction to the 

research topic is provided. After a brief presentation of the project and the preceding work in 

the research teams, the general outline and the objectives of the thesis are expounded. 

In chapter 2, we present the bacterial threats to human health and the conventional biosensing 

approaches applied to detect bacteria, and particularly Escherichia coli, in order to position 

beforehand the proposed biosensor in a global context and compared to other existing 

techniques. We exploit the relevant microfabrication potential, as well as the surface 

functionalization and regeneration functionalities of GaAs, constituting a real advantage for the 

development of a reusable biosensor. Then, we elaborate the promising properties of ZnO thin 

films leading to the choice of this material. After reviewing the main works involving the 

deposition of ZnO thin films on GaAs, the chapter concludes on the new architecture of the 

transducer combining these two materials. 

The relations and theoretical models allowing to understand the functioning of the transducer 

are presented in chapter 3. After a brief overview on acoustic waves transduction, we recall the 

tensorial expressions and the fundamental equations of piezoelectricity, in order to develop the 

analytical model of the transducer. By solving the propagation equations, the velocities, resonant 

frequencies and electromechanical coupling coefficient are determined for both GaAs and ZnO. 

To dimension the ZnO/GaAs transducer, a simulation using finite elements method is carried 

out using Comsol Multiphysics®. Using this model, the resonant frequency for thickness shear 

mode is determined. The shear mode has been preferred in this work since it allows the operation 

of the transducer in liquid medium with minor losses. 

In chapter 4, we reveal the microfabrication procedure of the transducer. Through a review of 

the commonly used deposition methods for ZnO thin films, a sputtering technique is selected. 

The first part of this chapter shows the deposition of ZnO thin films on GaAs substrates. We 

investigate the use of a new metallic buffer layer for promoting the growth of ZnO on GaAs as 
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well as the impact of the substrate’s orientation on the films quality and properties. For this 

purpose, structural (XRD, Raman) and topographic (AFM) characterization techniques are used. 

The chemical interactions and interfaces between the deposited layers are studied using 

secondary ions mass spectrometry (SIMS), and ellipsometry is employed to evaluate the 

thicknesses and optical properties of ZnO films. In the last part, we detail the different stages of 

fabrication of the transducer including the realization of the electrical contacts and the 

micromachining of the GaAs membrane by chemical wet anisotropic etching. 

Chapter 5 presents the development of the bio-recognition interface. We detail the procedures 

used for surface functionalization with SAM and antibodies as well as the different surface 

characterization methods employed. We also test different conditions for ligands immobilization 

such as their concentration, pH and incubation time, in order to achieve a maximum of 

recognition sites on the surface, and therefore to optimize the sensitivity of the detection. 

In chapter 6, we present the experimental setup for electrical characterization, which allows 

determining the frequency response of the transducer. Then, we study the impact of the pH and 

salt concentration of the biological sample on the electrical performance of the sensor. This 

study is carried out on different surface states of the sensor: bare, chemically functionalized with 

SAM, bio-functionalized with antibodies and passivated. Consequently, we demonstrate the 

detection of E. coli at different concentrations and we correlate the results with fluorescence 

measurements. Moreover, we present different controls performed to test the specificity of the 

biosensor to the targeted bacteria. After performing detection tests of the biosensor in ideal and 

complex media, we determine its sensitivity. Through the study of its performance, we conclude 

on the opportunities that the biosensor could have in comparison with its commercial 

equivalents and we identify the optimization perspectives. 

Finally, a summary of the achieved results is provided. In addition, the perspectives and the 

proposed future work are presented.   
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Chapter 2: State of the art and positioning of ZnO/GaAs 

biosensor 

2.1.  Bacterial threat and diagnosis 

2.1.1 Urgency for bacteria detection 

Man lives in constant contact with bacteria, present in his daily environment but also in his own 

body. A bacterium is a unicellular, prokaryotic microorganism, typically measuring between 0.5 

and 5 μm. It is an autonomous cell living in a colony, capable of reproducing on its own by cell 

division after duplication of its single chromosome.  

Some bacteria are directly beneficial to us, such as those colonizing our intestines and 

contributing to digestion. Others, called commensals, have no (known) effect on their host. 

However, some strains can become pathogenic in special circumstances, especially when they 

have the opportunity to cross the body's natural barriers of skin or mucous membranes. In 

addition, certain bacteria secrete toxins to which they confer their pathogenicity.  

The detection of these pathogenic bacteria is an issue of increasing importance in many fields 

(medical, food safety, environmental, military, etc.) [17]. In the medical field for example, a 

clinician often prescribes broad-spectrum antibiotics, while waiting for the results of 

bacteriological analysis. Sometimes, a doctor would only check the results of an analysis if there 

were a therapeutic failure. If the doctor knew the identity of the infectious agent responsible for 

his patient's disease, he/she would be able to immediately prescribe the appropriate treatment. 

In addition to lowering the costs of therapy, this would limit treatment failures and the number 

of antibiotic-resistant mutants. Moreover, in the agri-food sector, as fresh products are rapidly 

perishing, they are often placed on the market before the results of microbiological tests on 

different batches are available. Thus, the manufacturer takes the risk of making potentially 

contaminated food available to consumers in the sales departments, and then withdrawing them 

in the case of confirmation of a contamination. 

Bacterial contamination of food and water resources, as well as the increasing incidence of 

nosocomial infections, are elements that push us today to develop new means of detection and 

rapid identification of pathogenic bacteria. Indeed, contamination with a bacterial pathogen is 
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the main source of nosocomial infection [18] and the second leading cause of foodborne 

infections [19]. In addition, the risks of threats to personal and territorial security (military 

sector) make this task even more urgent. Figure 1 (a) shows the main areas of application of the 

research carried out in the field of pathogen detection including food industry, environment and 

water quality control and clinical diagnosis [17]. In this context, the development of rapid and 

effective bacterial detection tools has a central role in health prevention and medical diagnosis. 

 

Figure 1. (a) Sectors of interest for pathogen detection, (b) Classification of studies in the 

literature on detection of pathogenic bacteria by micro-organism type (Source: ISI Web of 

Science.ca, 2500 research articles on pathogen detection over the last 20 years) 

Figure 1 (b) shows the distribution of scientific literature covering the detection of pathogenic 

bacteria. Accounting for the second largest number of articles, Escherichia coli is one of the 

most commonly and thoroughly studied bacteria in the world, and it is the targeted bacteria in 

this thesis. 

2.1.2 Escherichia coli: targeted bacteria 

Regularly called into question in the epidemics of food infections, Escherichia coli or E. coli 

presents several facets unknown to the public. Often beneficial to the body, sometimes deadly, 

these bacteria continue to arouse interest. 

E. coli is a bacterium naturally found in the gut of humans and most mammals, and often 

considered as commensal. Far from being pathogenic, it occupies about 80 % of our intestinal 

flora and contributes to the proper functioning of the gastrointestinal system.  
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While the majority of E. coli strains are harmless, some have acquired virulence factors that 

made them pathogenic causing diseases such as gastroenteritis, urinary tract infections, 

meningitis, etc. This is the case of so-called enterohemorrhagic E. coli (EHEC) strains [20]. 

Human infection results in serious pathologies, especially in children under the age of 3, with 

development of hemorrhagic colitis and/or hemolytic uremic syndrome (HUS) that can lead to 

kidney damage, fatal in 3 to 5 % of cases [21]. People over 60 are also considered as a population 

at risk. The first epidemiological data date back to 1982, when the first strain of EHEC was 

isolated during an outbreak in the United States caused by uncooked steaks for hamburgers. 

Since then, EHEC has spawned many more outbreaks and is therefore a public health problem. 

In 2018, the centers for diseases control and prevention (CDC) investigated three multistate 

outbreaks of Shiga toxin-producing E. coli O26 infections in the United States. One of the 

outbreaks was caused by ground beef contamination. Out of 18 reported cases, 6 were 

hospitalized, including one person who died. The other two outbreaks were linked to romaine 

lettuce contaminated with E. coli O157:H7. As a result, in June 2018, 96 people were 

hospitalized, including 27 people who developed a type of kidney failure and 5 deaths [22]. 

The public health implications of failing to detect bacteria can be fatal, and the consequences 

easily make the news. Therefore, threshold values were set by governmental health 

organizations to determine if a sample is contaminated. The Canadian guideline for drinking 

water (Health Canada, 2012) and the US regulations (US EPA, 2009) state that a sample of 

drinking water should not contain E. coli at all. For swimming in lakes and beaches, the current 

standardized threshold for E. coli indicating a risk of fecal contamination of effluents in water 

is between 2 CFU/ml (in Canada [23]) and 23.5 CFU/ml (in USA [24]). As for urine samples, 

the presence of E. coli at a concentration greater than 105 CFU/ml represents urinary tract 

infection [25]. 

The determination of the concentration of bacteria present in a sample requires rapid and 

effective tools. In the next section, we will present the conventional methods used in laboratories 

for the identification and characterization of these bacteria.  

2.1.3 Conventional bacteria characterization techniques 

Public and private surveillance systems use essentially conventional methods for recognition 

and characterization of pathogens, which rely primarily on microbiological and biochemical 
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identifications. These methods usually require a pre-enrichment of the sample before proceeding 

to the analysis stage, which allows the pathogens possibly present in the sample to multiply in 

abundance (multiplication factor ranging from 103 to 109 depending on the speed of growth) and 

to become detectable. 

Culture and colony counting 

Culture-based method is a central technique used in biology labs for bacterial identification. 

Traditionally, the first step is to obtain a pure culture to obtain isolated colonies. From this 

culture, a number of morphological, cultural and biochemical characters of this unknown 

organism is confronted with those of many known species until finding a similarity. The origin 

of the organism often provides indications which, added to some simple observations and tests, 

can lead to the possible identity of the organism or at least, to circumscribe the research to one 

of the main bacterial groups. This phenotypic identification of bacteria has been used for more 

than a hundred years in microbiology laboratories to identify pathogens. Since these methods 

are based on the growth properties of microorganisms, an incubation of 18 to 24 hours is 

required for the identification of bacteria, and typically a minimum of 36 to 48 hours elapses 

before the results of the sample analysis are obtained. For some species, it may require up to 7 

days to yield results, as it relies on the ability of microorganisms to multiply and to give colonies 

visible by the eye. In the past ten years, the matrix-assisted laser desorption ionization time of 

flight mass spectrometry (MALDI-TOF MS) has emerged in microbiology labs, particularly in 

hospital laboratories. Thanks to this technology, specific identification can be obtained from a 

single colony on agar in a few minutes. It is certain that the initial culture step is still necessary, 

but once the culture is positive, the identification is very fast. Nevertheless, the use of 

conventional culture-based techniques poses big problems of delay in response [26]. 

Methods based on immuno-recognition  

These methods are based on the antibody-antigen interaction and are widely used for the 

detection of foodborne pathogens. In these techniques, probe antibodies, either in solution or 

immobilized on a surface, recognize specific antigens of the pathogen to be detected in the test 

solution. The antibody-antigen interaction, in the presence of the pathogen, causes a 

modification of the medium: formation of aggregates for serological agglutination tests, 

precipitates for immunoprecipitation tests or even radiation absorption for enzyme linked 
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immunosorbent assay (ELISA) tests. The typical detection times for these techniques are more 

than 24 hours, so it is not a real-time detection. In addition, the detection limit is typically 103 - 

104 CFU/ml, which makes the pre-enrichment phase mandatory [1]. 

Polymerase Chain Reaction (PCR) 

DNA based method, such as PCR are fast and specific techniques that allow the analysis of 

several bacterial strains simultaneously [27]. PCR is based on the exponential synthesis of 

copies of a specific DNA sequence which doubles at every cycle. Monitoring the melting curves 

during successive cycles makes it possible to identify the amplified sequence, i.e. the bacteria. 

It is very accurate because it detects the organism by amplifying the target rather than the signal 

and is therefore less prone to producing false-positives. An important disadvantage of this 

technique is that PCR amplifies all the DNA present in solution, which implies that the dead 

bacteria are also detected. This characteristic can be quite inconvenient, typically for the study 

of sterilized samples [28]. 

Flow cytometry 

It is a popular technique that utilizes light to count and profile cells in a heterogeneous fluid 

mixture. The basic principle of flow cytometry is the passage of cells in front of a laser so they 

can be detected, counted and sorted. When additional information is required, antibodies tagged 

with fluorescent dyes, and raised against the targeted cells can be used and then excited by the 

laser to emit light at varying wavelengths. The fluorescence can then be measured to determine 

the amount and type of cells present in a sample. However, this preliminary stage of fluorescent 

labeling may be an obstacle to practical applications. The results are usually obtained within 2 

hours, with an LOD of 105 CFU/ml. The advantage of cytometry is that it is free from the volume 

of the sample to be tested, which also eliminates the enrichment phase of the solution [29]. 

Although these methods provide both qualitative and quantitative information of the tested 

entity, they are greatly limited by the time required for the identification of the bacteria or require 

labeling. The sectors of food industry, water treatment and clinical diagnosis in which these 

techniques are used, are demanding of new technologies that would be faster, reliable, specific, 

sensitive and simple to implement while maintaining low costs of manufacture and operation. 

The ability to perform real-time analysis is also a key feature for these detections.  
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Biosensor technology can meet these requirements and reduce the analysis time while offering 

detection similar to conventional techniques in terms of sensitivity and specificity. They present 

an attractive alternative as their capability of being used in situ allows reduced detection times, 

from several days to hours, or even minutes. 

2.2. Biosensors for the detection of bacteria 

2.2.1 Biosensors: definition, history and development 

According to the International Union of Pure and Applied Chemistry (IUPAC), a biosensor is 

an integrated device capable of providing specific quantitative information through a biological 

recognition element in direct contact with an element of transduction. The term biosensor 

therefore includes any measurement device defined by a biological ligand connected to a 

transduction device designed to transform a molecular recognition phenomenon between the 

ligand and its target into a physically measurable signal [30]. 

Thereby, a biosensor is composed of three components: the bio-recognition interface for 

detecting a targeted substance in a medium, the transducer for converting the physicochemical 

changes induced by the biological recognition into a physically measurable signal, and the signal 

processing interface for the conversion/transmission of the signal. 

Two classes of biosensors can be differentiated: those with direct detection (no use of labeling 

molecules), and those with indirect detection requiring the addition of a probe (fluorophore, 

enzyme, etc.). 

 

Figure 2. Diagram illustrating the components of a biosensor 
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The history of biosensors began in the 1962 with the development by L. Clark of the first enzyme 

electrode capable of measuring the concentration of dissolved oxygen in blood. The coupling of 

this oxygen electrode to an enzymatic membrane subsequently allowed the determination of the 

glucose content in the blood and in various other biological solutions [31]. At the beginning of 

the 1970s, Guilbault created a device to measure urea in blood and urine [32]. Since these first 

achievements, biosensors have continued to attract research interest and they are still 

experiencing increased momentum. Indeed, the number of publications on biosensors has been 

growing exponentially over the last 20 years, showing the emergence of these technologies [33]. 

Due to their many advantageous characteristics (small size, speed, ease of use, low cost, etc...), 

the development of biosensors is booming in various fields such as the agri-food sector [5], 

environmental control [34], health and military [35]. All this adds up to a prediction of a strong 

commercial future for biosensor technology. In this context, figure 3 shows the value of the 

evolution of the biosensor market over the years. 

 

Figure 3. Evolution of the world market for biosensors in millions of US dollars, modified 

from [33] 

2.2.2 Characteristics of a biosensor 

The objective of developing a biosensor is to achieve a device of reduced size (potentially 

portable) that detects, alerts or even directly assays the analyte of interest, quickly and preferably 

without requiring additional reagents or sample pre-treatment. The performance of a biosensor 

is generally evaluated experimentally by their sensitivity S, limit of detection (LOD), full-scale 

range, specificity and response time [36].  
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The sensitivity: It is the ratio of the incremental change in the sensor’s output to the incremental 

change of the measurand in input. It describes how the output signal varies with changes of a 

certain measurand property such as mass attachment. The slope of the calibration curve, which 

represents the relationship between the measurand property and the signal generated by the 

system, can be used for the calculation of sensitivity.  

S = 
Δ Output signal 

Δ measurand property
    (2.1) 

The overall sensitivity depends on three essential parameters, resulting from the decomposition 

of a biosensor shown in Figure 2. The first one is the affinity of the bio-interface to the targeted 

species. The second is determined by the nature and the respective value of the various physico-

chemical changes that may occur at the level of the bio-interface during the immobilization of 

the compound: mass variation, modification of the visco-elastic behavior, etc. The third is 

related to the sensitivity of the transducer to the change of the intermediate variable.  

The LOD: It represents the lowest concentration of an analyte in a sample that can be quantified 

and distinguished from the absence of the analyte, under the stated experimental conditions. The 

LOD is reached when the output signal goes three times above the noise level, where the noise 

is quantified by the standard deviation of the signal. At this low input change, no quantitative 

measurements are possible, and the sensor can only act as a probe to measure whether the 

measurand is present or not. At around three times the LOD, one can start to make quantitative 

measurements. 

The full-scale range: It represents the range over which the sensor is usable with measurements 

that are expected/correlated to the analyte concentration. It ranges between the maximum and 

minimum values of the measurand that can be measured with the sensing system. It is limited 

by the LOD at the lowest concentrations. The broader the full-scale range, the less important are 

dilution or enrichment steps during sample preparation. In general, a proper sensor should 

function over at least one or two concentration decades. 

The specificity: It represents the ability of the sensor to detect the desired analyte in the presence 

of other potentially interfering species, to obtain the least possible false positives. It is controlled 

by the biological element used to functionalize the surface. Since the concentration of the analyte 
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to be detected can be very low compared to that of several other elements, a high specificity is 

essential in the real applications. 

Combined with these characteristics, miniaturization, accuracy, low cost of fabrication, good 

reproducibility, stability and reliability are essential features of the biosensors for their 

industrialization [37]. 

2.2.3 Classification of biosensors 

Biosensors can be classified according to different criteria such as the reaction involved, the 

nature of the ligand used or the transduction type. Indeed, the choice of the biomolecule of 

recognition and the transducer can directly influence the performances of the biosensor. In this 

section, we classify biosensors based on the transduction technique [38]. 

The transducer is the physical element that exploits the biochemical modification resulting from 

the interaction between the analyte and the ligand, to transform it into an electrical signal. The 

adequacy between the type of transducer and the biological element makes it possible to obtain 

a sensitive and easily exploitable signal with a minimum of background noise. The information 

given by the transducer, like the ligand, must be specific and must only correspond to the 

biological recognition. The type of transducer is chosen as a function of biochemical changes 

occurring at the bio-interface. Indeed, not all transducer-ligand combinations are equivalent, 

some are not even possible.  

Three transduction mechanisms are mainly used for designing biosensors: electrochemical, 

optical, or acoustic. The general principles of the most used transducers in the literature are 

briefly presented here, in order to understand the pros and cons of each transduction mode. 

In the case of electrochemical transducers, the binding of the analyte to the ligand generates an 

oxidation-reduction reaction. The latter produces or consumes ions or electrons, causing a 

change in the electrical properties of the solution that can be sensed out and used as a measuring 

parameter [39]. Based on the measured electrical parameters, electrochemical biosensors can be 

classified as impedimetric [40], conductimetric [41], amperometric [42] or potentiometric [43]. 

These transducers generally include one or more electrodes functionalised by biological 

compounds and operate in a liquid medium. Many reports have revealed that the electrochemical 
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biosensor has advantages such as speed, simplicity, low cost, high sensitivity, and relatively 

simple instrumentation [44], [45]. 

Optical transducers transform the recognition event in the form of an optical quantity (variation 

in refractive index, absorbance, fluorescence, luminescence, etc...) [46]. The main advantages 

of optical sensors are their insensitivity to electromagnetic interference, their high detection 

sensitivity and their non-destructive character, which allows in situ and real-time monitoring. 

However, their main limitation is the difficulty of complete integration on a miniaturized chip. 

Among these optical methods, Surface Plasmon Resonance (SPR) is the one with the largest 

market share [47]. SPR technique allows quantitative recognition of biological species in real 

time, without any labelling and with high sensitivity. Commercial SPRs are generally capable 

of detecting 1 pg/mm2 of absorbed analytes (which corresponds to 1 bacterium of E. coli per 

mm2) [48]. However, this sensitivity is strongly dependent on the surface functionalization. The 

flexibility of this technique is a great advantage, because it can be used in a multiplexed format 

for the detection of many analytes [49].  The principle of measurement is to send, through an 

incident ray (Figure 4), a wave polarized in the plane of incidence on a glass-metal interface 

(usually gold or silver). For a definite angle, characteristic of the metal layer, the energy of the 

wave is partly absorbed by the excitation of the surface plasmons. The plasmon wave will play 

the role of probe because its amplitude and its phase will be modified following the fixation of 

molecules on the surface. The analysis of the amplitude or the phase of the reflected signal will 

allow to determine the number of biomolecules interacting on the surface. The performances of 

SPRs made them reference devices used by many research teams to validate bio-

functionalization/detection protocols. However, the cost of these systems is high. Indeed, their 

prices range from tens of thousands of dollars up to several hundred thousands of dollars [50]. 
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Figure 4. Principle of operation of the SPR technique (a) and typical SPR sensorgram showing 

the steps of an analytical cycle (b), modified from [51] 

Biosensors based on acoustic waves transducers measure the physical, chemical, and/or 

biochemical changes that accompany the formation of the analyte-ligand complex. They can be 

easily integrated in a microfluidic system and the sensing area is generally coated with a 

biospecific layer. When a bioanalyte interacts with the sensing layer, changes in mass or 

viscosity of the biospecific layer can be detected by monitoring changes in the acoustic wave 

properties such as velocity, resonant frequency and delay time. These transducers have many 

advantages, namely their sensitivity, accuracy, simplicity of microfabrication, low energy 

consumption, as well as the possible miniaturization and integration in automated devices. 

2.2.4 Positioning of acoustic wave biosensors 

In this section, the important features of acoustic waves biosensors are presented and compared 

with other sensing technologies with respect to their qualitative advantages and disadvantages, 

as well as their performances (analysis time, full-scale range, LOD). 

Acoustic waves-based devices offer a promising platform for the development of sensitive, 

accurate and portable biosensors. They could be the basis of an effective early detection system 

with advantages in terms of response time, possibility of integration and adaptability to a large 

number of applications. Since they are primarily sensitive to the effect of mass, they have a 

broad spectrum of applications, unlike other devices that would require the variation of a very 

specific parameter. Thus, any immobilization of material on its surface results in a mass 
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variation, possibly accompanied by the variation of other parameters. Moreover, depending on 

its configuration, an acoustic wave sensor can respond to a wide range of physical variables 

such as force, pressure, temperature, mass, density or like viscosity, permittivity and 

conductivity in the case of a liquid.  

Acoustic waves sensors do not require an expensive manufacturing process and have the 

particularity of being easily embeddable. They can therefore be used for nomadic applications, 

particularly for MicroElectroMechanical Systems (MEMS). Indeed, MEMS fabrication of 

acoustic waves-based sensors enables device miniaturization, power consumption reduction and 

integration with electronic circuits. Furthermore, acoustic biosensors are label-free which 

reduces their costs of operation and allows a real time detection. Additionally, they are passive 

sensors, so their energy consumption is very low. Another interesting feature of the acoustic 

wave devices compared to others is the frequency output, which has less noise than amplitude 

measurements, ensuring the high precision and reliability of the response. Aside from the 

technological advantages of acoustic waves biosensors, their performances for bacteria 

detection are also remarkable. Table 1 shows the detection range and analysis time for detecting 

E. coli reported in literature for different types of biosensors.  

Table 1. Comparison of the analysis time, full-scale range and LOD reported for E. coli of 

different types of biosensors  

Detection technique 
Analysis 

time (min) 

Full-scale range 

(CFU/ml) 

LOD 

(CFU/ml) 
Source 

Electrochemical – Impedimetry 10 - 180 101 - 107 30 [40], [52], [53] 

Electrochemical – Amperometry 6 - 30 101 - 107 16 [42], [54] 

Electrochemical – Conductometry 6 - 10 101 - 105 79 [41], [55] 

Electrochemical – Potentiometry 30 - 90 101 - 104 10 [43], [56] 

Optical – SPR 10 - 30 104 - 108 104 [49] 

Optical – Photoluminescence 60 - 120 103 - 105 103 [57] 

Optical – Chemiluminescence 30 102 - 105 102 [58], [59] 

Acoustic – Quartz crystal 

microbalance 
30 - 60 103 - 108 103 [60], [61] 

Acoustic – Surface acoustic 

waves biosensors 
30 - 150 106 - 109 106 [62], [63] 
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By comparing the performances of acoustic wave biosensors to others, it is fair to say that they 

are well positioned with respect to the full-scale range, analysis time and LOD. Indeed, they 

cover a wide detection range and the analysis time averages between half an hour and three 

hours. In terms of LOD, it is higher than the ones achieved using electrochemical biosensors. 

However, the latter require much more complex fabrication and surface functionalization 

processes (synthesis of nanowires [64], use of nanoparticles [42], [55]). Moreover, a review by 

Koncki has discussed the application of potentiometric-based biosensors in biomedical analysis 

and concludes that bioaffinity-based biosensors using potentiometric transduction are not 

reliable [65]. As for amperometric biosensors, one of the limitations to their use is the potential 

interferences to the response in the presence of electroactive compounds in the sample, which 

can cause the transducer to generate a false current reading and a lack of selectivity [66]. In the 

case of conductometric transduction, the measurement is an additive property, hence less 

sensitive compared to the other electrochemical methods and strongly dependent on the used 

buffer [67]. Due to all these limitations of electrochemical biosensors, their fragility and their 

complex fabrication processes, acoustic biosensors are preferred. 

As for optical biosensors, their LOD is comparable to the one of QCMs, although their cost is 

much higher and their integration level, although improving, still does not compare the ease of 

integration of acoustic biosensors. 

Based on these criteria, we propose in the present work the development of an acoustic wave 

biosensor, for its rapid response, its ease of design, fabrication and integration, as well as its 

high sensitivity and specificity for the targeted application.  

2.3. Gallium Arsenide for biosensing 

GaAs is a microtechnical material that combines advanced MEMS technologies with 

possibilities for devices integration and miniaturisation. In addition, the compatibility of this 

material with many functionalization techniques and surface micro/nanostructuration processes 

makes it an ideal candidate for a biosensor application. Through the past years and thesis, our 

laboratory has developed a high expertise in the fabrication of GaAs membranes using chemical 

wet etching, the formation of SAMs on GaAs and the regeneration of its thiolated and antibody 
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functionalized surface [8]–[10], [13], [14], [68]. In the following sections, we will present the 

various features of GaAs that justify the choice of this material for the sensing part of our device.  

2.3.1 Microfabrication functionalities of GaAs 

GaAs is a III–V compound semiconductor with a combination of physical properties that has 

made it an attractive candidate for many electronic applications. Most of the microfabrication 

processes applicable to silicon, the reference material for MEMS, are adaptable to GaAs, making 

this material the second most widely used in the field of microtechnology. Thus the conventional 

techniques of deposition, layer growth, structuring (wet or dry etching), doping (diffusion, 

implantation) and bonding are applicable to GaAs as well [69]. Moreover, the possibility of 

integrating GaAs structures with other devices is a crucial issue for the realization of MEMS, 

especially for bioMEMS requiring the use of fluidic cells. Thus, permanent or reversible 

techniques can be envisaged for producing structures, multi-material devices, generally 

GaAs/silicon or GaAs/glass [70]. As for permanent assembly techniques, they are identical to 

those proposed for Si: anodic bonding, fusion or direct bonding or thermocompression. 

Furthermore, GaAs could be micro-machined by wet etching in several solutions, which 

constitutes a batch and low-cost process of fabrication and leads to promising micro-structures 

for sensors [9], [71]. 

2.3.2 Bio-functionalization of GaAs 

For a biosensor application, it is necessary to integrate on the transducer a bio-recognition layer, 

to detect selectively the analyte of interest. Beside its beneficial microfabrication facilities, 

GaAs’s surface can be chemically functionalized with alkanethiols, which gives to this material 

very singular functionality for ligands immobilization. 

Chemical functionalization of GaAs 

The functionalization of GaAs surface by a monolayer of chemical molecules has the advantage 

of forming simple, organized and reproducible chemical interfaces. The formation of self-

assembled monolayers (SAM) of chemical molecules on GaAs surface allows forming different 

microstructures suitable for full biofunctionalization. The self-assembly derives from the fact 

that the organic derivatives adsorb spontaneously and organize themselves on the substrate. 
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Naturally, an oxide layer forms on the surface of GaAs [72]. By deoxidizing the surface 

beforehand, it becomes possible to form monolayers of thiols equivalent to those obtained on 

gold substrate. The work of Voznyy and Dubowski has led to a better understanding of the 

interactions between thiols and this substrate [73], [74].  

For developing the GaAs-based biosensor, Bienaimé et al. have used a mixed architecture of 

SAM consisting of 11-mercapto-1-undecanol (MUDO) and 16-mercapto-1-hexadecanoic acid 

(MHDA) [10]. The chosen molecules each possess a thiol allowing the attachment, consisting 

alkyl chains of different lengths (11 and 16 carbons), and respective terminal hydroxyl and 

carboxyl functions. These two functions make it possible to fix the proteins (reaction between 

activated carboxyl group and amine group of the protein) and to limit the non-specific 

interactions on the substrate. In his thesis, V. Lacour studied the formation kinetics of SAMs on 

GaAs. In his paper [14], he investigated the formation of enhanced quality mixed SAMs as a 

function of the molecular composition of the thiol mixture and the proportion of ethanol/water 

solvent used during their arrangement. His results, in addition to confirming that water/ethanol-

based solvents improve the packing density of single thiol monolayers [75], demonstrate the 

attractive role of water/ethanol solvents in forming superior quality mixed SAMs. 

Immobilization of ligands on GaAs using SAMs 

Biological recognition elements, or ligands, are the key to the biosensor technology. By 

definition, ligands are molecular species that use a specific biochemical recognition mechanism 

[38]. The choice of the ligand depends on several parameters: its stability, its lifetime, the 

specificity of its response and the ease of its use as well as the nature of the molecules to be 

analyzed [33]. In our research group, we mainly use antibodies to immunocapture the targeted 

biological objects. Antibodies are glycoproteins produced by the immune system in response to 

the introduction of a foreign molecule (antigen). These complex biomolecules are composed of 

roughly a thousand sequenced amino acids. Particularly suitable for the recognition of analytes 

present in very small quantities in biological fluids, these ligands are widely used, especially for 

clinical diagnostic applications.  

The surface of Gallium Arsenide can immobilize ligands by adsorption, trapping or covalent 

coupling methods. Covalent immobilization using SAMs has been found to be a strategy of 

choice because it allows to passivate the surface of the material while providing a high density 
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of bonding sites for the ligands. In addition, it is a process that is simple to implement and, 

depending on the type of molecules, achievable at low cost. If the SAM architecture is composed 

of a carboxylic acid, e.g. MHDA, it is done by activation of carboxyl groups. Such is the case 

within the work of A. Bienaimé [10], [11]. If the SAM has biotin-terminated architecture (e.g. 

Polyethylene glycol (PEG) thiol), the protocol is different and requires the use of an intermediate 

protein (Avidin, NeutrAvidin or StreptAvidin) and biotinylated antibodies [57]. However, the 

non-specific interactions caused by the intermediate protein could be a limiting factor for this 

approach compared to the first protocol. 

2.3.3 Regeneration of GaAs surface 

Apart from a few expensive biosensors used in research or analysis laboratories, only the 

cheapest ones can be competitive to penetrate broader markets. In general, the cost of biosensors 

is due to the instrumentation required for its operation and to the use of materials or reagents of 

high quality for its manufacture. As the costs associated with the GaAs material and the 

fabrication of the transducer cannot be ruled out, in this situation the regeneration of the device 

remains the only way to reduce the cost of using the system [76].  

The regeneration of the biosensor can occur on three different levels: 

Level 0: It consists in removing the whole bio-interface from the surface after exposure to the 

target. This includes the SAM, the ligands and the targeted analyte. This strategy is the most 

effective, because it allows to restart the measurements with a surface state that is very close to 

the first one, which guaranties the reproducibility and reliability of the results. 

