Ergodicité des équations différentielles stochastiques fractionnaires et problèmes liés

par Maylis Varvenne

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Laure Coutin et de Fabien Panloup.


  • Résumé

    Dans cette thèse, nous nous intéressons à trois problèmes en lien avec l'ergodicité de dynamiques aléa-toires à mémoire (discrètes ou continues) et tout particulièrement des Équations Différentielles Stochas-tiques (EDS) dirigées par un mouvement brownien fractionnaire. Le premier chapitre porte sur l'étude du comportement en temps long pour une classe générale de dynamiques aléatoires discrètes dirigées par un processus gaussien stationnaire ergodique. En s'inspirant des travaux de Hairer (2005), Fontbona-Panloup (2017), Deya-Panloup-Tindel (2019) sur l'ergodicité des EDS fractionnaires, nous construisons une structure markovienne au-dessus de la dynamique considérée, nous démontrons l'existence et l'unicité d'une mesure invariante puis nous donnons une borne sur la vitesse de convergence de la loi du processus vers cette mesure. La vitesse obtenue dépend du comportement asymp-totique de la fonction de covariance du processus gaussien qui dirige la dynamique (ou plus précisément de celui des coefficients intervenant dans sa représentation en moyenne mobile). Le deuxième chapitre expose des résultats sur la concentration en temps long à la fois pour des fonctionnelles de la solution d'une EDS fractionnaire additive sur un intervalle [0,T] et pour des fonctionnelles d'observations discrètes de ce processus. Ce résultat général est ensuite appliqué à des fonctionnelles spécifiques liées aux mesures d'occupations (discrètes ou continues) de la solution de l'EDS. Le dernier chapitre, dont les résultats utilisent ceux du chapitre 2, est un travail effectué en collaboration avec Panloup et Tindel qui porte sur l'estimation paramétrique du drift (non linéaire) pour une EDS fractionnaire additive. Nous utilisons une estimation par minimum de contraste basée sur l'identification de la mesure invariante (dont une approximation est construite à partir d'observations discrètes de l'EDS). Nous démontrons la consistance des estimateurs considérés et obtenons des bornes non asymptotiques sur l'erreur quadratique. Nos résultats sont illustrés par des simulations numériques. Enfin, nous montrons sur une classe d'exemples que l'hypothèse d'identifiabilité relative à ce problème d'estimation (intrinsèquement liée à la mesure invariante) est satisfaite.

  • Titre traduit

    Ergodicity of fractional stochastic differential equations and related problems


  • Résumé

    In this thesis, we focus on three problems related to the ergodicity of stochastic dynamics with memory (in a discrete-time or continuous-time setting) and especially of Stochastic Differential Equations (SDE) driven by fractional Brownian motion. In the first chapter, we study the long-time behavior of a general class of discrete-time stochastic dynamics driven by an ergodic and stationary Gaussian noise. Following the seminal paper written by Hairer (2005) on the ergodicity of fractional SDE (see also Fontbona-Panloup (2017) and Deya-Panloup-Tindel (2019)), we first build a Markovian structure above the dynamics, we show existence and uniqueness of the invariant distribution and then we exhibit some upper-bounds on the rate of convergence to equilibrium in terms of the asymptotic behavior of the covariance function of the Gaussian noise (or more precisely, of the asymptotic behavior of the coefficients appearing in its moving average representation). The second chapter establishes long-time concentration inequalities both for functionals of the whole solution on an interval [0,T] of an additive fractional SDE and for functionals of discrete-time observations of this process. Then, we apply this general result to specific functionals related to discrete and continuous-time occupation measures of the process. The last chapter, which uses the results developed in Chapter 2, is a joint work with Panloup and Tindel which focuses on the parametric estimation of the (non-linear) drift term in an additive fractional SDE. We use a minimum contrast estimation based on the identification of the invariant distribution (for which we build an approximation from discrete-time observations of the SDE). We provide consistency results as well as non-asymptotic estimates of the corresponding quadratic error. Some of our results are illustrating through numerical discussions. We also give some examples for which the identifiability condition related to our estimation procedure (intrinsically linked to the invariant distribution) is fulfilled.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Cette thèse a donné lieu à une publication en 2019 par Université Toulouse 3 à Toulouse

Ergodicité des équations différentielles stochastiques fractionnaires et problèmes liés


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?