Développement de nanoparticules de ruthénium comme modèles de catalyseurs pour le craquage de l'eau : approches expérimentale et théorique
Auteur / Autrice : | Roberto Gonzalez Gomez |
Direction : | Karine Philippot, Romuald Poteau |
Type : | Thèse de doctorat |
Discipline(s) : | Chimie organométallique de coordination |
Date : | Soutenance le 11/04/2019 |
Etablissement(s) : | Toulouse 3 |
Ecole(s) doctorale(s) : | École doctorale Sciences de la Matière (Toulouse) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de Chimie de Coordination (Toulouse ; 1974-....) |
Mots clés
Résumé
Cette thèse s'inscrit en amont de la problématique de production d'hydrogène (H2) à partir de l'eau. Les réactions impliquées (oxydation de l'eau, WOR et réaction d'évolution de l'hydrogène, HER) requièrent des catalyseurs tels que des nanoparticules (NPs) métalliques. Cette catalyse peut être photoactivée en associant un photosensibilisateur (PS) aux NPs conduisant à des hybrides PS-NPs. Un tel assemblage peut se faire via des groupements acides carboxyliques. Ce travail de doctorat repose sur la combinaison d'outils expérimentaux et théoriques en vue de développer de nouveaux nanocatalyseurs au ruthénium. Notre contribution a consisté à définir une cartographie précise de la surface de Ru NPs stabilisées par des acides carboxyliques avec des chaînes alkyles de longueur différente comme systèmes modèles de catalyseurs PS-NPs pour la photoproduction d'H2 à partir d'H2O. Parmi les principaux objectifs était visée une meilleure compréhension des relations structure/propriétés à l'échelle nanométrique afin d'expliquer les propriétés de surface des NPs et leur viabilité catalytique. Les RuNPs ont été synthétisées par voie organométallique à partir du complexe [Ru(COD)(COT)] comme source de Ru et des acides carboxyliques (éthanoïque, pentanoïque et octanoïque) comme stabilisants. Cette méthode permet la formation de NPs bien contrôlées, fournissant ainsi des systèmes de choix pour des études comparatives fines. Des populations homogènes de RuNPs de taille 1.1 à 1.7 nm ont été obtenues. L'état de surface des NPs a été sondé par différentes techniques analytiques (IR, RMN et WAXS). L'optimisation du ratio [ligand) / [Ru] a permis de disposer de NPs de tailles similaires, et donc de systèmes comparables quel que soit l'acide carboxylique utilisé. Des calculs DFT ont été effectués en parallèle sur un modèle de NP Ru55, dont certains ont alimenté un modèle thermodynamique permettant de s'approcher des conditions expérimentales de température, de pression et de concentration. Une analyse systématique des propriétés des liaisons, des charges atomiques et des états électroniques (DOS, COHP, MPA) a été réalisée. Les calculs des modes de vibration des modèles à base de Ru55 et des déplacements chimiques RMN de clusters [Ru6] ont corroboré et facilité les attributions spectroscopiques expérimentales. Les données spectroscopiques et des études mécanistiques DFT ont montré que les acides carboxyliques interagissent sur la surface métallique sous forme carboxylate. En bon accord, les titrages expérimentaux et théoriques ont montré l'efficacité de l'approche suivie pour cerner l'influence du ligand et de la longueur de la chaîne alkyle sur les propriétés de RuNPs. L'énergie libre de Gibbs de l'adsorption d'hydrogène, un paramètre de référence pour déterminer la viabilité de matériaux pour la catalyse HER, a été calculée par DFT sur des modèles Ru55. Le meilleur nanocatalyseur doit présenter à la fois une surface métallique moyennement encombrée et un ligand avec une longueur de chaîne alkyle intermédiaire, indiquant ainsi comme système le plus prometteur les RuNPs stabilisées par l'acide pentanoïque. Des études d'échange de ligands à la surface de RuNPs stabilisées par l'acide octanoïque ont été réalisées afin de modéliser l'ancrage du PS par un groupe acide carboxylique et complétées par des études théoriques. Les résultats obtenus ont démontré la potentialité de cette approche. Une originalité de ce travail réside dans la combinaison d'études expérimentales et théoriques menées de front pour mieux comprendre la relation structure/propriétés de RuNPs stabilisées par des acides carboxyliques et leur viabilité catalytique pour la production d'H2 à partir d'H2O. Les données obtenues et des résultats catalytiques préliminaires devraient permettre de concevoir des nanocatalyseurs efficaces. Si l'intérêt d'une telle approche a été démontré sur des RuNPs modèles pour le craquage de l'eau, ce travail ouvre d'autres perspectives en nanocatalyse.