V. Lacour used this approach for regenerating the surface of a thiolated and antibody 

functionalized GaAs surface using wet chemical process. The latter consists of immersing the 

sample in an NH4OH: H2O2: H2O (3:1:100) etching solution, that induces the chemical removal 

of the bio-interface. This method is fast, it can be performed in situ, and does not require 

sophisticated equipment. It allows the regeneration of the entire bio-interface, including the 

immunological receptors and the SAM [13]. However, on the long term or after a certain number 

of cycles, the gradual etching of the GaAs substrate can deteriorate the surface of the sensor 

(increase of the surface roughness for example). Within this thesis, another approach for 

regenerating the GaAs surface by UV photo-oxidation in liquid medium was tested. This method 
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allowed to desorb rather efficiently the thiols on the surface of GaAs by UV photo-oxidation, 

while preserving the surface of the material. Under exposure to a UV source, the alkanethiols 

adsorbed on a metal substrate oxidize to form alkanesulfonates (RSO3
−) that can easily be rinsed 

with a polar solvent such as ethanol [12]. This method was found to be very promising for 

patterning the GaAs surface for the attachment of different antibodies, a step towards 

multiplexed detection.  

Level 1: It consists of removing the ligands and the antigen while preserving the SAM on the 

surface. Although less efficient than the previous one, this strategy allows to restart the 

measurements with a functionalized surface and avoid the re-functionalization process which 

would take around 20 hours. However, after a few cycles of regeneration, the immobilization 

rate of ligands would not be the same, since the number of bonding sites may decrease over the 

cycles.  

Level 2: It consists of removing only the targeted molecule. This simple and relatively fast 

method allows to dissociate the antigen using an antibody-antigen dissociation kit. Many 

commercial kits are present on the market. These agents allow to re-use the antibody without 

affecting the SAM or the sensor surface. However, since the regeneration is not 100 % effective, 

some antigens may persist from one measurement to another, and the efficiency of regeneration 

may decrease after a few cycles, depending on the ligand used. 

As the previous works have shown, GaAs has a great potential for biosensing. Although its 

piezoelectric properties did not achieve the expected performances of the acoustic transducer 

(as mentioned in section 1.2), its surface functionalities remain very attractive. Therefore, we 

will keep GaAs for the biosensor part in contact with the liquid and add a piezoelectric layer of 

ZnO on its top side to improve the transducer’s performances. In the next section, we will 

present the various properties and features of ZnO and compare it to other piezoelectric 

candidates, in order to justify this choice of material. 
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2.4. Zinc Oxide thin films: an overview 

2.4.1 Properties of ZnO 

For several years, ZnO has attracted considerable interest in a wide variety of fields. It is a 

semiconductor material with interesting physical properties that place it among the most 

promising materials in a big range of fields such as energy recovery, electronics, gas detectors, 

etc. [77]. The first work on ZnO appeared in 1930. The difficulties for obtaining massive crystals 

as for its doping slowed down its development for several years. The ZnO rebirth took place in 

1995 when UV laser emissions were obtained in thin ZnO films at room temperature and was 

also driven by the technological interest in its thin films and nanostructures. Over the past years, 

the number of publications on this ion-covalent crystal has been steadily increasing. In this part, 

a fairly detailed discussion of ZnO properties is presented. 

Structural properties 

ZnO is a binary compound: it lies between ionic and covalent crystals. It can crystallize in three 

phases: würtzite, zinc-blende and rocksalt, as represented in Figure 5 (a). The zinc-blende phase 

is obtained by growth of ZnO on a substrate of cubic crystalline structure and the rocksalt 

structure is obtained when ZnO is subjected to high pressures (≥ 15 GPa). The würtzite phase is 

the most stable thermodynamically (obtained at ambient temperature and pressure), where each 

anion is surrounded by four cations that lie at the apexes of a tetrahedron and vice versa [78]. It 

is in this tetrahedral coordination that ZnO will be studied in this work. 

Würtzite phase ZnO belongs to the class 6mm compact hexagonal symmetry crystal family. The 

indices of the faces of this structure are denoted (hkil) [79]; the value of i can be calculated from 

h and k using the formula: i = - (h + k). 

The anions and cations form two subsystems offset parallel to the direction [0001], generally 

called the c-axis. The mesh parameters in the plane (0001) and along the c-axis are therefore 

distinct, which gives this material a structural anisotropy. One of the fundamental points about 

Würtzite ZnO is that it does not have a plane of symmetry perpendicular to the c-axis. Therefore, 

ZnO of compact hexagonal structure würtzite can be described by the alternation of two compact 

hexagonal networks one of Zn2+ and the other of O2- stacked alternately along the c-axis. 
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Figure 5. (a) Representation of the different crystal structures of ZnO, (b) parameters a and c 

of the elementary cell in the würtzite phase of ZnO, adapted from [80] 

Since the {0001} planes' surface energy is higher than that of the {1010} and {1120} planes, 

the growth rate along the c-axis is higher. As a result, the ZnO structure promotes anisotropic 

growth along the c-axis, which is an advantage for obtaining one-dimensional nanostructures. 

The hexagonal mesh of the würtzite structure is characterized by three constants a, c and u; a is 

the length of the side of a rhombus constituting the base, c is the lattice parameter along the 

(0002) plane referred to as the c-axis and u is an inner coordinate along the c-axis, which 

determines the relative position of the subnetwork of the O2- anion and the Zn2+ cation. The 

coordinate u is determined using the following equation:  

u = 
1

3

c2

a2
+

1

4
      (2.3) 

The crystallographic vectors of the würtzite structure are: 

𝑎 ⃗⃗⃗  = 𝑎 (
1

2
,
√3

2
,0) ; 𝑏 ⃗⃗⃗  = 𝑎 (

1

2
,
−√3

2
,0) et  𝑐 ⃗⃗ = 𝑎 (0,0,

𝑐

𝑎
)  (2.4) 

The parameters of the primary ZnO mesh under normal conditions of temperature and pressure 

are: a = 3.2498 Å and c = 5.2066 Å. These parameters depend on several factors such as the 

temperature and the presence of stresses, defects or impurities [80]. 

Electrical properties 

ZnO is a II-VI semiconductor of direct band gap of 3.37 eV at ambient temperature. As a large 

direct bandgap material, ZnO attracts the attention of many electronic and optoelectronic 
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applications. The advantages associated with this broad gap are the low noise generation, the 

high breakdown voltages and the ability to operate at high temperature (700 °C) and power and 

to support large electric fields [81], [82]. The electrical resistivity of ZnO in thin layer is in the 

range of 10-4 - 109 W.cm depending on the deposition conditions and mainly the temperature 

[83]. The thermal conductivity of ZnO thin films is of the order of 15 W.m-1.K-1 [84]. However, 

these values are very dependent on technological parameters and in particular heat treatments. 

Thermal properties 

Since the deposition conditions and the heat treatment significantly influence the properties of 

the thin film, it is important to know the thermal parameters of the material that determine its 

behavior as a function of temperature. The thermal capacity of undoped ZnO has a value of 519 

J.kg-1.K-1 and its thermal expansion coefficient is of 2.9 x 10-6 K-1. To avoid the generation of 

thermal residual stress in ZnO films, the thermal parameters of the substrates should be also 

taken into consideration.  

Optical properties 

As a thin layer, the refractive index of ZnO varies between 1.9 and 2.2 according to the 

conditions of elaboration. The optical transparency of ZnO in the visible and near infrared 

regions is a consequence of its wide gap, the fundamental absorption threshold of ZnO being in 

the ultraviolet. The doped ZnO enters the class of conductive transparent oxides (TCO). Slightly 

doped, it can be used in photoluminescence. The wavelength of the emitted radiation extends 

from the near UV (0.35 μm) to the visible (0.55 μm) according to the characteristics of the oxide 

and the elaboration conditions. Recently, the emission of ZnO films has been extensively studied 

because of its high luminescence efficiency, non-ohmic property, and high excitation bonding 

energy (60 meV). [81]. 

Piezoelectric properties 

ZnO of würtzite structure belongs to the class of piezoelectric materials. The piezoelectricity of 

ZnO originates from its crystal structure: since the barycenters of the positive and negative 

charges of its elementary mesh are not superimposed, an electric dipole appears inside the crystal 

and is modulable by the application of a mechanical stress (direct piezoelectric effect). The 
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interaction of this electrical dipole with an external electric field can also deform the crystal 

(inverse piezoelectric effect). 

ZnO has three piezoelectric coefficients: e15, e31 and e33. e15 describes the polarization induced 

by shear deformations. e33 and e31 connect the polarization along the c-axis to the deformation 

of the cell along c-axis and in the basal plane (orthogonal plane to the c-axis). In order to exhibit 

the piezoelectric effect, the film must be oriented along the c-axis. 

The piezoelectric effect in ZnO thin films has been studied for several years and is widely 

applied in many fields [77], more specifically in surface and bulk acoustic wave devices for 

filtering and sensing [85]–[87]. Thanks to its high piezoelectric coefficients, ZnO has been 

renowned as a very promising material for acoustic applications. 

2.4.2 Comparison of ZnO with other piezoelectric materials 

Acoustic sensing devices are based on piezoelectric crystals or thin films. Of all the piezoelectric 

materials, only some have the ability to be deposited as thin films while conserving interesting 

properties. Piezoelectric thin films developed during the last decades, and in particular 

Aluminum Nitride (AlN), Lead Zirconate Titanate PZT and ZnO have allowed the reduction of 

dimensions and the increase of oscillation frequencies. Over the last few decades, there have 

been many improvements in optimizing deposition conditions for thin films on substrates to 

enhance electromechanical transduction. Control over the growth of the piezoelectric thin films 

can lead to good environmental stability and responses, coupled with high piezoelectric coupling 

coefficients [88]. This section will therefore give a comparison of these three piezoelectric thin 

film materials and briefly explain some of the advantages of ZnO thin films, which are used in 

this work. For comparison, Table 2 lists some of the main characteristics of PZT, AlN and ZnO. 

PZT (Pb [ZrxTi1-x] O3) is a ferroelectric material, meaning that it must be poled to exhibit 

sufficient coupling coefficients, i.e. the dipoles in the compacted crystals must be aligned in the 

same direction by subjecting them to a strong electric field. Above the Curie point, the dipole 

directions in ferroelectric materials disappear. PZT can be deposited in thin films form by 

sputtering and by the sol-gel process. Sputtered PZT films can also show a spontaneous polarity, 

eliminating the need of poling. Despite the difficult fabrication process, PZT-based compounds 

are some of the most useful electro-ceramics. Among the piezoelectric film materials, PZT has 
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the largest piezoelectric constants [89]. However, PZT films have disadvantages for biosensing 

applications such as high acoustic attenuation, low quality factor, high energy loss and poor 

biocompatibility (high toxicity of Pb) [90], [91]. Worst of all, PZT films are not easy to fabricate 

[92]. The requirement for high temperature annealing and high electric field polarization also 

make PZT films unsuitable for integration with microelectronics as well as MEMS devices. 

Table 2. Piezoelectric properties of different piezoelectric materials [93] 

Material AlN ZnO PZT (1-3 μm) [94] 

Piezoelectric coefficients 

(10-12 m/V) 

d33 3.9 5.9 60 - 130 

d31 -2 -5 -120 to -170 

Piezoelectric stress constants 

(C/m2) 

e33 1.55 1.22 23.3 

e31 -0.58 -0.57 -6.5 

Dielectric permittivity (10-11 F/m) ε33 10.5 10.9 300 - 1300 

Thermal conductivity (W/m.K) at 300 K 285 54 1.4 

Thermal expansion (/°C) 4.3 x 10-6 6.5 x 10-6 2 x 10-6 

Like ZnO, AlN belongs to the hexagonal würtzite crystal type, having 6mm symmetry. Its 

structure can be considered as two inter-inserted hexagonal structures (aluminum and nitrogen) 

spaced by 3/8c from each other, where c is the main symmetry axis of the crystal. Compared to 

AlN, ZnO has comparable piezoelectric coefficients. However, the oriented growth and crystal 

quality are requirements for thin film piezoelectric devices. According to the literature, 

controlling the stoichiometry of a ZnO thin film and its texture is much easier than for thin AlN 

films [78]. Deposition conditions, especially the presence of oxygen in vacuum chambers, have 

significant effects on AlN film growth and microstructure. Furthermore, high film crystallinity 

of ZnO can be easily obtained by deposition at lower temperature than for AlN [95]. ZnO 

normally has a low film stress and a relatively good adhesion with most substrates. Moreover, 

ZnO material is considered as biosafe and therefore is suitable for biomedical applications that 

immobilize biomolecules [96]. Hence, among the three materials, ZnO has been chosen for 

improving the piezoelectric performance of the GaAs-based transducer. 
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2.5. Deposition of ZnO films on GaAs 

Regardless the deposition technique, a thin layer always tends to match the structure of the 

substrate on which it is deposited. Consequently, it is imperative to consider that the substrate 

has a very strong influence on the structural properties of the deposited layer. Thus, thin layers 

of some material, with the same thicknesses, may have substantially different physical properties 

depending on whether they are deposited on an amorphous insulating substrate such as glass, or 

a monocrystalline silicon substrate, for example. In this work, we investigate the deposition of 

ZnO thin films on GaAs substrates. 

2.5.1 A brief literature review 

The growth and characterization of ZnO films have been widely reported on different kinds of 

substrates [97]–[101]. High quality ZnO films have been deposited on Si, diamond, sapphire 

and glass substrates. Although the deposition of ZnO films on GaAs substrates was desirable to 

integrate optoelectronic devices and piezoelectric effect transducers, only a few reports were 

published [102]–[104]. This may be related to the possible interdiffusion of GaAs and ZnO 

layers, which could cause a significant degradation of the film’s resistivity or in unwanted 

doping of GaAs during the sputtering process [105]. For instance, Ryu et al. have studied the 

outdiffusion of gallium and arsenic from the substrate into the ZnO film and its effect on the 

secondary electron emission [106]. Moreover, the oxidation of GaAs surfaces produces 

amorphous oxide layers that may prevent the growth of crystalline structures [72]. To address 

this problem, several studies have been carried out and different buffer layers between ZnO and 

GaAs have been tested for different applications, such as SiO2 [107], [108], Si3N4 [109], ZnS 

[110], ZnSe [111] and Zn [112]. 

Indeed, the ZnO/GaAs structure has been studied by researchers for different applications. 

Piezoelectric ZnO thin films have been occasionally used for probing very weakly or non-

piezoelectric GaAs crystal orientations [108], [113]–[115]. It has been reported that ZnO 

overlayer on GaAs can enhance the piezoelectric coupling strength, which increases the 

transducer frequency range or acousto-electric interaction efficiency. Pedros et al. reported on 

the dispersion of the different SAWs supported by the ZnO/GaAs heterostructure, including the 

fundamental Rayleigh mode and the Sezawa modes that propagate guided in the overlayer [104]. 
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Their study showed that ZnO thin films enhance the piezoelectric field, facilitating the 

integration of SAW devices with GaAs electronics. On this basis, ZnO thin films were chosen 

to be implemented on the top side of the existing GaAs-based sensor, in order to improve its 

performance and achieve better quality factors. Moreover, Kim et al. studied the SAW properties 

of both Radio Frequency (RF) magnetron and Direct Current (DC) triode-sputtered ZnO films 

on (001) and (110) GaAs, and showed that the ZnO/GaAs structure can enable the monolithic 

integration of SAW devices and GaAs electronics [109]. 

These few examples show the growing interest in the ZnO/GaAs systems for different 

applications, and mainly for acoustic waves devices. 

2.5.2 Use of buffer layer between ZnO and GaAs 

As discussed in the literature, the oxidation of the GaAs substrate results in the formation of an 

oxide layer that affects the crystalline quality as well as the optical and electrical properties of 

the grown films [72]. On the other hand, diffusion effects produce unwanted phenomena at the 

ZnO/GaAs interface [116]. The large lattice mismatch between ZnO and GaAs and the 

difference between their crystallographic structures generate structural defects in the films 

[117]. Therefore, the use of a buffer layer, pre-deposited on GaAs substrate, can prevent these 

problems, and sometimes improve the quality of the grown ZnO films. 

The deposition of ZnO on GaAs using a buffer layer has been investigated in the literature, and 

different buffer layers were tested. For example, the use of a SiO2 buffer layer was first reported 

by Shih et al. who demonstrated that the SAW properties and coupling coefficient could be 

increased appreciably by providing a SiO2 layer between the ZnO film and GaAs substrate 

[108]. Later, Kim et al. reported the use of the same SiO2 buffer layer to obtain thermally stable 

ZnO films on GaAs substrates that can sustain postdeposition heat treatment [107]. 

Si3N4 passivation layer was shown to improve the ZnO film quality appreciably for both RF 

magnetron and DC triode sputtering methods [109]. The best quality of films observed were 

obtained using 1.6 µm DC triode sputtered ZnO film with 2000 Å of Si3N4. The authors showed 

that compared with bare GaAs, this particular structure has approximately 0.6 % lower SAW 

velocity, at least 10 times larger coupling coefficient, and -0.6 dB/µs more propagation loss. 
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Zhao et al. reported on the deposition of ZnO thin films by plasma-assisted MBE on GaAs 

substrates with ZnSe buffer layers [111]. The choice of the buffer layer was justified by the ease 

of control of the ZnO/ZnSe interface compared with the ZnO/GaAs interface, since ZnSe and 

ZnO are both II-VI semiconductors and share a common cation. They have also shown that the 

films grown with this buffer layer have better structural qualities. 

The possibility of growing zinc-blende ZnO films on GaAs (001) substrates was studied by 

Ashrafi et al., and the use of a ZnS buffer layer was proposed to obtain stable ZnO films. The 

ZnS buffer layer prevented the formation of the amorphous oxide layer and the growth of zinc-

blende ZnO of high optical quality was demonstrated on the ZnS/GaAs substrates [110]. 

However, for obtaining piezoelectric films, the ZnO würtzite structure is required. 

Another study using Zn buffer layer between ZnO and GaAs showed a greater out-of-plane 

misorientation and a less compact morphology, which made us eliminate this buffer layer [112]. 

As for our work, aiming to develop an acoustic waves sensor, we propose to use a Platinum 

buffer layer, which could improve the quality of ZnO films and potentially serve as a counter 

electrode for thickness mode excitation within the acoustic transducer. 

2.6. Proposed architecture and approach 

To improve the performances of the existing GaAs-based biosensor, we propose to modify the 

architecture and retain the GaAs for the sensing part in contact with the liquid, profiting from 

its functionalization facilities and its ability to be regenerated and machined by conventional 

microfabrication techniques. On the other hand, we propose to add a piezoelectric ZnO thin film 

on one side of the GaAs membrane to improve the electromechanical coupling.  

Therefore, the new geometry of the biosensor shown in Figure 6 consists of a GaAs vibrating 

membrane with a thin layer of piezoelectric ZnO on its top side. A pair of electrodes deposited 

on the ZnO film allows the generation of a bulk acoustic wave in thickness shear mode, 

propagating in GaAs under a sinusoidal voltage at a given frequency. The bottom side of the 

membrane is functionalized with a SAM of alkanethiols and antibodies against E. coli. 

The chosen design has the advantage of separating the electrical interface from the fluidic 

(biological) one, which would prevent the signal attenuation due to contact with fluids.  
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Hence, the device fabrication by clean room techniques is divided into two main stages: the 

deposition of piezoelectric ZnO thin layer and the electrodes on the top side, and the 

micromachining of the GaAs membrane by chemical wet anisotropic etching on the bottom side. 

 

Figure 6. Architecture of the ZnO/GaAs biosensor 

Before proceeding to the microfabrication of the sensor, the proposed design needs to be 

validated. Therefore, the next chapter presents the analytical modeling and simulation of the 

transducer, in order to predict beforehand its performances.
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Chapter 3: Modeling & simulation of ZnO/GaAs transducer 

The fabrication of acoustic wave components requires the use of so-called piezoelectric 

materials. The principle of acoustic wave generation is related to the electro-acoustic properties 

of piezoelectric materials such as quartz, AlN, ZnO and PZT. These materials allow acoustic 

waves devices to be designed and manufactured. In this chapter, emphasis will be placed on 

bulk acoustic wave (BAW) transducers designed to operate in thickness shear modes (TSM).  

The present chapter consists of two main parts: the first one is a reminder of the theoretical 

principles governing the operation of the transducer. In this part, we will discuss the different 

modes of propagation of acoustic waves in piezoelectric materials, then we will establish the 

tensor expressions of piezoelectricity and introduce the equations describing the propagation of 

waves in a piezoelectric material. From these equations, and after some simplifications due to 

the geometry of the transducer, we will determine the velocities and directions of propagation 

of elastic waves in the structure, as well as the resonant frequency (f) and the electromechanical 

coupling coefficient (k). The second part of this chapter deals with the realization of a finite 

element simulation model to dimension the ZnO/GaAs transducer and determine its theoretical 

resonance characteristics. 

3.1. Piezoelectric effect and generation of an acoustic wave 

Piezoelectricity is the property of some crystals to be electrically polarized under the action of 

a mechanical stress. This induced polarization is proportional to the applied mechanical stress 

and changes sign with it. This phenomenon describes direct piezoelectricity. On the contrary, 

the application of an external electric field induces a mechanical deformation of the crystal: it is 

the inverse piezoelectric effect [118].  

The piezoelectric properties of a material are related to its crystalline structure. Indeed, this 

characteristic is observed only in certain dielectric crystals possessing a characteristic crystalline 

anisotropy. In these materials, the axis of polarization is defined as the preferred axis of 

appearance of electric charges in the structure. Among the 32 crystallographic classes, 20 have 

piezoelectric properties, of which only a small number corresponds to materials of interest in 

piezoelectric applications. 
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Piezoelectric materials are particularly interesting for the generation of acoustic waves since 

their deformation is directly proportional to the applied electric field. In the next section, we 

will present the different types and aspects of acoustic waves transducers and discuss the 

selection of specific waves for the operation of the biosensor described in this work. 

3.2. Acoustic waves transduction 

An acoustic wave is a propagative disturbance of the equilibrium of a medium moving gradually 

and returning to a state of equilibrium thanks to its elasticity. The physical properties of the 

medium act directly on the propagation conditions of the wave and can affect its phase and/or 

amplitude velocities. There are two types of waves depending on the displacement of the 

particles with respect to the propagation of the wave (Figure 7). 

▪ Longitudinal waves (or compression waves): the displacement of the particles is 

parallel to the direction of propagation of the wave. The planes perpendicular to the direction of 

propagation of the wave undergo a succession of compressions and dilations. 

▪ Transverse waves (or shear waves): the displacement of the particles is perpendicular 

to the direction of the wave propagation of the wave. The planes perpendicular to the direction 

of propagation slide relative to each other while maintaining their distance. 

 

Figure 7. Longitudinal (a) and transverse (b) waves 
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In a gaseous environment, transducers operating in the longitudinal wave mode are appropriate, 

since there is not much loss of energy to the environment. However, transducers using the 

longitudinal wave mode are drastically affected when used for sensing in liquid phase 

environments. In fact, displacements normal to the surface generate compressional waves 

dissipating into the liquid. The resulting energy losses reduce the mass resolution substantially. 

In contrast, the shear mode, with a displacement parallel to the surface, allows an operation in 

liquids with minor damping effects due to viscous loading [119]. The excitation of shear waves 

requires a certain orientation of the exciting electric field with respect to the crystallographic 

orientation of the material. 

Acoustic transducers can be classified by the type of waves generated (Figure 8) [120], [121]. 

If the propagation of the wave occurs through the material, it is called bulk acoustic wave 

(BAW). In contrast, if the wave propagates on the surface of the material where it is confined, 

we will observe surface acoustic waves (SAW), and if it is limited by two parallel 

surfaces/plates, acoustic plate waves (APM) will be generated [122]. 

 

Figure 8. Classification of acoustic wave devices adapted from [120] 

3.2.1 Surface acoustic wave (SAW) transducers 

A SAW is an acoustic wave traveling along the surface of an elastic material, with an amplitude 

that decays exponentially with depth into the material. SAW transducers are components that 

transform an electrical signal into a surface acoustic wave, using typically an inter-digitated 

transducer (IDT) deposited on a piezoelectric material. When a sinusoidal voltage is applied to 

one of the electrodes, a strain field is generated in the piezoelectric crystal. SAW devices 
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generally consist of a piezoelectric substrate, or a multilayer structure composed of at least one 

piezoelectric thin film deposited on a piezoelectric or non-piezoelectric substrate [123]. Typical 

substrate materials include silicon, quartz or lithium niobate (LiNbO3). 

The generation of SAW requires a particular configuration of the electrodes. Transducers with 

interdigital electrodes comprise two comb-shaped metal electrodes, usually made of gold or 

aluminum, deposited on the piezoelectric substrate (Figure 9). The voltage applied between two 

electrodes creates an electric field that generates deformations near the surface giving rise to the 

propagation of elastic waves. In a typical delay-line configuration, a second IDT placed at a 

given distance permits to sense the acoustic wave after a given time delay, explaining the name 

of this configuration. 

 

Figure 9. Basic structure of SAW device, adapted from [124] 

The fact that the vibrations are localized on the surface of the device makes SAW devices more 

affected by the surface interactions and therefore more sensitive. This makes them widely used 

for detecting gases or vapors. Among SAW, we distinguish Rayleigh waves, shear horizontal 

surface acoustic waves (SH-SAW) and Love waves (LW). 

Rayleigh transducers 

Named after their discoverer, Rayleigh waves have a longitudinal component and a vertical 

shear component, as shown in Figure 10 (a), that can couple with a medium placed in contact 

with the device’s surface. Rayleigh waves are mostly used in high frequency filter techniques 

and gas sensing (30-500 MHz), since the displacement is perpendicular to the substrate surface, 

which is a problem for liquid operation. Indeed, when the transducer is in contact with a liquid, 
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the displacement component in the direction of the substrate’s normal couples to the liquid, 

inducing energy losses and attenuation of the signal. 

SH-SAW transducers 

SH-SAWs have a displacement perpendicular to the propagation direction and parallel to the 

surface. They are horizontally polarized shear waves, generated in the range of 100-200 MHz, 

and adequate for sensing in liquids. Nevertheless, slight amounts of acoustic energy are lost in 

the bulk of the substrate, and the sensitive layer must be located on the face of the electrodes, 

which is not recommended for measurements in liquid medium [62]. 

 

Figure 10. SAW propagation for Rayleigh waves (a), SH-SAW (b) and Love waves (c), 

modified from [125] (Black arrows: particle displacement, white arrows: wave propagation) 
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Love modes transducers 

When the surface is covered by metal or amorphous SiO2 thin films with an acoustic velocity 

lower than that of the substrate, LW are generated. The thin guiding layer is required to confine 

the surface wave and minimize the acoustic losses into the bulk of the substrate or into the liquid 

above the sensor surface. It also isolates the electrodes from the liquid, decoupling the electrical 

and fluidic interfaces [126]. LW transducers have high sensitivities and can operate in liquid 

medium via shear modes in the range of 100-200 MHz. Indeed, the operation in liquid 

environments of LW-based sensors has been profusely reported in the literature [127], [128]. 

3.2.2 Acoustic plates modes (APM) transducers 

SH-APM transducers 

Shear Horizontal Acoustic Plate Modes (SH-APM) transducers utilize a thin piezoelectric 

substrate or plate that serves as an acoustic waveguide, confining the energy between the upper 

and lower surfaces of the plate. As a result, both surfaces undergo displacement, thus, detection 

can occur on either side. This is an important advantage, as one side contains the IDTs that must 

be isolated from conducting fluids or gases, while the other side can be used for sensing. They 

are well suited for viscosity and bio-sensing in liquid in a frequency range going from 20 to 200 

MHz, as the displacement is perpendicular to the propagation and parallel to the surface (Figure 

11 (b)). However, SH-APMs have a limited sensitivity and many modes can be excited 

simultaneously at close frequencies [129]. 

Lamb waves transducers 

If the substrate thickness is strongly reduced to form a membrane, APM modes become Lamb-

modes, also known as guided plate waves or flexural plate wave (FPW), consisting of a 

longitudinal wave and a flexural wave. Lamb wave transducers are very sensitive. They operate 

between 5 to 20 MHz and allow real-time measurements [130]. However, they are partially 

attenuated in liquid medium and the membrane required for these sensors is usually very thin. 
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Figure 11. Acoustic wave plate propagation in the case of FPW (a) and SH-APM (b), modified 

from [125] (Black arrows: particle displacement, white arrows: wave propagation) 

3.2.3 Bulk acoustic waves (BAW) transducers 

We define BAWs as the waves propagating in a homogeneous solid considered unlimited [131]. 

They are generated by the application of an electric potential at the resonant frequency in the 

range of 4 to 150 MHz.  

The oldest but reference application of BAW is Quartz Crystal Microbalance (QCM). It is a 

piezoelectric microbalance consisting of a cylindrical quartz disk with an electrode on each of 

these two faces. Presented in 1959 by Sauerbrey, the initial model has been enriched by many 

authors to allow measurements in liquid medium and for an application as a biosensor. These 

devices use the piezoelectric effect of the substrate to excite and detect BAWs via electrodes 

deposited on the substrate (Figure 12). The retained waves operate in thickness shear modes 

(TSM) that allow the use in a liquid medium with a high level of sensitivity. The main 

advantages of QCM are the small size and ease of integration [61]. 

 

Figure 12. BAW propagation in TSM, modified from [125] (Black arrows: particle 

displacement, white arrows: wave propagation) 
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Another application is the thin-film bulk acoustic resonator (FBAR or TFBAR), which consists 

in a thin layer of piezoelectric material with excitation electrodes fabricated on both sides of the 

film (Figure 13). The acoustic waves propagate unguided through the volume of the thin 

piezoelectric film and the detection mechanisms occur at the opposite surfaces of the film. 

FBARs are popular due to their high quality factors Q that range from a few hundreds to a few 

thousands in air and vacuum at high frequencies (900 MHz – 1 GHz). These high Qs are 

achievable because FBARs create a very large acoustic impedance mismatch between the solid 

materials and air, thus confining the generated acoustic waves within a cavity [132]. 

 

Figure 13. Example of an FBAR 

To summarize, BAWs operating in TSMs have the advantage of having a fairly simple and low-

cost manufacturing process, and of operating at low frequencies. Even if their sensitivity is more 

limited, they work perfectly in liquid medium and the electrodes (in the case of LFE) can be 

separated from the recognition layer. For these reasons, the proposed biosensor uses BAW in 

TSM. However, in order to predict its performances, an analytical study is mandatory and is 

presented in the next section. 

3.3. Acoustic wave propagation in piezoelectric materials 

A more detailed understanding of piezoelectricity is possible using the piezoelectric equations 

describing the coupling between electric and mechanical properties in the piezoelectric material. 

Displacement and stress are vectors and tensors, respectively, and the components for each can 

be related via the piezoelectric effect. Due to the particular structure and anisotropic behavior 

of the piezoelectric material, a tensor analysis is necessary. It allows to express its different 

physical characteristics (elasticity, permittivity, piezoelectricity) along the crystallographic axes 
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and to establish the piezoelectric equations. These equations, presented in the following 

sections, were established based on references [79], [118], [133], [134]. 

3.3.1. Strain and Stress 

During the crossing of the wave, the solid deforms (extension, shear ...) and internal stresses 

appear that tend to restore its initial shape. If these deformations remain below the elastic limit 

of the material, the deformed solid returns to its original shape as soon as the internal stresses 

disappear. The generalized Hooke's law translates this behavior. The stresses (Tij) are therefore 

related to the strains (Skl) by the stiffness constants cijkl specific to the material. These stiffness 

constants reflect the mechanical behavior of the material according to the crystallographic 

direction studied. The two stress and strain quantities being represented by rank 2 tensors, the 

tensor that connects them, called rigidity tensor, is of rank 4. 

