Thèse soutenue

Fonctions de Painlevé et blocs conformes irréguliers

FR  |  
EN
Auteur / Autrice : Julien Roussillon
Direction : Oleg Lisovyy
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 28/05/2019
Etablissement(s) : Tours
Ecole(s) doctorale(s) : École doctorale Mathématiques, Informatique, Physique Théorique et Ingénierie des Systèmes (Centre-Val de Loire ; 2012-....)
Partenaire(s) de recherche : Equipe de recherche : Institut Denis Poisson (Orléans, Tours ; 2018-....)
Jury : Président / Présidente : Pascal Baseilhac
Examinateurs / Examinatrices : Mattia Cafasso, Raoul Santachiara
Rapporteur / Rapporteuse : Nikolai Iorgov

Résumé

FR  |  
EN

Cette thèse a pour but de résoudre certains problèmes de connexion et de décrire diverses propriétés asymptotiques des fonctions de Painlevé V et I. Dans le cas de l’équation de Painlevé V, nous approchons ces problèmes en développant une nouvelle approche basée sur la théorie conforme des champs bidimensionelle. Nous proposons de calculer les blocs conformes irréguliers de première et seconde espèce par confluence des blocs conformes réguliers de Virasoro. Une conséquence de cette construction est la solution du problème de connexion de l’équation de Painlevé V entre 0 et +i∞. Les formules pour les normalisations relatives (constantes de connexion) de la fonction tau de Painlevé V entre 0, +∞, et +i∞ sont également proposées. Enfin, le développement asymptotique complet de la fonction tau à courte distance pour des données de monodromie génériques est prouvé. Ce résultat est obtenu en construisant une représentation de la fonction tau en termes d’un déterminant de Fredholm. Dans le cas de l’équation de Painlevé I, nous présentons les constantes de connexion relatant les asymptotiques de la fonction tau sur les cinq raies canoniques à l’infini. Ce résultat est obtenu en construisant une extension de la forme différentielle de Jimbo-Miwa-Ueno à l’espace des données de monodromie. Ces constantes de connexion sont exprimées en termes de dilogarithmes de coordonnées de type cluster dans l’espace des données de Stokes.