Thèse soutenue

Modélisation multiphysique des régénérateurs magnétocaloriques

FR  |  
EN
Auteur / Autrice : Antony Plait
Direction : Christophe Espanet
Type : Thèse de doctorat
Discipline(s) : Sciences pour l'Ingénieur
Date : Soutenance le 10/10/2019
Etablissement(s) : Bourgogne Franche-Comté
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur et microtechniques (Besançon ; 1991-....)
Partenaire(s) de recherche : Laboratoire : FEMTO-ST : Franche-Comté Electronique Mécanique Thermique et Optique - Sciences et Technologies (Besançon) - Franche-Comté Électronique Mécanique- Thermique et Optique - Sciences et Technologies (UMR 6174) / FEMTO-ST
Etablissement de préparation : Université de technologie de Belfort-Montbéliard (1999-....)
Jury : Président / Présidente : Michel Feidt
Examinateurs / Examinatrices : Afef Kedous-Lebouc, Stefan Giurgea, Thierry de Larochelambert
Rapporteurs / Rapporteuses : Afef Kedous-Lebouc, Martino Lo Bue

Résumé

FR  |  
EN

Les recherches menées dans cette thèse s’inscrivent dans une volonté d’éliminer les gaz aggravant fortement le réchauffement climatique (effet de serre) dans les machines de réfrigération. La réfrigération magnétique active à régénérateur (AMRR), une technologie encore émergente est une réponse possible à ce défi.L’objectif de ce travail de thèse est de proposer une modélisation multiphysique complète d’un banc de tests de régénérateurs magnétocaloriques conciliant les qualités de précision et d’efficacité numérique (temps de calcul).Après une large étude bibliographique des modèles et des prototypes magnétocaloriques les plus récents, une modélisation multiphysique est proposée. Pour cela, trois sous-modèles (magnétostatique, magnétocalorique et thermo-fluidique) sont couplés de manières à prendre en compte l’ensemble des phénomènes se déroulant au sein du régénérateur magnétocalorique pendant les cycles AMRR.Notre modèle est ensuite utilisé pour étudier l’influence des paramètres d’entrée tels que la fréquence des cycles et le taux de balayage du régénérateur sur les performances thermiques du système. Un processus d’optimisation par modulation de ces paramètres au cours du temps est proposé pour diminuer fortement le temps nécessaire pour atteindre le régime stationnaire du régénérateur magnétocalorique dans différentes situations.L’achèvement, la mise au point et la validation du banc magnétocalorique est décrite en détails pour mettre en évidence et mesurer avec précision l’effet magnétocalorique dans le gadolinium, puis pour appliquer les cycles AMRR au régénérateur.Les résultats de ces expériences permettent de valider notre modèle multiphysique avec une très bonne précision, ouvrant la voie à une exploration systématique des performances des futurs régénérateurs conçus au laboratoire.