When the solid is subjected to mechanical stresses, its atoms are displaced. ui (xi) represents the 

displacement of a point along an axis xi (i = 1, 2, 3) with respect to its initial position. The 

relation between the displacement ui and the strain Sij is given by: 

Sij = 
1

2
[
∂ui

∂xj
+ 

∂uj

∂xi
]     (3.1) 

In tensorial form, Hooke's law is expressed as follows: 

Tij = cijkl Skl      (3.2) 

The indices {i,j,k,l} are taken from {1,2,3}. Similarly, the strain can be deduced from the state 

of the internal stresses and the compliance constants sijkl of the material: 

Sij = sijkl Tkl      (3.3) 

In the previous equations, the symmetry of the tensors makes it possible to simplify the notations 

considerably. By adopting the Voigt notation, the tensor of rank 4 (rigidities) is reduced from 

81 to 36 components, the tensor of rank 3 (piezoelectric coefficients) from 27 to 18 components 

and the tensors of rank 2 (strain, stress, permittivity) from 9 to 6 components. Moreover, as the 
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tensors (Tij) and (Skl) are symmetrical, the elastic constants do not change during the permutation 

of the first two indices or the last two indices: 

cijkl = cjikl and cijkl = cijlk    (3.4) 

The simplifications of notation are obtained by replacing respectively the pairs (ij) and (kl) by 

an index α and β whose correspondence is given in Table 3. 

Table 3. Correspondence of the indices α and β with the pairs of indexes (ij) and (kl) respectively 

(ij) or (kl) (11) (22) (33) (23) or (32) (13) or (31) (12) or (21) 

α or β 1 2 3 4 5 6 

In matrix form, Hooke's law is written, after simplification, as follows: 

  (3.5) 

Consequently, of the 36 stiffness tensor coefficients, only 21 are truly independent. Furthermore, 

depending on the crystalline classes considered, symmetry relations can further reduce the 

number of independent coefficients. 

3.3.2. Tensorial expression of piezoelectricity 

When the solid is exposed to electromagnetic waves, the behavior is described by the electrical 

boundary conditions of the solid and the Maxwell equations. Due to the high speed of 

electromagnetic waves compared to elastic waves in the solid (~105 times higher), we neglect 

these effects. Only the semi-insulating behavior of the material is taken into consideration. The 

electrical behavior of the material is expressed by its permittivity components εij which link the 

electrical displacement Di to the electric field Ej:  

Di = εij Ej     (3.6) 
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Ej is the electrical field, i.e. the derivate of the electrical potential φ, which can be expressed as: 

Ej = - 
∂φ

∂xj
     (3.7) 

The preceding equations show the mechanical and electrical behavior of the structure separately. 

A piezoelectric solid combines these two phenomena, so we must take them into consideration 

simultaneously. Additional constants eikl and dikl, referred to as piezoelectric coefficients, 

introduced in the preceding expressions, make it possible to link the strain to the electric field 

or vice versa. The equations constituting a piezoelectric material are thus established as follows: 

Tij = cijkl
E Skl - ekijEk 

Di = eiklSkl + εij
SEj or Di = diklTkl + εij

TEj   (3.8) 

Where cijkl
E  represents the stiffness coefficients at constant electric field, εij

S  and εij
T represent the 

electrical permittivity at constant strain and stress respectively. For non-piezoelectric materials, 

tensors dikl and eikl are both zero, and tensors εij
S  and εij

T are equal. 

The preceding equation can therefore be expressed in the following matrix form: 

[
T
D
 ] = [ c

E −e
e εS  ] [

S
E
 ]    (3.9) 

Where [ c
E −e
e εS  ] is the elasto-piezo-dielectric matrix, characteristic of the material. 

3.3.3. Acoustic propagation and coupled wave equations 

The derivation of the propagation equation of acoustic waves in an unbounded solid allows to 

determine the acoustic velocities and the polarization, i.e. the displacement direction, of the 

wave. In the absence of applied external force, the fundamental dynamic principle (Newton’s 

law) can be written as follows: 

ρ 
∂2ui

∂t2
 = 

∂Tij

∂xj
     (3.10) 

Where ρ is the density of the material. In the case of an insulating solid, the electrical 

displacement satisfies the Poisson equation: 
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∂Dj

∂xj
 = 0     (3.11) 

By replacing the stress and the electrical displacement by their expressions in (3.8), and 

considering the formula (3.7) for the electric potential, the relations (3.10) and (3.11) become: 

ρ
∂2ui

∂t2
 = cijkl

E ∂2ul

∂xj ∂xk
+ ekij

∂2φ

∂xj ∂xk
 

ejkl
∂2ul

∂xj ∂xk
 = εjk

S ∂2φ

∂xj ∂xk
    (3.12) 

These partial differential equations couple the electric potential to the mechanical displacement. 

The solution of this system corresponds to a progressive plane wave of polarization ui 

propagating in a direction indicated by the unit vector nj at the speed V. This solution consists 

of the displacement and the electric potential, which can be expressed in the following form: 

ui = Ui e
jω(t−

njxj

V
)
 

φ = φ0 e
jω(t−

njxj

V
)
     (3.13) 

By substitution of the displacement and the electric potential by their expressions, the system 

(3.12) becomes: 

ГilUi + Υiφ0 =  ρ V2Ui 

ΥiUi - 𝜀φ0 = 0    (3.14) 

Where Гil = cijkl
E  njnk is the Christoffel tensor, Υi = ekij njnk, and ε = εjk

S  njnk. 

By eliminating the electric potential in the system (3.14), we obtain the equation of propagation 

of an elastic wave in a piezoelectric material called the Christoffel equation: 

(Г𝑖𝑙 +
𝛶𝑖𝛶𝑙

ε
)𝑈𝑙 =  ρ 𝑉2𝑈𝑖    (3.15) 

Which can also be written as: 

Г𝑖𝑙
̅̅ ̅ 𝑈𝑙 =  ρ 𝑉2𝑈𝑖    (3.16) 
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Where Г𝑖𝑙
̅̅ ̅ = Г𝑖𝑙 +

𝛶𝑖𝛶𝑙

ε
 is the stiffened Christoffel tensor. 

The plane wave propagation velocities and the displacement components are determined by 

solving the Christoffel equation in the form of an eigenvalue problem.  

For each direction of propagation, 3 velocities are determined, which correspond to the roots of: 

|Гil −  ρ V2δil| = 0     (3.17) 

where δil is the symbol of Kronecker and V is the propagation velocity of the wave that we are 

looking to determine. 

The corresponding eigenvectors define the polarizations of the waves ui, which are mutually 

orthogonal. However, in an anisotropic medium, the polarization of the wave is not exactly 

perpendicular or parallel to the direction of propagation. Therefore, we define quasi-transverse 

and quasi-longitudinal waves. In the general case of a piezoelectric material, with propagation 

along an arbitrary direction, one will have coexistence of 3 plane waves with orthogonal 

polarization: a quasi-longitudinal wave, a rapid quasi-shear wave and a slow quasi-shear wave. 

3.4. Generation of BAWs 

3.4.1 Electrical excitation 

The electrical excitation applied to the piezoelectric material for the acoustic waves generation 

can be of several types [135], [136]. As shown in Figure 14, each type of excitation requires a 

specific electrodes configuration. 

The wave can be excited by an electric field oriented according to the thickness of the resonator, 

as is the case in most QCMs, referred to as thickness field excitation (TFE). In this configuration, 

the electrodes are placed on the two opposite sides of the piezoelectric material (Figure 14 (a)), 

and the electric field is oriented parallel to the thickness of the piezoelectric plate. 

Lateral field excitation (LFE) is the method of interest when the transducer is used for chemical 

or biological sensor applications. Indeed, this configuration (Figure 14 (b)) makes it possible to 

separate the electrical and the fluidic interfaces of the sensor, which facilitates the electrical 

connections. In addition, the electrodes will not be located in the maximum displacement region, 
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which provides better stability and a higher quality factor. Moreover, LFE enables some modes 

to be driven that are not available by TFE. In this work, we have chosen LFE, with electrodes 

placed on the opposite side of the biological capture zone. 

 

Figure 14. Thickness field excitation (a) vs. lateral field excitation (b) of waves [137] 

3.4.2 Electromechanical coupling coefficient 

The efficiency of the conversion process between the mechanical and electrical energies is 

defined by means of a coefficient called the electromechanical coupling factor k. The latter is 

defined as the ratio between the electromechanical energy stored in the resonator and the sum 

of the mechanical and electrical energies provided. 

k2 =
Transformed Energy

Provided Energy
    (3.18) 

If we consider a volume element and a transformation generating small variations of the 

mechanical and electrical magnitudes applied to the piezoelectric material, the energy variation 

δU will be the sum of the variations of the elastic (TδS) and electrical (EδD) energies: 

δU = TδS + EδD     (3.19) 

The introduction of the fundamental relations of piezoelectricity into the expression of the 

variation of energy leads to the following relation: 
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δU = TsEδT + Td δE + Ed δT + EεTδE   (3.20) 

The exponents E and T above the compliance and permittivity coefficients indicate that these 

coefficients are given at constant electric field and stress respectively. By integrating the 

equation (3.20) on the whole volume, we obtain the following formulation: 

U =
1

2
sET2 + dTE +

1

2
εTE2    (3.21) 

This equation can be identified as: U = UE + 2UM + UD, where UE = 
1

2
sET2 is the elastic 

energy, UM = 
1

2
dTE is the coupling energy, and UD = 

1

2
εTE2 is the electrical energy. 

The elastic and electrical energies are respectively proportional to the flexibility and the 

permittivity of the material whereas the coupling energy depends on the piezoelectric 

coefficients. The electromechanical coupling coefficient is then defined by: 

k2 =
UM

2

UE UD
     (3.22) 

By substituting UM, UE and UD by their expressions, the general formula of the 

electromechanical coupling coefficient becomes: 

k2 =
d2

εT sE
     (3.23) 

Note that electromechanical coupling factors are dimensionless coefficients, used for describing 

a piezoelectric material under a particular stress and electric field configuration for converting 

stored energy under mechanical or electrical action. They are mainly used to provide a useful 

comparison between the different piezoelectric materials for a specific wave/mode regardless of 

the permittivity or elasticity values.  

3.4.3 Resonant frequency 

In the case of TSM modes, the acoustic wave propagates in the thickness of the resonator. The 

resonance is obtained when a standing wave is established between the two faces of the 
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resonator. The wavelength must have discrete values, with a maximum value equivalent to twice 

the thickness. The resonant frequency is therefore expressed using the following equation: 

fm =
n Vm (1−

8 k2

n2π2)

2 h
     (3.24) 

Where n is the partial rank or harmonic (n ∈ {1, 3, 5...} with n = 1 for the fundamental mode), 

Vm is the velocity of the wave for the mode m and h is the thickness of the resonant structure. 

As the value of k is relatively very small, the expression of the resonance frequency becomes: 

fm =
n Vm

2 h
     (3.25) 

3.5. Resolution of the propagation equations 

In this section, we will solve the previously established equations for GaAs and ZnO separately, 

to determine the propagation directions and velocities of elastic waves in each material. We will 

determine the corresponding resonant frequency as a function of the thickness of the resonant 

structure, as well as the electromechanical coupling coefficient for shear modes. 

3.5.1. Case of GaAs 

Gallium arsenide is a blende zinc-type crystal consisting of two cubic-face-centered structures 

imbricated and offset by a vector a/4 according to each of the 3 crystallographic axes (a being 

the lattice constant). The symmetry of the crystal is of type 4̅3m which makes it possible to 

simplify the tensors elastic, piezoelectric and dielectric making some of their constants equal or 

nil. Thus, the simplified elastic tensor is given by: 

[cαβ] =

[
 
 
 
 
 
c11 c12 c12

c12 c11 c12

c12 c12 c11

0   0    0
0   0     0
0   0     0

0    0    0
0    0    0
0    0    0

c44 0 0
0 c44 0
0 0 c44]

 
 
 
 
 

   (3.26) 

Where the elasticity constants are: c11 = 118.8 GPa, c12 = 53.8 GPa, and c44 = 59.4 GPa [79]. 
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The matrix of piezoelectric coefficients has only one non-zero component: e14 = -0.16 C/m2 

[138], and is written as: 

eiα = [
0 0 0
0 0 0
0 0 0

e14 0 0
0 e14 0
0 0 e14

]    (3.27) 

The dielectric matrix contains 3 non-zero dielectric constants, with a single component: ε11 = 

9.73 x 10-11 F.m-1 [139]. It is then of the following form:  

εij = [
ε11 0 0
0 ε11 0
0 0 ε11

]     (3.28) 

Hence, the elasto-piezo-dielectric matrix of GaAs can be written as the following: 

  (3.29) 

The slowness surface represents the characteristics of propagation of the plane waves in a solid 

and indicates the direction of propagation of the energy. The representative surface of the 

slowness corresponds to the extremities of the vector: S⃗ =  
n⃗⃗ 

V
 

where n is the direction of propagation and V is the wave velocity. The cut of this surface by 

particular planes gives three outlines corresponding to the possible modes: one quasi-

longitudinal and two quasi-transversals. The slowness graphs for GaAs (Figure 15) were 

obtained with the software “SlownessBuddy 1.4” which traces the slowness curves using the 

Christoffel's formulations. The dashed lines were calculated with the piezoelectricity ignored. 
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Figure 15. Slowness curves for GaAs (100) showing the two quasi-transverse shear modes 

(slow and fast) and the longitudinal mode; Dashed lines: piezoelectricity ignored, solid lines: 

piezoelectricity considered 

When the piezoelectric effect is considered, the slowness surface of the slow quasi-shear mode 

is modified. The intersection of the slowness curves (at point A for example) with and without 

considering the piezoelectricity for this mode determines the orientations in which BAW can be 

generated. These orientations influence inevitably the electromechanical coupling coefficient k 

of the transducer. Therefore, in the frame of the previous thesis [7], the optimal crystalline cut 

for GaAs and electric field orientation were determined in order to obtain a maximum value of 

k. The maximum coefficient was determined using the extended Christoffel-Bechmann method 

[8]. To perform the calculation, the coordinate system undergoes a rotation using a transfer 

matrix in order to calculate the new coefficients corresponding to the directions of excitation 

and propagation of the wave. The membrane is considered to have infinite lateral dimensions 

and a finite thickness which leads to a plate model. The maximum value for k was determined 

for the <011> and <01̅1> orientations of the electric field in the crystallographic plane (100) of 

the GaAs. This value is equal to k2 = 0.43 (k = 0.66) or 4.3 % for shear modes with LFE. Similar 

results were obtained by Söderkvist [138]. For the excitation plane (100), only the quasi-

transverse modes could be excited by LFE, since the quasi-longitudinal mode has a nil 

electromechanical coupling coefficient in this plane. 
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The velocity Vb and the eigenvalue λb of the hardened Christoffel matrix of the quasi-transverse 

acoustic wave were determined using the Matlab algorithm developed for calculating the 

coupling coefficient: 

λb = c44 + 
e24
2

ε22
 and Vb = √

λ

ρ
= √

c44+ 
e24
2

ε22

ρ
  (3.30) 

By replacing the velocity and the density by their values (Vb = 3342 m/s, ρ = 5.307 g/cm3), the 

resonant frequency of the GaAs structure for a rank of harmonic n can be calculated using (3.19), 

giving the following equation: 

f = n
1671

h
     (3.31) 

3.5.2. Case of ZnO 

Due to the numerous symmetries of the würtzite structure of ZnO, the stiffness constants, the 

piezoelectric coefficients and the dielectric permittivity have a large number of zero or equal 

values. Due to these symmetries, the matrix of rigidities has only 12 non-zero constants of which 

5 are different: c11, c12, c13, c33 and c44. The values of the parameters cij determined by Bateman 

in 1962 are compiled in Table 4. 

Table 4. Values in GPa of the stiffness constants of the ZnO [140] 

c11 c12 c13 c33 c44 

209.7 121.1 105.1 210.9 42.5 

The matrix of rigidities is then written in the crystallographic axes in the following form: 

[cαβ] =

[
 
 
 
 
 
c11 c12 c13

c12 c11 c13

c13 c13 c33

0     0        0
0     0        0
0     0       0

0    0    0
0    0    0
0    0    0

c44     0     0
0 c44     0

0    0
c11−c12

2 ]
 
 
 
 
 

   (3.32) 
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The matrix of piezoelectric coefficients has 3 non-zero components: e15 = -0.45 C/m2; e31 = -

0.51 C/m2; e33 = 1.22 C/m2, and is written as: 

eiα = [
0 0 0
0 0 0

e31 e31 e33

0 e15 0
e15 0 0
0 0 0

]   (3.33) 

The dielectric matrix contains 3 non-zero dielectric constants: ε11 = 7.38 x 10-11 F.m-1 and ε33 = 

7.83 x 10-11 F.m-1. It is then of the following form:  

εij = [
ε11 0 0
0 ε11 0
0 0 ε33

]    (3.34) 

The elasto-piezo-dielectric matrix, characteristic of ZnO material, is given as follows: 

 (3.35) 

A thin film of hexagonal ZnO can generally excite both longitudinal and shear waves. Figure 

16 shows the slowness curves of ZnO, representing the two quasi-transverse shear modes (slow 

and fast) and the longitudinal mode. The dashed lines correspond to the slowness calculated 

with the piezoelectricity ignored. It can be seen from the surface of the slowness that when the 

piezoelectric effect is taken in consideration, the slowness of the slow and fast quasi-shear 

modes is modified. The intersection of these slowness curves with and without piezoelectricity 

considered at certain angles/orientations indicates that the TSM of BAW can be generated in 

these orientations.  
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Figure 16. Slowness curves in the sagittal plane (XZ) of ZnO; Dashed lines: piezoelectricity 

ignored, solid lines: piezoelectricity considered 

For lateral field excitation of the c-axis-oriented ZnO, we desire the electric excitation field to 

be orthogonal to the wave propagation. Consequently, if the wave propagation is in the direction 

of the Z-axis, the electric field will be in the XY plane. In this section, we will describe the 

coupling and the acoustic wave propagation in the general case of an electric field along any 

direction in the XY plane.  

The normalized electric field vector mj is of the form: mj = [

mx

my

mz

] 

For solving the piezoelectrically stiffened Christoffel equation for laterally excited ZnO, we set: 

mz = 0 and mx
2 + my

2 = 1. 

The resulting Christoffel matrix is of the following form: 

Г =  [

c44 + e15mx
2/ε11 e15

2  mxmy/ε11 0

e15
2  mxmy/ε11 c44 + e15my

2/ε11 0

0 0 c33

]  (3.36) 
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The eigenvalues of this matrix correspond to terms that can be used to solve for the acoustic 

velocity in each of the three wave propagation modes, while the corresponding eigenvectors 

relate to the direction of particle displacement. Solving for the eigenvectors Ui and eigenvalues 

λi of Г (where the index i represents the mode) gives: 

U1 = [
−my

mx

0
],  λ1 = c44 

U2 = [

mx

my

0
], λ2 = c44 + 

e15
2

ε11
 

U3 = [
0
0
1
], λ3 = c33 

From these results, we find that only one mode is piezoelectrically excited (defined by U2 and 

λ2) and that the particle displacement will be directly aligned with the electric field, regardless 

of the orientation of the field with respect to the XY plane. This mode is a pure shear thickness 

mode and it is the mode that we are looking for. Another pure shear mode exists (defined by U1 

and λ1) with particle displacement also in the XY plane at an angle perpendicular to that of the 

piezoelectrically excited mode, but it is piezoelectrically inactive. The longitudinal mode 

(defined by U3 and λ3) is also piezoelectrically inactive. Hence, an electric field in the XY plane 

will excite a pure TSM with particle displacement aligned with the electric field. The acoustic 

velocity V2 for the shear mode can be calculated using: 

V2 = √
λ2

ρ
 = √

c44+ 
e15
2

ε11

ρ
    (3.37) 

Using bulk values for ZnO [131], the theoretical acoustic velocity for the piezoelectrically 

stiffened thickness shear mode is approximately 2840 m/s. 

The resonant frequency relationship for our resonator is therefore obtained by substituting V2 

by its value in (3.18): 

fs =
1420 n 

h
     (3.38) 



Chapter 3: Modeling & simulation of ZnO/GaAs transducer  

56 

 

The electromechanical coupling coefficient for this mode is then determined as:  

 k2 = 
 e15

2

c44 ε11
     (3.39) 

Which is calculated to be approximately 0.064 or 6.4 % in the case of the thickness shear mode. 

By comparing the electromechanical coupling coefficient for ZnO (6.4 %) and GaAs (4.3 %), 

the potential of ZnO to improve the performances of the transducer is obvious. 

The determined expressions and values for TSM relate to either transducers made entirely of 

GaAs or ZnO. However, the transducer proposed in this thesis combines the two materials. 

Therefore, we need to take into consideration the coupling between them, which will surely 

affect the resonance characteristics of the transducer. Thus, modeling of the transducer was also 

done using Finite Element Method (FEM) and is presented in the next section. 

3.6. Modeling of the transducer using FEM 

To study the performances of the piezoelectric structure, a modal analysis is required to extract 

the eigenfrequencies that will make it possible to identify the different modes. Therefore, a 

model using FEM was developed to dimension the resonant structure. The modeling was 

performed using COMSOL Multiphysics® finite element simulation software. The model was 

built using the physics "piezoelectric devices" of the "structural mechanics" module. 

Eigenfrequency analysis and frequency domain were the two studies used in this work. The 

geometric parameters introduced into the model are shown in Figure 17. For this model, we 

chose a membrane thickness of 200 μm corresponding to the thickness of the membrane that 

would make it easy to handle and not too fragile.  

The set of domains created have been assigned to the GaAs and ZnO materials. The elasticity 

and permittivity matrices, the stiffness constants and the density of each material were adjusted 

in the parameters section. We did not introduce a layer of chromium or gold because of their 

negligible thickness (respectively 5-20 nm and 150-200 nm), and hence bending stiffness and 

added  mass compared to that of the membrane. Two rectangular zones, of size 4 mm x 1.3 mm, 

were built on top of the structure to add the ground and the terminal (10 V) excitation. The 

geometric gap separating them is 1 mm. 
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Figure 17. Geometry of the COMSOL® simulation model representing the different domains 

of the structure 

Perfectly matched layers (PML) were added in the recessed ends of the structure. These PML 

domains are used to simulate the effect of propagation and absorption of elastic waves in these 

regions (which are not solved in real dimensions). We chose a customized free tetrahedral mesh 

on the plane of the membrane and the structure was divided into 8 layers to observe the evolution 

of the electric field locally (Figure 18). 

 

Figure 18. Representation of the generated mesh in the different layers of the structure 

3.6.1. Resonance characteristics of GaAs membrane with and without ZnO film 

The simulations of the transducer were conducted in air at room temperature. We were able to 

determine the resonant frequency of the thickness shear mode at the fundamental rank, as well 



Chapter 3: Modeling & simulation of ZnO/GaAs transducer  

58 

 

as its harmonics. Moreover, the material displacements in the structure along the Y-axis with 

and without the ZnO layer were determined for the fundamental modes (Figure 19).  

 

Figure 19. Sectional view of the material displacement in the sensing area along the X-, Y- & 

Z-axis for: GaAs at 7.9872 MHz (a), (c), (e); ZnO/GaAs at 7.9436 MHz (b), (d), (f) respectively 

The material displacement along the Y-axis (Figure 19) confirms the propagation of shear mode 

in the structure. The displacement root mean square (RMS) as a function of the frequency was 
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obtained by this simulation as well. It can be seen from these results that a higher displacement 

is obtained in the ZnO/GaAs structure, indicating a potential improvement of the performances 

of the transducer by addition of the ZnO film. 

 

Figure 20. Displacement RMS for (a) GaAs at 7.9872 MHz and (b) ZnO/GaAs at 7.9436 MHz  

To assess the correspondence between the analytical resonant frequencies and the ones 

determined by the FEM model, we calculated the analytical resonant frequencies of TSM for a 

200 μm thick membrane made entirely of GaAs or ZnO using the equations (3.31) and (3.38) 

respectively. The analytical resonant frequency for the fundamental mode of GaAs is 8.35 MHz, 

compared to 7.987 MHz determined by FEM. This difference of 9.5 % between the two values 

for GaAs is due to the fact that Comsol software takes in consideration the damping, which 

results in a lower resonant frequency. Moreover, the analytical resonant frequency of the 

fundamental mode for a ZnO membrane was found at 7.1 MHz. On the other hand, the frequency 

of tthe ZnO/GaAs structure obtained by FEM was 7.944 MHz, which is a value comprised 

between the resonant frequencies of pure ZnO and pure GaAs. The electrical characterization 

of the device will allow the comparison of this theoretical value with the experimental one to 

assess the accuracy of our model. 

3.6.2. Modeling of the electrodes configuration 

To compare the electric field in the GaAs and ZnO/GaAs structures, and to determine the 

optimal inter-electrode distance, we used the previous model to examine the electrical field 

while varying the gap between the electrodes. Figure 21 shows the electrical displacement field 
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in the GaAs membrane with and without the ZnO film. The values for the two structures are 

comparable, with more confinement in the presence of ZnO. 

 

Figure 21. Electrical displacement field in the ZX plane of the GaAs (a) and ZnO/GaAs (b) 

structures 

The simulation of the electric field observed along the X, Y and Z- axis in the ZX plane of the 

ZnO/GaAs structure shows a displacement along the X-axis, with a minor component along the 

Z-axis, as displayed in Figure 22. 

 

Figure 22. Electrical displacement along the X- (a), Y- (b) and Z- (c) axis observed in the ZX 

plane of the ZnO/GaAs structure with a gap of 1 mm 

On the other hand, In order to determine the optimal inter-electrode distance, we performed 

simulation while changing the gap between the electrodes from 100 µm to 1 mm. The voltage 

supply was the same for each configuration. Figure 23 shows the electrical displacement for 

different gaps, for the ZnO/GaAs structure. It can be seen that the lowest electrical displacement 

is observed for the 1 mm gap while the highest was determined for 200 µm. The 500 µm seems 

to be a reasonable compromise, since the penetration of the electrical field is homogeneous. The 

field value is optimal at the detection surface, which would result in higher sensitivity for 

measurements in liquid environments. 
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Figure 23. Electrical displacement in the ZnO/GaAs structure for different gaps (a) 200 μm, 

(b) 500 μm, (c) 1 mm 

3.7. Conclusion 

Through this chapter, we first laid out the physical fundamentals of bulk elastic waves in a 

piezoelectric solid. In particular, we have presented the theoretical principles of thickness shear 

waves transducers. After a preamble on the developed analytical models for both materials used 

in this work (GaAs and ZnO), a numerical FEM model was built to simulate the resonator in 

normal operation. The results obtained with this modelling allowed us to determine the resonant 

frequency for TSM and the displacement along the different axis of the GaAs and ZnO/GaAs 

structures. Moreover, we examined the electrical field displacement for different inter-electrode 

distances for the ZnO/GaAs transducer, and 500 μm was shown to be an optimal configuration 

to limit the penetration of the electrical field in the structure, especially in the case of 

measurement in liquid medium. 
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Chapter 4: Microfabrication of ZnO/GaAs transducer 

4.1 Microfabrication strategy 

The manufacture of the devices is conducted in the MIMENTO (MIcrofabrication pour la 

MEcanique, les Nanosciences, la Thermique et l'Optique) technology center of the Renatech 

network, attached to our laboratory, in Besançon - France. The microfabrication procedure is 

carried out in two main phases: the realization of the electrical contacts on the top side of the 

GaAs substrate, and the micromachining of the membrane on its bottom side. For this, both 

sides of GaAs wafers are used during the microfabrication. 

The first step of the fabrication process is the deposition of ZnO thin film on the top face of the 

GaAs substrate. If this step was done after the micromachining of the membrane, the deposition-

taking place at high temperature (up to 450 °C) could generate thermal stresses in the membrane, 

which would fragilize it. Taking into consideration the low thickness of the GaAs membrane 

(down to 50 µm), the latter can easily break during the deposition.  

In order to improve the performance of the GaAs-based transducer, the deposited ZnO films 

must be of high crystalline quality. Therefore, a complete and systematic characterization is 

necessary to validate the following requirements:  

• Orientation along the c-axis 

• Strong texture & low residual stress  

• Low surface roughness 

• Sharp interfaces 

• Ohmic contact 

Moreover, several GaAs cuts are used to determine the substrate orientation that promotes the 

deposition of highly textured piezoelectric ZnO films. A new Pt-based buffer layer is also tested 

to promote the growth and the quality of ZnO films on GaAs substrates. 

The second step is to produce the metallic contacts consisting of a chromium bonding layer and 

a gold layer, sputtered onto the ZnO film using a lift-off process. These electrodes will be used 

subsequently to connect the device to a network analyzer to follow its frequency response. 
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Afterwards, a thinning stage of the substrate is necessary to increase the sensitivity of the 

transducer. Indeed, the starting thickness of GaAs wafers (625 ± 25 µm) is significantly greater 

than 50 µm, desired for the operation of the BAW sensor. The initial thinning allows to decrease 

the membrane micromachining time and therefore prevents the possible defects and under-

etching linked with long etching processes. The main dimension of our sensor is its thickness 

because this parameter will determine the resonant frequency. Indeed, the variation in the 

frequency fr as a function of the thickness h is expressed by: 

Δ f

f
= −

Δ h

h
     (4.1) 

However, the mass is related to the thickness by the following equation: 

 m = ρAh     (4.2) 

Where A is the piezoelectrically active surface, ρ the density and h the membrane thickness. 

Therefore, the variation of the thickness can be expressed by a variation of mass. Nevertheless, 

if a change in the absolute value of the thickness can be compensated by working at a different 

frequency, the thickness variations (non-homogeneity), roughness or defects on the membrane 

surface will generate a strong damping of the acoustic waves and cause a significant reduction 

in the quality factor of the resonator. It is therefore necessary to master the etching conditions 

in order to control the flatness of the membrane surface and avoid defects. 

The basic process requires two different masks: a first one for the electrodes and a second one 

containing the membrane patterns. Alignment marks present on both masks make it possible to 

align the membrane and electrodes patterns present on opposite faces of the wafer. For the whole 

process, we have selected low-cost production techniques (particularly wet chemical etching) in 

order to obtain an economically interesting and industrially transferable device. 

 

Figure 24. Diagram representing the microfabrication stages of the transducer 
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In this chapter, the different manufacturing stages of the device will be detailed. In particular, 

we will exploit the deposition and characterization of ZnO thin films on GaAs. 

4.2 Deposition of ZnO thin films on GaAs substrates 

4.2.1 Selection of the deposition technique 

ZnO thin films can be deposited using a large variety of techniques due to the diversity of its 

applications [84]. To obtain device quality films with piezoelectric responses comparable to 

ZnO monocrystal, the selection of the deposition technique involves the following criteria: 

▪ Crystalline quality, texture and orientation 

▪ Adhesion to the substrate and stresses 

▪ Purity, stoichiometry 

▪ Deposition rate and reproducibility 

Different methods have been reported for the deposition of ZnO films. They can be obtained by 

operating in liquid or in vapor phase, and by physical or chemical methods [141]. In liquid 

phase, the most frequent techniques are the sol-gel process and the electrolytic deposition. In 

vapor phase, chemical deposition (CVD) and physical deposition (PVD) methods are 

distinguished. In this section, we present and compare the most commonly used techniques for 

depositing ZnO thin films (Table 5), while reserving a more in-depth description to RF 

magnetron sputtering, a technique chosen for this work. 

Table 5. Comparison of the commonly used deposition methods for ZnO thin films 

 
Deposition 

technique 
Advantage Disadvantage Source 

Liquid phase 

deposition 

Sol-gel process 

-High purity and 

stoichiometry 

-Fast process (few minutes) 
Need of heat 

treatment to densify 

the deposited material 

and eliminate the 

organic solvents used 

in the preparation of 

precursor solutions 

[142], 

[143] 

Electrolytic 

deposition 

Control over the properties 

and morphology 

[144], 

[145] 

Chemical 

vapor phase 

deposition 

(CVD) 

Spray pyrolysis 

-Simplicity and 

reproducibility 

-Uniform and high-quality 

films 

[146], 

[147] 
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Metal-Organic 

Chemical Vapour 

Deposition 

(MOCVD) 

-Good reproducibility 

-High quality films 

-Contamination of 

layers by the metal-

organic compounds 

-Low deposition rate 

(0.2 to few nm/s) 

[112], 

[148], 

[149] 

Atomic layer 

deposition (ALD) 

-Crystallization of films 

without annealing 

-Control of the composition 

during deposition 

- Uniform thickness and 

composition 

-Good adhesion 

-Contamination by 

residues of precursors  

-High reaction 

temperature 

[150], 

[151] 

Physical 

vapor phase 

deposition 

(PVD) 

 

Evaporation 

-High purity 

-Temperature control and 

low pressure 

-Low adhesion 

-Dissociation of the 

oxides 

-Defects, dislocations 

-Decomposition or 

micro-explosions of 

the materials to be 

evaporated. 

[152], 

[153] 

Pulsed laser 

deposition (PLD) 

-High quality of films grown 

at relatively low substrate 

temperatures (200 - 800 °C) 

-High atoms energy 

inducing high stresses 

-Low deposition rate 

(0.1 - 0.4 nm/s) 

[116], 

[154] 

RF magnetron 

sputtering 

-Control of the preferred 

crystalline orientation 

-Good adhesion to the 

substrate 

-High density and texture 

Low deposition rate 

(few nm/min) 

[97], 

[99], 

[155] 

The CVD deposition methods consist of decomposing on a substrate a precursor containing the 

elements to be deposited. The substrate being heated to several hundred degrees Celsius, the 

growth conditions of the layer are close to thermodynamic equilibrium. The main advantages of 

these techniques are the crystallization of films without any annealing treatment, the control of 

the composition during the deposition, and the production of a deposit of uniform thickness and 

good adhesion. However, these techniques have the disadvantage of giving films contaminated 
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by incorporating by the precursor residues into the layers which is incompatible with the 

crystalline quality and chemical purity required for piezoelectric application. 

On the other hand, PVD processes make it possible to synthesize ZnO films with high crystalline 

quality. PVD processes mainly include evaporation, laser ablation and sputtering in all its forms. 

The deposition process goes through three main steps: the creation of the species to be deposited 

in the form of atoms, molecules or clusters, the transport of these species in the vapor phase 

from the source to the substrate and finally the deposition on the substrate and the growth of the 

layer. Among these techniques, we have selected a sputtering technique allowing the deposition 

of highly c-axis oriented films ZnO thin films reproducibly. 

According to the literature, this technique has received a great interest over the last years because 

of the easy control for the preferred crystalline orientation, the good interfacial adhesion to the 

substrate and the high texture and density of the grown films [155]–[157]. 

These properties are mainly due to the kinetic energy of the clusters given by the electric field. 

This energy enhances the surface migration effect and surface bonding state. The basic principle 

of sputtering is to bombard a target, which is introduced into a vacuum chamber. This target is 

fixed on a cooled electrode (cathode) and is bombarded using a neutral gas, generally Argon, in 

order to sputter the atoms from the target. These sputtered atoms will then be deposited on the 

substrate which acts as an anode.  

According to the nature of the voltage applied between the two electrodes (target and substrate) 

and the geometrical configuration, the following modes can be distinguished, and some of them 

may be combined: 

• Direct current (DC) sputtering, where a direct current is applied.  

• Radio Frequency (RF) sputtering, for which a radio frequency voltage is applied, which 

makes it possible to spray insulators. 

• Magnetron process, for which permanent magnets distributed around the chamber make it 

possible to create a magnetic confinement of the plasma and to increase the ionization 

efficiency of the electrons [158]. The ionized gas is usually an inert gas such as Ar for a non-

reactive sputtering deposition, or a gas mixture (Ar + O2) for a reactive sputtering deposition. 

Ar acts as the sputtering enhancing gas and O2 serves as the reactive gas. 
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The growth of ZnO films by sputtering is usually carried out from a high-purity ZnO target 

using a reactive RF magnetron sputtering system (Figure 25), in the growth ambient with O2/Ar 

ratios ranging from 0 to 1.  

As compared to other deposition techniques, reactive RF magnetron sputtering has been a 

preferred method because of its simplicity, reproducibility, low operating temperature and 

stresses in the films. Despite the low deposition rates, it provides highly textured films with high 

crystalline quality and orientation, thickness uniformity and high density. Therefore, this 

technique is privileged in our work. 

 

Figure 25. Schematic of an RF magnetron sputtering setup, modified from [159] 

4.2.2 Preparation of GaAs substrates 

GaAs is generally provided in wafers of 2, 3- or 4-inches diameter (about 50, 75 or 100 mm 

respectively) and thicknesses ranging from 350 μm (2 ") to 625 μm (3 ") or 635 μm (4 "). 

The wafers are usually cut from an ingot in a specific crystalline direction. Therefore, the surface 

of the wafer corresponds to a particular crystalline plane. The orientation in the plane of the 

wafer is provided by one or two flats located on the contour. 
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In order to investigate the effect of the crystallographic orientation of the substrate on the 

structural and topographic properties of the grown ZnO films, GaAs substrates with different 

crystallographic cuts (100), (110), (111) A and (111) B were used, where A and B stand for Ga 

and As terminated surfaces respectively. 

The two faces of the oriented wafers (111) do not have the same atomic composition: 

▪ a face consisting solely of gallium atoms, referred to as (111) Ga or (111) A; 

▪ a face consisting only of arsenic atoms, with the notation (111) As or (111) B. 

The substrates used were commercial undoped semi-insulating GaAs wafers (AXT, Inc.) of 

thickness 625 ± 25 μm (double-side polished) or 500 ± 25 μm (single-side polished), a diameter 

of 76.2 ± 0.4 mm (3 inches) and a resistivity > 107 Ω.cm.  

In order to remove any mineral or organic impurity present at the surface of the substrate, the 

wafers were successively immersed in acetone and ethanol baths for 5 minutes under ultrasound 

(US) at a frequency of 45 kHz and the power set on low. Then, prior to deposition, the substrates 

were cleaned under a plasma of argon and oxygen for 2 minutes to remove contaminants. The 

parameters are provided in Table 6. 

Table 6. Tools and parameters used for the preparation of GaAs substrates prior to ZnO films 

deposition 

Phase Step Tools Parameters Microstructure 

Preparation 

of GaAs 

substrates 

Removal of 

organic and 

mineral impurities 

Acetone 

Ethanol 

Duration: 5 min 

for each bath 

under US 
 

Cleaning 

Plasma of 

Argon and 

Oxygen 

Power: 22 W 

Duration: 2 min 

4.2.3 Deposition conditions 

Two sets of depositions were carried out for each substrate cut: the first is performed directly 

on GaAs substrates, and the second is done using a Pt buffer layer. The latter consisted of a Ti 

or Ta adhesion layer of thickness 15 nm, and a 150 nm thick Pt metallic layer, both deposited 

using cathodic sputtering. The ZnO films were deposited in collaboration with A. Bartasyte, by 

GaAs 
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reactive RF magnetron sputtering (Plassys MP450S) using metallic zinc target. Prior to the 

deposition, the target was presputtered for 2 minutes to remove contaminants. The target-

substrate distance was 54 mm. The substrate temperature and the chamber pressure were set to 

450 °C and 4 mTorr, respectively. The O2/Ar gas ratio was 1.5, providing a deposition rate of 

approximately 2.77 nm/min.  

Table 7. Tools and parameters used for the deposition of ZnO thin films on GaAs substrates 

Phase Step Tools Parameters Microstructure 

ZnO thin 

film 

deposition 

Presputtering 

of the target 

Plasma of 

Argon and 

Oxygen 

-Flow of O2: 10 sccm 

-Flow of Argon: 10 sccm 

-Power: 100 W 

-Duration: 2 min 

 

Sputtering of 

ZnO 

-Plassys 

(MP450S) 

-6” Zinc target 

-Flow of O2: 1.5 sccm 

-Flow of Argon: 1 sccm 

-Temperature: 450 °C 

-Pressure: 4 mTorr 

-Power: 100 W 

-Rate: 2.77 nm/min 

 

4.3 Characterization of ZnO films 

Different complementary characterization techniques were used to evaluate the quality of the 

deposited ZnO layers. These characterizations aimed to determine the GaAs cut providing the 

best quality ZnO films, and to determine if the choice of the Pt buffer layer was convenient for 

promoting the growth of ZnO films on GaAs. X-ray diffraction (XRD) and Raman spectroscopy 

were used to characterize the crystalline quality (texture, mosaicity, orientation) and the residual 

stresses in the films. The morphology and the roughness were examined using atomic force 

microscopy (AFM). A study of the chemical interactions, diffusion and interface formation was 

also performed using secondary ion mass spectrometry (SIMS). Furthermore, the thicknesses of 

the films were estimated by means of ellipsometry. In this section, we present the different 

characterizations performed on ZnO films grown on GaAs substrates and we exploit the 

obtained results. 

GaAs 

ZnO 
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4.3.1 Structure and residual stresses by XRD 

4.3.1.1 Operation principle of XRD 

X-ray diffraction (XRD) is a technique frequently used to characterize the structure and 

crystallographic orientations of thin films. This method uses an X-ray beam to irradiate the 

sample resulting in the beam to scatter in specific directions. By measuring the angles and 

intensity of the diffracted rays, it is possible to obtain a three-dimensional image of the electron 

density in the sample. From this density, the average position of the crystal atoms can be 

determined, as well as their chemical bonds, their entropy and some other information. From 

the diffracted intensities and the inverse relationship (reciprocal lattice - real lattice), it is 

possible to determine the three-dimensional arrangement of the atoms of the crystalline structure 

from a series of diffraction images [160]. 

X-ray diffraction also makes it possible to go back to interatomic distances. The knowledge of 

the interatomic distances then makes it possible to determine the crystallization phase of the 

material. The Bragg law gives the conditions of constructive interferences according to the 

interatomic distances and the angle at which the measured intensity is maximum. Thus, an 

incident X-ray beam of wavelength λ will be reflected by a plane family (hkl) only if it 

encounters these planes at an angle θ that verifies the Bragg's law:  

2d sinθ = nλ     (4.3) 

Where d is the interplanar distance, θ is the half-deflection angle (half of the angle between the 

incident beam and the direction of the detector), n is the order of reflection (positive integer) 

and λ the wavelength of the X-rays used. 

The experimental setup of the diffractometer (Figure 26) comprises a monochromatic X-ray 

tube, a sample holder, and a goniometer on which an X-ray detector moves. The incident rays 

are diffracted by the sample. The X-ray detector measures the intensity of the X-radiation as a 

function of the angle 2θ that it forms with the incident X-ray beam. Using the existing databases, 

it is possible to identify the phase and mesh parameters corresponding to these diffractograms. 
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Figure 26. Schematic representation of the operation of an X-ray diffractometer 

In standard XRD measurements, two configurations can be used: 

Bragg-Brentano configuration: By varying the angle θ, the diffraction conditions translated 

by the Bragg law are satisfied by different spacing “d” in the polycrystalline materials. Only 

planes parallel to the surface will satisfy the Bragg's law in Bragg-Brentano geometry (Figure 

27 (a)). Plotting the angular positions and the intensity of the diffracted resultant peaks produces 

the θ-2θ model, characteristic of the sample. In the case of thin films, the θ-2θ analyzes are used 

to identify the preferential phases and orientations parallel to the normal of the substrate. 

Shultz configuration: Since the properties of the film are strongly related to the degree of 

texture, it is crucial to quantify the number and type of preferential orientation. To characterize 

the microstructure, rocking curves and φ-scan measurements are performed in Shultz geometry: 

▪ Rocking Curve (or w-scan curve): to perform this measurement, a θ-2θ scan must be first 

executed. The angle θ and the position 2θ of the detector are set at the same value as the 

Bragg angle of the corresponding reflection. The measurement is carried out by varying 

the orientation of the sample at an angle Δω around its equilibrium position, while 

maintaining the position of the detector fixed. The sample is then rotated. For Δω = 0, 

the sample and the detector are in the exact positions of the constructive interference, 

and a peak will be observed. The width of this peak is a function of the interplanar 
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distance. Therefore, the full width at half maximum (FWHM) of the peak provides 

information on the mosaicity and texture of the films. 

▪ φ-scan: the measurement principle consists in turning the sample around the axis φ, 

while fixing the angle θ/2θ w and Ω (Figure 27 (b)), which allows to leave the planes 

(hkl) not parallel to the surface at diffraction conditions. The φ-scans are generally used 

to highlight a possible orientation of the layer in the plane of the substrate. 

 

Figure 27. Definition of angles in the Bragg-Brentano (a) and Shultz (b) configurations 

4.3.1.2 Measurement procedure 

After deposition, the samples were sent to Centre de Compétences X-Gamma (Pr. P. Boulet, 

Jean Lamour Institute, Nancy - France) for characterization by means of XRD. The phase 

composition and out-of-plane orientation of the deposited ZnO films were analyzed using a 

Bruker D8 Advance diffractometer with monochromatic radiation CuKα (λ = 1.5405 Å). 

Rocking curves and φ-scans were measured using a Bruker D8 Discover diffractometer with 

CoKα radiation (λ = 1.79026 Å) to assess the texture quality of the films. The rocking curves 

were measured for (0002) ZnO reflection to determine the mosaicity of the c-axis orientation. 

The texture quality of the deposited layers was evaluated from the FWHM of the rocking curves 

fitted using a Voigt function. 

4.3.1.3 Results 

Structure and orientation of the films 

The XRD θ /2θ patterns of the as-grown ZnO films on differently oriented GaAs substrates with 

and without the Pt/Ti buffer layers are shown in Figure 28. 
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All XRD patterns show polycrystalline Würtzite structure with dominant reflections from the 

(000l) ZnO planes. The reflections of other family planes were not observed for all substrates, 

confirming that the deposited layers were strongly textured along the c-axis of the hexagonal 

crystalline structure. 

 

Figure 28. θ /2θ X-ray diffraction patterns of ZnO films deposited on GaAs substrates with 

different crystallographic orientations without (a) and with (b) the Pt/Ti buffer layer 

The mosaicity of c-axis orientation was examined using rocking curve measurements. ZnO films 

grown directly on GaAs presented a mosaicity ranging between 5.2 and 5.8 °, represented by 

FWHM of (0002) reflection rocking curve, while the films grown with a Pt buffer showed a 

mosaicity between 1.4 ° and 1.6 ° (Table 8). Note that the instrumental resolution was 0.25 °. 

Texture quality is improved in the presence of the Pt/Ti buffer bilayer, making it independent 

of the used substrate cut. The FWHM for GaAs (110) could not be evaluated, since the rocking 

curve was too wide to fit. The direct growth of ZnO on GaAs substrates was highly influenced 
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by the substrate surface orientation. The best texture quality was obtained on GaAs (100) surface 

(FWHM = 1.42 °). The mosaicity was also high on GaAs (111) surface and similar for both of 

the surface terminations A (FWHM = 1.47 °) and B (FWHM = 1.48 °). The texture on GaAs 

(110) was of slightly lower quality (FWHM = 1.55 °). 

Moreover, the films did not present any defined in-plane orientation with respect to the 

orientation of the substrate, for all GaAs cuts, as confirmed by φ-scans of ZnO reflections. 

Residual stresses 

The effect of the stresses is reflected on the diffractograms by a displacement of the diffraction 

reflections. In order to determine these stresses, it is first necessary to calibrate the θ-2θ 

diffractograms obtained with respect to the reflections of the GaAs substrate (standard 

diffraction sheet JCPDS data card No. 00-014-450) provided in Appendix A. For that, we 

calculate the difference between the position of the reflection on the diffractogram and the one 

indicated in the JCPDS sheet. This difference is then subtracted from the positions of the 

reflections. Using the new positions, the interplanar distance of the film can be determined from 

the 2θ angle of the (0002)-plane reflection by using Bragg's law. The c-axis lattice constant of 

the films was determined using the following equation [161]: 

cf = n × d00n      (4.4) 

Where cf is the lattice constant for the ZnO thin film, n is a positive integer referring to the 

crystallographic plane, and d is the corresponding interplanar distance. 

The calculated values of c-lattice constant for each thin film are reported in Table 8. Compared 

with a ZnO single crystal lattice constant (cb = 5.2049 Å), it is obvious that the ZnO films present 

slightly extended c-lattice parameters. The shift of the diffraction reflection position from the 

bulk single-crystal value is mainly associated with thermal and intrinsic stresses produced within 

the film [162]. The 2θ position of the grown films is less than the one for bulk single-crystal, 

indicating that films are in a state of stress with extended c-axis. The larger value of lattice 

constant for the as-grown films compared to the unstressed bulk single-crystal value shows that 

the unit cell is elongated along the c-axis, and compressive forces act in the plane of the film. 

The strain εzz in the films can be calculated from the shift of the (0002) ZnO reflection in θ /2θ 

X-ray patterns, using the following equation [163]: 
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εzz = 
cf − cb 

cb
      (4.5) 

Where cb = 5.2049 Å is the lattice constant of bulk ZnO single crystal.  

However, in the case of a thin film of hexagonal structure oriented along the axis c on a substrate 

of cubic symmetry, the film is under biaxial stress in the direction of the basal plane xy and 

stress-free in the z direction. Therefore, the main stress components are equal (σxx = σyy = σb), 

and we assume that there is no shear component. For symmetry reasons, the microdeformation 

is also biaxial (εxx = εyy = εb); the mechanical equilibrium relation is written as [164]: 

(
σb

σb

0
) = (

C11 C12 C13

C12 C11 C13

C13 C13 C33

)(

εb

εb

εzz

)    (4.6) 

By developing the 3rd line of (4.6) and isolating εb, the strain εzz in the films can be calculated 

using the following equation [163]: 

 εb = −
C33εzz 

2 C13
     (4.7) 

Lines 1 and 2 are identical, which makes it possible to write: 

σb = (C11 + C12) εb + C13 εzz     (4.8) 

By substituting εb in (4.8), the residual stresses can be expressed as a function of εzz and can be 

calculated from the measured strain values [165]: 

σ = (C13 −
(C11+C12) C33 

2 C13
)εzz    (4.9) 

The sign of σ shows the type of the stress: it is either a compressive stress (σb < 0) or a tractive 

stress (σb > 0) depending on the orientation of the growth of the layer (c-axis). 

The elastic constants of ZnO used in this calculation were: C11 = 209.7 ± 0.2 GPa, C12 = 121.1 

± 0.3 GPa, C13 = 105.1 ± 0.2 GPa, C33 = 210.9 ± 0.1 GPa [140]. The calculated stress and 

residual stresses for the deposited ZnO layers are provided in Table 8. 
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Table 8. FWHM of (0002) ZnO rocking curve, c-lattice constant, strain and residual stress in 

ZnO thin films deposited on GaAs substrates with different crystallographic orientations with 

(+) and without (-) the Pt/Ti buffer bilayer 

GaAs orientation (100) (100) (110) (110) (111)A (111)A (111)B (111)B 

Buffer bilayer - + - + - + - + 

Rocking FWHM 

(° ± 0.25 °) 
5.2 1.42 - 1.55 5.5 1.47 5.84 1.48 

c-lattice constant 

(Å ± 0.003 Å) 
5.218 5.215 5.208 5.207 5.207 5.206 5.207 5.204 

Strain 
25 x 

10-4 

19 x 

10-4 

6.3 x 

10-4 

3.8 x 

10-4 

3.7 x 

10-4 

1.2 x 

10-4 

3.7 x 

10-4 

1.3 x 

10-4 

Residual stress 

(MPa ± 100 MPa) 
-434 -332 -108 -65 -63 -21 -63 -22 

The comparison of the residual stresses for the ZnO layers shows that they are all subjected to 

compression stresses < 500 MPa, which is coherent with the fact that the in-plane expansion 

coefficient of ZnO is lower than that of the GaAs substrate. Moreover, the films deposited on 

the Pt/Ti buffer bilayer show slightly lower stresses than the ones deposited directly on GaAs, 

showing an advantage of this buffer. Although the thermal expansion of cubic GaAs is isotropic 

and all ZnO films presented the same crystallographic orientation, the highest residual stresses 

were developed in films grown on GaAs (100). The different stresses observed for the different 

cuts of GaAs could be explained by the difference in the interplanar distance for each cut, which 

could generate additional intrinsic stresses adding to the thermal ones. 

4.3.2 Raman modes and stresses 

4.3.2.1 Operating principle of Raman spectroscopy 

Raman spectroscopy is a non-destructive analysis technique, based on the elastic interaction 

between the constituents of a material and the photons of an incident light radiation of defined 

frequency. Because of its excellent spatial resolution defined by the size of a focused laser spot, 

this technique is a very powerful tool for structural characterization of thin films. The 

information obtained by this technique concerns the position and the profile of the characteristic 
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bands, thus making it possible to deduce the spatial distribution of many physical quantities 

including the crystallographic orientations and stresses [166]. 

The Raman effect results from the interaction of vibrational and/or rotational modes of atoms 

or molecules with electromagnetic radiation. It corresponds to the inelastic scattering of light by 

the molecules. Therefore, the observed energy (frequency) variation provides information on 

the energy levels of rotation and vibration of the molecule concerned and can be represented 

through the shift in the wavenumber (cm-1), called Raman shift. Thus, in a Raman spectrum, the 

band positions (cm-1) correspond to the characteristic vibration frequencies of the molecular 

bonds. 

The light scattered by the molecules contains Rayleigh photons, whose energy is equal to that 

of excitation. It also contains weaker intensity Raman photons whose energy is modified by the 

molecular vibrational transitions: they are Raman Stokes or anti-Stokes photons depending on 

whether the material absorbs or gives energy to the incident photons. The diagram in Figure 29 

represents the different energy levels involved in Rayleigh and Raman scattering. 

 

Figure 29. Diagram of the energy levels involved in Rayleigh and Raman scattering. The 

thickness of the lines indicates qualitatively the intensity of the signals of each transition. 

The excitation source generally consists of a fine monochromatic laser line (laser source) whose 

energy is focused on the target to be analyzed. The Raman light is collected at a solid detection 

angle and then analyzed using a spectrograph whose chromatic dispersion is finally imaged on 

a suitable matrix detector (CCD). From the images thus produced, it is possible to plot the 

spectra containing all the characteristic vibration peaks of the detected targets. By the nature of 

the phenomenon of light scattering, Raman scattering is observable with excitation wavelengths 
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ranging from UV to near IR, via the visible. The diagram of Figure 30 shows the elements of a 

Raman spectrometer and the measurement process. 

 

Figure 30. Process involved in collecting Raman spectra 

4.3.2.2 Theoretical Raman modes of ZnO and GaAs 

ZnO has a würtzite symmetry with 6mm point group. There are 4 atoms per elementary cell 

leading to 12 phonon branches including 9 optical and 3 acoustic. Group theory predicts that, 

near the center of the Brillouin zone, there is a branch A1, a doubly degenerate branch E1, 2 

branches doubly degenerate E2, and 2 branches B. The branches A1 and E1 are both active in 

Raman and infrared spectral range, and split into LO and TO components (longitudinal and 

transverse optical modes, respectively) [167]. The E2 branches are active for Raman only, while 

the B branches are inactive. The symmetry and wavenumbers of the fundamental modes of ZnO 

are provided in Table 9 [168]. 

The polarization selection rules for Raman scattering in ZnO predict that it is possible to identify 

the peaks of the E2 (low), E2 (high) and A1 (LO) modes in Z(XX)Z̅ and Z(YY)Z̅ polarization 

configurations, whereas for Z(XY)Z̅ only the modes E2 are observable.  
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Table 9. Frequency and symmetry of the fundamental optical modes in ZnO 

Symmetry character E2 (low) A1 (TO) E1 (TO) E2 (high) A1 (LO) E1 (LO) 

Wavenumber (cm-1) 101 380 413 437 579 591 

On the other hand, GaAs belongs to 4̅3m point group with zinc blende symmetry. Two modes 

are observable: A1 (LO) and E1 (TO) at 291 cm-1 and 267 cm-1 respectively. According to the Raman 

selection rules, it is possible to find the longitudinal modes A1 (LO) for the planes (100) and (111) 

of GaAs, whereas this is not possible for the plane (110), and that the transverse modes E1 (TO) 

appear for the cuts (110) and (111) and not for (100) orientation.  

Raman selection rules, the frequencies and symmetries of the fundamental Raman modes of 

ZnO and GaAs can be found in references [168]–[170]. 

4.3.2.3 Measurement procedure 

Raman spectra of the deposited ZnO films were collected at room temperature using S&I 

MonoVista Raman spectrometer with laser excitation at 532 nm. The reference spectra were 

obtained by measuring X- and Z- oriented ZnO single crystals and bare GaAs substrates of the 

following cuts: (100), (110), (111) A and (111) B. For each substrate cut, 6 samples were 

measured (3 with Pt buffer layer and 3 without it). For each sample, three spectra were measured 

using three polarization configurations noted Z(XX)Z̅, Z(YY)Z̅ and Z(XY)Z̅. The measured 

intensities of Raman spectra of these polarization configurations are not equivalent due to 

difference in the optical setup. 

4.3.2.4 Results 

Raman modes of the deposited ZnO films 

Figure 31 shows an example of Raman spectra obtained in Z(XY)Z̅ polarization. The spectra 

obtained for ZnO thin films deposited directly on GaAs (Figure 31 (b)) clearly show the ZnO 

and GaAs Raman modes, whereas the spectra obtained for films deposited using the Pt/Ti 

bilayer (Figure 31 (a)) show only the ZnO modes, due to high absorption by the Pt layer. The 

results are similar in the Z(XX)Z̅ and Z(YY)Z̅ polarisations, but for simplification we chose to 

show the results for one polarization. 
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Figure 31. Example of Raman spectra collected in Z(XY)Z̅ polarization for 8 samples (out of 32 

measured) consisting of ZnO films deposited on GaAs substrates of different cuts with (a) and 

without (b) the Pt/Ti buffer bilayer. The GaAs modes (E1(TO) and A1(LO)) are labelled in red. 
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For GaAs, the spectra obtained for the various orientations confirm the selection rules of a blend 

cubic system. The A1(LO) mode appears at 291 cm-1 and the E1(TO) at 267 cm-1. As for ZnO films, 

the modes around 101 cm-1 and 437 cm-1 correspond to the E2(low) and E2(high) modes of the 

würtzite structure respectively, as predicted by the selection rules. The compliance with the 

selection rules shows that the growth of ZnO films provides high texture quality. 

The observed modes of ZnO films are slightly shifted from the wavenumbers of ZnO 

monocrystal. These Raman shifts can provide information on the stresses acting on ZnO films. 

Residual stresses 

Raman spectroscopy can also provide information about the stresses in the material by the 

observation of the displacement of the position of the modes and by comparison with the 

tabulated values of the studied material in massive state. 

The frequency of the modes E under constraints can be described as follows [171]: 

wE (TO) = a’E(TO)  (σxx + σyy) + b’E(TO)  σzz ± √c′
E(TO) (σxx − σyy)

2
+ d′

E(TO) (σxy)2       (4.10) 

Where σxx, σyy et σzz are the stresses along the axes a, b and c respectively, and a’E(TO), b’E(TO), 

c’E(TO) and d’E(TO) are the potential deformation constants expressed in terms of compliance (the 

property of undergoing elastic deformation when subjected to an applied force). 

c’E(TO) is related to the split of double degenerate E(TO). If the axes a and b are affected by the 

different stresses or if the plane ab is subjected to shear stresses, the mode E(TO) splits into two 

components. However, the degeneration of E(TO) is usually quite weak and its split is difficult to 

identify and c’E(TO) is negligible. In addition, we assume that there are no shear stresses in the 

films, hence σxy = 0. The ZnO films, deposited on cubic substrates, are subjected to biaxial 

stresses σb in the plane of the substrate [116]. Thus, σxx = σyy = σb, and the shift of the modes 

E(TO) in the domain c can be expressed as: 

ΔwE(TO) = 2 a'E(TO) σb     (4.11) 

Thereby, the biaxial stresses σb can be calculated from the shift of the position of the ZnO modes: 

σb = 
ΔwE(TO) 

2a’ E(TO)
      (4.12) 
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The values of stress for the different samples, calculated from (4.12) are provided in Table 10. 

The found values of the biaxial stresses are quite low (<0.25 GPa) and are close to the ones 

calculated from XRD data (see Table 8). Moreover, the low displacement towards high 

frequencies of the E2(High) mode is due to compressive residual stresses, is associated with a high 

crystalline quality of the films. The ZnO films grown on different cuts of GaAs directly or with 

Pt/Ti buffer layers presented compatible residual stress in the limits of the errors. 

Table 10. Residual stress in ZnO thin films deposited on GaAs substrates with different 

crystallographic orientations with (+) and without (-) the Pt/Ti buffer bilayer 

GaAs orientation (100) (100) (110) (110) (111)A (111)A (111)B (111)B 

Buffer bilayer - + - + - + - + 

Residual stress 

(MPa ± 100 MPa) 
-244 -57 -98 -59 -106 -49 -41 -21 

In reality, the stresses acting on our layer were thermal stresses that are generated during the 

cooling process following the deposition of the thin films. In general, the temperature of the 

substrate during the deposition Tdep is higher than the ambient temperature Ta. Consequently, at 

the end of the deposition, the thin layer undergoes a thermomechanical deformation which leads 

to extrinsic stresses in it. They are due to the difference of the coefficients of thermal expansion 

αS and αF of the substrate and the deposited film respectively. The theoretical biaxial 

deformations εb related to the thermal stresses were determined from the relation:  

εb = (αF - αS) (Tdep - Ta)      (4.13) 

Once εb is calculated, the theoretical values of the deformation εzz were determined using the 

following equation: 

εb = - 
C33εzz 

2 C13
       (4.14) 

Given that the deposition of ZnO was carried out under a temperature of 350 °C, and that the 

coefficients of thermal expansion of ZnO and GaAs are 2.9 x 10-6 K-1 and 5.73 x 10-6 K-1 

respectively, the biaxial stress σb of thermal type induced in the film was determined using 

equation (4.14) at -208 MPa. This value seems quite consistent with the values of the stresses 

estimated from XRD and Raman data in the limit of the errors (Tables 8 and 10).  
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4.3.3 Morphology and roughness by AFM 

Since a uniform surface facilitates acoustic wave propagation and reduces losses, ZnO films 

possessing flat and homogeneous surfaces are preferred. Using AFM, the topography of the 

films deposited on different GaAs cuts and the roughness parameters are studied. 

4.3.3.1 Operating principle of AFM 

Atomic force microscopy (AFM) is a scanning probe analysis technique allowing, among others, 

to characterize the surface topography of a sample at the nanometer scale. It exploits the 

interaction between the surface atoms of the sample and the atoms of a probe of nanometric 

dimensions. The surface of the sample is scanned by a very thin tip, positioned at the free end 

of a flexible micro-lever, able to move in all directions of space, thanks to a piezoelectric tube 

(Fig. 29). The Z-movement of the tip, varying according to a feedback parameter, is recorded 

by a computer allowing the reconstruction of the image of the surface. The analysis of the bends 

of the micro-lever makes it possible to determine the exact path of the tip, as well as the 

measurement of the interaction forces with the sample [172]. 

 

Figure 32. Schematic representation of an atomic force microscope [173] 
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Atomic force microscopy can be operated in three main scanning modes: 

• The contact mode: it corresponds to low tip-surface distances of the order of a few Å, for which 

the contact forces are repulsive. When the point presses on the surface, it is pushed back 

according to Pauli's principle and the cantilever is deflected. The feedback is done on the 

measurement of the direction of the deviation. 

• Tapping mode: by far the most used, it corresponds to important tip-surface distances ranging 

from 1 to 100 nm, for which the forces are attractive. It consists of vibrating the cantilever at its 

natural frequency of resonance with a certain amplitude. When the tip interacts with the surface, 

the amplitude decreases because the resonance frequency changes. The feedback is then on the 

amplitude of oscillation of the lever. 

• Frequency modulation mode: This is a combination of the two previous modes. The tip-to-

surface distance is between 0.3 and 100 nm. More delicate to manage, it makes it possible to 

separate directly the effect of the conservative and dissipative forces. The feedback is done on 

the deviation of the resonance frequency. 

4.3.3.2 Measurement procedure 

The surface topography of the films was characterized using a Nanowizard III AFM (JPK 

Instruments, Germany). Imaging was performed in air using Nano World NPS-10C cantilevers 

made from silicon nitride with a stiffness of 0.32 N/m. AFM images were collected in a contact 

mode, at a frequency of 0.5 lines/sec with a resolution of 512 by 512 pixels. Scans of different 

dimensions (100 x 100 μm2 to 1 x 1 μm2) were made in order to have a representative sampling 

of the surface. 

4.3.3.3 Results 

Figure 33 shows the AFM images and surface roughness of the deposited ZnO thin films. The 

root mean square (Rms) roughness parameters of GaAs bare substrates and of the deposited 

ZnO films were determined using JPK software from several 5 μm x 5 μm images (Table 11). 
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Figure 33. AFM images (5x5 μm2, contact mode, silicon nitride tips (0.32 N/m), 512*512 

pixels resolution) of ZnO thin films deposited on GaAs substrates of different cuts without and 

with the Pt/Ti buffer bilayer, and of GaAs bare substrates of different cuts. 
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Qualitatively comparing the AFM images, the dependence of the films’ morphology on the 

substrate’s plane is obvious. As seen clearly, the surface of the ZnO film deposited on GaAs 

(100) is the roughest, and the Rms decreasing from 26.5 ± 1.8 nm to 17.9 ± 2.1 nm when the Pt 

layer is added. The films grown directly on GaAs (110) showed an inhomogeneous surface, with 

roughness parameters varying according to the organization of the crystallites. However, that is 

not the case when a Pt/Ti bilayer is added, since the grains distribution becomes more 

homogeneous and the roughness parameters decrease from 18.9 ± 2.3 nm to 17.4 ± 3.8 nm. In 

the case of GaAs (111) substrates, although the surface roughness of the starting substrate is 

higher for GaAs (111)A than for GaAs (111)B, the surface of the ZnO thin film becomes more 

uniform on the Ga-terminated surface. Moreover, the roughness of the ZnO thin film changes 

between 13.4 ± 7.7 nm for direct growth and 2.7 ± 0.3 nm using the Pt/Ti bilayer. 

The roughness parameters for all substrate orientations decrease in the presence of the buffer 

layer, indicating a better organization of the ZnO films. Hence, the presence of the buffer layer 

promotes the growth of the crystalline homogeneous structure by reducing surface 

heterogeneities. By comparing the Rms values for the different cuts, GaAs (111)B has shown to 

provide the better films quality. 

Table 11. Average roughness parameters calculated from 5x5 μm2AFM images of GaAs bare 

wafers and ZnO thin films deposited on GaAs substrates of different crystallographic 

orientations with (+) and without (-) the buffer bilayer 

GaAs orientation (100) (100) (110) (110) (111)A (111)A (111)B (111)B 

Rms for bare GaAs (pm) 187.2 ± 27.2 212.9 ± 15.1 413.8 ± 29.9 173.2 ± 13.9 

Buffer bilayer - + - + - + - + 

Rms for ZnO film (nm) 
26.5 

± 1.8 

17.9 

± 2.1 

18.9 

± 2.3 

17.4 

± 3.8 

12.8 ± 

1.8 

10.8 ± 

1.9 

13.4 ± 

7.7 

2.7 ± 

0.3 

For the development of the proposed sensor, GaAs (100) has also shown to promote the growth 

of high quality ZnO thin films, in terms of texture, flatness, homogeneity and roughness. 

Moreover, the micromachining of resonant membranes in GaAs using chemical wet etching has 

been widely studied in our research group, and GaAs (100) has shown to produce promising and 

reproducible microstructures for sensing [9], which is not the case for GaAs (111). Therefore, 

the GaAs (100) cut will be selected for the rest of the study. 
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Considering the possible diffusion of Ti through Pt [174], which could affect the conductivity 

of the latter, another set of depositions was carried out under the same conditions, on GaAs 

(100) substrates, using Ta as an adhesion layer. The SIMS and ellipsometry measurements were 

performed in order to study the interfaces quality between the different layers, the film thickness 

and the optical properties, respectively. 

4.3.4 Interfaces and depth profiles by SIMS 

For a better understanding of the ZnO/buffer bilayer/GaAs structures, a physico-chemical 

analysis of the layers was conducted using SIMS. This allowed to obtain depth profiles of the 

elements distribution of the samples at the interfaces of the constituting layers. 

4.3.4.1 Operating principle of SIMS 

Secondary Ion Mass Spectrometry (SIMS) is a physicochemical characterization technique, 

based on the detection of secondary ions torn from a sample under the effect of a bombardment 

of so-called primary incident ions. SIMS utilizes a beam of energetic primary ions of few keV 

to sputter the surface, producing ionized sputtered particles which can be detected by mass 

spectrometry. This technique provides in-depth information on atomic constituents by recording 

one or more mass peaks as the sputtering process erodes the sample, thus producing the detected 

signal from increasingly greater depths beneath the original sample surface. The depth 

resolution can be as low as 1 nm. This mode consists of alternating analysis and abrasion cycles. 

Successive mass spectra for each analyzed depth are thus obtained which, once processed, make 

it possible to reconstruct the distribution of a secondary ion in the depth of the sample. The 

SIMS technique provides a unique combination of extremely high sensitivity for all elements 

from Hydrogen to Uranium (detection limit down to ppb level for many elements), high lateral 

resolution imaging, and a very low background that allows high dynamic range. This technique 

is "destructive" by its nature (sputtering of material). It can be applied to any type of solid 

material (insulators, semiconductors, metals) that can be kept under vacuum [175]. 
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Figure 34. Schematic illustration of the functional principle of a TOF-SIMS characterization, 

adapted from [176] 

4.3.4.2 Experimental procedure 

SIMS characterization was realized at GCM laboratory of École Polytechnique Montréal. The 

depth profiles were executed in interlaced mode on a 100 μs cycle. In this mode, the sputtering 

source was used to remove the analyzed material for about 80 μs. During the remaining 20 μs 

of the cycle, the flood gun sent a pulse of low energy electrons to discharge the surface. For 

depth profiles, the Cs+ sputtering source is used for negative ion profiles because Cs promotes 

their emission, and the O2+ sputtering source is used for positive ion profiles. A detailed list of 

the parameters used for this technique is provided in Table 12. The surface was then bombarded 

with the primary ions of Bi+, and the emitted secondary ions were collected for analysis. The 

craters with dimensions of 300 μm x 300 μm were etched, and the analysis with the primary 

ions of Bi+ was carried out in a region with dimensions of 50 μm x 50 μm located in the center 

of the crater to avoid the edge effect. All profiles were obtained to the interface of GaAs. The 

crater depth was measured using a profilometer. This allowed to determine the average erosion 

rate and to express the profiles as a function of depth rather than the sputtering time.  

In Time-of-flight SIMS (TOF-SIMS), some species have a better detection yield in positive ions 

and others in negative ions. This doesn’t necessarily mean that a species with a higher yield of 

negative ions will not be detected at all in positive ions, and vice versa, but the intensity detected 

would be much lower. With regards to the elements expected in the present analysis, oxides, Pt, 
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and As have a better detection yield of negative ions. On the other hand, Ti, Ta and Ga have a 

better yield of positive ions. Negative ion profiles were first established for all the samples, 

which made it possible to observe the profiles of ZnO, Pt, As and GaAs. Then, positive ion 

profiles were established to observe the distribution of Zn, Ta, Ti, and Ga. The Pt was also 

detected, but with a decreased intensity compared to what was found in negative ions profile. 

Table 12. Experimental SIMS parameters used to collect the depth profiles of the deposited 

ZnO thin films 

Apparatus ION-TOF SIMS IV 

Ionic courant 0.5 pA 

Pulse 19.1 ns 

Pressure 5.0 x 10-9 Torr 

Charge neutralization 2.35 A 

Spectroscopy 

Source Bi+ 

Energy 25 kV 

Analyzed surface 50 μm x 50 μm 

Spectral resolution 128 x 128 pixels 

Profiles 

Source Cs+ and O2+ 

Energy 3.0 kV 

Pulverized surface 300 μm x 300 μm 

4.3.4.3 Results 

The examination of the depth profiles (Figure 35) of ZnO films deposited on GaAs (100) with 

and without the Pt/Ti and Pt/Ta buffer bilayers shows two main phenomena: the first one is the 

oxidation of the Ta and Ti layers during the ZnO deposition, which manifested by the 

presence/profile of their oxides (TaO, TaO2, TiO, and TiO2). The oxidation of these layers was 

expected since ZnO films were grown using sputtering technique at high oxygen partial 

pressure. The second is the diffusion of some elements up towards the ZnO film. Based on the 

deposition conditions used for the buffer bilayers, the thickness of Pt is expected to be of 150 

nm and the one of Ti and Ta of 15 nm for each. However, Figure 35 (e) shows that Ta oxides 

were found across all the Pt thickness, while it was supposed to be at Pt/GaAs interface.  
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Figure 35. Positive and negative ion depth profiles measured on 3 samples by SIMS in ZnO 

thin films grown on GaAs (100) (a, b), on Pt/Ti /GaAs (100) (c, d), and on Pt/Ta/GaAs (100) 

(e, f), respectively. The red arrow indicates the interface between ZnO and other layers. 
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Moreover, it can be clearly observed that only Ta oxides diffuse while metallic Ta remains at 

the interface. As for Ti, expected to be located at Pt/GaAs interface, it diffused into Pt as well 

as its oxides (Figure 35 (c)). Furthermore, it was observed that ZnO tends to slightly diffuse to 

the Pt layer as well. 

The behavior of the different elements could be explained as follows: since the deposition of the 

ZnO films is carried out at high temperature (350 – 450 °C), Ti and Ta have diffused into Pt in 

order to oxidize. However, this diffusion is less significant in the presence of Ta than that of Ti. 

This result is related to the fact that Ta is heavier than Ti, which is consistent with Maeder et al. 

stating that Ta is preferable than Ti for an adhesion layer since its diffusion is less efficient 

[177]. As for Ga, which tends to diffuse at room temperature in GaAs [178], [179], its diffusion 

stopped at the ZnO interface. However, Ga diffuses easily through Ta, Ti and Pt layers. 

The inter-diffusion in the buffer layer is of a concern only if Pt is used as a bottom electrode, 

since it would affect the conductivity of the device. The XRD and AFM measurements confirm 

that this buffer improves the crystalline and structural quality of the films, in terms of texture, 

stress and roughness, but it promotes the diffusion of Ga, interface layers and ZnO itself. 

Therefore, direct growth of ZnO on GaAs should be preferred. 

4.3.5 Thickness and optical properties by ellipsometry 

4.3.5.1 Operation principle of ellipsometry 

Ellipsometry is a well-known optical technique for the analysis of the thickness and optical 

parameters (refractive index, bandgap…) of materials in form of thin films of nanometric 

thickness. Discovered by P. Drude more than 100 years ago, it is based on the analysis of the 

polarization of a plane wave before and after reflection on a substrate composed of multiple 

layers. Ellipsometry is based on the measurement of the change in polarization state, quantified 

by the amplitude ratio Ψ and the phase difference Δ (Figure 36), of a light beam reflected at an 

angle Φ0 by the surface. Because the signal depends on the thickness as well as the material 

properties, ellipsometry has become a universal tool for contact free determination of thickness 

and optical properties (indices n and k) of thin films [180]. The analysis and fitting of the 

experimental data is carried out using a mathematical model adapted according to the analyzed 

materials and layers. 
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Figure 36. Operating principle of an ellipsometer 

4.3.5.2 Experimental procedure & results 

Ellipsometric spectra were measured using the UVISEL spectroscopic ellipsometer (HORIBA 

Jobin Yvon) in the range of 0.73 eV and 4.75 eV. The ellipsometric data was fitted by using a 

layer/substrate exitronic model proposed by K. Sato et al [181], in order to estimate the 

thicknesses and optical properties of the films. Three wafers were measured: ZnO/Pt/Ti/GaAs, 

ZnO/Pt/Ta/GaAs and ZnO/GaAs. Three measurements were carried out on each wafer, one at 

the center and two near the edges. 

The thicknesses of the films were estimated from the ellipsometric data, which allowed to 

determine the location of the interfaces, and to predict at which depth each element should be 

located. Hence, the thicknesses of the films were determined at 758 ± 23 nm for 

ZnO/Pt/Ti/GaAs, 660 ± 20 nm for ZnO/Pt/Ta/GaAs and 611 ± 19 nm for direct deposit. 

The bandgaps of ZnO films deposited on GaAs (100) with and without the buffer bilayers were 

obtained from ellipsometric measurements (an example is shown in Figure 37 (a)), by tracing 

the variation of the absorption coefficient (k) versus the photon energy. The determined 

bandgaps were 3.34 eV for ZnO/Pt/Ti/GaAs, 3.39 eV for ZnO/Pt/Ta/GaAs and 3.36 eV for 

direct growth, respectively, with a precision of 0.02 eV. The measured values were very close 

to the bandgap of ZnO single crystal (3.33 eV) [182]. The minor difference can originate from 

stress effect as measured by Raman and XRD. Moreover, the refractive index of the films was 
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determined as a function of the wavelength (Figure 37 (b)), and the experimentally estimated 

refractive index of ZnO films were in a reasonable agreement with literature (close to 1.9 below 

450 nm) [183]. Some minor difference can be observed on the intensity of the excitonic peak 

and in the visible absorption of ZnO. These differences may originate from intrinsic defect 

(oxygen vacancies) or ionic diffusion from the substrate as observed by SIMS. 

 

Figure 37. Absorption coefficient, k (a), and refractive index, n estimated from the fitting 

model for ZnO films deposited on GaAs (100) with and without Pt buffer layers 

These results confirm that ZnO films present comparable optical properties (bandgap, refractive 

index) on the different surfaces (with and without Pt buffer layer) and that the interdiffusion 

between Pt/Ti/Ta/Ga did not affect the properties of ZnO. 

4.4 Realization of the electrical interface 

4.4.1. Production of the electrodes 

After the deposition and characterization of ZnO thin films on GaAs susbtrates, electrodes were 

deposited on top of the ZnO films to establish the electrical contacts. This very conventional 

step usually consists of selectively etching layers deposited on the substrate in order to obtain 

the desired electrode shapes. 

In the previous work [7], the electrodes consisting of a gold layer and a chromium bonding layer 

were deposited on GaAs. The deposition was performed on the entire surface of the substrate. 

Then, a resist mask was produced by photolithography for structuring the electrodes. Finally, 

gold and chromium were chemically etched by solutions based respectively on iodide and 
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ammonium nitrate. However, a diffusion phenomenon was observed in the semiconductor 

during the deposition process which made GaAs conductive. Even by extending the etching time 

of metals, GaAs remained conductive. It was not possible to recover the original properties of 

GaAs without deeply damaging its surface.  

In order to remedy this problem, the realization of the electrodes in the present work was carried 

out using lift-off process. This consists of depositing metal layers on the photoresist and then 

removing them from the areas to be protected by stripping (dissolution of the resist). After 

removal of the photoresist, only the electrode patterns remained on the semiconductor. No 

problem of inter-diffusion or penetration was observed in this situation. 

For our process, we used the AZ9260 positive photoresist. Using a spincoater, a layer of 

photoresist was spread on top of the ZnO film. The homogeneous spreading was done by 

centrifugation: the wafer was fixed by suction on a rotating support, a quantity of resist was 

deposited on the substrate and the centrifugal force allowed the spreading of the resist uniformly 

in a thin film. The thickness of the resist depends mainly on its viscosity, speed and rotation 

time. In general, a resist is said to be positive if it becomes soluble to the developer after 

exposure to light, and negative in the opposite case.  

A mask containing the patterns of the desired microelectrode array was designed. The design of 

the patterns used in the manufacture of the mask was done by V. Lacour using the software 

CLEWIN4. The mask allows to deposit electrodes for 21 samples at a time. Each sample has 2 

pairs of electrodes: a main pair used in all the measurements and a secondary one incidentally 

allowing to use the device in quadrupole. Figure 38 shows the entire mask as well as the 

geometry of an electrode pair. The gap between the two electrodes is 200 µm, for most patterns. 
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Figure 38. Patterns and mask of the electrical contacts and electrodes [12] 

The mask was aligned with the resist-coated wafer using EVG aligner, and the assembly was 

exposed to UV light. The parameters of exposure are indicated in the Table 13. 

Table 13. Tools and parameters used for the realization of the Cr/Au electrodes  

Phase Step Tools Parameters Microstructure 

Electrodes 

production 

by lift-off 

Deposition 

of AZ 9260 

photoresist 

-Resist AZ9260 

-Spin coater RC8 

-Rotation time: 30 sec 

-Rotation speed: 3500 tr/min 

-Acceleration: 3500 tr/min/s 

 
Annealing Hotplate 

-Duration: 6 min 

-Temperature: 105 °C 

-Rest time: 2 min 

Insolation 

-UV Lamp 

-Electrodes mask 

-Aligner DUV 

EVG 

-Dose : 650 mJ/cm2 

-Duration = Dose/ Power 

-Rest time: 2 min 

 

 

Revelation 

Developer AZ 

400K diluted at 

¼ 

Revelation time: 3 min 

 

Rinsing 

and drying 

-DI water 

-Blow Gun 
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Deposition 

of Cr 
Plassys (MP500) 

-Intensity: 0.5 A 

-Deposition rate: 50 nm/min 

-Thickness: 20 nm 

-Duration: 30 sec 
 

Deposition 

of Au 
Plassys (MP500) 

-Intensity: 0.3 A 

-Rate: 150 nm/min 

-Thickness: 200nm 

-Duration: 80 sec  

Stripping Remover 1165 
-Temperature: Ambient 

-Duration: over night 
 

Cleaning 

Ethanol + US 

 

Spin/rinse/dry 

(SRD) system 

Duration: 5 min 

 

 

Duration: 6 min 

 

After exposure, the mask was removed, and the substrate was immersed in a developer AZ 400K 

diluted 1/4 for 3 minutes to reveal the patterns. Then, a metal layer of Chromium/gold (Cr/Au, 

20 nm/ 200 nm) was deposited on the surface of the sample by cathodic sputtering. After, the 

substrate was immersed in Remover 1165 to stripper the resin. By disappearing, it eliminates 

the metal that has been deposited on its surface, leaving behind the desired metallic patterns.  

4.4.2. I-V characteristic of ZnO/GaAs and ZnO/Pt/GaAs devices 

The I-V characteristics of ZnO/GaAs and ZnO/Pt/GaAs devices were obtained using the 

Keithley 3706A-S system switch and 2636B system source master, at room temperature. The 

voltage range was between -10 V and 10 V with a step of 0.25 V and a time delay of 0.3 sec. 

The Cr/Au deposited on top of the ZnO film provided the electrical contacts. 
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Figure 39. I-V characteristic of ZnO/GaAs and ZnO/Pt/GaAs devices 

The I-V characteristic of ZnO/GaAs and ZnO/Pt/GaAs is shown in Figure 39. In the case of the 

direct deposition of ZnO on undoped GaAs substrate, the contact is ohmic and shows the lowest 

conductivity. However, in the presence of the Pt buffer layer, the conductivity is much higher 

and present a symmetric non-linear characteristic. It is obvious that the current flow is affected 

by the bottom electrode and the non-linear characteristic originates from the metal contact to the 

ZnO film. The symmetric characteristic arises from the symmetry of the stack structures. Some 

minor hysteresis is also observed that can originate from charge injection (memristive effect). 

For our application, the acoustic wave transducer requires the lower conductivity and the direct 

deposition is preferred. 

4.5 Fabrication of the membrane 

4.5.1 Thinning of GaAs substrates 

Due to the difference in thickness between the desired membrane (50 μm) and the initial 

substrate (500 or 625 μm), the GaAs wafers were thinned down to 300 μm. This step does not 

require any masking step because we want to thin the entire substrate. To keep production at 

low cost, we opted for wet chemical etching. Thinning of the backside of the substrate was 

carried out with a solution based on orthophosphoric acid developed by Bienaimé et al. [9]. The 
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acid is combined with hydrogen peroxide and water in the following proportions: 7 H3PO4: 5 

H2O2: 8 H2O. The process is carried at 0 °C and under normal pressure conditions providing an 

etch rate Er = 0.85 μm.min-1. A layer of photoresist S1828 (MicroChem) was deposited 

beforehand on the front face of the substrate by spincoating at 4000 rpm providing a thickness 

of 3.8 μm. The photoresist was not developed and served to protect the ZnO film and the 

electrodes during the etching. 

Table 14. Tools and parameters used for the thinning of the membranes 

Phase Step Tools & solutions Parameters Microstructure 

Thinning 

of the 

substrate 

Deposition 

of S1828 

photoresist 

-S1828 photoresist 

-Spin coater RC8 

-Rotation duration: 30 sec 

-Rotation speed: 1900 tr/min 

-Acceleration: 4000 tr/min/s 
 

Annealing Oven 

-Duration: 5 min 

-Temperature: 120 °C 

-Rest time: 2 min 

Immersion 

in the 

etching 

solution 

-Solution: 7H3PO4 : 

5H2O2 : 8H2O 

-Magnetic agitator 

-Cryostat 

-Temperature: 0 °C 

-Agitation speed: 300 tr/min 

-Etch rate: 0.85 μm.min-1 

 

Rinsing 

and 

stripping 

-DI water 

-Acetone 

-DI water 

-Ethanol 

At room temperature for few 

minutes, in the indicated 

order 

 

An assembly using a copper heat exchanger connected to the circulation circuit of a cryostat 

with a dedicated support for 3-inch diameter wafers has been adapted to maintain the 

temperature constant. The etching solution is placed in a water bath containing glycerol cooled 

to 0 °C. The cooling bath is temperature controlled by a submerged heat exchanger connected 

to a cryostat (Figure 40). The temperature of the cryostat was set at -7.5 °C to achieve a constant 

etch temperature of 0 °C. The tubes connecting the cryostat to the heat exchanger are isolated 

by a thermal sheath.  
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Figure 40. Assembly used for the wet etching of 3-inch wafers, with refrigerated etching bath 

(T = 0 °C) and magnetic stirring 

The wafer to be thinned was held in the etching solution by means of a holder. It was oriented 

face down to the agitator to have a direct action thereof on the renewal of surface reagents. The 

renewal of the solution is ensured by agitation using a magnetic stirrer, with a rotation speed of 

300 rpm ensuring homogeneous thinning. This strategy makes it possible to produce the 

electrodes on an unthinned substrate, thus not weakened. However, the flatness is not optimal 

especially for long engravings. 

The duration D of this process was set to stop the thinning when the thickness T of the wafer 

reaches 300 µm using the relation: D = Er x T. At this thickness, the wafer is thin enough to 

avoid a long micromachining of the membrane, but thick enough to be handled without 

breaking. After reaching 300 µm, the wafer is removed from the etching bath and rinsed 

thoroughly with deionized (DI) water. Then the resist is removed by successive immersion in 

Acetone, DI water and Ethanol, and the thinned wafer is ready for the last step.   



Chapter 4: Microfabrication of ZnO/GaAs transducer  

100 

 

4.5.2 Membrane micromachining  

A thick layer (3.8 μm) of photosensitive resist S1828 is deposited on both sides of the wafer. 

The role of this resist is, on one hand to protect the top side of the wafer (ZnO film + electrodes) 

and, on the other hand, to achieve the mask that will be used to structure the membrane. 

Before etching the membrane, it is necessary to insolate the wafer using the mask designed for 

the membranes. The geometry of membranes consists of squares of 4 mm of side. In order to 

separate the devices, 200 μm wide cutting lines have been added to the mask. For the correct 

operation of the sensor, the membranes must be aligned with the electrodes, located on the other 

side of the wafer. It is possible to use the wafer marks (alignment flat and centering on the 

contours), but the precision would not be optimal. To ensure alignment between the two faces, 

it is necessary to first align the two masks with each other thanks to the alignment crosses 

provided for this purpose. Next, the electrodes of the chip are positioned with the corresponding 

patterns plotted on the mask of the electrodes. Once aligned, the patterns corresponding to the 

membranes are exposed using a double-sided aligner (DUV EVG) while switching off the lamp 

on the electrode side. 

 

Figure 41. (a) Masks for etching membranes (b) Alignment of masks with GaAs wafer 

After patterning, the wafer is immersed in the etching solution 1 H3PO4: 9 H2O2: 1 H2O using 

the previous assembly. The expected etching depths are relatively high and therefore require 
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very long etching times (5-7 hours). However, the efficiency of the reaction decreases 

significantly after a few hours of etching due to the depletion of the solution in reagents and to 

the increase of the reaction products. For the duration of the operation, the etching rate of the 

solution varies, in general, from 4 to 0.5 μm.min-1. Therefore, it was essential to measure and 

control the thicknesses after each step, as well as the etching rates and defects, by means of 

profilometry and/or optical microscopy. For a duration of 4 hours, we obtained an average 

etching rate of about 1 μm.min-1.  

Table 15. Tools and parameters used for the micromachining of the membranes 

Phase Step Tools & solutions Parameters Microstructure 

Machining 

of the 

membranes 

Deposition 

of S1828 

photoresist 

double side 

-S1828 photoresist  

-Spin coater RC8 

-Rotation duration: 30 sec 

-Rotation speed: 2500 tr/min 

-Acceleration: 4000 tr/min/s 

 
Annealing Oven 

-Duration: 5 min 

-Temperature: 120 °C 

-Rest time: 2 min 

Insolation 

of the 

membrane 

-Aligner EVG 620 

-Masque designed 

for membranes 

-Dose : 130 mJ/cm2 

-Duration : Dose/ Power 

-Rest time: 2 min 
 

Revelation Developer MF26A Revelation time: 2 - 3 min 

 

Etching of 

the 

membrane 

-Etching solution: 

1H3PO4: 9H2O2: 

1H2O 

-Magnetic agitator 

-Temperature: 0 °C 

-Agitation speed: 500 tr/min 

-Etch rate: 1 μm.min-1 

-Duration: D = Er x T  

Rinsing and 

stripping 

-DI water 

-Acetone 

-DI water 

-Ethanol 

At room temperature for few 

minutes, in the indicated 

order  

 

After etching, the wafer was rinsed several times with DI water then the resist is removed by 

successive immersion in Acetone, DI water and Ethanol. Figure 42 shows an example of 

ZnO/GaAs wafer after realization of the electrodes and the membranes. 
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Figure 42. Photo of a ZnO/GaAs wafer (AXT – AV 503-93 ) after the realization of the 

electrodes on the top side (a) and the membranes on the bottom side (b) 

After the micromachining, the obtained membranes are characterized using the profilometer 

Tencor Alpha-Step IQ in order to determine their thickness and roughness. For each wafer, 4 

membranes were characterized (2 near the center and 2 near the edges).  

For example, profilometric measurements carried out on wafer AXT – AV 503-89 indicated an 

average depth of 145.3 ± 3.7 μm for the central membranes and 154.9 ± 12.1 μm for the ones 

near the edges. These values around 150 μm differ slightly, which is certainly due to the 

thickness inhomogeneity caused by the thinning stage. The average arithmetic and quadratic 

roughnesses are respectively equal to Ra = 66.6 ± 7.6 nm and Rq = 82.3 ± 8.2 nm. These 

measurements have validated the machined depths. 

4.6 Conclusion 

Piezoelectric ZnO films were deposited on semi-insulating GaAs substrates using reactive RF 

magnetron sputtering, to enhance the piezoelectric performances of the existing GaAs-based 

acoustic wave sensor. The effect of the crystalline orientation of the GaAs substrate on ZnO 

films properties was studied using different characterization techniques. GaAs (100) was 

particularly privileged for promoting the growth of well-textured ZnO films. Furthermore, the 

use of a Pt buffer layer was investigated, using Ta or Ti adhesion layers. The XRD and AFM 

measurements confirmed that this buffer improves the crystalline and structural quality of the 

films, in terms of texture, stress and roughness. However, the buffer layer promotes the diffusion 
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of Ga, interface layers (Ta, Ti) and ZnO itself into the Pt. Moreover, the ohmic contact required 

for our application was only observed in the ZnO/GaAs structure, making the direct deposition 

of the ZnO film on GaAs substrate a more adequate approach. 

After the deposition and characterization of ZnO thin films and its interface with GaAs, we 

proceeded to the realization of the electrodes by lift off, then to the membrane micromachining. 

Among the different microfabrication techniques, we have opted for chemical wet etching due 

to the simplicity and large-scale reproducibility of this process. 

After the fabrication of the structure, the bio-interface will be established on GaAs at the bottom 

side of the sensor and then characterized to ensure its efficiency for the capture of the targeted 

bacteria: Escherichia coli. 
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Chapter 5: Realization and characterization of the bio-

interface on the sensor surface 

The detection of biological entity, including bacteria, involves the immobilization of a specific 

ligand on the surface of the biosensor. The main challenge is to be able to detect the targeted 

bacteria present in very small concentrations and in complex liquid environments. It is therefore 

necessary to develop a robust and reproducible sensor bio-interface. Through the characteristics 

of the immobilization methods exhibited in the state of the art and based on the preceding work 

in the research group, the covalent immobilization of ligands via SAMs presents many 

advantages and suits our application. Indeed, the formation of monolayers of high organization 

and density allows the immobilization of the ligands in a durable, robust and reproducible way. 

Furthermore, this approach allows, potentially, the reusability of the biosensor by regeneration 

of the bio-interface. 

The present chapter is divided into two main parts. The first part concerns the surface 

functionalization of GaAs (the bottom side of the BAW biosensor) with SAMs of alkanethiols. 

Given that the previous work in the research team has detailed different principles and 

techniques of SAMs formation on GaAs and their characterization, this section presents only 

the important notions and focuses on a mixed SAM composed of MHDA/MUDO (1:9 molar 

ratio). MHDA (16-Mercapto-1-hexadecanoic acid) of linear formula HS-(CH2)15-COOH 

consists of a chain of 16 carbons and a carboxyl terminal group, while MUDO (11-Mercapto-1-

undecanol) of linear formula HS-(CH2)11-OH consists of a chain of 11 carbons and a hydroxyl 

terminal group. The difference in chain length facilitates the interactions between proteins and 

MHDA. The second part of this chapter deals with the immobilization conditions of the ligands. 

In order to ensure an optimal capture of bacteria, different conditions (concentration, duration, 

pH) for ligand immobilization were tested.  

The experiments presented in this chapter were conducted in the LCSM laboratory (Laboratoire 

de Caractérisation des microsystèmes et Synthèse des Matériaux) of the 3IT institute in 

Sherbrooke (Canada). 
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5.1 Bio-functionalization strategy 

The selection of the ligand is essential to achieve a sensitive and selective detection of the 

targeted biological element. The decisive criteria are the effectiveness of the bio-recognition 

(specificity, sensitivity), the conditions of detection and the type of targeted analytes (from 

molecules to cells). Moreover, the determination of an immobilization architecture is critical for 

the optimization of specific interactions with the medium to be analyzed. It can affect the 

orientation, the density and the accessibility of the ligands [184]. Several functionalization 

chemistries studied in the literature on metal substrates can be applied to deoxidized GaAs, 

consolidating the choice of this material. 

Our strategy for capturing the biological target is based on immunological recognition. We aim 

to detect E. coli bacteria through its immunocapture using antibodies against E. coli immobilized 

covalently on the GaAs membrane via a mixed SAM of alkanethiols MHDA/MUDO (1:9 molar 

ratio). The chosen SAM has proved in previous studies to ensure an efficient and reproducible 

immobilization of antibodies [10]. Bovine serum albumin (BSA) is used to passivate the surface, 

and ethanolamine is employed for blocking the activated carboxyl groups that did not react with 

a ligand. The main stages of surface bio-functionalization are represented in Figure 43 and the 

used protocols will be presented in detail in the following sections. 

 

Figure 43. Schematic representation of the bio-functionalization stages: (a) bare and 

deoxidized GaAs surface, (b) MHDA/MUDO (1:9) chemical functionalization, (c) 

immobilization of antibodies anti-E. coli, (d) surface passivation. 
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5.2 Chemical functionalization of GaAs membrane 

5.2.1. SAMs formation on GaAs 

SAMs are organic layers that modify the chemical properties of the surface. The constitutive 

molecules of SAMs generally consist of a surface-active head group, a spacer and a terminal 

functional group (Figure 44). 

• The surface-active head group: It is the chemical function allowing the specific 

adsorption of the organic molecule on the substrate. The main functional group used for 

deoxidized GaAs is thiol (-SH). 

• The spacer: It constitutes a physical barrier that limits the interactions of the external 

environment with the substrate. It may consist of chains of different lengths and natures. The 

spacer commonly used for GaAs is generally constituted by an alkyl chain of at least ten carbons 

allowing the organization by Van der Waals interactions. Polyethylene glycol (PEG) chains 

have been also used in our team and seem to reduce non-specific interactions due to their 

hydrophilic properties [57], [185]. 

• The functional group: It determines the physicochemical properties of the monolayer. 

In the case of GaAs, the choice of the functional group is adapted to the required function: 

carboxyl for the immobilization of molecules and hydroxyl for the protection against non-

specific adsorption. Several functional groups are often associated in the same self-assembled 

layer to obtain a mixed layer, presenting both biomolecule attachment zones and inert zones, 

and making it possible to reduce non-specific substrate/biomolecule interactions.  

 

Figure 44: Organization of SAM on the surface of deoxidized GaAs substrate 
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Surface functionalization with SAM is a strategy of choice because it allows to passivate the 

surface of the material while proposing a high density of bonding sites for ligands. The 

functionalization of GaAs surface by a monolayer of chemical molecules is generally fast (few 

hours) and easy (by immersion in solution). It is a process that is simple to implement and, 

depending on the type of molecules, can be achieved at low cost. As mentioned in section 2.3.2., 

the procedure of formation of SAMs on GaAs requires the deoxidation of the surface right before 

the functionalization. Different chemistries can be used to deoxidize the surface of GaAs: 

solutions of acids (HCl, H3PO4 or H2SO4) or bases (NH4OH). Unlike NH4OH, acids seem to 

modify the stoichiometry of the GaAs surface which becomes richer in arsenic. A surface rich 

in arsenic is not favorable to the organization of SAMs, since it is extremely reactive and quickly 

re-adsorbs contaminants from the air or the etching/rinsing solutions [186], [187]. Therefore, 

NH4OH is chosen in our protocol for deoxidizing GaAs. 

Immunoreceptors are at least an order of magnitude larger than the molecules constituting the 

SAMs. The antibodies, used as ligands in this work, are 10 - 20 nm in height [188] and occupy 

a surface of roughly 5 - 20 nm2, while the molecules used for SAM have a height in the range 

of 1 to 3 nm and occupy a surface of 0.05 - 0.2 nm2. Thus, an antibody can cover up to 100 

thiols. This means that the majority of the surface thiols will not form a covalent bond with the 

receptor, although some thiols may bind to different amine groups of the antibody. In order to 

facilitate the immobilization of the receptors, to promote their relative flexibility, to improve the 

stability and reproducibility, and to avoid the non-specific absorptions on the surface, it is 

proposed to use a so-called mixed architecture [189], [190]. Such architecture offers many 

advantages for immunocapture applications. Some studies on the formation of mixed SAMs on 

gold substrates have revealed a higher density of immobilized ligands compared to a 

monomolecular SAM [191], [192]. Generally, these architectures are composed of "linker" 

molecules that immobilize the receptors, diluted with other molecules called "diluent" that will 

prevent the non-specific adsorptions on the surface [189]. The alkanethiol used as diluent allows 

to avoid the steric hindrance associated with the immobilization of the antibodies. Indeed, the 

use of linker with longer chains than diluent thiols will, in the ideal case, make more accessible 

the head groups necessary for the immobilization of ligands. The use of an optimal diluent/linker 

couple is determined to offer the most degrees of freedom to the linkers while avoiding their 
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folding. This type of effect has been studied in our research team, particularly for the 

functionalization of GaAs substrates for protein layer immobilization [10], [11]. 

The functionalization approach used in this work is composed of the following two alkanethiols: 

MHDA and MUDO. The carboxylic acid is used to provide a covalent bond with the antibody 

(amide bond), while the hydroxyl-terminated thiols passivate the substrate and space the 

MHDA. The covalent bond with the carboxylic acid is carried out with one of the amine groups 

of the protein after a so-called NHS/EDC COOH activation procedure. Compared with other 

terminal groups (CH3, NH2, PheOH), it has also been shown that hydroxyl-terminated thiols 

significantly limit non-specific interactions [193]. 

5.2.2. Functionalization procedure 

The fabricated samples were placed in a holder (Figure 45) designed in Teflon to only expose 

the bottom side (GaAs membrane) to the solutions while protecting the top side (ZnO thin film 

+ Cr/Au electrodes). The protection of the top side is crucial for two purposes:  

1) To avoid the exposure of the ZnO thin film to the solvents and etchants during the 

preparation of the samples. 

2) To prevent thiols from being deposited on the gold electrodes. This would result in the 

passivation and change of conductivity of the electrodes and influence the measured 

signal subsequently.  

 

Figure 45. (a) Top and bottom sides of the samples holder, (b) positionning of the sample in 

the holder 
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Once the sample is placed in the holder, solvents were added in the following order: OptiClear, 

Acetone then Ethanol. After adding each solvent, the holder was placed in a sonicator for 5 

minutes. Afterwards, solvent is removed, and the sample is dried. 

GaAs has a high reactivity to oxygen atoms, so an oxide layer is naturally formed. Therefore, a 

deoxidization step is necessary before the chemisorption of the thiols on the GaAs, since the 

sulphide groups bind directly to the Ga and As atoms [73], [74]. Hence, the samples were 

exposed for 2 minutes to Ammonium Hydroxide (NH4OH, 28 %) then briefly rinsed with 

deoxygenated ethanol. The latter was prepared beforehand by degassing anhydrous ethanol for 

1 hour by a flow of Nitrogen. After, the samples were immediately incubated in MHDA/MUDO 

(1:9) at 2 mM thiol solution for 20 hours at room temperature and protected from light to avoid 

the photooxidation of the substrate. A reference for the measurements is always provided via a 

freshly deoxidized GaAs membrane incubated in deoxygenated ethanol for 20 hours. 

The alkanethiols were solubilized in deoxygenated ethanol as well. This process makes it 

possible to minimize the presence of oxygen in the thiol solutions and to avoid the formation of 

oxide before and during the functionalization step. This step also makes it possible to promote 

the reproducibility of the process. Once degassed, ethanol is used immediately for the 

preparation of alkanethiol solutions, or for rinsing. 

After 20 hours, the samples were rinsed thoroughly with degassed ethanol, followed by 

ultrasonic cleaning for 30 sec in degassed ethanol to remove the physisorbed thiols. Finally, the 

samples were dried under nitrogen flow.  

Once mixed, the thiols have different reactivity with the surface and their proportions change 

when self-organizing on the surface. Indeed, the transfer of the molecules from a 3D space 

(solution) to 2D (GaAs surface) causes different reactivity of the molecules and is dependent on 

the polarity and charge of the molecules. This difference in reactivity is mainly due to the nature 

of the functional group of the thiols and to the chain length, which affects the diffusion speed. 

Therefore, it is crucial to characterize the surface after functionalization to examine the 

organization of the thiols and to confirm the formation of the SAM on the GaAs surface. 
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5.3 Characterization of SAMs on GaAs membrane 

SAMs constitute the basis of the bio-interface, and a well-organized and dense SAM is required 

to ensure an effective and reproducible immobilization of ligands. Therefore, the 

characterization of this chemical interface is essential to better understand its organization, its 

composition, and its homogeneity. A systematic characterization of SAMs was carried out using 

contact angle measurements, Fourier-Transform Infrared (FTIR) spectroscopy and X-ray 

Photoelectron Spectroscopy (XPS). Going from macroscopic to microscopic scale, these 

techniques allow proving the presence of thiols on the surface (satisfactory functionalization of 

GaAs surface), examining their quality (organization, ratio, density). 

5.3.1 Contact angle measurements on the SAM-coated membrane 

The validation of the presence of the thiols on the GaAs surface can be obtained through 

measurements of surface energies. This technique makes it possible to evaluate the difference 

in wettability of the studied surface. This difference originates from the change of the surface 

chemical functional group (-CH3, -COOH, -OH ...) which causes the inclination of the carbon 

chains composing the SAM and organizational defects. 

Contact angle measurements were performed using the setup presented in Figure 46. The 

measurements were carried out in an enclosed chamber to control the evaporation conditions. A 

drop of 20 μl of deionized water was deposited on the surface of the samples using a micro-

syringe, and the images were captured about 10 seconds later. The angle measurements were 

performed using the DropSnake plugin [194] on the ImageJ® software. For each measurement, 

the static contact angle is calculated to the right and to the left of the drop with a typical error of 

± 3 °, and the results are then averaged. Measurements were carried out on membranes 

functionalized with MHDA/MUDO (1:9), and on freshly deoxidized GaAs membranes, 

considered as a reference to compare the difference in surface tensions. In each case, 3 samples 

were tested. Figure 47 shows an example of the droplet shape on each surface. 



Chapter 5: Realization and characterization of the bio-interface on the sensor surface  

111 

 

 

Figure 46. Contact angle measurement bench (modified from the LCSM training manual) 

The contact angle measured on deoxidized GaAs is at 59 ° which is close to the 57 ° value 

reported by Huang et al. [75]. This minor difference in the contact angle measured on bare GaAs 

is probably due to the re-oxidation of the substrate before the measurements or the differences 

in surface conditions (polishing, cleaning and etching reagents, surface termination…) between 

different GaAs wafers. 

The contact angle measured for GaAs functionalized with MHDA/MUDO (1:9) is of 71.5 ± 3 

°. To assess the measured value, we compared it to the contact angles for GaAs surfaces 

functionalized with SAMs of pure MUDO and pure MHDA reported in a previous study in the 

group [12]. The reported angle for a GaAs surface functionalized with pure MUDO is 45 ± 2 °, 

which is expected due to the terminal hydroxyl group. On the other hand, the reported angle of 

GaAs surface functionalized with a SAM of pure MHDA is 90 ± 2 °, which is surprising since 

the carboxyl terminal group is hydrophilic. However, the combination of different parameters, 

such as the proximity of long hydrophobic carbon chains, the hydrophilic terminal groups as 

well as the pronounced inclination of this type of layer on the surface, can explain this 

intermediate value of surface tension for pure MHDA functionalization. Therefore, the 

measured angle for MHDA/MUDO (1:9) corresponds to a value between the reported angles 
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for pure MUDO and MHDA. This value therefore corresponds to the presence of both types of 

molecules on the surface. Furthermore, it is close to the value reported for 3 % MHDA by 

Bienaimé et al., consolidating our findings. 

 

Figure 47: Photos of a 2 µl drop of deionized water on the surface of GaAs membrane (a) 

freshly deoxidized and (b) functionalized with MHDA/MUDO (1:9) (N = 6 samples) 

The measurements of static contact angle remain difficult to reproduce from one device to 

another, and therefore the comparison with other authors is not accurate. By cons, we can 

validate the presence of thiols on the surface of the samples based on the hydrophilic or 

hydrophobic character that the surface should have. In our case, the difference in the wettability 

of the surfaces between bare and functionalized GaAs surface clearly shows a modification of 

the surface state due to the presence of molecules of MHDA and MUDO. 

5.3.2 FTIR characterization of SAM on GaAs membrane 

Within the previous thesis, FTIR has proved to be a characterization technique of choice for 

SAM, since it allowed to understand the formation kinetics of mixed SAMs of alkanethiols on 

GaAs. FTIR can provide information about the density, organization and proportions of the 

thiols within the SAM. In particular, the position of the νCH2 bands shows the conformity of 

arrangement of the molecules constituting the SAM. The monolayers can thus be described 

according to the position of their peaks of methylenes. In order to prove the establishment of a 

mixed SAM of MHDA/MUDO on GaAs surface, the νCH2 bands were examined using FTIR.  

The FTIR measuring system is a Vertex 70v from Bruker Company equipped with a RockSolid 

interferometer and a wide-range Globar IR source covering 6000 to 10 cm−1. The signal is 

collected with a liquid-nitrogen-cooled MCT (Mercury-Cadmium Telluride) IR detector, and a 
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resolution of 4 cm-1. Transmission spectra of chemically functionalized GaAs membranes are 

recorded with Bruker Vertex 70v spectrometer (512 scans) interfaced with a computer using 

OPUS Bruker Optics software. A reference for the measurements is provided via a freshly 

deoxidized GaAs membrane incubated in deoxygenated ethanol solution for 20 hours, then 

rinsed and dried under Nitrogen flow. Measurements are carried out under vacuum and spectra 

of SAMs were subtracted from the spectrum of the reference.  

FTIR results for GaAs membranes showed a very high noise level compared with those obtained 

with bulk GaAs samples, which made it difficult to examine the CH2 peaks relative to the SAM. 

The high noise in the spectrum (Figure 48) is probably caused by interference due to the low 

thickness of the membranes (down to 100 µm), which can be explained by the Fabry-Perot 

principle. It states that the varying transmission function of a standard is caused by the 

interference between the multiple reflections of light between the two reflecting surfaces. So, 

the interference pattern can be used to determine the refractive index of the film with the 

following expression:  

n = k/(2 δʋ t)     (5.1) 

with t the sample thickness, k the number of fringes in the wavenumber region, and δν the 

wavenumber region used [195]. 

Indeed, using the δν and k from the FTIR spectra and GaAs refractive index (n = 3.94), we were 

able to recalculate the thickness of the measured sample. Moreover, the interference is less 

pronounced when the sample is thick, which explains why the signal noise was lower on the 

edge of the membrane (~360 µm) and negligible for bulk GaAs samples (~ 617 µm).  

To solve the problem of interference, two solutions were tested: the first one consisted in tilting 

the sample during the measurement, which resulted in reduced signal intensity. The second 

method consisted of processing FTIR spectra/data using OriginPro 8 software. After 

determining the interference period, we calculated the corresponding frequency and we applied 

an FFT (Fast Fourier Transform) filter with a fixed value of the frequency, which allowed to 

subtract the noise from the signal. Figure 48 shows an example of processing an FTIR spectrum 

of a 220 µm thick functionalized membrane, displaying the symmetric (2851.6 cm-1) and 

asymmetric (2922.8 cm-1) CH2 peaks. The presence of the CH2 peaks confirms the presence of 

the thiols on the GaAs membrane. 
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Figure 48: FTIR spectra of MHDA/MUDO (1:9) functionalized membrane (220 µm thickness) 

Although FTIR is a technique of choice, we were not able to extract exact information about the 

organization and density of the SAM, even with the signal filtration. Therefore, we opted for a 

characterization using X-ray photoelectron spectroscopy (XPS), searching for a solid proof of 

the formation of MHDA/MUDO SAM on the GaAs membrane. 

5.3.3 Proof of Ga-S and As-S covalent binding by XPS 

XPS is a quantitative spectroscopic technique for the determination of the chemical composition 

of a material. The surface of the material is irradiated by X-rays which ionize the constitutive 

atoms by photoelectric effect. The photon interacts with the valence band by ejecting one of its 

electrons. XPS spectra show the number of electrons in counts per second (CPS) as a function 

of their binding energy. Since the binding energies are dependent on the electronic orbital of the 

ejected electron, the peaks obtained on the XPS spectrum correspond not only to a specific atom, 

but their position varies according to the nature of their bonds with the neighboring atoms. The 

intensities of photoelectrons are proportional to the concentration of the element from which it 

is ejected. By normalizing the number of electrons of each type detected by a certain sensitivity 

factor, it is possible to obtain the relative ratios between each atom and thus to obtain the 

chemical composition of the sample. X-rays can penetrate the surface of the sample over several 
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micrometers, but only a fraction of electrons near the surface (~ 10 nm) has enough energy to 

be ejected without being scattered. This allows to characterize the surface with a high finesse. 

We wish to demonstrate with this method the covalent binding of the sulfur atoms of the 

monolayer of alkanethiols on the GaAs membrane. For that, the analysis was carried out in the 

vacuum chamber of the XPS (Kratos Analytical, AXIS Ultra DLD) system under a pressure of 

1 × 10−9 Torr. The data were collected for a takeoff angle of 60 ° with respect to the surface 

normal. In this configuration, the measured depth is reduced from 10 to 5 nm, allowing a better 

resolution and a finer characterization. The surface survey scans were observed with a 75 W Al 

Kα source operating in a constant energy mode at the 20 eV pass energy. The analyzed area was 

of dimensions 300 μm × 700 μm, and charge corrections were made using the adventitious 

saturated hydrocarbon at a peak energy of 285 eV. The XPS results were analyzed with CASA 

XPS 2.3.18. The relative sensitivity factors used for quantification purposes are the experimental 

values provided by Kratos Analytical for their instruments. 

XPS survey spectra for bare (deoxidized) and chemically functionalized membranes are shown 

in Figure 49. The results are dominated, as expected, by C, O, Ga and As XPS features. While 

the adventitious saturated hydrocarbon is frequently the source of C 1s peak observed at 285 eV 

in deoxidized membranes, the significantly greater atomic concentration percentage of C (Table 

16) in the sample coated with MHDA/MUDO (1:9) SAM formed in ethanol is consistent with 

the increased contribution from hydrocarbons present in the MHDA and MUDO thiols. 

Table 16. Main elements detected on the surface of freshly deoxidized GaAs and 

MHDA/MUDO (1:9) SAM coated GaAs 

 
Freshly deoxidized 

GaAs 

MHDA/MUDO (1:9) 

SAM-coated GaAs 

XPS 

peak 

Binding 

energy (eV) 
FWHM 

% Atomic 

concentration 
FWHM 

% Atomic 

concentration 

C 1s 285 2.4 21.2 2.6 43.6 

O 1s 531 3.5 31.1 3.3 22.5 

Ga 3d 19 2.5 26.3 2.7 20.9 

As 3d 41 2.4 21.4 2.6 13 
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Figure 49. XPS spectra of (a) deoxidized GaAs membrane and (b) GaAs membrane 

functionalized with MHDA/MUDO (1:9) 

High resolution XPS spectra were also obtained over shorter energy ranges. Spectra were 

obtained from the O 1s, C 1s, As 3d, Ga 3s, and Ga 3d core levels. Nevertheless, we are mainly 

interested in the C 1s, As 3d and Ga 3s levels. The parameters for their individual component 
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peaks, e.g. branching ratio, binding energy, percentage of atomic concentration and FWHM are 

provided in Table 17. 

Table 17. Parameters of the individual peaks determined for deoxidized GaAs and 

MHDA/MUDO (1:9) SAM coated GaAs 

Branching ratio 

Deoxidized GaAs 
MHDA/MUDO (1:9) SAM-

coated GaAs 

Binding 

energy (eV) 

FWHM 

(eV) 

%At 

Conc 

Binding 

energy (eV) 

FWHM 

(eV) 

%At 

Conc 

C 1s C-C, C-H 284.8 1.2 21.1 285.1 1.2 35.3 

C 1s C-O 286.3 1.2 2.5 286.5 1.2 3.9 

C 1s COO    289.1 1.2 1.9 

Ga 3s 160.2 3.2  160.1 2.9  

As plasmon 156.2 2.5  156.4 2.7  

S 2p3/2    161.9 1.6  

S 2p1/2    163.1 1.6  

The oxygen spectra were not evoked in this analysis since the increase of the O 1s peak can be 

at the same time related to the presence of hydrophilic functional groups carried by the MUDO 

and MHDA molecules (both containing oxygen atoms), and to the native oxidation of the GaAs 

surface. Therefore, we can not rely on the increase of the O 1s peak to prove the functionalization 

of GaAs surface. 

The examination of the C 1s peak shows that the intensity is low (5.8 x 103 CPS) on bare GaAs 

surface, indicating that carbon contamination in the ambient air is low. After functionalization 

of the surface, its intensity increases strongly (2.7 x 104 CPS). The functionalized surface 

exhibits a pronounced peak with a binding energy of 285.1 eV, which is a value consistent with 

previous work [7], [12]. The presence of new contributions of higher energy is revealed, 

certainly induced by the presence of hydroxyl and carboxyl groups of MUDO and MHDA 

molecules. Indeed, the two peaks at 286.5 eV and 289.1 eV (Figure 50) correspond respectively 

to binding with the hydroxyl (OH) groups of MUDO and carboxyl (COOH) of MHDA. 
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Figure 50. High-resolution C 1s XPS spectra of (a) deoxidized GaAs membrane and (b) 

MHDA/MUDO (1:9) SAM coated GaAs membrane 

The Ga 3s and S 2p spectra overlap as shown in Figure 51. On deoxidized GaAs, the Ga 3s peak 

at 160.2 eV dominates different contributions. After functionalization, we observe an additional 

contribution between 160 and 164 eV that can be attributed to S 2p resulting from thiol species 

present on the surface, which is consistent with the creation of bonds between the sulfur of the 

thiol and the Ga and As atoms. The doublet S 2p consisting of two peaks at 161.9 eV and 163.1 

eV, confirms the covalent attachment of thiols on the surface. These values are in reasonable 

agreement with the binding energies for bound thiolate (162.0 eV) and free thiols (163.5 eV) 

reported on gold [196], [197].  

 

Figure 51. High-resolution XPS spectra for the S 2p and Ga 3s region of (a) deoxidized GaAs 

membrane and (b) MHDA/MUDO (1:9) SAM coated GaAs membrane 
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5.4 Activation of carboxyl groups present in the SAM 

The principle of activation for the formation of a covalent bond with an amine group relates to 

the architectures composed of a carboxylic acid, e.g. MHDA. It is done by means of a reaction 

between EDC (1-ethyl-3-[3-dimethylaminopropyl]carbodiimide) and NHS (N-

hydroxysuccinimide). Two aliquots containing NHS and EDC, prepared in deionized water, 

were mixed to obtain a total concentration of 1 M with NHS/EDC ratio of 1:4. The solution was 

used directly after mixing the reagents (unstable over time), and the sample was then incubated 

in the solution for activation for 30 minutes.  

In a first step, the EDC molecule forms with the carboxyl groups an O-acylisourea intermediate 

which can react with a primary amine group (-NH2) to form an amide bond. O-acylisourea is a 

highly unstable intermediate in aqueous solution; if this compound does not react rapidly with 

the primary amine, it can readily hydrolyse to regain its carboxyl form. For this reason, another 

compound, NHS, is used in conjunction with EDC. NHS is a relatively stable ester allowing the 

primary amine to be conjugated at physiological pH. Due to the steric hindrance of NHS 

molecules, the reaction with the carboxyl groups saturates when their number becomes too large 

at the surface [198]. 

 

Figure 52. Schematic illustration of the ligands immobilization steps applied on the surface of 

GaAs: (a) formation of the SAM, (b) activation of the COOH group with NHS/EDC (1:4), (c) 

immobilization of the antibodies, modified from [199]. 

After the activation, the excess of unreacted NHS and EDC molecules was removed by rinsing 

the samples 5 times with DI water. The antibody was then fixed via its primary amine groups of 

lysine residues essentially.  
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5.5 Immobilization conditions of α-E. coli antibodies on GaAs surface 

The effects of the concentration of the antibody, the incubation time and pH were studied on the 

immobilization efficiency of antibodies. For that, 2x2 mm2 bulk double side polished GaAs 

samples (WV 23084/UN) were functionalized with MHDA/MUDO (1:9) at 2 mM. Then the 

COOH groups of MHDA were activated by incubation for 30 minutes in a mixture of NHS/EDC 

(1:4). After the activation, the membranes were incubated in antibodies against E. coli (α-E. 

coli) diluted in different buffers (PBS (1X), pH 7.4 or acetate, pH 4.5) and at different 

concentrations (2.5; 12.5; 25; 100 and 200 µg/ml) for different durations (0.5; 1; 2; 4 and 20 

hours). The antibodies used in this work were unconjugated polyclonal IgG, purchased from 

ViroStat, Inc. (Portland, ME). Subsequently, the samples were thoroughly rinsed with PBS (1X) 

and TWEEN 20 (0.05 % V/V), then rinsed with deionized water to remove surface salts and 

dried under N2 flow. 

At this point, the samples are separated into two batches (A and B). Batch A undergoes FTIR 

measurements used to characterize the amide bands of the antibodies. The presence of 

immobilized antibodies on the surface was studied by examining the amide bands A, I, and II 

located in the regions of 3296.4 cm-1, 1644.4 cm-1 and 1527.4 cm-1, respectively. According to 

Bandekar et al., within the proteins, the amide band A is essentially due to the NH stretching 

vibrations, the amide I is rather associated with the C=O vibrations also in stretching, whereas 

the amide II is related to the modes of torsion of the NH bonds as well as modes of stretching 

of the CN bonds [200]. Therefore, in this study, the number of immobilized antibodies on the 

surface was quantified by calculating the integral of the amide bands A, I, and II.  

As for batch B, the non-bound COOH groups of the constitutive samples were inactivated using 

ethanolamine (1 M, pH 8.5) for 30 min. After, the samples were exposed to GFP (Green 

fluorescent protein) E. coli bacteria solutions at 106 CFU/ml in PBS (1X) for 1 hour, then rinsed 

and dried. Finally, fluorescence measurements were performed, and images were taken using a 

GFP filter and 20X magnification. The number of bacteria captured on the surface was estimated 

using ImageJ software. For each couple of concentration and incubation time, 3 samples were 

tested to ensure the reproducibility. 
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5.5.1 Optimal concentration and duration for immobilization of α-E. coli 

Figure 53 shows examples of FTIR spectra measured on SAM-coated GaAs surface after 

immobilization of α-E. coli at different concentrations of antibodies and time durations. Since 

the amide A peak is the most obvious and easy to analyze among the amide bands, we will limit 

the analysis to the integral of this peak.  

  

Figure 53. FTIR spectra measured on SAM-coated GaAs surface after immobilization of α-E. 

coli (a) at 200 µg/ml for different durations, (b) for 2 hours at various concentrations 

The integral values for each antibody concentration and time duration are reported in the 

histogram of Figure 54. At low concentrations of antibodies, the highest absorbance intensity 

and integral were obtained when the sample was incubated in α-E. coli for 4 hours. However, 

when the concentration is increased, the absorbance intensity and the integral values were 

comparable for incubation times between 1 and 4 hours. Nevertheless, these values remain 

relatively low for 20 hours of incubation, suggesting that the efficiency of the antibody is 

deteriorated over time and eliminating this option. Therefore, if we use a high concentration of 

antibodies, the incubation time can be reduced significantly. Indeed, for a biosensor application, 

we are looking to reduce the analysis time. Hence, if we set the incubation time between 1 and 

2 hours, we can choose, based on the fluorescence results, the concentration of antibodies 

allowing to capture the greatest number of bacteria on the surface. 
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Figure 54. Integral of the amide A peak determined for different immobilization durations and 

concentrations of α-E. coli on the MHDA/MUDO (1:9) modified GaAs membrane 

To assess the surface coverage with bacteria, fluorescence images were analyzed using ImageJ 

software and the number of E. coli captured on the surface was estimated for each concentration 

and incubation time. Some examples of the fluorescence images of bacteria captured on the 

surface by α-E. coli immobilized for the same concentration of antibodies but different 

incubation times, and at the same incubation time but for different concentrations are shown in 

Figure 55 and 56, respectively. It can be seen that both the concentration and the incubation time 

have an important impact on the efficiency of the capture of bacteria. 

 

Figure 55. E. coli captured on the bio-functionalized GaAs membrane surface by α-E. coli 

immobilized at 25 µg/ml for (a) 30 min, (b) 1 hour and (c) 20 hours, measured by fluorescence 

microscopy (20X magnification, GFP filter) 
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Figure 56. E. coli captured on the bio-functionalized GaAs membrane surface by α-E. coli 

immobilized for 1 hour at (a) 2.5 µg/ml, (b) 100 µg/ml (c) 200 µg/ml, measured by 

fluorescence microscopy (20X magnification, GFP filter) 

The number of bacteria captured on the surface for each antibody concentration and incubation 

time, obtained from the fluorescence images, are shown in Figure 57. It is obvious that the 

greatest number of bacteria is captured by incubating the sample for 4 hours using 100 µg/ml. 

However, if we examine the high concentrations (100 and 200 µg/ml), we can see the number 

of captured bacteria is comparable either we incubate the sample for 1 or 2 hours. Therefore, we 

can opt for a concentration of 100 µg/ml and an incubation time of 1 hour, which does not 

consume too much time or material. 

  

Figure 57. Number of captured E. coli bacteria on the bio-functionalized GaAs membrane 

surface for different concentration and incubation times of the antibodies 
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5.5.2 Impact of pH on the immobilization efficiency 

To evaluate the effect of pH on the immobilization of antibodies, acetate (pH 4.5) and PBS (pH 

7.4) buffers were used. The concentration of α-E. coli and the duration of incubation were set at 

100 µg/ml and 1 hour, respectively. Three samples were measured per buffer and an example 

of the FTIR spectra in Figure 58 illustrate formation of peaks originating from the amide bands 

of the antibodies. It is obvious that the integral of the amide A peak is greater for PBS (2.22 ± 

0.31) than for acetate (0.58 ± 0.09), which offers better immobilization conditions for antibodies. 

 

Figure 58. FTIR spectra of α-E. coli immobilized on MHDA/MUDO (1:9) SAM-coated GaAs 

surface following 1-hour exposure to 100 µg/mL antibody solutions at different pH conditions. 

The fluorescence results in Figure 59 are in a reasonable agreement with the FTIR data, since 

the number of bacteria captured on the surface after the exposure to E. coli solution at 106 

CFU/ml is greater when PBS buffer is used (456 ± 24 bacteria/mm2) instead of the acetate buffer 

(143 ± 16 bacteria/mm2). 



Chapter 5: Realization and characterization of the bio-interface on the sensor surface  

125 

 

 

Figure 59. Fluorescence images (20X magnification) of GFP E. coli captured on the surface by 

antibodies immobilized in different buffers: (a) acetate (pH 4.5) and (b) PBS (pH 7.4) (N = 3 

samples per buffer) 

To summarize, FTIR and fluorescence results show higher FTIR peaks intensity and surface 

coverage with bacteria when the antibodies are immobilized in PBS (1X, pH 7.4). As for the 

concentration and incubation time, we have chosen 100 µg/ml and 1 hour, respectively. 

5.6 Conclusion 

In this chapter, we have presented the complete bio-functionalization protocol established for 

the immunocapture of the bacteria of interest: E. coli. This protocol employs a mixed SAM of 

alkanethiols of MHDA/MUDO (1:9) to immobilize antibodies against E. coli. Using contact 

angle measurements, FTIR and XPS, we validated the functionalization of GaAs membranes. 

Moreover, we tested different parameters for optimizing the immobilization of antibodies in 

terms of concentration, duration and pH. Our bio-interface is now ready to be confronted to the 

targeted bacteria and the performances of the biosensors can be evaluated. 
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Chapter 6: Testing ZnO/GaAs biosensor for detection of 

E. coli 

After presenting the analytical and numerical modeling of the transducer, the microfabrication 

protocol and the realization of the bio-recognition interface, we will present in this chapter the 

measured parameters of the ZnO/GaAs biosensor subjected to different liquid environments, as 

well as the testing of its performances for the detection of E. coli in ideal (buffer) and complex 

liquid media. 

As a first step, we present the methodology and measurement setup adopted for the electrical 

characterization of the sensor. The electrical measurements are conducted using a network 

analyzer and an electrical interface adapted to the device, and we focus on impedance 

measurements around the resonant frequency.  

In a second part, we determine the impact of the environmental factors on the response of the 

sensor, such as the impedance dependence on the salt concentration (electrical conductivity) and 

pH of the surrounding environment, respectively.  

We also evaluate the effectiveness of the bio-interface to capture the targeted bacteria. To 

quantify E. coli captured on bio-functionalized GaAs surface, electrical characterizations are 

performed at the resonant frequency. The number of bacteria captured on the surface is estimated 

by measuring the shift of the resonant frequency. In parallel, fluorescence measurements are 

carried out to evaluate the surface coverage and estimate the mass of captured bacteria. 

Detection tests are realized using solutions of different concentrations of E. coli diluted in PBS 

solution and the calibration curve of the biosensor is established. Controls with Bacillus subtilis 

are carried out to test the specificity of the bio-interface. Furthermore, detection tests in a more 

complex biological environment are performed where Bacillus subtilis and E. coli co-exist in a 

solution. These tests, combined with the correlation between electrical and fluorescence 

measurements, show a successful and specific capture of E. coli on the bio-interface. Finally, 

we discuss the possible optimization tracks for improving the performances of the biosensor. 
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6.1 Electrical characterization of ZnO/GaAs sensor 

6.1.1. Measurements in air 

After the fabrication of the devices, it was necessary to characterize them electrically in air and 

in liquid media. Therefore, we proceeded to electrical measurements to identify the resonant 

frequency of interest, using a network analyzer operating in impedance mode. In this mode of 

operation, the analyzer performs a frequency sweep at a maximum voltage of 1 V and outputs 

the amplitude and phase of the impedance for the chosen frequency range.  

Depending on the availability of the equipment in the lab, several network analyzers were used 

during the thesis, that are listed below: 

▪ HP 4194A impedance/gain-phase analyzer (10 kHz to 100 MHz): equipped with a GPIB 

port and interfaced with a computer through a GPIB/USB conversion module. A program in 

LabVIEW is used to communicate with the apparatus and receive the acquisitions. It is 

therefore possible to monitor the analyzer and perform automatic measurement sequences. 

▪ Agilent N5232A PNA-L series network analyzer (300 kHz to 20 GHz): performs S-

parameter measurements. Therefore, the data were extracted under Smith chart format which 

retrieves the resistance and reactance. Then, to retrieve the impedance phase φ and modulus 

|Z|, the data were converted using the following equations:  

|Z| = √Resistance2 + Reactance2 ; tanφ =
Reactance

Resistance
  (6.1) 

▪ Agilent E5061B ENA series network analyzer (5 Hz to 3 GHz): combines S-parameter 

measurements and impedance analysis. The data is directly extracted via its USB port. 

The output of the measurement is a Bode impedance diagram representing the impedance 

modulus and phase as a function of the frequency of the sinusoidal excitation. Figure 60 shows 

an example of the measurement performed in air on a ZnO/GaAs sensor sample at the 

fundamental frequency. 
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Figure 60. Modulus (a) and phase φ (b) of the impedance measured in air at the resonant 

frequency for a 220 µm ZnO/GaAs thick membrane 

The quality factor Q was determined for each membrane by collecting the resonant frequencies 

fr and anti-resonant frequencies fa from the impedance modulus plot and using the equation:  

Q = 
f

∆f
   with   ∆f = |fr − fa|   (6.2) 

The membranes used in these measurements (wafer AXT – AV 503-93) had thicknesses 

between 195.5 ± 5.2 μm for the central membranes and 206.9 ± 13.7 μm for the ones near the 

edges, providing resonant frequencies ranging from 7.9 to 6.3 MHz. For a 200 μm membrane, 

the resonant frequency determined using this setup (6.66 MHz) was close to the one obtained 

by the FEM simulation in chapter 3 (7.94 MHz). Yet, the model needs to be improved to 

represent as close as possible the real structure of the sensor. 

The corresponding quality factors varied between Q = 7000 and Q = 15000, depending on the 

electrode geometry and the roughness of the membrane. The obtained values indicate a 

significant improvement with respect to the quality factors obtained for GaAs sensor (without 

ZnO) developed in the previous thesis by V. Lacour (Q = 2759 to 4135). 

The electrodes located on the top side of the sensor were connected to the analyzer through an 

electrical interface consisting of contact spring tips attached to a printed circuit board (PCB). 

The PCB was screwed to a plexiglass plate attached to a Y-axis displacement stage, fixed by 

two poles on a support as shown in Figure 61. The PCB was connected to the analyzer via SMA 
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(SubMiniature version A) coaxial connectors (characteristic impedance of 50 Ω). The circuit 

consists of a large ground plane to avoid the antenna effects. 

The calibration of the analyzer is an essential step that we repeated prior to each measurement 

series or after any modification of the acquisition parameters (frequency range or number of 

points). It makes it possible to compensate for the impedances created by the connections and 

cables located between the analyzer and the device to be measured. The calibration was carried 

out via the "85052D" calibration kit, using its three standards corresponding to an ideal open 

circuit (zero admittance), an ideal closed circuit (zero impedance) and a circuit with a load of 

50 Ω. We placed the standards at the end of the SMA cable to eliminate the parasitic 

capacitances related to the cables and interconnections as efficiently as possible. 

 

Figure 61. Electrical interface used for the determination of the resonance characteristics of 

ZnO/GaAs biosensor 

6.1.2. Setup for the measurements in liquids 

A fluidic module has been designed to perform the electrical measurements while the biosensor 

is supplied by the liquid solution to be tested. This module makes it possible to maintain the 

sample on a support made in Teflon which can be filled by any liquid. The sample is placed on 

top of a seal designed in Polydimethylsiloxane (PDMS) allowing the continuous circulation of 
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the liquid on the membrane, as shown in Figure 62 (a). Seals of different thicknesses were made 

using the mold shown in Figure 62 (b) and tested, and the retained thickness was 0.7 μm. 

The microfluidic tubes were positioned and held in place by a 4-way linear connector (Dolomite) 

placed at the bottom side of the Teflon support (Figure 62 (c)). Two holes of 0.6 μm in diameter 

were realized in the fluidic support in front of the microfluidic tubes, allowing the entry and exit 

of the liquid. A cover designed in plexiglass provided the necessary pressure for sealing (Figure 

62 (d)). This cover comprised 4 openings allowing the contact between the spring tips of the 

PCB and the electrodes on the top side of the sample, thus enabling the electrical measurement 

while the biosensor is supplied with the liquid solution to be tested. 

 

Figure 62. Fluidic module designed for electrical measurements on ZnO/GaAs biosensors in 

liquid media 



Chapter 6: Testing ZnO/GaAs biosensor for detection of E. coli  

131 

 

The injection of liquid solution was carried out using a syringe pump Harvard Apparatus PHD 

2000 and BD syringes of 5 ml, at a constant flow of 150 µl/min. 

This fluidic module can moreover be used for the functionalization of the samples while 

protecting the top side. In fact, the materials in contact with liquids have a wide chemical 

compatibility (Teflon support, and PEEK tubes). 

6.2 Effect of the physico-chemical properties of the liquid on the 

biosensor’s response 

The detection of the targeted bacteria needs to be done in complex liquid environments 

(river/drinking/waste water) or with biological fluids such as blood or urine, which can 

inevitably induce surface charge variations on the material. Moreover, the proposed architecture 

of the biosensor presented in section 2.6 separates the electrical interface from the sensing area 

making this structure beneficial for monitoring the electrical parameters (conductivity, 

resistivity, permittivity). This multi-parameter sensing requires a thorough understanding of the 

electrical contributions to the sensor’s response. Therefore, in this section, we will investigate 

the impedance dependence due to the pH and NaCl concentration (electrical conductivity) 

variation of the fluid/electrolyte. 

Furthermore, to highlight the impact of the surface functionalization and passivation on the 

frequency response of the sensor, electrical measurements were performed at different surface 

states, which were denoted as the following: 

• Surface state A: Sensor with bare surface 

• Surface state B: Sensor surface chemically functionalized with MHDA/MUDO (1:9) 

• Surface state C: Sensor surface functionalized with MHDA/MUDO (1:9) and α-E. coli 

(100 µg/ml), then blocked with BSA (200 µg/ml, pH 5.2) and inactivated with 

ethanolamine (1 M, pH 7.5). 

6.2.1. Impedance dependence to the electrolyte’s conductivity  

The influence of molecular electrical charges in liquids on the measured impedance spectrum 

was evaluated by changing the concentration of NaCl in water. The electrical measurements 
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were performed at the fundamental frequency while introducing NaCl solutions prepared in DI 

water with concentrations ranging from 0 to 1 mol/l at the vicinity of the sensing surface, using 

the fluidic module presented in section 6.1.2. The reference frequency was obtained with DI 

water. The measurements were carried out in ascending order on three samples, in the three 

different surface states A, B and C. The impedance peak amplitudes (∆ lZl) as well as the 

variation in the impedance phase (∆φ) were plotted (Figure 63) as a function of the conductivity 

of the NaCl solution, which was calculated for each concentration using the linear relationship 

determined by Gavish and Promislow [201]: 

σ = 0.06 + 9.5 C     (6.3) 

Where σ is the conductivity expressed in S/m and C is the concentration expressed in mol/l of 

the NaCl solution. The molar ionic strength I of the solution is a function of the concentration 

of all the present ions, and is determined by: 

I =  
1

2
∑ ci zi

2n
i=1      (6.4) 

Where ci is the molar concentration of ion i (mol/l), zi is the charge number of the ion, and the 

sum is taken over all ions in the solution. For a 1:1 electrolyte such as sodium chloride (NaCl), 

where each ion is singly-charged, the ionic strength is equal to the concentration. 

 

Figure 63. Impedance peak amplitude ∆lZl (a) and variation in the impedance phase ∆φ (b) 

versus the conductivity σ of the NaCl solution for each of the surface states A (bare), B 

(chemically functionalized) and C (antibody coated + passivated). (N = 3 samples/surface state) 
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The reference measurements (with DI water) revealed a difference in the impedance peak 

amplitude and phase variation between the different surface states. Indeed, by comparison to 

bare surface the impedance peak amplitude is increased by 28 % when the surface is 

functionalized, and by 97 % when the antibody-coated surface is blocked using BSA. The higher 

∆lZl and ∆φ are due to the passivation of the surface, first with thiols then with BSA, which 

reduces the attenuation and losses due to the interaction with the liquid.  

A rapid attenuation of the amplitude of the resonance peaks was observed with the addition of 

NaCl, for all surface states. However, this attenuation becomes less important as we go from 

surface A to B than C. The sensor with bare surface is very sensitive to the conductivity of the 

electrolyte. When it is chemically functionalized, ∆lZl and ∆φ are slightly improved. A 

significant improvement is observed when the surface coated with antibodies is passivated with 

BSA. This dependence on the electrolyte’s conductivity can limit the efficiency of the biosensor 

in liquid media. Indeed, the concentration of NaCl in a physiological solution, for example, is 

generally 0.15 mol/l giving a conductivity of 1.52 S/m. If we look up this value in the graphs of 

Figure 63, we would see that the amplitude of the signal has been already attenuated, and the 

efficiency of the sensor in its current configuration will be probably reduced in a physiological 

solution.  

In these measurements, 5 electrode geometries were used (Figure 64). The geometries 1 and 2 

have electrode widths of 1700 µm while the others have a width of 300 µm. Configurations 1, 

2 and 3 have an inter-electrode distance or gap “g” of 200 µm while for geometries 4 and 5, the 

gap is 1600 µm. Finally, in the configuration 5, a metallized zone with a width of 1200 µm is 

placed between the two electrodes and spaced apart from each of them by 200 µm.  

 

Figure 64. Geometries of the electrodes deposited on the top of ZnO films 

To limit the impact of the NaCl concentration on the impedance phase and modulus, it is possible 

to reduce the penetration of the electric field into the medium, by reducing the gap between the 
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electrodes. Different gap configurations were tested in chapter 3, using the Comsol model 

presented in section 3.6, and the variation of the gap was shown to affect the penetration of the 

electric field. Therefore, this aspect could be the subject of more in-depth numerical studies 

leading to reduce the impact of the conductivity of the tested liquid. It will be necessary to 

determine the optimal gap/thickness ratio of the membrane, in order to optimize the sensitivity 

of the device without being affected by the electrical parameters of the surrounding 

environment. 

6.2.2. Effect of the fluid’s pH on the biosensor resonant frequency 

To determine the effect of the pH on the biosensor’s response, different pH solutions (pH 4; 6; 

7; 8 and 10) at constant ionic strength were introduced into the fluidic module. The reference 

frequency was obtained with pH 7. The impedance peak amplitudes (∆lZl) and the variation in 

the impedance phase (∆φ) were recorded for the different pH and are shown in Figure 65. 

 

Figure 65. Impedance peak amplitudes (∆lZl) and variation in the impedance phase (∆φ) 

versus the pH of the analyte for each of the surface states A (bare), B (chemically 

functionalized) and C (antibody coated + passivated). (N = 3 samples/surface state) 

Low and high values of pH (4 and 10 respectively) induced important attenuation of ∆lZl and 

∆φ of the sensor with bare surface (35 % and 24 % respectively) compared to pH ranging 

between 6 and 8 (23 % and 14 % respectively), which was shown by the decrease of ∆lZl and 

∆φ. The chemical functionalization of the surface and the use of BSA for blocking after antibody 

immobilization increased the sensitivity of the response to pH, which was shown by the increase 
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of the slope of the curves. Indeed, when the pH is modified, ∆lZl and ∆φ drop significantly 

which is related to the sensitivity of BSA covering the surface to acidic and basic pH. This drop 

of ∆lZl and ∆φ induces a loss of performance and sensitivity because the quality factor 

decreases. Thus, the solution’s pH should be controlled to ensure a stable and reproducible 

response. 

Furthermore, the peak amplitude and phase variation are the highest for the passivated surface 

at pH 7, which is very convenient for testing biological samples around physiological pH (pH = 

7.4). However, around this pH, ∆lZl and ∆φ change rapidly and significantly with pH variation. 

It is therefore necessary to have the control over the solution’s pH.  

6.3 Electrical measurements prior to exposure to E. coli 

The detection and quantification of E. coli in the tested solution is done by determining the shift 

of the resonant frequency fr associated with the mass variation caused by the immunocapture of 

E. coli on the surface. The value of the frequency shift ∆fr induced by an added mass Δm can be 

calculated using the Sauerbrey equation [119]: 

∆fr =  
−2 Δm fr2

A Vs ρ
     (6.5) 

Where A is the piezoelectrically active surface corresponding to the area between the electrodes 

(4 mm2), ρ is the density of GaAs (5.307 g/cm3) and Vs is the velocity of the quasi-shear wave. 

By substituting the acoustic velocity by Vs =
n fr

2 h
 deduced from equation (3.25), the frequency 

shift at the fundamental rank (n = 1) can be expressed as the following: 

 ∆fr =  
− Δm  fr

A h ρ
      (6.6) 

To make sure that the recorded shift is only due to the capture of E. coli, electrical measurements 

were performed in air at the end of each phase of the bio-functionalization procedure as 

presented in Table 18. The detailed procedure for samples preparation and characterization 

performed in each phase is provided in Appendix B. 
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Table 18. Preparation and electrical measurements procedure for ZnO/GaAs biosensors 

performed at each of the bio-functionalization phases. The * sign indicates that the electrical 

measurements procedure is identical in each phase 

Phase Step Objective Tools & solutions Parameters/Remarks 

Sensor with 

Bare surface 

Cleaning of the 

samples 

Remove mineral and 

organic impurities 

from the surface of the 

samples 

Immersion in 

successive baths of: 

-OptiClear 

-Acetone 

-Ethanol 

5 min in each solvent 

under US, followed 

by drying under 

Nitrogen flow 

Electrical 

measurements* 

Determine the 

resonance 

characteristics 

(frequency, impedance 

phase and modulus) 

Network analyzer 

Cal kit 85052D 

Electrical interface 

Calibration prior to 

measurements and 

after any modification 

of the acquisition 

parameters 

Sensor with 

chemically 

functionalized 

surface 

Deoxidation of 

GaAs 

Remove the native 

oxide from GaAs 

surface to prevent the 

chemisorption of 

thiols on the surface 

Ammonium 

hydroxide NH4OH 

(28 %) 

2 min followed by 

brief rinsing with 

degassed ethanol 

Chemical 

functionalization 

of GaAs at the 

bottom side of 

the sensor 

Formation of SAM to 

graft ligands 

-Sample holder 

-MHDA/MUDO 

(1:9) at 2 mM 

-Degassed ethanol 

20 hours followed by 

rinsing with degassed 

ethanol and drying 

under Nitrogen flow 

Electrical measurements* 

Sensor with 

antibody-coated 

surface 

NHS/EDC 

activation  

Form a covalent bond 

between the carboxyl 

group of MHDA and 

the amine group 

-NHS at 0.1 M 

-EDC at 0.4 M 

-30 min in dark at 

room temperature  

-Rinsing (5 x 1 ml DI 

water) 

Antibody 

immobilization 

Fix the antibodies via 

amine groups (-NH2) 

Unconjugated α-E. 

coli antibodies 

diluted in PBS (1X) 

at 100 µg/ml 

1 hour in dark at room 

temperature followed 

by rinsing and drying 

Electrical measurements* 
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Sensor after 

surface 

passivation 

Passivation of 

the surface using 

BSA 

Saturate the surface to 

block any unspecific 

adsorption reaction 

BSA solution at 

200 µg/ml, pH 5.5 

30 min in dark at 

room temperature 

followed by rinsing 

and drying 

Electrical measurements* 

Sensor before 

exposure to E. 

coli 

Inactivation of 

COOH groups 

Inactivate free 

activated COOH 

groups to prevent their 

interaction with the 

analyte 

Ethanolamine at 1 

M, pH 8.5 

30 min in dark at 

room temperature 

Electrical measurements* 

Since each phase induces a mass variation on the surface by addition or removal of material, the 

frequency shift was recorded after each phase to follow the variation of the resonant frequency. 

The measurements were repeated on 3 samples, and the associated frequency shifts for each 

phase are reported in Table 19. 

The theoretical frequency shifts associated with each step were also determined using the 

surface coverage with the molecules (thiols, α-E. coli, BSA) and the corresponding added mass 

on the surface. The theoretical shift caused by the formation of the SAM of MHDA/MUDO 

(1:9) on the surface was calculated using equation (6.6) at the resonant frequency 6.35 MHz for 

a 220 µm thick membrane, based on the surface coverage with the constitutive alkanethiols 

determined within a previous study in the research group [202]. For MHDA (10 %) the surface 

coverage is 5 molecules/nm2, adding a mass of 6.64 x 10-10 g. As for MUDO (90 %), the surface 

coverage is 5 molecules/nm2 as well, which corresponds to an added mass of 8.3 x 10-9 g. The 

combination of the two thiols forming the SAM would generate a shift of 3.04 Hz. 

The determination of the theoretical shifts related to the α-E. coli immobilization and BSA 

passivation was difficult, since it is strictly dependent on the efficiency of the antibodies 

immobilization and their surface coverage. Indeed, BSA is used to block the sites that have not 

interacted with an antibody. Therefore, the mass of BSA deposited on the surface is a function 

of the antibody immobilization efficiency. To have an estimation of the shifts, we calculated the 

frequency shift that would be observed if the surface was fully covered by a dense layer of α-E. 

coli or BSA. For that, the surface coverage was determined using the surface occupied by 1 
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molecule of α-E. coli or BSA, and by calculating how many molecules can fit in our 16 mm2 

membrane. The added mass on the surface was then calculated after determining the number of 

α-E. coli or BSA using the surface coverage. The comparison of the experimental and theoretical 

shifts allows to assess the quality of the immobilization and the percentage of surface coverage 

with both α-E. coli and BSA. 

Table 19. Theoretical and experimental frequency shifts (∆f) determined after each phase of 

the bio-functionalization procedure of ZnO/GaAs biosensor (N = 3 samples) 

Phase Entity 

Theoretical 
Experimental 

∆f (Hz) Surface coverage 

(molecule/nm2) 
Added mass (g) 

Theoretical 

∆f (Hz) 

Chemical 

functionalization 
Thiols 

MHDA 

(10 %) 
5 6.64 x 10-10 

8.964 

x 10-9 
-3.04 -15.5 ± 10.5 

MUDO 

(90 %) 
5 8.30 x 10-9 

Antibodies 

immobilization 
α-E. coli 0.05 1.66 x 10-7 -56.43 -27.1 ± 4.5 

Passivation BSA 0.2 3.32 x 10-7 -112.85 -59.8 ± 11.3 

According to these results, the ratio of the experimental to the theoretical shift for α-E. coli is 

between 40 to 58 %, which suggests that the antibodies cover 40 to 58 % of the surface. This 

immobilization rate seems reasonable, knowing that it is impossible to have a dense layer of 

antibodies covering the whole surface especially that we are working in static conditions. To 

increase this rate, the immobilization procedure could be improved by performing the exposures 

in dynamic conditions, under flow of solution or assisted by ultrasounds [203]. 

As for BSA, this ratio is between 43 to 63 %, which is in agreement with the role of BSA in 

blocking the sites that have not interacted with an antibody. 

6.4 Methodology of measurements for detecting E. coli 

After inactivation of the COOH groups with ethanolamine, the samples were exposed to 

bacterial solutions. The bacteria used in our experiments is GFP E. coli K12 (level 1), provided 

by the Department of Microbiology of the Faculty of Medicine at Université de Sherbrooke 
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(Prof. E. Frost). The information and the requirements regarding the preparation and 

manipulation of E. coli bacteria are provided in Appendix C. 

For these measurements, we opted to perform the measurements in air. Therefore, the exposure 

of the biosensor surface to bacterial solutions was carried out in liquid medium while placing 

the samples in the holders presented in section 5.2.2. The volume of bacterial solutions used in 

all experiments was 1 ml. Then the samples were removed, rinsed and dried for electrical and 

fluorescence measurements. Although it was no longer possible to perform a real-time analysis, 

the bacteria were captured at different exposure times and concentrations, and on several sensors 

in parallel to achieve, as much as possible, an efficient and reproducible detection of E. coli. 

The objective of the tests presented here is to establish the full-scale range of the biosensor by 

exposing it to increasing concentrations of E. coli. For that, we started by exposing 3 biosensor 

samples to E. coli at 104 CFU/ml for 1 hour. After the exposure to E. coli, the solutions were 

withdrawn and the samples were consecutively rinsed 3 times with PBS (1X), Tween 20 at 0.05 

%, then DI water. After drying under nitrogen flow, the samples were removed from the holders 

to perform the electrical and fluorescence measurements. After the first round of measurements, 

the biosensor samples were placed again in the holders for regeneration using a commercial 

antigen-antibody dissociation kit, then electrical and fluorescence measurements are performed 

again to verify the removal of bacteria from the biosensors surface. Afterwards, the samples 

were re-exposed to E. coli at higher concentration (105 CFU/ml), and the same procedure was 

repeated until 108 CFU/ml. The bacterial solutions were obtained from cultures of E. coli at 109 

CFU/ml (measured by optical density) at the end of the exponential phase or at the beginning of 

the stationary phase, by successive dilutions (1/10) in PBS (1X). 

In this set of measurements, the sensor was exposed to solutions of E. coli of increasing 

concentrations through cycles of regeneration/re-exposure. This means that for concentrations 

greater than 104 CFU/ml, the sensor is exposed to the bacteria solution with regenerated surface. 

However, if the sensor surface was fresh and did not undergo regeneration, the response of the 

biosensor could be different. Therefore, to evaluate this effect, the sensor was solely exposed to 

one concentration at a time, referred to as “fresh sensor”. 
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6.4.1. Complementary fluorescence measurements on the biosensor surface after 

exposure to E. coli 

In parallel, fluorescence microscopy was used to characterize the density and distribution of 

bacteria on the surface, to estimate and to try to correlate the number of bacteria captured on the 

surface. After each electrical measurement, the samples were placed on glass slides with the 

membrane facing up, for microscopic analysis. The visualization of bacteria on the surface was 

investigated using an Olympus IX71 fluorescence microscope which was equipped with a xenon 

arc lamp emitting at 470 and 490 nm. The microscope was connected to a DP71 digital camera 

and in-situ fluorescence images of the samples were taken by using Q-capture software. Six to 

eight images were collected per sample at different sites of the membranes with a magnification 

of 20X and three samples were tested per concentration. 

The fluorescent images were analyzed with ImageJ software and the number of E. coli present 

on the samples was estimated for each concentration of bacteria. Then the mass of captured 

bacteria (m) was estimated using the following equation: 

m = d × mE. coli × A     (6.7) 

Where d is the surface density (“bacteria”/mm2) determined by the surface coverage with 

bacteria on the surface, mE. coli is the mass of 1 bacterium of E. coli (9.5 × 10−13 g [204]) and A 

is the area of the sensing surface (4 mm2). 

It is possible that the fluorescence images underestimated the number of bacteria. The reason 

might be related to the fact that a fluorescent spot can be associated with more than one 

bacterium (aggregation, colony…). Therefore, the reported numbers of “bacteria/mm2” relate to 

at least 1 bacterium. A control with optical microscopy using 100X magnification was done in 

parallel (Figure 66) to make sure that the fluorescence images are representative of the surface. 
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Figure 66. Optical images of GFP E. coli captured by α-E. coli immobilized on GaAs surface 

functionalized with MHDA/MUDO (1:9). Magnification: (a) 50X, (b) 100X 

6.4.2. Regeneration procedure 

After exposure of the sample to the bacterial solution, we wanted to prove the regenerability of 

the bio-interface to re-use the biosensor and reduce its operation cost. The chosen approach is a 

level 2 regeneration consisting in detaching the bacteria and conserving the bio-interface (i.e. 

the SAM and the antibodies). For this, we used a commercial antigen-antibody dissociation kit 

from bioWORLD (Catalog No. 21310002-1 (650161)). The kit contains two reagents for 

dissociating the antigen-antibody complex under normal or acidic conditions. In our case, we 

opted for an acidic dissociation at pH 2. 

The kit was tested beforehand to make sure that the bacteria is efficiently removed and that the 

antibodies remain intact after exposure to pH 2. For that, we functionalized 4x4 mm2 bulk double 

side polished GaAs samples with MHDA/MUDO (1 :9) at 2mM, and with α-E. coli antibodies 

via NHS/EDC activation. Then, the samples were separated into 2 batches denoted 1 and 2, each 

consisting of 3 samples. Batch 1 was dedicated for FTIR measurements (Figure 67) to 

characterize the amide peaks relative to the antibodies before and after exposure to the 

regeneration kit for 5 minutes. 
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Figure 67: Regeneration efficiency tested by FTIR analysis of the CH2 peaks and the amide 

bands of the antibodies before and after exposure to the regeneration kit (N = 3 samples) 

FTIR results showed that the amide bands of the antibody were not affected by the low pH. 

Contrarywise, the amide A peak values (Table 20) showed that the absorbance intensity and 

integral of the peaks were enhanced after exposure to the regeneration kit, suggesting that the 

organisation of antibodies on the SAM-coated surface was improved. This result is in agreement 

with the literature [205].  According to Djoumerska-Alexieva et al., IgG molecules are exposed 

on a regular basis to acidic conditions during immunoaffinity purification procedures, as well 

as during the production of some therapeutic immunoglobulin preparations. This exposure was 

found to induce in them an increased functional antigen-binding affinity and an enhanced 

binding efficiency. On the other hand, the CH2 peaks remained unchanged during this process, 

confirming that the thiols were intact after the regeneration. These results confirm the tested kit 

preserves the bio-interface. 

Table 20. Amide A peak values of α-E. coli antibodies measured by FTIR before and after 

exposure to the regeneration kit (N = 3 samples) 

Stage Wavenumber (cm-1) Absorbance (arb. u.) Integral 

Before regeneration 3312.6 ± 12.15 4.6 x 10-4 ± 7.1 x 10-5 0.21 ± 0.04 

After regeneration 3314.1 ± 3.9 8.2 x 10-3 ± 1.6 x 10-5 0.30 ± 0.06 
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As for batch 2, the samples were exposed to GFP E. coli at 106 CFU/ml for 1 hour, and 

fluorescence images were taken. Later, the samples were exposed to the regeneration solution 

for 5 min, and another set of fluorescence measurements was performed. Then, a second 

exposure to E. coli at 106 CFU/ml was conducted for 1 hour, before taking a final set of 

fluorescence images. The cycles of exposure-regeneration were repeated 5 times to ensure the 

efficiency of the regeneration procedure. 

 

Figure 68: Efficiency of the regeneration kit investigated using fluorescence images (20X 

magnification) of captured bacteria (a) after the 1st exposure to E. coli, (b) after the exposure 

to the regeneration kit, (c) after the 5th exposure to E. coli (N = 3 samples) 

The comparison of fluorescence data taken after each step showed an efficient bacteria removal 

and re-capture with this regeneration kit. The number of bacteria captured on the surface after 

the first exposure to E. coli at 106 CFU/ml was determined at 475 ± 23 “bacteria”/mm2 (Figure 

68). This number droped to 10 ± 5 “bacteria”/mm2 after regeneration and went back to 456 ± 27 

“bacteria”/mm2 after the 5th exposure to E. coli at 106 CFU/ml.  

Figure 69 shows the evolution of the number of “bacteria” captured on the surface after each 

cycle. This number slightly increased after the first exposure to the regeneration kit, which is in 

agreement with the FTIR data that showed better amide peak values of the antibodies (Table 20) 

after the first exposure. This number decreased slowly after each cycle but remained in the limit 

of the error of the initial number of captured bacteria. These results clearly show the capacity of 

the proposed kit to regenerate the surface of the biosensor while preserving the efficiency of the 

bio-interface for the capture of bacteria.  
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Figure 69. Number of bacteria captured by the bio-interface after each regeneration cycle 

6.4.3. Specificity of the biosensor demonstrated by controls 

To validate the specificity of the biosensor, two types of controls were carried out: 

Control 1: It consisted of the immobilization of antibodies against Bacillus subtilis (α-Bacillus 

subtilis) instead of α-E. coli on the GaAs membranes and expose it to E. coli. The used 

antibodies were unconjugated polyclonal IgG, purchased from ViroStat, Inc. (Portland, ME). 

The membranes were chemically functionalized with MHDA/MUDO (1:9) according the 

procedure presented in section 5.2, then α-Bacillus subtilis were immobilized via NHS/EDC 

activation. After BSA passivation and inactivation of the COOH groups by ethanolamine, the 

membranes were successively exposed to solutions of E. coli of increasing concentrations (104 

to 108 CFU/ml), for one hour for each concentration. 

Control 2: It consisted of exposing GaAs membranes bio-functionalized with α-E. coli to 

Bacillus subtilis solutions instead of E. coli. The exposure was carried out using the same 

protocol as for of E. coli, by incubating the samples in solutions of Bacillus subtilis diluted in 

PBS (1X) at concentrations going from 104 to 106 CFU/ml for one hour for each concentration. 

The controls were prepared and tested in parallel with the sensor samples, in the same 

conditions. Electrical and fluorescence measurements were performed as well.  
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6.5 Bio-detection results of E. coli  

6.5.1. In ideal medium: Phosphate buffer saline 

The immunocapture of E. coli by the bio-interface was quantified by determining the resulting 

frequency shifts measured after exposure of the biosensor to solutions of E. coli of different 

concentrations (Figure 70). In these measurements, the biosensor was exposed to E. coli through 

cycles of regeneration/re-exposure, referred to as “regenerated sensor” and with fresh surface 

referred to as “fresh sensor”. The measurements with fresh sensors were performed for some 

concentrations only, due to the limited number of sensor samples. 

 

Figure 70. Frequency shifts measured on fresh and regenerated sensors bio-functionalized with 

α-E. coli (N=3) or α-Bacillus subtilis after exposure to different concentrations of E. coli 

As shown in Figure 70, the measurement range of the biosensor was between 104 and 108 

CFU/ml, with a linear region between 104 and 107 CFU/ml. One test was reported for the fresh 

sensor at 103, 107 and 108 CFU/ml. The shift observed at 104 CFU/ml is the same, since the 

measurements with regeneration were always started at this concentration. It can be seen that 

with the fresh sensor, higher frequency shifts and mass of captured bacteria are observed, which 

is expected since the bio-interface had not sustained any modification due to the regeneration. 

The curve representing the frequency shift Δf versus the logarithm of the concentration of E. 

coli can be described using the following relation: Δf = a log [E. coli] + b, where a = 0.28 
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mHz/CFU.ml-1. Further tests with lower concentrations are necessary to determine the lower 

limit of the full-scale range (LOD) and position ZnO/GaAs biosensor compared to others with 

respect to the detection limit. 

The samples bio-functionalized with α-Bacillus subtilis antibodies showed very low frequency 

shits after exposure to E. coli solutions, compared with the shifts measured for the sensor 

samples bio-functionalized with α-E. coli antibodies, which validates the specificity of the bio-

interface towards E. coli. 

To assess the surface coverage with bacteria captured on ZnO/GaAs bio-functionalized surface, 

fluorescence images were taken immediately after electrical measurements, for each 

concentration of E. coli. Then, the mass of E. coli captured on the surface of ZnO/GaAs sensors 

bio-functionalized with α-E. coli was determined from the fluorescence images using equation 

(6.7) and the results are reported in Table 21. 

Table 21. Surface density and mass of E. coli captured on the surface for different solutions 

estimated from fluorescence images 

E. coli concentration 

(CFU/ml) 
104 105 106 107 108 

Surface density 

(“bacteria”/mm2) 
152 ± 12 292 ± 18 475 ± 23 598 ± 33 613 ± 37 

Mass of E. coli captured 

on the surface (ng) 
0.59 ± 0.05 1.11 ± 0.08 1.81 ± 0.14 2.27 ± 0.17 2.33 ± 0.18 

Moreover, the fluorescence images showed a homogeneous bacteria distribution on the surface 

and an efficient capture of bacteria demonstrated by the surface coverage reported for each 

concentration of E. coli. Figure 71 shows the evolution of the surface density of bacteria for the 

different tested concentrations of E. coli. 
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Figure 71. Surface density of GFP E. coli captured on ZnO/GaAs bio-functionalized surface 

observed by fluorescence microscopy (20X magnification) for different E. coli concentrations: 

(a) 104 CFU/ml, (b) 105 CFU/ml, (c) 106 CFU/ml, (d) 107 CFU/ml, (e) 108 CFU/ml, (f) 

Comparison of the surface density obtained on ZnO/GaAs surface bio-functionalized with α-

Bacillus subtilis and with α-E. coli (N = 3) 

The variation of the number of bacteria captured on the surface between E. coli concentrations 

of 107 and 108 CFU/ml is almost negligible as shown in Figure 71 (f), indicating that an 

equilibrium state is established. Indeed, since the exposure to bacteria is done in static 

conditions, an equilibrium is reached at a certain point, which could have been avoided if a flow 

or ultrasounds were employed. 

On the other hand, the mass of bacteria captured on the surface was calculated from the 

frequency shifts using equation (6.6) and from the fluorescence data (Table 21). A gap was 

observed between the corresponding curves, as shown in Figure 72 (a). This gap could be 

explained by the fact that fluorescence images underestimate the number of bacteria captured 

on the surface by counting each fluorescent spot as one bacterium instead of an aggregation or 

a cluster of bacteria. 
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Figure 72. Mass of E. coli captured on the surface estimated by fluorescence and electrical 

measurements for fresh and regenerated ZnO/GaAs sensors bio-functionalized with α-Bacillus 

subtilis and α-E. coli (N=3) 

Moreover, the specificity of the biosensor was demonstrated, once again, by the low frequency 

shifts (3.2; 7.7 and 15.5 Hz) determined after exposure of the sensors bio-functionalized with α-

E. coli to solutions of Bacillus Subtilis at concentrations of 104; 105 and 106 CFU/ml, 

respectively.  

6.5.2. In complex medium: in the presence of Bacillus subtilis 

The challenge is to be able to recognize and quantify E. coli in the presence of other biological 

elements. To simulate the detection in a complex medium, we carried out detection tests in a 

mixture of E. coli at different concentrations and Bacillus Subtilis at a constant concentration of 

106 CFU/ml, in PBS (1X). Figure 73 shows the frequency shifts obtained in comparison with 

ones determined in ideal medium.  
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Figure 73. Frequency shifts reported for different concentrations of E. coli in a mixture 

containing Bacillus subtilis at 106 CFU/ml 

The correlation of the frequency shifts obtained in ideal and complex medium shows the 

capacity of ZnO/GaAs biosensor to detect the targeted bacteria in the presence of a competitor. 

We succeeded to detect E. coli in the presence of Bacillus Subtilis, which indicates that the 

proposed biosensor has the potential to detect selectively E. coli bacteria in complex liquids. 

However, further detection tests in environments of increasing complexity need to be performed 

to simulate the detection in complex biological liquids. 

6.6 Optimization tracks for ZnO/GaAs biosensor 

6.6.1. NHS/EDC ratio 

N-hydroxysuccinimide (NHS) is a well-known cross-linking agent for linking amine to carboxyl 

groups. This reagent is mostly used in conjunction with EDC to obtain an extremely reactive 

intermediate acid group. The commonly employed activation protocols use a ratio of (1:4) for 

(NHS/EDC) at 1 M. In this work, we were interested in determining the optimal ratio for these 

reagents to ensure an optimal SAM activation. Therefore, in this section various NHS/EDC 

mixtures were tested. 
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For this purpose, bulk double side polished GaAs samples of dimensions 4x4 mm2 were 

functionalized with SAMs of MHDA/MUDO (1:9) at 2 mM. FTIR measurements were 

performed to qualify the organization of the SAMs. OPUS software of Bruker Optics Company, 

used for the measurement and control of the FTIR instrument, has been employed in the 

treatment and evaluation of the absorption spectra obtained. The positions of the CH2 peaks as 

well as the absorbance values and integrals were noted. After, the COOH groups were activated 

by incubation of the samples in NHS/EDC solutions at ratios of (1:1), (1:2) and (1:4) for 30 

minutes, and FTIR measurements were carried out to examine the C = O peaks. An example of 

the peaks relative to amide A for the different ratios of NHS/EDC is shown in Figure 74.  

 

Figure 74. CH2 and amide A peaks of bulk GaAs samples functionalized with MHDA/MUDO 

(1:9) and activated with different concentrations of NHS/EDC (N = 3 samples per ratio) 

Three samples per ratio were measured and the number of antibodies immobilized on the surface 

was estimated by calculating the integral of the amide A bands (Table 22). The amide A peak 

values showed that using NHS/EDC (1:1) is better in terms of absorbance intensity and integral, 

which suggests that the number of antibodies immobilized on the surface is higher for this ratio. 

The results are similar for amide I and II.  
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Table 22. Amide A values revealed after GaAs membrane bio-functionalization with 

antibodies using different ratios of NHS/EDC (N = 3 samples per ratio) 

(NHS/EDC) ratio Wavenumber (cm-1) Absorbance (arb. u.) Integral 

(1:4) 3256.6 ± 28.3 1.4 x 10-3 ± 1.1 x 10-4 0.49 ± 0.18 

(1:2) 3262.3 ± 20.1 1.6 x 10-3 ± 9.7 x 10-4 0.55 ± 0.19 

(1:1) 3246.1 ± 6.7 21.6 x 10-3 ± 4.7 x 10-4 0.69 ± 0.18 

The transformation from carboxylic acid to amide takes place as the following: in the first step, 

EDC is attached with the acid, which is a slow process and therefore the totality of the acid will 

not be converted into O-acylisourea intermediate compound. For this reason, EDC is usually 

used in excess. In the second step, NHS intervenes very fast which results in complete 

conversion. In our case, the (1:1) ratio seems to be adequate for amide formation. It is probable 

that EDC reacts with the acid more efficiently on the solid substrate (particularly on GaAs 

surface) compared to the solution based organic reaction, therefore we do not need an excess of 

EDC. At higher ratios of EDC, there is a possibility of reversible reaction of the O-acylisourea 

intermediate with water which will form the acid again (amide will not be formed). This result 

is very beneficial to optimize the antibodies immobilization and reduce the cost of material used.  

6.6.2. Exposure time to bacteria 

To determine the adequate exposure time of the bio-interface to E. coli, we used fluorescence 

microscopy to determine the surface coverage with captured bacteria on the surface after 

incubation of bio-functionalized samples in GFP E. coli for durations going from15 minutes to 

1 hour (3 samples per exposure time). The samples were chemically functionalized beforehand 

by a SAM of MHDA/MUDO (1:9) and α-E. coli were immobilized by activation with 

NHS/EDC (1:4). After the passivation of the surface with BSA and the inactivation of the 

activated carboxyl groups, the samples were exposed for different durations to E. coli at 105 and 

106 CFU/ml. Figure 75 shows an example of the surface coverage in bacteria obtained for each 

exposure time.  
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Figure 75. Fluorescence images (20X magnification) of ZnO/GaAs bio-functionalized samples 

after incubation in GFP E. coli at 106 CFU/ml for different durations: (a) 15 min, (b) 30 min, 

(c) 45 min, (d) 1 hour (N = 2 samples per exposure time and concentration) 

The surface coverage for each exposure time was determined using ImageJ and the results are 

reported in Table 23. The highest surface coverage was obtained when the samples were 

incubated in the bacteria solution for 1 hour. However, the longer the incubation time, the higher 

is the possibility of non-specific interactions on the surface. For an incubation of 15 minutes, 

the number of captured bacteria is reduced to half when the concentration of E. coli in the tested 

solution is decreased of one order of magnitude. This means that if the concentration of E. coli 

in the initial solution was low, the number of captured bacteria on the biosensor’s surface would 

be too low to quantify.  

Table 23. Coverage density for different exposure times of the ZnO/GaAs biosensor to E. coli 

(N = 3 samples per exposure time and concentration) 

E. coli 

concentration 

(CFU/ml) 

Coverage density («bacteria»/mm2) 

15 min 30 min 45 min 1 hour 

105 104 ± 11 173 ± 13 261 ± 19 292 ± 18 

106 195 ± 14 281 ± 18 458 ± 24 475 ± 23 

Among the tested durations, an exposure of 45 minutes to E. coli seems to be a reasonable 

compromise, since it allows an efficient capture of bacteria (comparable to 1 hour) while 

limiting the non-specific interactions. Further tests with other concentrations of E. coli are 

necessary to confirm these results.  

Note that these results were obtained in static conditions, without any flow or agitation. Kardous 

et al., in our group, showed that the acoustic mixing during antibody binding at the biochips 

surface increases their bio-recognition performances of a mean factor of 2.7 and increases 
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statistically the homogeneity of the response over all the surface of the chips [203]. Therefore, 

better performances of the sensor are expected in dynamic conditions. 

6.7 Conclusion 

In this chapter, we presented the methodology and setup for testing the ZnO/GaAs biosensor in 

various environments. The resonant frequency of shear mode obtained by electrical 

measurements in air were close to the values determined by FEM simulation in chapter 3. 

The impact of the conductivity and pH of the electrolyte on the performance of the biosensor 

was examined. In perspective, the impact of these parameters on the resonance should be 

reduced or compensated for enhanced mass-sensing measurements. Therefore, it is necessary to 

consider more tests and simulations to determine the key parameters in the geometry of the 

biosensor to limit these effects. 

We performed tests with bacterial solutions and determined the frequency shift and the surface 

coverage obtained by the capture of E. coli bacteria on the bio-interface. The results obtained 

by electrical measurements were correlated to those of fluorescence microscopy. The controls 

performed using Bacillus subtilis showed the specificity of the bio-interface to E. coli. The 

measurement range was 104 - 108 CFU/ml, with a linear region between 104 and 107 CFU/ml. 

By comparing ZnO/GaAs BAW biosensor to the other sensors reported in section 2.2.4., it can 

be seen that it covers a wide measurement range. The lowest measured concentration of E. coli 

was 103 CFU/ml which suggests the possible application of the biosensor for the detection of E. 

coli in urine. For detection in water, further tests are required to assess the detection limit of the 

biosensor. Although the phases of sample preparation and incubation are time-consuming, the 

analysis time after exposure to bacteria is less than 5 minutes, which makes the biosensor 

suitable for the rapid detection of E. coli. 

Although the performances of the developed biosensor are promising compared to others, the 

reduced performance due to the liquid will not be adequate to detect biological entities in liquid 

medium in the current configuration. The tests carried out in liquid showed the limitations of 

the biosensor to the possible variations of the electrical parameters or pH of the solution. 

However, based on the results obtained in this chapter, we can propose different strategies to 

improve the performance of the biosensor.
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CONCLUSIONS AND PERSPECTIVES 

The work presented in this manuscript focused on the fabrication, characterization and testing 

of a ZnO/GaAs-based bulk acoustic wave biosensor. This study was conducted for the 

development of a miniaturized biosensor for the detection and quantification of bacteria in 

complex liquid media. The field of application is large and targets clinical diagnostics, 

environmental monitoring and food industry. 

The first chapter has presented the context of the research topic: it provided a brief presentation 

of the project and the preceding work carried out in the research teams of Besançon and 

Sherbrooke, as well as the objectives of the thesis. 

The second chapter has introduced the bacterial threats to human health and the conventional 

biosensing approaches, while focusing on the pertinence of the developed biosensor compared 

to existing techniques applied to detect bacteria, and particularly Escherichia coli. We exploited 

the microfabrication, surface bio-functionalization and regeneration potentialities of GaAs, and 

we exposed the properties of ZnO thin films leading to the choice of this material. To improve 

the performances of the existing GaAs-based biosensor, a new architecture was designed 

combining these two materials: GaAs was retained for the sensing part in contact with the liquid 

and a piezoelectric ZnO thin film was added on top of the GaAs membrane to improve the 

electromechanical coupling. 

The third chapter was devoted to the modeling of the bulk acoustic wave transducer. We 

presented the theoretical relations and analytical models allowing to understand the functioning 

of the transducer. After a brief overview on acoustic waves transduction, we recalled the 

tensorial expressions and the fundamental equations of piezoelectricity, leading to the 

development of the analytical model of the transducer. A simulation using finite elements 

method was carried out using Comsol Multiphysics® for the dimensioning of the ZnO/GaAs 

transducer. Using this model, we determined the resonance characteristics corresponding to 

shear mode of bulk acoustic waves and the displacement along the different axis of the structure. 

After testing different inter-electrode distances, a 500 μm gap was shown to be an optimal 

configuration to limit the penetration of the electrical field in the structure, especially in the case 

of measurement in liquid medium. 
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In the fourth chapter, we worked on the aspects of microfabrication of the transducer. Through 

an overview of the commonly used deposition techniques for ZnO thin films, reactive RF 

magnetron sputtering has been selected for the deposition of piezoelectric ZnO films on GaAs 

substrates. We investigated the use of a Platinum buffer layer for promoting the growth of ZnO 

on GaAs, using Ti or Ta adhesion layers. Structural (XRD, Raman) and topographic (AFM) 

characterization techniques have been used to determine the impact of the crystallographic 

orientation of the GaAs substrate on the ZnO films quality. The chemical interfaces between the 

deposited layers were studied using secondary ions mass spectrometry (SIMS), and ellipsometry 

was used to evaluate the thicknesses of ZnO films. In the last part, the different stages of 

microfabrication of the transducer were presented, including the realization of the electrodes 

and the micromachining of the GaAs membrane by chemical wet etching. 

In the fifth chapter, we studied and characterized the bio-recognition interface of the biosensor 

realized on the GaAs membrane. The establishment and characterization of thiolates self-

assembled monolayers on the GaAs membrane were analyzed using contact angle 

measurements, FTIR and XPS. We have chosen a mixed SAM architecture of MHDA/MUDO 

(1:9), which has proved to allow the immobilization of the ligands in a durable, robust and 

reproducible way. Furthermore, we have tested different conditions for ligands immobilization 

such as the concentration in ligands, the pH of the immobilization solution and the incubation 

time of the ligand on the membrane, in order to achieve a maximum of recognition sites on the 

surface, and therefore to improve the sensitivity of the detection.  

Finally, chapter 6 was devoted to the testing of the biosensor in various media. We presented 

the experimental setup for electrical characterization of the devices, which allowed to 

characterize the frequency response of the transducer. Then, we studied the impacts of the 

environmental parameters on the response, such as the pH and the electrical conductivity of the 

electrolyte solution, which can critically influence the performance of the biosensor. We have 

successfully demonstrated the bio-detection of E. coli at different concentrations, over a 

dynamic range of 3 orders of magnitude, and correlated these results to the surface density of 

bacteria on the biosensor by fluorescence measurements. We have performed two types of 

controls that validated the specificity of the biosensor to the targeted bacteria. Through detection 

tests performed using the biosensor in ideal and complex medium, we determined the relation 
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between the frequency shift and the concentration of E. coli. Despite the limitations in liquid 

medium observed in this chapter, the performances of the biosensor remain interesting. 

In order to overcome these limitations and achieve better performances of the biosensor, several 

approaches can be adopted on the short and long term. First, the optimization tracks presented 

in section 6.6, concerning the NHS/EDC ratio and the exposure time to the antigen solution 

should be applied to improve the ligands immobilization and the immunocapture of bacteria. 

Moreover, the performances of the device can be improved by performing the chemical 

functionalization, the antibodies immobilization and the antigen exposure in dynamic 

conditions, to optimize the bio-recognition event. 

Another perspective to this work is the optimization of the deposition of ZnO films on GaAs 

using the Pt buffer layer. As shown by XRD and AFM, this buffer improves the crystalline and 

structural quality of the films, in terms of texture, stress, roughness, etc., but it promotes the 

diffusion of Ga, interface layers (Ta, Ti) and ZnO itself into the Pt. Therefore, further 

optimization of the Pt/GaAs interface should be considered to stop the diffusion. This problem 

could be addressed in the future, by adjusting the deposition temperature to prevent this 

diffusion, or by adding an extra diffusion barrier at Pt/GaAs interface. 

From a microfabrication point of view, the thinning of the substrate by chemical wet etching 

should be replaced with mechanical polishing in order to avoid surface defects before the 

micromachining of the membranes. This would allow to obtain flat membrane structures without 

roughness or surface defects. 

Furthermore, it is necessary to make changes in the sensor structure to confine the vibrations in 

the membrane. A new structure trapping the waves under the membrane could be proposed using 

the same microfabrication techniques and integrating a fluidic cell.  

Another improvement track could be to use the phenomena of coupling between different modes 

of resonance, which could lead to the generation of local resonances and eventually increase the 

sensitivity of the transducer. In the longer term, it would be interesting to extend this type of 

sensor in the form of a network in order to allow the simultaneous detection of several targeted 

molecules involved in the diagnosis of a disease.   
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CONCLUSIONS ET PERSPECTIVES 

Le travail présenté dans ce manuscrit a porté sur la fabrication, la caractérisation et le test d'un 

biocapteur à ondes acoustiques de volume à base de ZnO/GaAs. Cette étude visait à développer 

un biocapteur miniaturisé pour la détection et la quantification de bactéries dans des milieux 

liquides complexes. Le champ d'application est large et vise le diagnostic clinique, la 

surveillance de l'environnement et l'industrie agroalimentaire. 

Le premier chapitre a présenté le contexte du sujet de recherche : il a fourni une brève 

présentation du projet et des travaux précédents menés dans les équipes de recherche à Besançon 

et Sherbrooke, ainsi que les objectifs de la thèse. 

Le deuxième chapitre a présenté les menaces bactériennes pour la santé humaine et les 

approches classiques de bio-détection, en se focalisant sur la pertinence du biocapteur développé 

par rapport aux techniques existantes pour la détection de bactéries, en particulier l’Escherichia 

coli. Nous avons exploité les potentialités de microfabrication, de fonctionnalisation 

biochimique et de régénération de surface du GaAs, et nous avons présenté les propriétés des 

films minces de ZnO qui ont conduit au choix de ce matériau. Pour améliorer les performances 

du biocapteur existant à base de GaAs, nous avons conçu une nouvelle architecture combinant 

ces deux matériaux : GaAs a été retenu pour la partie sensible en contact avec le liquide et un 

film mince piézoélectrique de ZnO a été ajouté sur la face avant de la membrane en GaAs pour 

améliorer le couplage électromécanique. 

Le troisième chapitre a été consacré à la modélisation du transducteur à ondes acoustiques de 

volume. Nous avons présenté les relations théoriques et les modèles analytiques permettant de 

comprendre le fonctionnement du transducteur. Après un bref aperçu de la transduction 

acoustique, nous avons rappelé les expressions tensorielles et les équations fondamentales de la 

piézoélectricité, qui ont conduit au développement du modèle analytique du transducteur. Une 

simulation utilisant la méthode des éléments finis (FEM) a été réalisée avec le logiciel Comsol 

Multiphysics® pour le dimensionnement du transducteur ZnO/GaAs. En utilisant ce modèle, 

nous avons déterminé les caractéristiques à la résonance des modes de cisaillement des ondes 

acoustiques de volume et le déplacement le long des différents axes de la structure. Après avoir 

testé différentes distances inter-électrodes, un gap de 500 µm a présenté la configuration 
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optimale pour limiter la pénétration du champ électrique dans la structure, en particulier dans le 

cas d'une mesure en milieu liquide. 

Dans le quatrième chapitre, nous avons abordé les aspects de la microfabrication du 

transducteur. Après un aperçu des techniques de dépôt couramment utilisées pour les couches 

minces de ZnO, la pulvérisation réactive radio fréquence à effet magnétron a été sélectionnée 

pour le dépôt de couches minces piézoélectriques de ZnO sur des substrats en GaAs. Nous avons 

testé l'utilisation d'une couche intermédiaire en platine entre le ZnO et le GaAs pour favoriser 

la croissance, en utilisant des couches d'adhésion de Ti ou Ta. Des techniques de caractérisation 

structurale (DRX, Raman) et topographique (AFM) ont été utilisées pour déterminer l’impact 

de l’orientation cristallographique du substrat de GaAs sur la qualité des films de ZnO. Les les 

interfaces chimiques entre les différentes couches déposées ont été étudiées par spectrométrie 

de masse à ionisation secondaire (SIMS) et l’ellipsométrie a été utilisée pour évaluer les 

épaisseurs des films de ZnO. Dans une dernière partie, les différentes étapes de microfabrication 

du transducteur ont été présentées, y compris la réalisation des électrodes et l’usinage de la 

membrane en GaAs par gravure chimique humide. 

Dans le cinquième chapitre, nous avons étudié et caractérisé la bio-interface de reconnaissance 

du biocapteur réalisée sur la membrane de GaAs. La formation et la caractérisation de 

monocouches auto-assemblées de thiols sur la membrane de GaAs ont été analysées par des 

mesures d'angle de contact, FTIR et XPS. Nous avons choisi une architecture de SAM mixte de 

MHDA/MUDO (1: 9), qui s’est révélée permettre l’immobilisation des ligands de manière 

durable, robuste et reproductible. De plus, nous avons testé différentes conditions de greffage 

de ligands, telles que la concentration en ligands, le pH de la solution de greffage et le temps 

d’incubation du ligand sur la membrane du capteur, afin de maximiser le nombre de sites de 

reconnaissance en surface et d’améliorer la sensibilité de détection. 

Enfin, le chapitre 6 a été consacré aux tests du biocapteur dans divers environnements. Nous 

avons présenté le montage expérimental pour la caractérisation électrique des dispositifs, 

permettant de caractériser la réponse fréquentielle du transducteur. Ensuite, nous avons étudié 

les impacts des paramètres environnementaux sur la réponse, tels que le pH et la conductivité 

de la solution électrolytique, susceptibles d’influencer de manière critique les performances du 

biocapteur. Nous avons démontré avec succès la bio-détection d’E. coli à différentes 
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concentrations, sur une gamme dynamique de 3 ordres de grandeur, et avons corrélé ces résultats 

à la densité surfacique en bactéries sur le biocapteur par des mesures de fluorescence. Nous 

avons effectué des contrôles qui ont validé la spécificité du biocapteur vis-à-vis de la bactérie 

ciblée. Grâce à des tests de détection réalisés en milieux idéal et complexe, nous avons déterminé 

la relation entre le décalage en fréquence et la concentration d’E. coli. Malgré les limitations en 

milieu liquide observées dans ce chapitre, les performances du biocapteur restent toutefois 

prometteuses.  

Pour surmonter ces limitations et obtenir de meilleures performances du biocapteur, plusieurs 

approches peuvent être adoptées à court et à long terme. Premièrement, les pistes d'optimisation 

présentées dans la section 6.6 concernant le ratio de NHS/EDC et le temps d'exposition à la 

solution d'antigène doivent être considérées pour améliorer le greffage des ligands et 

l'immunocapture des bactéries à la bio-interface, respectivement. De plus, les performances du 

dispositif peuvent être améliorées en effectuant la fonctionnalisation chimique, le greffage 

d'anticorps et l'exposition à l'antigène dans des conditions dynamiques, afin d'optimiser 

l'événement de bio-reconnaissance. 

Une autre perspective de ce travail est l'optimisation du dépôt de films de ZnO sur GaAs en 

utilisant une couche intermédiaire de Pt. Comme l’ont montré les caractérisations DRX et AFM, 

cette couche de Pt améliore la qualité cristalline et structurale des films, en termes de texture, 

de contraintes et de rugosité, mais elle favorise l’inter-diffusion de Ga, Ta, Ti et de ZnO lui-

même. Par conséquent, une étude plus poussée de l'interface Pt/GaAs devrait être envisagée 

pour arrêter la diffusion. Ce problème pourrait être résolu à l’avenir, en ajustant la température 

de dépôt, ou en ajoutant une barrière de diffusion supplémentaire à l'interface Pt/GaAs. 

Du point de vue de la microfabrication, l’amincissement du substrat par voie chimique devrait 

être remplacé par un polissage mécanique afin d’éviter les défauts de surface avant le micro-

usinage des membranes. Cela permettrait d’obtenir des structures membranaires planes sans 

rugosité ni défauts de surface. 

De plus, il est nécessaire d’apporter des modifications à la structure du capteur afin de confiner 

les vibrations dans la membrane. Une nouvelle structure piégeant les ondes sous la membrane 

pourrait être proposée en utilisant les mêmes techniques de microfabrication et en intégrant une 

cellule fluidique. 
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Une autre piste d'amélioration pourrait être l’utilisation des phénomènes de couplage entre 

différents modes de résonance, ce qui pourrait conduire à la génération de résonances locales et 

éventuellement à augmenter la sensibilité du transducteur. A plus long terme, il serait intéressant 

d'étendre ce type de capteur sous forme de réseau afin de permettre la détection simultanée de 

plusieurs molécules ciblées impliquées dans le diagnostic d'une maladie. 
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Appendix A: JCPDS cards 
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Appendix B: Samples preparation & characterization 

procedure prior to exposure to E. coli 

Phase Step Objective Tools & solutions Parameters/Remarks 

Characterisation 

of the sensor 

with 

bare surface 

Cleaning of the 

samples 

Remove mineral and 

organic impurities 

from the surface of 

the samples 

Immersion in 

successive baths of: 

-OptiClear 

-Acetone 

-Ethanol 

1) Immersion for 5 

min in each solvent 

under US 

2) Drying under 

Nitrogen flow 

Electrical 

measurements 

Determine the 

resonance 

characteristics 

(frequency, 

impedance phase and 

modulus) 

-Network analyzer 

-Cal kit 85052D 

-Electrical interface 

Calibration prior to 

measurement series 

and after modification 

of the acquisition 

parameters 

Characterisation 

of the sensor 

with chemically 

functionalized 

surface 

Degassing of 

ethanol 

Remove the oxygen 

from ethanol to 

prevent re-oxidation 

of GaAs 

-Anhydrous ethanol 

-Nitrogen flow 

-Erlenmeyer 

-Electrode 

1 hour 

Cleaning of the 

samples 

Remove mineral and 

organic impurities 

from the surface of 

the samples 

Immersion in 

successive baths of: 

-OptiClear 

-Acetone 

-Ethanol 

1) Immersion for 5 

min in each solvent 

under US 

2) Drying under 

Nitrogen flow 

Deoxidation of 

GaAs 

Remove the native 

oxide from the GaAs 

surface to prevent the 

chemisorption of 

thiols on the surface 

Ammonium 

hydroxide NH4OH 

(28 %) 

1) Incubation for 2 min  

2) Brief rinsing with 

degassed ethanol 
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Chemical 

functionalization 

of GaAs at the 

bottom side of 

the sensor 

Formation of SAMs 

to graft ligands 

-Sample holder 

-MHDA/MUDO 

(1:9) at 2mM 

-Degassed ethanol 

1) Sonicate for 1 min 

after mixing for 

homogenization 

2) Incubate for 20 

hours in dark at RT 

Rinsing 
Remove 

physiosorbed thiols 

-Degassed ethanol 

-Nitrogen gun 

1) Rinsing (2x, 1st time 

under US) with 

degassed ethanol 

2) Drying under 

Nitrogen flow 

Electrical 

measurements 

Determine the 

frequency shift due to 

thiols adsorption 

-Network analyzer 

-Cal kit 85052D 

-Electrical interface 

Calibration 

Characterisation 

of the sensor 

with antibody-

coated surface 

EDC/NHS 

activation 

Form a covalent bond 

between carboxyl 

group and amine 

group 

-EDC at 0.4M 

-NHS at 0.1M 

1) Incubation for 30 

min in dark at RT 

2) Rinsing (5 x with DI 

water) 

Antibodies 

immobilization 

Fix the antibodies via 

amine groups (-NH2) 

Unconjugated 

polyclonal α-E. coli 

IgG diluted in PBS 

(1X) at 100 µg/ml 

1 hour in dark at RT 

Rinsing and 

drying 

Remove traces of 

salts and PBS 

- PBS (1X) 

-Tween20 at 0.05 

% 

1) Siphon the solution 

2) Rinse 3x with PBS 

3) Rinse 3x with Tween 

20 at 0.05 % 

4) Rinse 3x with 

deionized water 

Electrical 

measurements 

Determine the 

frequency shift due to 

α-E. coli 

-Network analyzer 

-Cal kit 85052D 

-Electrical interface 

Calibration 

Characterisation 

of the sensor 

with passivated 

surface 

Passivation of 

the surface using 

BSA 

Saturate the surface 

to block any 

unspecific adsorption 

reaction 

BSA solution (200 

µg/ml, pH 5.5) 

1) Incubation for 30 

min in dark at RT  

2) Rinsing & drying 
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Rinsing and 

drying 

Remove traces of 

BSA 

- PBS (1X) 

-Tween20 at 0.05 

% 

1) Siphon the solution 

2) Rinse 3x with PBS 

3) Rinse 3x with Tween 

20 at 0.05 % 

4) Rinse 3x with 

deionized water 

Electrical 

measurements 

Determine the 

frequency shift due to 

BSA fixation 

-Network analyzer 

-Cal kit 85052D 

-Electrical interface 

Calibration 

Characterisation 

of the sensor 

before exposure 

to E. coli 

Inactivation of 

COOH groups 

Inactivate free 

COOH functions to 

prevent their 

interaction with the 

analyte 

Ethanolamine at 1 

M, pH 8.5 

Incubation for 30 min 

in dark at RT 

Rinsing and 

drying 

Remove traces of 

ethanolamine 

- PBS (1X) 

-Tween20 at 0.05 

% 

1) Siphon the solution 

2) Rinse 3x with PBS 

3) Rinse 3x with Tween 

20 at 0.05 % 

4) Rinse 3x with 

deionized water 

Electrical 

measurements  

Determine the 

frequency shift prior 

to exposure 

-Network analyzer 

-Cal kit 85052D 

-Electrical interface 

Calibration 

 

Note that during the incubation steps, the samples are placed in the holders as described in 

section 5.2.2., in order to protect the ZnO thin films and the electrodes during the exposure to 

the different biochemical solutions used.  
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Appendix C: Preparation & manipulation of E. coli 

Escherchia coli (E. coli) K12 is considered as non-pathogenic bacteria under the guidelines of 

the NIH (National Institutes of Health, USA). These micro-organisms are classified under the 

containment 1 (manipulated in Level laboratories) under the European Federation of 

Biotechnology Guidelines (Frommer et al., 1989). 

Culture and Storage 

Bacteria are stored in 30% glycerol solution at - 80 °C. At each manipulation, a new culture is 

started by streaking on LB-Agar plates. After 24 hours of culture at 37 °C, an isolated colony of 

E. coli is transferred to LB broth (40 mL) which allows its growth overnight. In the next 

morning, the optical density (OD) is measured to determine the concentration of the culture (0.1 

OD corresponds to 108 CFU/ml). The fresh culture is then aliquoted and stored at 50 % Glycerol 

and - 20 °C in freezer placed in local P2-1174 of the LCSM. 

Transportation between locals and intra-university 

In accordance with the biosafety procedure of Université de Sherbrooke, level 1 containment 

bacteria are transported in double containers in the case of intra-LCSM transportation (a primary 

container such as a sample holder and a secondary container like a saddle bag), and in triple 

containers for transportation between the university and 3IT. The transportation between 

premises must be minimal. The outside of the containers must not be in contact with the bacteria. 

Waste management 

Single-use Eppendorf tubes are used in all experiments. At the end of the manipulation, all the 

material exposed to bacteria is decontaminated with bleach (1 %) for at least 1 hour. After, the 

material used is considered as domestic waste, and the surfaces are decontaminated with ethanol. 

Handling conditions: 

▪ Wear lab coat, gloves and goggles. 

▪ Place used consumables (Eppendorf tubes, gloves...) in the dedicated waste containers. 

▪ Decontaminate the benches with ethanol (70 %). All the material exposed to the bacteria 

must be decontaminated by autoclaving.
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